diff options
author | dos-reis <gdr@axiomatics.org> | 2010-06-18 11:28:03 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2010-06-18 11:28:03 +0000 |
commit | bd813c8607938e8ff0d8f112987300e22e3dc712 (patch) | |
tree | cfaf242955f84d1810219e7143188c2170b2b566 /src/share/algebra | |
parent | f515cb4cfd86ecb9933897178a6618fdc1f4cbfb (diff) | |
download | open-axiom-bd813c8607938e8ff0d8f112987300e22e3dc712.tar.gz |
* algebra/catdef.spad.pamphlet (DifferentialExtension): Now
extends DifferentialSpaceExtension.
Diffstat (limited to 'src/share/algebra')
-rw-r--r-- | src/share/algebra/browse.daase | 3414 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6668 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1357 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10700 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32336 |
5 files changed, 27238 insertions, 27237 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index c15fcd57..969bd427 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2274045 . 3485817773) +(2280951 . 3485824333) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4458 . T) (-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4454 . T) (-4459 . T) (-4453 . T)) +((-4457 . T) (-4455 . T) (-4454 . T) ((-4462 "*") . T) (-4453 . T) (-4458 . T) (-4452 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3030) +(-32 R -3029) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) +((|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4461))) +((|HasAttribute| |#1| (QUOTE -4460))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4461 . T) (-4462 . T)) +((-4460 . T) (-4461 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4455 . T) (-4456 . T) (-4458 . T)) +((-4454 . T) (-4455 . T) (-4457 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3030 UP UPUP -3517) +(-40 -3029 UP UPUP -3486) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4454 |has| (-419 |#2|) (-374)) (-4459 |has| (-419 |#2|) (-374)) (-4453 |has| (-419 |#2|) (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3766 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3766 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3766 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3766 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3766 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) -(-41 R -3030) +((-4453 |has| (-418 |#2|) (-373)) (-4458 |has| (-418 |#2|) (-373)) (-4452 |has| (-418 |#2|) (-373)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| (-418 |#2|) (QUOTE (-146))) (|HasCategory| (-418 |#2|) (QUOTE (-148))) (|HasCategory| (-418 |#2|) (QUOTE (-359))) (-3765 (|HasCategory| (-418 |#2|) (QUOTE (-373))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (|HasCategory| (-418 |#2|) (QUOTE (-373))) (|HasCategory| (-418 |#2|) (QUOTE (-378))) (-3765 (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (-3765 (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-237))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (-3765 (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-359))))) (-3765 (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373))))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -650) (QUOTE (-575)))) (-3765 (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-378))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-237))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373))))) +(-41 R -3029) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -442) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -441) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-317)))) +((|HasCategory| |#1| (QUOTE (-316)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4458 |has| |#1| (-568)) (-4456 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) +((-4457 |has| |#1| (-567)) (-4455 . T) (-4454 . T)) +((|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4461 . T) (-4462 . T)) -((-3766 (-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3180) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3180) (|devaluate| |#2|))))))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3180) (|devaluate| |#2|))))))) +((-4460 . T) (-4461 . T)) +((-3765 (-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|))))))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| $ (QUOTE (-1067))) (|HasCategory| $ (LIST (QUOTE -1056) (QUOTE (-576))))) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| $ (QUOTE (-1066))) (|HasCategory| $ (LIST (QUOTE -1055) (QUOTE (-575))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4458 . T)) +((-4457 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3030) +(-54 |Base| R -3029) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4461 . T) (-4462 . T)) +((-4460 . T) (-4461 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-61 -1778) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-61 -1777) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -1778) +(-62 -1777) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -1778) +(-63 -1777) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -1778) +(-64 -1777) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -1778) +(-65 -1777) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -1778) +(-66 -1777) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -1778) +(-67 -1777) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -1778) +(-68 -1777) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -1778) +(-69 -1777) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -1778) +(-70 -1777) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -1778) +(-71 -1777) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -1778) +(-72 -1777) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -1778) +(-73 -1777) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -1778) +(-74 -1777) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,66 +236,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -1778) +(-77 -1777) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -1778) +(-78 -1777) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -1778) +(-79 -1777) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -1778) +(-80 -1777) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -1778) +(-81 -1777) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -1778) +(-82 -1777) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -1778) +(-83 -1777) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -1778) +(-84 -1777) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -1778) +(-85 -1777) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -1778) +(-86 -1777) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -1778) +(-87 -1777) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -1778) +(-88 -1777) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -1778) +(-89 -1777) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-90 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-374)))) +((|HasCategory| |#1| (QUOTE (-373)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4461 . T)) +((-4460 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4461 . T) ((-4463 "*") . T) (-4462 . T) (-4458 . T) (-4456 . T) (-4455 . T) (-4454 . T) (-4459 . T) (-4453 . T) (-4452 . T) (-4451 . T) (-4450 . T) (-4449 . T) (-4457 . T) (-4460 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4448 . T)) +((-4460 . T) ((-4462 "*") . T) (-4461 . T) (-4457 . T) (-4455 . T) (-4454 . T) (-4453 . T) (-4458 . T) (-4452 . T) (-4451 . T) (-4450 . T) (-4449 . T) (-4448 . T) (-4456 . T) (-4459 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4447 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4458 . T)) +((-4457 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4463 "*")))) +((|HasAttribute| |#1| (QUOTE (-4462 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4461 . T)) +((-4460 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4462 . T)) +((-4461 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| (-576) (QUOTE (-925))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1040))) (|HasCategory| (-576) (QUOTE (-832))) (-3766 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1170))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-239))) (|HasCategory| (-576) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| (-575) (QUOTE (-924))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-148))) (|HasCategory| (-575) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-575) (QUOTE (-1039))) (|HasCategory| (-575) (QUOTE (-831))) (-3765 (|HasCategory| (-575) (QUOTE (-831))) (|HasCategory| (-575) (QUOTE (-861)))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-1169))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-575) (QUOTE (-237))) (|HasCategory| (-575) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-238))) (|HasCategory| (-575) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-575) (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -318) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -295) (QUOTE (-575)) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-316))) (|HasCategory| (-575) (QUOTE (-556))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-575) (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (|HasCategory| (-575) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4462 . T) (-4461 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1118))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1118))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4460 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1117))) (|HasCategory| (-112) (LIST (QUOTE -318) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1117))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-873))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4456 . T) (-4455 . T)) +((-4455 . T) (-4454 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -392,22 +392,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -3030 UP) +(-116 -3029 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-925))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1040))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (-3766 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-862)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1170))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (|HasCategory| (-117 |#1|) (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-925)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| (-117 |#1|) (QUOTE (-924))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-117 |#1|) (QUOTE (-1039))) (|HasCategory| (-117 |#1|) (QUOTE (-831))) (-3765 (|HasCategory| (-117 |#1|) (QUOTE (-831))) (|HasCategory| (-117 |#1|) (QUOTE (-861)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-117 |#1|) (QUOTE (-1169))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -318) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -295) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-316))) (|HasCategory| (-117 |#1|) (QUOTE (-556))) (|HasCategory| (-117 |#1|) (QUOTE (-861))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-924)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4462))) +((|HasAttribute| |#1| (QUOTE -4461))) (-120 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -418,15 +418,15 @@ NIL NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-124) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL (-125 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -434,20 +434,20 @@ NIL NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4461 . T) (-4462 . T)) +((-4460 . T) (-4461 . T)) NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1118))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-3766 (-12 (|HasCategory| (-130) (QUOTE (-1118))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1118)))) (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1118))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-130) (QUOTE (-1118))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (LIST (QUOTE -318) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1117))) (|HasCategory| (-130) (LIST (QUOTE -318) (QUOTE (-130)))))) (-3765 (-12 (|HasCategory| (-130) (QUOTE (-1117))) (|HasCategory| (-130) (LIST (QUOTE -318) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1117)))) (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1117))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-130) (QUOTE (-1117))) (|HasCategory| (-130) (LIST (QUOTE -318) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -470,13 +470,13 @@ NIL NIL (-135) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4463 "*") . T)) +(((-4462 "*") . T)) NIL -(-136 |minix| -2834 S T$) +(-136 |minix| -2833 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -2834 R) +(-137 |minix| -2833 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -498,8 +498,8 @@ NIL NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4461 . T) (-4451 . T) (-4462 . T)) -((-3766 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-4460 . T) (-4450 . T) (-4461 . T)) +((-3765 (-12 (|HasCategory| (-145) (QUOTE (-378))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-145) (QUOTE (-378))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4458 . T)) +((-4457 . T)) NIL (-147 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -522,9 +522,9 @@ NIL NIL (-148) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4458 . T)) +((-4457 . T)) NIL -(-149 -3030 UP UPUP) +(-149 -3029 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -535,14 +535,14 @@ NIL (-151 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasAttribute| |#1| (QUOTE -4461))) +((|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasAttribute| |#1| (QUOTE -4460))) (-152 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-153 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4456 . T) (-4455 . T) (-4458 . T)) +((-4455 . T) (-4454 . T) (-4457 . T)) NIL (-154) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -564,7 +564,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-159 R -3030) +(-159 R -3029) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -595,10 +595,10 @@ NIL (-166 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-925))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1221))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568)))) +((|HasCategory| |#2| (QUOTE (-924))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1220))) (|HasCategory| |#2| (QUOTE (-1077))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (QUOTE (-567)))) (-167 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4454 -3766 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4457 |has| |#1| (-6 -4457)) (-4460 |has| |#1| (-6 -4460)) (-3503 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 -3765 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4456 |has| |#1| (-6 -4456)) (-4459 |has| |#1| (-6 -4459)) (-3502 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL (-168 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4454 -3766 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4457 |has| |#1| (-6 -4457)) (-4460 |has| |#1| (-6 -4460)) (-3503 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-379)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-1040)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-1221)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-925))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-925)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-925))))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1221)))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-1221)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-374)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#1| (QUOTE -4460)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195))))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-360))))) +((-4453 -3765 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4456 |has| |#1| (-6 -4456)) (-4459 |has| |#1| (-6 -4459)) (-3502 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-359))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-378))) (-3765 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-359)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-924))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-924)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-924))))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-1220)))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -295) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (QUOTE (-1077))) (-12 (|HasCategory| |#1| (QUOTE (-1077))) (|HasCategory| |#1| (QUOTE (-1220)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-373)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4459)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194))))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-359))))) (-172 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -626,7 +626,7 @@ NIL NIL (-174) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL (-175) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -634,7 +634,7 @@ NIL NIL (-176 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4463 "*") . T) (-4454 . T) (-4459 . T) (-4453 . T) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") . T) (-4453 . T) (-4458 . T) (-4452 . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL (-177) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -651,7 +651,7 @@ NIL (-180 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-968 |#2|) (LIST (QUOTE -899) (|devaluate| |#1|)))) +((|HasCategory| (-967 |#2|) (LIST (QUOTE -898) (|devaluate| |#1|)))) (-181 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -688,7 +688,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-190 R -3030) +(-190 R -3029) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -796,23 +796,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-217 -3030 UP UPUP R) +(-217 -3029 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-218 -3030 FP) +(-218 -3029 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-219) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| (-576) (QUOTE (-925))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1040))) (|HasCategory| (-576) (QUOTE (-832))) (-3766 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1170))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-239))) (|HasCategory| (-576) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| (-575) (QUOTE (-924))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-148))) (|HasCategory| (-575) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-575) (QUOTE (-1039))) (|HasCategory| (-575) (QUOTE (-831))) (-3765 (|HasCategory| (-575) (QUOTE (-831))) (|HasCategory| (-575) (QUOTE (-861)))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-1169))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-575) (QUOTE (-237))) (|HasCategory| (-575) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-238))) (|HasCategory| (-575) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-575) (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -318) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -295) (QUOTE (-575)) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-316))) (|HasCategory| (-575) (QUOTE (-556))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-575) (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (|HasCategory| (-575) (QUOTE (-146))))) (-220) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-221 R -3030) +(-221 R -3029) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -826,19 +826,19 @@ NIL NIL (-224 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (-225 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4458 . T)) +((-4457 . T)) NIL -(-226 R -3030) +(-226 R -3029) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-227) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3495 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-3494 . T) (-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL (-228) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -846,4351 +846,4347 @@ NIL NIL (-229 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4463 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-567))) (|HasAttribute| |#1| (QUOTE (-4462 "*"))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (-230 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-231 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4462 . T)) -NIL -(-232 S R) -((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) +((-4461 . T)) NIL -((|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239)))) -(-233 R) -((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4458 . T)) +(-232 R) +((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) +((-4457 . T)) NIL -(-234 S T$) +(-233 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-235 T$) +(-234 T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#1| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#1| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-236 R) +(-235 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-4456 . T) (-4455 . T)) +((-4455 . T) (-4454 . T)) NIL -(-237 S) +(-236 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-238) +(-237) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-239) +(-238) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4458 . T)) +((-4457 . T)) NIL -(-240 A S) +(-239 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4461))) -(-241 S) +((|HasAttribute| |#1| (QUOTE -4460))) +(-240 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4462 . T)) +((-4461 . T)) NIL -(-242) +(-241) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-243 S -2834 R) +(-242 S -2833 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862))) (|HasAttribute| |#3| (QUOTE -4458)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (QUOTE (-1118)))) -(-244 -2834 R) +((|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (QUOTE (-861))) (|HasAttribute| |#3| (QUOTE -4457)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (QUOTE (-1117)))) +(-243 -2833 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4455 |has| |#2| (-1067)) (-4456 |has| |#2| (-1067)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T)) +((-4454 |has| |#2| (-1066)) (-4455 |has| |#2| (-1066)) (-4457 |has| |#2| (-6 -4457)) (-4460 . T)) NIL -(-245 -2834 A B) +(-244 -2833 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-246 -2834 R) +(-245 -2833 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4455 |has| |#2| (-1067)) (-4456 |has| |#2| (-1067)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3766 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1118)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118))))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-3766 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-738)))) (-3766 (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) -(-247) +((-4454 |has| |#2| (-1066)) (-4455 |has| |#2| (-1066)) (-4457 |has| |#2| (-6 -4457)) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (QUOTE (-373))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (-3765 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-378))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (|HasCategory| |#2| (QUOTE (-238))) (-3765 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066))))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#2| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-378)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-737)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-804)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194))))) (-3765 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-737)))) (-3765 (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasAttribute| |#2| (QUOTE -4457)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))))) +(-246) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-248 S) +(-247 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-249) +(-248) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4454 . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-250 S) +(-249 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-251 S) +(-250 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-252 M) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-251 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-253 |vl| R) +(-252 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#2| (QUOTE (-925))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-254) +(((-4462 "*") |has| |#2| (-174)) (-4453 |has| |#2| (-567)) (-4458 |has| |#2| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#2| (QUOTE (-924))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-567)))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-253) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL NIL -(-255) +(-254) ((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) NIL NIL -(-256) +(-255) ((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL -(-257 |n| R M S) +(-256 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4458 -3766 (-3227 (|has| |#4| (-1067)) (|has| |#4| (-239))) (|has| |#4| (-6 -4458)) (-3227 (|has| |#4| (-1067)) (|has| |#4| (-914 (-1195))))) (-4455 |has| |#4| (-1067)) (-4456 |has| |#4| (-1067)) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#4| (QUOTE (-374))) (-3766 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1067)))) (-3766 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-805))) (-3766 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-862)))) (|HasCategory| |#4| (QUOTE (-379))) (-3766 (-12 (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))) (-3766 (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1067)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-738)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-862)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1067)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1118))))) (-3766 (-12 (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1067))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1067)))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-3766 (|HasCategory| |#4| (QUOTE (-1067))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1118)))) (-3766 (|HasAttribute| |#4| (QUOTE -4458)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1067)))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))))) -(-258 |n| R S) +((-4457 -3765 (-3226 (|has| |#4| (-1066)) (|has| |#4| (-238))) (|has| |#4| (-6 -4457)) (-3226 (|has| |#4| (-1066)) (|has| |#4| (-913 (-1194))))) (-4454 |has| |#4| (-1066)) (-4455 |has| |#4| (-1066)) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-737))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-804))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))))) (|HasCategory| |#4| (QUOTE (-373))) (-3765 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (QUOTE (-1066)))) (-3765 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-373)))) (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (QUOTE (-737))) (|HasCategory| |#4| (QUOTE (-804))) (-3765 (|HasCategory| |#4| (QUOTE (-804))) (|HasCategory| |#4| (QUOTE (-861)))) (|HasCategory| |#4| (QUOTE (-378))) (-3765 (-12 (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3765 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1066)))) (|HasCategory| |#4| (QUOTE (-238))) (-3765 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1066))))) (-3765 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#4| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-373)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-378)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-737)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-804)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-861)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-1066)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-1117))))) (-3765 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-737))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-804))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-1066))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-737))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-804))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575))))) (-3765 (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1194)))))) (-3765 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1066)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1066))))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-3765 (|HasCategory| |#4| (QUOTE (-1066))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-1117)))) (-3765 (|HasAttribute| |#4| (QUOTE -4457)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1066)))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1066)))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1194))))) (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|))))) +(-257 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4458 -3766 (-3227 (|has| |#3| (-1067)) (|has| |#3| (-239))) (|has| |#3| (-6 -4458)) (-3227 (|has| |#3| (-1067)) (|has| |#3| (-914 (-1195))))) (-4455 |has| |#3| (-1067)) (-4456 |has| |#3| (-1067)) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#3| (QUOTE (-374))) (-3766 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-3766 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-3766 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-379))) (-3766 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (-3766 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1118))))) (-3766 (-12 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1067))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-3766 (|HasCategory| |#3| (QUOTE (-1067))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1118)))) (-3766 (|HasAttribute| |#3| (QUOTE -4458)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) -(-259 A R S V E) +((-4457 -3765 (-3226 (|has| |#3| (-1066)) (|has| |#3| (-238))) (|has| |#3| (-6 -4457)) (-3226 (|has| |#3| (-1066)) (|has| |#3| (-913 (-1194))))) (-4454 |has| |#3| (-1066)) (-4455 |has| |#3| (-1066)) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))))) (|HasCategory| |#3| (QUOTE (-373))) (-3765 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3765 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373)))) (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (QUOTE (-804))) (-3765 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-378))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (|HasCategory| |#3| (QUOTE (-238))) (-3765 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1066))))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#3| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-378)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-737)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-804)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1117))))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1066))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-3765 (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1194)))))) (-3765 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1066))))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-3765 (|HasCategory| |#3| (QUOTE (-1066))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1117)))) (-3765 (|HasAttribute| |#3| (QUOTE -4457)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1194))))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|))))) +(-258 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-239)))) -(-260 R S V E) +((|HasCategory| |#2| (QUOTE (-238)))) +(-259 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) NIL -(-261 S) +(-260 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4461 . T) (-4462 . T)) +((-4460 . T) (-4461 . T)) NIL -(-262) +(-261) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-263 R |Ex|) +(-262 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-264) +(-263) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-265 R) +(-264 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-266 |Ex|) +(-265 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-267) +(-266) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-268) +(-267) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-269 S) +(-268 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-270) +(-269) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-271 S R) +(-270 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-238)))) -(-272 R) +((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-237)))) +(-271 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL -(-273 R S V) +(-272 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-925))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-274 A S) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-924))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#3| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#3| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-273 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-275 S) +(-274 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-276) +(-275) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-277) +(-276) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-278) +(-277) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-279) +(-278) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-280) +(-279) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-281) +(-280) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-282) +(-281) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-283) +(-282) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-284) +(-283) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-285 R -3030) +(-284 R -3029) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-286 R -3030) +(-285 R -3029) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-287 |Coef| UTS ULS) +(-286 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-374)))) -(-288 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-373)))) +(-287 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-374)))) -(-289) +((|HasCategory| |#1| (QUOTE (-373)))) +(-288) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-290) +(-289) ((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}."))) NIL NIL -(-291 A S) +(-290 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118)))) -(-292 S) +((|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117)))) +(-291 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4462 . T)) +((-4461 . T)) NIL -(-293 S) +(-292 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-294) +(-293) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-295 |Coef| UTS) +(-294 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-296 S T$) +(-295 S T$) ((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}."))) NIL NIL -(-297 S |Dom| |Im|) +(-296 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4462))) -(-298 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4461))) +(-297 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-299 S R |Mod| -2123 -4214 |exactQuo|) +(-298 S R |Mod| -4256 -3794 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-300) +(-299) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4454 . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-301) +(-300) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-302 R) +(-301 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-303 S R) +(-302 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-304 S) +(-303 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4458 -3766 (|has| |#1| (-1067)) (|has| |#1| (-485))) (-4455 |has| |#1| (-1067)) (-4456 |has| |#1| (-1067))) -((|HasCategory| |#1| (QUOTE (-374))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1067)))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-1067)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1067)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1067)))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1067)))) (-3766 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738)))) (|HasCategory| |#1| (QUOTE (-485))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1118)))) (-3766 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-3766 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738)))) (-3766 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-738)))) -(-305 |Key| |Entry|) +((-4457 -3765 (|has| |#1| (-1066)) (|has| |#1| (-484))) (-4454 |has| |#1| (-1066)) (-4455 |has| |#1| (-1066))) +((|HasCategory| |#1| (QUOTE (-373))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3765 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-737)))) (|HasCategory| |#1| (QUOTE (-484))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-1117)))) (-3765 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#1| (QUOTE (-1129)))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-311))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-484)))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-737)))) (-3765 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-737)))) +(-304 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3180) (|devaluate| |#2|)))))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) -(-306) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873))))) +(-305) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-307 -3030 S) +(-306 -3029 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-308 E -3030) +(-307 E -3029) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-309 A B) +(-308 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-310) +(-309) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-311 S) +(-310 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1067)))) -(-312) +((|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-1066)))) +(-311) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-313 R1) +(-312 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-314 R1 R2) +(-313 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-315) +(-314) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-316 S) +(-315 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-317) +(-316) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-318 S R) +(-317 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-319 R) +(-318 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-320 -3030) +(-319 -3029) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-321) +(-320) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-322) +(-321) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-323 R FE |var| |cen|) +(-322 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-925))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-1040))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (-3766 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-862)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-1170))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-925))) (|HasCategory| $ (QUOTE (-146)))) (-3766 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-925))) (|HasCategory| $ (QUOTE (-146)))))) -(-324 R S) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-924))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-1039))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (-3765 (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-861)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-1169))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -318) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -295) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-316))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-556))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-861))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-924))) (|HasCategory| $ (QUOTE (-146)))) (-3765 (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-924))) (|HasCategory| $ (QUOTE (-146)))))) +(-323 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-325 R FE) +(-324 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-326 R) +(-325 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4458 -3766 (-12 (|has| |#1| (-568)) (-3766 (|has| |#1| (-1067)) (|has| |#1| (-485)))) (|has| |#1| (-1067)) (|has| |#1| (-485))) (-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) ((-4463 "*") |has| |#1| (-568)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4453 |has| |#1| (-568))) -((-3766 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-3766 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-21))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3766 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (-3766 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1067)))) (-3766 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1067)))) (-3766 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-3766 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3766 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1130)))) (-3766 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3766 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1067)))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1067))) (|HasCategory| $ (LIST (QUOTE -1056) (QUOTE (-576))))) -(-327 R -3030) +((-4457 -3765 (-12 (|has| |#1| (-567)) (-3765 (|has| |#1| (-1066)) (|has| |#1| (-484)))) (|has| |#1| (-1066)) (|has| |#1| (-484))) (-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) ((-4462 "*") |has| |#1| (-567)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-567)) (-4452 |has| |#1| (-567))) +((-3765 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| |#1| (QUOTE (-567))) (-3765 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-21))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-1066))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))))) (-3765 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-1129)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))))) (-3765 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-1129)))) (-3765 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))))) (-3765 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1129))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| $ (QUOTE (-1066))) (|HasCategory| $ (LIST (QUOTE -1055) (QUOTE (-575))))) +(-326 R -3029) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-328) +(-327) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-329 FE |var| |cen|) +(-328 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2884) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1956) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1607) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) -(-330 M) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|)))) (|HasCategory| (-418 (-575)) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasSignature| |#1| (LIST (QUOTE -2883) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4413) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|))))))) +(-329 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-331 E OV R P) +(-330 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-332 S) +(-331 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4456 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-804)))) -(-333 S E) +((-4455 . T) (-4454 . T)) +((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-803)))) +(-332 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-334 S) +(-333 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-783) (QUOTE (-804)))) -(-335 S R E) +((|HasCategory| (-782) (QUOTE (-803)))) +(-334 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) -(-336 R E) +((|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174)))) +(-335 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-337 S) +(-336 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-338 S -3030) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-337 S -3029) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-379)))) -(-339 -3030) +((|HasCategory| |#2| (QUOTE (-378)))) +(-338 -3029) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-340) +(-339) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL -(-341 E) +(-340 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-342) +(-341) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) NIL NIL -(-343) +(-342) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-344 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-343 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-345 S -3030 UP UPUP R) +(-344 S -3029 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-346 -3030 UP UPUP R) +(-345 -3029 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-347 -3030 UP UPUP R) +(-346 -3029 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-348 S R) +(-347 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-349 R) +((|HasCategory| |#2| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -295) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-348 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-350 |basicSymbols| |subscriptedSymbols| R) +(-349 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-390)))) (|HasCategory| $ (QUOTE (-1067))) (|HasCategory| $ (LIST (QUOTE -1056) (QUOTE (-576))))) -(-351 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-389)))) (|HasCategory| $ (QUOTE (-1066))) (|HasCategory| $ (LIST (QUOTE -1055) (QUOTE (-575))))) +(-350 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-352 S -3030 UP UPUP) +(-351 S -3029 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-374)))) -(-353 -3030 UP UPUP) +((|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-373)))) +(-352 -3029 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4454 |has| (-419 |#2|) (-374)) (-4459 |has| (-419 |#2|) (-374)) (-4453 |has| (-419 |#2|) (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 |has| (-418 |#2|) (-373)) (-4458 |has| (-418 |#2|) (-373)) (-4452 |has| (-418 |#2|) (-373)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-354 |p| |extdeg|) +(-353 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (|HasCategory| (-926 |#1|) (QUOTE (-146))) (|HasCategory| (-926 |#1|) (QUOTE (-379)))) (|HasCategory| (-926 |#1|) (QUOTE (-148))) (|HasCategory| (-926 |#1|) (QUOTE (-379))) (|HasCategory| (-926 |#1|) (QUOTE (-146)))) -(-355 GF |defpol|) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (|HasCategory| (-925 |#1|) (QUOTE (-146))) (|HasCategory| (-925 |#1|) (QUOTE (-378)))) (|HasCategory| (-925 |#1|) (QUOTE (-148))) (|HasCategory| (-925 |#1|) (QUOTE (-378))) (|HasCategory| (-925 |#1|) (QUOTE (-146)))) +(-354 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-356 GF |extdeg|) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146)))) +(-355 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-357 GF) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146)))) +(-356 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-358 F1 GF F2) +(-357 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-359 S) +(-358 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-360) +(-359) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-361 R UP -3030) +(-360 R UP -3029) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-362 |p| |extdeg|) +(-361 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (|HasCategory| (-926 |#1|) (QUOTE (-146))) (|HasCategory| (-926 |#1|) (QUOTE (-379)))) (|HasCategory| (-926 |#1|) (QUOTE (-148))) (|HasCategory| (-926 |#1|) (QUOTE (-379))) (|HasCategory| (-926 |#1|) (QUOTE (-146)))) -(-363 GF |uni|) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (|HasCategory| (-925 |#1|) (QUOTE (-146))) (|HasCategory| (-925 |#1|) (QUOTE (-378)))) (|HasCategory| (-925 |#1|) (QUOTE (-148))) (|HasCategory| (-925 |#1|) (QUOTE (-378))) (|HasCategory| (-925 |#1|) (QUOTE (-146)))) +(-362 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-364 GF |extdeg|) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146)))) +(-363 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-365 |p| |n|) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146)))) +(-364 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (|HasCategory| (-926 |#1|) (QUOTE (-146))) (|HasCategory| (-926 |#1|) (QUOTE (-379)))) (|HasCategory| (-926 |#1|) (QUOTE (-148))) (|HasCategory| (-926 |#1|) (QUOTE (-379))) (|HasCategory| (-926 |#1|) (QUOTE (-146)))) -(-366 GF |defpol|) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (|HasCategory| (-925 |#1|) (QUOTE (-146))) (|HasCategory| (-925 |#1|) (QUOTE (-378)))) (|HasCategory| (-925 |#1|) (QUOTE (-148))) (|HasCategory| (-925 |#1|) (QUOTE (-378))) (|HasCategory| (-925 |#1|) (QUOTE (-146)))) +(-365 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-367 -3030 GF) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146)))) +(-366 -3029 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-368 GF) +(-367 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-369 -3030 FP FPP) +(-368 -3029 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-370 GF |n|) +(-369 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-371 R |ls|) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146)))) +(-370 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-372 S) +(-371 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4458 . T)) +((-4457 . T)) NIL -(-373 S) +(-372 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-374) +(-373) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-375 |Name| S) +(-374 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-376 S) +(-375 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-377 S R) +(-376 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-568)))) -(-378 R) +((|HasCategory| |#2| (QUOTE (-567)))) +(-377 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4458 |has| |#1| (-568)) (-4456 . T) (-4455 . T)) +((-4457 |has| |#1| (-567)) (-4455 . T) (-4454 . T)) NIL -(-379) +(-378) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-380 S R UP) +(-379 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-374)))) -(-381 R UP) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-373)))) +(-380 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4455 . T) (-4456 . T) (-4458 . T)) +((-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-382 S A R B) +(-381 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-383 A S) +(-382 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118)))) -(-384 S) +((|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117)))) +(-383 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4461 . T)) +((-4460 . T)) NIL -(-385 |VarSet| R) +(-384 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4456 . T) (-4455 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4455 . T) (-4454 . T)) NIL -(-386 S V) +(-385 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-387 S R) +(-386 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) -(-388 R) +((|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) +(-387 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-389 |Par|) +(-388 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-390) +(-389) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4444 . T) (-4452 . T) (-3495 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4443 . T) (-4451 . T) (-3494 . T) (-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-391 |Par|) +(-390 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-392 R S) +(-391 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4456 . T) (-4455 . T)) +((-4455 . T) (-4454 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) -(-393 R |Basis|) +(-392 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4456 . T) (-4455 . T)) +((-4455 . T) (-4454 . T)) NIL -(-394) +(-393) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-395) +(-394) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-396 R S) +(-395 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4456 . T) (-4455 . T)) +((-4455 . T) (-4454 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) -(-397 S) +(-396 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-398 S) +(-397 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-862)))) -(-399) +((|HasCategory| |#1| (QUOTE (-861)))) +(-398) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-400) +(-399) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-401) +(-400) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-402 |n| |class| R) +(-401 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4456 . T) (-4455 . T)) +((-4455 . T) (-4454 . T)) NIL -(-403) +(-402) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-404 -3030 UP UPUP R) +(-403 -3029 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-405 S) +(-404 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-406) +(-405) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-407) +(-406) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-408) +(-407) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-409) +(-408) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-410 -1778 |returnType| -4224 |symbols|) +(-409 -1777 |returnType| -4223 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-411 -3030 UP) +(-410 -3029 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-412 R) +(-411 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-413 S) +(-412 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-414) +(-413) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-415 S) +(-414 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4444)) (|HasAttribute| |#1| (QUOTE -4452))) -(-416) +((|HasAttribute| |#1| (QUOTE -4443)) (|HasAttribute| |#1| (QUOTE -4451))) +(-415) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3495 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-3494 . T) (-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-417 R S) +(-416 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-418 A B) +(-417 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-419 S) +(-418 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4448 -12 (|has| |#1| (-6 -4459)) (|has| |#1| (-464)) (|has| |#1| (-6 -4448))) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-832))) (-3766 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-862)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1170))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4459)) (|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-420 S R UP) +((-4447 -12 (|has| |#1| (-6 -4458)) (|has| |#1| (-463)) (|has| |#1| (-6 -4447))) (-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-924))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-831))) (-3765 (|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-861)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839))))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -295) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-556))) (-12 (|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4447)) (|HasCategory| |#1| (QUOTE (-463)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-419 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-421 R UP) +(-420 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4455 . T) (-4456 . T) (-4458 . T)) +((-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-422 A S) +(-421 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) -(-423 S) +((|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) +(-422 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-424 R1 F1 U1 A1 R2 F2 U2 A2) +(-423 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-425 R -3030 UP A) +(-424 R -3029 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4458 . T)) +((-4457 . T)) NIL -(-426 R -3030 UP A |ibasis|) +(-425 R -3029 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1056) (|devaluate| |#2|)))) -(-427 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1055) (|devaluate| |#2|)))) +(-426 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-428 S R) +(-427 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-374)))) -(-429 R) +((|HasCategory| |#2| (QUOTE (-373)))) +(-428 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4458 |has| |#1| (-568)) (-4456 . T) (-4455 . T)) +((-4457 |has| |#1| (-567)) (-4455 . T) (-4454 . T)) NIL -(-430 R) +(-429 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1240))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1240)))) (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) -(-431 R) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -318) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -295) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1239))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-1239)))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -295) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-463)))) +(-430 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-432 R FE |x| |cen|) +(-431 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-433 R A S B) +(-432 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-434 R FE |Expon| UPS TRAN |x|) +(-433 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-435 S A R B) +(-434 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-436 A S) +(-435 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379)))) -(-437 S) +((|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-378)))) +(-436 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4461 . T) (-4451 . T) (-4462 . T)) +((-4460 . T) (-4450 . T) (-4461 . T)) NIL -(-438 R -3030) +(-437 R -3029) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-439 R E) +(-438 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4448 -12 (|has| |#1| (-6 -4448)) (|has| |#2| (-6 -4448))) (-4455 . T) (-4456 . T) (-4458 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4448)) (|HasAttribute| |#2| (QUOTE -4448)))) -(-440 R -3030) +((-4447 -12 (|has| |#1| (-6 -4447)) (|has| |#2| (-6 -4447))) (-4454 . T) (-4455 . T) (-4457 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4447)) (|HasAttribute| |#2| (QUOTE -4447)))) +(-439 R -3029) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-441 S R) +(-440 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) -(-442 R) +((|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-1129))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) +(-441 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4458 -3766 (|has| |#1| (-1067)) (|has| |#1| (-485))) (-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) ((-4463 "*") |has| |#1| (-568)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4453 |has| |#1| (-568))) +((-4457 -3765 (|has| |#1| (-1066)) (|has| |#1| (-484))) (-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) ((-4462 "*") |has| |#1| (-567)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-567)) (-4452 |has| |#1| (-567))) NIL -(-443 R -3030) +(-442 R -3029) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-444 R -3030) +(-443 R -3029) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-445 R -3030) +(-444 R -3029) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-446) +(-445) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-447 R -3030 UP) +(-446 R -3029 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-48))))) -(-448) +((|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-48))))) +(-447) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-449) +(-448) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-450 |f|) +(-449 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-451) +(-450) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-452) +(-451) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-453) +(-452) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-454 UP) +(-453 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-455 R UP -3030) +(-454 R UP -3029) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-456 R UP) +(-455 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-457 R) +(-456 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-416)))) -(-458) +((|HasCategory| |#1| (QUOTE (-415)))) +(-457) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-459 |Dom| |Expon| |VarSet| |Dpol|) +(-458 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-460 |Dom| |Expon| |VarSet| |Dpol|) +(-459 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-461 |Dom| |Expon| |VarSet| |Dpol|) +(-460 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-462 |Dom| |Expon| |VarSet| |Dpol|) +(-461 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-374)))) -(-463 S) +((|HasCategory| |#1| (QUOTE (-373)))) +(-462 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-464) +(-463) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-465 R |n| |ls| |gamma|) +(-464 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4458 |has| (-419 (-968 |#1|)) (-568)) (-4456 . T) (-4455 . T)) -((|HasCategory| (-419 (-968 |#1|)) (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-419 (-968 |#1|)) (QUOTE (-568)))) -(-466 |vl| R E) +((-4457 |has| (-418 (-967 |#1|)) (-567)) (-4455 . T) (-4454 . T)) +((|HasCategory| (-418 (-967 |#1|)) (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| (-418 (-967 |#1|)) (QUOTE (-567)))) +(-465 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#2| (QUOTE (-925))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-467 R BP) +(((-4462 "*") |has| |#2| (-174)) (-4453 |has| |#2| (-567)) (-4458 |has| |#2| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#2| (QUOTE (-924))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-567)))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-466 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-468 OV E S R P) +(-467 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-469 E OV R P) +(-468 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-470 R) +(-469 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-471 R FE) +(-470 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-472 RP TP) +(-471 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-473 |vl| R IS E |ff| P) +(-472 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4456 . T) (-4455 . T)) +((-4455 . T) (-4454 . T)) NIL -(-474 E V R P Q) +(-473 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-475 R E |VarSet| P) +(-474 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4462 . T) (-4461 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874))))) -(-476 S R E) +((-4461 . T) (-4460 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873))))) +(-475 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-477 R E) +(-476 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-478) +(-477) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-479) +(-478) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-480) +(-479) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-481 S R E) +(-480 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-482 R E) +(-481 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-483 |lv| -3030 R) +(-482 |lv| -3029 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-484 S) +(-483 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-485) +(-484) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4458 . T)) +((-4457 . T)) NIL -(-486 |Coef| |var| |cen|) +(-485 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2884) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1956) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1607) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) -(-487 |Key| |Entry| |Tbl| |dent|) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|)))) (|HasCategory| (-418 (-575)) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasSignature| |#1| (LIST (QUOTE -2883) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4413) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|))))))) +(-486 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4462 . T)) -((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3180) (|devaluate| |#2|)))))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118)))) -(-488 R E V P) +((-4461 . T)) +((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117)))) +(-487 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4462 . T) (-4461 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874))))) -(-489) +((-4461 . T) (-4460 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873))))) +(-488) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-490) +(-489) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-491 |Key| |Entry| |hashfn|) +(-490 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3180) (|devaluate| |#2|)))))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) -(-492) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873))))) +(-491) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-493 |vl| R) +(-492 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#2| (QUOTE (-925))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-494 -2834 S) +(((-4462 "*") |has| |#2| (-174)) (-4453 |has| |#2| (-567)) (-4458 |has| |#2| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#2| (QUOTE (-924))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-567)))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-493 -2833 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4455 |has| |#2| (-1067)) (-4456 |has| |#2| (-1067)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3766 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1118)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118))))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-3766 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-738)))) (-3766 (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) -(-495) +((-4454 |has| |#2| (-1066)) (-4455 |has| |#2| (-1066)) (-4457 |has| |#2| (-6 -4457)) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (QUOTE (-373))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (-3765 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-378))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (|HasCategory| |#2| (QUOTE (-238))) (-3765 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066))))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#2| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-378)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-737)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-804)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194))))) (-3765 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-737)))) (-3765 (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasAttribute| |#2| (QUOTE -4457)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))))) +(-494) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-496 S) +(-495 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-497 -3030 UP UPUP R) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-496 -3029 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-498 BP) +(-497 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-499) +(-498) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| (-576) (QUOTE (-925))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1040))) (|HasCategory| (-576) (QUOTE (-832))) (-3766 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1170))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-239))) (|HasCategory| (-576) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (|HasCategory| (-576) (QUOTE (-146))))) -(-500 A S) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| (-575) (QUOTE (-924))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-148))) (|HasCategory| (-575) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-575) (QUOTE (-1039))) (|HasCategory| (-575) (QUOTE (-831))) (-3765 (|HasCategory| (-575) (QUOTE (-831))) (|HasCategory| (-575) (QUOTE (-861)))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-1169))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-575) (QUOTE (-237))) (|HasCategory| (-575) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-238))) (|HasCategory| (-575) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-575) (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -318) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -295) (QUOTE (-575)) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-316))) (|HasCategory| (-575) (QUOTE (-556))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-575) (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (|HasCategory| (-575) (QUOTE (-146))))) +(-499 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4461)) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) -(-501 S) +((|HasAttribute| |#1| (QUOTE -4460)) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) +(-500 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-502 S) +(-501 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-503) +(-502) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-504 S) +(-503 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-505) +(-504) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-506 -3030 UP |AlExt| |AlPol|) +(-505 -3029 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-507) +(-506) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| $ (QUOTE (-1067))) (|HasCategory| $ (LIST (QUOTE -1056) (QUOTE (-576))))) -(-508 S |mn|) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| $ (QUOTE (-1066))) (|HasCategory| $ (LIST (QUOTE -1055) (QUOTE (-575))))) +(-507 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-509 R |mnRow| |mnCol|) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-508 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-510 K R UP) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-509 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-511 R UP -3030) +(-510 R UP -3029) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-512 |mn|) +(-511 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4462 . T) (-4461 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1118))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1118))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-874))))) -(-513 K R UP L) +((-4461 . T) (-4460 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1117))) (|HasCategory| (-112) (LIST (QUOTE -318) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1117))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-873))))) +(-512 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-514) +(-513) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-515 R Q A B) +(-514 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-516 -3030 |Expon| |VarSet| |DPoly|) +(-515 -3029 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1195))))) -(-517 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-1194))))) +(-516 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-518) +(-517) ((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-519 A S) +(-518 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-520 A S) +(-519 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-521 A S) +(-520 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-522 A S) +(-521 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-523 A S) +(-522 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-524 A S) +(-523 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-525 S A B) +(-524 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-526 A B) +(-525 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-527 S E |un|) +(-526 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-804)))) -(-528 S |mn|) +((|HasCategory| |#2| (QUOTE (-803)))) +(-527 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-529) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-528) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-530 |p| |n|) +(-529 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) -(-531 R |mnRow| |mnCol| |Row| |Col|) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (|HasCategory| (-592 |#1|) (QUOTE (-146))) (|HasCategory| (-592 |#1|) (QUOTE (-378)))) (|HasCategory| (-592 |#1|) (QUOTE (-148))) (|HasCategory| (-592 |#1|) (QUOTE (-378))) (|HasCategory| (-592 |#1|) (QUOTE (-146)))) +(-530 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-532 S |mn|) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-531 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-533 R |Row| |Col| M) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-532 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4462))) -(-534 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4461))) +(-533 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4462))) -(-535 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4461))) +(-534 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4463 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-536) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-567))) (|HasAttribute| |#1| (QUOTE (-4462 "*"))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-535) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-537) +(-536) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-538 S) +(-537 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-539) +(-538) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-540 GF) +(-539 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-541) +(-540) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-542 R) +(-541 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-543 |Varset|) +(-542 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-544 K -3030 |Par|) +(-543 K -3029 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-545) +(-544) NIL NIL NIL -(-546) +(-545) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-547 R) +(-546 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-548) +(-547) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-549 |Coef| UTS) +(-548 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-550 K -3030 |Par|) +(-549 K -3029 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-551 R BP |pMod| |nextMod|) +(-550 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-552 OV E R P) +(-551 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-553 K UP |Coef| UTS) +(-552 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-554 |Coef| UTS) +(-553 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-555 R UP) +(-554 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-556 S) +(-555 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-557) +(-556) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4458 . T) (-4459 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-558) +(-557) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-559) +(-558) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-560) +(-559) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-561) +(-560) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-562 |Key| |Entry| |addDom|) +(-561 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3180) (|devaluate| |#2|)))))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) -(-563 R -3030) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873))))) +(-562 R -3029) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-564 R0 -3030 UP UPUP R) +(-563 R0 -3029 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-565) +(-564) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-566 R) +(-565 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3495 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-3494 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-567 S) +(-566 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-568) +(-567) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-569 R -3030) +(-568 R -3029) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-570 I) +(-569 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-571) +(-570) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-572 R -3030 L) +(-571 R -3029 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) -(-573) +((|HasCategory| |#3| (LIST (QUOTE -667) (|devaluate| |#2|)))) +(-572) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-574 -3030 UP UPUP R) +(-573 -3029 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-575 -3030 UP) +(-574 -3029 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-576) +(-575) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4443 . T) (-4449 . T) (-4453 . T) (-4448 . T) (-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4442 . T) (-4448 . T) (-4452 . T) (-4447 . T) (-4458 . T) (-4459 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-577) +(-576) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-578 R -3030 L) +(-577 R -3029 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) -(-579 R -3030) +((|HasCategory| |#3| (LIST (QUOTE -667) (|devaluate| |#2|)))) +(-578 R -3029) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-641))))) -(-580 -3030 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-1156)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-640))))) +(-579 -3029 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-581 S) +(-580 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-582 -3030) +(-581 -3029) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-583 R) +(-582 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3495 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-3494 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-584) +(-583) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-585 R -3030) +(-584 R -3029) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568)))) -(-586 -3030 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-293))) (|HasCategory| |#2| (QUOTE (-640))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-293)))) (|HasCategory| |#1| (QUOTE (-567)))) +(-585 -3029 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-587 R -3030) +(-586 R -3029) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-588) +(-587) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-589) +(-588) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-590) +(-589) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-591) +(-590) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-592 |p| |unBalanced?|) +(-591 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-593 |p|) +(-592 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) -(-594) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-378)))) +(-593) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-595 R -3030) +(-594 R -3029) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-596 E -3030) +(-595 E -3029) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-597) +(-596) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-598 -3030) +(-597 -3029) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4456 . T) (-4455 . T)) -((|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-1195))))) -(-599 I) +((-4455 . T) (-4454 . T)) +((|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-1194))))) +(-598 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-600 GF) +(-599 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-601 R) +(-600 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-148)))) -(-602) +(-601) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-603 R E V P TS) +(-602 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-604) +(-603) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-605 |mn|) +(-604 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-3766 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1118)))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) -(-606 E V R P) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145)))))) (-3765 (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1117)))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145)))))) +(-605 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-607 |Coef|) +(-606 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2884) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) -(-608 |Coef|) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|)))) (|HasCategory| (-575) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -2883) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575)))))) +(-607 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4463 "*") |has| |#1| (-568)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-568)))) -(-609) +(((-4462 "*") |has| |#1| (-567)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-567)))) +(-608) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-610 A B) +(-609 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-611 A B C) +(-610 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-612 R -3030 FG) +(-611 R -3029 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-613 S) +(-612 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-614 R |mn|) +(-613 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-615 S |Index| |Entry|) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-614 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-862))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#3| (QUOTE (-1118)))) -(-616 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-861))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#3| (QUOTE (-1117)))) +(-615 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-617) +(-616) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-618) +(-617) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-619 R A) +(-618 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4458 -3766 (-3227 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4456 . T) (-4455 . T)) -((-3766 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) -(-620 |Entry|) +((-4457 -3765 (-3226 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))) (-4455 . T) (-4454 . T)) +((-3765 (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|)))) +(-619 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1177))) (LIST (QUOTE |:|) (QUOTE -3180) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| (-1177) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (LIST (QUOTE -625) (QUOTE (-874))))) -(-621 S |Key| |Entry|) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1176))) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| (-1176) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -624) (QUOTE (-873))))) +(-620 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-622 |Key| |Entry|) +(-621 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4462 . T)) +((-4461 . T)) NIL -(-623 R S) +(-622 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-624 S) +(-623 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) -(-625 S) +((|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) +(-624 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-626 S) +(-625 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-627 -3030 UP) +(-626 -3029 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-628 S) +(-627 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-629) +(-628) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-630 S) +(-629 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-631 S R) +(-630 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-632 R) +(-631 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4458 . T)) +((-4457 . T)) NIL -(-633 A R S) +(-632 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-860)))) -(-634 R -3030) +((-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-859)))) +(-633 R -3029) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-635 R UP) +(-634 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4454 . T) (-4458 . T)) -((|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) -(-636 R E V P TS ST) +((-4455 . T) (-4454 . T) ((-4462 "*") . T) (-4453 . T) (-4457 . T)) +((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) +(-635 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-637 OV E Z P) +(-636 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-638) +(-637) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-639 |VarSet| R |Order|) +(-638 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4458 . T)) +((-4457 . T)) NIL -(-640 R |ls|) +(-639 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-641) +(-640) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-642 R -3030) +(-641 R -3029) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-643 |lv| -3030) +(-642 |lv| -3029) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-644) +(-643) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4462 . T)) -((-12 (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1177))) (LIST (QUOTE |:|) (QUOTE -3180) (QUOTE (-52))))))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (QUOTE (-1118))) (|HasCategory| (-52) (QUOTE (-1118)))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1177) (QUOTE (-862))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (QUOTE (-1118)))) -(-645 S R) +((-4461 . T)) +((-12 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1176))) (LIST (QUOTE |:|) (QUOTE -3179) (QUOTE (-52))))))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-52) (QUOTE (-1117)))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -318) (QUOTE (-52))))) (|HasCategory| (-1176) (QUOTE (-861))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (QUOTE (-1117)))) +(-644 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-374)))) -(-646 R) +((|HasCategory| |#2| (QUOTE (-373)))) +(-645 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4456 . T) (-4455 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4455 . T) (-4454 . T)) NIL -(-647 R A) +(-646 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4458 -3766 (-3227 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4456 . T) (-4455 . T)) -((-3766 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) -(-648 R FE) +((-4457 -3765 (-3226 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))) (-4455 . T) (-4454 . T)) +((-3765 (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|)))) +(-647 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-649 R) +(-648 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-650 S R) +(-649 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3216 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374)))) -(-651 R) +((-3215 (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-373)))) +(-650 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-652 S) +(-651 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-653 A B) +(-652 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-654 A B) +(-653 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-655 A B C) +(-654 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-656 S) +(-655 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-657 T$) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-656 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-658 S) +(-657 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds if \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-659 S) +(-658 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-660 R) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-659 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-661 S E |un|) +(-660 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-662 A S) +(-661 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4462))) -(-663 S) +((|HasAttribute| |#1| (QUOTE -4461))) +(-662 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-664 R -3030 L) +(-663 R -3029 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-665 A) +(-664 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-666 A M) +((-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-373)))) +(-665 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-667 S A) +((-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-373)))) +(-666 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-374)))) -(-668 A) +((|HasCategory| |#2| (QUOTE (-373)))) +(-667 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4455 . T) (-4456 . T) (-4458 . T)) +((-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-669 -3030 UP) +(-668 -3029 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-670 A -2293) +(-669 A -3523) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-671 A L) +((-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-373)))) +(-670 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-672 S) +(-671 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-673) +(-672) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-674 M R S) +(-673 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4456 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-803)))) -(-675 R) +((-4455 . T) (-4454 . T)) +((|HasCategory| |#1| (QUOTE (-802)))) +(-674 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-676 |VarSet| R) +(-675 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4456 . T) (-4455 . T)) -((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-174)))) -(-677 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4455 . T) (-4454 . T)) +((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-174)))) +(-676 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-678 S) +(-677 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL -(-679 -3030) +(-678 -3029) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-680 -3030 |Row| |Col| M) +(-679 -3029 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-681 R E OV P) +(-680 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-682 |n| R) +(-681 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4458 . T) (-4461 . T) (-4455 . T) (-4456 . T)) -((|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-3766 (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-683) +((-4457 . T) (-4460 . T) (-4454 . T) (-4455 . T)) +((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4462 "*"))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-567))) (-3765 (|HasAttribute| |#2| (QUOTE (-4462 "*"))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-682) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-684 |VarSet|) +(-683 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-685 A S) +(-684 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-686 S) +(-685 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-687 R) +(-686 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-688) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-687) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-689 |VarSet|) +(-688 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-690 A) +(-689 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-691 A C) +(-690 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-692 A B C) +(-691 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-693) +(-692) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-694 A) +(-693 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-695 A C) +(-694 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-696 A B C) +(-695 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-697 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-696 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-698 S R |Row| |Col|) +(-697 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568)))) -(-699 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4462 "*"))) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-567)))) +(-698 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4461 . T) (-4462 . T)) +((-4460 . T) (-4461 . T)) NIL -(-700 R |Row| |Col| M) +(-699 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568)))) -(-701 R) +((|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-567)))) +(-700 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4461 . T) (-4462 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4463 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-702 R) +((-4460 . T) (-4461 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-567))) (|HasAttribute| |#1| (QUOTE (-4462 "*"))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-701 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-703 T$) +(-702 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-704 S -3030 FLAF FLAS) +(-703 S -3029 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-705 R Q) +(-704 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-706) +(-705) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4454 . T) (-4459 |has| (-711) (-374)) (-4453 |has| (-711) (-374)) (-3503 . T) (-4460 |has| (-711) (-6 -4460)) (-4457 |has| (-711) (-6 -4457)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-3766 (|HasCategory| (-711) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-711) (QUOTE (-239))) (-3766 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (-3766 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1040))) (|HasCategory| (-711) (QUOTE (-1221))) (-12 (|HasCategory| (-711) (QUOTE (-1020))) (|HasCategory| (-711) (QUOTE (-1221)))) (-3766 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-925))))) (-3766 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-925)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-925))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1078))) (|HasCategory| (-711) (QUOTE (-1221)))) (|HasCategory| (-711) (QUOTE (-1078))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925))) (-3766 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (|HasCategory| (-711) (QUOTE (-374)))) (-3766 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-239))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4460)) (|HasAttribute| (-711) (QUOTE -4457)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (|HasCategory| (-711) (QUOTE (-146)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (|HasCategory| (-711) (QUOTE (-360))))) -(-707 S) +((-4453 . T) (-4458 |has| (-710) (-373)) (-4452 |has| (-710) (-373)) (-3502 . T) (-4459 |has| (-710) (-6 -4459)) (-4456 |has| (-710) (-6 -4456)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| (-710) (QUOTE (-148))) (|HasCategory| (-710) (QUOTE (-146))) (|HasCategory| (-710) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-710) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| (-710) (QUOTE (-378))) (|HasCategory| (-710) (QUOTE (-373))) (-3765 (|HasCategory| (-710) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-710) (QUOTE (-373)))) (|HasCategory| (-710) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-710) (QUOTE (-238))) (|HasCategory| (-710) (QUOTE (-237))) (-3765 (-12 (|HasCategory| (-710) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-710) (QUOTE (-373)))) (|HasCategory| (-710) (LIST (QUOTE -915) (QUOTE (-1194))))) (-3765 (|HasCategory| (-710) (QUOTE (-373))) (|HasCategory| (-710) (QUOTE (-359)))) (|HasCategory| (-710) (QUOTE (-359))) (|HasCategory| (-710) (LIST (QUOTE -295) (QUOTE (-710)) (QUOTE (-710)))) (|HasCategory| (-710) (LIST (QUOTE -318) (QUOTE (-710)))) (|HasCategory| (-710) (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE (-710)))) (|HasCategory| (-710) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-710) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-710) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-710) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (-3765 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-373))) (|HasCategory| (-710) (QUOTE (-359)))) (|HasCategory| (-710) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-710) (QUOTE (-1039))) (|HasCategory| (-710) (QUOTE (-1220))) (-12 (|HasCategory| (-710) (QUOTE (-1019))) (|HasCategory| (-710) (QUOTE (-1220)))) (-3765 (-12 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (QUOTE (-373))) (-12 (|HasCategory| (-710) (QUOTE (-359))) (|HasCategory| (-710) (QUOTE (-924))))) (-3765 (-12 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (-12 (|HasCategory| (-710) (QUOTE (-373))) (|HasCategory| (-710) (QUOTE (-924)))) (-12 (|HasCategory| (-710) (QUOTE (-359))) (|HasCategory| (-710) (QUOTE (-924))))) (|HasCategory| (-710) (QUOTE (-556))) (-12 (|HasCategory| (-710) (QUOTE (-1077))) (|HasCategory| (-710) (QUOTE (-1220)))) (|HasCategory| (-710) (QUOTE (-1077))) (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924))) (-3765 (-12 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (QUOTE (-373)))) (-3765 (-12 (|HasCategory| (-710) (QUOTE (-238))) (|HasCategory| (-710) (QUOTE (-373)))) (|HasCategory| (-710) (QUOTE (-237)))) (-3765 (-12 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (QUOTE (-567)))) (-12 (|HasCategory| (-710) (QUOTE (-237))) (|HasCategory| (-710) (QUOTE (-373)))) (-12 (|HasCategory| (-710) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-710) (QUOTE (-373)))) (-12 (|HasCategory| (-710) (QUOTE (-238))) (|HasCategory| (-710) (QUOTE (-373)))) (-12 (|HasCategory| (-710) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-710) (QUOTE (-373)))) (|HasCategory| (-710) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-710) (QUOTE (-567))) (|HasAttribute| (-710) (QUOTE -4459)) (|HasAttribute| (-710) (QUOTE -4456)) (-12 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (LIST (QUOTE -915) (QUOTE (-1194)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (QUOTE (-146)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (QUOTE (-359))))) +(-706 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4462 . T)) +((-4461 . T)) NIL -(-708 U) +(-707 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-709) +(-708) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-710 OV E -3030 PG) +(-709 OV E -3029 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-711) +(-710) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3495 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-3494 . T) (-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-712 R) +(-711 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-713) +(-712) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4460 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4459 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-714 S D1 D2 I) +(-713 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-715 S) +(-714 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-716 S) +(-715 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-717 S T$) +(-716 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-718 S -3431 I) +(-717 S -3430 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-719 E OV R P) +(-718 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-720 R) +(-719 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4455 . T) (-4456 . T) (-4458 . T)) +((-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-721 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-720 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-722) +(-721) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-723 R |Mod| -2123 -4214 |exactQuo|) +(-722 R |Mod| -4256 -3794 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-724 R |Rep|) +(-723 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1170))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-725 IS E |ff|) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4456 |has| |#1| (-373)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-724 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-726 R M) +(-725 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T)) +((-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) (-4457 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-727 R |Mod| -2123 -4214 |exactQuo|) +(-726 R |Mod| -4256 -3794 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4458 . T)) +((-4457 . T)) NIL -(-728 S R) +(-727 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-729 R) +(-728 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4456 . T) (-4455 . T)) +((-4455 . T) (-4454 . T)) NIL -(-730 -3030) +(-729 -3029) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4458 . T)) +((-4457 . T)) NIL -(-731 S) +(-730 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-732) +(-731) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-733 S) +(-732 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-734) +(-733) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-735 S R UP) +(-734 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379)))) -(-736 R UP) +((|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-378)))) +(-735 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4454 |has| |#1| (-374)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 |has| |#1| (-373)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-737 S) +(-736 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-738) +(-737) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-739 -3030 UP) +(-738 -3029 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-740 |VarSet| E1 E2 R S PR PS) +(-739 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-741 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-740 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-742 E OV R PPR) +(-741 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-743 |vl| R) +(-742 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#2| (QUOTE (-925))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-744 E OV R PRF) +(((-4462 "*") |has| |#2| (-174)) (-4453 |has| |#2| (-567)) (-4458 |has| |#2| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#2| (QUOTE (-924))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-567)))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-743 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-745 E OV R P) +(-744 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-746 R S M) +(-745 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-747 R M) +(-746 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-862)))) -(-748 S) +((-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) (-4457 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-861)))) +(-747 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4451 . T) (-4462 . T)) +((-4450 . T) (-4461 . T)) NIL -(-749 S) +(-748 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4461 . T) (-4451 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-750) +((-4460 . T) (-4450 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-749) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-751 S) +(-750 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-752 |Coef| |Var|) +(-751 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4456 . T) (-4455 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4455 . T) (-4454 . T) (-4457 . T)) NIL -(-753 OV E R P) +(-752 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-754 E OV R P) +(-753 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-755 S R) +(-754 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-756 R) +(-755 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4456 . T) (-4455 . T)) +((-4455 . T) (-4454 . T)) NIL -(-757) +(-756) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-758) +(-757) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-759) +(-758) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-760) +(-759) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-761) +(-760) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-762) +(-761) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-763) +(-762) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-764) +(-763) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-765) +(-764) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-766) +(-765) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-767) +(-766) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-768) +(-767) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-769) +(-768) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-770) +(-769) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-771) +(-770) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-772 S) +(-771 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-773) +(-772) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-774 S) +(-773 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-775) +(-774) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-776 |Par|) +(-775 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-777 -3030) +(-776 -3029) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-778 P -3030) +(-777 P -3029) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-779 T$) +(-778 T$) NIL NIL NIL -(-780 UP -3030) +(-779 UP -3029) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-781) +(-780) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-782 R) +(-781 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-783) +(-782) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4463 "*") . T)) +(((-4462 "*") . T)) NIL -(-784 R -3030) +(-783 R -3029) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-785 S) +(-784 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-786) +(-785) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-787 R |PolR| E |PolE|) +(-786 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-788 R E V P TS) +(-787 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-789 -3030 |ExtF| |SUEx| |ExtP| |n|) +(-788 -3029 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-790 BP E OV R P) +(-789 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-791 |Par|) +(-790 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-792 R |VarSet|) +(-791 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-925))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195))))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-3216 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-3216 (|HasCategory| |#1| (QUOTE (-557)))) (-3216 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-3216 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-3216 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-3216 (|HasCategory| |#1| (LIST (QUOTE -1010) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-793 R S) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-924))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))) (-3215 (|HasCategory| |#1| (QUOTE (-556)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-575))))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-575))))))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-792 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-794 R) +(-793 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1170))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-795 R) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4456 |has| |#1| (-373)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-794 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-796 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) +(-795 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL -(-797 S) +(-796 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-174)))) -(-798) +((-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-174)))) +(-797) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-799) +(-798) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-800) +(-799) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-801) +(-800) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-802 |Curve|) +(-801 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-803) +(-802) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-804) +(-803) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-805) +(-804) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-806) +(-805) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-807) +(-806) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-808 S R) +(-807 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379)))) -(-809 R) +((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1077))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-378)))) +(-808 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4455 . T) (-4456 . T) (-4458 . T)) +((-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-810 -3766 R OS S) +(-809 -3765 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-811 R) +(-810 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-3766 (|HasCategory| (-1017 |#1|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3766 (|HasCategory| (-1017 |#1|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1017 |#1|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1017 |#1|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) -(-812) +((-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -295) (|devaluate| |#1|) (|devaluate| |#1|))) (-3765 (|HasCategory| (-1016 |#1|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3765 (|HasCategory| (-1016 |#1|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-1077))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| (-1016 |#1|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-1016 |#1|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) +(-811) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-813 R -3030 L) +(-812 R -3029 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-814 R -3030) +(-813 R -3029) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-815) +(-814) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-816 R -3030) +(-815 R -3029) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-817) +(-816) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-818 -3030 UP UPUP R) +(-817 -3029 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-819 -3030 UP L LQ) +(-818 -3029 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-820) +(-819) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-821 -3030 UP L LQ) +(-820 -3029 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-822 -3030 UP) +(-821 -3029 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-823 -3030 L UP A LO) +(-822 -3029 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-824 -3030 UP) +(-823 -3029 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-825 -3030 LO) +(-824 -3029 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-826 -3030 LODO) +(-825 -3029 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-827 -2834 S |f|) +(-826 -2833 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4455 |has| |#2| (-1067)) (-4456 |has| |#2| (-1067)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3766 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1118)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118))))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-3766 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-738)))) (-3766 (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) -(-828 R) +((-4454 |has| |#2| (-1066)) (-4455 |has| |#2| (-1066)) (-4457 |has| |#2| (-6 -4457)) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (QUOTE (-373))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (-3765 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-378))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (|HasCategory| |#2| (QUOTE (-238))) (-3765 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066))))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#2| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-378)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-737)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-804)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194))))) (-3765 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-737)))) (-3765 (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasAttribute| |#2| (QUOTE -4457)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))))) +(-827 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-925))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-829 |Kernels| R |var|) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-924))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-829 (-1194)) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-829 (-1194)) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-829 (-1194)) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-829 (-1194)) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-829 (-1194)) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-828 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4463 "*") |has| |#2| (-374)) (-4454 |has| |#2| (-374)) (-4459 |has| |#2| (-374)) (-4453 |has| |#2| (-374)) (-4458 . T) (-4456 . T) (-4455 . T)) -((|HasCategory| |#2| (QUOTE (-374)))) -(-830 S) +(((-4462 "*") |has| |#2| (-373)) (-4453 |has| |#2| (-373)) (-4458 |has| |#2| (-373)) (-4452 |has| |#2| (-373)) (-4457 . T) (-4455 . T) (-4454 . T)) +((|HasCategory| |#2| (QUOTE (-373)))) +(-829 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-831 S) +(-830 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-862)))) -(-832) +((|HasCategory| |#1| (QUOTE (-861)))) +(-831) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-833) +(-832) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-834) +(-833) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-835) +(-834) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-836) +(-835) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-837) +(-836) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-838 R) +(-837 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-839 P R) +(-838 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-239)))) -(-840) +((-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-238)))) +(-839) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-841) +(-840) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-842 S) +(-841 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4461 . T) (-4451 . T) (-4462 . T)) +((-4460 . T) (-4450 . T) (-4461 . T)) NIL -(-843) +(-842) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-844 R S) +(-843 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-845 R) +(-844 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4458 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3766 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-3766 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) -(-846 A S) +((-4457 |has| |#1| (-859))) +((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-21))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3765 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-556)))) +(-845 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-847 S) +(-846 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-848 R) +(-847 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T)) +((-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) (-4457 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-849) +(-848) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-850) +(-849) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-851) +(-850) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-852) +(-851) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-853) +(-852) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-854 R S) +(-853 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-855 R) +(-854 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4458 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3766 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-3766 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) -(-856) +((-4457 |has| |#1| (-859))) +((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-21))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3765 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-556)))) +(-855) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-857 -2834 S) +(-856 -2833 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-858) +(-857) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-859 S) +(-858 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-860) +(-859) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4458 . T)) +((-4457 . T)) NIL -(-861 S) +(-860 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-862) +(-861) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-863 S R) +(-862 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) -(-864 R) +((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174)))) +(-863 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4455 . T) (-4456 . T) (-4458 . T)) +((-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-865 R C) +(-864 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) -(-866 R |sigma| -3595) +((|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) +(-865 R |sigma| -3594) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-867 |x| R |sigma| -3595) +((-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-373)))) +(-866 |x| R |sigma| -3594) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-374)))) -(-868 R) +((-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-373)))) +(-867 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-869) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) +(-868) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-870) +(-869) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-871 S) +(-870 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-872) +(-871) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-873) +(-872) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-874) +(-873) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-875) +(-874) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-876 |VariableList|) +(-875 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-877) +(-876) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-878 R |vl| |wl| |wtlevel|) +(-877 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) -(-879 R PS UP) +((-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373)))) +(-878 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-880 R |x| |pt|) +(-879 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-881 |p|) +(-880 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-882 |p|) +(-881 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-883 |p|) +(-882 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| (-882 |#1|) (QUOTE (-925))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-882 |#1|) (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-148))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-882 |#1|) (QUOTE (-1040))) (|HasCategory| (-882 |#1|) (QUOTE (-832))) (-3766 (|HasCategory| (-882 |#1|) (QUOTE (-832))) (|HasCategory| (-882 |#1|) (QUOTE (-862)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (QUOTE (-1170))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (QUOTE (-239))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -882) (|devaluate| |#1|)) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (QUOTE (-317))) (|HasCategory| (-882 |#1|) (QUOTE (-557))) (|HasCategory| (-882 |#1|) (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-925)))) (|HasCategory| (-882 |#1|) (QUOTE (-146))))) -(-884 |p| PADIC) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| (-881 |#1|) (QUOTE (-924))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-881 |#1|) (QUOTE (-146))) (|HasCategory| (-881 |#1|) (QUOTE (-148))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-881 |#1|) (QUOTE (-1039))) (|HasCategory| (-881 |#1|) (QUOTE (-831))) (-3765 (|HasCategory| (-881 |#1|) (QUOTE (-831))) (|HasCategory| (-881 |#1|) (QUOTE (-861)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-881 |#1|) (QUOTE (-1169))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| (-881 |#1|) (QUOTE (-237))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-881 |#1|) (QUOTE (-238))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -881) (|devaluate| |#1|)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -318) (LIST (QUOTE -881) (|devaluate| |#1|)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -295) (LIST (QUOTE -881) (|devaluate| |#1|)) (LIST (QUOTE -881) (|devaluate| |#1|)))) (|HasCategory| (-881 |#1|) (QUOTE (-316))) (|HasCategory| (-881 |#1|) (QUOTE (-556))) (|HasCategory| (-881 |#1|) (QUOTE (-861))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-881 |#1|) (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-881 |#1|) (QUOTE (-924)))) (|HasCategory| (-881 |#1|) (QUOTE (-146))))) +(-883 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#2| (QUOTE (-925))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-832))) (-3766 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1170))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-885 S T$) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#2| (QUOTE (-924))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-831))) (-3765 (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-1169))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -295) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-861))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-884 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))))) -(-886) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))))) +(-885) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-887) +(-886) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-888) +(-887) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-889 CF1 CF2) +(-888 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-890 |ComponentFunction|) +(-889 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-891 CF1 CF2) +(-890 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-892 |ComponentFunction|) +(-891 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-893) +(-892) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-894 CF1 CF2) +(-893 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-895 |ComponentFunction|) +(-894 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-896) +(-895) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-897 R) +(-896 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-898 R S L) +(-897 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-899 S) +(-898 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-900 |Base| |Subject| |Pat|) +(-899 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3216 (|HasCategory| |#2| (QUOTE (-1067)))) (-3216 (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (-3216 (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195))))) -(-901 R A B) +((-12 (-3215 (|HasCategory| |#2| (QUOTE (-1066)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194))))) +(-900 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-902 R S) +(-901 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-903 R -3431) +(-902 R -3430) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-904 R S) +(-903 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-905 R) +(-904 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-906 |VarSet|) +(-905 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-907 UP R) +(-906 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-908 A T$ S) +(-907 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-909 T$ S) +(-908 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-910) +(-909) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-911 UP -3030) +(-910 UP -3029) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-912) +(-911) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-913) +(-912) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-914 S) +(-913 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4458 . T)) +((-4457 . T)) NIL -(-915 A S) +(-914 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-916 S) +(-915 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-917 S) +(-916 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-918 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-917 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-919 S) +(-918 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4458 . T)) +((-4457 . T)) NIL -(-920 S) +(-919 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-921 S) +(-920 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4458 . T)) -((-3766 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) -(-922 R E |VarSet| S) +((-4457 . T)) +((-3765 (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-861)))) +(-921 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-923 R S) +(-922 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-924 S) +(-923 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-146)))) -(-925) +(-924) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-926 |p|) +(-925 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) -(-927 R0 -3030 UP UPUP R) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-378)))) +(-926 R0 -3029 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-928 UP UPUP R) +(-927 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-929 UP UPUP) +(-928 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-930 R) +(-929 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-931 R) +(-930 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-932 E OV R P) +(-931 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-933) +(-932) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-934 -3030) +(-933 -3029) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-935 R) +(-934 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-936) +(-935) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-937) +(-936) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4463 "*") . T)) +(((-4462 "*") . T)) NIL -(-938 -3030 P) +(-937 -3029 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-939 |xx| -3030) +(-938 |xx| -3029) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-940 R |Var| |Expon| GR) +(-939 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-941 S) +(-940 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-942) +(-941) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-943) +(-942) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-944) +(-943) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-945 R -3030) +(-944 R -3029) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-946) +(-945) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-947 S A B) +(-946 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-948 S R -3030) +(-947 S R -3029) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-949 I) +(-948 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-950 S E) +(-949 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-951 S R L) +(-950 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-952 S E V R P) +(-951 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -899) (|devaluate| |#1|)))) -(-953 R -3030 -3431) +((|HasCategory| |#3| (LIST (QUOTE -898) (|devaluate| |#1|)))) +(-952 R -3029 -3430) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-954 -3431) +(-953 -3430) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-955 S R Q) +(-954 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-956 S) +(-955 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-957 S R P) +(-956 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-958) +(-957) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-959 R) +(-958 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-960 |lv| R) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-959 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-961 |TheField| |ThePols|) +(-960 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-962 R S) +((|HasCategory| |#1| (QUOTE (-859)))) +(-961 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-963 |x| R) +(-962 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-964 S R E |VarSet|) +(-963 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-925))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) -(-965 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-924))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#4| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#4| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) +(-964 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) NIL -(-966 E V R P -3030) +(-965 E V R P -3029) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-967 E |Vars| R P S) +(-966 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-968 R) +(-967 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-925))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-969 E V R P -3030) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-924))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1194) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1194) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1194) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1194) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1194) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-968 E V R P -3029) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-464)))) -(-970) +((|HasCategory| |#3| (QUOTE (-463)))) +(-969) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-971) +(-970) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-972 R L) +(-971 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-973 A B) +(-972 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-974 S) +(-973 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-975) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-974) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-976 -3030) +(-975 -3029) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-977 I) +(-976 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-978) +(-977) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-979 R E) +(-978 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4459))) -(-980 A B) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4458))) +(-979 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4458 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) -(-981) +((-4457 -12 (|has| |#2| (-484)) (|has| |#1| (-484)))) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-804)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-804)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-804))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-804))))) (-12 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-484)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-737))))) (-12 (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-378)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-737)))) (-12 (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-804))))) (-12 (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-737)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) +(-980) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-982 T$) +(-981 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-983 T$) +(-982 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-984 S T$) +(-983 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-985) +(-984) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-986 S) +(-985 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4461 . T) (-4462 . T)) +((-4460 . T) (-4461 . T)) NIL -(-987 R |polR|) +(-986 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-464)))) -(-988) +((|HasCategory| |#1| (QUOTE (-463)))) +(-987) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-989) +(-988) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-990 S |Coef| |Expon| |Var|) +(-989 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-991 |Coef| |Expon| |Var|) +(-990 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-992) +(-991) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-993 S R E |VarSet| P) +(-992 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-568)))) -(-994 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-567)))) +(-993 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4461 . T)) +((-4460 . T)) NIL -(-995 R E V P) +(-994 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-464)))) -(-996 K) +((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-316)))) (|HasCategory| |#1| (QUOTE (-463)))) +(-995 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-997 |VarSet| E RC P) +(-996 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-998 R) +(-997 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL -(-999 R1 R2) +(-998 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-1000 R) +(-999 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-1001 K) +(-1000 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-1002 R E OV PPR) +(-1001 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1003 K R UP -3030) +(-1002 K R UP -3029) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1004 |vl| |nv|) +(-1003 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-1005 R |Var| |Expon| |Dpoly|) +(-1004 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317))))) -(-1006 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-316))))) +(-1005 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1007) +(-1006) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1008 A B R S) +(-1007 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1009 A S) +(-1008 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-925))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1170)))) -(-1010 S) +((|HasCategory| |#2| (QUOTE (-924))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-1169)))) +(-1009 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1011 |n| K) +(-1010 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1012) +(-1011) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1013 S) +(-1012 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4461 . T) (-4462 . T)) +((-4460 . T) (-4461 . T)) NIL -(-1014 S R) +(-1013 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-300)))) -(-1015 R) +((|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1077))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-299)))) +(-1014 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4454 |has| |#1| (-300)) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 |has| |#1| (-299)) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1016 QR R QS S) +(-1015 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1017 R) +(-1016 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4454 |has| |#1| (-300)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-3766 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-239)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-557)))) -(-1018 S) +((-4453 |has| |#1| (-299)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-373))) (-3765 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -295) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-1077))) (|HasCategory| |#1| (QUOTE (-556)))) +(-1017 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1019 S) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-1018 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1020) +(-1019) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1021 -3030 UP UPUP |radicnd| |n|) +(-1020 -3029 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4454 |has| (-419 |#2|) (-374)) (-4459 |has| (-419 |#2|) (-374)) (-4453 |has| (-419 |#2|) (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3766 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3766 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3766 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3766 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3766 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) -(-1022 |bb|) +((-4453 |has| (-418 |#2|) (-373)) (-4458 |has| (-418 |#2|) (-373)) (-4452 |has| (-418 |#2|) (-373)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| (-418 |#2|) (QUOTE (-146))) (|HasCategory| (-418 |#2|) (QUOTE (-148))) (|HasCategory| (-418 |#2|) (QUOTE (-359))) (-3765 (|HasCategory| (-418 |#2|) (QUOTE (-373))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (|HasCategory| (-418 |#2|) (QUOTE (-373))) (|HasCategory| (-418 |#2|) (QUOTE (-378))) (-3765 (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (-3765 (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-237))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (-3765 (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-359))))) (-3765 (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373))))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -650) (QUOTE (-575)))) (-3765 (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-378))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-237))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373))))) +(-1021 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| (-576) (QUOTE (-925))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1040))) (|HasCategory| (-576) (QUOTE (-832))) (-3766 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1170))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-239))) (|HasCategory| (-576) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (|HasCategory| (-576) (QUOTE (-146))))) -(-1023) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| (-575) (QUOTE (-924))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-148))) (|HasCategory| (-575) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-575) (QUOTE (-1039))) (|HasCategory| (-575) (QUOTE (-831))) (-3765 (|HasCategory| (-575) (QUOTE (-831))) (|HasCategory| (-575) (QUOTE (-861)))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-1169))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-575) (QUOTE (-237))) (|HasCategory| (-575) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-238))) (|HasCategory| (-575) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-575) (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -318) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -295) (QUOTE (-575)) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-316))) (|HasCategory| (-575) (QUOTE (-556))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-575) (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (|HasCategory| (-575) (QUOTE (-146))))) +(-1022) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1024) +(-1023) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1025 RP) +(-1024 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1026 S) +(-1025 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1027 A S) +(-1026 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-1118)))) -(-1028 S) +((|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-1117)))) +(-1027 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1029 S) +(-1028 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1030) +(-1029) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4454 . T) (-4459 . T) (-4453 . T) (-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4458 . T)) +((-4453 . T) (-4458 . T) (-4452 . T) (-4455 . T) (-4454 . T) ((-4462 "*") . T) (-4457 . T)) NIL -(-1031 R -3030) +(-1030 R -3029) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1032 R -3030) +(-1031 R -3029) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1033 -3030 UP) +(-1032 -3029 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1034 -3030 UP) +(-1033 -3029 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1035 S) +(-1034 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1036 F1 UP UPUP R F2) +(-1035 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1037) +(-1036) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1038 |Pol|) +(-1037 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1039 |Pol|) +(-1038 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1040) +(-1039) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1041) +(-1040) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1042 |TheField|) +(-1041 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4454 . T) (-4459 . T) (-4453 . T) (-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4458 . T)) -((-3766 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1056) (QUOTE (-576))))) -(-1043 -3030 L) +((-4453 . T) (-4458 . T) (-4452 . T) (-4455 . T) (-4454 . T) ((-4462 "*") . T) (-4457 . T)) +((-3765 (|HasCategory| (-418 (-575)) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-418 (-575)) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-418 (-575)) (LIST (QUOTE -1055) (QUOTE (-575))))) +(-1042 -3029 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1044 S) +(-1043 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1118)))) -(-1045 R E V P) +((|HasCategory| |#1| (QUOTE (-1117)))) +(-1044 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4462 . T) (-4461 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1046 R) +((-4461 . T) (-4460 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873))))) +(-1045 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4463 "*")))) -(-1047 R) +((|HasAttribute| |#1| (QUOTE (-4462 "*")))) +(-1046 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317)))) -(-1048 S) +((-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-316)))) +(-1047 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1049) +(-1048) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1050 S) +(-1049 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1051 S) +(-1050 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1052 -3030 |Expon| |VarSet| |FPol| |LFPol|) +(-1051 -3029 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1053) +(-1052) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1195))) (LIST (QUOTE |:|) (QUOTE -3180) (QUOTE (-52))))))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (QUOTE (-1118))) (|HasCategory| (-52) (QUOTE (-1118)))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (QUOTE (-1118))) (|HasCategory| (-1195) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1118))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (LIST (QUOTE -625) (QUOTE (-874))))) -(-1054) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1194))) (LIST (QUOTE |:|) (QUOTE -3179) (QUOTE (-52))))))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-52) (QUOTE (-1117)))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -318) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-1194) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1117))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873))))) +(-1053) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1055 A S) +(-1054 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1056 S) +(-1055 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1057 Q R) +(-1056 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1058) +(-1057) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1059 UP) +(-1058 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1060 R) +(-1059 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1061 R) +(-1060 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1062 T$) +(-1061 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1063 T$) +(-1062 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1064 R |ls|) +(-1063 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4462 . T) (-4461 . T)) -((-12 (|HasCategory| (-792 |#1| (-876 |#2|)) (QUOTE (-1118))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -792) (|devaluate| |#1|) (LIST (QUOTE -876) (|devaluate| |#2|)))))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-792 |#1| (-876 |#2|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-876 |#2|) (QUOTE (-379))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) -(-1065) +((-4461 . T) (-4460 . T)) +((-12 (|HasCategory| (-791 |#1| (-875 |#2|)) (QUOTE (-1117))) (|HasCategory| (-791 |#1| (-875 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -791) (|devaluate| |#1|) (LIST (QUOTE -875) (|devaluate| |#2|)))))) (|HasCategory| (-791 |#1| (-875 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-791 |#1| (-875 |#2|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| (-875 |#2|) (QUOTE (-378))) (|HasCategory| (-791 |#1| (-875 |#2|)) (LIST (QUOTE -624) (QUOTE (-873))))) +(-1064) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1066 S) +(-1065 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1067) +(-1066) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4458 . T)) +((-4457 . T)) NIL -(-1068 |xx| -3030) +(-1067 |xx| -3029) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1069 S) +(-1068 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds if \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-1070 S |m| |n| R |Row| |Col|) +(-1069 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-568))) (|HasCategory| |#4| (QUOTE (-174)))) -(-1071 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-316))) (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (QUOTE (-567))) (|HasCategory| |#4| (QUOTE (-174)))) +(-1070 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4461 . T) (-4456 . T) (-4455 . T)) +((-4460 . T) (-4455 . T) (-4454 . T)) NIL -(-1072 |m| |n| R) +(-1071 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4461 . T) (-4456 . T) (-4455 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-3766 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1073 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4460 . T) (-4455 . T) (-4454 . T)) +((|HasCategory| |#3| (QUOTE (-174))) (-3765 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373)))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (QUOTE (-316))) (|HasCategory| |#3| (QUOTE (-567))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-873))))) +(-1072 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1074 R) +(-1073 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1075 S T$) +(-1074 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1118)))) -(-1076) +((|HasCategory| |#1| (QUOTE (-1117)))) +(-1075) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1077 S) +(-1076 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1078) +(-1077) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1079 |TheField| |ThePolDom|) +(-1078 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1080) +(-1079) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4449 . T) (-4453 . T) (-4448 . T) (-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4448 . T) (-4452 . T) (-4447 . T) (-4458 . T) (-4459 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1081) +(-1080) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1195))) (LIST (QUOTE |:|) (QUOTE -3180) (QUOTE (-52))))))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (QUOTE (-1118))) (|HasCategory| (-52) (QUOTE (-1118)))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (QUOTE (-1118))) (|HasCategory| (-1195) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1118))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (LIST (QUOTE -625) (QUOTE (-874))))) -(-1082 S R E V) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1194))) (LIST (QUOTE |:|) (QUOTE -3179) (QUOTE (-52))))))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-52) (QUOTE (-1117)))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -318) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-1194) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1117))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873))))) +(-1081 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1010) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-1195))))) -(-1083 R E V) +((|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-1194))))) +(-1082 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) NIL -(-1084) +(-1083) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1085 S |TheField| |ThePols|) +(-1084 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1086 |TheField| |ThePols|) +(-1085 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1087 R E V P TS) +(-1086 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1088 S R E V P) +(-1087 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1089 R E V P) +(-1088 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL -(-1090 R E V P TS) +(-1089 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1091) +(-1090) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1092) +(-1091) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1093 |f|) +(-1092 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1094 |Base| R -3030) +(-1093 |Base| R -3029) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1095 |Base| R -3030) +(-1094 |Base| R -3029) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1096 R |ls|) +(-1095 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1097 UP SAE UPA) +(-1096 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1098 R UP M) +(-1097 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4454 |has| |#1| (-374)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195))))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374))))) -(-1099 UP SAE UPA) +((-4453 |has| |#1| (-373)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-359))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-378))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-359)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-359)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))))) +(-1098 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1100) +(-1099) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1101) +(-1100) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1102 S) +(-1101 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1103) +(-1102) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1104 R) +(-1103 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1105 R) +(-1104 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-925))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1106 (-1195)) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1106 (-1195)) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1106 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1106 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1106 (-1195)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1106 S) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-924))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1105 (-1194)) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1105 (-1194)) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1105 (-1194)) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1105 (-1194)) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1105 (-1194)) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1105 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1107 R S) +(-1106 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-1108) +((|HasCategory| |#1| (QUOTE (-859)))) +(-1107) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1109 R S) +(-1108 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1110 S) +(-1109 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1112 |#1|) (QUOTE (-1118)))) -(-1111 S) +((|HasCategory| (-1111 |#1|) (QUOTE (-1117)))) +(-1110 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1112 S) +(-1111 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1118)))) -(-1113 S L) +((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1117)))) +(-1112 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1114) +(-1113) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1115 A S) +(-1114 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1116 S) +(-1115 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4451 . T)) +((-4450 . T)) NIL -(-1117 S) +(-1116 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1118) +(-1117) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1119 |m| |n|) +(-1118 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1120 S) +(-1119 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4461 . T) (-4451 . T) (-4462 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-1121 |Str| |Sym| |Int| |Flt| |Expr|) +((-4460 . T) (-4450 . T) (-4461 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-1120 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1122) +(-1121) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1123 |Str| |Sym| |Int| |Flt| |Expr|) +(-1122 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1124 R FS) +(-1123 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1125 R E V P TS) +(-1124 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1126 R E V P TS) +(-1125 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1127 R E V P) +(-1126 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL -(-1128) +(-1127) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1129 S) +(-1128 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1130) +(-1129) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1131 |dimtot| |dim1| S) +(-1130 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4455 |has| |#3| (-1067)) (-4456 |has| |#3| (-1067)) (-4458 |has| |#3| (-6 -4458)) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-3766 (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1118)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#3| (QUOTE (-374))) (-3766 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-3766 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-3766 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-379))) (-3766 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (-3766 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (QUOTE (-1118)))) (-3766 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-3766 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-3766 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-3766 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-3766 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1118))))) (-3766 (-12 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1067))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-3766 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-738)))) (-3766 (|HasCategory| |#3| (QUOTE (-1067))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1118)))) (|HasAttribute| |#3| (QUOTE -4458)) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) -(-1132 R |x|) +((-4454 |has| |#3| (-1066)) (-4455 |has| |#3| (-1066)) (-4457 |has| |#3| (-6 -4457)) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1117)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#3| (QUOTE (-373))) (-3765 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3765 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (QUOTE (-804))) (-3765 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-378))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (QUOTE (-1117)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (|HasCategory| |#3| (QUOTE (-238))) (-3765 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1066))))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#3| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-378)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-737)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-804)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1117))))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1066))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1194))))) (-3765 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-737)))) (-3765 (|HasCategory| |#3| (QUOTE (-1066))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1117)))) (|HasAttribute| |#3| (QUOTE -4457)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|))))) +(-1131 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-464)))) -(-1133) +((|HasCategory| |#1| (QUOTE (-463)))) +(-1132) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1134 R -3030) +(-1133 R -3029) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1135 R) +(-1134 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1136) +(-1135) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1137) +(-1136) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1138) +(-1137) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4449 . T) (-4453 . T) (-4448 . T) (-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4448 . T) (-4452 . T) (-4447 . T) (-4458 . T) (-4459 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1139 S) +(-1138 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4461 . T) (-4462 . T)) +((-4460 . T) (-4461 . T)) NIL -(-1140 S |ndim| R |Row| |Col|) +(-1139 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4463 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) -(-1141 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-373))) (|HasAttribute| |#3| (QUOTE (-4462 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) +(-1140 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4461 . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4460 . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1142 R |Row| |Col| M) +(-1141 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1143 R |VarSet|) +(-1142 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-925))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1144 |Coef| |Var| SMP) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-924))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1143 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1145 R E V P) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-373)))) +(-1144 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL -(-1146 UP -3030) +(-1145 UP -3029) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1147 R) +(-1146 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1148 R) +(-1147 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1149 R) +(-1148 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1150 S A) +(-1149 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-862)))) -(-1151 R) +((|HasCategory| |#1| (QUOTE (-861)))) +(-1150 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1152 R) +(-1151 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1153) +(-1152) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1154) +(-1153) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1155) +(-1154) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1156) +(-1155) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1157) +(-1156) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1158 V C) +(-1157 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1159 V C) +(-1158 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| (-1158 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1158 |#1| |#2|) (QUOTE (-1118)))) (|HasCategory| (-1158 |#1| |#2|) (QUOTE (-1118))) (-3766 (|HasCategory| (-1158 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-1158 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1158 |#1| |#2|) (QUOTE (-1118))))) (|HasCategory| (-1158 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-874))))) -(-1160 |ndim| R) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| (-1157 |#1| |#2|) (LIST (QUOTE -318) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1157 |#1| |#2|) (QUOTE (-1117)))) (|HasCategory| (-1157 |#1| |#2|) (QUOTE (-1117))) (-3765 (|HasCategory| (-1157 |#1| |#2|) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-1157 |#1| |#2|) (LIST (QUOTE -318) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1157 |#1| |#2|) (QUOTE (-1117))))) (|HasCategory| (-1157 |#1| |#2|) (LIST (QUOTE -624) (QUOTE (-873))))) +(-1159 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4458 . T) (-4450 |has| |#2| (-6 (-4463 "*"))) (-4461 . T) (-4455 . T) (-4456 . T)) -((|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-374))) (-3766 (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-1161 S) +((-4457 . T) (-4449 |has| |#2| (-6 (-4462 "*"))) (-4460 . T) (-4454 . T) (-4455 . T)) +((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4462 "*"))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-373))) (-3765 (|HasAttribute| |#2| (QUOTE (-4462 "*"))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-1160 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1162) +(-1161) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL -(-1163 R E V P TS) +(-1162 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1164 R E V P) +(-1163 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4462 . T) (-4461 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1165 S) +((-4461 . T) (-4460 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873))))) +(-1164 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1166 A S) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-1165 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1167 S) +(-1166 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1168 |Key| |Ent| |dent|) +(-1167 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4462 . T)) -((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3180) (|devaluate| |#2|)))))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118)))) -(-1169) +((-4461 . T)) +((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117)))) +(-1168) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1170) +(-1169) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1171 |Coef|) +(-1170 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1172 S) +(-1171 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1173 A B) +(-1172 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1174 A B C) +(-1173 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1175 S) +(-1174 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1176) +((-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-1175) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL -(-1177) +(-1176) NIL -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) -(-1178 |Entry|) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145)))))) +(-1177 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1177))) (LIST (QUOTE |:|) (QUOTE -3180) (|devaluate| |#1|)))))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-1118)))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (QUOTE (-1118))) (|HasCategory| (-1177) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (LIST (QUOTE -625) (QUOTE (-874))))) -(-1179 A) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1176))) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#1|)))))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-1117)))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| (-1176) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -624) (QUOTE (-873))))) +(-1178 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-1180 |Coef|) +((|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) +(-1179 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1181 |Coef|) +(-1180 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1182 R UP) +(-1181 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-317)))) -(-1183 |n| R) +((|HasCategory| |#1| (QUOTE (-316)))) +(-1182 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1184 S1 S2) +(-1183 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1185) +(-1184) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1186 |Coef| |var| |cen|) +(-1185 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4463 "*") -3766 (-3227 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-3227 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-925)))) (-4454 -3766 (-3227 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-3227 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-925)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1170))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3766 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3766 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3766 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1130))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-374)))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3766 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1170))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2884) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1956) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1607) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3766 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1187 R -3030) +(((-4462 "*") -3765 (-3226 (|has| |#1| (-373)) (|has| (-1192 |#1| |#2| |#3|) (-831))) (|has| |#1| (-174)) (-3226 (|has| |#1| (-373)) (|has| (-1192 |#1| |#2| |#3|) (-924)))) (-4453 -3765 (-3226 (|has| |#1| (-373)) (|has| (-1192 |#1| |#2| |#3|) (-831))) (|has| |#1| (-567)) (-3226 (|has| |#1| (-373)) (|has| (-1192 |#1| |#2| |#3|) (-924)))) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1169))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -295) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -318) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3765 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3765 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|)))))) (-3765 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|)))))) (-3765 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (|HasCategory| (-575) (QUOTE (-1129))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-373)))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-3765 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373))))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1169))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -295) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -318) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -2883) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4413) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3765 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1186 R -3029) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1188 R) +(-1187 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1189 R S) +(-1188 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1190 E OV R P) +(-1189 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1191 R) +(-1190 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1170))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1192 |Coef| |var| |cen|) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4456 |has| |#1| (-373)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1191 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2884) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1956) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1607) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) -(-1193 |Coef| |var| |cen|) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|)))) (|HasCategory| (-418 (-575)) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasSignature| |#1| (LIST (QUOTE -2883) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4413) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|))))))) +(-1192 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1130))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -2884) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1956) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1607) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) -(-1194) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-782)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-782)) (|devaluate| |#1|)))) (|HasCategory| (-782) (QUOTE (-1129))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-782))))) (|HasSignature| |#1| (LIST (QUOTE -2883) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-782))))) (|HasCategory| |#1| (QUOTE (-373))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4413) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|))))))) +(-1193) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1195) +(-1194) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1196 R) +(-1195 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1197 R) +(-1196 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-989) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4459))) -(-1198) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| (-988) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasAttribute| |#1| (QUOTE -4458))) +(-1197) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1199) +(-1198) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1200) +(-1199) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1201 N) +(-1200 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1202 N) +(-1201 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1203) +(-1202) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1204 R) +(-1203 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1205) +(-1204) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1206 S) +(-1205 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1207 S) +(-1206 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1208 |Key| |Entry|) +(-1207 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4461 . T) (-4462 . T)) -((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3180) (|devaluate| |#2|)))))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))) (-3766 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) -(-1209 S) +((-4460 . T) (-4461 . T)) +((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))) (-3765 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873))))) +(-1208 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1210 R) +(-1209 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1211 S |Key| |Entry|) +(-1210 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1212 |Key| |Entry|) +(-1211 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4462 . T)) +((-4461 . T)) NIL -(-1213 |Key| |Entry|) +(-1212 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1214) +(-1213) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1215 S) +(-1214 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1216) +(-1215) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1217) +(-1216) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1218 R) +(-1217 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1219) +(-1218) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1220 S) +(-1219 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1221) +(-1220) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1222 S) +(-1221 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4462 . T) (-4461 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1223 S) +((-4461 . T) (-4460 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-1222 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1224) +(-1223) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1225 R -3030) +(-1224 R -3029) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1226 R |Row| |Col| M) +(-1225 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1227 R -3030) +(-1226 R -3029) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -899) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -899) (|devaluate| |#1|))))) -(-1228 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -898) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -898) (|devaluate| |#1|))))) +(-1227 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-379)))) -(-1229 R E V P) +((|HasCategory| |#4| (QUOTE (-378)))) +(-1228 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL -(-1230 |Coef|) +(-1229 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1231 |Curve|) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-373)))) +(-1230 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1232) +(-1231) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1233 S) +(-1232 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1234 -3030) +((|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) +(-1233 -3029) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1235) +(-1234) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1236) +(-1235) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1237 S) +(-1236 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-862)))) -(-1238) +((|HasCategory| |#1| (QUOTE (-861)))) +(-1237) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1239 S) +(-1238 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1240) +(-1239) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1241) +(-1240) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1242) +(-1241) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1243) +(-1242) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1244) +(-1243) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1245 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1244 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1246 |Coef|) +(-1245 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1247 S |Coef| UTS) +(-1246 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-374)))) -(-1248 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-373)))) +(-1247 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1249 |Coef| UTS) +(-1248 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-925)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1040)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-3766 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1130))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-925)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1040)))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))))) (-3766 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-925)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1040)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2884) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1956) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1607) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-925))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) -(-1250 |Coef| |var| |cen|) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -295) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-924)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-146))))) (-3765 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-148))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (|HasCategory| (-575) (QUOTE (-1129))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-924)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-831)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-861))))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -295) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-924)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -295) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -2883) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4413) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-924))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-316)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-146)))))) +(-1249 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4463 "*") -3766 (-3227 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-3227 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-925)))) (-4454 -3766 (-3227 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-3227 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-925)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) -((-3766 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1170))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3766 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3766 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3766 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1130))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-374)))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3766 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1170))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2884) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1956) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1607) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3766 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1251 ZP) +(((-4462 "*") -3765 (-3226 (|has| |#1| (-373)) (|has| (-1277 |#1| |#2| |#3|) (-831))) (|has| |#1| (-174)) (-3226 (|has| |#1| (-373)) (|has| (-1277 |#1| |#2| |#3|) (-924)))) (-4453 -3765 (-3226 (|has| |#1| (-373)) (|has| (-1277 |#1| |#2| |#3|) (-831))) (|has| |#1| (-567)) (-3226 (|has| |#1| (-373)) (|has| (-1277 |#1| |#2| |#3|) (-924)))) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) +((-3765 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1169))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -295) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -318) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3765 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3765 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|)))))) (-3765 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|)))))) (-3765 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (|HasCategory| (-575) (QUOTE (-1129))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-373)))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-3765 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373))))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1169))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -295) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -318) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -2883) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4413) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3765 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1250 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1252 R S) +(-1251 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-1253 S) +((|HasCategory| |#1| (QUOTE (-859)))) +(-1252 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1118)))) -(-1254 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1117)))) +(-1253 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1255 R Q UP) +(-1254 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1256 R UP) +(-1255 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1257 R UP) +(-1256 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1258 R U) +(-1257 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1259 |x| R) +(-1258 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4457 |has| |#2| (-374)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#2| (QUOTE (-925))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-3766 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-3766 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1170))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-3766 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-1260 R PR S PS) +(((-4462 "*") |has| |#2| (-174)) (-4453 |has| |#2| (-567)) (-4456 |has| |#2| (-373)) (-4458 |has| |#2| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#2| (QUOTE (-924))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-567)))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1169))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-1259 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1261 S R) +(-1260 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1170)))) -(-1262 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1169)))) +(-1261 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4456 |has| |#1| (-373)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T)) NIL -(-1263 S |Coef| |Expon|) +(-1262 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1130))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2884) (LIST (|devaluate| |#2|) (QUOTE (-1195)))))) -(-1264 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1129))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2883) (LIST (|devaluate| |#2|) (QUOTE (-1194)))))) +(-1263 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1265 RC P) +(-1264 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1266 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1265 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1267 |Coef|) +(-1266 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1268 S |Coef| ULS) +(-1267 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1269 |Coef| ULS) +(-1268 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1270 |Coef| ULS) +(-1269 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2884) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1956) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1607) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-1271 |Coef| |var| |cen|) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|)))) (|HasCategory| (-418 (-575)) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasSignature| |#1| (LIST (QUOTE -2883) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4413) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) +(-1270 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3766 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2884) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1956) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1607) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) -(-1272 R FE |var| |cen|) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|)))) (|HasCategory| (-418 (-575)) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-3765 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasSignature| |#1| (LIST (QUOTE -2883) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4413) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|))))))) +(-1271 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4463 "*") |has| (-1271 |#2| |#3| |#4|) (-174)) (-4454 |has| (-1271 |#2| |#3| |#4|) (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-174))) (-3766 (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-568)))) -(-1273 A S) +(((-4462 "*") |has| (-1270 |#2| |#3| |#4|) (-174)) (-4453 |has| (-1270 |#2| |#3| |#4|) (-567)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| (-1270 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-174))) (-3765 (|HasCategory| (-1270 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-1270 |#2| |#3| |#4|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| (-1270 |#2| |#3| |#4|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-1270 |#2| |#3| |#4|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-373))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-463))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-567)))) +(-1272 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4462))) -(-1274 S) +((|HasAttribute| |#1| (QUOTE -4461))) +(-1273 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1275 |Coef1| |Coef2| UTS1 UTS2) +(-1274 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1276 S |Coef|) +(-1275 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-1221))) (|HasSignature| |#2| (LIST (QUOTE -1607) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1956) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1195))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) -(-1277 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-1220))) (|HasSignature| |#2| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4413) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1194))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373)))) +(-1276 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1278 |Coef| |var| |cen|) +(-1277 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3766 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1130))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -2884) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3766 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1956) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1607) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) -(-1279 |Coef| UTS) +(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-782)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-782)) (|devaluate| |#1|)))) (|HasCategory| (-782) (QUOTE (-1129))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-782))))) (|HasSignature| |#1| (LIST (QUOTE -2883) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-782))))) (|HasCategory| |#1| (QUOTE (-373))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4413) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|))))))) +(-1278 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1280 -3030 UP L UTS) +(-1279 -3029 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-568)))) -(-1281) +((|HasCategory| |#1| (QUOTE (-567)))) +(-1280) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1282 |sym|) +(-1281 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1283 S R) +(-1282 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1284 R) +((|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1283 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4462 . T) (-4461 . T)) +((-4461 . T) (-4460 . T)) NIL -(-1285 A B) +(-1284 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1286 R) +(-1285 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4462 . T) (-4461 . T)) -((-3766 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3766 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3766 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-1287) +((-4461 . T) (-4460 . T)) +((-3765 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3765 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) +(-1286) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1288) +(-1287) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1289) +(-1288) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1290) +(-1289) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1291) +(-1290) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1292 A S) +(-1291 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1293 S) +(-1292 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4456 . T) (-4455 . T)) +((-4455 . T) (-4454 . T)) NIL -(-1294 R) +(-1293 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1295 K R UP -3030) +(-1294 K R UP -3029) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1296) +(-1295) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1297) +(-1296) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1298 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1297 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1299 R E V P) +((-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373)))) +(-1298 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4462 . T) (-4461 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1300 R) +((-4461 . T) (-4460 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873))))) +(-1299 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4455 . T) (-4456 . T) (-4458 . T)) +((-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1301 |vl| R) +(-1300 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4458 . T) (-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4454))) -(-1302 R |VarSet| XPOLY) +((-4457 . T) (-4453 |has| |#2| (-6 -4453)) (-4455 . T) (-4454 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4453))) +(-1301 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1303 |vl| R) +(-1302 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T)) +((-4453 |has| |#2| (-6 -4453)) (-4455 . T) (-4454 . T) (-4457 . T)) NIL -(-1304 S -3030) +(-1303 S -3029) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1305 -3030) +((|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) +(-1304 -3029) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL -(-1306 |VarSet| R) +(-1305 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -729) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4454))) -(-1307 |vl| R) +((-4453 |has| |#2| (-6 -4453)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -728) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasAttribute| |#2| (QUOTE -4453))) +(-1306 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T)) +((-4453 |has| |#2| (-6 -4453)) (-4455 . T) (-4454 . T) (-4457 . T)) NIL -(-1308 R) +(-1307 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4454 |has| |#1| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4454))) -(-1309 R E) +((-4453 |has| |#1| (-6 -4453)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4453))) +(-1308 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4458 . T) (-4459 |has| |#1| (-6 -4459)) (-4454 |has| |#1| (-6 -4454)) (-4456 . T) (-4455 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4459)) (|HasAttribute| |#1| (QUOTE -4454))) -(-1310 |VarSet| R) +((-4457 . T) (-4458 |has| |#1| (-6 -4458)) (-4453 |has| |#1| (-6 -4453)) (-4455 . T) (-4454 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4453))) +(-1309 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4454))) -(-1311) +((-4453 |has| |#2| (-6 -4453)) (-4455 . T) (-4454 . T) (-4457 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4453))) +(-1310) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1312 A) +(-1311 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1313 R |ls| |ls2|) +(-1312 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1314 R) +(-1313 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1315 |p|) +(-1314 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +(((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T)) NIL NIL NIL @@ -5208,4 +5204,4 @@ NIL NIL NIL NIL -((-3 NIL 2274025 2274030 2274035 2274040) (-2 NIL 2274005 2274010 2274015 2274020) (-1 NIL 2273985 2273990 2273995 2274000) (0 NIL 2273965 2273970 2273975 2273980) (-1315 "ZMOD.spad" 2273774 2273787 2273903 2273960) (-1314 "ZLINDEP.spad" 2272840 2272851 2273764 2273769) (-1313 "ZDSOLVE.spad" 2262785 2262807 2272830 2272835) (-1312 "YSTREAM.spad" 2262280 2262291 2262775 2262780) (-1311 "YDIAGRAM.spad" 2261914 2261923 2262270 2262275) (-1310 "XRPOLY.spad" 2261134 2261154 2261770 2261839) (-1309 "XPR.spad" 2258929 2258942 2260852 2260951) (-1308 "XPOLY.spad" 2258484 2258495 2258785 2258854) (-1307 "XPOLYC.spad" 2257803 2257819 2258410 2258479) (-1306 "XPBWPOLY.spad" 2256240 2256260 2257583 2257652) (-1305 "XF.spad" 2254703 2254718 2256142 2256235) (-1304 "XF.spad" 2253146 2253163 2254587 2254592) (-1303 "XFALG.spad" 2250194 2250210 2253072 2253141) (-1302 "XEXPPKG.spad" 2249445 2249471 2250184 2250189) (-1301 "XDPOLY.spad" 2249059 2249075 2249301 2249370) (-1300 "XALG.spad" 2248719 2248730 2249015 2249054) (-1299 "WUTSET.spad" 2244558 2244575 2248365 2248392) (-1298 "WP.spad" 2243757 2243801 2244416 2244483) (-1297 "WHILEAST.spad" 2243555 2243564 2243747 2243752) (-1296 "WHEREAST.spad" 2243226 2243235 2243545 2243550) (-1295 "WFFINTBS.spad" 2240889 2240911 2243216 2243221) (-1294 "WEIER.spad" 2239111 2239122 2240879 2240884) (-1293 "VSPACE.spad" 2238784 2238795 2239079 2239106) (-1292 "VSPACE.spad" 2238477 2238490 2238774 2238779) (-1291 "VOID.spad" 2238154 2238163 2238467 2238472) (-1290 "VIEW.spad" 2235834 2235843 2238144 2238149) (-1289 "VIEWDEF.spad" 2231035 2231044 2235824 2235829) (-1288 "VIEW3D.spad" 2214996 2215005 2231025 2231030) (-1287 "VIEW2D.spad" 2202887 2202896 2214986 2214991) (-1286 "VECTOR.spad" 2201561 2201572 2201812 2201839) (-1285 "VECTOR2.spad" 2200200 2200213 2201551 2201556) (-1284 "VECTCAT.spad" 2198104 2198115 2200168 2200195) (-1283 "VECTCAT.spad" 2195815 2195828 2197881 2197886) (-1282 "VARIABLE.spad" 2195595 2195610 2195805 2195810) (-1281 "UTYPE.spad" 2195239 2195248 2195585 2195590) (-1280 "UTSODETL.spad" 2194534 2194558 2195195 2195200) (-1279 "UTSODE.spad" 2192750 2192770 2194524 2194529) (-1278 "UTS.spad" 2187554 2187582 2191217 2191314) (-1277 "UTSCAT.spad" 2185033 2185049 2187452 2187549) (-1276 "UTSCAT.spad" 2182156 2182174 2184577 2184582) (-1275 "UTS2.spad" 2181751 2181786 2182146 2182151) (-1274 "URAGG.spad" 2176424 2176435 2181741 2181746) (-1273 "URAGG.spad" 2171061 2171074 2176380 2176385) (-1272 "UPXSSING.spad" 2168706 2168732 2170142 2170275) (-1271 "UPXS.spad" 2165860 2165888 2166838 2166987) (-1270 "UPXSCONS.spad" 2163619 2163639 2163992 2164141) (-1269 "UPXSCCA.spad" 2162190 2162210 2163465 2163614) (-1268 "UPXSCCA.spad" 2160903 2160925 2162180 2162185) (-1267 "UPXSCAT.spad" 2159492 2159508 2160749 2160898) (-1266 "UPXS2.spad" 2159035 2159088 2159482 2159487) (-1265 "UPSQFREE.spad" 2157449 2157463 2159025 2159030) (-1264 "UPSCAT.spad" 2155236 2155260 2157347 2157444) (-1263 "UPSCAT.spad" 2152729 2152755 2154842 2154847) (-1262 "UPOLYC.spad" 2147769 2147780 2152571 2152724) (-1261 "UPOLYC.spad" 2142701 2142714 2147505 2147510) (-1260 "UPOLYC2.spad" 2142172 2142191 2142691 2142696) (-1259 "UP.spad" 2139371 2139386 2139758 2139911) (-1258 "UPMP.spad" 2138271 2138284 2139361 2139366) (-1257 "UPDIVP.spad" 2137836 2137850 2138261 2138266) (-1256 "UPDECOMP.spad" 2136081 2136095 2137826 2137831) (-1255 "UPCDEN.spad" 2135290 2135306 2136071 2136076) (-1254 "UP2.spad" 2134654 2134675 2135280 2135285) (-1253 "UNISEG.spad" 2134007 2134018 2134573 2134578) (-1252 "UNISEG2.spad" 2133504 2133517 2133963 2133968) (-1251 "UNIFACT.spad" 2132607 2132619 2133494 2133499) (-1250 "ULS.spad" 2123165 2123193 2124252 2124681) (-1249 "ULSCONS.spad" 2115561 2115581 2115931 2116080) (-1248 "ULSCCAT.spad" 2113298 2113318 2115407 2115556) (-1247 "ULSCCAT.spad" 2111143 2111165 2113254 2113259) (-1246 "ULSCAT.spad" 2109375 2109391 2110989 2111138) (-1245 "ULS2.spad" 2108889 2108942 2109365 2109370) (-1244 "UINT8.spad" 2108766 2108775 2108879 2108884) (-1243 "UINT64.spad" 2108642 2108651 2108756 2108761) (-1242 "UINT32.spad" 2108518 2108527 2108632 2108637) (-1241 "UINT16.spad" 2108394 2108403 2108508 2108513) (-1240 "UFD.spad" 2107459 2107468 2108320 2108389) (-1239 "UFD.spad" 2106586 2106597 2107449 2107454) (-1238 "UDVO.spad" 2105467 2105476 2106576 2106581) (-1237 "UDPO.spad" 2102960 2102971 2105423 2105428) (-1236 "TYPE.spad" 2102892 2102901 2102950 2102955) (-1235 "TYPEAST.spad" 2102811 2102820 2102882 2102887) (-1234 "TWOFACT.spad" 2101463 2101478 2102801 2102806) (-1233 "TUPLE.spad" 2100949 2100960 2101362 2101367) (-1232 "TUBETOOL.spad" 2097816 2097825 2100939 2100944) (-1231 "TUBE.spad" 2096463 2096480 2097806 2097811) (-1230 "TS.spad" 2095062 2095078 2096028 2096125) (-1229 "TSETCAT.spad" 2082189 2082206 2095030 2095057) (-1228 "TSETCAT.spad" 2069302 2069321 2082145 2082150) (-1227 "TRMANIP.spad" 2063668 2063685 2069008 2069013) (-1226 "TRIMAT.spad" 2062631 2062656 2063658 2063663) (-1225 "TRIGMNIP.spad" 2061158 2061175 2062621 2062626) (-1224 "TRIGCAT.spad" 2060670 2060679 2061148 2061153) (-1223 "TRIGCAT.spad" 2060180 2060191 2060660 2060665) (-1222 "TREE.spad" 2058755 2058766 2059787 2059814) (-1221 "TRANFUN.spad" 2058594 2058603 2058745 2058750) (-1220 "TRANFUN.spad" 2058431 2058442 2058584 2058589) (-1219 "TOPSP.spad" 2058105 2058114 2058421 2058426) (-1218 "TOOLSIGN.spad" 2057768 2057779 2058095 2058100) (-1217 "TEXTFILE.spad" 2056329 2056338 2057758 2057763) (-1216 "TEX.spad" 2053475 2053484 2056319 2056324) (-1215 "TEX1.spad" 2053031 2053042 2053465 2053470) (-1214 "TEMUTL.spad" 2052586 2052595 2053021 2053026) (-1213 "TBCMPPK.spad" 2050679 2050702 2052576 2052581) (-1212 "TBAGG.spad" 2049729 2049752 2050659 2050674) (-1211 "TBAGG.spad" 2048787 2048812 2049719 2049724) (-1210 "TANEXP.spad" 2048195 2048206 2048777 2048782) (-1209 "TALGOP.spad" 2047919 2047930 2048185 2048190) (-1208 "TABLE.spad" 2046330 2046353 2046600 2046627) (-1207 "TABLEAU.spad" 2045811 2045822 2046320 2046325) (-1206 "TABLBUMP.spad" 2042614 2042625 2045801 2045806) (-1205 "SYSTEM.spad" 2041842 2041851 2042604 2042609) (-1204 "SYSSOLP.spad" 2039325 2039336 2041832 2041837) (-1203 "SYSPTR.spad" 2039224 2039233 2039315 2039320) (-1202 "SYSNNI.spad" 2038406 2038417 2039214 2039219) (-1201 "SYSINT.spad" 2037810 2037821 2038396 2038401) (-1200 "SYNTAX.spad" 2034016 2034025 2037800 2037805) (-1199 "SYMTAB.spad" 2032084 2032093 2034006 2034011) (-1198 "SYMS.spad" 2028107 2028116 2032074 2032079) (-1197 "SYMPOLY.spad" 2027114 2027125 2027196 2027323) (-1196 "SYMFUNC.spad" 2026615 2026626 2027104 2027109) (-1195 "SYMBOL.spad" 2024118 2024127 2026605 2026610) (-1194 "SWITCH.spad" 2020889 2020898 2024108 2024113) (-1193 "SUTS.spad" 2017794 2017822 2019356 2019453) (-1192 "SUPXS.spad" 2014935 2014963 2015926 2016075) (-1191 "SUP.spad" 2011748 2011759 2012521 2012674) (-1190 "SUPFRACF.spad" 2010853 2010871 2011738 2011743) (-1189 "SUP2.spad" 2010245 2010258 2010843 2010848) (-1188 "SUMRF.spad" 2009219 2009230 2010235 2010240) (-1187 "SUMFS.spad" 2008856 2008873 2009209 2009214) (-1186 "SULS.spad" 1999401 1999429 2000501 2000930) (-1185 "SUCHTAST.spad" 1999170 1999179 1999391 1999396) (-1184 "SUCH.spad" 1998852 1998867 1999160 1999165) (-1183 "SUBSPACE.spad" 1990967 1990982 1998842 1998847) (-1182 "SUBRESP.spad" 1990137 1990151 1990923 1990928) (-1181 "STTF.spad" 1986236 1986252 1990127 1990132) (-1180 "STTFNC.spad" 1982704 1982720 1986226 1986231) (-1179 "STTAYLOR.spad" 1975339 1975350 1982585 1982590) (-1178 "STRTBL.spad" 1973844 1973861 1973993 1974020) (-1177 "STRING.spad" 1973253 1973262 1973267 1973294) (-1176 "STRICAT.spad" 1973041 1973050 1973221 1973248) (-1175 "STREAM.spad" 1969959 1969970 1972566 1972581) (-1174 "STREAM3.spad" 1969532 1969547 1969949 1969954) (-1173 "STREAM2.spad" 1968660 1968673 1969522 1969527) (-1172 "STREAM1.spad" 1968366 1968377 1968650 1968655) (-1171 "STINPROD.spad" 1967302 1967318 1968356 1968361) (-1170 "STEP.spad" 1966503 1966512 1967292 1967297) (-1169 "STEPAST.spad" 1965737 1965746 1966493 1966498) (-1168 "STBL.spad" 1964263 1964291 1964430 1964445) (-1167 "STAGG.spad" 1963338 1963349 1964253 1964258) (-1166 "STAGG.spad" 1962411 1962424 1963328 1963333) (-1165 "STACK.spad" 1961768 1961779 1962018 1962045) (-1164 "SREGSET.spad" 1959472 1959489 1961414 1961441) (-1163 "SRDCMPK.spad" 1958033 1958053 1959462 1959467) (-1162 "SRAGG.spad" 1953176 1953185 1958001 1958028) (-1161 "SRAGG.spad" 1948339 1948350 1953166 1953171) (-1160 "SQMATRIX.spad" 1946011 1946029 1946927 1947014) (-1159 "SPLTREE.spad" 1940563 1940576 1945447 1945474) (-1158 "SPLNODE.spad" 1937151 1937164 1940553 1940558) (-1157 "SPFCAT.spad" 1935960 1935969 1937141 1937146) (-1156 "SPECOUT.spad" 1934512 1934521 1935950 1935955) (-1155 "SPADXPT.spad" 1926107 1926116 1934502 1934507) (-1154 "spad-parser.spad" 1925572 1925581 1926097 1926102) (-1153 "SPADAST.spad" 1925273 1925282 1925562 1925567) (-1152 "SPACEC.spad" 1909472 1909483 1925263 1925268) (-1151 "SPACE3.spad" 1909248 1909259 1909462 1909467) (-1150 "SORTPAK.spad" 1908797 1908810 1909204 1909209) (-1149 "SOLVETRA.spad" 1906560 1906571 1908787 1908792) (-1148 "SOLVESER.spad" 1905088 1905099 1906550 1906555) (-1147 "SOLVERAD.spad" 1901114 1901125 1905078 1905083) (-1146 "SOLVEFOR.spad" 1899576 1899594 1901104 1901109) (-1145 "SNTSCAT.spad" 1899176 1899193 1899544 1899571) (-1144 "SMTS.spad" 1897448 1897474 1898741 1898838) (-1143 "SMP.spad" 1894923 1894943 1895313 1895440) (-1142 "SMITH.spad" 1893768 1893793 1894913 1894918) (-1141 "SMATCAT.spad" 1891878 1891908 1893712 1893763) (-1140 "SMATCAT.spad" 1889920 1889952 1891756 1891761) (-1139 "SKAGG.spad" 1888883 1888894 1889888 1889915) (-1138 "SINT.spad" 1887823 1887832 1888749 1888878) (-1137 "SIMPAN.spad" 1887551 1887560 1887813 1887818) (-1136 "SIG.spad" 1886881 1886890 1887541 1887546) (-1135 "SIGNRF.spad" 1885999 1886010 1886871 1886876) (-1134 "SIGNEF.spad" 1885278 1885295 1885989 1885994) (-1133 "SIGAST.spad" 1884663 1884672 1885268 1885273) (-1132 "SHP.spad" 1882591 1882606 1884619 1884624) (-1131 "SHDP.spad" 1871261 1871288 1871770 1871869) (-1130 "SGROUP.spad" 1870869 1870878 1871251 1871256) (-1129 "SGROUP.spad" 1870475 1870486 1870859 1870864) (-1128 "SGCF.spad" 1863614 1863623 1870465 1870470) (-1127 "SFRTCAT.spad" 1862544 1862561 1863582 1863609) (-1126 "SFRGCD.spad" 1861607 1861627 1862534 1862539) (-1125 "SFQCMPK.spad" 1856244 1856264 1861597 1861602) (-1124 "SFORT.spad" 1855683 1855697 1856234 1856239) (-1123 "SEXOF.spad" 1855526 1855566 1855673 1855678) (-1122 "SEX.spad" 1855418 1855427 1855516 1855521) (-1121 "SEXCAT.spad" 1853199 1853239 1855408 1855413) (-1120 "SET.spad" 1851523 1851534 1852620 1852659) (-1119 "SETMN.spad" 1849973 1849990 1851513 1851518) (-1118 "SETCAT.spad" 1849295 1849304 1849963 1849968) (-1117 "SETCAT.spad" 1848615 1848626 1849285 1849290) (-1116 "SETAGG.spad" 1845164 1845175 1848595 1848610) (-1115 "SETAGG.spad" 1841721 1841734 1845154 1845159) (-1114 "SEQAST.spad" 1841424 1841433 1841711 1841716) (-1113 "SEGXCAT.spad" 1840580 1840593 1841414 1841419) (-1112 "SEG.spad" 1840393 1840404 1840499 1840504) (-1111 "SEGCAT.spad" 1839318 1839329 1840383 1840388) (-1110 "SEGBIND.spad" 1839076 1839087 1839265 1839270) (-1109 "SEGBIND2.spad" 1838774 1838787 1839066 1839071) (-1108 "SEGAST.spad" 1838488 1838497 1838764 1838769) (-1107 "SEG2.spad" 1837923 1837936 1838444 1838449) (-1106 "SDVAR.spad" 1837199 1837210 1837913 1837918) (-1105 "SDPOL.spad" 1834625 1834636 1834916 1835043) (-1104 "SCPKG.spad" 1832714 1832725 1834615 1834620) (-1103 "SCOPE.spad" 1831867 1831876 1832704 1832709) (-1102 "SCACHE.spad" 1830563 1830574 1831857 1831862) (-1101 "SASTCAT.spad" 1830472 1830481 1830553 1830558) (-1100 "SAOS.spad" 1830344 1830353 1830462 1830467) (-1099 "SAERFFC.spad" 1830057 1830077 1830334 1830339) (-1098 "SAE.spad" 1828011 1828027 1828622 1828757) (-1097 "SAEFACT.spad" 1827712 1827732 1828001 1828006) (-1096 "RURPK.spad" 1825371 1825387 1827702 1827707) (-1095 "RULESET.spad" 1824824 1824848 1825361 1825366) (-1094 "RULE.spad" 1823064 1823088 1824814 1824819) (-1093 "RULECOLD.spad" 1822916 1822929 1823054 1823059) (-1092 "RTVALUE.spad" 1822651 1822660 1822906 1822911) (-1091 "RSTRCAST.spad" 1822368 1822377 1822641 1822646) (-1090 "RSETGCD.spad" 1818746 1818766 1822358 1822363) (-1089 "RSETCAT.spad" 1808682 1808699 1818714 1818741) (-1088 "RSETCAT.spad" 1798638 1798657 1808672 1808677) (-1087 "RSDCMPK.spad" 1797090 1797110 1798628 1798633) (-1086 "RRCC.spad" 1795474 1795504 1797080 1797085) (-1085 "RRCC.spad" 1793856 1793888 1795464 1795469) (-1084 "RPTAST.spad" 1793558 1793567 1793846 1793851) (-1083 "RPOLCAT.spad" 1772918 1772933 1793426 1793553) (-1082 "RPOLCAT.spad" 1751991 1752008 1772501 1772506) (-1081 "ROUTINE.spad" 1747874 1747883 1750638 1750665) (-1080 "ROMAN.spad" 1747202 1747211 1747740 1747869) (-1079 "ROIRC.spad" 1746282 1746314 1747192 1747197) (-1078 "RNS.spad" 1745185 1745194 1746184 1746277) (-1077 "RNS.spad" 1744174 1744185 1745175 1745180) (-1076 "RNG.spad" 1743909 1743918 1744164 1744169) (-1075 "RNGBIND.spad" 1743069 1743083 1743864 1743869) (-1074 "RMODULE.spad" 1742834 1742845 1743059 1743064) (-1073 "RMCAT2.spad" 1742254 1742311 1742824 1742829) (-1072 "RMATRIX.spad" 1741078 1741097 1741421 1741460) (-1071 "RMATCAT.spad" 1736657 1736688 1741034 1741073) (-1070 "RMATCAT.spad" 1732126 1732159 1736505 1736510) (-1069 "RLINSET.spad" 1731681 1731692 1732116 1732121) (-1068 "RINTERP.spad" 1731569 1731589 1731671 1731676) (-1067 "RING.spad" 1731039 1731048 1731549 1731564) (-1066 "RING.spad" 1730517 1730528 1731029 1731034) (-1065 "RIDIST.spad" 1729909 1729918 1730507 1730512) (-1064 "RGCHAIN.spad" 1728492 1728508 1729394 1729421) (-1063 "RGBCSPC.spad" 1728273 1728285 1728482 1728487) (-1062 "RGBCMDL.spad" 1727803 1727815 1728263 1728268) (-1061 "RF.spad" 1725445 1725456 1727793 1727798) (-1060 "RFFACTOR.spad" 1724907 1724918 1725435 1725440) (-1059 "RFFACT.spad" 1724642 1724654 1724897 1724902) (-1058 "RFDIST.spad" 1723638 1723647 1724632 1724637) (-1057 "RETSOL.spad" 1723057 1723070 1723628 1723633) (-1056 "RETRACT.spad" 1722485 1722496 1723047 1723052) (-1055 "RETRACT.spad" 1721911 1721924 1722475 1722480) (-1054 "RETAST.spad" 1721723 1721732 1721901 1721906) (-1053 "RESULT.spad" 1719783 1719792 1720370 1720397) (-1052 "RESRING.spad" 1719130 1719177 1719721 1719778) (-1051 "RESLATC.spad" 1718454 1718465 1719120 1719125) (-1050 "REPSQ.spad" 1718185 1718196 1718444 1718449) (-1049 "REP.spad" 1715739 1715748 1718175 1718180) (-1048 "REPDB.spad" 1715446 1715457 1715729 1715734) (-1047 "REP2.spad" 1705104 1705115 1715288 1715293) (-1046 "REP1.spad" 1699300 1699311 1705054 1705059) (-1045 "REGSET.spad" 1697097 1697114 1698946 1698973) (-1044 "REF.spad" 1696432 1696443 1697052 1697057) (-1043 "REDORDER.spad" 1695638 1695655 1696422 1696427) (-1042 "RECLOS.spad" 1694421 1694441 1695125 1695218) (-1041 "REALSOLV.spad" 1693561 1693570 1694411 1694416) (-1040 "REAL.spad" 1693433 1693442 1693551 1693556) (-1039 "REAL0Q.spad" 1690731 1690746 1693423 1693428) (-1038 "REAL0.spad" 1687575 1687590 1690721 1690726) (-1037 "RDUCEAST.spad" 1687296 1687305 1687565 1687570) (-1036 "RDIV.spad" 1686951 1686976 1687286 1687291) (-1035 "RDIST.spad" 1686518 1686529 1686941 1686946) (-1034 "RDETRS.spad" 1685382 1685400 1686508 1686513) (-1033 "RDETR.spad" 1683521 1683539 1685372 1685377) (-1032 "RDEEFS.spad" 1682620 1682637 1683511 1683516) (-1031 "RDEEF.spad" 1681630 1681647 1682610 1682615) (-1030 "RCFIELD.spad" 1678816 1678825 1681532 1681625) (-1029 "RCFIELD.spad" 1676088 1676099 1678806 1678811) (-1028 "RCAGG.spad" 1674016 1674027 1676078 1676083) (-1027 "RCAGG.spad" 1671871 1671884 1673935 1673940) (-1026 "RATRET.spad" 1671231 1671242 1671861 1671866) (-1025 "RATFACT.spad" 1670923 1670935 1671221 1671226) (-1024 "RANDSRC.spad" 1670242 1670251 1670913 1670918) (-1023 "RADUTIL.spad" 1669998 1670007 1670232 1670237) (-1022 "RADIX.spad" 1666919 1666933 1668465 1668558) (-1021 "RADFF.spad" 1665076 1665113 1665195 1665351) (-1020 "RADCAT.spad" 1664671 1664680 1665066 1665071) (-1019 "RADCAT.spad" 1664264 1664275 1664661 1664666) (-1018 "QUEUE.spad" 1663612 1663623 1663871 1663898) (-1017 "QUAT.spad" 1662013 1662024 1662356 1662421) (-1016 "QUATCT2.spad" 1661633 1661652 1662003 1662008) (-1015 "QUATCAT.spad" 1659803 1659814 1661563 1661628) (-1014 "QUATCAT.spad" 1657724 1657737 1659486 1659491) (-1013 "QUAGG.spad" 1656551 1656562 1657692 1657719) (-1012 "QQUTAST.spad" 1656319 1656328 1656541 1656546) (-1011 "QFORM.spad" 1655937 1655952 1656309 1656314) (-1010 "QFCAT.spad" 1654639 1654650 1655839 1655932) (-1009 "QFCAT.spad" 1652932 1652945 1654134 1654139) (-1008 "QFCAT2.spad" 1652624 1652641 1652922 1652927) (-1007 "QEQUAT.spad" 1652182 1652191 1652614 1652619) (-1006 "QCMPACK.spad" 1646928 1646948 1652172 1652177) (-1005 "QALGSET.spad" 1643006 1643039 1646842 1646847) (-1004 "QALGSET2.spad" 1641001 1641020 1642996 1643001) (-1003 "PWFFINTB.spad" 1638416 1638438 1640991 1640996) (-1002 "PUSHVAR.spad" 1637754 1637774 1638406 1638411) (-1001 "PTRANFN.spad" 1633881 1633892 1637744 1637749) (-1000 "PTPACK.spad" 1630968 1630979 1633871 1633876) (-999 "PTFUNC2.spad" 1630791 1630805 1630958 1630963) (-998 "PTCAT.spad" 1630046 1630056 1630759 1630786) (-997 "PSQFR.spad" 1629353 1629377 1630036 1630041) (-996 "PSEUDLIN.spad" 1628239 1628249 1629343 1629348) (-995 "PSETPK.spad" 1613672 1613688 1628117 1628122) (-994 "PSETCAT.spad" 1607592 1607615 1613652 1613667) (-993 "PSETCAT.spad" 1601486 1601511 1607548 1607553) (-992 "PSCURVE.spad" 1600469 1600477 1601476 1601481) (-991 "PSCAT.spad" 1599252 1599281 1600367 1600464) (-990 "PSCAT.spad" 1598125 1598156 1599242 1599247) (-989 "PRTITION.spad" 1596823 1596831 1598115 1598120) (-988 "PRTDAST.spad" 1596542 1596550 1596813 1596818) (-987 "PRS.spad" 1586104 1586121 1596498 1596503) (-986 "PRQAGG.spad" 1585539 1585549 1586072 1586099) (-985 "PROPLOG.spad" 1585111 1585119 1585529 1585534) (-984 "PROPFUN2.spad" 1584734 1584747 1585101 1585106) (-983 "PROPFUN1.spad" 1584132 1584143 1584724 1584729) (-982 "PROPFRML.spad" 1582700 1582711 1584122 1584127) (-981 "PROPERTY.spad" 1582188 1582196 1582690 1582695) (-980 "PRODUCT.spad" 1579870 1579882 1580154 1580209) (-979 "PR.spad" 1578262 1578274 1578961 1579088) (-978 "PRINT.spad" 1578014 1578022 1578252 1578257) (-977 "PRIMES.spad" 1576267 1576277 1578004 1578009) (-976 "PRIMELT.spad" 1574348 1574362 1576257 1576262) (-975 "PRIMCAT.spad" 1573975 1573983 1574338 1574343) (-974 "PRIMARR.spad" 1572980 1572990 1573158 1573185) (-973 "PRIMARR2.spad" 1571747 1571759 1572970 1572975) (-972 "PREASSOC.spad" 1571129 1571141 1571737 1571742) (-971 "PPCURVE.spad" 1570266 1570274 1571119 1571124) (-970 "PORTNUM.spad" 1570041 1570049 1570256 1570261) (-969 "POLYROOT.spad" 1568890 1568912 1569997 1570002) (-968 "POLY.spad" 1566225 1566235 1566740 1566867) (-967 "POLYLIFT.spad" 1565490 1565513 1566215 1566220) (-966 "POLYCATQ.spad" 1563608 1563630 1565480 1565485) (-965 "POLYCAT.spad" 1557078 1557099 1563476 1563603) (-964 "POLYCAT.spad" 1549886 1549909 1556286 1556291) (-963 "POLY2UP.spad" 1549338 1549352 1549876 1549881) (-962 "POLY2.spad" 1548935 1548947 1549328 1549333) (-961 "POLUTIL.spad" 1547876 1547905 1548891 1548896) (-960 "POLTOPOL.spad" 1546624 1546639 1547866 1547871) (-959 "POINT.spad" 1545462 1545472 1545549 1545576) (-958 "PNTHEORY.spad" 1542164 1542172 1545452 1545457) (-957 "PMTOOLS.spad" 1540939 1540953 1542154 1542159) (-956 "PMSYM.spad" 1540488 1540498 1540929 1540934) (-955 "PMQFCAT.spad" 1540079 1540093 1540478 1540483) (-954 "PMPRED.spad" 1539558 1539572 1540069 1540074) (-953 "PMPREDFS.spad" 1539012 1539034 1539548 1539553) (-952 "PMPLCAT.spad" 1538092 1538110 1538944 1538949) (-951 "PMLSAGG.spad" 1537677 1537691 1538082 1538087) (-950 "PMKERNEL.spad" 1537256 1537268 1537667 1537672) (-949 "PMINS.spad" 1536836 1536846 1537246 1537251) (-948 "PMFS.spad" 1536413 1536431 1536826 1536831) (-947 "PMDOWN.spad" 1535703 1535717 1536403 1536408) (-946 "PMASS.spad" 1534713 1534721 1535693 1535698) (-945 "PMASSFS.spad" 1533680 1533696 1534703 1534708) (-944 "PLOTTOOL.spad" 1533460 1533468 1533670 1533675) (-943 "PLOT.spad" 1528383 1528391 1533450 1533455) (-942 "PLOT3D.spad" 1524847 1524855 1528373 1528378) (-941 "PLOT1.spad" 1524004 1524014 1524837 1524842) (-940 "PLEQN.spad" 1511294 1511321 1523994 1523999) (-939 "PINTERP.spad" 1510916 1510935 1511284 1511289) (-938 "PINTERPA.spad" 1510700 1510716 1510906 1510911) (-937 "PI.spad" 1510309 1510317 1510674 1510695) (-936 "PID.spad" 1509279 1509287 1510235 1510304) (-935 "PICOERCE.spad" 1508936 1508946 1509269 1509274) (-934 "PGROEB.spad" 1507537 1507551 1508926 1508931) (-933 "PGE.spad" 1499154 1499162 1507527 1507532) (-932 "PGCD.spad" 1498044 1498061 1499144 1499149) (-931 "PFRPAC.spad" 1497193 1497203 1498034 1498039) (-930 "PFR.spad" 1493856 1493866 1497095 1497188) (-929 "PFOTOOLS.spad" 1493114 1493130 1493846 1493851) (-928 "PFOQ.spad" 1492484 1492502 1493104 1493109) (-927 "PFO.spad" 1491903 1491930 1492474 1492479) (-926 "PF.spad" 1491477 1491489 1491708 1491801) (-925 "PFECAT.spad" 1489159 1489167 1491403 1491472) (-924 "PFECAT.spad" 1486869 1486879 1489115 1489120) (-923 "PFBRU.spad" 1484757 1484769 1486859 1486864) (-922 "PFBR.spad" 1482317 1482340 1484747 1484752) (-921 "PERM.spad" 1478124 1478134 1482147 1482162) (-920 "PERMGRP.spad" 1472894 1472904 1478114 1478119) (-919 "PERMCAT.spad" 1471555 1471565 1472874 1472889) (-918 "PERMAN.spad" 1470087 1470101 1471545 1471550) (-917 "PENDTREE.spad" 1469428 1469438 1469716 1469721) (-916 "PDSPC.spad" 1468241 1468251 1469418 1469423) (-915 "PDSPC.spad" 1467052 1467064 1468231 1468236) (-914 "PDRING.spad" 1466894 1466904 1467032 1467047) (-913 "PDEPROB.spad" 1465909 1465917 1466884 1466889) (-912 "PDEPACK.spad" 1459949 1459957 1465899 1465904) (-911 "PDECOMP.spad" 1459419 1459436 1459939 1459944) (-910 "PDECAT.spad" 1457775 1457783 1459409 1459414) (-909 "PDDOM.spad" 1457213 1457226 1457765 1457770) (-908 "PDDOM.spad" 1456649 1456664 1457203 1457208) (-907 "PCOMP.spad" 1456502 1456515 1456639 1456644) (-906 "PBWLB.spad" 1455090 1455107 1456492 1456497) (-905 "PATTERN.spad" 1449629 1449639 1455080 1455085) (-904 "PATTERN2.spad" 1449367 1449379 1449619 1449624) (-903 "PATTERN1.spad" 1447703 1447719 1449357 1449362) (-902 "PATRES.spad" 1445278 1445290 1447693 1447698) (-901 "PATRES2.spad" 1444950 1444964 1445268 1445273) (-900 "PATMATCH.spad" 1443147 1443178 1444658 1444663) (-899 "PATMAB.spad" 1442576 1442586 1443137 1443142) (-898 "PATLRES.spad" 1441662 1441676 1442566 1442571) (-897 "PATAB.spad" 1441426 1441436 1441652 1441657) (-896 "PARTPERM.spad" 1439434 1439442 1441416 1441421) (-895 "PARSURF.spad" 1438868 1438896 1439424 1439429) (-894 "PARSU2.spad" 1438665 1438681 1438858 1438863) (-893 "script-parser.spad" 1438185 1438193 1438655 1438660) (-892 "PARSCURV.spad" 1437619 1437647 1438175 1438180) (-891 "PARSC2.spad" 1437410 1437426 1437609 1437614) (-890 "PARPCURV.spad" 1436872 1436900 1437400 1437405) (-889 "PARPC2.spad" 1436663 1436679 1436862 1436867) (-888 "PARAMAST.spad" 1435791 1435799 1436653 1436658) (-887 "PAN2EXPR.spad" 1435203 1435211 1435781 1435786) (-886 "PALETTE.spad" 1434173 1434181 1435193 1435198) (-885 "PAIR.spad" 1433160 1433173 1433761 1433766) (-884 "PADICRC.spad" 1430494 1430512 1431665 1431758) (-883 "PADICRAT.spad" 1428509 1428521 1428730 1428823) (-882 "PADIC.spad" 1428204 1428216 1428435 1428504) (-881 "PADICCT.spad" 1426753 1426765 1428130 1428199) (-880 "PADEPAC.spad" 1425442 1425461 1426743 1426748) (-879 "PADE.spad" 1424194 1424210 1425432 1425437) (-878 "OWP.spad" 1423434 1423464 1424052 1424119) (-877 "OVERSET.spad" 1423007 1423015 1423424 1423429) (-876 "OVAR.spad" 1422788 1422811 1422997 1423002) (-875 "OUT.spad" 1421874 1421882 1422778 1422783) (-874 "OUTFORM.spad" 1411266 1411274 1421864 1421869) (-873 "OUTBFILE.spad" 1410684 1410692 1411256 1411261) (-872 "OUTBCON.spad" 1409690 1409698 1410674 1410679) (-871 "OUTBCON.spad" 1408694 1408704 1409680 1409685) (-870 "OSI.spad" 1408169 1408177 1408684 1408689) (-869 "OSGROUP.spad" 1408087 1408095 1408159 1408164) (-868 "ORTHPOL.spad" 1406572 1406582 1408004 1408009) (-867 "OREUP.spad" 1406025 1406053 1406252 1406291) (-866 "ORESUP.spad" 1405326 1405350 1405705 1405744) (-865 "OREPCTO.spad" 1403183 1403195 1405246 1405251) (-864 "OREPCAT.spad" 1397330 1397340 1403139 1403178) (-863 "OREPCAT.spad" 1391367 1391379 1397178 1397183) (-862 "ORDSET.spad" 1390539 1390547 1391357 1391362) (-861 "ORDSET.spad" 1389709 1389719 1390529 1390534) (-860 "ORDRING.spad" 1389099 1389107 1389689 1389704) (-859 "ORDRING.spad" 1388497 1388507 1389089 1389094) (-858 "ORDMON.spad" 1388352 1388360 1388487 1388492) (-857 "ORDFUNS.spad" 1387484 1387500 1388342 1388347) (-856 "ORDFIN.spad" 1387304 1387312 1387474 1387479) (-855 "ORDCOMP.spad" 1385769 1385779 1386851 1386880) (-854 "ORDCOMP2.spad" 1385062 1385074 1385759 1385764) (-853 "OPTPROB.spad" 1383700 1383708 1385052 1385057) (-852 "OPTPACK.spad" 1376109 1376117 1383690 1383695) (-851 "OPTCAT.spad" 1373788 1373796 1376099 1376104) (-850 "OPSIG.spad" 1373442 1373450 1373778 1373783) (-849 "OPQUERY.spad" 1372991 1372999 1373432 1373437) (-848 "OP.spad" 1372733 1372743 1372813 1372880) (-847 "OPERCAT.spad" 1372199 1372209 1372723 1372728) (-846 "OPERCAT.spad" 1371663 1371675 1372189 1372194) (-845 "ONECOMP.spad" 1370408 1370418 1371210 1371239) (-844 "ONECOMP2.spad" 1369832 1369844 1370398 1370403) (-843 "OMSERVER.spad" 1368838 1368846 1369822 1369827) (-842 "OMSAGG.spad" 1368626 1368636 1368794 1368833) (-841 "OMPKG.spad" 1367242 1367250 1368616 1368621) (-840 "OM.spad" 1366215 1366223 1367232 1367237) (-839 "OMLO.spad" 1365640 1365652 1366101 1366140) (-838 "OMEXPR.spad" 1365474 1365484 1365630 1365635) (-837 "OMERR.spad" 1365019 1365027 1365464 1365469) (-836 "OMERRK.spad" 1364053 1364061 1365009 1365014) (-835 "OMENC.spad" 1363397 1363405 1364043 1364048) (-834 "OMDEV.spad" 1357706 1357714 1363387 1363392) (-833 "OMCONN.spad" 1357115 1357123 1357696 1357701) (-832 "OINTDOM.spad" 1356878 1356886 1357041 1357110) (-831 "OFMONOID.spad" 1355001 1355011 1356834 1356839) (-830 "ODVAR.spad" 1354262 1354272 1354991 1354996) (-829 "ODR.spad" 1353906 1353932 1354074 1354223) (-828 "ODPOL.spad" 1351288 1351298 1351628 1351755) (-827 "ODP.spad" 1340094 1340114 1340467 1340566) (-826 "ODETOOLS.spad" 1338743 1338762 1340084 1340089) (-825 "ODESYS.spad" 1336437 1336454 1338733 1338738) (-824 "ODERTRIC.spad" 1332446 1332463 1336394 1336399) (-823 "ODERED.spad" 1331845 1331869 1332436 1332441) (-822 "ODERAT.spad" 1329460 1329477 1331835 1331840) (-821 "ODEPRRIC.spad" 1326497 1326519 1329450 1329455) (-820 "ODEPROB.spad" 1325754 1325762 1326487 1326492) (-819 "ODEPRIM.spad" 1323088 1323110 1325744 1325749) (-818 "ODEPAL.spad" 1322474 1322498 1323078 1323083) (-817 "ODEPACK.spad" 1309140 1309148 1322464 1322469) (-816 "ODEINT.spad" 1308575 1308591 1309130 1309135) (-815 "ODEIFTBL.spad" 1305970 1305978 1308565 1308570) (-814 "ODEEF.spad" 1301461 1301477 1305960 1305965) (-813 "ODECONST.spad" 1300998 1301016 1301451 1301456) (-812 "ODECAT.spad" 1299596 1299604 1300988 1300993) (-811 "OCT.spad" 1297732 1297742 1298446 1298485) (-810 "OCTCT2.spad" 1297378 1297399 1297722 1297727) (-809 "OC.spad" 1295174 1295184 1297334 1297373) (-808 "OC.spad" 1292695 1292707 1294857 1294862) (-807 "OCAMON.spad" 1292543 1292551 1292685 1292690) (-806 "OASGP.spad" 1292358 1292366 1292533 1292538) (-805 "OAMONS.spad" 1291880 1291888 1292348 1292353) (-804 "OAMON.spad" 1291741 1291749 1291870 1291875) (-803 "OAGROUP.spad" 1291603 1291611 1291731 1291736) (-802 "NUMTUBE.spad" 1291194 1291210 1291593 1291598) (-801 "NUMQUAD.spad" 1279170 1279178 1291184 1291189) (-800 "NUMODE.spad" 1270524 1270532 1279160 1279165) (-799 "NUMINT.spad" 1268090 1268098 1270514 1270519) (-798 "NUMFMT.spad" 1266930 1266938 1268080 1268085) (-797 "NUMERIC.spad" 1259044 1259054 1266735 1266740) (-796 "NTSCAT.spad" 1257552 1257568 1259012 1259039) (-795 "NTPOLFN.spad" 1257103 1257113 1257469 1257474) (-794 "NSUP.spad" 1250149 1250159 1254689 1254842) (-793 "NSUP2.spad" 1249541 1249553 1250139 1250144) (-792 "NSMP.spad" 1245771 1245790 1246079 1246206) (-791 "NREP.spad" 1244149 1244163 1245761 1245766) (-790 "NPCOEF.spad" 1243395 1243415 1244139 1244144) (-789 "NORMRETR.spad" 1242993 1243032 1243385 1243390) (-788 "NORMPK.spad" 1240895 1240914 1242983 1242988) (-787 "NORMMA.spad" 1240583 1240609 1240885 1240890) (-786 "NONE.spad" 1240324 1240332 1240573 1240578) (-785 "NONE1.spad" 1240000 1240010 1240314 1240319) (-784 "NODE1.spad" 1239487 1239503 1239990 1239995) (-783 "NNI.spad" 1238382 1238390 1239461 1239482) (-782 "NLINSOL.spad" 1237008 1237018 1238372 1238377) (-781 "NIPROB.spad" 1235549 1235557 1236998 1237003) (-780 "NFINTBAS.spad" 1233109 1233126 1235539 1235544) (-779 "NETCLT.spad" 1233083 1233094 1233099 1233104) (-778 "NCODIV.spad" 1231299 1231315 1233073 1233078) (-777 "NCNTFRAC.spad" 1230941 1230955 1231289 1231294) (-776 "NCEP.spad" 1229107 1229121 1230931 1230936) (-775 "NASRING.spad" 1228703 1228711 1229097 1229102) (-774 "NASRING.spad" 1228297 1228307 1228693 1228698) (-773 "NARNG.spad" 1227649 1227657 1228287 1228292) (-772 "NARNG.spad" 1226999 1227009 1227639 1227644) (-771 "NAGSP.spad" 1226076 1226084 1226989 1226994) (-770 "NAGS.spad" 1215737 1215745 1226066 1226071) (-769 "NAGF07.spad" 1214168 1214176 1215727 1215732) (-768 "NAGF04.spad" 1208570 1208578 1214158 1214163) (-767 "NAGF02.spad" 1202639 1202647 1208560 1208565) (-766 "NAGF01.spad" 1198400 1198408 1202629 1202634) (-765 "NAGE04.spad" 1192100 1192108 1198390 1198395) (-764 "NAGE02.spad" 1182760 1182768 1192090 1192095) (-763 "NAGE01.spad" 1178762 1178770 1182750 1182755) (-762 "NAGD03.spad" 1176766 1176774 1178752 1178757) (-761 "NAGD02.spad" 1169513 1169521 1176756 1176761) (-760 "NAGD01.spad" 1163806 1163814 1169503 1169508) (-759 "NAGC06.spad" 1159681 1159689 1163796 1163801) (-758 "NAGC05.spad" 1158182 1158190 1159671 1159676) (-757 "NAGC02.spad" 1157449 1157457 1158172 1158177) (-756 "NAALG.spad" 1156990 1157000 1157417 1157444) (-755 "NAALG.spad" 1156551 1156563 1156980 1156985) (-754 "MULTSQFR.spad" 1153509 1153526 1156541 1156546) (-753 "MULTFACT.spad" 1152892 1152909 1153499 1153504) (-752 "MTSCAT.spad" 1150986 1151007 1152790 1152887) (-751 "MTHING.spad" 1150645 1150655 1150976 1150981) (-750 "MSYSCMD.spad" 1150079 1150087 1150635 1150640) (-749 "MSET.spad" 1148037 1148047 1149785 1149824) (-748 "MSETAGG.spad" 1147882 1147892 1148005 1148032) (-747 "MRING.spad" 1144859 1144871 1147590 1147657) (-746 "MRF2.spad" 1144429 1144443 1144849 1144854) (-745 "MRATFAC.spad" 1143975 1143992 1144419 1144424) (-744 "MPRFF.spad" 1142015 1142034 1143965 1143970) (-743 "MPOLY.spad" 1139486 1139501 1139845 1139972) (-742 "MPCPF.spad" 1138750 1138769 1139476 1139481) (-741 "MPC3.spad" 1138567 1138607 1138740 1138745) (-740 "MPC2.spad" 1138213 1138246 1138557 1138562) (-739 "MONOTOOL.spad" 1136564 1136581 1138203 1138208) (-738 "MONOID.spad" 1135883 1135891 1136554 1136559) (-737 "MONOID.spad" 1135200 1135210 1135873 1135878) (-736 "MONOGEN.spad" 1133948 1133961 1135060 1135195) (-735 "MONOGEN.spad" 1132718 1132733 1133832 1133837) (-734 "MONADWU.spad" 1130748 1130756 1132708 1132713) (-733 "MONADWU.spad" 1128776 1128786 1130738 1130743) (-732 "MONAD.spad" 1127936 1127944 1128766 1128771) (-731 "MONAD.spad" 1127094 1127104 1127926 1127931) (-730 "MOEBIUS.spad" 1125830 1125844 1127074 1127089) (-729 "MODULE.spad" 1125700 1125710 1125798 1125825) (-728 "MODULE.spad" 1125590 1125602 1125690 1125695) (-727 "MODRING.spad" 1124925 1124964 1125570 1125585) (-726 "MODOP.spad" 1123590 1123602 1124747 1124814) (-725 "MODMONOM.spad" 1123321 1123339 1123580 1123585) (-724 "MODMON.spad" 1120116 1120132 1120835 1120988) (-723 "MODFIELD.spad" 1119478 1119517 1120018 1120111) (-722 "MMLFORM.spad" 1118338 1118346 1119468 1119473) (-721 "MMAP.spad" 1118080 1118114 1118328 1118333) (-720 "MLO.spad" 1116539 1116549 1118036 1118075) (-719 "MLIFT.spad" 1115151 1115168 1116529 1116534) (-718 "MKUCFUNC.spad" 1114686 1114704 1115141 1115146) (-717 "MKRECORD.spad" 1114290 1114303 1114676 1114681) (-716 "MKFUNC.spad" 1113697 1113707 1114280 1114285) (-715 "MKFLCFN.spad" 1112665 1112675 1113687 1113692) (-714 "MKBCFUNC.spad" 1112160 1112178 1112655 1112660) (-713 "MINT.spad" 1111599 1111607 1112062 1112155) (-712 "MHROWRED.spad" 1110110 1110120 1111589 1111594) (-711 "MFLOAT.spad" 1108630 1108638 1110000 1110105) (-710 "MFINFACT.spad" 1108030 1108052 1108620 1108625) (-709 "MESH.spad" 1105812 1105820 1108020 1108025) (-708 "MDDFACT.spad" 1104023 1104033 1105802 1105807) (-707 "MDAGG.spad" 1103314 1103324 1104003 1104018) (-706 "MCMPLX.spad" 1099325 1099333 1099939 1100140) (-705 "MCDEN.spad" 1098535 1098547 1099315 1099320) (-704 "MCALCFN.spad" 1095657 1095683 1098525 1098530) (-703 "MAYBE.spad" 1094941 1094952 1095647 1095652) (-702 "MATSTOR.spad" 1092249 1092259 1094931 1094936) (-701 "MATRIX.spad" 1090953 1090963 1091437 1091464) (-700 "MATLIN.spad" 1088297 1088321 1090837 1090842) (-699 "MATCAT.spad" 1080026 1080048 1088265 1088292) (-698 "MATCAT.spad" 1071627 1071651 1079868 1079873) (-697 "MATCAT2.spad" 1070909 1070957 1071617 1071622) (-696 "MAPPKG3.spad" 1069824 1069838 1070899 1070904) (-695 "MAPPKG2.spad" 1069162 1069174 1069814 1069819) (-694 "MAPPKG1.spad" 1067990 1068000 1069152 1069157) (-693 "MAPPAST.spad" 1067305 1067313 1067980 1067985) (-692 "MAPHACK3.spad" 1067117 1067131 1067295 1067300) (-691 "MAPHACK2.spad" 1066886 1066898 1067107 1067112) (-690 "MAPHACK1.spad" 1066530 1066540 1066876 1066881) (-689 "MAGMA.spad" 1064320 1064337 1066520 1066525) (-688 "MACROAST.spad" 1063899 1063907 1064310 1064315) (-687 "M3D.spad" 1061619 1061629 1063277 1063282) (-686 "LZSTAGG.spad" 1058857 1058867 1061609 1061614) (-685 "LZSTAGG.spad" 1056093 1056105 1058847 1058852) (-684 "LWORD.spad" 1052798 1052815 1056083 1056088) (-683 "LSTAST.spad" 1052582 1052590 1052788 1052793) (-682 "LSQM.spad" 1050868 1050882 1051262 1051313) (-681 "LSPP.spad" 1050403 1050420 1050858 1050863) (-680 "LSMP.spad" 1049253 1049281 1050393 1050398) (-679 "LSMP1.spad" 1047071 1047085 1049243 1049248) (-678 "LSAGG.spad" 1046740 1046750 1047039 1047066) (-677 "LSAGG.spad" 1046429 1046441 1046730 1046735) (-676 "LPOLY.spad" 1045383 1045402 1046285 1046354) (-675 "LPEFRAC.spad" 1044654 1044664 1045373 1045378) (-674 "LO.spad" 1044055 1044069 1044588 1044615) (-673 "LOGIC.spad" 1043657 1043665 1044045 1044050) (-672 "LOGIC.spad" 1043257 1043267 1043647 1043652) (-671 "LODOOPS.spad" 1042187 1042199 1043247 1043252) (-670 "LODO.spad" 1041571 1041587 1041867 1041906) (-669 "LODOF.spad" 1040617 1040634 1041528 1041533) (-668 "LODOCAT.spad" 1039283 1039293 1040573 1040612) (-667 "LODOCAT.spad" 1037947 1037959 1039239 1039244) (-666 "LODO2.spad" 1037220 1037232 1037627 1037666) (-665 "LODO1.spad" 1036620 1036630 1036900 1036939) (-664 "LODEEF.spad" 1035422 1035440 1036610 1036615) (-663 "LNAGG.spad" 1031569 1031579 1035412 1035417) (-662 "LNAGG.spad" 1027680 1027692 1031525 1031530) (-661 "LMOPS.spad" 1024448 1024465 1027670 1027675) (-660 "LMODULE.spad" 1024216 1024226 1024438 1024443) (-659 "LMDICT.spad" 1023503 1023513 1023767 1023794) (-658 "LLINSET.spad" 1023061 1023071 1023493 1023498) (-657 "LITERAL.spad" 1022967 1022978 1023051 1023056) (-656 "LIST.spad" 1020702 1020712 1022114 1022141) (-655 "LIST3.spad" 1020013 1020027 1020692 1020697) (-654 "LIST2.spad" 1018715 1018727 1020003 1020008) (-653 "LIST2MAP.spad" 1015618 1015630 1018705 1018710) (-652 "LINSET.spad" 1015397 1015407 1015608 1015613) (-651 "LINEXP.spad" 1014535 1014545 1015387 1015392) (-650 "LINDEP.spad" 1013344 1013356 1014447 1014452) (-649 "LIMITRF.spad" 1011272 1011282 1013334 1013339) (-648 "LIMITPS.spad" 1010175 1010188 1011262 1011267) (-647 "LIE.spad" 1008191 1008203 1009465 1009610) (-646 "LIECAT.spad" 1007667 1007677 1008117 1008186) (-645 "LIECAT.spad" 1007171 1007183 1007623 1007628) (-644 "LIB.spad" 1005384 1005392 1005830 1005845) (-643 "LGROBP.spad" 1002737 1002756 1005374 1005379) (-642 "LF.spad" 1001692 1001708 1002727 1002732) (-641 "LFCAT.spad" 1000751 1000759 1001682 1001687) (-640 "LEXTRIPK.spad" 996254 996269 1000741 1000746) (-639 "LEXP.spad" 994257 994284 996234 996249) (-638 "LETAST.spad" 993956 993964 994247 994252) (-637 "LEADCDET.spad" 992354 992371 993946 993951) (-636 "LAZM3PK.spad" 991058 991080 992344 992349) (-635 "LAUPOL.spad" 989650 989663 990550 990619) (-634 "LAPLACE.spad" 989233 989249 989640 989645) (-633 "LA.spad" 988673 988687 989155 989194) (-632 "LALG.spad" 988449 988459 988653 988668) (-631 "LALG.spad" 988233 988245 988439 988444) (-630 "KVTFROM.spad" 987968 987978 988223 988228) (-629 "KTVLOGIC.spad" 987480 987488 987958 987963) (-628 "KRCFROM.spad" 987218 987228 987470 987475) (-627 "KOVACIC.spad" 985941 985958 987208 987213) (-626 "KONVERT.spad" 985663 985673 985931 985936) (-625 "KOERCE.spad" 985400 985410 985653 985658) (-624 "KERNEL.spad" 984055 984065 985184 985189) (-623 "KERNEL2.spad" 983758 983770 984045 984050) (-622 "KDAGG.spad" 982867 982889 983738 983753) (-621 "KDAGG.spad" 981984 982008 982857 982862) (-620 "KAFILE.spad" 980947 980963 981182 981209) (-619 "JORDAN.spad" 978776 978788 980237 980382) (-618 "JOINAST.spad" 978470 978478 978766 978771) (-617 "JAVACODE.spad" 978336 978344 978460 978465) (-616 "IXAGG.spad" 976469 976493 978326 978331) (-615 "IXAGG.spad" 974457 974483 976316 976321) (-614 "IVECTOR.spad" 973227 973242 973382 973409) (-613 "ITUPLE.spad" 972388 972398 973217 973222) (-612 "ITRIGMNP.spad" 971227 971246 972378 972383) (-611 "ITFUN3.spad" 970733 970747 971217 971222) (-610 "ITFUN2.spad" 970477 970489 970723 970728) (-609 "ITFORM.spad" 969832 969840 970467 970472) (-608 "ITAYLOR.spad" 967826 967841 969696 969793) (-607 "ISUPS.spad" 960263 960278 966800 966897) (-606 "ISUMP.spad" 959764 959780 960253 960258) (-605 "ISTRING.spad" 958852 958865 958933 958960) (-604 "ISAST.spad" 958571 958579 958842 958847) (-603 "IRURPK.spad" 957288 957307 958561 958566) (-602 "IRSN.spad" 955260 955268 957278 957283) (-601 "IRRF2F.spad" 953745 953755 955216 955221) (-600 "IRREDFFX.spad" 953346 953357 953735 953740) (-599 "IROOT.spad" 951685 951695 953336 953341) (-598 "IR.spad" 949486 949500 951540 951567) (-597 "IRFORM.spad" 948810 948818 949476 949481) (-596 "IR2.spad" 947838 947854 948800 948805) (-595 "IR2F.spad" 947044 947060 947828 947833) (-594 "IPRNTPK.spad" 946804 946812 947034 947039) (-593 "IPF.spad" 946369 946381 946609 946702) (-592 "IPADIC.spad" 946130 946156 946295 946364) (-591 "IP4ADDR.spad" 945687 945695 946120 946125) (-590 "IOMODE.spad" 945209 945217 945677 945682) (-589 "IOBFILE.spad" 944570 944578 945199 945204) (-588 "IOBCON.spad" 944435 944443 944560 944565) (-587 "INVLAPLA.spad" 944084 944100 944425 944430) (-586 "INTTR.spad" 937466 937483 944074 944079) (-585 "INTTOOLS.spad" 935221 935237 937040 937045) (-584 "INTSLPE.spad" 934541 934549 935211 935216) (-583 "INTRVL.spad" 934107 934117 934455 934536) (-582 "INTRF.spad" 932531 932545 934097 934102) (-581 "INTRET.spad" 931963 931973 932521 932526) (-580 "INTRAT.spad" 930690 930707 931953 931958) (-579 "INTPM.spad" 929075 929091 930333 930338) (-578 "INTPAF.spad" 926939 926957 929007 929012) (-577 "INTPACK.spad" 917313 917321 926929 926934) (-576 "INT.spad" 916761 916769 917167 917308) (-575 "INTHERTR.spad" 916035 916052 916751 916756) (-574 "INTHERAL.spad" 915705 915729 916025 916030) (-573 "INTHEORY.spad" 912144 912152 915695 915700) (-572 "INTG0.spad" 905877 905895 912076 912081) (-571 "INTFTBL.spad" 899906 899914 905867 905872) (-570 "INTFACT.spad" 898965 898975 899896 899901) (-569 "INTEF.spad" 897350 897366 898955 898960) (-568 "INTDOM.spad" 895973 895981 897276 897345) (-567 "INTDOM.spad" 894658 894668 895963 895968) (-566 "INTCAT.spad" 892917 892927 894572 894653) (-565 "INTBIT.spad" 892424 892432 892907 892912) (-564 "INTALG.spad" 891612 891639 892414 892419) (-563 "INTAF.spad" 891112 891128 891602 891607) (-562 "INTABL.spad" 889630 889661 889793 889820) (-561 "INT8.spad" 889510 889518 889620 889625) (-560 "INT64.spad" 889389 889397 889500 889505) (-559 "INT32.spad" 889268 889276 889379 889384) (-558 "INT16.spad" 889147 889155 889258 889263) (-557 "INS.spad" 886650 886658 889049 889142) (-556 "INS.spad" 884239 884249 886640 886645) (-555 "INPSIGN.spad" 883687 883700 884229 884234) (-554 "INPRODPF.spad" 882783 882802 883677 883682) (-553 "INPRODFF.spad" 881871 881895 882773 882778) (-552 "INNMFACT.spad" 880846 880863 881861 881866) (-551 "INMODGCD.spad" 880334 880364 880836 880841) (-550 "INFSP.spad" 878631 878653 880324 880329) (-549 "INFPROD0.spad" 877711 877730 878621 878626) (-548 "INFORM.spad" 874910 874918 877701 877706) (-547 "INFORM1.spad" 874535 874545 874900 874905) (-546 "INFINITY.spad" 874087 874095 874525 874530) (-545 "INETCLTS.spad" 874064 874072 874077 874082) (-544 "INEP.spad" 872602 872624 874054 874059) (-543 "INDE.spad" 872331 872348 872592 872597) (-542 "INCRMAPS.spad" 871752 871762 872321 872326) (-541 "INBFILE.spad" 870824 870832 871742 871747) (-540 "INBFF.spad" 866618 866629 870814 870819) (-539 "INBCON.spad" 864908 864916 866608 866613) (-538 "INBCON.spad" 863196 863206 864898 864903) (-537 "INAST.spad" 862857 862865 863186 863191) (-536 "IMPTAST.spad" 862565 862573 862847 862852) (-535 "IMATRIX.spad" 861510 861536 862022 862049) (-534 "IMATQF.spad" 860604 860648 861466 861471) (-533 "IMATLIN.spad" 859209 859233 860560 860565) (-532 "ILIST.spad" 857867 857882 858392 858419) (-531 "IIARRAY2.spad" 857255 857293 857474 857501) (-530 "IFF.spad" 856665 856681 856936 857029) (-529 "IFAST.spad" 856279 856287 856655 856660) (-528 "IFARRAY.spad" 853772 853787 855462 855489) (-527 "IFAMON.spad" 853634 853651 853728 853733) (-526 "IEVALAB.spad" 853039 853051 853624 853629) (-525 "IEVALAB.spad" 852442 852456 853029 853034) (-524 "IDPO.spad" 852240 852252 852432 852437) (-523 "IDPOAMS.spad" 851996 852008 852230 852235) (-522 "IDPOAM.spad" 851716 851728 851986 851991) (-521 "IDPC.spad" 850654 850666 851706 851711) (-520 "IDPAM.spad" 850399 850411 850644 850649) (-519 "IDPAG.spad" 850146 850158 850389 850394) (-518 "IDENT.spad" 849796 849804 850136 850141) (-517 "IDECOMP.spad" 847035 847053 849786 849791) (-516 "IDEAL.spad" 841984 842023 846970 846975) (-515 "ICDEN.spad" 841173 841189 841974 841979) (-514 "ICARD.spad" 840364 840372 841163 841168) (-513 "IBPTOOLS.spad" 838971 838988 840354 840359) (-512 "IBITS.spad" 838174 838187 838607 838634) (-511 "IBATOOL.spad" 835151 835170 838164 838169) (-510 "IBACHIN.spad" 833658 833673 835141 835146) (-509 "IARRAY2.spad" 832646 832672 833265 833292) (-508 "IARRAY1.spad" 831691 831706 831829 831856) (-507 "IAN.spad" 829914 829922 831507 831600) (-506 "IALGFACT.spad" 829517 829550 829904 829909) (-505 "HYPCAT.spad" 828941 828949 829507 829512) (-504 "HYPCAT.spad" 828363 828373 828931 828936) (-503 "HOSTNAME.spad" 828171 828179 828353 828358) (-502 "HOMOTOP.spad" 827914 827924 828161 828166) (-501 "HOAGG.spad" 825196 825206 827904 827909) (-500 "HOAGG.spad" 822253 822265 824963 824968) (-499 "HEXADEC.spad" 820355 820363 820720 820813) (-498 "HEUGCD.spad" 819390 819401 820345 820350) (-497 "HELLFDIV.spad" 818980 819004 819380 819385) (-496 "HEAP.spad" 818372 818382 818587 818614) (-495 "HEADAST.spad" 817905 817913 818362 818367) (-494 "HDP.spad" 806707 806723 807084 807183) (-493 "HDMP.spad" 803921 803936 804537 804664) (-492 "HB.spad" 802172 802180 803911 803916) (-491 "HASHTBL.spad" 800642 800673 800853 800880) (-490 "HASAST.spad" 800358 800366 800632 800637) (-489 "HACKPI.spad" 799849 799857 800260 800353) (-488 "GTSET.spad" 798788 798804 799495 799522) (-487 "GSTBL.spad" 797307 797342 797481 797496) (-486 "GSERIES.spad" 794478 794505 795439 795588) (-485 "GROUP.spad" 793751 793759 794458 794473) (-484 "GROUP.spad" 793032 793042 793741 793746) (-483 "GROEBSOL.spad" 791526 791547 793022 793027) (-482 "GRMOD.spad" 790097 790109 791516 791521) (-481 "GRMOD.spad" 788666 788680 790087 790092) (-480 "GRIMAGE.spad" 781555 781563 788656 788661) (-479 "GRDEF.spad" 779934 779942 781545 781550) (-478 "GRAY.spad" 778397 778405 779924 779929) (-477 "GRALG.spad" 777474 777486 778387 778392) (-476 "GRALG.spad" 776549 776563 777464 777469) (-475 "GPOLSET.spad" 776003 776026 776231 776258) (-474 "GOSPER.spad" 775272 775290 775993 775998) (-473 "GMODPOL.spad" 774420 774447 775240 775267) (-472 "GHENSEL.spad" 773503 773517 774410 774415) (-471 "GENUPS.spad" 769796 769809 773493 773498) (-470 "GENUFACT.spad" 769373 769383 769786 769791) (-469 "GENPGCD.spad" 768959 768976 769363 769368) (-468 "GENMFACT.spad" 768411 768430 768949 768954) (-467 "GENEEZ.spad" 766362 766375 768401 768406) (-466 "GDMP.spad" 763418 763435 764192 764319) (-465 "GCNAALG.spad" 757341 757368 763212 763279) (-464 "GCDDOM.spad" 756517 756525 757267 757336) (-463 "GCDDOM.spad" 755755 755765 756507 756512) (-462 "GB.spad" 753281 753319 755711 755716) (-461 "GBINTERN.spad" 749301 749339 753271 753276) (-460 "GBF.spad" 745068 745106 749291 749296) (-459 "GBEUCLID.spad" 742950 742988 745058 745063) (-458 "GAUSSFAC.spad" 742263 742271 742940 742945) (-457 "GALUTIL.spad" 740589 740599 742219 742224) (-456 "GALPOLYU.spad" 739043 739056 740579 740584) (-455 "GALFACTU.spad" 737216 737235 739033 739038) (-454 "GALFACT.spad" 727405 727416 737206 737211) (-453 "FVFUN.spad" 724428 724436 727395 727400) (-452 "FVC.spad" 723480 723488 724418 724423) (-451 "FUNDESC.spad" 723158 723166 723470 723475) (-450 "FUNCTION.spad" 723007 723019 723148 723153) (-449 "FT.spad" 721304 721312 722997 723002) (-448 "FTEM.spad" 720469 720477 721294 721299) (-447 "FSUPFACT.spad" 719369 719388 720405 720410) (-446 "FST.spad" 717455 717463 719359 719364) (-445 "FSRED.spad" 716935 716951 717445 717450) (-444 "FSPRMELT.spad" 715817 715833 716892 716897) (-443 "FSPECF.spad" 713908 713924 715807 715812) (-442 "FS.spad" 708176 708186 713683 713903) (-441 "FS.spad" 702222 702234 707731 707736) (-440 "FSINT.spad" 701882 701898 702212 702217) (-439 "FSERIES.spad" 701073 701085 701702 701801) (-438 "FSCINT.spad" 700390 700406 701063 701068) (-437 "FSAGG.spad" 699507 699517 700346 700385) (-436 "FSAGG.spad" 698586 698598 699427 699432) (-435 "FSAGG2.spad" 697329 697345 698576 698581) (-434 "FS2UPS.spad" 691820 691854 697319 697324) (-433 "FS2.spad" 691467 691483 691810 691815) (-432 "FS2EXPXP.spad" 690592 690615 691457 691462) (-431 "FRUTIL.spad" 689546 689556 690582 690587) (-430 "FR.spad" 683021 683031 688329 688398) (-429 "FRNAALG.spad" 678290 678300 682963 683016) (-428 "FRNAALG.spad" 673571 673583 678246 678251) (-427 "FRNAAF2.spad" 673027 673045 673561 673566) (-426 "FRMOD.spad" 672437 672467 672958 672963) (-425 "FRIDEAL.spad" 671662 671683 672417 672432) (-424 "FRIDEAL2.spad" 671266 671298 671652 671657) (-423 "FRETRCT.spad" 670777 670787 671256 671261) (-422 "FRETRCT.spad" 670154 670166 670635 670640) (-421 "FRAMALG.spad" 668502 668515 670110 670149) (-420 "FRAMALG.spad" 666882 666897 668492 668497) (-419 "FRAC.spad" 663981 663991 664384 664557) (-418 "FRAC2.spad" 663586 663598 663971 663976) (-417 "FR2.spad" 662922 662934 663576 663581) (-416 "FPS.spad" 659737 659745 662812 662917) (-415 "FPS.spad" 656580 656590 659657 659662) (-414 "FPC.spad" 655626 655634 656482 656575) (-413 "FPC.spad" 654758 654768 655616 655621) (-412 "FPATMAB.spad" 654520 654530 654748 654753) (-411 "FPARFRAC.spad" 653007 653024 654510 654515) (-410 "FORTRAN.spad" 651513 651556 652997 653002) (-409 "FORT.spad" 650462 650470 651503 651508) (-408 "FORTFN.spad" 647632 647640 650452 650457) (-407 "FORTCAT.spad" 647316 647324 647622 647627) (-406 "FORMULA.spad" 644790 644798 647306 647311) (-405 "FORMULA1.spad" 644269 644279 644780 644785) (-404 "FORDER.spad" 643960 643984 644259 644264) (-403 "FOP.spad" 643161 643169 643950 643955) (-402 "FNLA.spad" 642585 642607 643129 643156) (-401 "FNCAT.spad" 641180 641188 642575 642580) (-400 "FNAME.spad" 641072 641080 641170 641175) (-399 "FMTC.spad" 640870 640878 640998 641067) (-398 "FMONOID.spad" 640535 640545 640826 640831) (-397 "FMONCAT.spad" 637688 637698 640525 640530) (-396 "FM.spad" 637383 637395 637622 637649) (-395 "FMFUN.spad" 634413 634421 637373 637378) (-394 "FMC.spad" 633465 633473 634403 634408) (-393 "FMCAT.spad" 631133 631151 633433 633460) (-392 "FM1.spad" 630490 630502 631067 631094) (-391 "FLOATRP.spad" 628225 628239 630480 630485) (-390 "FLOAT.spad" 621539 621547 628091 628220) (-389 "FLOATCP.spad" 618970 618984 621529 621534) (-388 "FLINEXP.spad" 618692 618702 618960 618965) (-387 "FLINEXP.spad" 618358 618370 618628 618633) (-386 "FLASORT.spad" 617684 617696 618348 618353) (-385 "FLALG.spad" 615330 615349 617610 617679) (-384 "FLAGG.spad" 612372 612382 615310 615325) (-383 "FLAGG.spad" 609315 609327 612255 612260) (-382 "FLAGG2.spad" 608040 608056 609305 609310) (-381 "FINRALG.spad" 606101 606114 607996 608035) (-380 "FINRALG.spad" 604088 604103 605985 605990) (-379 "FINITE.spad" 603240 603248 604078 604083) (-378 "FINAALG.spad" 592361 592371 603182 603235) (-377 "FINAALG.spad" 581494 581506 592317 592322) (-376 "FILE.spad" 581077 581087 581484 581489) (-375 "FILECAT.spad" 579603 579620 581067 581072) (-374 "FIELD.spad" 579009 579017 579505 579598) (-373 "FIELD.spad" 578501 578511 578999 579004) (-372 "FGROUP.spad" 577148 577158 578481 578496) (-371 "FGLMICPK.spad" 575935 575950 577138 577143) (-370 "FFX.spad" 575310 575325 575651 575744) (-369 "FFSLPE.spad" 574813 574834 575300 575305) (-368 "FFPOLY.spad" 566075 566086 574803 574808) (-367 "FFPOLY2.spad" 565135 565152 566065 566070) (-366 "FFP.spad" 564532 564552 564851 564944) (-365 "FF.spad" 563980 563996 564213 564306) (-364 "FFNBX.spad" 562492 562512 563696 563789) (-363 "FFNBP.spad" 561005 561022 562208 562301) (-362 "FFNB.spad" 559470 559491 560686 560779) (-361 "FFINTBAS.spad" 556984 557003 559460 559465) (-360 "FFIELDC.spad" 554561 554569 556886 556979) (-359 "FFIELDC.spad" 552224 552234 554551 554556) (-358 "FFHOM.spad" 550972 550989 552214 552219) (-357 "FFF.spad" 548407 548418 550962 550967) (-356 "FFCGX.spad" 547254 547274 548123 548216) (-355 "FFCGP.spad" 546143 546163 546970 547063) (-354 "FFCG.spad" 544935 544956 545824 545917) (-353 "FFCAT.spad" 538108 538130 544774 544930) (-352 "FFCAT.spad" 531360 531384 538028 538033) (-351 "FFCAT2.spad" 531107 531147 531350 531355) (-350 "FEXPR.spad" 522824 522870 530863 530902) (-349 "FEVALAB.spad" 522532 522542 522814 522819) (-348 "FEVALAB.spad" 522025 522037 522309 522314) (-347 "FDIV.spad" 521467 521491 522015 522020) (-346 "FDIVCAT.spad" 519531 519555 521457 521462) (-345 "FDIVCAT.spad" 517593 517619 519521 519526) (-344 "FDIV2.spad" 517249 517289 517583 517588) (-343 "FCTRDATA.spad" 516257 516265 517239 517244) (-342 "FCPAK1.spad" 514824 514832 516247 516252) (-341 "FCOMP.spad" 514203 514213 514814 514819) (-340 "FC.spad" 504210 504218 514193 514198) (-339 "FAXF.spad" 497181 497195 504112 504205) (-338 "FAXF.spad" 490204 490220 497137 497142) (-337 "FARRAY.spad" 488354 488364 489387 489414) (-336 "FAMR.spad" 486490 486502 488252 488349) (-335 "FAMR.spad" 484610 484624 486374 486379) (-334 "FAMONOID.spad" 484278 484288 484564 484569) (-333 "FAMONC.spad" 482574 482586 484268 484273) (-332 "FAGROUP.spad" 482198 482208 482470 482497) (-331 "FACUTIL.spad" 480402 480419 482188 482193) (-330 "FACTFUNC.spad" 479596 479606 480392 480397) (-329 "EXPUPXS.spad" 476429 476452 477728 477877) (-328 "EXPRTUBE.spad" 473717 473725 476419 476424) (-327 "EXPRODE.spad" 470877 470893 473707 473712) (-326 "EXPR.spad" 466052 466062 466766 467061) (-325 "EXPR2UPS.spad" 462174 462187 466042 466047) (-324 "EXPR2.spad" 461879 461891 462164 462169) (-323 "EXPEXPAN.spad" 458819 458844 459451 459544) (-322 "EXIT.spad" 458490 458498 458809 458814) (-321 "EXITAST.spad" 458226 458234 458480 458485) (-320 "EVALCYC.spad" 457686 457700 458216 458221) (-319 "EVALAB.spad" 457258 457268 457676 457681) (-318 "EVALAB.spad" 456828 456840 457248 457253) (-317 "EUCDOM.spad" 454402 454410 456754 456823) (-316 "EUCDOM.spad" 452038 452048 454392 454397) (-315 "ESTOOLS.spad" 443884 443892 452028 452033) (-314 "ESTOOLS2.spad" 443487 443501 443874 443879) (-313 "ESTOOLS1.spad" 443172 443183 443477 443482) (-312 "ES.spad" 435987 435995 443162 443167) (-311 "ES.spad" 428708 428718 435885 435890) (-310 "ESCONT.spad" 425501 425509 428698 428703) (-309 "ESCONT1.spad" 425250 425262 425491 425496) (-308 "ES2.spad" 424755 424771 425240 425245) (-307 "ES1.spad" 424325 424341 424745 424750) (-306 "ERROR.spad" 421652 421660 424315 424320) (-305 "EQTBL.spad" 420124 420146 420333 420360) (-304 "EQ.spad" 414929 414939 417716 417828) (-303 "EQ2.spad" 414647 414659 414919 414924) (-302 "EP.spad" 410973 410983 414637 414642) (-301 "ENV.spad" 409651 409659 410963 410968) (-300 "ENTIRER.spad" 409319 409327 409595 409646) (-299 "EMR.spad" 408607 408648 409245 409314) (-298 "ELTAGG.spad" 406861 406880 408597 408602) (-297 "ELTAGG.spad" 405079 405100 406817 406822) (-296 "ELTAB.spad" 404554 404567 405069 405074) (-295 "ELFUTS.spad" 403941 403960 404544 404549) (-294 "ELEMFUN.spad" 403630 403638 403931 403936) (-293 "ELEMFUN.spad" 403317 403327 403620 403625) (-292 "ELAGG.spad" 401288 401298 403297 403312) (-291 "ELAGG.spad" 399196 399208 401207 401212) (-290 "ELABOR.spad" 398542 398550 399186 399191) (-289 "ELABEXPR.spad" 397474 397482 398532 398537) (-288 "EFUPXS.spad" 394250 394280 397430 397435) (-287 "EFULS.spad" 391086 391109 394206 394211) (-286 "EFSTRUC.spad" 389101 389117 391076 391081) (-285 "EF.spad" 383877 383893 389091 389096) (-284 "EAB.spad" 382153 382161 383867 383872) (-283 "E04UCFA.spad" 381689 381697 382143 382148) (-282 "E04NAFA.spad" 381266 381274 381679 381684) (-281 "E04MBFA.spad" 380846 380854 381256 381261) (-280 "E04JAFA.spad" 380382 380390 380836 380841) (-279 "E04GCFA.spad" 379918 379926 380372 380377) (-278 "E04FDFA.spad" 379454 379462 379908 379913) (-277 "E04DGFA.spad" 378990 378998 379444 379449) (-276 "E04AGNT.spad" 374840 374848 378980 378985) (-275 "DVARCAT.spad" 371730 371740 374830 374835) (-274 "DVARCAT.spad" 368618 368630 371720 371725) (-273 "DSMP.spad" 366085 366099 366390 366517) (-272 "DSEXT.spad" 365387 365397 366075 366080) (-271 "DSEXT.spad" 364596 364608 365286 365291) (-270 "DROPT.spad" 358555 358563 364586 364591) (-269 "DROPT1.spad" 358220 358230 358545 358550) (-268 "DROPT0.spad" 353077 353085 358210 358215) (-267 "DRAWPT.spad" 351250 351258 353067 353072) (-266 "DRAW.spad" 344126 344139 351240 351245) (-265 "DRAWHACK.spad" 343434 343444 344116 344121) (-264 "DRAWCX.spad" 340904 340912 343424 343429) (-263 "DRAWCURV.spad" 340451 340466 340894 340899) (-262 "DRAWCFUN.spad" 329983 329991 340441 340446) (-261 "DQAGG.spad" 328161 328171 329951 329978) (-260 "DPOLCAT.spad" 323510 323526 328029 328156) (-259 "DPOLCAT.spad" 318945 318963 323466 323471) (-258 "DPMO.spad" 311403 311419 311541 311754) (-257 "DPMM.spad" 303874 303892 303999 304212) (-256 "DOMTMPLT.spad" 303645 303653 303864 303869) (-255 "DOMCTOR.spad" 303400 303408 303635 303640) (-254 "DOMAIN.spad" 302487 302495 303390 303395) (-253 "DMP.spad" 299747 299762 300317 300444) (-252 "DLP.spad" 299099 299109 299737 299742) (-251 "DLIST.spad" 297678 297688 298282 298309) (-250 "DLAGG.spad" 296095 296105 297668 297673) (-249 "DIVRING.spad" 295637 295645 296039 296090) (-248 "DIVRING.spad" 295223 295233 295627 295632) (-247 "DISPLAY.spad" 293413 293421 295213 295218) (-246 "DIRPROD.spad" 281952 281968 282592 282691) (-245 "DIRPROD2.spad" 280770 280788 281942 281947) (-244 "DIRPCAT.spad" 279963 279979 280666 280765) (-243 "DIRPCAT.spad" 278783 278801 279488 279493) (-242 "DIOSP.spad" 277608 277616 278773 278778) (-241 "DIOPS.spad" 276604 276614 277588 277603) (-240 "DIOPS.spad" 275574 275586 276560 276565) (-239 "DIFRING.spad" 275412 275420 275554 275569) (-238 "DIFFSPC.spad" 274991 274999 275402 275407) (-237 "DIFFSPC.spad" 274568 274578 274981 274986) (-236 "DIFFMOD.spad" 274057 274067 274536 274563) (-235 "DIFFDOM.spad" 273222 273233 274047 274052) (-234 "DIFFDOM.spad" 272385 272398 273212 273217) (-233 "DIFEXT.spad" 271556 271566 272365 272380) (-232 "DIFEXT.spad" 270644 270656 271455 271460) (-231 "DIAGG.spad" 270274 270284 270624 270639) (-230 "DIAGG.spad" 269912 269924 270264 270269) (-229 "DHMATRIX.spad" 268224 268234 269369 269396) (-228 "DFSFUN.spad" 261864 261872 268214 268219) (-227 "DFLOAT.spad" 258595 258603 261754 261859) (-226 "DFINTTLS.spad" 256826 256842 258585 258590) (-225 "DERHAM.spad" 254740 254772 256806 256821) (-224 "DEQUEUE.spad" 254064 254074 254347 254374) (-223 "DEGRED.spad" 253681 253695 254054 254059) (-222 "DEFINTRF.spad" 251218 251228 253671 253676) (-221 "DEFINTEF.spad" 249728 249744 251208 251213) (-220 "DEFAST.spad" 249096 249104 249718 249723) (-219 "DECIMAL.spad" 247202 247210 247563 247656) (-218 "DDFACT.spad" 245015 245032 247192 247197) (-217 "DBLRESP.spad" 244615 244639 245005 245010) (-216 "DBASE.spad" 243279 243289 244605 244610) (-215 "DATAARY.spad" 242741 242754 243269 243274) (-214 "D03FAFA.spad" 242569 242577 242731 242736) (-213 "D03EEFA.spad" 242389 242397 242559 242564) (-212 "D03AGNT.spad" 241475 241483 242379 242384) (-211 "D02EJFA.spad" 240937 240945 241465 241470) (-210 "D02CJFA.spad" 240415 240423 240927 240932) (-209 "D02BHFA.spad" 239905 239913 240405 240410) (-208 "D02BBFA.spad" 239395 239403 239895 239900) (-207 "D02AGNT.spad" 234209 234217 239385 239390) (-206 "D01WGTS.spad" 232528 232536 234199 234204) (-205 "D01TRNS.spad" 232505 232513 232518 232523) (-204 "D01GBFA.spad" 232027 232035 232495 232500) (-203 "D01FCFA.spad" 231549 231557 232017 232022) (-202 "D01ASFA.spad" 231017 231025 231539 231544) (-201 "D01AQFA.spad" 230463 230471 231007 231012) (-200 "D01APFA.spad" 229887 229895 230453 230458) (-199 "D01ANFA.spad" 229381 229389 229877 229882) (-198 "D01AMFA.spad" 228891 228899 229371 229376) (-197 "D01ALFA.spad" 228431 228439 228881 228886) (-196 "D01AKFA.spad" 227957 227965 228421 228426) (-195 "D01AJFA.spad" 227480 227488 227947 227952) (-194 "D01AGNT.spad" 223547 223555 227470 227475) (-193 "CYCLOTOM.spad" 223053 223061 223537 223542) (-192 "CYCLES.spad" 219845 219853 223043 223048) (-191 "CVMP.spad" 219262 219272 219835 219840) (-190 "CTRIGMNP.spad" 217762 217778 219252 219257) (-189 "CTOR.spad" 217453 217461 217752 217757) (-188 "CTORKIND.spad" 217056 217064 217443 217448) (-187 "CTORCAT.spad" 216305 216313 217046 217051) (-186 "CTORCAT.spad" 215552 215562 216295 216300) (-185 "CTORCALL.spad" 215141 215151 215542 215547) (-184 "CSTTOOLS.spad" 214386 214399 215131 215136) (-183 "CRFP.spad" 208110 208123 214376 214381) (-182 "CRCEAST.spad" 207830 207838 208100 208105) (-181 "CRAPACK.spad" 206881 206891 207820 207825) (-180 "CPMATCH.spad" 206385 206400 206806 206811) (-179 "CPIMA.spad" 206090 206109 206375 206380) (-178 "COORDSYS.spad" 201099 201109 206080 206085) (-177 "CONTOUR.spad" 200510 200518 201089 201094) (-176 "CONTFRAC.spad" 196260 196270 200412 200505) (-175 "CONDUIT.spad" 196018 196026 196250 196255) (-174 "COMRING.spad" 195692 195700 195956 196013) (-173 "COMPPROP.spad" 195210 195218 195682 195687) (-172 "COMPLPAT.spad" 194977 194992 195200 195205) (-171 "COMPLEX.spad" 189114 189124 189358 189619) (-170 "COMPLEX2.spad" 188829 188841 189104 189109) (-169 "COMPILER.spad" 188378 188386 188819 188824) (-168 "COMPFACT.spad" 187980 187994 188368 188373) (-167 "COMPCAT.spad" 186052 186062 187714 187975) (-166 "COMPCAT.spad" 183852 183864 185516 185521) (-165 "COMMUPC.spad" 183600 183618 183842 183847) (-164 "COMMONOP.spad" 183133 183141 183590 183595) (-163 "COMM.spad" 182944 182952 183123 183128) (-162 "COMMAAST.spad" 182707 182715 182934 182939) (-161 "COMBOPC.spad" 181622 181630 182697 182702) (-160 "COMBINAT.spad" 180389 180399 181612 181617) (-159 "COMBF.spad" 177771 177787 180379 180384) (-158 "COLOR.spad" 176608 176616 177761 177766) (-157 "COLONAST.spad" 176274 176282 176598 176603) (-156 "CMPLXRT.spad" 175985 176002 176264 176269) (-155 "CLLCTAST.spad" 175647 175655 175975 175980) (-154 "CLIP.spad" 171755 171763 175637 175642) (-153 "CLIF.spad" 170410 170426 171711 171750) (-152 "CLAGG.spad" 166915 166925 170400 170405) (-151 "CLAGG.spad" 163291 163303 166778 166783) (-150 "CINTSLPE.spad" 162622 162635 163281 163286) (-149 "CHVAR.spad" 160760 160782 162612 162617) (-148 "CHARZ.spad" 160675 160683 160740 160755) (-147 "CHARPOL.spad" 160185 160195 160665 160670) (-146 "CHARNZ.spad" 159938 159946 160165 160180) (-145 "CHAR.spad" 157812 157820 159928 159933) (-144 "CFCAT.spad" 157140 157148 157802 157807) (-143 "CDEN.spad" 156336 156350 157130 157135) (-142 "CCLASS.spad" 154485 154493 155747 155786) (-141 "CATEGORY.spad" 153527 153535 154475 154480) (-140 "CATCTOR.spad" 153418 153426 153517 153522) (-139 "CATAST.spad" 153036 153044 153408 153413) (-138 "CASEAST.spad" 152750 152758 153026 153031) (-137 "CARTEN.spad" 148117 148141 152740 152745) (-136 "CARTEN2.spad" 147507 147534 148107 148112) (-135 "CARD.spad" 144802 144810 147481 147502) (-134 "CAPSLAST.spad" 144576 144584 144792 144797) (-133 "CACHSET.spad" 144200 144208 144566 144571) (-132 "CABMON.spad" 143755 143763 144190 144195) (-131 "BYTEORD.spad" 143430 143438 143745 143750) (-130 "BYTE.spad" 142857 142865 143420 143425) (-129 "BYTEBUF.spad" 140716 140724 142026 142053) (-128 "BTREE.spad" 139789 139799 140323 140350) (-127 "BTOURN.spad" 138794 138804 139396 139423) (-126 "BTCAT.spad" 138186 138196 138762 138789) (-125 "BTCAT.spad" 137598 137610 138176 138181) (-124 "BTAGG.spad" 137064 137072 137566 137593) (-123 "BTAGG.spad" 136550 136560 137054 137059) (-122 "BSTREE.spad" 135291 135301 136157 136184) (-121 "BRILL.spad" 133488 133499 135281 135286) (-120 "BRAGG.spad" 132428 132438 133478 133483) (-119 "BRAGG.spad" 131332 131344 132384 132389) (-118 "BPADICRT.spad" 129313 129325 129568 129661) (-117 "BPADIC.spad" 128977 128989 129239 129308) (-116 "BOUNDZRO.spad" 128633 128650 128967 128972) (-115 "BOP.spad" 123815 123823 128623 128628) (-114 "BOP1.spad" 121281 121291 123805 123810) (-113 "BOOLE.spad" 120931 120939 121271 121276) (-112 "BOOLEAN.spad" 120369 120377 120921 120926) (-111 "BMODULE.spad" 120081 120093 120337 120364) (-110 "BITS.spad" 119502 119510 119717 119744) (-109 "BINDING.spad" 118915 118923 119492 119497) (-108 "BINARY.spad" 117026 117034 117382 117475) (-107 "BGAGG.spad" 116231 116241 117006 117021) (-106 "BGAGG.spad" 115444 115456 116221 116226) (-105 "BFUNCT.spad" 115008 115016 115424 115439) (-104 "BEZOUT.spad" 114148 114175 114958 114963) (-103 "BBTREE.spad" 110993 111003 113755 113782) (-102 "BASTYPE.spad" 110665 110673 110983 110988) (-101 "BASTYPE.spad" 110335 110345 110655 110660) (-100 "BALFACT.spad" 109794 109807 110325 110330) (-99 "AUTOMOR.spad" 109245 109254 109774 109789) (-98 "ATTREG.spad" 105968 105975 108997 109240) (-97 "ATTRBUT.spad" 101991 101998 105948 105963) (-96 "ATTRAST.spad" 101708 101715 101981 101986) (-95 "ATRIG.spad" 101178 101185 101698 101703) (-94 "ATRIG.spad" 100646 100655 101168 101173) (-93 "ASTCAT.spad" 100550 100557 100636 100641) (-92 "ASTCAT.spad" 100452 100461 100540 100545) (-91 "ASTACK.spad" 99791 99800 100059 100086) (-90 "ASSOCEQ.spad" 98617 98628 99747 99752) (-89 "ASP9.spad" 97698 97711 98607 98612) (-88 "ASP8.spad" 96741 96754 97688 97693) (-87 "ASP80.spad" 96063 96076 96731 96736) (-86 "ASP7.spad" 95223 95236 96053 96058) (-85 "ASP78.spad" 94674 94687 95213 95218) (-84 "ASP77.spad" 94043 94056 94664 94669) (-83 "ASP74.spad" 93135 93148 94033 94038) (-82 "ASP73.spad" 92406 92419 93125 93130) (-81 "ASP6.spad" 91273 91286 92396 92401) (-80 "ASP55.spad" 89782 89795 91263 91268) (-79 "ASP50.spad" 87599 87612 89772 89777) (-78 "ASP4.spad" 86894 86907 87589 87594) (-77 "ASP49.spad" 85893 85906 86884 86889) (-76 "ASP42.spad" 84300 84339 85883 85888) (-75 "ASP41.spad" 82879 82918 84290 84295) (-74 "ASP35.spad" 81867 81880 82869 82874) (-73 "ASP34.spad" 81168 81181 81857 81862) (-72 "ASP33.spad" 80728 80741 81158 81163) (-71 "ASP31.spad" 79868 79881 80718 80723) (-70 "ASP30.spad" 78760 78773 79858 79863) (-69 "ASP29.spad" 78226 78239 78750 78755) (-68 "ASP28.spad" 69499 69512 78216 78221) (-67 "ASP27.spad" 68396 68409 69489 69494) (-66 "ASP24.spad" 67483 67496 68386 68391) (-65 "ASP20.spad" 66947 66960 67473 67478) (-64 "ASP1.spad" 66328 66341 66937 66942) (-63 "ASP19.spad" 61014 61027 66318 66323) (-62 "ASP12.spad" 60428 60441 61004 61009) (-61 "ASP10.spad" 59699 59712 60418 60423) (-60 "ARRAY2.spad" 59059 59068 59306 59333) (-59 "ARRAY1.spad" 57896 57905 58242 58269) (-58 "ARRAY12.spad" 56609 56620 57886 57891) (-57 "ARR2CAT.spad" 52383 52404 56577 56604) (-56 "ARR2CAT.spad" 48177 48200 52373 52378) (-55 "ARITY.spad" 47549 47556 48167 48172) (-54 "APPRULE.spad" 46809 46831 47539 47544) (-53 "APPLYORE.spad" 46428 46441 46799 46804) (-52 "ANY.spad" 45287 45294 46418 46423) (-51 "ANY1.spad" 44358 44367 45277 45282) (-50 "ANTISYM.spad" 42803 42819 44338 44353) (-49 "ANON.spad" 42496 42503 42793 42798) (-48 "AN.spad" 40805 40812 42312 42405) (-47 "AMR.spad" 38990 39001 40703 40800) (-46 "AMR.spad" 37012 37025 38727 38732) (-45 "ALIST.spad" 34424 34445 34774 34801) (-44 "ALGSC.spad" 33559 33585 34296 34349) (-43 "ALGPKG.spad" 29342 29353 33515 33520) (-42 "ALGMFACT.spad" 28535 28549 29332 29337) (-41 "ALGMANIP.spad" 26009 26024 28368 28373) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2280931 2280936 2280941 2280946) (-2 NIL 2280911 2280916 2280921 2280926) (-1 NIL 2280891 2280896 2280901 2280906) (0 NIL 2280871 2280876 2280881 2280886) (-1314 "ZMOD.spad" 2280680 2280693 2280809 2280866) (-1313 "ZLINDEP.spad" 2279746 2279757 2280670 2280675) (-1312 "ZDSOLVE.spad" 2269691 2269713 2279736 2279741) (-1311 "YSTREAM.spad" 2269186 2269197 2269681 2269686) (-1310 "YDIAGRAM.spad" 2268820 2268829 2269176 2269181) (-1309 "XRPOLY.spad" 2268040 2268060 2268676 2268745) (-1308 "XPR.spad" 2265835 2265848 2267758 2267857) (-1307 "XPOLY.spad" 2265390 2265401 2265691 2265760) (-1306 "XPOLYC.spad" 2264709 2264725 2265316 2265385) (-1305 "XPBWPOLY.spad" 2263146 2263166 2264489 2264558) (-1304 "XF.spad" 2261609 2261624 2263048 2263141) (-1303 "XF.spad" 2260052 2260069 2261493 2261498) (-1302 "XFALG.spad" 2257100 2257116 2259978 2260047) (-1301 "XEXPPKG.spad" 2256351 2256377 2257090 2257095) (-1300 "XDPOLY.spad" 2255965 2255981 2256207 2256276) (-1299 "XALG.spad" 2255625 2255636 2255921 2255960) (-1298 "WUTSET.spad" 2251464 2251481 2255271 2255298) (-1297 "WP.spad" 2250663 2250707 2251322 2251389) (-1296 "WHILEAST.spad" 2250461 2250470 2250653 2250658) (-1295 "WHEREAST.spad" 2250132 2250141 2250451 2250456) (-1294 "WFFINTBS.spad" 2247795 2247817 2250122 2250127) (-1293 "WEIER.spad" 2246017 2246028 2247785 2247790) (-1292 "VSPACE.spad" 2245690 2245701 2245985 2246012) (-1291 "VSPACE.spad" 2245383 2245396 2245680 2245685) (-1290 "VOID.spad" 2245060 2245069 2245373 2245378) (-1289 "VIEW.spad" 2242740 2242749 2245050 2245055) (-1288 "VIEWDEF.spad" 2237941 2237950 2242730 2242735) (-1287 "VIEW3D.spad" 2221902 2221911 2237931 2237936) (-1286 "VIEW2D.spad" 2209793 2209802 2221892 2221897) (-1285 "VECTOR.spad" 2208467 2208478 2208718 2208745) (-1284 "VECTOR2.spad" 2207106 2207119 2208457 2208462) (-1283 "VECTCAT.spad" 2205010 2205021 2207074 2207101) (-1282 "VECTCAT.spad" 2202721 2202734 2204787 2204792) (-1281 "VARIABLE.spad" 2202501 2202516 2202711 2202716) (-1280 "UTYPE.spad" 2202145 2202154 2202491 2202496) (-1279 "UTSODETL.spad" 2201440 2201464 2202101 2202106) (-1278 "UTSODE.spad" 2199656 2199676 2201430 2201435) (-1277 "UTS.spad" 2194460 2194488 2198123 2198220) (-1276 "UTSCAT.spad" 2191939 2191955 2194358 2194455) (-1275 "UTSCAT.spad" 2189062 2189080 2191483 2191488) (-1274 "UTS2.spad" 2188657 2188692 2189052 2189057) (-1273 "URAGG.spad" 2183330 2183341 2188647 2188652) (-1272 "URAGG.spad" 2177967 2177980 2183286 2183291) (-1271 "UPXSSING.spad" 2175612 2175638 2177048 2177181) (-1270 "UPXS.spad" 2172766 2172794 2173744 2173893) (-1269 "UPXSCONS.spad" 2170525 2170545 2170898 2171047) (-1268 "UPXSCCA.spad" 2169096 2169116 2170371 2170520) (-1267 "UPXSCCA.spad" 2167809 2167831 2169086 2169091) (-1266 "UPXSCAT.spad" 2166398 2166414 2167655 2167804) (-1265 "UPXS2.spad" 2165941 2165994 2166388 2166393) (-1264 "UPSQFREE.spad" 2164355 2164369 2165931 2165936) (-1263 "UPSCAT.spad" 2162142 2162166 2164253 2164350) (-1262 "UPSCAT.spad" 2159635 2159661 2161748 2161753) (-1261 "UPOLYC.spad" 2154675 2154686 2159477 2159630) (-1260 "UPOLYC.spad" 2149607 2149620 2154411 2154416) (-1259 "UPOLYC2.spad" 2149078 2149097 2149597 2149602) (-1258 "UP.spad" 2146184 2146199 2146571 2146724) (-1257 "UPMP.spad" 2145084 2145097 2146174 2146179) (-1256 "UPDIVP.spad" 2144649 2144663 2145074 2145079) (-1255 "UPDECOMP.spad" 2142894 2142908 2144639 2144644) (-1254 "UPCDEN.spad" 2142103 2142119 2142884 2142889) (-1253 "UP2.spad" 2141467 2141488 2142093 2142098) (-1252 "UNISEG.spad" 2140820 2140831 2141386 2141391) (-1251 "UNISEG2.spad" 2140317 2140330 2140776 2140781) (-1250 "UNIFACT.spad" 2139420 2139432 2140307 2140312) (-1249 "ULS.spad" 2129062 2129090 2130149 2130578) (-1248 "ULSCONS.spad" 2120196 2120216 2120566 2120715) (-1247 "ULSCCAT.spad" 2117933 2117953 2120042 2120191) (-1246 "ULSCCAT.spad" 2115778 2115800 2117889 2117894) (-1245 "ULSCAT.spad" 2114010 2114026 2115624 2115773) (-1244 "ULS2.spad" 2113524 2113577 2114000 2114005) (-1243 "UINT8.spad" 2113401 2113410 2113514 2113519) (-1242 "UINT64.spad" 2113277 2113286 2113391 2113396) (-1241 "UINT32.spad" 2113153 2113162 2113267 2113272) (-1240 "UINT16.spad" 2113029 2113038 2113143 2113148) (-1239 "UFD.spad" 2112094 2112103 2112955 2113024) (-1238 "UFD.spad" 2111221 2111232 2112084 2112089) (-1237 "UDVO.spad" 2110102 2110111 2111211 2111216) (-1236 "UDPO.spad" 2107595 2107606 2110058 2110063) (-1235 "TYPE.spad" 2107527 2107536 2107585 2107590) (-1234 "TYPEAST.spad" 2107446 2107455 2107517 2107522) (-1233 "TWOFACT.spad" 2106098 2106113 2107436 2107441) (-1232 "TUPLE.spad" 2105584 2105595 2105997 2106002) (-1231 "TUBETOOL.spad" 2102451 2102460 2105574 2105579) (-1230 "TUBE.spad" 2101098 2101115 2102441 2102446) (-1229 "TS.spad" 2099697 2099713 2100663 2100760) (-1228 "TSETCAT.spad" 2086824 2086841 2099665 2099692) (-1227 "TSETCAT.spad" 2073937 2073956 2086780 2086785) (-1226 "TRMANIP.spad" 2068303 2068320 2073643 2073648) (-1225 "TRIMAT.spad" 2067266 2067291 2068293 2068298) (-1224 "TRIGMNIP.spad" 2065793 2065810 2067256 2067261) (-1223 "TRIGCAT.spad" 2065305 2065314 2065783 2065788) (-1222 "TRIGCAT.spad" 2064815 2064826 2065295 2065300) (-1221 "TREE.spad" 2063390 2063401 2064422 2064449) (-1220 "TRANFUN.spad" 2063229 2063238 2063380 2063385) (-1219 "TRANFUN.spad" 2063066 2063077 2063219 2063224) (-1218 "TOPSP.spad" 2062740 2062749 2063056 2063061) (-1217 "TOOLSIGN.spad" 2062403 2062414 2062730 2062735) (-1216 "TEXTFILE.spad" 2060964 2060973 2062393 2062398) (-1215 "TEX.spad" 2058110 2058119 2060954 2060959) (-1214 "TEX1.spad" 2057666 2057677 2058100 2058105) (-1213 "TEMUTL.spad" 2057221 2057230 2057656 2057661) (-1212 "TBCMPPK.spad" 2055314 2055337 2057211 2057216) (-1211 "TBAGG.spad" 2054364 2054387 2055294 2055309) (-1210 "TBAGG.spad" 2053422 2053447 2054354 2054359) (-1209 "TANEXP.spad" 2052830 2052841 2053412 2053417) (-1208 "TALGOP.spad" 2052554 2052565 2052820 2052825) (-1207 "TABLE.spad" 2050965 2050988 2051235 2051262) (-1206 "TABLEAU.spad" 2050446 2050457 2050955 2050960) (-1205 "TABLBUMP.spad" 2047249 2047260 2050436 2050441) (-1204 "SYSTEM.spad" 2046477 2046486 2047239 2047244) (-1203 "SYSSOLP.spad" 2043960 2043971 2046467 2046472) (-1202 "SYSPTR.spad" 2043859 2043868 2043950 2043955) (-1201 "SYSNNI.spad" 2043041 2043052 2043849 2043854) (-1200 "SYSINT.spad" 2042445 2042456 2043031 2043036) (-1199 "SYNTAX.spad" 2038651 2038660 2042435 2042440) (-1198 "SYMTAB.spad" 2036719 2036728 2038641 2038646) (-1197 "SYMS.spad" 2032742 2032751 2036709 2036714) (-1196 "SYMPOLY.spad" 2031749 2031760 2031831 2031958) (-1195 "SYMFUNC.spad" 2031250 2031261 2031739 2031744) (-1194 "SYMBOL.spad" 2028753 2028762 2031240 2031245) (-1193 "SWITCH.spad" 2025524 2025533 2028743 2028748) (-1192 "SUTS.spad" 2022429 2022457 2023991 2024088) (-1191 "SUPXS.spad" 2019570 2019598 2020561 2020710) (-1190 "SUP.spad" 2016290 2016301 2017063 2017216) (-1189 "SUPFRACF.spad" 2015395 2015413 2016280 2016285) (-1188 "SUP2.spad" 2014787 2014800 2015385 2015390) (-1187 "SUMRF.spad" 2013761 2013772 2014777 2014782) (-1186 "SUMFS.spad" 2013398 2013415 2013751 2013756) (-1185 "SULS.spad" 2003027 2003055 2004127 2004556) (-1184 "SUCHTAST.spad" 2002796 2002805 2003017 2003022) (-1183 "SUCH.spad" 2002478 2002493 2002786 2002791) (-1182 "SUBSPACE.spad" 1994593 1994608 2002468 2002473) (-1181 "SUBRESP.spad" 1993763 1993777 1994549 1994554) (-1180 "STTF.spad" 1989862 1989878 1993753 1993758) (-1179 "STTFNC.spad" 1986330 1986346 1989852 1989857) (-1178 "STTAYLOR.spad" 1978965 1978976 1986211 1986216) (-1177 "STRTBL.spad" 1977470 1977487 1977619 1977646) (-1176 "STRING.spad" 1976879 1976888 1976893 1976920) (-1175 "STRICAT.spad" 1976667 1976676 1976847 1976874) (-1174 "STREAM.spad" 1973585 1973596 1976192 1976207) (-1173 "STREAM3.spad" 1973158 1973173 1973575 1973580) (-1172 "STREAM2.spad" 1972286 1972299 1973148 1973153) (-1171 "STREAM1.spad" 1971992 1972003 1972276 1972281) (-1170 "STINPROD.spad" 1970928 1970944 1971982 1971987) (-1169 "STEP.spad" 1970129 1970138 1970918 1970923) (-1168 "STEPAST.spad" 1969363 1969372 1970119 1970124) (-1167 "STBL.spad" 1967889 1967917 1968056 1968071) (-1166 "STAGG.spad" 1966964 1966975 1967879 1967884) (-1165 "STAGG.spad" 1966037 1966050 1966954 1966959) (-1164 "STACK.spad" 1965394 1965405 1965644 1965671) (-1163 "SREGSET.spad" 1963098 1963115 1965040 1965067) (-1162 "SRDCMPK.spad" 1961659 1961679 1963088 1963093) (-1161 "SRAGG.spad" 1956802 1956811 1961627 1961654) (-1160 "SRAGG.spad" 1951965 1951976 1956792 1956797) (-1159 "SQMATRIX.spad" 1949544 1949562 1950460 1950547) (-1158 "SPLTREE.spad" 1944096 1944109 1948980 1949007) (-1157 "SPLNODE.spad" 1940684 1940697 1944086 1944091) (-1156 "SPFCAT.spad" 1939493 1939502 1940674 1940679) (-1155 "SPECOUT.spad" 1938045 1938054 1939483 1939488) (-1154 "SPADXPT.spad" 1929640 1929649 1938035 1938040) (-1153 "spad-parser.spad" 1929105 1929114 1929630 1929635) (-1152 "SPADAST.spad" 1928806 1928815 1929095 1929100) (-1151 "SPACEC.spad" 1913005 1913016 1928796 1928801) (-1150 "SPACE3.spad" 1912781 1912792 1912995 1913000) (-1149 "SORTPAK.spad" 1912330 1912343 1912737 1912742) (-1148 "SOLVETRA.spad" 1910093 1910104 1912320 1912325) (-1147 "SOLVESER.spad" 1908621 1908632 1910083 1910088) (-1146 "SOLVERAD.spad" 1904647 1904658 1908611 1908616) (-1145 "SOLVEFOR.spad" 1903109 1903127 1904637 1904642) (-1144 "SNTSCAT.spad" 1902709 1902726 1903077 1903104) (-1143 "SMTS.spad" 1900981 1901007 1902274 1902371) (-1142 "SMP.spad" 1898456 1898476 1898846 1898973) (-1141 "SMITH.spad" 1897301 1897326 1898446 1898451) (-1140 "SMATCAT.spad" 1895411 1895441 1897245 1897296) (-1139 "SMATCAT.spad" 1893453 1893485 1895289 1895294) (-1138 "SKAGG.spad" 1892416 1892427 1893421 1893448) (-1137 "SINT.spad" 1891356 1891365 1892282 1892411) (-1136 "SIMPAN.spad" 1891084 1891093 1891346 1891351) (-1135 "SIG.spad" 1890414 1890423 1891074 1891079) (-1134 "SIGNRF.spad" 1889532 1889543 1890404 1890409) (-1133 "SIGNEF.spad" 1888811 1888828 1889522 1889527) (-1132 "SIGAST.spad" 1888196 1888205 1888801 1888806) (-1131 "SHP.spad" 1886124 1886139 1888152 1888157) (-1130 "SHDP.spad" 1874327 1874354 1874836 1874935) (-1129 "SGROUP.spad" 1873935 1873944 1874317 1874322) (-1128 "SGROUP.spad" 1873541 1873552 1873925 1873930) (-1127 "SGCF.spad" 1866680 1866689 1873531 1873536) (-1126 "SFRTCAT.spad" 1865610 1865627 1866648 1866675) (-1125 "SFRGCD.spad" 1864673 1864693 1865600 1865605) (-1124 "SFQCMPK.spad" 1859310 1859330 1864663 1864668) (-1123 "SFORT.spad" 1858749 1858763 1859300 1859305) (-1122 "SEXOF.spad" 1858592 1858632 1858739 1858744) (-1121 "SEX.spad" 1858484 1858493 1858582 1858587) (-1120 "SEXCAT.spad" 1856265 1856305 1858474 1858479) (-1119 "SET.spad" 1854589 1854600 1855686 1855725) (-1118 "SETMN.spad" 1853039 1853056 1854579 1854584) (-1117 "SETCAT.spad" 1852361 1852370 1853029 1853034) (-1116 "SETCAT.spad" 1851681 1851692 1852351 1852356) (-1115 "SETAGG.spad" 1848230 1848241 1851661 1851676) (-1114 "SETAGG.spad" 1844787 1844800 1848220 1848225) (-1113 "SEQAST.spad" 1844490 1844499 1844777 1844782) (-1112 "SEGXCAT.spad" 1843646 1843659 1844480 1844485) (-1111 "SEG.spad" 1843459 1843470 1843565 1843570) (-1110 "SEGCAT.spad" 1842384 1842395 1843449 1843454) (-1109 "SEGBIND.spad" 1842142 1842153 1842331 1842336) (-1108 "SEGBIND2.spad" 1841840 1841853 1842132 1842137) (-1107 "SEGAST.spad" 1841554 1841563 1841830 1841835) (-1106 "SEG2.spad" 1840989 1841002 1841510 1841515) (-1105 "SDVAR.spad" 1840265 1840276 1840979 1840984) (-1104 "SDPOL.spad" 1837598 1837609 1837889 1838016) (-1103 "SCPKG.spad" 1835687 1835698 1837588 1837593) (-1102 "SCOPE.spad" 1834840 1834849 1835677 1835682) (-1101 "SCACHE.spad" 1833536 1833547 1834830 1834835) (-1100 "SASTCAT.spad" 1833445 1833454 1833526 1833531) (-1099 "SAOS.spad" 1833317 1833326 1833435 1833440) (-1098 "SAERFFC.spad" 1833030 1833050 1833307 1833312) (-1097 "SAE.spad" 1830500 1830516 1831111 1831246) (-1096 "SAEFACT.spad" 1830201 1830221 1830490 1830495) (-1095 "RURPK.spad" 1827860 1827876 1830191 1830196) (-1094 "RULESET.spad" 1827313 1827337 1827850 1827855) (-1093 "RULE.spad" 1825553 1825577 1827303 1827308) (-1092 "RULECOLD.spad" 1825405 1825418 1825543 1825548) (-1091 "RTVALUE.spad" 1825140 1825149 1825395 1825400) (-1090 "RSTRCAST.spad" 1824857 1824866 1825130 1825135) (-1089 "RSETGCD.spad" 1821235 1821255 1824847 1824852) (-1088 "RSETCAT.spad" 1811171 1811188 1821203 1821230) (-1087 "RSETCAT.spad" 1801127 1801146 1811161 1811166) (-1086 "RSDCMPK.spad" 1799579 1799599 1801117 1801122) (-1085 "RRCC.spad" 1797963 1797993 1799569 1799574) (-1084 "RRCC.spad" 1796345 1796377 1797953 1797958) (-1083 "RPTAST.spad" 1796047 1796056 1796335 1796340) (-1082 "RPOLCAT.spad" 1775407 1775422 1795915 1796042) (-1081 "RPOLCAT.spad" 1754480 1754497 1774990 1774995) (-1080 "ROUTINE.spad" 1750363 1750372 1753127 1753154) (-1079 "ROMAN.spad" 1749691 1749700 1750229 1750358) (-1078 "ROIRC.spad" 1748771 1748803 1749681 1749686) (-1077 "RNS.spad" 1747674 1747683 1748673 1748766) (-1076 "RNS.spad" 1746663 1746674 1747664 1747669) (-1075 "RNG.spad" 1746398 1746407 1746653 1746658) (-1074 "RNGBIND.spad" 1745558 1745572 1746353 1746358) (-1073 "RMODULE.spad" 1745323 1745334 1745548 1745553) (-1072 "RMCAT2.spad" 1744743 1744800 1745313 1745318) (-1071 "RMATRIX.spad" 1743567 1743586 1743910 1743949) (-1070 "RMATCAT.spad" 1739146 1739177 1743523 1743562) (-1069 "RMATCAT.spad" 1734615 1734648 1738994 1738999) (-1068 "RLINSET.spad" 1734170 1734181 1734605 1734610) (-1067 "RINTERP.spad" 1734058 1734078 1734160 1734165) (-1066 "RING.spad" 1733528 1733537 1734038 1734053) (-1065 "RING.spad" 1733006 1733017 1733518 1733523) (-1064 "RIDIST.spad" 1732398 1732407 1732996 1733001) (-1063 "RGCHAIN.spad" 1730981 1730997 1731883 1731910) (-1062 "RGBCSPC.spad" 1730762 1730774 1730971 1730976) (-1061 "RGBCMDL.spad" 1730292 1730304 1730752 1730757) (-1060 "RF.spad" 1727934 1727945 1730282 1730287) (-1059 "RFFACTOR.spad" 1727396 1727407 1727924 1727929) (-1058 "RFFACT.spad" 1727131 1727143 1727386 1727391) (-1057 "RFDIST.spad" 1726127 1726136 1727121 1727126) (-1056 "RETSOL.spad" 1725546 1725559 1726117 1726122) (-1055 "RETRACT.spad" 1724974 1724985 1725536 1725541) (-1054 "RETRACT.spad" 1724400 1724413 1724964 1724969) (-1053 "RETAST.spad" 1724212 1724221 1724390 1724395) (-1052 "RESULT.spad" 1722272 1722281 1722859 1722886) (-1051 "RESRING.spad" 1721619 1721666 1722210 1722267) (-1050 "RESLATC.spad" 1720943 1720954 1721609 1721614) (-1049 "REPSQ.spad" 1720674 1720685 1720933 1720938) (-1048 "REP.spad" 1718228 1718237 1720664 1720669) (-1047 "REPDB.spad" 1717935 1717946 1718218 1718223) (-1046 "REP2.spad" 1707593 1707604 1717777 1717782) (-1045 "REP1.spad" 1701789 1701800 1707543 1707548) (-1044 "REGSET.spad" 1699586 1699603 1701435 1701462) (-1043 "REF.spad" 1698921 1698932 1699541 1699546) (-1042 "REDORDER.spad" 1698127 1698144 1698911 1698916) (-1041 "RECLOS.spad" 1696910 1696930 1697614 1697707) (-1040 "REALSOLV.spad" 1696050 1696059 1696900 1696905) (-1039 "REAL.spad" 1695922 1695931 1696040 1696045) (-1038 "REAL0Q.spad" 1693220 1693235 1695912 1695917) (-1037 "REAL0.spad" 1690064 1690079 1693210 1693215) (-1036 "RDUCEAST.spad" 1689785 1689794 1690054 1690059) (-1035 "RDIV.spad" 1689440 1689465 1689775 1689780) (-1034 "RDIST.spad" 1689007 1689018 1689430 1689435) (-1033 "RDETRS.spad" 1687871 1687889 1688997 1689002) (-1032 "RDETR.spad" 1686010 1686028 1687861 1687866) (-1031 "RDEEFS.spad" 1685109 1685126 1686000 1686005) (-1030 "RDEEF.spad" 1684119 1684136 1685099 1685104) (-1029 "RCFIELD.spad" 1681305 1681314 1684021 1684114) (-1028 "RCFIELD.spad" 1678577 1678588 1681295 1681300) (-1027 "RCAGG.spad" 1676505 1676516 1678567 1678572) (-1026 "RCAGG.spad" 1674360 1674373 1676424 1676429) (-1025 "RATRET.spad" 1673720 1673731 1674350 1674355) (-1024 "RATFACT.spad" 1673412 1673424 1673710 1673715) (-1023 "RANDSRC.spad" 1672731 1672740 1673402 1673407) (-1022 "RADUTIL.spad" 1672487 1672496 1672721 1672726) (-1021 "RADIX.spad" 1669311 1669325 1670857 1670950) (-1020 "RADFF.spad" 1667050 1667087 1667169 1667325) (-1019 "RADCAT.spad" 1666645 1666654 1667040 1667045) (-1018 "RADCAT.spad" 1666238 1666249 1666635 1666640) (-1017 "QUEUE.spad" 1665586 1665597 1665845 1665872) (-1016 "QUAT.spad" 1664074 1664085 1664417 1664482) (-1015 "QUATCT2.spad" 1663694 1663713 1664064 1664069) (-1014 "QUATCAT.spad" 1661864 1661875 1663624 1663689) (-1013 "QUATCAT.spad" 1659785 1659798 1661547 1661552) (-1012 "QUAGG.spad" 1658612 1658623 1659753 1659780) (-1011 "QQUTAST.spad" 1658380 1658389 1658602 1658607) (-1010 "QFORM.spad" 1657998 1658013 1658370 1658375) (-1009 "QFCAT.spad" 1656700 1656711 1657900 1657993) (-1008 "QFCAT.spad" 1654993 1655006 1656195 1656200) (-1007 "QFCAT2.spad" 1654685 1654702 1654983 1654988) (-1006 "QEQUAT.spad" 1654243 1654252 1654675 1654680) (-1005 "QCMPACK.spad" 1648989 1649009 1654233 1654238) (-1004 "QALGSET.spad" 1645067 1645100 1648903 1648908) (-1003 "QALGSET2.spad" 1643062 1643081 1645057 1645062) (-1002 "PWFFINTB.spad" 1640477 1640499 1643052 1643057) (-1001 "PUSHVAR.spad" 1639815 1639835 1640467 1640472) (-1000 "PTRANFN.spad" 1635942 1635953 1639805 1639810) (-999 "PTPACK.spad" 1633030 1633040 1635932 1635937) (-998 "PTFUNC2.spad" 1632853 1632867 1633020 1633025) (-997 "PTCAT.spad" 1632108 1632118 1632821 1632848) (-996 "PSQFR.spad" 1631415 1631439 1632098 1632103) (-995 "PSEUDLIN.spad" 1630301 1630311 1631405 1631410) (-994 "PSETPK.spad" 1615734 1615750 1630179 1630184) (-993 "PSETCAT.spad" 1609654 1609677 1615714 1615729) (-992 "PSETCAT.spad" 1603548 1603573 1609610 1609615) (-991 "PSCURVE.spad" 1602531 1602539 1603538 1603543) (-990 "PSCAT.spad" 1601314 1601343 1602429 1602526) (-989 "PSCAT.spad" 1600187 1600218 1601304 1601309) (-988 "PRTITION.spad" 1598885 1598893 1600177 1600182) (-987 "PRTDAST.spad" 1598604 1598612 1598875 1598880) (-986 "PRS.spad" 1588166 1588183 1598560 1598565) (-985 "PRQAGG.spad" 1587601 1587611 1588134 1588161) (-984 "PROPLOG.spad" 1587173 1587181 1587591 1587596) (-983 "PROPFUN2.spad" 1586796 1586809 1587163 1587168) (-982 "PROPFUN1.spad" 1586194 1586205 1586786 1586791) (-981 "PROPFRML.spad" 1584762 1584773 1586184 1586189) (-980 "PROPERTY.spad" 1584250 1584258 1584752 1584757) (-979 "PRODUCT.spad" 1581932 1581944 1582216 1582271) (-978 "PR.spad" 1580324 1580336 1581023 1581150) (-977 "PRINT.spad" 1580076 1580084 1580314 1580319) (-976 "PRIMES.spad" 1578329 1578339 1580066 1580071) (-975 "PRIMELT.spad" 1576410 1576424 1578319 1578324) (-974 "PRIMCAT.spad" 1576037 1576045 1576400 1576405) (-973 "PRIMARR.spad" 1575042 1575052 1575220 1575247) (-972 "PRIMARR2.spad" 1573809 1573821 1575032 1575037) (-971 "PREASSOC.spad" 1573191 1573203 1573799 1573804) (-970 "PPCURVE.spad" 1572328 1572336 1573181 1573186) (-969 "PORTNUM.spad" 1572103 1572111 1572318 1572323) (-968 "POLYROOT.spad" 1570952 1570974 1572059 1572064) (-967 "POLY.spad" 1568287 1568297 1568802 1568929) (-966 "POLYLIFT.spad" 1567552 1567575 1568277 1568282) (-965 "POLYCATQ.spad" 1565670 1565692 1567542 1567547) (-964 "POLYCAT.spad" 1559140 1559161 1565538 1565665) (-963 "POLYCAT.spad" 1551948 1551971 1558348 1558353) (-962 "POLY2UP.spad" 1551400 1551414 1551938 1551943) (-961 "POLY2.spad" 1550997 1551009 1551390 1551395) (-960 "POLUTIL.spad" 1549938 1549967 1550953 1550958) (-959 "POLTOPOL.spad" 1548686 1548701 1549928 1549933) (-958 "POINT.spad" 1547524 1547534 1547611 1547638) (-957 "PNTHEORY.spad" 1544226 1544234 1547514 1547519) (-956 "PMTOOLS.spad" 1543001 1543015 1544216 1544221) (-955 "PMSYM.spad" 1542550 1542560 1542991 1542996) (-954 "PMQFCAT.spad" 1542141 1542155 1542540 1542545) (-953 "PMPRED.spad" 1541620 1541634 1542131 1542136) (-952 "PMPREDFS.spad" 1541074 1541096 1541610 1541615) (-951 "PMPLCAT.spad" 1540154 1540172 1541006 1541011) (-950 "PMLSAGG.spad" 1539739 1539753 1540144 1540149) (-949 "PMKERNEL.spad" 1539318 1539330 1539729 1539734) (-948 "PMINS.spad" 1538898 1538908 1539308 1539313) (-947 "PMFS.spad" 1538475 1538493 1538888 1538893) (-946 "PMDOWN.spad" 1537765 1537779 1538465 1538470) (-945 "PMASS.spad" 1536775 1536783 1537755 1537760) (-944 "PMASSFS.spad" 1535742 1535758 1536765 1536770) (-943 "PLOTTOOL.spad" 1535522 1535530 1535732 1535737) (-942 "PLOT.spad" 1530445 1530453 1535512 1535517) (-941 "PLOT3D.spad" 1526909 1526917 1530435 1530440) (-940 "PLOT1.spad" 1526066 1526076 1526899 1526904) (-939 "PLEQN.spad" 1513356 1513383 1526056 1526061) (-938 "PINTERP.spad" 1512978 1512997 1513346 1513351) (-937 "PINTERPA.spad" 1512762 1512778 1512968 1512973) (-936 "PI.spad" 1512371 1512379 1512736 1512757) (-935 "PID.spad" 1511341 1511349 1512297 1512366) (-934 "PICOERCE.spad" 1510998 1511008 1511331 1511336) (-933 "PGROEB.spad" 1509599 1509613 1510988 1510993) (-932 "PGE.spad" 1501216 1501224 1509589 1509594) (-931 "PGCD.spad" 1500106 1500123 1501206 1501211) (-930 "PFRPAC.spad" 1499255 1499265 1500096 1500101) (-929 "PFR.spad" 1495918 1495928 1499157 1499250) (-928 "PFOTOOLS.spad" 1495176 1495192 1495908 1495913) (-927 "PFOQ.spad" 1494546 1494564 1495166 1495171) (-926 "PFO.spad" 1493965 1493992 1494536 1494541) (-925 "PF.spad" 1493539 1493551 1493770 1493863) (-924 "PFECAT.spad" 1491221 1491229 1493465 1493534) (-923 "PFECAT.spad" 1488931 1488941 1491177 1491182) (-922 "PFBRU.spad" 1486819 1486831 1488921 1488926) (-921 "PFBR.spad" 1484379 1484402 1486809 1486814) (-920 "PERM.spad" 1480186 1480196 1484209 1484224) (-919 "PERMGRP.spad" 1474956 1474966 1480176 1480181) (-918 "PERMCAT.spad" 1473617 1473627 1474936 1474951) (-917 "PERMAN.spad" 1472149 1472163 1473607 1473612) (-916 "PENDTREE.spad" 1471490 1471500 1471778 1471783) (-915 "PDSPC.spad" 1470303 1470313 1471480 1471485) (-914 "PDSPC.spad" 1469114 1469126 1470293 1470298) (-913 "PDRING.spad" 1468956 1468966 1469094 1469109) (-912 "PDEPROB.spad" 1467971 1467979 1468946 1468951) (-911 "PDEPACK.spad" 1462011 1462019 1467961 1467966) (-910 "PDECOMP.spad" 1461481 1461498 1462001 1462006) (-909 "PDECAT.spad" 1459837 1459845 1461471 1461476) (-908 "PDDOM.spad" 1459275 1459288 1459827 1459832) (-907 "PDDOM.spad" 1458711 1458726 1459265 1459270) (-906 "PCOMP.spad" 1458564 1458577 1458701 1458706) (-905 "PBWLB.spad" 1457152 1457169 1458554 1458559) (-904 "PATTERN.spad" 1451691 1451701 1457142 1457147) (-903 "PATTERN2.spad" 1451429 1451441 1451681 1451686) (-902 "PATTERN1.spad" 1449765 1449781 1451419 1451424) (-901 "PATRES.spad" 1447340 1447352 1449755 1449760) (-900 "PATRES2.spad" 1447012 1447026 1447330 1447335) (-899 "PATMATCH.spad" 1445209 1445240 1446720 1446725) (-898 "PATMAB.spad" 1444638 1444648 1445199 1445204) (-897 "PATLRES.spad" 1443724 1443738 1444628 1444633) (-896 "PATAB.spad" 1443488 1443498 1443714 1443719) (-895 "PARTPERM.spad" 1441496 1441504 1443478 1443483) (-894 "PARSURF.spad" 1440930 1440958 1441486 1441491) (-893 "PARSU2.spad" 1440727 1440743 1440920 1440925) (-892 "script-parser.spad" 1440247 1440255 1440717 1440722) (-891 "PARSCURV.spad" 1439681 1439709 1440237 1440242) (-890 "PARSC2.spad" 1439472 1439488 1439671 1439676) (-889 "PARPCURV.spad" 1438934 1438962 1439462 1439467) (-888 "PARPC2.spad" 1438725 1438741 1438924 1438929) (-887 "PARAMAST.spad" 1437853 1437861 1438715 1438720) (-886 "PAN2EXPR.spad" 1437265 1437273 1437843 1437848) (-885 "PALETTE.spad" 1436235 1436243 1437255 1437260) (-884 "PAIR.spad" 1435222 1435235 1435823 1435828) (-883 "PADICRC.spad" 1432463 1432481 1433634 1433727) (-882 "PADICRAT.spad" 1430371 1430383 1430592 1430685) (-881 "PADIC.spad" 1430066 1430078 1430297 1430366) (-880 "PADICCT.spad" 1428615 1428627 1429992 1430061) (-879 "PADEPAC.spad" 1427304 1427323 1428605 1428610) (-878 "PADE.spad" 1426056 1426072 1427294 1427299) (-877 "OWP.spad" 1425296 1425326 1425914 1425981) (-876 "OVERSET.spad" 1424869 1424877 1425286 1425291) (-875 "OVAR.spad" 1424650 1424673 1424859 1424864) (-874 "OUT.spad" 1423736 1423744 1424640 1424645) (-873 "OUTFORM.spad" 1413128 1413136 1423726 1423731) (-872 "OUTBFILE.spad" 1412546 1412554 1413118 1413123) (-871 "OUTBCON.spad" 1411552 1411560 1412536 1412541) (-870 "OUTBCON.spad" 1410556 1410566 1411542 1411547) (-869 "OSI.spad" 1410031 1410039 1410546 1410551) (-868 "OSGROUP.spad" 1409949 1409957 1410021 1410026) (-867 "ORTHPOL.spad" 1408434 1408444 1409866 1409871) (-866 "OREUP.spad" 1407887 1407915 1408114 1408153) (-865 "ORESUP.spad" 1407188 1407212 1407567 1407606) (-864 "OREPCTO.spad" 1405045 1405057 1407108 1407113) (-863 "OREPCAT.spad" 1399192 1399202 1405001 1405040) (-862 "OREPCAT.spad" 1393229 1393241 1399040 1399045) (-861 "ORDSET.spad" 1392401 1392409 1393219 1393224) (-860 "ORDSET.spad" 1391571 1391581 1392391 1392396) (-859 "ORDRING.spad" 1390961 1390969 1391551 1391566) (-858 "ORDRING.spad" 1390359 1390369 1390951 1390956) (-857 "ORDMON.spad" 1390214 1390222 1390349 1390354) (-856 "ORDFUNS.spad" 1389346 1389362 1390204 1390209) (-855 "ORDFIN.spad" 1389166 1389174 1389336 1389341) (-854 "ORDCOMP.spad" 1387631 1387641 1388713 1388742) (-853 "ORDCOMP2.spad" 1386924 1386936 1387621 1387626) (-852 "OPTPROB.spad" 1385562 1385570 1386914 1386919) (-851 "OPTPACK.spad" 1377971 1377979 1385552 1385557) (-850 "OPTCAT.spad" 1375650 1375658 1377961 1377966) (-849 "OPSIG.spad" 1375304 1375312 1375640 1375645) (-848 "OPQUERY.spad" 1374853 1374861 1375294 1375299) (-847 "OP.spad" 1374595 1374605 1374675 1374742) (-846 "OPERCAT.spad" 1374061 1374071 1374585 1374590) (-845 "OPERCAT.spad" 1373525 1373537 1374051 1374056) (-844 "ONECOMP.spad" 1372270 1372280 1373072 1373101) (-843 "ONECOMP2.spad" 1371694 1371706 1372260 1372265) (-842 "OMSERVER.spad" 1370700 1370708 1371684 1371689) (-841 "OMSAGG.spad" 1370488 1370498 1370656 1370695) (-840 "OMPKG.spad" 1369104 1369112 1370478 1370483) (-839 "OM.spad" 1368077 1368085 1369094 1369099) (-838 "OMLO.spad" 1367502 1367514 1367963 1368002) (-837 "OMEXPR.spad" 1367336 1367346 1367492 1367497) (-836 "OMERR.spad" 1366881 1366889 1367326 1367331) (-835 "OMERRK.spad" 1365915 1365923 1366871 1366876) (-834 "OMENC.spad" 1365259 1365267 1365905 1365910) (-833 "OMDEV.spad" 1359568 1359576 1365249 1365254) (-832 "OMCONN.spad" 1358977 1358985 1359558 1359563) (-831 "OINTDOM.spad" 1358740 1358748 1358903 1358972) (-830 "OFMONOID.spad" 1356863 1356873 1358696 1358701) (-829 "ODVAR.spad" 1356124 1356134 1356853 1356858) (-828 "ODR.spad" 1355768 1355794 1355936 1356085) (-827 "ODPOL.spad" 1353057 1353067 1353397 1353524) (-826 "ODP.spad" 1341396 1341416 1341769 1341868) (-825 "ODETOOLS.spad" 1340045 1340064 1341386 1341391) (-824 "ODESYS.spad" 1337739 1337756 1340035 1340040) (-823 "ODERTRIC.spad" 1333748 1333765 1337696 1337701) (-822 "ODERED.spad" 1333147 1333171 1333738 1333743) (-821 "ODERAT.spad" 1330762 1330779 1333137 1333142) (-820 "ODEPRRIC.spad" 1327799 1327821 1330752 1330757) (-819 "ODEPROB.spad" 1327056 1327064 1327789 1327794) (-818 "ODEPRIM.spad" 1324390 1324412 1327046 1327051) (-817 "ODEPAL.spad" 1323776 1323800 1324380 1324385) (-816 "ODEPACK.spad" 1310442 1310450 1323766 1323771) (-815 "ODEINT.spad" 1309877 1309893 1310432 1310437) (-814 "ODEIFTBL.spad" 1307272 1307280 1309867 1309872) (-813 "ODEEF.spad" 1302763 1302779 1307262 1307267) (-812 "ODECONST.spad" 1302300 1302318 1302753 1302758) (-811 "ODECAT.spad" 1300898 1300906 1302290 1302295) (-810 "OCT.spad" 1299034 1299044 1299748 1299787) (-809 "OCTCT2.spad" 1298680 1298701 1299024 1299029) (-808 "OC.spad" 1296476 1296486 1298636 1298675) (-807 "OC.spad" 1293997 1294009 1296159 1296164) (-806 "OCAMON.spad" 1293845 1293853 1293987 1293992) (-805 "OASGP.spad" 1293660 1293668 1293835 1293840) (-804 "OAMONS.spad" 1293182 1293190 1293650 1293655) (-803 "OAMON.spad" 1293043 1293051 1293172 1293177) (-802 "OAGROUP.spad" 1292905 1292913 1293033 1293038) (-801 "NUMTUBE.spad" 1292496 1292512 1292895 1292900) (-800 "NUMQUAD.spad" 1280472 1280480 1292486 1292491) (-799 "NUMODE.spad" 1271826 1271834 1280462 1280467) (-798 "NUMINT.spad" 1269392 1269400 1271816 1271821) (-797 "NUMFMT.spad" 1268232 1268240 1269382 1269387) (-796 "NUMERIC.spad" 1260346 1260356 1268037 1268042) (-795 "NTSCAT.spad" 1258854 1258870 1260314 1260341) (-794 "NTPOLFN.spad" 1258405 1258415 1258771 1258776) (-793 "NSUP.spad" 1251358 1251368 1255898 1256051) (-792 "NSUP2.spad" 1250750 1250762 1251348 1251353) (-791 "NSMP.spad" 1246980 1246999 1247288 1247415) (-790 "NREP.spad" 1245358 1245372 1246970 1246975) (-789 "NPCOEF.spad" 1244604 1244624 1245348 1245353) (-788 "NORMRETR.spad" 1244202 1244241 1244594 1244599) (-787 "NORMPK.spad" 1242104 1242123 1244192 1244197) (-786 "NORMMA.spad" 1241792 1241818 1242094 1242099) (-785 "NONE.spad" 1241533 1241541 1241782 1241787) (-784 "NONE1.spad" 1241209 1241219 1241523 1241528) (-783 "NODE1.spad" 1240696 1240712 1241199 1241204) (-782 "NNI.spad" 1239591 1239599 1240670 1240691) (-781 "NLINSOL.spad" 1238217 1238227 1239581 1239586) (-780 "NIPROB.spad" 1236758 1236766 1238207 1238212) (-779 "NFINTBAS.spad" 1234318 1234335 1236748 1236753) (-778 "NETCLT.spad" 1234292 1234303 1234308 1234313) (-777 "NCODIV.spad" 1232508 1232524 1234282 1234287) (-776 "NCNTFRAC.spad" 1232150 1232164 1232498 1232503) (-775 "NCEP.spad" 1230316 1230330 1232140 1232145) (-774 "NASRING.spad" 1229912 1229920 1230306 1230311) (-773 "NASRING.spad" 1229506 1229516 1229902 1229907) (-772 "NARNG.spad" 1228858 1228866 1229496 1229501) (-771 "NARNG.spad" 1228208 1228218 1228848 1228853) (-770 "NAGSP.spad" 1227285 1227293 1228198 1228203) (-769 "NAGS.spad" 1216946 1216954 1227275 1227280) (-768 "NAGF07.spad" 1215377 1215385 1216936 1216941) (-767 "NAGF04.spad" 1209779 1209787 1215367 1215372) (-766 "NAGF02.spad" 1203848 1203856 1209769 1209774) (-765 "NAGF01.spad" 1199609 1199617 1203838 1203843) (-764 "NAGE04.spad" 1193309 1193317 1199599 1199604) (-763 "NAGE02.spad" 1183969 1183977 1193299 1193304) (-762 "NAGE01.spad" 1179971 1179979 1183959 1183964) (-761 "NAGD03.spad" 1177975 1177983 1179961 1179966) (-760 "NAGD02.spad" 1170722 1170730 1177965 1177970) (-759 "NAGD01.spad" 1165015 1165023 1170712 1170717) (-758 "NAGC06.spad" 1160890 1160898 1165005 1165010) (-757 "NAGC05.spad" 1159391 1159399 1160880 1160885) (-756 "NAGC02.spad" 1158658 1158666 1159381 1159386) (-755 "NAALG.spad" 1158199 1158209 1158626 1158653) (-754 "NAALG.spad" 1157760 1157772 1158189 1158194) (-753 "MULTSQFR.spad" 1154718 1154735 1157750 1157755) (-752 "MULTFACT.spad" 1154101 1154118 1154708 1154713) (-751 "MTSCAT.spad" 1152195 1152216 1153999 1154096) (-750 "MTHING.spad" 1151854 1151864 1152185 1152190) (-749 "MSYSCMD.spad" 1151288 1151296 1151844 1151849) (-748 "MSET.spad" 1149246 1149256 1150994 1151033) (-747 "MSETAGG.spad" 1149091 1149101 1149214 1149241) (-746 "MRING.spad" 1146068 1146080 1148799 1148866) (-745 "MRF2.spad" 1145638 1145652 1146058 1146063) (-744 "MRATFAC.spad" 1145184 1145201 1145628 1145633) (-743 "MPRFF.spad" 1143224 1143243 1145174 1145179) (-742 "MPOLY.spad" 1140695 1140710 1141054 1141181) (-741 "MPCPF.spad" 1139959 1139978 1140685 1140690) (-740 "MPC3.spad" 1139776 1139816 1139949 1139954) (-739 "MPC2.spad" 1139422 1139455 1139766 1139771) (-738 "MONOTOOL.spad" 1137773 1137790 1139412 1139417) (-737 "MONOID.spad" 1137092 1137100 1137763 1137768) (-736 "MONOID.spad" 1136409 1136419 1137082 1137087) (-735 "MONOGEN.spad" 1135157 1135170 1136269 1136404) (-734 "MONOGEN.spad" 1133927 1133942 1135041 1135046) (-733 "MONADWU.spad" 1131957 1131965 1133917 1133922) (-732 "MONADWU.spad" 1129985 1129995 1131947 1131952) (-731 "MONAD.spad" 1129145 1129153 1129975 1129980) (-730 "MONAD.spad" 1128303 1128313 1129135 1129140) (-729 "MOEBIUS.spad" 1127039 1127053 1128283 1128298) (-728 "MODULE.spad" 1126909 1126919 1127007 1127034) (-727 "MODULE.spad" 1126799 1126811 1126899 1126904) (-726 "MODRING.spad" 1126134 1126173 1126779 1126794) (-725 "MODOP.spad" 1124799 1124811 1125956 1126023) (-724 "MODMONOM.spad" 1124530 1124548 1124789 1124794) (-723 "MODMON.spad" 1121232 1121248 1121951 1122104) (-722 "MODFIELD.spad" 1120594 1120633 1121134 1121227) (-721 "MMLFORM.spad" 1119454 1119462 1120584 1120589) (-720 "MMAP.spad" 1119196 1119230 1119444 1119449) (-719 "MLO.spad" 1117655 1117665 1119152 1119191) (-718 "MLIFT.spad" 1116267 1116284 1117645 1117650) (-717 "MKUCFUNC.spad" 1115802 1115820 1116257 1116262) (-716 "MKRECORD.spad" 1115406 1115419 1115792 1115797) (-715 "MKFUNC.spad" 1114813 1114823 1115396 1115401) (-714 "MKFLCFN.spad" 1113781 1113791 1114803 1114808) (-713 "MKBCFUNC.spad" 1113276 1113294 1113771 1113776) (-712 "MINT.spad" 1112715 1112723 1113178 1113271) (-711 "MHROWRED.spad" 1111226 1111236 1112705 1112710) (-710 "MFLOAT.spad" 1109746 1109754 1111116 1111221) (-709 "MFINFACT.spad" 1109146 1109168 1109736 1109741) (-708 "MESH.spad" 1106928 1106936 1109136 1109141) (-707 "MDDFACT.spad" 1105139 1105149 1106918 1106923) (-706 "MDAGG.spad" 1104430 1104440 1105119 1105134) (-705 "MCMPLX.spad" 1099861 1099869 1100475 1100676) (-704 "MCDEN.spad" 1099071 1099083 1099851 1099856) (-703 "MCALCFN.spad" 1096193 1096219 1099061 1099066) (-702 "MAYBE.spad" 1095477 1095488 1096183 1096188) (-701 "MATSTOR.spad" 1092785 1092795 1095467 1095472) (-700 "MATRIX.spad" 1091489 1091499 1091973 1092000) (-699 "MATLIN.spad" 1088833 1088857 1091373 1091378) (-698 "MATCAT.spad" 1080562 1080584 1088801 1088828) (-697 "MATCAT.spad" 1072163 1072187 1080404 1080409) (-696 "MATCAT2.spad" 1071445 1071493 1072153 1072158) (-695 "MAPPKG3.spad" 1070360 1070374 1071435 1071440) (-694 "MAPPKG2.spad" 1069698 1069710 1070350 1070355) (-693 "MAPPKG1.spad" 1068526 1068536 1069688 1069693) (-692 "MAPPAST.spad" 1067841 1067849 1068516 1068521) (-691 "MAPHACK3.spad" 1067653 1067667 1067831 1067836) (-690 "MAPHACK2.spad" 1067422 1067434 1067643 1067648) (-689 "MAPHACK1.spad" 1067066 1067076 1067412 1067417) (-688 "MAGMA.spad" 1064856 1064873 1067056 1067061) (-687 "MACROAST.spad" 1064435 1064443 1064846 1064851) (-686 "M3D.spad" 1062155 1062165 1063813 1063818) (-685 "LZSTAGG.spad" 1059393 1059403 1062145 1062150) (-684 "LZSTAGG.spad" 1056629 1056641 1059383 1059388) (-683 "LWORD.spad" 1053334 1053351 1056619 1056624) (-682 "LSTAST.spad" 1053118 1053126 1053324 1053329) (-681 "LSQM.spad" 1051311 1051325 1051705 1051756) (-680 "LSPP.spad" 1050846 1050863 1051301 1051306) (-679 "LSMP.spad" 1049696 1049724 1050836 1050841) (-678 "LSMP1.spad" 1047514 1047528 1049686 1049691) (-677 "LSAGG.spad" 1047183 1047193 1047482 1047509) (-676 "LSAGG.spad" 1046872 1046884 1047173 1047178) (-675 "LPOLY.spad" 1045826 1045845 1046728 1046797) (-674 "LPEFRAC.spad" 1045097 1045107 1045816 1045821) (-673 "LO.spad" 1044498 1044512 1045031 1045058) (-672 "LOGIC.spad" 1044100 1044108 1044488 1044493) (-671 "LOGIC.spad" 1043700 1043710 1044090 1044095) (-670 "LODOOPS.spad" 1042630 1042642 1043690 1043695) (-669 "LODO.spad" 1042014 1042030 1042310 1042349) (-668 "LODOF.spad" 1041060 1041077 1041971 1041976) (-667 "LODOCAT.spad" 1039726 1039736 1041016 1041055) (-666 "LODOCAT.spad" 1038390 1038402 1039682 1039687) (-665 "LODO2.spad" 1037663 1037675 1038070 1038109) (-664 "LODO1.spad" 1037063 1037073 1037343 1037382) (-663 "LODEEF.spad" 1035865 1035883 1037053 1037058) (-662 "LNAGG.spad" 1032012 1032022 1035855 1035860) (-661 "LNAGG.spad" 1028123 1028135 1031968 1031973) (-660 "LMOPS.spad" 1024891 1024908 1028113 1028118) (-659 "LMODULE.spad" 1024659 1024669 1024881 1024886) (-658 "LMDICT.spad" 1023946 1023956 1024210 1024237) (-657 "LLINSET.spad" 1023504 1023514 1023936 1023941) (-656 "LITERAL.spad" 1023410 1023421 1023494 1023499) (-655 "LIST.spad" 1021145 1021155 1022557 1022584) (-654 "LIST3.spad" 1020456 1020470 1021135 1021140) (-653 "LIST2.spad" 1019158 1019170 1020446 1020451) (-652 "LIST2MAP.spad" 1016061 1016073 1019148 1019153) (-651 "LINSET.spad" 1015840 1015850 1016051 1016056) (-650 "LINEXP.spad" 1014978 1014988 1015830 1015835) (-649 "LINDEP.spad" 1013787 1013799 1014890 1014895) (-648 "LIMITRF.spad" 1011715 1011725 1013777 1013782) (-647 "LIMITPS.spad" 1010618 1010631 1011705 1011710) (-646 "LIE.spad" 1008634 1008646 1009908 1010053) (-645 "LIECAT.spad" 1008110 1008120 1008560 1008629) (-644 "LIECAT.spad" 1007614 1007626 1008066 1008071) (-643 "LIB.spad" 1005827 1005835 1006273 1006288) (-642 "LGROBP.spad" 1003180 1003199 1005817 1005822) (-641 "LF.spad" 1002135 1002151 1003170 1003175) (-640 "LFCAT.spad" 1001194 1001202 1002125 1002130) (-639 "LEXTRIPK.spad" 996697 996712 1001184 1001189) (-638 "LEXP.spad" 994700 994727 996677 996692) (-637 "LETAST.spad" 994399 994407 994690 994695) (-636 "LEADCDET.spad" 992797 992814 994389 994394) (-635 "LAZM3PK.spad" 991501 991523 992787 992792) (-634 "LAUPOL.spad" 990101 990114 991001 991070) (-633 "LAPLACE.spad" 989684 989700 990091 990096) (-632 "LA.spad" 989124 989138 989606 989645) (-631 "LALG.spad" 988900 988910 989104 989119) (-630 "LALG.spad" 988684 988696 988890 988895) (-629 "KVTFROM.spad" 988419 988429 988674 988679) (-628 "KTVLOGIC.spad" 987931 987939 988409 988414) (-627 "KRCFROM.spad" 987669 987679 987921 987926) (-626 "KOVACIC.spad" 986392 986409 987659 987664) (-625 "KONVERT.spad" 986114 986124 986382 986387) (-624 "KOERCE.spad" 985851 985861 986104 986109) (-623 "KERNEL.spad" 984506 984516 985635 985640) (-622 "KERNEL2.spad" 984209 984221 984496 984501) (-621 "KDAGG.spad" 983318 983340 984189 984204) (-620 "KDAGG.spad" 982435 982459 983308 983313) (-619 "KAFILE.spad" 981398 981414 981633 981660) (-618 "JORDAN.spad" 979227 979239 980688 980833) (-617 "JOINAST.spad" 978921 978929 979217 979222) (-616 "JAVACODE.spad" 978787 978795 978911 978916) (-615 "IXAGG.spad" 976920 976944 978777 978782) (-614 "IXAGG.spad" 974908 974934 976767 976772) (-613 "IVECTOR.spad" 973678 973693 973833 973860) (-612 "ITUPLE.spad" 972839 972849 973668 973673) (-611 "ITRIGMNP.spad" 971678 971697 972829 972834) (-610 "ITFUN3.spad" 971184 971198 971668 971673) (-609 "ITFUN2.spad" 970928 970940 971174 971179) (-608 "ITFORM.spad" 970283 970291 970918 970923) (-607 "ITAYLOR.spad" 968277 968292 970147 970244) (-606 "ISUPS.spad" 960714 960729 967251 967348) (-605 "ISUMP.spad" 960215 960231 960704 960709) (-604 "ISTRING.spad" 959303 959316 959384 959411) (-603 "ISAST.spad" 959022 959030 959293 959298) (-602 "IRURPK.spad" 957739 957758 959012 959017) (-601 "IRSN.spad" 955711 955719 957729 957734) (-600 "IRRF2F.spad" 954196 954206 955667 955672) (-599 "IRREDFFX.spad" 953797 953808 954186 954191) (-598 "IROOT.spad" 952136 952146 953787 953792) (-597 "IR.spad" 949937 949951 951991 952018) (-596 "IRFORM.spad" 949261 949269 949927 949932) (-595 "IR2.spad" 948289 948305 949251 949256) (-594 "IR2F.spad" 947495 947511 948279 948284) (-593 "IPRNTPK.spad" 947255 947263 947485 947490) (-592 "IPF.spad" 946820 946832 947060 947153) (-591 "IPADIC.spad" 946581 946607 946746 946815) (-590 "IP4ADDR.spad" 946138 946146 946571 946576) (-589 "IOMODE.spad" 945660 945668 946128 946133) (-588 "IOBFILE.spad" 945021 945029 945650 945655) (-587 "IOBCON.spad" 944886 944894 945011 945016) (-586 "INVLAPLA.spad" 944535 944551 944876 944881) (-585 "INTTR.spad" 937917 937934 944525 944530) (-584 "INTTOOLS.spad" 935672 935688 937491 937496) (-583 "INTSLPE.spad" 934992 935000 935662 935667) (-582 "INTRVL.spad" 934558 934568 934906 934987) (-581 "INTRF.spad" 932982 932996 934548 934553) (-580 "INTRET.spad" 932414 932424 932972 932977) (-579 "INTRAT.spad" 931141 931158 932404 932409) (-578 "INTPM.spad" 929526 929542 930784 930789) (-577 "INTPAF.spad" 927390 927408 929458 929463) (-576 "INTPACK.spad" 917764 917772 927380 927385) (-575 "INT.spad" 917212 917220 917618 917759) (-574 "INTHERTR.spad" 916486 916503 917202 917207) (-573 "INTHERAL.spad" 916156 916180 916476 916481) (-572 "INTHEORY.spad" 912595 912603 916146 916151) (-571 "INTG0.spad" 906328 906346 912527 912532) (-570 "INTFTBL.spad" 900357 900365 906318 906323) (-569 "INTFACT.spad" 899416 899426 900347 900352) (-568 "INTEF.spad" 897801 897817 899406 899411) (-567 "INTDOM.spad" 896424 896432 897727 897796) (-566 "INTDOM.spad" 895109 895119 896414 896419) (-565 "INTCAT.spad" 893368 893378 895023 895104) (-564 "INTBIT.spad" 892875 892883 893358 893363) (-563 "INTALG.spad" 892063 892090 892865 892870) (-562 "INTAF.spad" 891563 891579 892053 892058) (-561 "INTABL.spad" 890081 890112 890244 890271) (-560 "INT8.spad" 889961 889969 890071 890076) (-559 "INT64.spad" 889840 889848 889951 889956) (-558 "INT32.spad" 889719 889727 889830 889835) (-557 "INT16.spad" 889598 889606 889709 889714) (-556 "INS.spad" 887101 887109 889500 889593) (-555 "INS.spad" 884690 884700 887091 887096) (-554 "INPSIGN.spad" 884138 884151 884680 884685) (-553 "INPRODPF.spad" 883234 883253 884128 884133) (-552 "INPRODFF.spad" 882322 882346 883224 883229) (-551 "INNMFACT.spad" 881297 881314 882312 882317) (-550 "INMODGCD.spad" 880785 880815 881287 881292) (-549 "INFSP.spad" 879082 879104 880775 880780) (-548 "INFPROD0.spad" 878162 878181 879072 879077) (-547 "INFORM.spad" 875361 875369 878152 878157) (-546 "INFORM1.spad" 874986 874996 875351 875356) (-545 "INFINITY.spad" 874538 874546 874976 874981) (-544 "INETCLTS.spad" 874515 874523 874528 874533) (-543 "INEP.spad" 873053 873075 874505 874510) (-542 "INDE.spad" 872782 872799 873043 873048) (-541 "INCRMAPS.spad" 872203 872213 872772 872777) (-540 "INBFILE.spad" 871275 871283 872193 872198) (-539 "INBFF.spad" 867069 867080 871265 871270) (-538 "INBCON.spad" 865359 865367 867059 867064) (-537 "INBCON.spad" 863647 863657 865349 865354) (-536 "INAST.spad" 863308 863316 863637 863642) (-535 "IMPTAST.spad" 863016 863024 863298 863303) (-534 "IMATRIX.spad" 861961 861987 862473 862500) (-533 "IMATQF.spad" 861055 861099 861917 861922) (-532 "IMATLIN.spad" 859660 859684 861011 861016) (-531 "ILIST.spad" 858318 858333 858843 858870) (-530 "IIARRAY2.spad" 857706 857744 857925 857952) (-529 "IFF.spad" 857116 857132 857387 857480) (-528 "IFAST.spad" 856730 856738 857106 857111) (-527 "IFARRAY.spad" 854223 854238 855913 855940) (-526 "IFAMON.spad" 854085 854102 854179 854184) (-525 "IEVALAB.spad" 853490 853502 854075 854080) (-524 "IEVALAB.spad" 852893 852907 853480 853485) (-523 "IDPO.spad" 852691 852703 852883 852888) (-522 "IDPOAMS.spad" 852447 852459 852681 852686) (-521 "IDPOAM.spad" 852167 852179 852437 852442) (-520 "IDPC.spad" 851105 851117 852157 852162) (-519 "IDPAM.spad" 850850 850862 851095 851100) (-518 "IDPAG.spad" 850597 850609 850840 850845) (-517 "IDENT.spad" 850247 850255 850587 850592) (-516 "IDECOMP.spad" 847486 847504 850237 850242) (-515 "IDEAL.spad" 842435 842474 847421 847426) (-514 "ICDEN.spad" 841624 841640 842425 842430) (-513 "ICARD.spad" 840815 840823 841614 841619) (-512 "IBPTOOLS.spad" 839422 839439 840805 840810) (-511 "IBITS.spad" 838625 838638 839058 839085) (-510 "IBATOOL.spad" 835602 835621 838615 838620) (-509 "IBACHIN.spad" 834109 834124 835592 835597) (-508 "IARRAY2.spad" 833097 833123 833716 833743) (-507 "IARRAY1.spad" 832142 832157 832280 832307) (-506 "IAN.spad" 830365 830373 831958 832051) (-505 "IALGFACT.spad" 829968 830001 830355 830360) (-504 "HYPCAT.spad" 829392 829400 829958 829963) (-503 "HYPCAT.spad" 828814 828824 829382 829387) (-502 "HOSTNAME.spad" 828622 828630 828804 828809) (-501 "HOMOTOP.spad" 828365 828375 828612 828617) (-500 "HOAGG.spad" 825647 825657 828355 828360) (-499 "HOAGG.spad" 822704 822716 825414 825419) (-498 "HEXADEC.spad" 820709 820717 821074 821167) (-497 "HEUGCD.spad" 819744 819755 820699 820704) (-496 "HELLFDIV.spad" 819334 819358 819734 819739) (-495 "HEAP.spad" 818726 818736 818941 818968) (-494 "HEADAST.spad" 818259 818267 818716 818721) (-493 "HDP.spad" 806594 806610 806971 807070) (-492 "HDMP.spad" 803808 803823 804424 804551) (-491 "HB.spad" 802059 802067 803798 803803) (-490 "HASHTBL.spad" 800529 800560 800740 800767) (-489 "HASAST.spad" 800245 800253 800519 800524) (-488 "HACKPI.spad" 799736 799744 800147 800240) (-487 "GTSET.spad" 798675 798691 799382 799409) (-486 "GSTBL.spad" 797194 797229 797368 797383) (-485 "GSERIES.spad" 794365 794392 795326 795475) (-484 "GROUP.spad" 793638 793646 794345 794360) (-483 "GROUP.spad" 792919 792929 793628 793633) (-482 "GROEBSOL.spad" 791413 791434 792909 792914) (-481 "GRMOD.spad" 789984 789996 791403 791408) (-480 "GRMOD.spad" 788553 788567 789974 789979) (-479 "GRIMAGE.spad" 781442 781450 788543 788548) (-478 "GRDEF.spad" 779821 779829 781432 781437) (-477 "GRAY.spad" 778284 778292 779811 779816) (-476 "GRALG.spad" 777361 777373 778274 778279) (-475 "GRALG.spad" 776436 776450 777351 777356) (-474 "GPOLSET.spad" 775890 775913 776118 776145) (-473 "GOSPER.spad" 775159 775177 775880 775885) (-472 "GMODPOL.spad" 774307 774334 775127 775154) (-471 "GHENSEL.spad" 773390 773404 774297 774302) (-470 "GENUPS.spad" 769683 769696 773380 773385) (-469 "GENUFACT.spad" 769260 769270 769673 769678) (-468 "GENPGCD.spad" 768846 768863 769250 769255) (-467 "GENMFACT.spad" 768298 768317 768836 768841) (-466 "GENEEZ.spad" 766249 766262 768288 768293) (-465 "GDMP.spad" 763305 763322 764079 764206) (-464 "GCNAALG.spad" 757228 757255 763099 763166) (-463 "GCDDOM.spad" 756404 756412 757154 757223) (-462 "GCDDOM.spad" 755642 755652 756394 756399) (-461 "GB.spad" 753168 753206 755598 755603) (-460 "GBINTERN.spad" 749188 749226 753158 753163) (-459 "GBF.spad" 744955 744993 749178 749183) (-458 "GBEUCLID.spad" 742837 742875 744945 744950) (-457 "GAUSSFAC.spad" 742150 742158 742827 742832) (-456 "GALUTIL.spad" 740476 740486 742106 742111) (-455 "GALPOLYU.spad" 738930 738943 740466 740471) (-454 "GALFACTU.spad" 737103 737122 738920 738925) (-453 "GALFACT.spad" 727292 727303 737093 737098) (-452 "FVFUN.spad" 724315 724323 727282 727287) (-451 "FVC.spad" 723367 723375 724305 724310) (-450 "FUNDESC.spad" 723045 723053 723357 723362) (-449 "FUNCTION.spad" 722894 722906 723035 723040) (-448 "FT.spad" 721191 721199 722884 722889) (-447 "FTEM.spad" 720356 720364 721181 721186) (-446 "FSUPFACT.spad" 719256 719275 720292 720297) (-445 "FST.spad" 717342 717350 719246 719251) (-444 "FSRED.spad" 716822 716838 717332 717337) (-443 "FSPRMELT.spad" 715704 715720 716779 716784) (-442 "FSPECF.spad" 713795 713811 715694 715699) (-441 "FS.spad" 708063 708073 713570 713790) (-440 "FS.spad" 702109 702121 707618 707623) (-439 "FSINT.spad" 701769 701785 702099 702104) (-438 "FSERIES.spad" 700960 700972 701589 701688) (-437 "FSCINT.spad" 700277 700293 700950 700955) (-436 "FSAGG.spad" 699394 699404 700233 700272) (-435 "FSAGG.spad" 698473 698485 699314 699319) (-434 "FSAGG2.spad" 697216 697232 698463 698468) (-433 "FS2UPS.spad" 691707 691741 697206 697211) (-432 "FS2.spad" 691354 691370 691697 691702) (-431 "FS2EXPXP.spad" 690479 690502 691344 691349) (-430 "FRUTIL.spad" 689433 689443 690469 690474) (-429 "FR.spad" 683056 683066 688364 688433) (-428 "FRNAALG.spad" 678325 678335 682998 683051) (-427 "FRNAALG.spad" 673606 673618 678281 678286) (-426 "FRNAAF2.spad" 673062 673080 673596 673601) (-425 "FRMOD.spad" 672472 672502 672993 672998) (-424 "FRIDEAL.spad" 671697 671718 672452 672467) (-423 "FRIDEAL2.spad" 671301 671333 671687 671692) (-422 "FRETRCT.spad" 670812 670822 671291 671296) (-421 "FRETRCT.spad" 670189 670201 670670 670675) (-420 "FRAMALG.spad" 668537 668550 670145 670184) (-419 "FRAMALG.spad" 666917 666932 668527 668532) (-418 "FRAC.spad" 663923 663933 664326 664499) (-417 "FRAC2.spad" 663528 663540 663913 663918) (-416 "FR2.spad" 662864 662876 663518 663523) (-415 "FPS.spad" 659679 659687 662754 662859) (-414 "FPS.spad" 656522 656532 659599 659604) (-413 "FPC.spad" 655568 655576 656424 656517) (-412 "FPC.spad" 654700 654710 655558 655563) (-411 "FPATMAB.spad" 654462 654472 654690 654695) (-410 "FPARFRAC.spad" 652949 652966 654452 654457) (-409 "FORTRAN.spad" 651455 651498 652939 652944) (-408 "FORT.spad" 650404 650412 651445 651450) (-407 "FORTFN.spad" 647574 647582 650394 650399) (-406 "FORTCAT.spad" 647258 647266 647564 647569) (-405 "FORMULA.spad" 644732 644740 647248 647253) (-404 "FORMULA1.spad" 644211 644221 644722 644727) (-403 "FORDER.spad" 643902 643926 644201 644206) (-402 "FOP.spad" 643103 643111 643892 643897) (-401 "FNLA.spad" 642527 642549 643071 643098) (-400 "FNCAT.spad" 641122 641130 642517 642522) (-399 "FNAME.spad" 641014 641022 641112 641117) (-398 "FMTC.spad" 640812 640820 640940 641009) (-397 "FMONOID.spad" 640477 640487 640768 640773) (-396 "FMONCAT.spad" 637630 637640 640467 640472) (-395 "FM.spad" 637325 637337 637564 637591) (-394 "FMFUN.spad" 634355 634363 637315 637320) (-393 "FMC.spad" 633407 633415 634345 634350) (-392 "FMCAT.spad" 631075 631093 633375 633402) (-391 "FM1.spad" 630432 630444 631009 631036) (-390 "FLOATRP.spad" 628167 628181 630422 630427) (-389 "FLOAT.spad" 621481 621489 628033 628162) (-388 "FLOATCP.spad" 618912 618926 621471 621476) (-387 "FLINEXP.spad" 618634 618644 618902 618907) (-386 "FLINEXP.spad" 618300 618312 618570 618575) (-385 "FLASORT.spad" 617626 617638 618290 618295) (-384 "FLALG.spad" 615272 615291 617552 617621) (-383 "FLAGG.spad" 612314 612324 615252 615267) (-382 "FLAGG.spad" 609257 609269 612197 612202) (-381 "FLAGG2.spad" 607982 607998 609247 609252) (-380 "FINRALG.spad" 606043 606056 607938 607977) (-379 "FINRALG.spad" 604030 604045 605927 605932) (-378 "FINITE.spad" 603182 603190 604020 604025) (-377 "FINAALG.spad" 592303 592313 603124 603177) (-376 "FINAALG.spad" 581436 581448 592259 592264) (-375 "FILE.spad" 581019 581029 581426 581431) (-374 "FILECAT.spad" 579545 579562 581009 581014) (-373 "FIELD.spad" 578951 578959 579447 579540) (-372 "FIELD.spad" 578443 578453 578941 578946) (-371 "FGROUP.spad" 577090 577100 578423 578438) (-370 "FGLMICPK.spad" 575877 575892 577080 577085) (-369 "FFX.spad" 575252 575267 575593 575686) (-368 "FFSLPE.spad" 574755 574776 575242 575247) (-367 "FFPOLY.spad" 566017 566028 574745 574750) (-366 "FFPOLY2.spad" 565077 565094 566007 566012) (-365 "FFP.spad" 564474 564494 564793 564886) (-364 "FF.spad" 563922 563938 564155 564248) (-363 "FFNBX.spad" 562434 562454 563638 563731) (-362 "FFNBP.spad" 560947 560964 562150 562243) (-361 "FFNB.spad" 559412 559433 560628 560721) (-360 "FFINTBAS.spad" 556926 556945 559402 559407) (-359 "FFIELDC.spad" 554503 554511 556828 556921) (-358 "FFIELDC.spad" 552166 552176 554493 554498) (-357 "FFHOM.spad" 550914 550931 552156 552161) (-356 "FFF.spad" 548349 548360 550904 550909) (-355 "FFCGX.spad" 547196 547216 548065 548158) (-354 "FFCGP.spad" 546085 546105 546912 547005) (-353 "FFCG.spad" 544877 544898 545766 545859) (-352 "FFCAT.spad" 538050 538072 544716 544872) (-351 "FFCAT.spad" 531302 531326 537970 537975) (-350 "FFCAT2.spad" 531049 531089 531292 531297) (-349 "FEXPR.spad" 522766 522812 530805 530844) (-348 "FEVALAB.spad" 522474 522484 522756 522761) (-347 "FEVALAB.spad" 521967 521979 522251 522256) (-346 "FDIV.spad" 521409 521433 521957 521962) (-345 "FDIVCAT.spad" 519473 519497 521399 521404) (-344 "FDIVCAT.spad" 517535 517561 519463 519468) (-343 "FDIV2.spad" 517191 517231 517525 517530) (-342 "FCTRDATA.spad" 516199 516207 517181 517186) (-341 "FCPAK1.spad" 514766 514774 516189 516194) (-340 "FCOMP.spad" 514145 514155 514756 514761) (-339 "FC.spad" 504152 504160 514135 514140) (-338 "FAXF.spad" 497123 497137 504054 504147) (-337 "FAXF.spad" 490146 490162 497079 497084) (-336 "FARRAY.spad" 488296 488306 489329 489356) (-335 "FAMR.spad" 486432 486444 488194 488291) (-334 "FAMR.spad" 484552 484566 486316 486321) (-333 "FAMONOID.spad" 484220 484230 484506 484511) (-332 "FAMONC.spad" 482516 482528 484210 484215) (-331 "FAGROUP.spad" 482140 482150 482412 482439) (-330 "FACUTIL.spad" 480344 480361 482130 482135) (-329 "FACTFUNC.spad" 479538 479548 480334 480339) (-328 "EXPUPXS.spad" 476371 476394 477670 477819) (-327 "EXPRTUBE.spad" 473659 473667 476361 476366) (-326 "EXPRODE.spad" 470819 470835 473649 473654) (-325 "EXPR.spad" 465994 466004 466708 467003) (-324 "EXPR2UPS.spad" 462116 462129 465984 465989) (-323 "EXPR2.spad" 461821 461833 462106 462111) (-322 "EXPEXPAN.spad" 458622 458647 459254 459347) (-321 "EXIT.spad" 458293 458301 458612 458617) (-320 "EXITAST.spad" 458029 458037 458283 458288) (-319 "EVALCYC.spad" 457489 457503 458019 458024) (-318 "EVALAB.spad" 457061 457071 457479 457484) (-317 "EVALAB.spad" 456631 456643 457051 457056) (-316 "EUCDOM.spad" 454205 454213 456557 456626) (-315 "EUCDOM.spad" 451841 451851 454195 454200) (-314 "ESTOOLS.spad" 443687 443695 451831 451836) (-313 "ESTOOLS2.spad" 443290 443304 443677 443682) (-312 "ESTOOLS1.spad" 442975 442986 443280 443285) (-311 "ES.spad" 435790 435798 442965 442970) (-310 "ES.spad" 428511 428521 435688 435693) (-309 "ESCONT.spad" 425304 425312 428501 428506) (-308 "ESCONT1.spad" 425053 425065 425294 425299) (-307 "ES2.spad" 424558 424574 425043 425048) (-306 "ES1.spad" 424128 424144 424548 424553) (-305 "ERROR.spad" 421455 421463 424118 424123) (-304 "EQTBL.spad" 419927 419949 420136 420163) (-303 "EQ.spad" 414732 414742 417519 417631) (-302 "EQ2.spad" 414450 414462 414722 414727) (-301 "EP.spad" 410776 410786 414440 414445) (-300 "ENV.spad" 409454 409462 410766 410771) (-299 "ENTIRER.spad" 409122 409130 409398 409449) (-298 "EMR.spad" 408410 408451 409048 409117) (-297 "ELTAGG.spad" 406664 406683 408400 408405) (-296 "ELTAGG.spad" 404882 404903 406620 406625) (-295 "ELTAB.spad" 404357 404370 404872 404877) (-294 "ELFUTS.spad" 403744 403763 404347 404352) (-293 "ELEMFUN.spad" 403433 403441 403734 403739) (-292 "ELEMFUN.spad" 403120 403130 403423 403428) (-291 "ELAGG.spad" 401091 401101 403100 403115) (-290 "ELAGG.spad" 398999 399011 401010 401015) (-289 "ELABOR.spad" 398345 398353 398989 398994) (-288 "ELABEXPR.spad" 397277 397285 398335 398340) (-287 "EFUPXS.spad" 394053 394083 397233 397238) (-286 "EFULS.spad" 390889 390912 394009 394014) (-285 "EFSTRUC.spad" 388904 388920 390879 390884) (-284 "EF.spad" 383680 383696 388894 388899) (-283 "EAB.spad" 381956 381964 383670 383675) (-282 "E04UCFA.spad" 381492 381500 381946 381951) (-281 "E04NAFA.spad" 381069 381077 381482 381487) (-280 "E04MBFA.spad" 380649 380657 381059 381064) (-279 "E04JAFA.spad" 380185 380193 380639 380644) (-278 "E04GCFA.spad" 379721 379729 380175 380180) (-277 "E04FDFA.spad" 379257 379265 379711 379716) (-276 "E04DGFA.spad" 378793 378801 379247 379252) (-275 "E04AGNT.spad" 374643 374651 378783 378788) (-274 "DVARCAT.spad" 371533 371543 374633 374638) (-273 "DVARCAT.spad" 368421 368433 371523 371528) (-272 "DSMP.spad" 365795 365809 366100 366227) (-271 "DSEXT.spad" 365097 365107 365785 365790) (-270 "DSEXT.spad" 364306 364318 364996 365001) (-269 "DROPT.spad" 358265 358273 364296 364301) (-268 "DROPT1.spad" 357930 357940 358255 358260) (-267 "DROPT0.spad" 352787 352795 357920 357925) (-266 "DRAWPT.spad" 350960 350968 352777 352782) (-265 "DRAW.spad" 343836 343849 350950 350955) (-264 "DRAWHACK.spad" 343144 343154 343826 343831) (-263 "DRAWCX.spad" 340614 340622 343134 343139) (-262 "DRAWCURV.spad" 340161 340176 340604 340609) (-261 "DRAWCFUN.spad" 329693 329701 340151 340156) (-260 "DQAGG.spad" 327871 327881 329661 329688) (-259 "DPOLCAT.spad" 323220 323236 327739 327866) (-258 "DPOLCAT.spad" 318655 318673 323176 323181) (-257 "DPMO.spad" 310451 310467 310589 310802) (-256 "DPMM.spad" 302260 302278 302385 302598) (-255 "DOMTMPLT.spad" 302031 302039 302250 302255) (-254 "DOMCTOR.spad" 301786 301794 302021 302026) (-253 "DOMAIN.spad" 300873 300881 301776 301781) (-252 "DMP.spad" 298133 298148 298703 298830) (-251 "DLP.spad" 297485 297495 298123 298128) (-250 "DLIST.spad" 296064 296074 296668 296695) (-249 "DLAGG.spad" 294481 294491 296054 296059) (-248 "DIVRING.spad" 294023 294031 294425 294476) (-247 "DIVRING.spad" 293609 293619 294013 294018) (-246 "DISPLAY.spad" 291799 291807 293599 293604) (-245 "DIRPROD.spad" 279871 279887 280511 280610) (-244 "DIRPROD2.spad" 278689 278707 279861 279866) (-243 "DIRPCAT.spad" 277882 277898 278585 278684) (-242 "DIRPCAT.spad" 276702 276720 277407 277412) (-241 "DIOSP.spad" 275527 275535 276692 276697) (-240 "DIOPS.spad" 274523 274533 275507 275522) (-239 "DIOPS.spad" 273493 273505 274479 274484) (-238 "DIFRING.spad" 273331 273339 273473 273488) (-237 "DIFFSPC.spad" 272910 272918 273321 273326) (-236 "DIFFSPC.spad" 272487 272497 272900 272905) (-235 "DIFFMOD.spad" 271976 271986 272455 272482) (-234 "DIFFDOM.spad" 271141 271152 271966 271971) (-233 "DIFFDOM.spad" 270304 270317 271131 271136) (-232 "DIFEXT.spad" 270123 270133 270284 270299) (-231 "DIAGG.spad" 269753 269763 270103 270118) (-230 "DIAGG.spad" 269391 269403 269743 269748) (-229 "DHMATRIX.spad" 267703 267713 268848 268875) (-228 "DFSFUN.spad" 261343 261351 267693 267698) (-227 "DFLOAT.spad" 258074 258082 261233 261338) (-226 "DFINTTLS.spad" 256305 256321 258064 258069) (-225 "DERHAM.spad" 254219 254251 256285 256300) (-224 "DEQUEUE.spad" 253543 253553 253826 253853) (-223 "DEGRED.spad" 253160 253174 253533 253538) (-222 "DEFINTRF.spad" 250697 250707 253150 253155) (-221 "DEFINTEF.spad" 249207 249223 250687 250692) (-220 "DEFAST.spad" 248575 248583 249197 249202) (-219 "DECIMAL.spad" 246584 246592 246945 247038) (-218 "DDFACT.spad" 244397 244414 246574 246579) (-217 "DBLRESP.spad" 243997 244021 244387 244392) (-216 "DBASE.spad" 242661 242671 243987 243992) (-215 "DATAARY.spad" 242123 242136 242651 242656) (-214 "D03FAFA.spad" 241951 241959 242113 242118) (-213 "D03EEFA.spad" 241771 241779 241941 241946) (-212 "D03AGNT.spad" 240857 240865 241761 241766) (-211 "D02EJFA.spad" 240319 240327 240847 240852) (-210 "D02CJFA.spad" 239797 239805 240309 240314) (-209 "D02BHFA.spad" 239287 239295 239787 239792) (-208 "D02BBFA.spad" 238777 238785 239277 239282) (-207 "D02AGNT.spad" 233591 233599 238767 238772) (-206 "D01WGTS.spad" 231910 231918 233581 233586) (-205 "D01TRNS.spad" 231887 231895 231900 231905) (-204 "D01GBFA.spad" 231409 231417 231877 231882) (-203 "D01FCFA.spad" 230931 230939 231399 231404) (-202 "D01ASFA.spad" 230399 230407 230921 230926) (-201 "D01AQFA.spad" 229845 229853 230389 230394) (-200 "D01APFA.spad" 229269 229277 229835 229840) (-199 "D01ANFA.spad" 228763 228771 229259 229264) (-198 "D01AMFA.spad" 228273 228281 228753 228758) (-197 "D01ALFA.spad" 227813 227821 228263 228268) (-196 "D01AKFA.spad" 227339 227347 227803 227808) (-195 "D01AJFA.spad" 226862 226870 227329 227334) (-194 "D01AGNT.spad" 222929 222937 226852 226857) (-193 "CYCLOTOM.spad" 222435 222443 222919 222924) (-192 "CYCLES.spad" 219227 219235 222425 222430) (-191 "CVMP.spad" 218644 218654 219217 219222) (-190 "CTRIGMNP.spad" 217144 217160 218634 218639) (-189 "CTOR.spad" 216835 216843 217134 217139) (-188 "CTORKIND.spad" 216438 216446 216825 216830) (-187 "CTORCAT.spad" 215687 215695 216428 216433) (-186 "CTORCAT.spad" 214934 214944 215677 215682) (-185 "CTORCALL.spad" 214523 214533 214924 214929) (-184 "CSTTOOLS.spad" 213768 213781 214513 214518) (-183 "CRFP.spad" 207492 207505 213758 213763) (-182 "CRCEAST.spad" 207212 207220 207482 207487) (-181 "CRAPACK.spad" 206263 206273 207202 207207) (-180 "CPMATCH.spad" 205767 205782 206188 206193) (-179 "CPIMA.spad" 205472 205491 205757 205762) (-178 "COORDSYS.spad" 200481 200491 205462 205467) (-177 "CONTOUR.spad" 199892 199900 200471 200476) (-176 "CONTFRAC.spad" 195642 195652 199794 199887) (-175 "CONDUIT.spad" 195400 195408 195632 195637) (-174 "COMRING.spad" 195074 195082 195338 195395) (-173 "COMPPROP.spad" 194592 194600 195064 195069) (-172 "COMPLPAT.spad" 194359 194374 194582 194587) (-171 "COMPLEX.spad" 189736 189746 189980 190241) (-170 "COMPLEX2.spad" 189451 189463 189726 189731) (-169 "COMPILER.spad" 189000 189008 189441 189446) (-168 "COMPFACT.spad" 188602 188616 188990 188995) (-167 "COMPCAT.spad" 186674 186684 188336 188597) (-166 "COMPCAT.spad" 184474 184486 186138 186143) (-165 "COMMUPC.spad" 184222 184240 184464 184469) (-164 "COMMONOP.spad" 183755 183763 184212 184217) (-163 "COMM.spad" 183566 183574 183745 183750) (-162 "COMMAAST.spad" 183329 183337 183556 183561) (-161 "COMBOPC.spad" 182244 182252 183319 183324) (-160 "COMBINAT.spad" 181011 181021 182234 182239) (-159 "COMBF.spad" 178393 178409 181001 181006) (-158 "COLOR.spad" 177230 177238 178383 178388) (-157 "COLONAST.spad" 176896 176904 177220 177225) (-156 "CMPLXRT.spad" 176607 176624 176886 176891) (-155 "CLLCTAST.spad" 176269 176277 176597 176602) (-154 "CLIP.spad" 172377 172385 176259 176264) (-153 "CLIF.spad" 171032 171048 172333 172372) (-152 "CLAGG.spad" 167537 167547 171022 171027) (-151 "CLAGG.spad" 163913 163925 167400 167405) (-150 "CINTSLPE.spad" 163244 163257 163903 163908) (-149 "CHVAR.spad" 161382 161404 163234 163239) (-148 "CHARZ.spad" 161297 161305 161362 161377) (-147 "CHARPOL.spad" 160807 160817 161287 161292) (-146 "CHARNZ.spad" 160560 160568 160787 160802) (-145 "CHAR.spad" 158434 158442 160550 160555) (-144 "CFCAT.spad" 157762 157770 158424 158429) (-143 "CDEN.spad" 156958 156972 157752 157757) (-142 "CCLASS.spad" 155107 155115 156369 156408) (-141 "CATEGORY.spad" 154149 154157 155097 155102) (-140 "CATCTOR.spad" 154040 154048 154139 154144) (-139 "CATAST.spad" 153658 153666 154030 154035) (-138 "CASEAST.spad" 153372 153380 153648 153653) (-137 "CARTEN.spad" 148739 148763 153362 153367) (-136 "CARTEN2.spad" 148129 148156 148729 148734) (-135 "CARD.spad" 145424 145432 148103 148124) (-134 "CAPSLAST.spad" 145198 145206 145414 145419) (-133 "CACHSET.spad" 144822 144830 145188 145193) (-132 "CABMON.spad" 144377 144385 144812 144817) (-131 "BYTEORD.spad" 144052 144060 144367 144372) (-130 "BYTE.spad" 143479 143487 144042 144047) (-129 "BYTEBUF.spad" 141338 141346 142648 142675) (-128 "BTREE.spad" 140411 140421 140945 140972) (-127 "BTOURN.spad" 139416 139426 140018 140045) (-126 "BTCAT.spad" 138808 138818 139384 139411) (-125 "BTCAT.spad" 138220 138232 138798 138803) (-124 "BTAGG.spad" 137686 137694 138188 138215) (-123 "BTAGG.spad" 137172 137182 137676 137681) (-122 "BSTREE.spad" 135913 135923 136779 136806) (-121 "BRILL.spad" 134110 134121 135903 135908) (-120 "BRAGG.spad" 133050 133060 134100 134105) (-119 "BRAGG.spad" 131954 131966 133006 133011) (-118 "BPADICRT.spad" 129828 129840 130083 130176) (-117 "BPADIC.spad" 129492 129504 129754 129823) (-116 "BOUNDZRO.spad" 129148 129165 129482 129487) (-115 "BOP.spad" 124330 124338 129138 129143) (-114 "BOP1.spad" 121796 121806 124320 124325) (-113 "BOOLE.spad" 121446 121454 121786 121791) (-112 "BOOLEAN.spad" 120884 120892 121436 121441) (-111 "BMODULE.spad" 120596 120608 120852 120879) (-110 "BITS.spad" 120017 120025 120232 120259) (-109 "BINDING.spad" 119430 119438 120007 120012) (-108 "BINARY.spad" 117444 117452 117800 117893) (-107 "BGAGG.spad" 116649 116659 117424 117439) (-106 "BGAGG.spad" 115862 115874 116639 116644) (-105 "BFUNCT.spad" 115426 115434 115842 115857) (-104 "BEZOUT.spad" 114566 114593 115376 115381) (-103 "BBTREE.spad" 111411 111421 114173 114200) (-102 "BASTYPE.spad" 111083 111091 111401 111406) (-101 "BASTYPE.spad" 110753 110763 111073 111078) (-100 "BALFACT.spad" 110212 110225 110743 110748) (-99 "AUTOMOR.spad" 109663 109672 110192 110207) (-98 "ATTREG.spad" 106386 106393 109415 109658) (-97 "ATTRBUT.spad" 102409 102416 106366 106381) (-96 "ATTRAST.spad" 102126 102133 102399 102404) (-95 "ATRIG.spad" 101596 101603 102116 102121) (-94 "ATRIG.spad" 101064 101073 101586 101591) (-93 "ASTCAT.spad" 100968 100975 101054 101059) (-92 "ASTCAT.spad" 100870 100879 100958 100963) (-91 "ASTACK.spad" 100209 100218 100477 100504) (-90 "ASSOCEQ.spad" 99035 99046 100165 100170) (-89 "ASP9.spad" 98116 98129 99025 99030) (-88 "ASP8.spad" 97159 97172 98106 98111) (-87 "ASP80.spad" 96481 96494 97149 97154) (-86 "ASP7.spad" 95641 95654 96471 96476) (-85 "ASP78.spad" 95092 95105 95631 95636) (-84 "ASP77.spad" 94461 94474 95082 95087) (-83 "ASP74.spad" 93553 93566 94451 94456) (-82 "ASP73.spad" 92824 92837 93543 93548) (-81 "ASP6.spad" 91691 91704 92814 92819) (-80 "ASP55.spad" 90200 90213 91681 91686) (-79 "ASP50.spad" 88017 88030 90190 90195) (-78 "ASP4.spad" 87312 87325 88007 88012) (-77 "ASP49.spad" 86311 86324 87302 87307) (-76 "ASP42.spad" 84718 84757 86301 86306) (-75 "ASP41.spad" 83297 83336 84708 84713) (-74 "ASP35.spad" 82285 82298 83287 83292) (-73 "ASP34.spad" 81586 81599 82275 82280) (-72 "ASP33.spad" 81146 81159 81576 81581) (-71 "ASP31.spad" 80286 80299 81136 81141) (-70 "ASP30.spad" 79178 79191 80276 80281) (-69 "ASP29.spad" 78644 78657 79168 79173) (-68 "ASP28.spad" 69917 69930 78634 78639) (-67 "ASP27.spad" 68814 68827 69907 69912) (-66 "ASP24.spad" 67901 67914 68804 68809) (-65 "ASP20.spad" 67365 67378 67891 67896) (-64 "ASP1.spad" 66746 66759 67355 67360) (-63 "ASP19.spad" 61432 61445 66736 66741) (-62 "ASP12.spad" 60846 60859 61422 61427) (-61 "ASP10.spad" 60117 60130 60836 60841) (-60 "ARRAY2.spad" 59477 59486 59724 59751) (-59 "ARRAY1.spad" 58314 58323 58660 58687) (-58 "ARRAY12.spad" 57027 57038 58304 58309) (-57 "ARR2CAT.spad" 52801 52822 56995 57022) (-56 "ARR2CAT.spad" 48595 48618 52791 52796) (-55 "ARITY.spad" 47967 47974 48585 48590) (-54 "APPRULE.spad" 47227 47249 47957 47962) (-53 "APPLYORE.spad" 46846 46859 47217 47222) (-52 "ANY.spad" 45705 45712 46836 46841) (-51 "ANY1.spad" 44776 44785 45695 45700) (-50 "ANTISYM.spad" 43221 43237 44756 44771) (-49 "ANON.spad" 42914 42921 43211 43216) (-48 "AN.spad" 41223 41230 42730 42823) (-47 "AMR.spad" 39408 39419 41121 41218) (-46 "AMR.spad" 37430 37443 39145 39150) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 7265231c..83dadc6a 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,1140 +1,1147 @@ -(198303 . 3485817779) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) -((((-576)) . T) (($) -3766 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1056 (-419 (-576))))) ((|#1|) . T)) +(202997 . 3485824339) +(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) +((((-575)) . T) (($) -3765 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-1055 (-418 (-575))))) ((|#1|) . T)) (((|#2| |#2|) . T)) -((((-576)) . T)) -((($ $) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576))))) +((((-575)) . T)) +((($ $) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2| |#2|) . T) ((#0=(-418 (-575)) #0#) |has| |#2| (-38 (-418 (-575))))) ((($) . T)) (((|#1|) . T)) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) (((|#2|) . T)) -((($) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(|has| |#1| (-925)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((($) . T) (((-419 (-576))) . T)) +((($) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575))))) +(|has| |#1| (-924)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((($) . T) (((-418 (-575))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-145)) . T)) -((((-548)) . T) (((-1177)) . T) (((-227)) . T) (((-390)) . T) (((-905 (-390))) . T)) -(((|#1|) . T)) -((((-227)) . T) (((-874)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1|) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-860))) -((($ $) . T) ((#0=(-419 (-576)) #0#) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) -(-3766 (|has| |#1| (-832)) (|has| |#1| (-862))) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T)) -((((-874)) . T)) -((((-874)) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -(|has| |#1| (-860)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-326 |#1|)) . T) (((-576)) . T) (($) . T)) +((((-547)) . T) (((-1176)) . T) (((-227)) . T) (((-389)) . T) (((-904 (-389))) . T)) +(((|#1|) . T)) +((((-227)) . T) (((-873)) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1|) . T)) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-859))) +((($ $) . T) ((#0=(-418 (-575)) #0#) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1| |#1|) . T)) +(-3765 (|has| |#1| (-831)) (|has| |#1| (-861))) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T)) +((((-873)) . T)) +((((-873)) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +(|has| |#1| (-859)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-325 |#1|)) . T) (((-575)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -((((-576)) . T) (((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((((-874)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) +((((-575)) . T) (((-881 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +((($) . T) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) +((((-418 (-575))) . T) (((-710)) . T) (($) . T)) +((((-873)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) (((|#4|) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((((-874)) . T)) -((((-874)) |has| (-1112 |#1|) (-1118))) -(-3766 (|has| |#1| (-239)) (|has| |#1| (-296 $ $)) (|has| |#1| (-296 |#1| |#1|)) (|has| |#1| (-914 (-1195)))) -((((-874)) . T) (((-1200)) . T)) +((((-418 (-575))) . T) (((-710)) . T) (($) . T)) +((((-873)) . T)) +((((-873)) |has| (-1111 |#1|) (-1117))) +((((-873)) . T) (((-1199)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1200)) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576))))) -(-3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(((|#2| (-494 (-2872 |#1|) (-783))) . T)) -((((-1195)) |has| (-419 |#2|) (-914 (-1195)))) -(((|#1| (-543 (-1195))) . T)) -(((#0=(-882 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -((((-1177)) . T) (((-974 (-130))) . T) (((-874)) . T)) -((((-874)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(|has| |#4| (-379)) -(|has| |#3| (-379)) -(((|#1|) . T)) -((((-1195)) . T)) -((((-518)) . T)) -((((-882 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) +((((-1199)) . T)) +(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575))))) +(-3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(((|#2| (-493 (-2871 |#1|) (-782))) . T)) +((((-1194)) -3765 (|has| (-418 |#2|) (-913 (-1194))) (|has| (-418 |#2|) (-915 (-1194))))) +(((|#1| (-542 (-1194))) . T)) +(((#0=(-881 |#1|) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T)) +((((-1176)) . T) (((-973 (-130))) . T) (((-873)) . T)) +((((-873)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(|has| |#4| (-378)) +(|has| |#3| (-378)) +(((|#1|) . T)) +((((-1194)) . T)) +((((-517)) . T)) +((((-881 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) (((|#1| |#2|) . T)) ((($) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-568)) -((((-576)) . T) (((-419 (-576))) -3766 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576))))) ((|#2|) . T) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) (((-876 |#1|)) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-2 (|:| -4318 |#1|) (|:| -1359 |#2|))) . T)) +(|has| |#1| (-567)) +((((-575)) . T) (((-418 (-575))) -3765 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575))))) ((|#2|) . T) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((-875 |#1|)) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +((((-2 (|:| -4317 |#1|) (|:| -2398 |#2|))) . T)) ((($) . T)) -((((-576)) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) ((|#1|) . T) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) (((-1195)) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118)))) -((((-548)) |has| |#1| (-626 (-548)))) -((((-1195)) . T)) -((((-576)) . T) (($) . T)) -((((-593 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) +((((-575)) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) ((|#1|) . T) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) (((-1194)) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117)))) +((((-547)) |has| |#1| (-625 (-547)))) +((((-1194)) . T)) +((((-575)) . T) (($) . T)) +((((-592 |#1|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) +((($) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1|) . T) (((-576)) . T) (($) . T)) -((((-874)) . T)) -((((-874)) . T)) -(((|#1|) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1|) . T) (((-575)) . T) (($) . T)) +((((-873)) . T)) +((((-873)) . T)) +(((|#1|) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -(|has| |#1| (-1118)) -(((|#1|) . T)) -((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -(((|#2|) . T) (((-576)) . T) ((|#6|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) +(((#0=(-418 (-575)) #0#) |has| |#2| (-38 (-418 (-575)))) ((|#2| |#2|) . T) (($ $) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +(|has| |#1| (-1117)) +(((|#1|) . T)) +((((-117 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +((((-117 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +((((-418 (-575))) . T) (($) . T) (((-575)) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T)) +(((|#2|) . T) (((-575)) . T) ((|#6|) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) ((($) . T)) (((|#2|) . T)) ((($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T) (($) . T)) +((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))) ((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) ((($ $) . T)) ((($) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-379)) +(|has| |#1| (-378)) (((|#1|) . T)) -((((-874)) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) +((((-873)) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) . T)) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -((((-576)) . T)) -((((-874)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +((((-575)) . T)) +((((-873)) . T)) (((|#1| |#2|) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))) -((($) |has| |#1| (-239))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(|has| |#1| (-568)) -(((|#1|) . T) (((-576)) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-860))) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(|has| |#1| (-1118)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(|has| |#1| (-1118)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(|has| |#1| (-860)) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))) +((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(|has| |#1| (-567)) +(((|#1|) . T) (((-575)) . T) (($) . T)) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T)) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-859))) +((($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(|has| |#1| (-1117)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(|has| |#1| (-1117)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(|has| |#1| (-859)) (((|#1| |#1|) . T)) -((($) . T) (((-419 (-576))) . T)) +((($) . T) (((-418 (-575))) . T)) (((|#1|) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-576) (-130)) . T)) -((((-874)) . T)) -((($) . T) (((-419 (-576))) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-575) (-130)) . T)) +((((-873)) . T)) +((($) . T) (((-418 (-575))) . T)) ((((-130)) . T)) -(|has| |#4| (-805)) -(|has| |#4| (-805)) -(|has| |#3| (-805)) -(|has| |#3| (-805)) +(|has| |#4| (-804)) +(|has| |#4| (-804)) +(|has| |#3| (-804)) +(|has| |#3| (-804)) (((|#1| |#2|) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1200)) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-359))) +((((-1199)) . T)) (((|#1| |#2|) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) (((-1195) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1195) |#2|)))) -(|has| |#1| (-1118)) -(|has| |#1| (-1118)) -((((-576)) . T) (((-419 (-576))) . T)) -(((|#1| (-1195) (-1106 (-1195)) (-543 (-1106 (-1195)))) . T)) -((((-576) |#1|) . T)) -((((-576)) . T)) -((((-576)) . T)) -((((-926 |#1|)) . T)) -(((|#1| (-543 |#2|)) . T)) -((((-576)) . T)) -((((-576)) . T)) -(((|#1|) . T)) -(|has| |#2| (-1067)) -(((|#1| (-783)) . T)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) +(((|#2| |#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-318 |#2|))) (((-1194) |#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-525 (-1194) |#2|)))) +(|has| |#1| (-1117)) +(|has| |#1| (-1117)) +((((-575)) . T) (((-418 (-575))) . T)) +(((|#1| (-1194) (-1105 (-1194)) (-542 (-1105 (-1194)))) . T)) +((((-575) |#1|) . T)) +((((-575)) . T)) +((((-575)) . T)) +((((-925 |#1|)) . T)) +(((|#1| (-542 |#2|)) . T)) +((((-575)) . T)) +((((-575)) . T)) +(((|#1|) . T)) +(|has| |#2| (-1066)) +(((|#1| (-782)) . T)) +(|has| |#2| (-804)) +(|has| |#2| (-804)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1177) |#1|) . T)) -((((-1253 (-576)) $) . T) (((-576) (-130)) . T)) +((((-1176) |#1|) . T)) +((((-1252 (-575)) $) . T) (((-575) (-130)) . T)) (((|#1|) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -(((|#3| (-783)) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +(((|#3| (-782)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) (((-419 (-576))) . T)) +((($) . T) (((-418 (-575))) . T)) ((($) . T)) ((($) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-419 (-576))) . T) (($) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) +((((-418 (-575))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1118)) -((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576))))) -((((-576)) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) ((|#1|) . T) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#2|) . T)) -((((-1195) |#2|) |has| |#2| (-526 (-1195) |#2|)) ((|#2| |#2|) |has| |#2| (-319 |#2|))) -((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) (((-1100)) . T) ((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) +(|has| |#1| (-1117)) +((((-418 (-575))) . T) (((-575)) . T)) +((((-575)) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575))))) +((((-575)) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) ((|#1|) . T) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#2|) . T)) +((((-1194) |#2|) |has| |#2| (-525 (-1194) |#2|)) ((|#2| |#2|) |has| |#2| (-318 |#2|))) +((((-418 (-575))) . T) (((-575)) . T)) +((((-575)) . T) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) (((-1099)) . T) ((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (((|#1|) . T) (($) . T)) -((((-576)) . T)) -((((-576)) . T)) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-576)) . T)) -((((-576)) . T)) -((((-419 (-576))) . T) (($) . T)) -(((#0=(-711) (-1191 #0#)) . T)) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T)) -(|has| |#2| (-374)) -((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) -((($) |has| (-419 |#2|) (-239))) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -(((|#1|) . T)) +((((-575)) . T)) +((((-575)) . T)) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174))) +((((-575)) . T)) +((((-575)) . T)) +((((-418 (-575))) . T) (($) . T)) +(((#0=(-710) (-1190 #0#)) . T)) +((((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-373)) +((((-1252 (-575)) $) . T) (((-575) |#1|) . T)) +((($) -3765 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-237)))) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) (((|#1| |#2|) . T)) -((((-874)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-1177) |#1|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) +((((-873)) . T)) +(((|#1|) . T)) +((((-1176) |#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T)) (((|#3| |#3|) . T)) -((((-874)) . T)) -((((-874)) . T)) +((((-873)) . T)) +((((-873)) . T)) (((|#1| |#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-576) |#1|) . T)) -((((-874)) . T)) -((((-171 (-227))) |has| |#1| (-1040)) (((-171 (-390))) |has| |#1| (-1040)) (((-548)) |has| |#1| (-626 (-548))) (((-1191 |#1|)) . T) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1|) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-860))) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-860))) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) -(|has| |#1| (-374)) -((((-874)) . T)) +(((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))) ((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-575) |#1|) . T)) +((((-873)) . T)) +((((-171 (-227))) |has| |#1| (-1039)) (((-171 (-389))) |has| |#1| (-1039)) (((-547)) |has| |#1| (-625 (-547))) (((-1190 |#1|)) . T) (((-904 (-575))) |has| |#1| (-625 (-904 (-575)))) (((-904 (-389))) |has| |#1| (-625 (-904 (-389))))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1|) . T)) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-859))) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-859))) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#2|) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) +(|has| |#1| (-373)) +((((-873)) . T)) ((($) . T)) ((($) . T)) ((((-130)) . T)) -(-12 (|has| |#4| (-239)) (|has| |#4| (-1067))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1067))) -((($) |has| |#2| (-239))) -(|has| |#4| (-1067)) -(|has| |#3| (-1067)) -((((-874)) . T) (((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-874)) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) . T)) -(|has| |#1| (-568)) -((((-576)) -3766 (-12 (|has| |#4| (-1056 (-576))) (|has| |#4| (-1118))) (|has| |#4| (-1067))) ((|#4|) |has| |#4| (-1118)) (((-419 (-576))) -12 (|has| |#4| (-1056 (-419 (-576)))) (|has| |#4| (-1118)))) -((((-576)) -3766 (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (|has| |#3| (-1067))) ((|#3|) |has| |#3| (-1118)) (((-419 (-576))) -12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(|has| |#1| (-568)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(((|#1|) . T)) -(|has| |#1| (-568)) -((((-876 |#1|)) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) +(-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) +(-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) +((($) -3765 (|has| |#2| (-238)) (|has| |#2| (-237)))) +(|has| |#4| (-1066)) +(|has| |#3| (-1066)) +((((-873)) . T) (((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-873)) . T)) +(((|#1|) . T)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T)) +(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575)))) +(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T)) +(|has| |#1| (-567)) +((((-575)) -3765 (-12 (|has| |#4| (-1055 (-575))) (|has| |#4| (-1117))) (|has| |#4| (-1066))) ((|#4|) |has| |#4| (-1117)) (((-418 (-575))) -12 (|has| |#4| (-1055 (-418 (-575)))) (|has| |#4| (-1117)))) +((((-575)) -3765 (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (|has| |#3| (-1066))) ((|#3|) |has| |#3| (-1117)) (((-418 (-575))) -12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117)))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(|has| |#1| (-567)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(((|#1|) . T)) +(|has| |#1| (-567)) +((((-875 |#1|)) . T)) +(|has| |#1| (-567)) +(|has| |#1| (-567)) (((|#2|) . T)) -((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T)) -((((-711)) . T)) -(((|#1|) . T)) -((((-1195)) |has| |#1| (-914 (-1195))) (((-1106 (-1195))) . T)) -(-12 (|has| |#1| (-1020)) (|has| |#1| (-1221))) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(((|#4| |#4|) -3766 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1067)))) -(((|#3| |#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067)))) +((((-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (((-1099)) . T)) +((((-710)) . T)) +(((|#1|) . T)) +((((-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (((-1105 (-1194))) . T)) +(-12 (|has| |#1| (-1019)) (|has| |#1| (-1220))) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-418 (-575))) . T)) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T)) +(-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))) +((($) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) . T)) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (($) . T)) +(((|#4| |#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-1066)))) +(((|#3| |#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066)))) (((|#2|) . T)) (((|#1|) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576))))) -((((-874)) . T)) +((((-547)) |has| |#2| (-625 (-547))) (((-904 (-389))) |has| |#2| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#2| (-625 (-904 (-575))))) +((((-873)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -4318 |#1|) (|:| -1359 |#2|))) . T) (((-874)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576))))) -(((|#4|) -3766 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1067)))) -(((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067)))) -((((-2 (|:| -4318 |#1|) (|:| -1359 |#2|))) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-656 |#1|)) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576))))) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-419 $) (-419 $)) |has| |#2| (-568)) (($ $) . T) ((|#2| |#2|) . T)) -((($ (-1195)) |has| |#2| (-914 (-1195)))) -((((-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-925)) -((((-1177) (-52)) . T)) -((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T)) -((((-548)) . T) (((-227)) . T) (((-390)) . T) (((-905 (-390))) . T)) -((((-874)) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))) +((((-2 (|:| -4317 |#1|) (|:| -2398 |#2|))) . T) (((-873)) . T)) +((((-547)) |has| |#1| (-625 (-547))) (((-904 (-389))) |has| |#1| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#1| (-625 (-904 (-575))))) +(((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-1066)))) +(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066)))) +((((-2 (|:| -4317 |#1|) (|:| -2398 |#2|))) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-547)) . T) (((-575)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T)) +((((-655 |#1|)) . T)) +(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575))))) +((($) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) +((((-418 $) (-418 $)) |has| |#2| (-567)) (($ $) . T) ((|#2| |#2|) . T)) +((($ (-1194)) -3765 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194))))) +((((-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-924)) +((((-1176) (-52)) . T)) +((((-575)) |has| #0=(-418 |#2|) (-650 (-575))) ((#0#) . T)) +((((-547)) . T) (((-227)) . T) (((-389)) . T) (((-904 (-389))) . T)) +((((-873)) . T)) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))) (((|#1|) |has| |#1| (-174))) -(((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-874)) . T)) -((((-874)) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-874)) . T)) -(|has| |#1| (-862)) -(((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1118)) -((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118)))) -((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) . T) (((-1200)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((((-1200)) . T)) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-239)) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1| (-543 (-830 (-1195)))) . T)) -(((|#1| (-989)) . T)) -((((-576)) . T) ((|#2|) . T)) -((((-1195)) . T)) -(((#0=(-882 |#1|) $) |has| #0# (-296 #0# #0#))) -((((-576) |#4|) . T)) -((((-576) |#3|) . T)) +(((|#1| $) |has| |#1| (-295 |#1| |#1|))) +((((-873)) . T)) +((((-873)) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-873)) . T)) +(|has| |#1| (-861)) +(((|#2|) . T) (((-575)) . T) (((-830 |#1|)) . T)) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +(|has| |#1| (-1117)) +((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117)))) +((((-547)) |has| |#1| (-625 (-547)))) +((((-873)) . T) (((-1199)) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((((-1199)) . T)) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(|has| |#1| (-238)) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1| (-542 (-829 (-1194)))) . T)) +(((|#1| (-988)) . T)) +((((-575)) . T) ((|#2|) . T)) +((((-1194)) . T)) +(((#0=(-881 |#1|) $) |has| #0# (-295 #0# #0#))) +((((-575) |#4|) . T)) +((((-575) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1170)) -((((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) . T)) -(|has| (-1272 |#1| |#2| |#3| |#4|) (-146)) -(|has| (-1272 |#1| |#2| |#3| |#4|) (-148)) +(|has| |#1| (-1169)) +((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T)) +(|has| (-1271 |#1| |#2| |#3| |#4|) (-146)) +(|has| (-1271 |#1| |#2| |#3| |#4|) (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) +((((-1194)) -12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066)))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1118)) -((((-1177) |#1|) . T)) +(|has| |#1| (-1117)) +((((-1176) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-1143 |#1| (-1195))) . T) (((-576)) . T) (((-830 (-1195))) . T) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-1195)) . T)) -(|has| |#2| (-379)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) +(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) +((((-1142 |#1| (-1194))) . T) (((-575)) . T) (((-829 (-1194))) . T) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-1194)) . T)) +(|has| |#2| (-378)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1067))) -((((-874)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) -(((|#1|) . T)) -((((-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((#0=(-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) #0#) |has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))))) -((((-874)) . T)) -((((-576) |#1|) . T)) -((((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390))))) (((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) +(((|#2|) |has| |#2| (-1066))) +((((-873)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) +(((|#1|) . T)) +((((-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((#0=(-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) #0#) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))))) +((((-873)) . T)) +((((-575) |#1|) . T)) +((((-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#2| (-625 (-547)))) (((-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389))))) (((-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) ((($) . T)) -((((-874)) . T)) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-874)) . T)) +((((-873)) . T)) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575))))) +((((-873)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) . T)) -((((-874)) . T)) -(|has| (-1271 |#2| |#3| |#4|) (-148)) -(|has| (-1271 |#2| |#3| |#4|) (-146)) -(((|#2|) |has| |#2| (-1118)) (((-576)) -12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-873)) . T)) +((((-873)) . T)) +(|has| (-1270 |#2| |#3| |#4|) (-148)) +(|has| (-1270 |#2| |#3| |#4|) (-146)) +(((|#2|) |has| |#2| (-1117)) (((-575)) -12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (((|#1|) . T)) -(|has| |#1| (-1118)) -((((-874)) . T)) +(|has| |#1| (-1117)) +((((-873)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))) (((|#1|) . T)) -((((-576) |#1|) . T)) +((((-575) |#1|) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-860))) -((((-874)) |has| |#1| (-1118))) -((($) |has| |#1| (-239))) -(-3766 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)) (|has| |#1| (-1130))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-926 |#1|)) . T)) -((((-419 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-576) |#1|))) -((((-419 (-576))) . T) (($) . T)) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-859))) +((((-873)) |has| |#1| (-1117))) +((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) +(-3765 (|has| |#1| (-484)) (|has| |#1| (-737)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)) (|has| |#1| (-1129))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-359))) +((((-925 |#1|)) . T)) +((((-418 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-575) |#1|))) +((((-418 (-575))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-874)) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -(|has| |#1| (-374)) -(-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-374)) -(|has| |#1| (-15 * (|#1| (-783) |#1|))) -((((-576)) . T)) -((((-576)) . T)) -((((-1160 |#2| (-419 (-968 |#1|)))) . T) (((-419 (-968 |#1|))) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-873)) . T)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) +(|has| |#1| (-373)) +(-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))) +(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) +(|has| |#1| (-373)) +(|has| |#1| (-15 * (|#1| (-782) |#1|))) +((((-575)) . T)) +((((-575)) . T)) +((((-1159 |#2| (-418 (-967 |#1|)))) . T) (((-418 (-967 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (($) . T)) (((|#1|) . T)) -((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) -((((-874)) . T)) +((((-1252 (-575)) $) . T) (((-575) |#1|) . T)) +((((-873)) . T)) (((|#2|) . T)) -(-3766 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((($) |has| |#1| (-568)) (((-576)) . T)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) -((((-1278 |#1| |#2| |#3|)) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1282 |#2|)) . T) (((-1278 |#1| |#2| |#3|)) . T) (((-1250 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) -(((|#1|) . T)) -((((-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) -(((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -(-3766 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($ $) |has| |#1| (-568)) ((|#1| |#1|) . T)) -((($ (-1195)) |has| (-419 |#2|) (-914 (-1195)))) -(((#0=(-711) (-1191 #0#)) . T)) -((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-874)) . T) (((-1286 |#4|)) . T)) -((((-874)) . T) (((-1286 |#3|)) . T)) -((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) . T)) -((((-874)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) +(-3765 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +((((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) +((($) |has| |#1| (-567)) (((-575)) . T)) +(|has| |#2| (-804)) +(|has| |#2| (-804)) +((((-1277 |#1| |#2| |#3|)) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-575)) . T) ((|#1|) |has| |#1| (-174))) +((((-1281 |#2|)) . T) (((-1277 |#1| |#2| |#3|)) . T) (((-1249 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T)) +(((|#1|) . T)) +((((-1194)) -12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066)))) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(-12 (|has| |#1| (-373)) (|has| |#2| (-831))) +(-3765 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567))) +(((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))) ((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-567)))) +((($ $) |has| |#1| (-567)) ((|#1| |#1|) . T)) +((($ (-1194)) -3765 (|has| (-418 |#2|) (-913 (-1194))) (|has| (-418 |#2|) (-915 (-1194))))) +(((#0=(-710) (-1190 #0#)) . T)) +((((-592 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-873)) . T) (((-1285 |#4|)) . T)) +((((-873)) . T) (((-1285 |#3|)) . T)) +((((-592 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +((($) . T) (((-418 (-575))) . T)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567)))) +((($) |has| |#1| (-567)) ((|#1|) . T)) +((((-873)) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) ((($) . T)) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1278 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#3|) |has| |#3| (-1067))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(|has| (-1112 |#1|) (-1118)) -(((|#2| (-831 |#1|)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((#1=(-1277 |#1| |#2| |#3|) #1#) |has| |#1| (-373)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) . T)) +(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373)))) +(((|#3|) |has| |#3| (-1066))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575))))) +(|has| (-1111 |#1|) (-1117)) +(((|#2| (-830 |#1|)) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T)) +((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) (((|#2|) . T) ((|#6|) . T)) -(|has| |#1| (-374)) -((((-576)) . T) ((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) +(|has| |#1| (-373)) +((((-575)) . T) ((|#2|) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) (((|#2|) . T) ((|#6|) . T)) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T)) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((#0=(-1100) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-874)) . T)) -((((-926 |#1|)) . T)) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) . T)) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-418 $) (-418 $)) |has| |#1| (-567)) (($ $) . T) ((|#1| |#1|) . T)) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((#0=(-1099) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-873)) . T)) +((((-925 |#1|)) . T)) ((((-145)) . T)) ((((-145)) . T)) -((((-246 |#1| |#2|) |#2|) . T)) -((((-874)) . T)) -(((|#3|) |has| |#3| (-1118)) (((-576)) -12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (((-419 (-576))) -12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118)))) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) +((((-245 |#1| |#2|) |#2|) . T)) +((((-873)) . T)) +(((|#3|) |has| |#3| (-1117)) (((-575)) -12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (((-418 (-575))) -12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117)))) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) (((|#1|) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118)))) -((((-548)) |has| |#1| (-626 (-548)))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117)))) +((((-547)) |has| |#1| (-625 (-547)))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) . T)) -(|has| |#1| (-374)) -((((-1200)) . T)) +((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T)) +(|has| |#1| (-373)) +((((-1199)) . T)) (((|#1|) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-859))) ((($) . T)) -((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(|has| |#2| (-832)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-860)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-874)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) +((((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((|#1| |#1|) |has| |#1| (-318 |#1|))) +(|has| |#2| (-831)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-859)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-873)) . T)) +((((-547)) |has| |#1| (-625 (-547)))) (((|#1| |#2|) . T)) -((((-1195)) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) -((((-1177) |#1|) . T)) -(((|#1| |#2| |#3| (-543 |#3|)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((((-874)) . T)) -((((-419 (-576))) . T)) -(((|#1|) . T)) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -((((-419 (-576))) . T)) -(|has| |#1| (-379)) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -((((-576)) . T)) -((((-576)) . T)) -(((|#1|) . T) (((-576)) . T)) -(-3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -((((-874)) . T)) -((((-874)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1067))) -((((-1195) #0=(-882 |#1|)) |has| #0# (-526 (-1195) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) -(((|#1|) . T)) -((((-576) |#4|) . T)) -((((-576) |#3|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -(|has| |#2| (-1067)) -((((-1272 |#1| |#2| |#3| |#4|)) . T)) -((((-419 (-576))) . T) (((-576)) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) +((((-1194)) -12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))))) +((((-1176) |#1|) . T)) +(((|#1| |#2| |#3| (-542 |#3|)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +((((-873)) . T)) +((((-418 (-575))) . T)) +(((|#1|) . T)) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +((((-418 (-575))) . T)) +(|has| |#1| (-378)) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +((((-575)) . T)) +((((-575)) . T)) +(((|#1|) . T) (((-575)) . T)) +(-3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +((((-873)) . T)) +((((-873)) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) +((((-1194) #0=(-881 |#1|)) |has| #0# (-525 (-1194) #0#)) ((#0# #0#) |has| #0# (-318 #0#))) +(((|#1|) . T)) +((((-575) |#4|) . T)) +((((-575) |#3|) . T)) +(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575)))) +(|has| |#2| (-1066)) +((((-1271 |#1| |#2| |#3| |#4|)) . T)) +((((-418 (-575))) . T) (((-575)) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-576)) . T)) -((((-576)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-576)) -3766 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067))) ((|#2|) |has| |#2| (-1118)) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((($) . T) (((-419 (-576))) . T)) -(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576))))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -(((|#1|) |has| |#1| (-568))) -((((-576) |#4|) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((((-576) |#3|) . T)) -((((-874)) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((((-874)) . T)) -(-3766 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))) (|has| |#1| (-360))) -((((-576) |#1|) . T)) -(((|#1|) . T)) -((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) +((((-575)) . T)) +((((-575)) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) +((((-575)) -3765 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066))) ((|#2|) |has| |#2| (-1117)) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-418 (-575))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +((($) . T) (((-418 (-575))) . T)) +(((#0=(-575) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575))))) +(((|#1|) |has| |#1| (-567))) +((((-575) |#4|) . T)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +((((-575) |#3|) . T)) +((((-873)) . T)) +((((-575)) . T) (((-418 (-575))) . T) (($) . T)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567)))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) +((((-873)) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-359))) +((((-575) |#1|) . T)) +(((|#1|) . T)) +((($ $) . T) ((#0=(-875 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1195) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1194) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3766 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(((|#2| |#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067)))) +((($) -3765 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2|) |has| |#2| (-174)) (((-418 (-575))) |has| |#2| (-38 (-418 (-575))))) +(((|#2| |#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066)))) ((((-145)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-379)) (|has| |#2| (-379))) -((((-874)) . T)) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067)))) +(-12 (|has| |#1| (-378)) (|has| |#2| (-378))) +((((-873)) . T)) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066)))) (((|#1|) . T)) -((((-874)) . T)) -(|has| |#1| (-1118)) +((((-873)) . T)) +(|has| |#1| (-1117)) (|has| $ (-148)) -((((-1200)) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) -((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) -((($) -3766 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -(|has| |#1| (-374)) -(-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-374)) -(|has| |#1| (-15 * (|#1| (-783) |#1|))) -(((|#1|) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -((((-874)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(-3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -(((|#2| (-543 (-876 |#1|))) . T)) -((((-874)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1|) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -((((-593 |#1|)) . T)) +((((-1199)) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#2|) |has| |#1| (-373)) (((-575)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) . T)) +((((-1252 (-575)) $) . T) (((-575) |#1|) . T)) +((($) -3765 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +(|has| |#1| (-373)) +(-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))) +(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) +(|has| |#1| (-373)) +(|has| |#1| (-15 * (|#1| (-782) |#1|))) +(((|#1|) . T)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +((((-873)) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(-3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +(((|#2| (-542 (-875 |#1|))) . T)) +((((-873)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1|) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +((((-592 |#1|)) . T)) ((($) . T)) -((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) +((((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) (((|#1|) . T) (($) . T)) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-1193 |#1| |#2| |#3|)) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1282 |#2|)) . T) (((-1193 |#1| |#2| |#3|)) . T) (((-1186 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T)) +((((-1192 |#1| |#2| |#3|)) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-575)) . T) ((|#1|) |has| |#1| (-174))) +((((-1281 |#2|)) . T) (((-1192 |#1| |#2| |#3|)) . T) (((-1185 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) (((|#4|) . T)) (((|#3|) . T)) -((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) -((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) -(|has| |#2| (-239)) +((((-881 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T)) +((((-1194)) -12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066)))) +(-3765 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) -((((-876 |#1|)) . T)) -((((-1195)) |has| |#1| (-914 (-1195))) ((|#3|) . T)) +((((-875 |#1|)) . T)) +((((-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) ((|#3|) . T)) ((($) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-576)) . T) (((-419 (-576))) -3766 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576))))) ((|#2|) . T) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) (((-876 |#1|)) . T)) -((((-576) |#2|) . T)) -((((-874)) . T)) -((($) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) . T)) -((((-874)) . T)) -((((-874)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-575)) . T) (((-418 (-575))) -3765 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575))))) ((|#2|) . T) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((-875 |#1|)) . T)) +((((-575) |#2|) . T)) +((((-873)) . T)) +((($) . T) (((-575)) . T) ((|#2|) . T) (((-418 (-575))) . T)) +((((-873)) . T)) +((((-873)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1193 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-874)) . T)) -(((|#2|) |has| |#2| (-1067))) -(|has| |#1| (-1118)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))) ((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-567)))) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((#1=(-1192 |#1| |#2| |#3|) #1#) |has| |#1| (-373)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373)))) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575))))) +((((-873)) . T)) +(((|#2|) |has| |#2| (-1066))) +(|has| |#1| (-1117)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) . T)) +(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((((-874)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((($ (-876 |#1|)) . T)) +(((#0=(-418 (-575)) #0#) |has| |#2| (-38 (-418 (-575)))) ((|#2| |#2|) . T) (($ $) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((((-873)) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((($ (-875 |#1|)) . T)) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) ((($ |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((($ (-1195)) |has| |#1| (-914 (-1195))) (($ (-1100)) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((($ (-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ (-1099)) . T)) ((($) . T)) -(((#0=(-1100) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ (-1195)) |has| |#1| (-914 (-1195))) (($ (-1106 (-1195))) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1118)) (((-576)) -12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(((|#2|) |has| |#1| (-374))) -((((-576) |#1|) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -((((-874)) . T)) -((((-419 |#2|) |#3|) . T)) -(((|#1| (-419 (-576))) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-874)) . T) (((-1200)) . T)) +(((#0=(-1099) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ (-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ (-1105 (-1194))) . T)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1117)) (((-575)) -12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (($) . T)) +(((|#2|) |has| |#1| (-373))) +(((|#2|) |has| |#1| (-373))) +((((-575) |#1|) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-575)) . T)) +((((-873)) . T)) +((((-418 |#2|) |#3|) . T)) +(((|#1| (-418 (-575))) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-418 (-575))) . T) (($) . T)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +((((-873)) . T) (((-1199)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1200)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#2| |#3| (-876 |#1|)) . T)) -((((-1195)) |has| |#2| (-914 (-1195)))) -(((|#1|) . T)) -(((|#1| (-543 |#2|) |#2|) . T)) -(((|#1| (-783) (-1100)) . T)) -((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(((|#1| (-543 (-1106 (-1195))) (-1106 (-1195))) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) +((((-1199)) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-418 (-575))) . T) (($) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-418 (-575))) . T) (($) . T)) +(((|#2| |#3| (-875 |#1|)) . T)) +((((-1194)) |has| |#2| (-913 (-1194)))) +(((|#1|) . T)) +(((|#1| (-542 |#2|) |#2|) . T)) +(((|#1| (-782) (-1099)) . T)) +((((-418 (-575))) |has| |#2| (-373)) (($) . T)) +(((|#1| (-542 (-1105 (-1194))) (-1105 (-1194))) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (((|#2|) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) (((|#1|) . T)) (((|#2|) . T)) -((((-1017 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -3766 (|has| (-1017 |#1|) (-1056 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) -(|has| |#2| (-1067)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((((-906 |#1|)) . T) (((-831 |#1|)) . T)) -((((-831 (-1195))) . T)) +((((-1016 |#1|)) . T) (((-575)) . T) ((|#1|) . T) (((-418 (-575))) -3765 (|has| (-1016 |#1|) (-1055 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) +(|has| |#2| (-1066)) +(|has| |#2| (-804)) +(|has| |#2| (-804)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +((((-905 |#1|)) . T) (((-830 |#1|)) . T)) +((((-830 (-1194))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-656 (-937))) . T) (((-874)) . T)) -((((-419 (-576))) . T) (((-874)) . T)) -((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) -(|has| |#1| (-239)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((($ $) . T) (((-576) |#1|) . T)) +(((|#2|) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-655 (-936))) . T) (((-873)) . T)) +((((-418 (-575))) . T) (((-873)) . T)) +((((-547)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T)) +(|has| |#1| (-238)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((($ $) . T) (((-575) |#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-1278 |#1| |#2| |#3|) $) -12 (|has| (-1278 |#1| |#2| |#3|) (-296 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) -((($ $) . T) (((-419 (-576)) |#1|) . T)) -((((-783) |#1|) . T) (($ $) . T)) -(((|#1|) . T)) -((($ (-1195)) . T)) -((((-1158 |#1| |#2|)) |has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) -(((|#2|) . T) (((-576)) |has| |#2| (-1056 (-576))) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576))))) -(((|#1|) . T)) -((((-1195)) -3766 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195)))))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-1277 |#1| |#2| |#3|) $) -12 (|has| (-1277 |#1| |#2| |#3|) (-295 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373))) (($ $) . T) (((-575) |#1|) . T)) +((($ $) . T) (((-418 (-575)) |#1|) . T)) +((((-782) |#1|) . T) (($ $) . T)) +(((|#1|) . T)) +((($ (-1194)) . T)) +((((-1157 |#1| |#2|)) |has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) +(((|#3| |#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) +(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) +(((|#2|) . T) (((-575)) |has| |#2| (-1055 (-575))) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575))))) +(((|#1|) . T)) +((((-1194)) -3765 (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-915 (-1194)))))) (((|#1| |#2|) . T)) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) (((|#2|) . T)) -((((-874)) -3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) (((-1286 |#2|)) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#1|) . T) (((-576)) . T) (($) . T)) +((((-873)) -3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-624 (-873))) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) (((-1285 |#2|)) . T)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#1|) . T) (((-575)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-576)) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) -(|has| |#1| (-1118)) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-576) (-145)) . T)) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) -((((-576)) . T)) -(((|#1|) . T) ((|#2|) . T) (((-576)) . T)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-576)) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) -(((|#1|) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) -((($) . T) (((-576)) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -(((|#2|) |has| |#1| (-374))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) +((((-575)) . T)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) +(|has| |#1| (-1117)) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-575) (-145)) . T)) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) +((((-575)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-575)) . T)) +((($) |has| |#1| (-567)) ((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-575)) . T)) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) +(((|#1|) . T)) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) +((($) . T) (((-575)) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-575)) . T)) +(((|#2|) |has| |#1| (-373))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-1200)) . T)) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1| (-543 #0=(-1195)) #0#) . T)) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-1199)) . T)) +((((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(((|#1| (-542 #0=(-1194)) #0#) . T)) (((|#1|) . T) (($) . T)) -((((-576)) . T)) -(((#0=(-419 (-968 |#1|)) #0#) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(|has| |#1| (-1118)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(|has| |#1| (-1118)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118)))) -((((-548)) |has| |#1| (-626 (-548)))) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) +((((-575)) . T)) +(((#0=(-418 (-967 |#1|)) #0#) . T)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(|has| |#1| (-1117)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(|has| |#1| (-1117)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117)))) +((((-547)) |has| |#1| (-625 (-547)))) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(|has| (-419 |#2|) (-239)) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-419 (-968 |#1|))) . T)) +(-3765 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-237))) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575))))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-418 (-967 |#1|))) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-576)) . T) (($) . T)) +(((|#1|) . T) (((-575)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-1195)) |has| |#2| (-914 (-1195)))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -((((-874)) . T)) -((((-874)) . T)) -((((-1272 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1067)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) +((((-1194)) -3765 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194))))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +((((-873)) . T)) +((((-873)) . T)) +((((-1271 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1066)) (((-575)) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) (((|#1| |#2|) . T)) -(|has| |#3| (-1067)) -(|has| |#3| (-805)) -(|has| |#3| (-805)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(|has| |#3| (-1066)) +(|has| |#3| (-804)) +(|has| |#3| (-804)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#2|) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) (((|#2|) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -(((|#1| (-1175 |#1|)) |has| |#1| (-860))) -((((-576) |#2|) . T)) -(|has| |#1| (-1118)) -(((|#1|) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-1170))) -((((-419 (-576))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-1118)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +(((|#1| (-1174 |#1|)) |has| |#1| (-859))) +((((-575) |#2|) . T)) +(|has| |#1| (-1117)) +(((|#1|) . T)) +(-12 (|has| |#1| (-373)) (|has| |#2| (-1169))) +((((-418 (-575))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((($) . T) (((-418 (-575))) . T)) +(|has| |#1| (-1117)) (((|#2|) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576))))) -(((|#4|) -3766 (|has| |#4| (-174)) (|has| |#4| (-374)))) -(((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)))) -((((-874)) . T)) -(((|#1|) . T)) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-925))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-925))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) +((((-547)) |has| |#2| (-625 (-547))) (((-904 (-389))) |has| |#2| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#2| (-625 (-904 (-575))))) +(((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-373)))) +(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)))) +((((-873)) . T)) +(((|#1|) . T)) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-924))) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-924))) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) (((|#2|) . T)) (((|#2|) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-925))) -((($ $) . T) ((#0=(-1195) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-830 (-1195)) |#1|) . T) ((#1# $) . T)) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-925))) -((((-576) |#2|) . T)) -((((-874)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067))) (($) |has| |#3| (-1067)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) -((((-576) |#1|) . T)) -(|has| (-419 |#2|) (-148)) -(|has| (-419 |#2|) (-146)) -(((|#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|)))) -(|has| |#1| (-38 (-419 (-576)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((((-874)) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-874)) . T)) -((((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) . T)) -(|has| |#1| (-38 (-419 (-576)))) -((((-400) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#2| (-1170)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-874)) . T) (((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-1235)) . T) (((-874)) . T) (((-1200)) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-924))) +((($ $) . T) ((#0=(-1194) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-829 (-1194)) |#1|) . T) ((#1# $) . T)) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-924))) +((((-575) |#2|) . T)) +((((-873)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066))) (($) |has| |#3| (-1066)) (((-575)) -12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) +((((-575) |#1|) . T)) +(|has| (-418 |#2|) (-148)) +(|has| (-418 |#2|) (-146)) +(((|#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-318 |#2|)))) +(|has| |#1| (-38 (-418 (-575)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-418 (-575))) . T)) +((((-873)) . T)) +(|has| |#1| (-567)) +(|has| |#1| (-567)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-873)) . T)) +((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T)) +(|has| |#1| (-38 (-418 (-575)))) +((((-399) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#2| (-1169)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +((((-873)) . T) (((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-1234)) . T) (((-873)) . T) (((-1199)) . T)) ((((-117 |#1|)) . T)) -((((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -(((|#1|) . T)) -((((-400) (-1177)) . T)) -(|has| |#1| (-568)) -((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) +((((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +(((|#1|) . T)) +((((-399) (-1176)) . T)) +(|has| |#1| (-567)) +((((-1252 (-575)) $) . T) (((-575) |#1|) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) (((|#2|) . T)) -((((-783) (-1200)) . T)) -((((-874)) . T)) -((((-831 |#1|)) . T)) +((((-782) (-1199)) . T)) +((((-873)) . T)) +((((-830 |#1|)) . T)) ((($) . T)) (((|#2|) |has| |#2| (-174))) -((((-1195) (-52)) . T)) +((((-1194) (-52)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-568)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-567)) (((|#1|) |has| |#1| (-174))) -((((-656 |#1|)) . T)) -((((-874)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(((|#2|) |has| |#2| (-319 |#2|))) -(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1191 |#1|)) . T)) +((((-655 |#1|)) . T)) +((((-873)) . T)) +((((-547)) |has| |#1| (-625 (-547)))) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(((|#2|) |has| |#2| (-318 |#2|))) +(((#0=(-575) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1190 |#1|)) . T)) (|has| $ (-148)) (((|#2|) . T)) ((($) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -(|has| |#2| (-379)) -(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) +(|has| |#2| (-378)) +(((#0=(-575) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +((((-575)) . T) (((-418 (-575))) . T) (($) . T)) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174))) (((|#1| |#2|) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1|) . T)) +((((-575)) . T) (((-418 (-575))) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((($) . T) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((((-874)) . T)) -((((-1193 |#1| |#2| |#3|) $) -12 (|has| (-1193 |#1| |#2| |#3|) (-296 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) -((($ $) . T) (((-419 (-576)) |#1|) . T)) -((((-783) |#1|) . T) (($ $) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((#0=(-1278 |#1| |#2| |#3|) #0#) -12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1195) #0#) -12 (|has| (-1278 |#1| |#2| |#3|) (-526 (-1195) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -(-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-576)) . T) (($) . T)) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) . T) (((-576)) . T) ((|#2|) . T)) -((((-576)) . T) (($) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-419 (-576))) . T) (((-576)) . T)) -((((-576) (-145)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-547)) |has| |#1| (-625 (-547)))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((($) . T) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T) (((-575)) |has| |#1| (-650 (-575)))) +((((-873)) . T)) +((((-1192 |#1| |#2| |#3|) $) -12 (|has| (-1192 |#1| |#2| |#3|) (-295 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373))) (($ $) . T) (((-575) |#1|) . T)) +((($ $) . T) (((-418 (-575)) |#1|) . T)) +((((-782) |#1|) . T) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((#0=(-1277 |#1| |#2| |#3|) #0#) -12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373))) (((-1194) #0#) -12 (|has| (-1277 |#1| |#2| |#3|) (-525 (-1194) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) +(-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-575)) . T) (($) . T)) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((($) . T) (((-575)) . T) ((|#2|) . T)) +((((-575)) . T) (($) . T) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575))))) +((((-418 (-575))) . T) (((-575)) . T)) +((((-575) (-145)) . T)) ((((-145)) . T)) (((|#1|) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) ((((-112)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-227)) . #0=(|has| |#1| (-1040))) (((-390)) . #0#)) -((((-874)) . T)) -(((|#1|) . T)) -((((-1200)) . T)) -(|has| |#1| (-832)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-568))) -(|has| |#1| (-568)) -(|has| |#1| (-862)) -((($) . T) (((-576)) . T) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) -(|has| |#1| (-925)) -(((|#1|) . T)) -(|has| |#1| (-1118)) -((((-874)) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) -((((-576) (-145)) . T) (((-1253 (-576)) $) . T)) +((((-547)) |has| |#1| (-625 (-547))) (((-227)) . #0=(|has| |#1| (-1039))) (((-389)) . #0#)) +((((-873)) . T)) +(((|#1|) . T)) +((((-1199)) . T)) +(|has| |#1| (-831)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#2|) |has| |#1| (-373)) ((|#1|) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#2|) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373)))) +(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-567))) +(|has| |#1| (-567)) +(|has| |#1| (-861)) +((($) . T) (((-575)) . T) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#1|) . T) (((-575)) . T)) +(|has| |#1| (-924)) +(((|#1|) . T)) +(|has| |#1| (-1117)) +((((-873)) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-567))) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +(((|#1| (-1285 |#1|) (-1285 |#1|)) . T)) +((((-575) (-145)) . T) (((-1252 (-575)) $) . T)) ((($) . T)) -(|has| |#4| (-1067)) -(|has| |#3| (-1067)) -((((-1200)) . T) (((-874)) . T)) -((((-1200)) . T)) -((((-874)) . T)) -(|has| |#1| (-1118)) -(((|#1| (-989)) . T)) +(|has| |#4| (-1066)) +(|has| |#3| (-1066)) +((((-1199)) . T) (((-873)) . T)) +((((-1199)) . T)) +((((-873)) . T)) +(|has| |#1| (-1117)) +(((|#1| (-988)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) -(-12 (|has| |#1| (-485)) (|has| |#2| (-485))) -(|has| |#2| (-1067)) -((($) . T) (((-576)) . T) (((-882 |#1|)) . T) (((-419 (-576))) . T)) -(((|#1|) . T)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) +(|has| |#2| (-804)) +(|has| |#2| (-804)) +(-12 (|has| |#1| (-484)) (|has| |#2| (-484))) +(|has| |#2| (-1066)) +((($) . T) (((-575)) . T) (((-881 |#1|)) . T) (((-418 (-575))) . T)) +(((|#1|) . T)) +(|has| |#2| (-804)) +(|has| |#2| (-804)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(-3766 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(-12 (|has| |#1| (-804)) (|has| |#2| (-804))) +(-12 (|has| |#1| (-804)) (|has| |#2| (-804))) +(-3765 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737)))) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-576)) . T)) +(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-575)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-874)) . T)) -(|has| |#1| (-239)) -(|has| |#1| (-360)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -(|has| |#1| (-840)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T)) -(|has| |#1| (-1118)) -(((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((($) |has| |#1| (-568))) -(((|#2|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1118))) -(((|#3|) |has| |#3| (-1118))) -(|has| |#3| (-379)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-576)) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -((((-874)) . T)) -((((-874)) . T)) +((((-873)) . T)) +(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) +(|has| |#1| (-359)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-418 (-575))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-418 (-575))) . T)) +((($) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) . T)) +(|has| |#1| (-839)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T)) +(|has| |#1| (-1117)) +(((|#1| $) |has| |#1| (-295 |#1| |#1|))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) +((($) |has| |#1| (-567))) +(((|#2|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1117))) +(((|#3|) |has| |#3| (-1117))) +(|has| |#3| (-378)) +((($) |has| |#1| (-567)) ((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-575)) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174))) +((((-873)) . T)) +((((-873)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) (((|#1| |#1|) |has| |#1| (-174))) -(|has| |#2| (-374)) +(|has| |#2| (-373)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -((((-419 (-576))) . T) (((-576)) . T)) -((($) |has| |#2| (-239))) -((($ (-876 |#1|)) . T)) -((($ (-1195)) |has| |#1| (-914 (-1195))) (($ |#3|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((($) . T) (((-576)) . T)) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) +((((-418 (-575))) . T) (((-575)) . T)) +((($) -3765 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($ (-875 |#1|)) . T)) +((($ (-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ |#3|) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T)) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575))))) +((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T)) +((($) . T) (((-575)) . T)) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) ((((-145)) . T)) (((|#1|) . T)) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) +(((|#1|) . T)) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) ((((-145)) . T)) ((((-145)) . T)) -((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#) ((|#2|) . T) (((-576)) . T)) +((((-418 (-575))) . #0=(|has| |#2| (-373))) (($) . #0#) ((|#2|) . T) (((-575)) . T)) (((|#1| |#2| |#3|) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) (((|#1|) |has| |#1| (-174))) (|has| $ (-148)) (|has| $ (-148)) -((((-1200)) . T)) +((((-1199)) . T)) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1118)) -((((-874)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1067)) (|has| |#1| (-1130))) -((($ $) |has| |#1| (-296 $ $)) ((|#1| $) |has| |#1| (-296 |#1| |#1|))) -(((|#1| (-419 (-576))) . T)) -(((|#1|) . T)) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-1195)) . T)) -(|has| |#1| (-568)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -(|has| |#1| (-568)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-874)) . T)) +(|has| |#1| (-1117)) +((((-873)) . T)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-484)) (|has| |#1| (-567)) (|has| |#1| (-1066)) (|has| |#1| (-1129))) +((($ $) |has| |#1| (-295 $ $)) ((|#1| $) |has| |#1| (-295 |#1| |#1|))) +(((|#1| (-418 (-575))) . T)) +(((|#1|) . T)) +((((-418 (-575))) . T) (((-575)) . T) (($) . T)) +((((-1194)) . T)) +(|has| |#1| (-567)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +(|has| |#1| (-567)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +((((-873)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-576) (-419 (-968 |#1|))) . T)) +((((-575) (-418 (-967 |#1|))) . T)) (((|#2|) . T) (($) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(((|#2| (-246 (-2872 |#1|) (-783)) (-876 |#1|)) . T)) -(((|#1| (-543 |#3|) |#3|) . T)) +(((|#2| (-245 (-2871 |#1|) (-782)) (-875 |#1|)) . T)) +(((|#1| (-542 |#3|) |#3|) . T)) (|has| |#1| (-146)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-374)) (($ $) . T)) -((((-882 |#1|)) . T)) +(((#0=(-418 (-575)) #0#) |has| |#2| (-373)) (($ $) . T)) +((((-881 |#1|)) . T)) +((((-881 |#1|)) . T)) (|has| |#1| (-148)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +((((-873)) . T)) (|has| |#1| (-146)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((((-874)) . T)) -((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -(-3766 (|has| |#1| (-360)) (|has| |#1| (-379))) -((((-1160 |#2| |#1|)) . T) ((|#1|) . T)) +((((-418 (-575))) |has| |#2| (-373)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +(-3765 (|has| |#1| (-359)) (|has| |#1| (-378))) +((((-1159 |#2| |#1|)) . T) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1067))) -(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(|has| |#3| (-805)) -(|has| |#3| (-805)) -((((-874)) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) +(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(|has| |#3| (-804)) +(|has| |#3| (-804)) +((((-873)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-711)) . T)) -(|has| |#2| (-1067)) -(|has| |#1| (-568)) +((((-710)) . T)) +(|has| |#2| (-1066)) +(|has| |#1| (-567)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -1144,618 +1151,624 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-1195) (-52)) . T)) -((((-1022 10)) . T) (((-419 (-576))) . T) (((-874)) . T)) -((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-1194) (-52)) . T)) +((((-1021 10)) . T) (((-418 (-575))) . T) (((-873)) . T)) +((((-547)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T)) (((|#1|) . T)) -((((-1022 16)) . T) (((-419 (-576))) . T) (((-874)) . T)) -((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) -(((|#1| (-576)) . T)) -((((-874)) . T)) -((((-874)) . T)) +((((-1021 16)) . T) (((-418 (-575))) . T) (((-873)) . T)) +((((-547)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T)) +(((|#1| (-575)) . T)) +((((-873)) . T)) +((((-873)) . T)) (((|#1| |#2|) . T)) -((((-1195)) |has| |#2| (-914 (-1195))) (((-1100)) . T)) +((((-1194)) -3765 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))) (((-1099)) . T)) (((|#1|) . T)) -(((|#3|) . T) (((-624 $)) . T)) -(((|#1| (-419 (-576))) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) +(((|#3|) . T) (((-623 $)) . T)) +(((|#1| (-418 (-575))) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-576)) -3766 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067))) ((|#2|) |has| |#2| (-1118)) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-575)) -3765 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066))) ((|#2|) |has| |#2| (-1117)) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -(((#0=(-1193 |#1| |#2| |#3|) #0#) -12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1195) #0#) -12 (|has| (-1193 |#1| |#2| |#3|) (-526 (-1195) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -((((-874)) . T)) -((((-874)) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +(((#0=(-1192 |#1| |#2| |#3|) #0#) -12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373))) (((-1194) #0#) -12 (|has| (-1192 |#1| |#2| |#3|) (-525 (-1194) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) +((((-873)) . T)) +((((-873)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) |has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))))) -((((-874)) . T)) +(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))))) +((((-873)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-1195) (-52)) . T)) -((((-1195)) |has| |#1| (-914 (-1195)))) +((($) . T) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) +((((-1194) (-52)) . T)) +((((-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194))))) (((|#3|) . T)) -((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-840)) -((($) . T) (((-576)) . T) ((|#1|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| (-1112 |#1|) (-1118)) -(((|#2| |#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067)))) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)))) -((((-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067)))) -((((-576)) . T)) -((((-1200)) . T)) -((((-783)) . T)) +((($ $) . T) ((#0=(-875 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-839)) +((($) . T) (((-575)) . T) ((|#1|) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T)) +((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(|has| (-1111 |#1|) (-1117)) +(((|#2| |#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066)))) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)))) +((((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066)))) +((((-575)) . T)) +((((-1199)) . T)) +((((-782)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-568)) -((((-576)) . T)) +(|has| |#1| (-567)) +((((-575)) . T)) (((|#2|) . T)) -((((-874)) . T)) -(((|#1| (-419 (-576)) (-1100)) . T)) +((((-873)) . T)) +(((|#1| (-418 (-575)) (-1099)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#1| (-568)) -((((-576)) . T)) +(|has| |#1| (-567)) +((((-575)) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) -((((-419 (-576))) . T) (($) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-568))) -((($) . T) (((-419 (-576))) . T)) -((((-1200)) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-576)) . T)) +((((-418 (-575))) . T) (($) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-567))) +((($) . T) (((-418 (-575))) . T)) +((((-1199)) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-567))) +((((-575)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((($ (-1195)) -3766 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195)))))) -((((-576)) . T)) -((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -((((-905 (-576))) . T) (((-905 (-390))) . T) (((-548)) . T) (((-1195)) . T)) -((((-874)) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) +((($ (-1194)) -3765 (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-915 (-1194)))))) +((((-575)) . T)) +((($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +((((-904 (-575))) . T) (((-904 (-389))) . T) (((-547)) . T) (((-1194)) . T)) +((((-873)) . T)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) ((($) . T)) (((|#1|) . T)) -((((-874)) . T)) -(-3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) +((((-873)) . T)) +(-3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3766 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-882 |#1|)) . T)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1067))) -(|has| |#2| (-1170)) -(((#0=(-52)) . T) (((-2 (|:| -4169 (-1195)) (|:| -3180 #0#))) . T)) +((($) -3765 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2|) |has| |#2| (-174)) (((-418 (-575))) |has| |#2| (-38 (-418 (-575))))) +((((-881 |#1|)) . T)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) +(-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) +(|has| |#2| (-1169)) +(((#0=(-52)) . T) (((-2 (|:| -4169 (-1194)) (|:| -3179 #0#))) . T)) (((|#1| |#2|) . T)) -(|has| |#3| (-1067)) -(((|#1| (-576) (-1100)) . T)) -((((-876 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1| (-419 (-576)) (-1100)) . T)) -((((-1195)) . T)) -((($) -3766 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((($) |has| (-419 |#2|) (-239))) -((((-576) |#2|) . T)) -((($ (-1195)) |has| |#2| (-914 (-1195)))) +(|has| |#3| (-1066)) +(((|#1| (-575) (-1099)) . T)) +((((-875 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1| (-418 (-575)) (-1099)) . T)) +((((-1194)) . T)) +((($) -3765 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) +((($) -3765 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-237)))) +((((-575) |#2|) . T)) +((($ (-1194)) -3765 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194))))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-379)) +(|has| |#2| (-378)) (((|#1| |#1|) . T)) -((((-874)) . T)) -((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(-12 (|has| |#1| (-379)) (|has| |#2| (-379))) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -(((|#1|) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) -(|has| |#1| (-360)) -((((-576)) -3766 (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (|has| |#3| (-1067))) ((|#3|) |has| |#3| (-1118)) (((-419 (-576))) -12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118)))) -(((|#1|) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-873)) . T)) +((((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((|#1| |#1|) |has| |#1| (-318 |#1|))) +(-12 (|has| |#1| (-378)) (|has| |#2| (-378))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) +(((|#1|) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) +(|has| |#1| (-359)) +((((-575)) -3765 (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (|has| |#3| (-1066))) ((|#3|) |has| |#3| (-1117)) (((-418 (-575))) -12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) (((|#4|) . T)) -(((|#4|) . T) (((-874)) . T)) -(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -3766 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1067))) (($) |has| |#4| (-1067))) -(((|#2|) . T) (((-576)) . T) ((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1067))) (($) |has| |#3| (-1067))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) -(|has| |#1| (-568)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-874)) . T)) +(((|#4|) . T) (((-873)) . T)) +(((|#3|) . T) ((|#2|) . T) (((-575)) . T) ((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-737)) (|has| |#4| (-1066))) (($) |has| |#4| (-1066))) +(((|#2|) . T) (((-575)) . T) ((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737)) (|has| |#3| (-1066))) (($) |has| |#3| (-1066))) +(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) +(|has| |#1| (-567)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-873)) . T)) (((|#1| |#2|) . T)) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-925))) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-925))) -((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-924))) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-924))) +((((-418 (-575))) . T) (((-575)) . T)) +((((-575)) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) ((($) . T)) -((((-874)) . T)) -(((|#1|) . T)) -((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-874)) . T)) -(((|#3| |#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067)))) -(|has| |#1| (-1040)) -((((-874)) . T)) -(((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067)))) -((((-576) (-112)) . T)) -((((-1200)) . T)) -(((|#1|) |has| |#1| (-319 |#1|))) -((((-1200)) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((((-1195) $) |has| |#1| (-526 (-1195) $)) (($ $) |has| |#1| (-319 $)) ((|#1| |#1|) |has| |#1| (-319 |#1|)) (((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|))) -((((-1195)) |has| |#1| (-914 (-1195)))) -(-3766 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360))) +((((-873)) . T)) +(((|#1|) . T)) +((((-881 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +((((-873)) . T)) +(((|#3| |#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066)))) +(|has| |#1| (-1039)) +((((-873)) . T)) +(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066)))) +((((-575) (-112)) . T)) +((((-1199)) . T)) +(((|#1|) |has| |#1| (-318 |#1|))) +((((-1199)) . T)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +((((-1194) $) |has| |#1| (-525 (-1194) $)) (($ $) |has| |#1| (-318 $)) ((|#1| |#1|) |has| |#1| (-318 |#1|)) (((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|))) +((((-1194)) |has| |#1| (-913 (-1194)))) +(-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (|has| |#1| (-359))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((($) . T)) -((((-400) |#1|) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-360))) -(|has| |#1| (-1118)) -(((|#2|) . T) (((-874)) . T)) -((((-874)) . T)) +((((-399) |#1|) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-359))) +(|has| |#1| (-1117)) +(((|#2|) . T) (((-873)) . T)) +((((-873)) . T)) (((|#2|) . T)) -((((-926 |#1|)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) +((((-925 |#1|)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) (((|#1| |#1|) . T)) -(((#0=(-882 |#1|)) |has| #0# (-319 #0#))) -((((-576)) . T) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1056 (-419 (-576))))) ((|#1|) . T)) +(((#0=(-881 |#1|)) |has| #0# (-318 #0#))) +((((-575)) . T) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-1055 (-418 (-575))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-805)) -(|has| |#2| (-805)) -(((|#1|) . T)) -(-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(|has| |#2| (-1067)) -((($) . T) (((-576)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) +(|has| |#2| (-804)) +(|has| |#2| (-804)) +(((|#1|) . T)) +(-12 (|has| |#1| (-804)) (|has| |#2| (-804))) +(-12 (|has| |#1| (-804)) (|has| |#2| (-804))) +(|has| |#2| (-1066)) +((($) . T) (((-575)) . T) ((|#2|) . T)) +(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1221)) -(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1067))) -(((|#3|) |has| |#3| (-1067))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(|has| |#1| (-374)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -((((-874)) . T)) -((((-874)) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-576) |#3|) . T)) -((((-874)) . T)) -(((|#2|) . T)) -((((-548)) |has| |#3| (-626 (-548)))) -((((-701 |#3|)) . T) (((-874)) . T)) +(|has| |#1| (-1220)) +(((#0=(-575) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T)) +((((-418 (-575))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1066))) +(((|#4|) |has| |#4| (-1066))) +(((|#3|) |has| |#3| (-1066))) +(((|#3|) |has| |#3| (-1066))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +(|has| |#1| (-373)) +((((-575)) . T) (((-418 (-575))) . T) (($) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +((((-873)) . T)) +((((-873)) . T)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T)) +((($ $) . T) ((#0=(-418 (-575)) #0#) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1| |#1|) . T)) +((((-873)) . T)) +(((|#1|) . T)) +((((-547)) |has| |#3| (-625 (-547)))) +((((-700 |#3|)) . T) (((-873)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -((($) . T) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-568))) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +((($) . T) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) +((((-575) |#3|) . T)) +(((|#2|) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((($) . T)) -(((#0=(-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) #0#) |has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))))) +(((#0=(-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) #0#) |has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))))) +((((-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (((-1099)) . T)) ((($) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-1118))) -((((-874)) -3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) (((-1286 |#2|)) . T)) +(((|#2|) |has| |#2| (-1117))) +((((-873)) -3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-624 (-873))) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) (((-1285 |#2|)) . T)) ((($) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1177) (-52)) . T)) +((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-1176) (-52)) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3766 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-874)) . T)) +((($) -3765 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2|) |has| |#2| (-174)) (((-418 (-575))) |has| |#2| (-38 (-418 (-575))))) +((((-873)) . T)) (((|#2|) . T)) -((($) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T)) -((($) . T) (((-576)) . T)) -((((-576) (-145)) . T)) -((((-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T) ((|#1| |#2|) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-874)) . T)) -((((-926 |#1|)) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-860)) -((($) -3766 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -(|has| |#1| (-374)) +((($) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575))))) +((((-575)) |has| #0=(-418 |#2|) (-650 (-575))) ((#0#) . T)) +((($) . T) (((-575)) . T)) +((((-575) (-145)) . T)) +((((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((|#1| |#2|) . T)) +((((-418 (-575))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-873)) . T)) +((((-925 |#1|)) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) +(|has| |#1| (-859)) +((($) -3765 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) +(|has| |#1| (-373)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-860)) -((($) . T) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-1195)) |has| |#1| (-914 (-1195)))) -(|has| |#1| (-860)) -((((-518)) . T)) -(((|#1| (-1195)) . T)) -(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) -((((-874)) . T) (((-1200)) . T)) +(|has| |#1| (-859)) +((($) . T) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) +((((-1194)) |has| |#1| (-913 (-1194)))) +(|has| |#1| (-859)) +((((-517)) . T)) +(((|#1| (-1194)) . T)) +(((|#1| (-1285 |#1|) (-1285 |#1|)) . T)) +((((-873)) . T) (((-1199)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1200)) . T)) -(|has| |#1| (-1118)) -(((|#1| (-1195) (-830 (-1195)) (-543 (-830 (-1195)))) . T)) -((((-419 (-968 |#1|))) . T)) -((((-548)) . T)) -((((-874)) . T)) +((((-1199)) . T)) +(|has| |#1| (-1117)) +(((|#1| (-1194) (-829 (-1194)) (-542 (-829 (-1194)))) . T)) +((((-418 (-967 |#1|))) . T)) +((((-547)) . T)) +((((-873)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T) (((-1253 (-576)) $) . T) ((|#1| |#2|) . T)) +((((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) (((-1252 (-575)) $) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-174))) -(|has| |#2| (-429 |#1|)) -(|has| |#2| (-429 |#1|)) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576))))) -((((-874)) . T)) -((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-518)) . T)) -((((-518)) . T)) -((((-1195)) -12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) -((((-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) -(|has| |#1| (-568)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1067))) -(|has| |#1| (-239)) -((((-882 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#2| (-1067)) -((((-1177) |#1|) . T)) -(|has| |#1| (-1170)) -((((-974 |#1|)) . T)) -(((#0=(-419 (-576)) #0#) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-576))) (((-576)) |has| |#1| (-1056 (-576))) (((-1195)) |has| |#1| (-1056 (-1195))) ((|#1|) . T)) +(|has| |#2| (-428 |#1|)) +(|has| |#2| (-428 |#1|)) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-575)) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-547)) |has| |#1| (-625 (-547))) (((-904 (-389))) |has| |#1| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#1| (-625 (-904 (-575))))) +((((-873)) . T)) +((((-881 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-517)) . T)) +((((-517)) . T)) +((((-1194)) -3765 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) +((((-1194)) -3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) +(|has| |#1| (-567)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) +(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) +((((-881 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#2| (-1066)) +((((-1176) |#1|) . T)) +(|has| |#1| (-1169)) +((((-973 |#1|)) . T)) +(((#0=(-418 (-575)) #0#) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1| |#1|) . T)) +((((-418 (-575))) |has| |#1| (-1055 (-575))) (((-575)) |has| |#1| (-1055 (-575))) (((-1194)) |has| |#1| (-1055 (-1194))) ((|#1|) . T)) ((($) . T)) ((($) . T)) -((((-576) |#2|) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390)))) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-576)) . T)) -((((-656 |#4|)) . T) (((-874)) . T)) -((((-548)) |has| |#4| (-626 (-548)))) -((((-548)) |has| |#4| (-626 (-548)))) -((((-874)) . T) (((-656 |#4|)) . T)) -((($) |has| |#1| (-860))) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -((((-576)) -3766 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067))) ((|#2|) |has| |#2| (-1118)) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) -(((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) -((((-656 |#4|)) . T) (((-874)) . T)) -((((-548)) |has| |#4| (-626 (-548)))) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -(((|#1|) . T)) -((((-1195)) |has| (-419 |#2|) (-914 (-1195)))) +((((-575) |#2|) . T)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T)) +((((-575)) |has| |#1| (-898 (-575))) (((-389)) |has| |#1| (-898 (-389)))) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-575)) . T)) +((((-655 |#4|)) . T) (((-873)) . T)) +((((-547)) |has| |#4| (-625 (-547)))) +((((-547)) |has| |#4| (-625 (-547)))) +((((-873)) . T) (((-655 |#4|)) . T)) +((($) |has| |#1| (-859))) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) (((-575)) . T) (($) . T) ((|#1|) . T)) +((((-575)) -3765 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066))) ((|#2|) |has| |#2| (-1117)) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-655 |#4|)) . T) (((-873)) . T)) +((((-547)) |has| |#4| (-625 (-547)))) +(((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T) (($) . T)) +((((-1194)) |has| (-418 |#2|) (-913 (-1194)))) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) ((($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((($) |has| |#1| (-239))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) ((($) . T)) ((($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) ((($) . T)) ((($) . T)) -((((-874)) -3766 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-874))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1067)) (|has| |#3| (-1118))) (((-1286 |#3|)) . T)) +((((-873)) -3765 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-624 (-873))) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-378)) (|has| |#3| (-737)) (|has| |#3| (-804)) (|has| |#3| (-861)) (|has| |#3| (-1066)) (|has| |#3| (-1117))) (((-1285 |#3|)) . T)) (((|#2|) . T)) -((((-576) |#2|) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(((|#2| |#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067)))) -(((|#2|) . T) (((-576)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T) ((|#2|) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-1177) (-1195) (-576) (-227) (-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-874)) . T)) -((((-576) (-112)) . T)) -(((|#1|) . T)) -((((-874)) . T)) +((((-575) |#2|) . T)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(((|#2| |#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066)))) +(((|#2|) . T) (((-575)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((|#2|) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-1176) (-1194) (-575) (-227) (-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +((((-873)) . T)) +((((-575) (-112)) . T)) +(((|#1|) . T)) +((((-873)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-874)) . T)) -((((-874)) . T)) +((((-873)) . T)) +((((-873)) . T)) ((((-112)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-419 (-576))) . T) (($) . T)) -((((-874)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((($) . T) (((-419 (-576))) . T)) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067)))) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +((((-418 (-575))) . T) (($) . T)) +((((-873)) . T)) +((((-547)) |has| |#1| (-625 (-547)))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((($) . T) (((-418 (-575))) . T)) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066)))) (|has| $ (-148)) -((((-419 |#2|)) . T)) -((((-419 (-576))) |has| #0=(-419 |#2|) (-1056 (-419 (-576)))) (((-576)) |has| #0# (-1056 (-576))) ((#0#) . T)) +((((-418 |#2|)) . T)) +((((-418 (-575))) |has| #0=(-418 |#2|) (-1055 (-418 (-575)))) (((-575)) |has| #0# (-1055 (-575))) ((#0#) . T)) (((|#2| |#2|) . T)) -((((-874)) . T)) +((((-873)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) (|has| |#1| (-148)) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) (|has| |#1| (-148)) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) (|has| |#1| (-148)) (((|#1|) . T)) -(|has| |#2| (-239)) -((((-874)) . T) (((-1200)) . T)) +(|has| |#2| (-238)) +((((-873)) . T) (((-1199)) . T)) (((|#2|) . T)) -((((-1200)) . T)) -((((-1195) (-52)) . T)) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-906 |#1|)) . T) ((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) +((((-1199)) . T)) +((((-1194) (-52)) . T)) +(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-905 |#1|)) . T) ((|#2|) . T) (((-575)) . T) (((-830 |#1|)) . T)) (((|#1| |#1|) . T)) -((((-1195)) |has| |#2| (-914 (-1195)))) +((((-1194)) |has| |#2| (-913 (-1194)))) ((((-130)) . T)) -(-3766 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-914 (-1195)))) -((((-576) (-112)) . T) (((-1253 (-576)) $) . T)) -(|has| |#1| (-568)) +((((-575) (-112)) . T) (((-1252 (-575)) $) . T)) +(|has| |#1| (-567)) (((|#2|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-576)) . T) (((-831 (-1195))) . T)) +(((|#1|) . T) (((-575)) . T) (((-830 (-1194))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) (((|#3|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576))))) -(((|#1|) . T)) -((((-1022 2)) . T) (((-419 (-576))) . T) (((-874)) . T)) -((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-1017 |#1|)) . T) ((|#1|) . T)) -((((-1195)) |has| |#1| (-914 (-1195))) (((-830 (-1195))) . T)) -((((-874)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1191 |#1|)) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) +(|has| |#1| (-38 (-418 (-575)))) +((((-575)) . T) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575))))) +(((|#1|) . T)) +((((-1021 2)) . T) (((-418 (-575))) . T) (((-873)) . T)) +((((-547)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-1016 |#1|)) . T) ((|#1|) . T)) +((((-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (((-829 (-1194))) . T)) +((((-873)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-418 (-575))) . T) (((-418 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1190 |#1|)) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-862)) -(((|#1|) . T) (((-576)) . T) (($) . T)) +(|has| |#1| (-861)) +(((|#1|) . T) (((-575)) . T) (($) . T)) (((|#2|) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((((-576) |#2|) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-874)) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((((-575) |#2|) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) +((((-873)) . T)) (((|#2|) . T)) -((((-576) |#3|) . T)) +((((-575) |#3|) . T)) (((|#2|) . T)) -((((-874)) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) -(-3766 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-239)))) -(|has| |#1| (-38 (-419 (-576)))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) +((((-873)) . T)) +(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) +(((|#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) +(-3765 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (-12 (|has| |#1| (-373)) (|has| |#2| (-238))) (-12 (|has| |#1| (-373)) (|has| |#2| (-237)))) +(|has| |#1| (-38 (-418 (-575)))) +(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#2| (-374)) -(((|#2|) . T) (((-576)) |has| |#2| (-1056 (-576))) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576))))) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#2| (-373)) +(((|#2|) . T) (((-575)) |has| |#2| (-1055 (-575))) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575))))) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373))) (((|#2|) . T)) -(|has| |#1| (-1118)) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373))) +(|has| |#1| (-1117)) (((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-1177) (-52)) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ (-1195)) |has| |#2| (-914 (-1195))) (($ (-1100)) . T)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +((((-1176) (-52)) . T)) +(((|#1|) . T)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((($ (-1194)) -3765 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))) (($ (-1099)) . T)) +(|has| |#1| (-38 (-418 (-575)))) (((|#2|) |has| |#2| (-174))) (((|#2|) . T)) (((|#1|) . T)) -((((-576)) -3766 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) ((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067))) -((((-576) |#3|) . T)) -((((-576) (-145)) . T)) +((((-575)) -3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) ((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066))) +((((-575) |#3|) . T)) +((((-575) (-145)) . T)) ((((-145)) . T)) -((((-874)) . T)) -((((-1200)) . T)) +((((-873)) . T)) +((((-1199)) . T)) ((((-112)) . T)) (|has| |#1| (-148)) (((|#1|) . T)) (|has| |#1| (-146)) ((($) . T)) -(|has| |#1| (-568)) -((((-576)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) +(|has| |#1| (-567)) +((((-575)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (((|#1|) . T)) -((($ (-1195)) |has| |#1| (-914 (-1195)))) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) +((($ (-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194))))) +(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) ((((-145)) . T)) -((((-874)) . T)) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-1195) (-52)) . T) (((-1177) (-52)) . T)) +((((-873)) . T)) +((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T)) +((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T)) +((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T)) +((((-1194) (-52)) . T) (((-1176) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (((|#1| |#2|) . T)) -(|has| |#2| (-239)) -((((-1253 (-576)) $) . T) (((-576) (-145)) . T)) -(((#0=(-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-862)) -(((|#2| (-783) (-1100)) . T)) +(-3765 (|has| |#2| (-238)) (|has| |#2| (-237))) +((((-1252 (-575)) $) . T) (((-575) (-145)) . T)) +(((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(|has| |#1| (-861)) +(((|#2| (-782) (-1099)) . T)) (((|#1| |#2|) . T)) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) -(|has| |#1| (-803)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-1195)) -3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) +(|has| |#1| (-802)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-567))) +((((-1194)) -3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (((|#1|) |has| |#1| (-174))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-3766 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148)))) -(-3766 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146)))) +(-3765 (|has| |#1| (-148)) (-12 (|has| |#1| (-373)) (|has| |#2| (-148)))) +(-3765 (|has| |#1| (-146)) (-12 (|has| |#1| (-373)) (|has| |#2| (-146)))) (((|#4|) . T)) (|has| |#1| (-146)) -((((-1177) |#1|) . T)) +((((-1176) |#1|) . T)) (|has| |#1| (-148)) (((|#1|) . T)) -((((-576)) . T)) -((((-874)) . T)) +((((-575)) . T)) +((((-873)) . T)) +((((-575)) . T)) (((|#1| |#2|) . T)) -((((-874)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) +((((-873)) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (((|#3|) . T)) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) -((((-874)) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -(((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))) (((-974 |#1|)) . T)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-974 |#1|)) . T)) -(((|#4|) -3766 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)))) -(((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) -(|has| |#2| (-374)) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373))) +((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) (((-575)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) . T)) +((((-873)) . T)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +(((|#1|) . T)) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T) (($) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))) (((-973 |#1|)) . T)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-973 |#1|)) . T)) +(((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-737)))) +(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737)))) +(|has| |#2| (-373)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -3766 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1067)))) -(((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1067)))) -(((|#2|) |has| |#2| (-1067))) -((((-1177) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) -(((|#2| (-906 |#1|)) . T)) +(((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-737)) (|has| |#4| (-1066)))) +(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737)) (|has| |#3| (-1066)))) +(((|#2|) |has| |#2| (-1066))) +(((|#2|) |has| |#2| (-1066))) +((((-1176) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) +(((|#2| (-905 |#1|)) . T)) ((($) . T)) -((($ (-876 |#1|)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -((((-400) (-1177)) . T)) -((($ (-1195)) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) -3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) (((-1286 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -4169 (-1177)) (|:| -3180 #0#))) . T)) -(((|#1|) . T)) -((((-874)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) +((($ (-875 |#1|)) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T)) +((((-399) (-1176)) . T)) +((($ (-1194)) . T)) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-873)) -3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-624 (-873))) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) (((-1285 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4169 (-1176)) (|:| -3179 #0#))) . T)) +(((|#1|) . T)) +((((-873)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) ((((-145)) . T)) (|has| |#2| (-146)) -((((-576)) . T)) +((((-575)) . T)) (|has| |#2| (-148)) -(|has| |#1| (-485)) -(-3766 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))) -(|has| |#1| (-374)) -((((-874)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((($) |has| |#1| (-568))) -((((-1200)) . T)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -((((-874)) . T)) +(|has| |#1| (-484)) +(-3765 (|has| |#1| (-484)) (|has| |#1| (-737)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))) +(|has| |#1| (-373)) +((((-873)) . T)) +(|has| |#1| (-38 (-418 (-575)))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) +((($) |has| |#1| (-567))) +((((-1199)) . T)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +((((-873)) . T)) (((|#2|) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#2|) . T) (((-575)) . T) (((-830 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1195)) |has| |#1| (-914 (-1195)))) +((((-1194)) |has| |#1| (-913 (-1194)))) (((|#2| |#2|) . T)) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-874)) . T)) -((((-874)) . T)) -(|has| |#1| (-1118)) -(((|#2| (-494 (-2872 |#1|) (-783)) (-876 |#1|)) . T)) -((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) -(((|#1| (-543 (-1195)) (-1195)) . T)) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +((((-873)) . T)) +((((-873)) . T)) +(|has| |#1| (-1117)) +(((|#2| (-493 (-2871 |#1|) (-782)) (-875 |#1|)) . T)) +((((-418 (-575))) . #0=(|has| |#2| (-373))) (($) . #0#)) +(((|#1| (-542 (-1194)) (-1194)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-874)) . T)) -((((-874)) . T)) +((((-873)) . T)) +((((-873)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) @@ -1769,2370 +1782,2387 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) . T)) -((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-1195) (-52)) . T)) -((((-419 (-576)) |#1|) . T) (($ $) . T)) -(((|#1| (-576)) . T)) -((((-926 |#1|)) . T)) -(((|#1|) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1067))) (($) -3766 (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)))) -((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) -(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576))))) -(|has| |#1| (-862)) -(|has| |#1| (-862)) -((((-576) |#2|) . T)) -((($) . T) (((-576)) . T) ((|#1|) . T)) -((((-874)) . T)) -((((-576)) . T)) -(|has| |#1| (-862)) -((((-701 |#2|)) . T) (((-874)) . T)) -((((-1278 |#1| |#2| |#3|)) -12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(|has| |#1| (-239)) +((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T)) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373))) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373))) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-1194) (-52)) . T)) +((((-418 (-575)) |#1|) . T) (($ $) . T)) +(((|#1| (-575)) . T)) +((((-925 |#1|)) . T)) +(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-1066))) (($) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)))) +((((-1194)) -3765 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066))))) +(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575))))) +(|has| |#1| (-861)) +(|has| |#1| (-861)) +((((-575) |#2|) . T)) +((($) . T) (((-575)) . T) ((|#1|) . T)) +((((-873)) . T)) +((((-575)) . T)) +(|has| |#1| (-861)) +((((-700 |#2|)) . T) (((-873)) . T)) +((((-1277 |#1| |#2| |#3|)) -12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) +((((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(|has| |#1| (-238)) (((|#1| |#2|) . T)) -((((-419 (-968 |#1|))) . T)) -((((-989)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) +((((-418 (-967 |#1|))) . T)) +((((-988)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) +(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (((|#1|) |has| |#1| (-174))) -(-3766 (|has| |#1| (-239)) (|has| |#1| (-296 |#1| |#1|)) (|has| |#1| (-914 (-1195)))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) -(((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)))) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-3766 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-925))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) +(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)))) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(-3765 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-924))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) ((($ |#2|) . T)) -((($ (-1195)) |has| |#1| (-914 (-1195))) (($ (-1100)) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-576) |#2|) . T)) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)))) -(|has| |#1| (-360)) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) -(((|#2|) . T) (((-576)) . T)) -((($) . T) (((-419 (-576))) . T)) -((((-576) (-112)) . T)) -(|has| |#1| (-832)) -(|has| |#1| (-832)) -(((|#1|) . T)) -(-3766 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-576)) . T) (($) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-360))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T)) -(((|#1|) . T)) -(|has| |#1| (-860)) -(((#0=(-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) #0#) |has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(|has| |#1| (-1118)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) +((($ (-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ (-1099)) . T)) +((($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +((((-575) |#2|) . T)) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)))) +(|has| |#1| (-359)) +(((|#3| |#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) +(((|#2|) . T) (((-575)) . T)) +((($) . T) (((-418 (-575))) . T)) +((((-575) (-112)) . T)) +(|has| |#1| (-831)) +(|has| |#1| (-831)) +(((|#1|) . T)) +(-3765 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359))) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (((-575)) . T) (($) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-359))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-1194)) |has| |#1| (-913 (-1194))) (((-1099)) . T)) +(((|#1|) . T)) +(|has| |#1| (-859)) +(((#0=(-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) #0#) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(|has| |#1| (-1117)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1160 |#2| (-419 (-968 |#1|)))) . T) (((-419 (-968 |#1|))) . T) (((-576)) . T)) -(((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T)) +((((-1159 |#2| (-418 (-967 |#1|)))) . T) (((-418 (-967 |#1|))) . T) (((-575)) . T)) +(((|#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) -((($) . T) (((-576)) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) +((($) . T) (((-575)) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-575)) . T)) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-543 |#2|) |#2|) . T)) -((((-874)) . T)) -((((-145)) . T) (((-874)) . T)) -((((-576) |#1|) . T)) -(((|#1| (-783) (-1100)) . T)) +(((|#1| (-542 |#2|) |#2|) . T)) +((((-873)) . T)) +((((-145)) . T) (((-873)) . T)) +((((-575) |#1|) . T)) +(((|#1| (-782) (-1099)) . T)) (((|#3|) . T)) ((((-145)) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) -3766 (|has| |#1| (-860)) (|has| |#1| (-1056 (-576)))) ((|#1|) . T)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) -3765 (|has| |#1| (-859)) (|has| |#1| (-1055 (-575)))) ((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) ((((-145)) . T)) -((((-1195)) -3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) +((((-1194)) -3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(((|#4|) |has| |#4| (-374))) -(((|#3|) |has| |#3| (-374))) +(((|#4|) |has| |#4| (-373))) +(((|#3|) |has| |#3| (-373))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-374))) -((((-874)) . T)) -((((-874)) . T)) -((((-876 |#1|)) . T)) +(((|#2|) |has| |#1| (-373))) +((((-873)) . T)) +((((-873)) . T)) +((((-875 |#1|)) . T)) (((|#2|) . T)) -(((|#1| (-1191 |#1|)) . T)) -((((-1100)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576))))) -((($) . T) ((|#1|) . T) (((-419 (-576))) . T) (((-576)) |has| |#1| (-651 (-576)))) +(((|#1| (-1190 |#1|)) . T)) +((((-1099)) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575))))) +((($) . T) ((|#1|) . T) (((-418 (-575))) . T) (((-575)) |has| |#1| (-650 (-575)))) ((($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((($) |has| |#1| (-568))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) +((($) |has| |#1| (-567))) (((|#2|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) . T)) -((($) |has| |#1| (-860))) -((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) -(|has| |#1| (-925)) -((((-1195)) . T)) -((((-874)) . T)) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-576) |#2|) . T)) -((($ (-1195)) -12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) -((($ (-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) -((($) |has| |#1| (-239))) -((($) |has| |#1| (-379))) -((($) |has| |#1| (-379))) -((($) |has| |#1| (-379))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567)))) +((($) |has| |#1| (-567)) ((|#1|) . T)) +((($) |has| |#1| (-859))) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373))) +(|has| |#1| (-924)) +((((-1194)) . T)) +((((-873)) . T)) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373)))) +(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-575) |#2|) . T)) +((($ (-1194)) -3765 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) +((($ (-1194)) -3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) +((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($) |has| |#1| (-378))) +((($) |has| |#1| (-378))) +((($) |has| |#1| (-378))) (((|#1| |#2|) . T)) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-925))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((#0=(-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) #0#) |has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))))) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-925))) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-924))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((#0=(-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) #0#) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))))) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-924))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) +(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)))) -(|has| |#1| (-862)) -(|has| |#1| (-568)) -((((-593 |#1|)) . T)) +(((|#1|) . T)) +(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)))) +(|has| |#1| (-861)) +(|has| |#1| (-567)) +((((-592 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-3766 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-862)))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-926 |#1|)) . T)) -(((|#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) . T)) +(-3765 (-12 (|has| |#1| (-373)) (|has| |#2| (-831))) (-12 (|has| |#1| (-373)) (|has| |#2| (-861)))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +((((-925 |#1|)) . T)) +(((|#1| (-507 |#1| |#3|) (-507 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-783)) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) . T)) -((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) -((((-684 |#1|)) . T)) +(((|#1| (-782)) . T)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T)) +((((-575)) |has| #0=(-418 |#2|) (-650 (-575))) ((#0#) . T) (((-418 (-575))) . T) (($) . T)) +((((-683 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-548)) . T)) -((((-874)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-874)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((((-1200)) . T)) -((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T)) -(((|#3|) . T) (((-576)) . T) (((-624 $)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-547)) . T)) +((((-873)) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-873)) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((((-1199)) . T)) +((((-418 (-575))) . T) (($) . T) (((-418 |#1|)) . T) ((|#1|) . T) (((-575)) . T)) +(((|#3|) . T) (((-575)) . T) (((-623 $)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) (((|#2|) . T)) -(-3766 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1067)) (|has| |#3| (-1118))) -(|has| |#2| (-1067)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T)) -(|has| |#1| (-1221)) -(|has| |#1| (-1221)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) -(|has| |#1| (-1221)) -(|has| |#1| (-1221)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-419 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) +(-3765 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-378)) (|has| |#3| (-737)) (|has| |#3| (-804)) (|has| |#3| (-861)) (|has| |#3| (-1066)) (|has| |#3| (-1117))) +(|has| |#2| (-1066)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T)) +(|has| |#1| (-1220)) +(|has| |#1| (-1220)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) +(|has| |#1| (-1220)) +(|has| |#1| (-1220)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +((($ $) . T) ((#0=(-418 (-575)) #0#) . T) ((#1=(-418 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) +((($) . T) (((-418 (-575))) . T) (((-418 |#1|)) . T) ((|#1|) . T)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-1177) (-52)) . T)) -(|has| |#1| (-1118)) +((($) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) +((((-1176) (-52)) . T)) +(|has| |#1| (-1117)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(-3766 (|has| |#2| (-832)) (|has| |#2| (-862))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576)) . T) (($) . T)) -((((-783)) . T)) -(-3766 (|has| |#1| (-239)) (|has| |#1| (-360))) -((((-1195)) |has| |#1| (-914 (-1195)))) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -((((-874)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(|has| |#2| (-925)) -(|has| |#1| (-374)) -(((|#2|) |has| |#2| (-1118))) -((($) . T) (((-576)) . T)) +(-3765 (|has| |#2| (-831)) (|has| |#2| (-861))) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +((((-575)) . T) (($) . T)) +((((-782)) . T)) +(-3765 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-359))) +((((-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194))))) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +((((-873)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(|has| |#2| (-924)) +(|has| |#1| (-373)) +(((|#2|) |has| |#2| (-1117))) +((($) . T) (((-575)) . T)) ((($) . T)) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -((((-548)) . T) (((-419 (-1191 (-576)))) . T) (((-227)) . T) (((-390)) . T)) -((((-390)) . T) (((-227)) . T) (((-874)) . T)) -(|has| |#1| (-925)) -(|has| |#1| (-925)) -((($ (-1195)) |has| |#1| (-914 (-1195))) (($ (-830 (-1195))) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -(|has| |#1| (-925)) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-925))) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +((((-547)) . T) (((-418 (-1190 (-575)))) . T) (((-227)) . T) (((-389)) . T)) +((((-389)) . T) (((-227)) . T) (((-873)) . T)) +(|has| |#1| (-924)) +(|has| |#1| (-924)) +((($ (-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ (-829 (-1194))) . T)) +((((-575)) . T) (((-418 (-575))) . T) (($) . T)) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) +(|has| |#1| (-924)) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)))) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-924))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067)))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) -((((-1193 |#1| |#2| |#3|)) -12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-925))) -((((-874)) . T)) -((((-874)) . T)) +((($) . T) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066)))) +(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) +((((-1192 |#1| |#2| |#3|)) -12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-924))) +((((-873)) . T)) +((((-873)) . T)) ((($ $) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((($) -3766 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-239))))) -((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((((-989)) . T)) -((((-989)) . T) (((-874)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((($) -3765 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (-12 (|has| |#1| (-373)) (|has| |#2| (-238))) (-12 (|has| |#1| (-373)) (|has| |#2| (-237))))) +((($) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) +((((-988)) . T)) +((((-988)) . T) (((-873)) . T)) ((($ $) . T)) -((((-576) (-112)) . T)) +((((-575) (-112)) . T)) ((($) . T)) (((|#1|) . T)) ((((-112)) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-576)) . T)) -(((|#1| (-576)) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) +((((-575)) . T)) +(((|#1| (-575)) . T)) ((($) . T)) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) +(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) +((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T)) (((|#1|) . T)) -((((-576)) . T)) +((((-575)) . T)) (((|#1| |#2|) . T)) -((((-1195)) |has| |#1| (-1067))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-874)) . T)) -(((|#1|) . T)) -(((|#1| (-576)) . T)) -(((|#1| (-1278 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1| (-419 (-576))) . T)) -(((|#1| (-1250 |#1| |#2| |#3|)) . T)) -(((|#1| (-783)) . T)) -((((-874)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(|has| |#1| (-1118)) -(((|#1|) . T)) -((((-1177) |#1|) . T)) +((((-1194)) |has| |#1| (-1066))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +((((-873)) . T)) +(((|#1|) . T)) +(((|#1| (-575)) . T)) +(((|#1| (-1277 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1| (-418 (-575))) . T)) +(((|#1| (-1249 |#1| |#2| |#3|)) . T)) +(((|#1| (-782)) . T)) +((((-873)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(|has| |#1| (-1117)) +(((|#1|) . T)) +((((-1176) |#1|) . T)) ((($) . T)) (|has| |#2| (-148)) (|has| |#2| (-146)) -(((|#1| (-543 (-830 (-1195))) (-830 (-1195))) . T)) -((((-874)) . T)) -((((-1272 |#1| |#2| |#3| |#4|)) . T)) -((((-1272 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1067))) -((((-576) (-112)) . T) (((-1253 (-576)) $) . T)) -((((-874)) |has| |#1| (-1118))) -(((|#1|) . T) (((-576)) . T) (($) . T)) -((((-576)) . T)) -(((|#1|) . T)) -((((-576)) . T)) -((((-874)) . T)) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-360))) -((((-874)) . T)) +(((|#1| (-542 (-829 (-1194))) (-829 (-1194))) . T)) +((((-873)) . T)) +((((-1271 |#1| |#2| |#3| |#4|)) . T)) +((((-1271 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1066))) +((((-575) (-112)) . T) (((-1252 (-575)) $) . T)) +((((-873)) |has| |#1| (-1117))) +(((|#1|) . T) (((-575)) . T) (($) . T)) +((((-575)) . T)) +((((-575)) . T)) +(((|#1|) . T)) +((((-575)) . T)) +((((-575)) . T)) +((((-873)) . T)) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-359))) +((((-873)) . T)) (|has| |#1| (-148)) (((|#3|) . T)) -((((-874)) . T)) -(|has| |#3| (-1067)) -((($) |has| |#2| (-239))) -((((-1271 |#2| |#3| |#4|)) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T)) -((((-874)) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) -3766 (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-419 (-968 |#1|))) |has| |#1| (-568)) (((-968 |#1|)) |has| |#1| (-1067)) (((-1195)) . T)) +((((-873)) . T)) +(|has| |#3| (-1066)) +((($) -3765 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((((-1270 |#2| |#3| |#4|)) . T) (((-1271 |#1| |#2| |#3| |#4|)) . T)) +((((-873)) . T)) +((((-48)) -12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575)))) (((-623 $)) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) -3765 (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-418 (-967 |#1|))) |has| |#1| (-567)) (((-967 |#1|)) |has| |#1| (-1066)) (((-1194)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-783)) . T)) -(((|#1|) . T)) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-319 |#1|))) -((((-1272 |#1| |#2| |#3| |#4|)) . T)) -((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390)))) -(((|#1|) . T)) -((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) -(((|#1|) . T)) -(|has| |#1| (-568)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -(((|#1|) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) +(((|#1| (-782)) . T)) +(((|#1|) . T)) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-318 |#1|))) +((((-1271 |#1| |#2| |#3| |#4|)) . T)) +((((-575)) |has| |#1| (-898 (-575))) (((-389)) |has| |#1| (-898 (-389)))) +(((|#1|) . T)) +((($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) +(((|#1|) . T)) +(|has| |#1| (-567)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) +(((|#1|) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) . T)) +(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) (((|#1|) |has| |#1| (-174))) -((((-874)) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((($ (-1195)) -3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) -((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) -((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1118))) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)))) -((((-1271 |#2| |#3| |#4|)) . T)) +((((-873)) . T)) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((($ (-1194)) -3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) +((($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) +((($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-575)) . T)) +(((|#1|) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T) (($) . T)) +(((|#3|) |has| |#3| (-1117))) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)))) +((((-1270 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-832)) -(|has| |#1| (-832)) -(((|#1| (-576) (-1100)) . T)) -((($) |has| |#1| (-319 $)) ((|#1|) |has| |#1| (-319 |#1|))) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(((|#1| (-576) (-1100)) . T)) -(-3766 (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(((|#1| (-419 (-576)) (-1100)) . T)) -(((|#1| (-783) (-1100)) . T)) -(|has| |#1| (-862)) -(((#0=(-926 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) +(|has| |#1| (-831)) +(|has| |#1| (-831)) +(((|#1| (-575) (-1099)) . T)) +((($) |has| |#1| (-318 $)) ((|#1|) |has| |#1| (-318 |#1|))) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(((|#1| (-575) (-1099)) . T)) +(-3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(((|#1| (-418 (-575)) (-1099)) . T)) +(((|#1| (-782) (-1099)) . T)) +(|has| |#1| (-861)) +(((#0=(-925 |#1|) #0#) . T) (($ $) . T) ((#1=(-418 (-575)) #1#) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (((|#2|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-1118)) -((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-1118)) -((((-419 (-576))) |has| |#2| (-374)) (($) . T) (((-576)) . T)) -((((-576)) -3766 (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)))) -(((|#1|) . T)) -(|has| |#1| (-1118)) -((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((|#2|) |has| |#1| (-374))) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) -((((-701 (-350 (-2895) (-2895 (QUOTE X) (QUOTE HESS)) (-711)))) . T)) +(|has| |#1| (-1117)) +((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +(|has| |#1| (-1117)) +((((-418 (-575))) |has| |#2| (-373)) (($) . T) (((-575)) . T)) +((((-575)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)))) +(((|#1|) . T)) +(|has| |#1| (-1117)) +((((-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-650 (-575)))) ((|#2|) |has| |#1| (-373))) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) +((((-700 (-349 (-2894) (-2894 (QUOTE X) (QUOTE HESS)) (-710)))) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) -(((|#1| |#1|) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1067)))) -(((|#1|) . T)) -((((-576)) . T)) -((((-576)) . T)) -(((|#1|) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1067)))) -(((|#2|) |has| |#2| (-374))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)) (((-576)) |has| |#1| (-651 (-576)))) -(|has| |#1| (-862)) -(((|#1|) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(((|#1|) . T) (((-576)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) . T)) +(((|#1| |#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-1066)))) +(((|#1|) . T)) +((((-575)) . T)) +((((-575)) . T)) +(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-1066)))) +(((|#2|) |has| |#2| (-373))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-373)) (((-575)) |has| |#1| (-650 (-575)))) +(|has| |#1| (-861)) +(((|#1|) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(((|#1|) . T) (((-575)) . T)) (((|#2|) . T)) -((((-576)) . T) ((|#3|) . T)) -((((-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) |has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))))) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-925))) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-874)) . T)) -((((-874)) . T)) -((($ (-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) -((((-576)) -3766 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) ((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067))) -((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-874)) . T)) -((($) |has| |#1| (-239))) -(|has| |#1| (-38 (-419 (-576)))) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) +((((-575)) . T) ((|#3|) . T)) +((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) |has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))))) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-924))) +(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) +((((-873)) . T)) +((((-873)) . T)) +((($ (-1194)) -3765 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066))))) +((((-575)) -3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) ((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066))) +((((-547)) . T) (((-575)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T)) +((((-873)) . T)) +((($) |has| |#1| (-238))) +(|has| |#1| (-38 (-418 (-575)))) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) ((($) . T)) -(|has| |#1| (-239)) +(|has| |#1| (-238)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-860)) -(((|#1| (-576)) . T)) +(|has| |#1| (-859)) +(((|#1| (-575)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1193 |#1| |#2| |#3|)) . T)) +(((|#1| (-1192 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-419 (-576))) . T)) -(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#1| (-1186 |#1| |#2| |#3|)) . T)) -(((|#1| (-783)) . T)) +(((|#1| (-418 (-575))) . T)) +(((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) +(((|#1| (-1185 |#1| |#2| |#3|)) . T)) +(((|#1| (-782)) . T)) (((|#1|) . T)) -((((-419 (-968 |#1|))) . T)) +((((-418 (-967 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) -((((-419 (-968 |#1|))) . T)) +((((-418 (-967 |#1|))) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) (((|#1|) |has| |#1| (-174))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-576)) . T) ((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-1195)) |has| |#1| (-1056 (-1195)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-575)) . T) ((|#1|) . T) (($) . T) (((-418 (-575))) . T) (((-1194)) |has| |#1| (-1055 (-1194)))) (((|#1| |#2|) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) -3766 (|has| |#1| (-860)) (|has| |#1| (-1056 (-576)))) ((|#1|) . T)) -(-12 (|has| |#4| (-239)) (|has| |#4| (-1067))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1067))) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) -3765 (|has| |#1| (-859)) (|has| |#1| (-1055 (-575)))) ((|#1|) . T)) +(-3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066)))) +(-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))) ((((-145)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(((|#1|) . T)) -(|has| |#2| (-1067)) -(((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T)) -(((|#2|) . T) ((|#1|) . T) (((-576)) . T)) -((((-874)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -(|has| |#1| (-374)) -(|has| |#1| (-374)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(((|#1|) . T)) +(|has| |#2| (-1066)) +(((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) . T) (($ $) . T)) +(((|#2|) . T) ((|#1|) . T) (((-575)) . T)) +((((-873)) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +(|has| |#1| (-373)) +(|has| |#1| (-373)) ((($ |#2|) . T)) -(|has| (-419 |#2|) (-239)) -((((-656 |#1|)) . T)) -((($ (-1195)) -3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) -((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) -(|has| |#1| (-925)) -(((|#2|) |has| |#2| (-1067))) +(|has| (-418 |#2|) (-238)) +((((-655 |#1|)) . T)) +((($ (-1194)) -3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) +((($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +((($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) +(|has| |#1| (-924)) +(((|#2|) |has| |#2| (-1066))) +(((|#2|) |has| |#2| (-1066))) +(|has| |#1| (-373)) ((($) . T)) -(|has| |#1| (-374)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) +(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) (((|#1|) |has| |#1| (-174))) -((($ (-876 |#1|)) . T)) +((($ (-875 |#1|)) . T)) (((|#1| |#1|) . T)) -((((-882 |#1|)) . T)) -((((-874)) . T)) +((((-881 |#1|)) . T)) +((((-873)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1118))) +(((|#2|) |has| |#2| (-1117))) (((|#1|) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-656 $)) . T) (((-1177)) . T) (((-1195)) . T) (((-576)) . T) (((-227)) . T) (((-874)) . T)) -((((-576)) -3766 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067))) ((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1067))) (($) |has| |#3| (-1067))) -((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T)) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +((((-655 $)) . T) (((-1176)) . T) (((-1194)) . T) (((-575)) . T) (((-227)) . T) (((-873)) . T)) +((((-575)) -3765 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066))) ((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737)) (|has| |#3| (-1066))) (($) |has| |#3| (-1066))) +((((-418 (-575))) . T) (((-575)) . T) (((-623 $)) . T)) (((|#1|) . T)) -((((-874)) . T)) +((((-873)) . T)) ((($) . T)) -(((|#1| (-543 |#2|) |#2|) . T)) -((((-874)) . T)) -(((|#1| (-576) (-1100)) . T)) -((((-926 |#1|)) . T)) -((((-874)) . T)) +(((|#1| (-542 |#2|) |#2|) . T)) +((((-873)) . T)) +(((|#1| (-575) (-1099)) . T)) +((((-925 |#1|)) . T)) +((((-873)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-419 (-576)) (-1100)) . T)) -(((|#1| (-783) (-1100)) . T)) -(((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-576)) -3766 (|has| (-419 (-576)) (-1056 (-576))) (|has| |#1| (-1056 (-576)))) (((-419 (-576))) . T)) -(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) +(((|#1| (-418 (-575)) (-1099)) . T)) +(((|#1| (-782) (-1099)) . T)) +(((#0=(-418 |#2|) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-575)) -3765 (|has| (-418 (-575)) (-1055 (-575))) (|has| |#1| (-1055 (-575)))) (((-418 (-575))) . T)) +(((|#1| (-613 |#1| |#3|) (-613 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#2| (-239)) -(((|#2| (-543 (-876 |#1|)) (-876 |#1|)) . T)) -((((-874)) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) . T)) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T)) +(|has| |#2| (-238)) +(((|#2| (-542 (-875 |#1|)) (-875 |#1|)) . T)) +((((-873)) . T)) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-873)) . T)) (((|#1| |#3|) . T)) -((((-874)) . T)) -(((|#1|) |has| |#1| (-174)) (((-968 |#1|)) . T) (((-576)) . T)) +((((-873)) . T)) +(((|#1|) |has| |#1| (-174)) (((-967 |#1|)) . T) (((-575)) . T)) (((|#1|) |has| |#1| (-174))) -((((-711)) . T)) -((((-711)) . T)) +((((-710)) . T)) +((((-710)) . T)) (((|#2|) |has| |#2| (-174))) -(|has| |#1| (-239)) -((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576))))) -((((-112)) |has| |#1| (-1118)) (((-874)) -3766 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)) (|has| |#1| (-1130)) (|has| |#1| (-1118)))) +(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) +((((-575)) . T) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575))))) +((((-112)) |has| |#1| (-1117)) (((-873)) -3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-484)) (|has| |#1| (-737)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)) (|has| |#1| (-1129)) (|has| |#1| (-1117)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-874)) . T)) -((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-874)) . T)) -((((-711)) . T) (((-419 (-576))) . T) (((-576)) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +((((-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +((((-575)) . T) (((-418 (-575))) . T) (($) . T)) +((((-873)) . T)) +((((-1194)) -3765 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066))))) +((((-575)) . T) (((-418 (-575))) . T) (($) . T)) +((((-873)) . T)) +((((-710)) . T) (((-418 (-575))) . T) (((-575)) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#2|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-576) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) -((((-390)) . T)) -((((-711)) . T)) -((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) +((($) . T) (((-575)) . T) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) +((((-575) |#1|) . T)) +(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) +((((-389)) . T)) +((((-710)) . T)) +((((-418 (-575))) . #0=(|has| |#2| (-373))) (($) . #0#)) (((|#1|) |has| |#1| (-174))) -((((-419 (-968 |#1|))) . T)) +((((-418 (-967 |#1|))) . T)) (((|#2| |#2|) . T)) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) (((|#1|) . T)) (((|#2|) . T)) -(((|#3|) |has| |#3| (-1067))) -(|has| |#2| (-925)) -(|has| |#1| (-925)) -(|has| |#1| (-374)) +(((|#3|) |has| |#3| (-1066))) +(|has| |#2| (-924)) +(|has| |#1| (-924)) +(|has| |#1| (-373)) +(((|#3|) |has| |#3| (-1066))) ((($) . T)) -((((-1195)) |has| |#2| (-914 (-1195)))) -((((-874)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-485)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-374)) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1067)) (|has| |#1| (-1130))) -((($) -3766 (|has| |#1| (-239)) (|has| |#1| (-360)))) +((((-1194)) |has| |#2| (-913 (-1194)))) +((((-873)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-418 (-575))) . T) (($) . T)) +(|has| |#1| (-484)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-373)) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-484)) (|has| |#1| (-567)) (|has| |#1| (-1066)) (|has| |#1| (-1129))) +((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-359)))) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) -(|has| |#1| (-360)) +(|has| |#1| (-359)) ((((-145)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -((($) . T) (((-576)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(((|#2|) . T) (((-874)) . T)) -(((|#2|) . T) (((-874)) . T)) -((($ (-1195)) |has| |#1| (-914 (-1195)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-862)) -((((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) . T)) +(|has| |#1| (-38 (-418 (-575)))) +((($) . T) (((-575)) . T)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(((|#2|) . T) (((-873)) . T)) +(((|#2|) . T) (((-873)) . T)) +((($ (-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194))))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-861)) +((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-576)) . T)) +((($) . T) (((-575)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) ((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (((|#2|) . T)) -(|has| |#1| (-15 * (|#1| (-576) |#1|))) +(|has| |#1| (-15 * (|#1| (-575) |#1|))) (((|#3|) . T)) ((((-117 |#1|)) . T)) -(|has| |#1| (-379)) -(-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-862)) -(|has| |#1| (-15 * (|#1| (-783) |#1|))) -(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T)) +(|has| |#1| (-378)) +(-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))) +(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) +(|has| |#1| (-861)) +(|has| |#1| (-15 * (|#1| (-782) |#1|))) +(((|#2|) . T) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-576)) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(-3766 (|has| |#2| (-239)) (|has| |#2| (-914 (-1195)))) -((((-874)) . T)) -((((-874)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))) (((-390)) . #0=(|has| |#1| (-1040))) (((-227)) . #0#)) -(((|#1|) |has| |#1| (-374))) -((((-874)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((($ $) . T) (((-624 $) $) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -((($) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((($) -3766 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) ((|#1|) -3766 (|has| |#1| (-174)) (|has| |#1| (-1067))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) -((($) . T) (((-576)) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -((((-390)) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) -((((-656 (-792 |#1| (-876 |#2|)))) . T) (((-874)) . T)) -((((-548)) |has| (-792 |#1| (-876 |#2|)) (-626 (-548)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-390)) . T)) +((((-575)) . T)) +((((-575)) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +((((-873)) . T)) +((((-873)) . T)) +((((-547)) |has| |#1| (-625 (-547))) (((-904 (-575))) |has| |#1| (-625 (-904 (-575)))) (((-904 (-389))) |has| |#1| (-625 (-904 (-389)))) (((-389)) . #0=(|has| |#1| (-1039))) (((-227)) . #0#)) +(((|#1|) |has| |#1| (-373))) +(((|#1|) |has| |#1| (-373))) +((((-873)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((($ $) . T) (((-623 $) $) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +((($) . T) (((-1271 |#1| |#2| |#3| |#4|)) . T) (((-418 (-575))) . T)) +((($) -3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) ((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-1066))) (((-418 (-575))) |has| |#1| (-567)) (((-575)) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) +((($) . T) (((-575)) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +((((-389)) . T) (((-575)) . T) (((-418 (-575))) . T)) +((((-1194)) -3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) +((((-655 (-791 |#1| (-875 |#2|)))) . T) (((-873)) . T)) +((((-547)) |has| (-791 |#1| (-875 |#2|)) (-625 (-547)))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-389)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) +(((|#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (((|#1|) |has| |#1| (-174))) -((((-874)) . T)) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-925))) +((((-873)) . T)) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-924))) (((|#1|) . T)) ((($) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((((-548)) |has| |#1| (-626 (-548)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) -((((-783)) . T)) -(|has| |#1| (-1118)) -((((-576)) -3766 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) ((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067))) -((((-874)) . T)) -((((-1195)) . T) (((-874)) . T)) -((((-576)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) -((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T)) +((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((((-547)) |has| |#1| (-625 (-547)))) +(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) +((((-782)) . T)) +(|has| |#1| (-1117)) +((((-575)) -3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) ((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066))) +((((-873)) . T)) +((((-1194)) . T) (((-873)) . T)) +((((-575)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +((((-418 (-575))) . T) (((-575)) . T) (((-623 $)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-576)) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -(((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (($) . T)) -((((-576)) . T)) +((((-575)) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +(((#0=(-1270 |#2| |#3| |#4|)) . T) (((-418 (-575))) |has| #0# (-38 (-418 (-575)))) (($) . T)) +((((-575)) . T)) ((($) . T)) -(|has| |#1| (-374)) -(-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) -(|has| |#1| (-374)) +(|has| |#1| (-373)) +(-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-148)) (|has| |#1| (-373))) (|has| |#1| (-148))) +(-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-146)) (|has| |#1| (-373))) (|has| |#1| (-146))) +(|has| |#1| (-373)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(|has| |#1| (-239)) -(|has| |#1| (-374)) +(|has| |#1| (-238)) +(|has| |#1| (-373)) (((|#3|) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-576)) |has| |#2| (-651 (-576))) ((|#2|) . T)) -((((-576) |#1|) |has| |#2| (-429 |#1|))) -((((-576) |#1|) |has| |#2| (-429 |#1|))) -(((|#2|) . T) (($) . T) (((-576)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-575)) |has| |#2| (-650 (-575))) ((|#2|) . T)) +((((-575) |#1|) |has| |#2| (-428 |#1|))) +((((-575) |#1|) |has| |#2| (-428 |#1|))) +(((|#2|) . T) (($) . T) (((-575)) . T)) (((|#2|) . T)) -((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) -((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(|has| |#1| (-1118)) -((((-1160 |#2| |#1|)) . T) ((|#1|) . T) (((-576)) . T)) +((((-418 (-575))) . #0=(|has| |#2| (-373))) (($) . #0#)) +((((-418 (-575))) |has| |#2| (-373)) (($) . T)) +(|has| |#1| (-1117)) +((((-1159 |#2| |#1|)) . T) ((|#1|) . T) (((-575)) . T)) (((|#1| |#2|) . T)) -((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576)))))) -((((-1195)) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -(((|#2|) . T) (($) . T) (((-576)) . T)) -(((|#1|) . T) (($) . T) (((-576)) . T)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) -((((-874)) . T)) -((((-576)) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1067))) -(((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-968 |#1|)) . T) (((-874)) . T)) +((((-575)) . T) ((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575)))))) +((((-1194)) -3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))))) +(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575)))) +(((|#2|) . T) (($) . T) (((-575)) . T)) +(((|#1|) . T) (($) . T) (((-575)) . T)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) +((((-873)) . T)) +((((-575)) . T)) +(-3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) +(((|#1| $) |has| |#1| (-295 |#1| |#1|))) +((((-418 (-575))) . T) (($) . T) (((-418 |#1|)) . T) ((|#1|) . T)) +((((-967 |#1|)) . T) (((-873)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -3766 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374))) -((((-968 |#1|)) . T)) -((((-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) . T)) +(((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-299)) (|has| |#1| (-373))) ((#0=(-418 (-575)) #0#) |has| |#1| (-373))) +((((-967 |#1|)) . T)) +((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T)) ((($) . T)) -((((-576) |#1|) . T)) -((((-1195)) |has| (-419 |#2|) (-914 (-1195)))) -(((|#1|) . T) (($) -3766 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) -((((-548)) |has| |#2| (-626 (-548)))) -((((-701 |#2|)) . T) (((-874)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) -((((-882 |#1|)) . T)) +((((-575) |#1|) . T)) +((((-1194)) |has| (-418 |#2|) (-913 (-1194)))) +(((|#1|) . T) (($) -3765 (|has| |#1| (-299)) (|has| |#1| (-373))) (((-418 (-575))) |has| |#1| (-373))) +((((-547)) |has| |#2| (-625 (-547)))) +((((-700 |#2|)) . T) (((-873)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) +(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) +((((-881 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) -(-3766 (|has| |#4| (-805)) (|has| |#4| (-862))) -(-3766 (|has| |#3| (-805)) (|has| |#3| (-862))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-874)) . T)) -((((-874)) . T)) -(((|#1|) . T)) -((($) . T) (((-576)) . T) ((|#2|) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) -(((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)))) -(((|#2|) |has| |#2| (-1067))) +(-3765 (|has| |#4| (-804)) (|has| |#4| (-861))) +(-3765 (|has| |#3| (-804)) (|has| |#3| (-861))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-873)) . T)) +((((-873)) . T)) +(((|#1|) . T)) +((($) . T) (((-575)) . T) ((|#2|) . T)) +(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) +(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)))) +(((|#2|) |has| |#2| (-1066))) +(((|#2|) |has| |#2| (-1066))) (((|#3|) . T)) ((($) . T)) (((|#1|) . T)) -((((-419 |#2|)) . T)) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) +((((-418 |#2|)) . T)) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)))) (((|#1|) . T)) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067)))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) -((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066)))) +(((|#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) +((((-1252 (-575)) $) . T) (((-575) |#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-1240))) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-418 (-575))) . T) (($) . T)) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-1239))) ((($) . T)) -((((-419 (-576))) |has| #0=(-419 |#2|) (-1056 (-419 (-576)))) (((-576)) |has| #0# (-1056 (-576))) ((#0#) . T)) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -(((|#1| (-783)) . T)) -(|has| |#1| (-862)) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-576)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) |has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(|has| |#1| (-860)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-576) $) . T) (((-656 (-576)) $) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(-3766 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-914 (-1195)))) -(|has| |#1| (-360)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-1177)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) -((((-874)) . T)) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -(-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-15 * (|#1| (-783) |#1|))) -(((|#2|) . T) (((-576)) . T) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) (((-1100)) . T) ((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) +((((-418 (-575))) |has| #0=(-418 |#2|) (-1055 (-418 (-575)))) (((-575)) |has| #0# (-1055 (-575))) ((#0#) . T)) +(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) +(((|#1| (-782)) . T)) +(|has| |#1| (-861)) +(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575)))) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) +((((-575)) . T)) +(|has| |#1| (-38 (-418 (-575)))) +((((-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))))) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(|has| |#1| (-859)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +((((-575) $) . T) (((-655 (-575)) $) . T)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-359)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +((((-1176)) . T) (((-517)) . T) (((-227)) . T) (((-575)) . T)) +((((-873)) . T)) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +(-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))) +(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) +(|has| |#1| (-15 * (|#1| (-782) |#1|))) +(((|#2|) . T) (((-575)) . T) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) (((-1099)) . T) ((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (((|#1| |#2|) . T)) ((((-145)) . T)) -((((-792 |#1| (-876 |#2|))) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -(|has| |#1| (-1221)) -((((-874)) . T)) +((((-791 |#1| (-875 |#2|))) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +(|has| |#1| (-1220)) +((((-873)) . T)) (((|#1|) . T)) -(-3766 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1067)) (|has| |#3| (-1118))) -((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|))) +(-3765 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-378)) (|has| |#3| (-737)) (|has| |#3| (-804)) (|has| |#3| (-861)) (|has| |#3| (-1066)) (|has| |#3| (-1117))) +((((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|))) (((|#2|) . T)) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-926 |#1|)) . T)) -((($) -12 (|has| |#4| (-239)) (|has| |#4| (-1067)))) -((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) +(((|#2|) . T)) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575))))) +((((-925 |#1|)) . T)) +((($) -3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066))))) +((($) -3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066))))) ((($) . T)) -((((-419 (-968 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) -((((-548)) |has| |#4| (-626 (-548)))) -(|has| |#1| (-860)) -((((-874)) . T) (((-656 |#4|)) . T)) -(|has| |#1| (-1118)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) |has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))))) -(|has| |#1| (-374)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) -((((-684 |#1|)) . T)) -(((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1067)))) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((((-418 (-967 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-1194)) -3765 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066))))) +((((-547)) |has| |#4| (-625 (-547)))) +(|has| |#1| (-859)) +((((-873)) . T) (((-655 |#4|)) . T)) +(|has| |#1| (-1117)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))))) +(|has| |#1| (-373)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737)))) +((((-683 |#1|)) . T)) +(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737)) (|has| |#3| (-1066)))) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) +(-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-148)) (|has| |#1| (-373))) (|has| |#1| (-148))) +(-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-146)) (|has| |#1| (-373))) (|has| |#1| (-146))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) -(|has| |#1| (-860)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373))) +(|has| |#1| (-859)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1118)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-576)) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) +(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575)))) +((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T)) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +(|has| |#1| (-1117)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T) (((-575)) . T)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#1|) . T) (((-575)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1118)) -((((-576)) . T) ((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-576)) . T)) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +(|has| |#1| (-1117)) +((((-575)) . T) ((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-575)) . T)) (((|#2|) . T)) -((((-1195)) |has| |#2| (-914 (-1195)))) +((((-1194)) -3765 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194))))) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-374))) -((((-419 |#2|)) . T)) -((((-874)) . T)) -(((|#1|) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(((|#1|) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-326 |#1|)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-374))) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(((|#3|) |has| |#3| (-373))) +((((-418 |#2|)) . T)) +((((-873)) . T)) +(((|#1|) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-547)) |has| |#1| (-625 (-547)))) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +((((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((|#1| |#1|) |has| |#1| (-318 |#1|))) +(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)))) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +((((-575)) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +((((-325 |#1|)) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#2|) |has| |#2| (-373))) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) (((|#2|) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((($) . T) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(|has| |#1| (-239)) -(((#0=(-792 |#1| (-876 |#2|)) #0#) |has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|))))) -((($) |has| |#1| (-239))) -((((-576)) . T) (($) . T)) -((((-876 |#1|)) . T)) +((((-418 (-575))) . T) (((-710)) . T) (($) . T)) +((($) . T) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) +(((#0=(-791 |#1| (-875 |#2|)) #0#) |has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|))))) +((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((((-575)) . T) (($) . T)) +((((-875 |#1|)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) -((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T)) -((((-1195)) |has| |#1| (-914 (-1195))) (((-1106 (-1195))) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) -((($ (-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(|has| |#1| (-38 (-419 (-576)))) -(((|#4|) |has| |#4| (-1067)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1067)))) -(((|#3|) |has| |#3| (-1067)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) +((((-1194)) |has| |#1| (-913 (-1194))) (((-1099)) . T)) +((((-1194)) |has| |#1| (-913 (-1194))) (((-1105 (-1194))) . T)) +(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) +((($ (-1194)) -3765 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066))))) +((((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(|has| |#1| (-38 (-418 (-575)))) +(((|#4|) |has| |#4| (-1066)) (((-575)) -12 (|has| |#4| (-650 (-575))) (|has| |#4| (-1066)))) +(((|#3|) |has| |#3| (-1066)) (((-575)) -12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (|has| |#1| (-146)) (|has| |#1| (-148)) ((($ $) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)) (|has| |#1| (-1130)) (|has| |#1| (-1118))) -(|has| |#1| (-568)) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-484)) (|has| |#1| (-737)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)) (|has| |#1| (-1129)) (|has| |#1| (-1117))) +(|has| |#1| (-567)) (((|#2|) . T)) -((((-576)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) +((((-575)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) (((|#1|) . T)) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) -((((-593 |#1|)) . T)) +((((-592 |#1|)) . T)) ((($) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-874)) . T)) -(((|#2|) |has| |#2| (-6 (-4463 "*")))) +((((-873)) . T)) +(((|#2|) |has| |#2| (-6 (-4462 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#3|) . T)) ((($) . T)) -(((|#2|) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#3|) . T) (((-576)) . T)) -((((-1271 |#2| |#3| |#4|)) . T) (((-576)) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576)))) (((-576)) -3766 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))) (|has| |#1| (-1067))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -3766 (|has| |#1| (-568)) (|has| |#1| (-1056 (-419 (-576))))) (((-419 (-968 |#1|))) |has| |#1| (-568)) (((-968 |#1|)) |has| |#1| (-1067)) (((-1195)) . T)) -((((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))) (((-576)) |has| |#2| (-1056 (-576))) ((|#2|) . T) (((-876 |#1|)) . T)) -((($) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T)) -((((-1143 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576))))) -((((-1191 |#1|)) . T) (((-1100)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576))))) -((((-1143 |#1| (-1195))) . T) (((-1106 (-1195))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-1195)) . T)) -(|has| |#1| (-1118)) +(((|#2|) . T) (((-575)) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#3|) . T) (((-575)) . T)) +((((-1270 |#2| |#3| |#4|)) . T) (((-575)) . T) (((-1271 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-418 (-575))) . T)) +((((-48)) -12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575)))) (((-575)) -3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))) (|has| |#1| (-1066))) ((|#1|) . T) (((-623 $)) . T) (($) |has| |#1| (-567)) (((-418 (-575))) -3765 (|has| |#1| (-567)) (|has| |#1| (-1055 (-418 (-575))))) (((-418 (-967 |#1|))) |has| |#1| (-567)) (((-967 |#1|)) |has| |#1| (-1066)) (((-1194)) . T)) +((((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))) (((-575)) |has| |#2| (-1055 (-575))) ((|#2|) . T) (((-875 |#1|)) . T)) +((($) . T) (((-117 |#1|)) . T) (((-418 (-575))) . T)) +((((-1142 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575))))) +((((-1190 |#1|)) . T) (((-1099)) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575))))) +((((-1142 |#1| (-1194))) . T) (((-1105 (-1194))) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-1194)) . T)) +(|has| |#1| (-1117)) ((($) . T)) -(|has| |#1| (-1118)) -((((-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))) (((-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) +(|has| |#1| (-1117)) +((((-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#2| (-898 (-575)))) (((-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#2| (-898 (-389))))) (((|#1| |#2|) . T)) -((((-1195) |#1|) . T)) +((((-1194) |#1|) . T)) (((|#4|) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1195) (-52)) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T)) -((((-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) -((((-874)) . T)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) -(((#0=(-1272 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-419 (-576)) #0#) |has| |#1| (-568)) (($ $) |has| |#1| (-568))) -((($) |has| |#1| (-15 * (|#1| (-576) |#1|)))) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) -(|has| |#1| (-374)) -((($) |has| |#1| (-860)) (((-576)) -3766 (|has| |#1| (-21)) (|has| |#1| (-860)))) -((($) -3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) -((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((($) |has| |#1| (-15 * (|#1| (-783) |#1|)))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-359))) +((((-1194) (-52)) . T)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T)) +((((-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) . T)) +((((-873)) . T)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) +(((#0=(-1271 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-418 (-575)) #0#) |has| |#1| (-567)) (($ $) |has| |#1| (-567))) +((($) |has| |#1| (-15 * (|#1| (-575) |#1|)))) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1| $) |has| |#1| (-295 |#1| |#1|))) +((((-1271 |#1| |#2| |#3| |#4|)) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-567)) (($) |has| |#1| (-567))) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1|) . T)) +(|has| |#1| (-373)) +((($) |has| |#1| (-859)) (((-575)) -3765 (|has| |#1| (-21)) (|has| |#1| (-859)))) +((($) -3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) +((($) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) +((($) |has| |#1| (-15 * (|#1| (-782) |#1|)))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-419 (-576))) . T) (($) . T)) -(((|#3|) |has| |#3| (-374))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) -((((-1195)) . T)) -((($) . T) (((-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576)))) (((-576)) . T)) +((((-418 (-575))) . T) (($) . T)) +(((|#3|) |has| |#3| (-373))) +(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) +((((-1194)) . T)) +((($) . T) (((-1270 |#2| |#3| |#4|)) . T) (((-418 (-575))) |has| (-1270 |#2| |#3| |#4|) (-38 (-418 (-575)))) (((-575)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) +(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (((|#2| |#3|) . T)) -(-3766 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -(((|#1| (-543 |#2|)) . T)) -(((|#1| (-783)) . T)) -(((|#1| (-543 (-1106 (-1195)))) . T)) +(-3765 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +(((|#1| (-542 |#2|)) . T)) +(((|#1| (-782)) . T)) +(((|#1| (-542 (-1105 (-1194)))) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#2| (-925)) -(-3766 (|has| |#2| (-805)) (|has| |#2| (-862))) -((((-874)) . T)) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) -(((|#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067)))) -((($ (-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) -((($ $) . T) ((#0=(-1271 |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) |has| #0# (-38 (-419 (-576))))) -((((-926 |#1|)) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-874)) . T)) -((($) . T) (((-576)) . T)) +(|has| |#2| (-924)) +(-3765 (|has| |#2| (-804)) (|has| |#2| (-861))) +((((-873)) . T)) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)))) +(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066)))) +((($ (-1194)) -3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) +((($ $) . T) ((#0=(-1270 |#2| |#3| |#4|) #0#) . T) ((#1=(-418 (-575)) #1#) |has| #0# (-38 (-418 (-575))))) +((((-925 |#1|)) . T)) +(-12 (|has| |#1| (-373)) (|has| |#2| (-831))) +((((-575)) . T) (($) . T) (((-418 (-575))) . T)) +((((-873)) . T)) +((($) . T) (((-575)) . T)) ((($) . T)) -(-3766 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) -(|has| |#1| (-374)) -(|has| |#1| (-374)) +(-3765 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567))) +(|has| |#1| (-373)) +(|has| |#1| (-373)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) -(-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374)) (|has| |#1| (-360))) -(-3766 (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) +((($) . T) ((#0=(-1270 |#2| |#3| |#4|)) . T) (((-418 (-575))) |has| #0# (-38 (-418 (-575))))) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373))) +(-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373)) (|has| |#1| (-359))) +(-3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))) +((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-874)) . T)) -((((-874)) . T)) +((((-873)) . T)) +((((-873)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) . T)) +(((|#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|))) . T)) (((|#2|) . T)) -(|has| |#2| (-374)) -(|has| |#1| (-862)) +(|has| |#2| (-373)) +(|has| |#1| (-861)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-576)) . T)) +((((-575)) . T)) (((|#1|) . T)) -((((-874)) . T)) +((((-873)) . T)) (((|#2|) |has| |#2| (-174))) -(|has| |#1| (-1118)) +(|has| |#1| (-1117)) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T) (($) . T)) -(((|#3|) . T) (((-576)) . T) (($) . T)) -((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-832)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-418 (-575))) . T) (((-418 |#1|)) . T) ((|#1|) . T) (((-575)) . T) (($) . T)) +(((|#3|) . T) (((-575)) . T) (($) . T)) +((((-418 $) (-418 $)) |has| |#1| (-567)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-831)) ((($) . T)) (((|#4|) . T)) ((($) . T)) -((($ (-1195)) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) -((((-874)) . T)) -(((|#1| (-543 (-1195))) . T)) +((($ (-1194)) -3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))))) +((((-873)) . T)) +(((|#1| (-542 (-1194))) . T)) ((($ $) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) -((((-874)) . T)) +((((-873)) . T)) (((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) +(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (((|#2|) . T)) -(((|#2|) -3766 (|has| |#2| (-6 (-4463 "*"))) (|has| |#2| (-174)))) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(|has| |#2| (-925)) -(|has| |#1| (-925)) -((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) +(((|#2|) -3765 (|has| |#2| (-6 (-4462 "*"))) (|has| |#2| (-174)))) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(|has| |#2| (-924)) +(|has| |#1| (-924)) +((($) -3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066))))) (((|#2|) |has| |#2| (-174))) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-874)) . T)) -((((-874)) . T)) -((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373))) +((((-873)) . T)) +((((-873)) . T)) +((((-547)) . T) (((-575)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-576)) . T)) -((((-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) . T)) +((($) . T) (((-575)) . T)) +((((-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-874)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-873)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-576)) . T)) -(((|#1| (-419 (-576))) . T)) +((($) . T) (((-575)) . T)) +(((|#1| (-418 (-575))) . T)) (((|#1|) . T)) -(-3766 (|has| |#1| (-300)) (|has| |#1| (-374))) +(-3765 (|has| |#1| (-299)) (|has| |#1| (-373))) ((((-145)) . T)) -((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-860)) -((((-874)) . T)) -((((-874)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) +((((-575)) |has| #0=(-418 |#2|) (-650 (-575))) ((#0#) . T) (((-418 (-575))) . T) (($) . T)) +(|has| |#1| (-859)) +((((-873)) . T)) +((((-873)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-189)) . T) (((-874)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-189)) . T) (((-873)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390))))) -((((-1195) (-52)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-547)) |has| |#1| (-625 (-547))) (((-904 (-575))) |has| |#1| (-625 (-904 (-575)))) (((-904 (-389))) |has| |#1| (-625 (-904 (-389))))) +((((-1194) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -((((-656 (-145))) . T) (((-1177)) . T)) -((((-874)) . T)) -((((-1177)) . T)) -((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(|has| |#1| (-862)) -((((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) . T)) -((((-874)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((($) -3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) -((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((((-874)) . T)) -(((|#2|) |has| |#2| (-374))) -((((-874)) . T)) -((($) |has| |#1| (-15 * (|#1| (-783) |#1|)))) -((((-548)) |has| |#4| (-626 (-548)))) +((($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +((((-655 (-145))) . T) (((-1176)) . T)) +((((-873)) . T)) +((((-1176)) . T)) +((((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((|#1| |#1|) |has| |#1| (-318 |#1|))) +(|has| |#1| (-861)) +((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T)) +((((-873)) . T)) +((((-547)) |has| |#1| (-625 (-547)))) +((($) -3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) +((($) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) +((((-873)) . T)) +(((|#2|) |has| |#2| (-373))) +((((-873)) . T)) +((($) |has| |#1| (-15 * (|#1| (-782) |#1|)))) +((((-547)) |has| |#4| (-625 (-547)))) (((|#2|) . T)) -((((-874)) . T) (((-656 |#4|)) . T)) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T)) -(|has| |#4| (-1067)) -(|has| |#3| (-1067)) -((((-1195) (-52)) . T)) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067))) -(|has| |#1| (-925)) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(|has| |#1| (-925)) -(((|#1|) . T) (((-576)) . T) (((-419 (-576))) . T) (($) . T)) +((((-873)) . T) (((-655 |#4|)) . T)) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) . T) (((-623 $)) . T)) +(|has| |#4| (-1066)) +(|has| |#3| (-1066)) +((((-1194) (-52)) . T)) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066))) +(|has| |#1| (-924)) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +(|has| |#1| (-924)) +(((|#1|) . T) (((-575)) . T) (((-418 (-575))) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) -((((-874)) . T)) -((((-576)) . T)) -((($ (-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) -(((#0=(-419 (-576)) #0#) . T) (($ $) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#1| (-419 (-576)) (-1100)) . T)) -(|has| |#1| (-1118)) -(|has| |#1| (-568)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(|has| |#1| (-832)) -(((#0=(-926 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) -((((-419 |#2|)) . T)) -(|has| |#1| (-860)) -((((-1222 |#1|)) . T) (((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -(((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-576) #1#) . T) (($ $) . T)) -((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +((((-873)) . T)) +((((-575)) . T)) +((($ (-1194)) -3765 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066))))) +(((#0=(-418 (-575)) #0#) . T) (($ $) . T)) +((((-418 (-575))) . T) (($) . T)) +(((|#1| (-418 (-575)) (-1099)) . T)) +(|has| |#1| (-1117)) +(|has| |#1| (-567)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(|has| |#1| (-831)) +(((#0=(-925 |#1|) #0#) . T) (($ $) . T) ((#1=(-418 (-575)) #1#) . T)) +((((-418 |#2|)) . T)) +(|has| |#1| (-859)) +((((-1221 |#1|)) . T) (((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +(((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) . T) ((#1=(-575) #1#) . T) (($ $) . T)) +((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +(((|#2|) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (((|#2|) . T)) -((((-874)) . T)) -((((-1195)) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T)) +((((-873)) . T)) +((((-1194)) . T)) +((((-418 (-575))) . T) (((-710)) . T) (($) . T) (((-575)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) -((((-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) . T)) -((((-576) |#3|) . T)) -(((#0=(-52)) . T) (((-2 (|:| -4169 (-1195)) (|:| -3180 #0#))) . T)) -(|has| |#1| (-360)) -((((-576)) . T)) -((((-874)) . T)) -(((|#1|) . T)) -(((#0=(-1272 |#1| |#2| |#3| |#4|) $) |has| #0# (-296 #0# #0#))) -(|has| |#1| (-374)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1067))) -(((|#1|) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1067))) (($) -3766 (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))) (((-576)) -3766 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)))) -(((#0=(-1100) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-360))) -(((#0=(-419 (-576)) #0#) . T) ((#1=(-711) #1#) . T) (($ $) . T)) -((((-326 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) -((((-874)) . T)) -(|has| |#1| (-1118)) -(((|#1|) . T)) -(((|#1|) -3766 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) -(((|#1|) -3766 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) +((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T)) +((((-575) |#3|) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4169 (-1194)) (|:| -3179 #0#))) . T)) +(|has| |#1| (-359)) +((((-575)) . T)) +((((-873)) . T)) +(((|#1|) . T)) +(((#0=(-1271 |#1| |#2| |#3| |#4|) $) |has| #0# (-295 #0# #0#))) +(|has| |#1| (-373)) +(-3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) +(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-1066))) (($) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))) (((-575)) -3765 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)))) +(((#0=(-1099) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-359))) +(((#0=(-418 (-575)) #0#) . T) ((#1=(-710) #1#) . T) (($ $) . T)) +((((-325 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-373))) +((((-873)) . T)) +(|has| |#1| (-1117)) +(((|#1|) . T)) +(((|#1|) -3765 (|has| |#2| (-377 |#1|)) (|has| |#2| (-428 |#1|)))) +(((|#1|) -3765 (|has| |#2| (-377 |#1|)) (|has| |#2| (-428 |#1|)))) (((|#2|) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((((-591)) . T)) +((((-418 (-575))) . T) (((-710)) . T) (($) . T)) +((((-590)) . T)) (((|#3| |#3|) . T)) -((($ (-1195)) |has| |#2| (-914 (-1195)))) -(|has| |#2| (-239)) -((((-876 |#1|)) . T)) -((((-1195)) |has| |#1| (-914 (-1195))) ((|#3|) . T)) -((((-656 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-1040))) -((((-419 (-576))) . T) (($) . T)) -((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) -((($) . T) (((-419 (-576))) . T)) -((((-874)) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-576)) . T) (((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576)) . T)) +((($ (-1194)) -3765 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194))))) +(|has| |#2| (-238)) +((((-875 |#1|)) . T)) +((((-1194)) |has| |#1| (-913 (-1194))) ((|#3|) . T)) +((((-655 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-373)) (|has| |#2| (-1039))) +((((-418 (-575))) . T) (($) . T)) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373))) +((($) . T) (((-418 (-575))) . T)) +((((-873)) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +((((-418 (-575))) . T) (($) . T) (((-418 |#1|)) . T) ((|#1|) . T)) +((((-575)) . T) (((-117 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +((((-575)) . T)) (((|#3|) . T)) -(|has| |#1| (-1118)) +(|has| |#1| (-1117)) (((|#2|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-239))) -((((-576)) . T)) -(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#1|) . T) (($) . T) (((-576)) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) +((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((((-575)) . T)) +(((|#2|) . T) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#1|) . T) (($) . T) (((-575)) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-419 (-576))) . T)) +((((-592 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +((($) . T) (((-418 (-575))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-576)) . T)) -(((|#1|) . T) (((-576)) . T)) -(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) +(((|#1|) . T) (((-575)) . T)) +(((|#1|) . T) (((-575)) . T)) +(((|#1| (-1285 |#1|) (-1285 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-874)) . T)) -((((-874)) . T)) +((((-873)) . T)) +((((-873)) . T)) (((|#2|) . T)) (((|#3|) . T)) -(((#0=(-117 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -((((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))) (((-576)) |has| |#2| (-1056 (-576))) ((|#2|) . T) (((-876 |#1|)) . T)) -((((-1143 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#2|) . T)) +(((#0=(-117 |#1|) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T)) +((((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))) (((-575)) |has| |#2| (-1055 (-575))) ((|#2|) . T) (((-875 |#1|)) . T)) +((((-1142 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) ((($ $) . T)) -((((-684 |#1|)) . T)) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) (((-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390))))) +((((-683 |#1|)) . T)) +((($) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) +((((-117 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +((((-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#3| (-898 (-575)))) (((-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#3| (-898 (-389))))) (((|#2|) . T) ((|#6|) . T)) -((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) +((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (($) . T)) ((((-145)) . T)) ((($) . T)) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-390)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T)) -(|has| |#2| (-925)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-925)) -(|has| |#1| (-925)) +((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-389)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) . T)) +(|has| |#2| (-924)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-924)) +(|has| |#1| (-924)) (((|#4|) . T)) -(|has| |#2| (-1040)) +(|has| |#2| (-1039)) ((($) . T)) -(|has| |#1| (-925)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) +(|has| |#1| (-924)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-374)) -((((-926 |#1|)) . T)) -((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) . T)) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) |has| |#1| (-860)) (((-576)) -3766 (|has| |#1| (-21)) (|has| |#1| (-860)))) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-3766 (|has| |#1| (-379)) (|has| |#1| (-862))) -(((|#1|) . T)) -((((-783)) . T)) -((((-874)) . T)) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1067))) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -((((-419 |#2|) |#3|) . T)) -((($) . T) (((-419 (-576))) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T)) -((((-576)) . T) (($) . T)) -((((-576)) . T) (($) . T)) -((((-783) |#1|) . T)) -(((|#2| (-246 (-2872 |#1|) (-783))) . T)) -(((|#1| (-543 |#3|)) . T)) -((((-419 (-576))) . T)) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -((((-1177)) . T) (((-874)) . T)) -(((#0=(-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) #0#) |has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))))) -((((-1177)) . T)) -(|has| |#1| (-925)) -(|has| |#2| (-374)) -(((|#1|) . T) (($) . T) (((-576)) . T)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067))) -((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) -((((-874)) . T)) -(((|#1|) . T)) -((((-390)) . T) (((-576)) . T)) -(((#0=(-419 (-576)) #0#) . T) (($ $) . T)) +(|has| |#1| (-373)) +((((-925 |#1|)) . T)) +((($) . T) (((-575)) . T) ((|#1|) . T) (((-418 (-575))) . T)) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((($) |has| |#1| (-859)) (((-575)) -3765 (|has| |#1| (-21)) (|has| |#1| (-859)))) +((($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +(-3765 (|has| |#1| (-378)) (|has| |#1| (-861))) +(((|#1|) . T)) +((((-782)) . T)) +((((-873)) . T)) +(-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +((((-418 |#2|) |#3|) . T)) +((($) . T) (((-418 (-575))) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) . T) (((-623 $)) . T)) +((((-575)) . T) (($) . T)) +((((-575)) . T) (($) . T)) +((((-782) |#1|) . T)) +(((|#2| (-245 (-2871 |#1|) (-782))) . T)) +(((|#1| (-542 |#3|)) . T)) +((((-418 (-575))) . T)) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +((((-1176)) . T) (((-873)) . T)) +(((#0=(-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) #0#) |has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))))) +((((-1176)) . T)) +(|has| |#1| (-924)) +(|has| |#2| (-373)) +(((|#1|) . T) (($) . T) (((-575)) . T)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066))) +((((-171 (-389))) . T) (((-227)) . T) (((-389)) . T)) +((((-873)) . T)) +(((|#1|) . T)) +((((-389)) . T) (((-575)) . T)) +(((#0=(-418 (-575)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-874)) . T)) -(|has| |#1| (-568)) -((((-419 (-576))) . T) (($) . T)) +((((-873)) . T)) +(|has| |#1| (-567)) +((((-418 (-575))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(-3766 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) -(|has| |#1| (-38 (-419 (-576)))) -(-12 (|has| |#1| (-557)) (|has| |#1| (-840))) -((((-874)) . T)) -((((-1195)) -3766 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195)))))) -(|has| |#1| (-374)) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -(|has| |#1| (-374)) -((((-419 (-576))) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((((-576) |#1|) . T)) -((((-1195)) |has| |#1| (-914 (-1195)))) -(((|#1|) . T)) -(-3766 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360))) -(((|#2|) |has| |#1| (-374))) -(((|#2|) |has| |#1| (-374))) -((((-576)) . T) (($) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +(-3765 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359))) +(|has| |#1| (-38 (-418 (-575)))) +(-12 (|has| |#1| (-556)) (|has| |#1| (-839))) +((((-873)) . T)) +((((-1194)) -3765 (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194)))))) +(|has| |#1| (-373)) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +(|has| |#1| (-373)) +((((-418 (-575))) . T) (($) . T)) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +((($) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +((((-575) |#1|) . T)) +((((-1194)) |has| |#1| (-913 (-1194)))) +(((|#1|) . T)) +(-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359))) +(((|#2|) |has| |#1| (-373))) +(((|#2|) |has| |#1| (-373))) +((((-575)) . T) (($) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-1195)) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-1195)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-576)))) (((-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-576))))) +(((|#2|) . T) (((-1194)) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-1194)))) (((-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-575)))) (((-418 (-575))) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-575))))) (((|#2|) . T)) ((($) . T)) -((((-1195) #0=(-1272 |#1| |#2| |#3| |#4|)) |has| #0# (-526 (-1195) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) -((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-624 $) $) . T) (($ $) . T)) -((((-171 (-227))) . T) (((-171 (-390))) . T) (((-1191 (-711))) . T) (((-905 (-390))) . T)) +((((-1194) #0=(-1271 |#1| |#2| |#3| |#4|)) |has| #0# (-525 (-1194) #0#)) ((#0# #0#) |has| #0# (-318 #0#))) +((((-418 (-575))) . T) (($) . T) (((-418 |#1|)) . T) ((|#1|) . T)) +((((-623 $) $) . T) (($ $) . T)) +((((-171 (-227))) . T) (((-171 (-389))) . T) (((-1190 (-710))) . T) (((-904 (-389))) . T)) (((|#3|) . T)) -(|has| |#1| (-568)) -(|has| (-419 |#2|) (-239)) -(((|#1| (-419 (-576))) . T)) -((($) . T) (((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) +(|has| |#1| (-567)) +(|has| (-418 |#2|) (-238)) +(((|#1| (-418 (-575))) . T)) +((($) . T) (((-418 (-575))) . T) (((-418 |#1|)) . T) ((|#1|) . T)) (((|#3|) . T)) -(|has| |#1| (-568)) -((((-874)) . T)) +(|has| |#1| (-567)) +((((-873)) . T)) ((($ $) . T)) ((($) . T)) -((((-874)) . T)) -((((-1195)) |has| |#2| (-914 (-1195)))) -((((-419 (-576))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-874)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#2|) |has| |#1| (-374))) -((((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-390)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-576))))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -(|has| |#1| (-374)) -(((|#1|) . T)) -((($) . T) (((-576)) . T) ((|#2|) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-873)) . T)) +((((-1194)) |has| |#2| (-913 (-1194)))) +((((-418 (-575))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-575)) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-873)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#2|) |has| |#1| (-373))) +((((-389)) -12 (|has| |#1| (-373)) (|has| |#2| (-898 (-389)))) (((-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-898 (-575))))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +(|has| |#1| (-373)) +(((|#1|) . T)) +((($) . T) (((-575)) . T) ((|#2|) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((|#3|) . T)) -((((-1177)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) +((((-1176)) . T) (((-517)) . T) (((-227)) . T) (((-575)) . T)) (((|#1|) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-568)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067))) +(|has| |#1| (-373)) +(|has| |#1| (-567)) +(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066))) (((|#2|) . T)) (((|#2|) . T)) -(|has| |#2| (-1067)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(|has| |#1| (-38 (-419 (-576)))) +(|has| |#2| (-1066)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +(|has| |#1| (-38 (-418 (-575)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) +(|has| |#1| (-38 (-418 (-575)))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) ((($) . T)) -((((-1177) |#1|) . T)) +((((-1176) |#1|) . T)) (|has| |#1| (-148)) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) (|has| |#1| (-148)) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-378))) ((($) . T)) (|has| |#1| (-148)) -((((-593 |#1|)) . T)) +((((-592 |#1|)) . T)) ((($) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) +(|has| |#1| (-567)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) ((($) . T)) ((($) . T)) -((((-419 |#2|)) . T)) -((((-419 (-576))) |has| |#2| (-1056 (-576))) (((-576)) |has| |#2| (-1056 (-576))) (((-1195)) |has| |#2| (-1056 (-1195))) ((|#2|) . T)) -(((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) +((((-418 |#2|)) . T)) +((((-418 |#2|)) . T)) +((((-418 (-575))) |has| |#2| (-1055 (-575))) (((-575)) |has| |#2| (-1055 (-575))) (((-1194)) |has| |#2| (-1055 (-1194))) ((|#2|) . T)) +(((#0=(-418 |#2|) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-360))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-359))) (|has| |#1| (-148)) -((((-874)) . T)) +((((-873)) . T)) ((($) . T)) -((((-1158 |#1| |#2|)) . T)) -(((|#1| (-576)) . T)) -(((|#1| (-419 (-576))) . T)) -((((-576)) |has| |#2| (-899 (-576))) (((-390)) |has| |#2| (-899 (-390)))) +((((-1157 |#1| |#2|)) . T)) +(((|#1| (-575)) . T)) +(((|#1| (-418 (-575))) . T)) +((((-575)) |has| |#2| (-898 (-575))) (((-389)) |has| |#2| (-898 (-389)))) (((|#2|) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T)) ((((-112)) . T)) -(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) +(((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-874)) . T)) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-1195) (-52)) . T)) -((((-419 |#2|)) . T)) -((((-874)) . T)) -(((|#1|) . T)) -((((-1195)) |has| |#1| (-914 (-1195)))) -(|has| |#1| (-1118)) -(|has| |#1| (-803)) -(|has| |#1| (-803)) -((((-874)) . T)) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-874)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118)))) +((((-873)) . T)) +(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-1194) (-52)) . T)) +((((-418 |#2|)) . T)) +((((-873)) . T)) +(((|#1|) . T)) +((((-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194))))) +(|has| |#1| (-1117)) +(|has| |#1| (-802)) +(|has| |#1| (-802)) +((((-873)) . T)) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +((((-873)) . T)) +((((-547)) |has| |#1| (-625 (-547)))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117)))) ((((-115)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-227)) . T) (((-390)) . T) (((-905 (-390))) . T)) -((((-874)) . T)) -((((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -((((-874)) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1067))) -((((-874)) . T)) +((((-227)) . T) (((-389)) . T) (((-904 (-389))) . T)) +((((-873)) . T)) +((((-1271 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)) (((-418 (-575))) |has| |#1| (-567))) +((((-873)) . T)) +(-3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) +((((-873)) . T)) +(((|#2|) . T)) (((|#2|) . T)) -((((-874)) . T)) -(((#0=(-926 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) +((((-873)) . T)) +(((#0=(-925 |#1|) #0#) . T) (($ $) . T) ((#1=(-418 (-575)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-374)) -((((-874)) . T)) +((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +(|has| |#1| (-373)) +((((-873)) . T)) (((|#2|) . T)) -((((-576)) . T)) -((((-1195)) |has| (-419 |#2|) (-914 (-1195)))) -((((-874)) . T)) -((((-576)) . T)) -(-3766 (|has| |#2| (-805)) (|has| |#2| (-862))) -((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-1177)) . T) (((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-874)) . T)) +((((-575)) . T)) +((((-1194)) -3765 (|has| (-418 |#2|) (-913 (-1194))) (|has| (-418 |#2|) (-915 (-1194))))) +((((-873)) . T)) +((((-575)) . T)) +(-3765 (|has| |#2| (-804)) (|has| |#2| (-861))) +((((-171 (-389))) . T) (((-227)) . T) (((-389)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-1176)) . T) (((-547)) . T) (((-575)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T)) +((((-873)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((((-576) $) . T) (((-656 (-576)) $) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)) (|has| |#1| (-1130)) (|has| |#1| (-1118))) -(|has| |#1| (-1170)) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((($) . T) ((#0=(-1270 |#2| |#3| |#4|)) |has| #0# (-174)) (((-418 (-575))) |has| #0# (-38 (-418 (-575))))) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((((-575) $) . T) (((-655 (-575)) $) . T)) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-484)) (|has| |#1| (-737)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)) (|has| |#1| (-1129)) (|has| |#1| (-1117))) +(|has| |#1| (-1169)) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) ((($) . T)) -((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576) |#1|) . T)) +((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +((((-575) |#1|) . T)) (((|#1|) . T)) -(((#0=(-117 |#1|) $) |has| #0# (-296 #0# #0#))) +(((#0=(-117 |#1|) $) |has| #0# (-295 #0# #0#))) (((|#1|) |has| |#1| (-174))) -((((-326 |#1|)) . T) (((-576)) . T)) -(|has| |#2| (-239)) +((((-325 |#1|)) . T) (((-575)) . T)) +(-3765 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) -((((-874)) . T)) +((((-873)) . T)) ((((-115)) . T) ((|#1|) . T)) -((((-874)) . T)) -((((-1195)) |has| |#2| (-914 (-1195)))) -(((|#1|) |has| |#1| (-319 |#1|))) -((((-576) |#1|) . T) (((-1253 (-576)) $) . T)) +((((-873)) . T)) +((((-1194)) -3765 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194))))) +(((|#1|) |has| |#1| (-318 |#1|))) +((((-575) |#1|) . T) (((-1252 (-575)) $) . T)) (((|#1| |#2|) . T)) -((((-1195) |#1|) . T)) -(((|#1|) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)))) +((((-1194) |#1|) . T)) +(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)))) (((|#1|) . T)) -((($ (-1195)) . T)) -(((|#1|) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1067)))) -((((-576)) . T) (((-419 (-576))) . T)) +((($ (-1194)) . T)) +(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-1066)))) +((((-575)) . T) (((-418 (-575))) . T)) (((|#1|) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-239)) -((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) -((((-390)) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) +(|has| |#1| (-567)) +(|has| |#1| (-238)) +((($) . T) (((-575)) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-373))) +((((-389)) . T)) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -(|has| |#1| (-374)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -(|has| |#1| (-374)) -(|has| |#1| (-568)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +(|has| |#1| (-373)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +(|has| |#1| (-373)) +(|has| |#1| (-567)) ((($) . T)) -(|has| |#1| (-1118)) -((((-792 |#1| (-876 |#2|))) |has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|))))) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) +(|has| |#1| (-1117)) +((((-791 |#1| (-875 |#2|))) |has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|))))) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-925)) -(((|#1| (-543 |#2|)) . T)) -(((|#1| (-783)) . T)) -(|has| |#1| (-239)) -(((|#1| (-543 (-1106 (-1195)))) . T)) -(|has| |#2| (-374)) -((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) -((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-576)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-874)) . T)) -((((-874)) . T)) -(-3766 (|has| |#3| (-805)) (|has| |#3| (-862))) -((((-874)) . T)) -((((-1138)) . T) (((-874)) . T)) -((((-548)) . T) (((-874)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-624 $) $) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-576)) . T)) +(|has| |#2| (-924)) +(((|#1| (-542 |#2|)) . T)) +(((|#1| (-782)) . T)) +(|has| |#1| (-238)) +(((|#1| (-542 (-1105 (-1194)))) . T)) +(|has| |#2| (-373)) +((($) -3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066))))) +((((-592 |#1|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +((((-575)) . T) (((-418 (-575))) . T) (($) . T)) +((((-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-575)) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-873)) . T)) +((((-873)) . T)) +(-3765 (|has| |#3| (-804)) (|has| |#3| (-861))) +((((-873)) . T)) +((((-1137)) . T) (((-873)) . T)) +((((-547)) . T) (((-873)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-623 $) $) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-575)) . T)) (((|#3|) . T)) -((((-874)) . T)) -(-3766 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-576)) . T) (((-419 (-576))) -3766 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576))))) ((|#2|) . T) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) (((-876 |#1|)) . T)) -((((-1143 |#1| |#2|)) . T) ((|#2|) . T) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-576)) . T)) -((((-1191 |#1|)) . T) (((-576)) . T) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) (((-1100)) . T) ((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) -(-3766 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) -((((-1143 |#1| (-1195))) . T) (((-576)) . T) (((-1106 (-1195))) . T) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-1195)) . T)) -(((#0=(-593 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) +((((-873)) . T)) +(-3765 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359))) +((((-575)) . T) (((-418 (-575))) -3765 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575))))) ((|#2|) . T) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((-875 |#1|)) . T)) +((((-1142 |#1| |#2|)) . T) ((|#2|) . T) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-575)) . T)) +((((-1190 |#1|)) . T) (((-575)) . T) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) (((-1099)) . T) ((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) +(-3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) +((((-1142 |#1| (-1194))) . T) (((-575)) . T) (((-1105 (-1194))) . T) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-1194)) . T)) +(((#0=(-592 |#1|) #0#) . T) (($ $) . T) ((#1=(-418 (-575)) #1#) . T)) +((($ $) . T) ((#0=(-418 (-575)) #0#) . T)) (((|#1|) |has| |#1| (-174))) -(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) -((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) . T)) +(((|#1| (-1285 |#1|) (-1285 |#1|)) . T)) +((((-592 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +((($) . T) (((-418 (-575))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-6 (-4463 "*")))) +((($) . T) (((-418 (-575))) . T)) +(((|#2|) |has| |#2| (-6 (-4462 "*")))) (((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#1|) . T) (((-575)) . T)) (((|#1|) . T)) -((((-874)) . T)) -((((-304 |#3|)) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) +((((-873)) . T)) +((((-303 |#3|)) . T)) +(((#0=(-418 (-575)) #0#) |has| |#2| (-38 (-418 (-575)))) ((|#2| |#2|) . T) (($ $) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) +((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575))))) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575))))) (((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-874)) . T)) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#2| (-925)) -(|has| |#1| (-925)) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) . T)) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575))))) +((((-873)) . T)) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(|has| |#2| (-924)) +(|has| |#1| (-924)) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-873)) . T)) (((|#1|) . T)) -((((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) . T)) +(((|#1|) . T)) +((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1118)) +(|has| |#1| (-1117)) (((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -((((-1195)) . T) ((|#1|) . T)) -((((-874)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-874)) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) -(((#0=(-419 (-576)) #0#) . T)) -((((-419 (-576))) . T)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +((((-1194)) . T) ((|#1|) . T)) +((((-873)) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T)) +((((-873)) . T)) +((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) +(((#0=(-418 (-575)) #0#) . T)) +((((-418 (-575))) . T)) (((|#1|) |has| |#1| (-174))) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) -(((|#1|) . T)) -(((|#1|) . T)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067))) -(((|#1|) . T)) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-548)) . T)) -((((-874)) . T)) -((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) -((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-874)) . T)) -((((-1195)) |has| |#2| (-914 (-1195))) (((-1100)) . T)) -((((-926 |#1|)) . T)) -((((-1271 |#2| |#3| |#4|)) . T)) -((($) . T) (((-419 (-576))) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -((((-874)) . T)) -(|has| |#1| (-1240)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) +(((|#1|) . T)) +(((|#1|) . T)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066))) +(((|#1|) . T)) +((((-418 (-575))) . T) (((-575)) . T) (($) . T)) +((((-547)) . T)) +((((-873)) . T)) +((($) -3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066))))) +((((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) +((((-873)) . T)) +((((-1194)) |has| |#2| (-913 (-1194))) (((-1099)) . T)) +((((-925 |#1|)) . T)) +((((-1270 |#2| |#3| |#4|)) . T)) +((($) . T) (((-418 (-575))) . T)) +(-12 (|has| |#1| (-373)) (|has| |#2| (-831))) +(-12 (|has| |#1| (-373)) (|has| |#2| (-831))) +((((-873)) . T)) +(|has| |#1| (-1239)) (((|#2|) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1195)) |has| |#1| (-914 (-1195)))) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-568)))) -(|has| |#1| (-568)) -(((|#1|) |has| |#1| (-374))) -((((-576)) . T)) -((((-1195) #0=(-117 |#1|)) |has| #0# (-526 (-1195) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) -(|has| |#1| (-803)) -(|has| |#1| (-803)) -((((-1195)) |has| |#1| (-914 (-1195)))) -(((|#2|) . T) (((-576)) |has| |#2| (-1056 (-576))) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576))))) -((((-1100)) . T) ((|#2|) . T) (((-576)) |has| |#2| (-1056 (-576))) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-576)) . T) (($) . T)) -((((-576) (-783)) . T) ((|#3| (-783)) . T)) +((($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +((((-1194)) |has| |#1| (-913 (-1194)))) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +((($) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) . T)) +(((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))) ((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-567)))) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T)) +((($) . T) (((-418 (-575))) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-567)))) +(|has| |#1| (-567)) +(((|#1|) |has| |#1| (-373))) +((((-575)) . T)) +((((-1194) #0=(-117 |#1|)) |has| #0# (-525 (-1194) #0#)) ((#0# #0#) |has| #0# (-318 #0#))) +(|has| |#1| (-802)) +(|has| |#1| (-802)) +((((-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194))))) +(((|#2|) . T) (((-575)) |has| |#2| (-1055 (-575))) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575))))) +((((-1099)) . T) ((|#2|) . T) (((-575)) |has| |#2| (-1055 (-575))) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-575)) . T) (($) . T)) +((((-575) (-782)) . T) ((|#3| (-782)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-874)) . T)) -((($) |has| |#1| (-379))) -((($) |has| |#1| (-379))) -((($) |has| |#1| (-379))) -(|has| |#2| (-832)) -(|has| |#2| (-832)) -((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -((($ (-1195)) |has| |#1| (-914 (-1195)))) -(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576))))) -((($) -3766 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) -(((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390)))) -(((|#1|) . T)) -((((-882 |#1|)) . T)) -((((-882 |#1|)) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-925))) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-873)) . T)) +((($) |has| |#1| (-378))) +((($) |has| |#1| (-378))) +((($) |has| |#1| (-378))) +(|has| |#2| (-831)) +(|has| |#2| (-831)) +((((-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-650 (-575)))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#2|) |has| |#1| (-373)) (($) . T) ((|#1|) . T)) +((($ (-1194)) |has| |#1| (-913 (-1194)))) +(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575))))) +((($) -3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) +(((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-575)) |has| |#1| (-898 (-575))) (((-389)) |has| |#1| (-898 (-389)))) +(((|#1|) . T)) +((((-881 |#1|)) . T)) +((((-881 |#1|)) . T)) +(-12 (|has| |#1| (-373)) (|has| |#2| (-924))) +((((-418 (-575))) . T) (((-710)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-374)) -(|has| |#1| (-374)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) -(((|#2|) -3766 (|has| |#2| (-6 (-4463 "*"))) (|has| |#2| (-174)))) +(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) +(((|#2|) -3765 (|has| |#2| (-6 (-4462 "*"))) (|has| |#2| (-174)))) (((|#2|) . T)) -(|has| |#1| (-374)) +(|has| |#1| (-373)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-876 |#1|)) . T)) +((((-875 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-783)) . T)) -((((-1195)) . T)) -((((-882 |#1|)) . T)) -(-3766 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067))) -(-3766 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1067))) -((((-874)) . T)) +(((|#2| (-782)) . T)) +((((-1194)) . T)) +((((-881 |#1|)) . T)) +(-3765 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066))) +(-3765 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-804)) (|has| |#3| (-1066))) +((((-873)) . T)) (((|#1|) . T)) -(-3766 (|has| |#2| (-805)) (|has| |#2| (-862))) -(-3766 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))) -((((-882 |#1|)) . T)) +(-3765 (|has| |#2| (-804)) (|has| |#2| (-861))) +(-3765 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) +((((-881 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((($ $) . T) (((-624 $) $) . T)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +((($ $) . T) (((-623 $) $) . T)) ((($) . T)) -((((-874)) . T)) -((((-576)) . T)) +((((-873)) . T)) +((((-575)) . T)) (((|#2|) . T)) -((((-874)) . T)) -((($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) -((((-874)) . T)) -(((|#1|) . T)) -((((-874)) . T)) -((($) . T) ((|#2|) . T) (((-419 (-576))) . T) (((-576)) |has| |#2| (-651 (-576)))) -(|has| |#1| (-1118)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-874)) . T)) -(|has| |#2| (-925)) -((((-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576))))) -((((-874)) . T)) -((((-874)) . T)) -(((|#3|) |has| |#3| (-1067)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) -((((-1143 |#1| |#2|)) . T) (((-968 |#1|)) |has| |#2| (-626 (-1195))) (((-874)) . T)) -((((-968 |#1|)) |has| |#2| (-626 (-1195))) (((-1177)) -12 (|has| |#1| (-1056 (-576))) (|has| |#2| (-626 (-1195)))) (((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576))))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) -((((-1191 |#1|)) . T) (((-874)) . T)) -((((-874)) . T)) -((((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))) (((-576)) |has| |#2| (-1056 (-576))) ((|#2|) . T) (((-876 |#1|)) . T)) -((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T)) -((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T) (((-1195)) . T)) -((((-874)) . T)) -((((-576)) . T)) +((((-873)) . T)) +((($) . T) (((-575)) . T)) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-373))) +((((-873)) . T)) +(((|#1|) . T)) +((((-873)) . T)) +((($) . T) ((|#2|) . T) (((-418 (-575))) . T) (((-575)) |has| |#2| (-650 (-575)))) +(|has| |#1| (-1117)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-873)) . T)) +(|has| |#2| (-924)) +((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T)) +((((-547)) |has| |#2| (-625 (-547))) (((-904 (-389))) |has| |#2| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#2| (-625 (-904 (-575))))) +((((-873)) . T)) +((((-873)) . T)) +(((|#3|) |has| |#3| (-1066)) (((-575)) -12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) +((((-1142 |#1| |#2|)) . T) (((-967 |#1|)) |has| |#2| (-625 (-1194))) (((-873)) . T)) +((((-967 |#1|)) |has| |#2| (-625 (-1194))) (((-1176)) -12 (|has| |#1| (-1055 (-575))) (|has| |#2| (-625 (-1194)))) (((-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575))))) (((-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389))))) (((-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#2| (-625 (-547))))) +((((-1190 |#1|)) . T) (((-873)) . T)) +((((-873)) . T)) +((((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))) (((-575)) |has| |#2| (-1055 (-575))) ((|#2|) . T) (((-875 |#1|)) . T)) +((((-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (((-1099)) . T)) +((((-117 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T) (((-1194)) . T)) +((((-873)) . T)) +((((-575)) . T)) (((|#1|) . T)) ((($) . T)) -((((-390)) |has| |#1| (-899 (-390))) (((-576)) |has| |#1| (-899 (-576)))) -((((-576)) . T)) -(((|#1|) . T)) -((((-874)) . T)) -(((|#1|) . T)) -((((-874)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-656 |#1|)) . T)) -((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((($) . T) (((-576)) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((((-576)) -3766 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) (($) -3766 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) ((|#1|) -3766 (|has| |#1| (-174)) (|has| |#1| (-1067))) (((-419 (-576))) |has| |#1| (-568))) -((((-1200)) . T)) -((((-576)) . T) (((-419 (-576))) . T)) -((($ (-1195)) |has| |#1| (-914 (-1195)))) -((((-1200)) . T)) -((((-1200)) . T)) +((((-389)) |has| |#1| (-898 (-389))) (((-575)) |has| |#1| (-898 (-575)))) +((((-575)) . T)) +(((|#1|) . T)) +((((-873)) . T)) +(((|#1|) . T)) +((((-873)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-655 |#1|)) . T)) +((($) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) +((($) . T) (((-575)) . T) (((-1271 |#1| |#2| |#3| |#4|)) . T) (((-418 (-575))) . T)) +((((-575)) -3765 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) (($) -3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) ((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-1066))) (((-418 (-575))) |has| |#1| (-567))) +((((-1199)) . T)) +((((-575)) . T) (((-418 (-575))) . T)) +((($ (-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194))))) +((((-1199)) . T)) +((((-1199)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -((((-1200)) . T)) -(((|#1|) |has| |#1| (-319 |#1|))) -((((-390)) . T)) +((((-1199)) . T)) +(((|#1|) |has| |#1| (-318 |#1|))) +((((-389)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-874)) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 |#2|) |#3|) . T)) -((((-874)) . T)) +((((-873)) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-418 |#2|) |#3|) . T)) +((((-873)) . T)) (((|#1|) . T)) -(|has| |#1| (-1118)) -(((|#2| (-494 (-2872 |#1|) (-783))) . T)) -((((-576) |#1|) . T)) -((((-1177)) . T) (((-874)) . T)) +(|has| |#1| (-1117)) +(((|#2| (-493 (-2871 |#1|) (-782))) . T)) +((((-575) |#1|) . T)) +((((-1176)) . T) (((-873)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-543 (-1195))) . T)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067))) -((((-576)) . T)) +(((|#1| (-542 (-1194))) . T)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066))) +((((-575)) . T)) (((|#2|) . T)) -((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) +((($) -3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066))))) (((|#2|) . T)) -((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -(|has| |#1| (-568)) -(((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((($) . T) (((-419 (-576))) . T)) +((((-1194)) |has| |#1| (-913 (-1194))) (((-1099)) . T)) +(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575)))) +(|has| |#1| (-567)) +(((#0=(-1270 |#2| |#3| |#4|)) . T) (((-418 (-575))) |has| #0# (-38 (-418 (-575)))) (((-575)) . T) (($) . T)) +((($) . T) (((-418 (-575))) . T)) ((($) . T)) ((($) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) (((|#1|) . T)) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) . T)) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-873)) . T)) ((((-145)) . T)) -(((|#1|) . T) (((-419 (-576))) . T)) +(((|#1|) . T) (((-418 (-575))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-874)) . T)) +((((-873)) . T)) (((|#1|) . T)) -(|has| |#1| (-1170)) -((($ (-1195)) |has| (-419 |#2|) (-914 (-1195)))) +(|has| |#1| (-1169)) +((($ (-1194)) -3765 (|has| (-418 |#2|) (-913 (-1194))) (|has| (-418 |#2|) (-915 (-1194))))) (((|#1|) . T)) -(((|#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) . T)) -((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576))))) -((((-874)) . T)) -((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T) ((|#2|) . T)) -((((-1100)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576))))) -((((-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390)))) (((-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576))))) -((((-1272 |#1| |#2| |#3| |#4|)) . T)) -((((-576) |#1|) . T)) +(((|#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|))) . T)) +((((-418 $) (-418 $)) |has| |#1| (-567)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575))))) +((((-873)) . T)) +((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T) ((|#2|) . T)) +((((-1099)) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575))))) +((((-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#2| (-898 (-389)))) (((-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#2| (-898 (-575))))) +((((-1271 |#1| |#2| |#3| |#4|)) . T)) +((((-1271 |#1| |#2| |#3| |#4|)) . T)) +((((-575) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) ((($) . T)) -((((-711)) . T)) -((((-792 |#1| (-876 |#2|))) . T)) -((((-576)) . T) (($) . T)) +((((-710)) . T)) +((((-791 |#1| (-875 |#2|))) . T)) +((((-575)) . T) (($) . T)) ((($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) -((((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1118)) -(|has| |#1| (-1118)) -(|has| |#2| (-374)) -(((|#1|) . T) (($) -3766 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(|has| |#1| (-38 (-419 (-576)))) -((($) |has| |#2| (-239))) -((((-576)) . T)) -((($ (-1195)) |has| |#2| (-914 (-1195)))) -((((-1195)) -12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) -((((-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) -(((|#1|) . T)) -(|has| |#1| (-239)) -(((|#2| (-246 (-2872 |#1|) (-783))) . T)) -(((|#1| (-543 |#3|)) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) +(((|#1|) . T) (((-418 (-575))) |has| |#1| (-373))) +((((-418 (-575))) . T) (($) . T)) +(|has| |#1| (-1117)) +(|has| |#1| (-1117)) +(|has| |#2| (-373)) +(((|#1|) . T) (($) -3765 (|has| |#1| (-299)) (|has| |#1| (-373))) (((-418 (-575))) |has| |#1| (-373))) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-38 (-418 (-575)))) +((($) -3765 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((((-575)) . T)) +((($ (-1194)) -3765 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194))))) +((((-1194)) -12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066)))) +((((-1194)) -12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066)))) +(((|#1|) . T)) +(|has| |#1| (-238)) +(((|#2| (-245 (-2871 |#1|) (-782))) . T)) +(((|#1| (-542 |#3|)) . T)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) +(|has| |#1| (-378)) (((|#1|) . T) (($) . T)) -(((|#1| (-543 |#2|)) . T)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067))) -(((|#1| (-783)) . T)) -(|has| |#1| (-568)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067))) +(((|#1| (-542 |#2|)) . T)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066))) +(((|#1| (-782)) . T)) +(|has| |#1| (-567)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-874)) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-3766 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -(-3766 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1067))) -(|has| |#2| (-1067)) +((((-873)) . T)) +((((-575)) . T) (((-418 (-575))) . T) (($) . T)) +(-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))) +(-3765 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-804)) (|has| |#3| (-1066))) +(|has| |#2| (-1066)) (((|#1|) |has| |#1| (-174))) -(((|#4|) |has| |#4| (-1067))) -(((|#3|) |has| |#3| (-1067))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -((((-576)) . T) (((-419 (-576))) -3766 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576))))) ((|#2|) . T) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) (((-876 |#1|)) . T)) -((((-1143 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) ((|#2|) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118)))) -((((-548)) |has| |#1| (-626 (-548)))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-1200)) . T)) -((((-684 |#1|)) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-874)) . T)) -((((-656 $)) . T) (((-1177)) . T) (((-1195)) . T) (((-576)) . T) (((-227)) . T) (((-874)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((($) . T) (((-419 (-576))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1118)) (((-576)) -12 (|has| |#4| (-1056 (-576))) (|has| |#4| (-1118))) (((-419 (-576))) -12 (|has| |#4| (-1056 (-419 (-576)))) (|has| |#4| (-1118)))) -(((|#3|) |has| |#3| (-1118)) (((-576)) -12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (((-419 (-576))) -12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118)))) -(|has| |#2| (-374)) -(((|#2|) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) -(((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1195)) |has| |#1| (-1067))) -(|has| |#2| (-374)) +(((|#4|) |has| |#4| (-1066))) +(((|#3|) |has| |#3| (-1066))) +(-12 (|has| |#1| (-373)) (|has| |#2| (-831))) +(-12 (|has| |#1| (-373)) (|has| |#2| (-831))) +((((-575)) . T) (((-418 (-575))) -3765 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575))))) ((|#2|) . T) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((-875 |#1|)) . T)) +((((-1142 |#1| |#2|)) . T) (((-575)) . T) ((|#3|) . T) (($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) ((|#2|) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117)))) +((((-547)) |has| |#1| (-625 (-547)))) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T)) +((((-1199)) . T)) +((((-683 |#1|)) . T)) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T)) +((($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +((((-873)) . T)) +((((-655 $)) . T) (((-1176)) . T) (((-1194)) . T) (((-575)) . T) (((-227)) . T) (((-873)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((($) . T) (((-418 (-575))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1117)) (((-575)) -12 (|has| |#4| (-1055 (-575))) (|has| |#4| (-1117))) (((-418 (-575))) -12 (|has| |#4| (-1055 (-418 (-575)))) (|has| |#4| (-1117)))) +(((|#3|) |has| |#3| (-1117)) (((-575)) -12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (((-418 (-575))) -12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117)))) +(|has| |#2| (-373)) +(((|#2|) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) +(((|#1|) . T)) +(((#0=(-418 (-575)) #0#) |has| |#2| (-38 (-418 (-575)))) ((|#2| |#2|) . T) (($ $) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +((((-1194)) |has| |#1| (-1066))) +(|has| |#2| (-373)) (((|#2| |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) . T) (($) . T) (((-418 (-575))) . T)) (((|#2|) . T)) -((((-874)) |has| |#1| (-1118))) +((((-873)) |has| |#1| (-1117))) ((($) . T)) -((((-1272 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-832)) -(|has| |#2| (-832)) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-374)) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) |has| |#2| (-429 |#1|))) -(((|#1|) |has| |#2| (-429 |#1|))) -((((-1177)) . T)) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-656 |#1|)) . T) (((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118)))) -((((-1200)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-656 |#1|)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-874)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1235)) . T) (((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) |has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))))) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -((((-576) |#1|) . T)) -((((-576) |#1|) . T)) -((((-576) |#1|) . T)) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -((((-576) |#1|) . T)) -(((|#1|) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-1195)) |has| |#1| (-914 (-1195))) (((-830 (-1195))) . T)) -(-3766 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1067))) -((((-831 |#1|)) . T)) +((((-1271 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-831)) +(|has| |#2| (-831)) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) +(|has| |#1| (-373)) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#1|) |has| |#2| (-428 |#1|))) +(((|#1|) |has| |#2| (-428 |#1|))) +((((-1176)) . T)) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-655 |#1|)) . T) (((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117)))) +((((-1199)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-655 |#1|)) . T)) +((((-547)) |has| |#1| (-625 (-547)))) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-873)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1234)) . T) (((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) |has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))))) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +((((-575) |#1|) . T)) +((((-575) |#1|) . T)) +((((-575) |#1|) . T)) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +((((-575) |#1|) . T)) +(((|#1|) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-575)) . T) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174))) +((((-1194)) |has| |#1| (-913 (-1194))) (((-829 (-1194))) . T)) +(-3765 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-804)) (|has| |#3| (-1066))) +((((-830 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-874)) . T)) -(|has| |#3| (-1067)) +((((-873)) . T)) +(|has| |#3| (-1066)) (((|#1| |#2|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -(|has| |#1| (-38 (-419 (-576)))) -((((-874)) . T)) -((((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -(|has| |#1| (-374)) -(-3766 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-239)))) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-374)) -(((|#1|) . T)) -(((#0=(-419 (-576)) #0#) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) -((((-326 |#1|)) . T)) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((#0=(-711) (-1191 #0#)) . T)) -((((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-576)) . T) (((-419 (-576))) . T)) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) +(|has| |#1| (-38 (-418 (-575)))) +((((-873)) . T)) +((((-1271 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)) (((-418 (-575))) |has| |#1| (-567))) +(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) +(|has| |#1| (-373)) +(-3765 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (-12 (|has| |#1| (-373)) (|has| |#2| (-238)))) +(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) +(|has| |#1| (-373)) +(((|#1|) . T)) +(((#0=(-418 (-575)) #0#) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1| |#1|) . T)) +((((-1252 (-575)) $) . T) (((-575) |#1|) . T)) +((((-325 |#1|)) . T)) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(((#0=(-710) (-1190 #0#)) . T)) +((((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-575)) . T) (((-418 (-575))) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-860)) -(((|#2|) . T) (((-1195)) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-1195)))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3766 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1143 |#1| (-1195))) . T) (((-830 (-1195))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-1195)) . T)) +(|has| |#1| (-859)) +(((|#2|) . T) (((-1194)) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-1194)))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-575)) . T) ((|#1|) |has| |#1| (-174))) +(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) -3765 (|has| |#1| (-373)) (|has| |#1| (-567)))) +((($ $) . T) ((#0=(-875 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1142 |#1| (-1194))) . T) (((-829 (-1194))) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-1194)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1100) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1195) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1106 (-1195)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1099) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1194) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1105 (-1194)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-576)) |has| |#2| (-651 (-576))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(|has| |#2| (-925)) -((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((($) . T) (((-575)) |has| |#2| (-650 (-575))) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575))))) +(|has| |#2| (-924)) +((($) . T) ((#0=(-1270 |#2| |#3| |#4|)) |has| #0# (-174)) (((-418 (-575))) |has| #0# (-38 (-418 (-575))))) (((|#1|) |has| |#1| (-174))) -((((-576) |#1|) . T)) +((((-575) |#1|) . T)) (((|#1|) . T)) -((((-1200)) . T)) -(((#0=(-1272 |#1| |#2| |#3| |#4|)) |has| #0# (-319 #0#))) +((((-1199)) . T)) +(((#0=(-1271 |#1| |#2| |#3| |#4|)) |has| #0# (-318 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(|has| |#2| (-239)) +((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#2| |#2|) |has| |#1| (-373)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373)))) +(|has| |#2| (-238)) (|has| $ (-148)) -((((-874)) . T)) -((($) . T) (((-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((((-874)) . T)) -(|has| |#1| (-860)) +((((-873)) . T)) +((($) . T) (((-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T) (((-575)) |has| |#1| (-650 (-575)))) +((((-873)) . T)) +(|has| |#1| (-859)) ((((-130)) . T)) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) -((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T)) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) +((((-418 (-575))) . T) (((-710)) . T) (($) . T) (((-575)) . T)) (((|#1|) . T)) ((((-130)) . T)) -((($ (-1195)) |has| |#1| (-914 (-1195)))) -((((-874)) . T)) -(-12 (|has| |#1| (-317)) (|has| |#1| (-925))) -(((|#2| (-684 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-419 |#2|) |#3|) . T)) -((((-874)) |has| |#1| (-1118))) +((($ (-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194))))) +((((-873)) . T)) +(-12 (|has| |#1| (-316)) (|has| |#1| (-924))) +(((|#2| (-683 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-418 |#2|) |#3|) . T)) +((((-873)) |has| |#1| (-1117))) (((|#4|) . T)) -(|has| |#1| (-568)) -((($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-1195)) -3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) -(((|#1|) . T) (($) -3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) -(-3766 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) -(((|#1|) . T)) -(((|#1| (-543 (-830 (-1195)))) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -((((-576)) . T) ((|#2|) . T) (($) . T) (((-419 (-576))) . T) (((-1195)) |has| |#2| (-1056 (-1195)))) -(((|#1|) . T)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) -(((|#1|) . T)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067))) -(-3766 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) -((($) . T) (((-882 |#1|)) . T) (((-419 (-576))) . T)) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) -(|has| |#1| (-568)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-419 |#2|)) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118)))) -((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118)))) -((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118)))) -((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T)) -(((|#2|) . T) (((-419 (-576))) . T) (($) . T)) -((((-576)) . T)) -((((-874)) . T)) -((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-874)) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-576) |#1|) . T)) +(|has| |#1| (-567)) +((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#2|) |has| |#1| (-373)) ((|#1|) . T)) +((((-1194)) -3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) +(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373)))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +((((-1252 (-575)) $) . T) (((-575) |#1|) . T)) +(-3765 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) +(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) +(((|#1|) . T)) +(((|#1| (-542 (-829 (-1194)))) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +((((-575)) . T) ((|#2|) . T) (($) . T) (((-418 (-575))) . T) (((-1194)) |has| |#2| (-1055 (-1194)))) +(((|#1|) . T)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) +(((|#1|) . T)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066))) +(-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373))) +((($) . T) (((-881 |#1|)) . T) (((-418 (-575))) . T)) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373))) +(|has| |#1| (-567)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-418 |#2|)) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-359))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117)))) +((((-547)) |has| |#1| (-625 (-547)))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117)))) +((((-547)) |has| |#1| (-625 (-547)))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117)))) +((((-547)) |has| |#1| (-625 (-547)))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-418 (-575)) #0#) . T) (($ $) . T)) +(((|#2|) . T) (((-418 (-575))) . T) (($) . T)) +((((-575)) . T)) +((((-873)) . T)) +((((-592 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +((((-873)) . T)) +((((-418 (-575))) . T) (($) . T)) +((((-575) |#1|) . T)) ((($) . T)) ((($) . T)) -((((-874)) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576))))) -((((-874)) . T)) -((((-874)) . T)) -((((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548))))) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -(|has| |#1| (-239)) -(((|#1|) . T) (((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-874)) . T)) -((((-115)) . T) ((|#1|) . T) (((-576)) . T)) +((((-873)) . T)) +((((-547)) |has| |#2| (-625 (-547))) (((-904 (-389))) |has| |#2| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#2| (-625 (-904 (-575))))) +((((-873)) . T)) +((((-873)) . T)) +((((-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#3| (-625 (-904 (-575))))) (((-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#3| (-625 (-904 (-389))))) (((-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#3| (-625 (-547))))) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) +(((|#1|) . T) (((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-873)) . T)) +((((-115)) . T) ((|#1|) . T) (((-575)) . T)) ((((-130)) . T)) -((($) . T) (((-576)) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) . T)) -(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))) +((($) . T) (((-575)) . T) (((-117 |#1|)) . T) (((-418 (-575))) . T)) +(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|))) . T)) +(((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) +((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((($) . T) (((-576)) . T)) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1122)) . T)) -((((-874)) . T)) -((((-1200)) . T) (((-874)) . T)) -((((-1200)) . T) (((-874)) . T)) -((($) -3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1200)) . T)) -((((-1200)) . T)) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((($) . T) (((-576)) . T)) -((($) -3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) . T)) -(|has| |#2| (-925)) -((($ $) . T) (((-1195) $) . T)) -((((-1278 |#1| |#2| |#3|)) . T)) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) -(((|#1|) . T)) -((((-1278 |#1| |#2| |#3|)) . T) (((-1250 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-925)) -((((-1195)) . T) (((-874)) . T)) +((($) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575)))) +((($) . T) (((-575)) . T)) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-1121)) . T)) +((((-873)) . T)) +((((-1199)) . T) (((-873)) . T)) +((((-1199)) . T) (((-873)) . T)) +((($) -3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-1199)) . T)) +((((-1199)) . T)) +((($) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (((-575)) |has| |#1| (-650 (-575)))) +((($) . T) (((-575)) . T)) +((($) -3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +((((-873)) . T)) +(|has| |#2| (-924)) +((($ $) . T) (((-1194) $) . T)) +((((-1277 |#1| |#2| |#3|)) . T)) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373))) +(((|#1|) . T)) +((((-1277 |#1| |#2| |#3|)) . T) (((-1249 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-924)) +((((-1194)) . T) (((-873)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-174))) -((((-711)) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((((-1200)) . T)) +((((-710)) . T)) +((((-710)) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((((-1199)) . T)) (((|#1|) |has| |#1| (-174))) -((((-1200)) . T)) -((((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -((((-1200)) . T)) -((((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) -((((-419 (-576))) . T) (($) . T)) -(((|#1| (-576)) . T)) -((($ (-1195)) |has| |#1| (-914 (-1195))) (($ (-1100)) . T)) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) +((((-1199)) . T)) +((((-1271 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-418 (-575))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)) (((-418 (-575))) |has| |#1| (-567))) +((((-1199)) . T)) +((((-1271 |#1| |#2| |#3| |#4|)) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-567)) (($) |has| |#1| (-567))) +((((-418 (-575))) . T) (($) . T)) +(((|#1| (-575)) . T)) +((($ (-1194)) -3765 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ (-1099)) . T)) +((((-418 (-575))) . T) (((-575)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-1200)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-360))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1200)) . T)) -((((-1200)) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(-3766 (|has| |#1| (-174)) (|has| |#1| (-568))) -(((|#1| (-576)) . T)) -(((|#1| (-419 (-576))) . T)) -(((|#1| (-783)) . T)) -((((-419 (-576))) . T)) -(((|#1| (-543 |#2|) |#2|) . T)) -((((-576) |#1|) . T)) -((((-576) |#1|) . T)) -(|has| |#1| (-1118)) -(|has| (-419 |#2|) (-239)) -((((-576) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-905 (-390))) . T) (((-905 (-576))) . T) (((-1195)) . T) (((-548)) . T)) -(-3766 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067))) -(-3766 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -((((-874)) . T)) -((((-576)) . T)) -((((-576)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-359))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-359))) +((((-1199)) . T)) +((((-1199)) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(-3765 (|has| |#1| (-174)) (|has| |#1| (-567))) +(((|#1| (-575)) . T)) +(((|#1| (-418 (-575))) . T)) +(((|#1| (-782)) . T)) +((((-418 (-575))) . T)) +(((|#1| (-542 |#2|) |#2|) . T)) +((((-575) |#1|) . T)) +((((-575) |#1|) . T)) +(|has| |#1| (-1117)) +(-3765 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-237))) +((((-575) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-904 (-389))) . T) (((-904 (-575))) . T) (((-1194)) . T) (((-547)) . T)) +(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066))) +(-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))) +((((-873)) . T)) +((((-575)) . T)) +((((-575)) . T)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#2| (-1067)) -((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) -(-3766 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +(|has| |#2| (-1066)) +((((-1194)) -12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066)))) +(-3765 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737)))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-374)) +(|has| |#1| (-373)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -(|has| |#1| (-239)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((($) . T) (((-576)) . T)) -((($) . T) (((-576)) . T)) -((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -((((-874)) . T)) -(((|#1| (-783) (-1100)) . T)) -((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) -((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) +((($) . T) ((#0=(-1270 |#2| |#3| |#4|)) |has| #0# (-174)) (((-418 (-575))) |has| #0# (-38 (-418 (-575))))) +(|has| |#1| (-238)) +((($) . T) (((-575)) . T) (((-418 (-575))) . T)) +((($) . T) (((-575)) . T)) +((($) . T) (((-575)) . T)) +((($) . T) ((#0=(-1270 |#2| |#3| |#4|)) . T) (((-418 (-575))) |has| #0# (-38 (-418 (-575))))) +((((-873)) . T)) +(((|#1| (-782) (-1099)) . T)) +((((-1252 (-575)) $) . T) (((-575) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-1252 (-575)) $) . T) (((-575) |#1|) . T)) +((((-1252 (-575)) $) . T) (((-575) |#1|) . T)) +((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) -((((-419 (-576))) . T) (((-576)) . T)) -(((|#2|) |has| |#2| (-1067))) -((((-419 (-576))) . T) (($) . T)) +(((|#2|) |has| |#2| (-1066))) +((((-418 (-575))) . T) (($) . T)) +((((-418 (-575))) . T) (((-575)) . T)) +(((|#2|) . T)) (((|#2|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-576)) . T)) -((((-576)) . T)) -((((-1177) (-1195) (-576) (-227) (-874)) . T)) +((((-575)) . T)) +((((-575)) . T)) +((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567))) +((((-1176) (-1194) (-575) (-227) (-873)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-576)) . T) ((|#2|) |has| |#2| (-174))) -((((-115)) . T) ((|#1|) . T) (((-576)) . T)) -(-3766 (|has| |#1| (-360)) (|has| |#1| (-379))) +((((-575)) . T) ((|#2|) |has| |#2| (-174))) +((((-115)) . T) ((|#1|) . T) (((-575)) . T)) +(-3765 (|has| |#1| (-359)) (|has| |#1| (-378))) (((|#1| |#2|) . T)) ((((-227)) . T)) -((((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-874)) . T)) +((((-418 (-575))) . T) (($) . T) (((-575)) . T)) +((((-873)) . T)) ((($) . T) ((|#1|) . T)) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) |has| |#2| (-1118)) (((-576)) -12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) -(|has| |#2| (-239)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118)))) -((((-576) $) . T) (((-656 (-576)) $) . T)) -((($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-925)) -(|has| |#1| (-925)) -((((-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1040))) (((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1040))) (((-905 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-390))))) (((-905 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-576))))) (((-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548))))) -((((-874)) . T)) -((((-874)) . T)) +((($) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (((-575)) |has| |#1| (-650 (-575)))) +((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575))))) +(((|#2|) |has| |#2| (-1117)) (((-575)) -12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) +(-3765 (|has| |#2| (-238)) (|has| |#2| (-237))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-547)) |has| |#1| (-625 (-547)))) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117)))) +((((-575) $) . T) (((-655 (-575)) $) . T)) +((($) . T) (((-418 (-575))) . T)) +(|has| |#1| (-924)) +(|has| |#1| (-924)) +((((-227)) -12 (|has| |#1| (-373)) (|has| |#2| (-1039))) (((-389)) -12 (|has| |#1| (-373)) (|has| |#2| (-1039))) (((-904 (-389))) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-904 (-389))))) (((-904 (-575))) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-904 (-575))))) (((-547)) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-547))))) +((((-873)) . T)) +((((-873)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(((|#1|) . T) (((-576)) . T)) -((((-1200)) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-860))) +(((|#1|) . T) (((-575)) . T)) +((((-1199)) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-567))) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-859))) (((|#2|) . T)) -(-3766 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-3765 (|has| |#1| (-21)) (|has| |#1| (-859))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-874)) -3766 (-12 (|has| |#1| (-625 (-874))) (|has| |#2| (-625 (-874)))) (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))))) -((((-419 |#2|) |#3|) . T)) -((((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-374)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((($) . T) (((-576)) . T)) -(|has| (-419 |#2|) (-148)) -(|has| (-419 |#2|) (-146)) +((((-873)) -3765 (-12 (|has| |#1| (-624 (-873))) (|has| |#2| (-624 (-873)))) (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))))) +((((-418 |#2|) |#3|) . T)) +((((-418 (-575))) . T) (($) . T)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-373)) +((($ $) . T) ((#0=(-418 (-575)) #0#) . T)) +((($) . T) (((-575)) . T)) +(|has| (-418 |#2|) (-148)) +(|has| (-418 |#2|) (-146)) ((($) . T)) -((((-711)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((#0=(-576) #0#) . T)) -((($) . T) (((-419 (-576))) . T)) -(|has| |#4| (-1067)) -(|has| |#3| (-1067)) -((((-874)) . T) (((-1200)) . T)) -(|has| |#4| (-805)) -(|has| |#4| (-805)) -(|has| |#3| (-805)) -(|has| |#3| (-805)) -((((-1200)) . T)) -((((-576)) . T)) +((((-710)) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +(((#0=(-575) #0#) . T)) +((($) . T) (((-418 (-575))) . T)) +(|has| |#4| (-1066)) +(|has| |#3| (-1066)) +((((-873)) . T) (((-1199)) . T)) +(|has| |#4| (-804)) +(|has| |#4| (-804)) +(|has| |#3| (-804)) +(|has| |#3| (-804)) +((((-1199)) . T)) +((((-575)) . T)) (((|#2|) . T)) -((((-1195)) -3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) -((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) +((((-1194)) -3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) +((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-876 |#1|)) . T)) -((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-1158 |#1| |#2|)) . T)) -((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) -(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -((((-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) . T)) +((((-875 |#1|)) . T)) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373))) +((((-1157 |#1| |#2|)) . T)) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373))) +(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) +((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T)) ((($) . T)) -(|has| |#1| (-1040)) -(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) +(|has| |#1| (-1039)) +(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) ((($) . T)) -((((-874)) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-390)) . #0=(|has| |#2| (-1040))) (((-227)) . #0#)) -((((-304 |#3|)) . T)) -((((-1195) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-1195)) |has| |#2| (-914 (-1195)))) -((((-874)) . T)) +((((-873)) . T)) +((((-547)) |has| |#2| (-625 (-547))) (((-904 (-575))) |has| |#2| (-625 (-904 (-575)))) (((-904 (-389))) |has| |#2| (-625 (-904 (-389)))) (((-389)) . #0=(|has| |#2| (-1039))) (((-227)) . #0#)) +((((-303 |#3|)) . T)) +((((-1194) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-418 (-575)))) +(|has| |#1| (-38 (-418 (-575)))) +((((-1194)) -3765 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194))))) +((((-873)) . T)) (((|#2|) . T)) -((((-874)) . T)) -((((-419 (-576)) |#1|) . T) (($ $) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((((-1193 |#1| |#2| |#3|)) . T)) -((((-1193 |#1| |#2| |#3|)) . T) (((-1186 |#1| |#2| |#3|)) . T)) -((((-874)) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((((-576) |#1|) . T)) -((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-873)) . T)) +((((-418 (-575)) |#1|) . T) (($ $) . T)) +((((-418 |#2|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +((((-418 (-575))) . T) (((-710)) . T) (($) . T)) +((((-1192 |#1| |#2| |#3|)) . T)) +((((-1192 |#1| |#2| |#3|)) . T) (((-1185 |#1| |#2| |#3|)) . T)) +((((-873)) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((((-575) |#1|) . T)) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-374)) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -3766 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1067))) (($) |has| |#4| (-1067)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1067)))) -(((|#2|) . T) ((|#3|) -3766 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067))) (($) |has| |#3| (-1067)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) +(|has| |#2| (-373)) +(((|#3|) . T) ((|#2|) . T) ((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-1066))) (($) |has| |#4| (-1066)) (((-575)) -12 (|has| |#4| (-650 (-575))) (|has| |#4| (-1066)))) +(((|#2|) . T) ((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066))) (($) |has| |#3| (-1066)) (((-575)) -12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (((|#1|) . T)) (((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))) (((-576)) |has| |#2| (-1056 (-576))) ((|#2|) . T) (((-876 |#1|)) . T)) -((((-1195)) . T) ((|#1|) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -((((-189)) . T) (((-874)) . T)) -((((-874)) . T)) +((((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))) (((-575)) |has| |#2| (-1055 (-575))) ((|#2|) . T) (((-875 |#1|)) . T)) +((((-1194)) . T) ((|#1|) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +((((-189)) . T) (((-873)) . T)) +((((-873)) . T)) (((|#1|) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -((((-130)) . T) (((-874)) . T)) -((((-576) |#1|) . T) (((-1253 (-576)) $) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +((((-130)) . T) (((-873)) . T)) +((((-575) |#1|) . T) (((-1252 (-575)) $) . T)) ((((-130)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) (($ $) . T) (((-576) |#1|) . T)) -((($ $) . T) (((-419 (-576)) |#1|) . T)) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-925))) -((($ (-1195)) |has| |#1| (-1067))) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -((((-874)) . T)) -((((-874)) . T)) -((((-874)) . T)) -(((|#1| (-543 |#2|)) . T)) -((((-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) . T)) -((((-576) (-130)) . T)) -(((|#1| (-576)) . T)) -(((|#1| (-419 (-576))) . T)) -(((|#1| (-783)) . T)) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -(-3766 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) -(-3766 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) +(((|#2| $) -12 (|has| |#1| (-373)) (|has| |#2| (-295 |#2| |#2|))) (($ $) . T) (((-575) |#1|) . T)) +((($ $) . T) (((-418 (-575)) |#1|) . T)) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-924))) +((($ (-1194)) |has| |#1| (-1066))) +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +((((-873)) . T)) +((((-873)) . T)) +((((-873)) . T)) +(((|#1| (-542 |#2|)) . T)) +((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T)) +((((-575) (-130)) . T)) +(((|#1| (-575)) . T)) +(((|#1| (-418 (-575))) . T)) +(((|#1| (-782)) . T)) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-117 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) +((((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +(-3765 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) +(-3765 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((($) . T)) -(((|#2| (-543 (-876 |#1|))) . T)) -((((-1200)) . T)) -((((-1200)) . T)) -((((-576) |#1|) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) +(((|#2| (-542 (-875 |#1|))) . T)) +((((-1199)) . T)) +((((-1199)) . T)) +((((-575) |#1|) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) (((|#2|) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-874)) . T) (((-1200)) . T)) -((((-1200)) . T)) -((((-874)) -3766 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118)))) -(((|#1|) . T)) -(((|#2| (-783)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-873)) . T) (((-1199)) . T)) +((((-1199)) . T)) +((((-873)) -3765 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117)))) +(((|#1|) . T)) +(((|#2| (-782)) . T)) (((|#1| |#2|) . T)) -((((-1177) |#1|) . T)) -((((-419 |#2|)) . T)) -((((-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) +((((-1176) |#1|) . T)) +((((-418 |#2|)) . T)) +((((-418 |#2|)) . T)) +(|has| |#1| (-567)) +(|has| |#1| (-567)) +((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) . T) (($) . T)) +((($) . T) (((-418 (-575))) . T)) +((((-418 (-575))) . T) (($) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-576)) . T) (($) . T)) -(((|#2| $) |has| |#2| (-296 |#2| |#2|))) -(((|#1| (-656 |#1|)) |has| |#1| (-860))) -(-3766 (|has| |#1| (-239)) (|has| |#1| (-360))) -(-3766 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1282 |#1|)) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576))))) -(|has| |#1| (-1118)) -(((|#1|) . T)) -((((-1282 |#1|)) . T) (((-576)) . T) (($) -3766 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) (((-1100)) . T) ((|#2|) . T) (((-419 (-576))) -3766 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576)))))) -((((-419 (-576))) . T) (($) . T)) -((((-1017 |#1|)) . T) ((|#1|) . T) (((-576)) -3766 (|has| (-1017 |#1|) (-1056 (-576))) (|has| |#1| (-1056 (-576)))) (((-419 (-576))) -3766 (|has| (-1017 |#1|) (-1056 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) -((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-1195)) |has| |#1| (-914 (-1195)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-575)) . T) (($) . T)) +(((|#2| $) |has| |#2| (-295 |#2| |#2|))) +(((|#1| (-655 |#1|)) |has| |#1| (-859))) +(-3765 (|has| |#1| (-238)) (|has| |#1| (-359))) +(-3765 (|has| |#1| (-373)) (|has| |#1| (-359))) +((((-1281 |#1|)) . T) (((-575)) . T) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575))))) +(|has| |#1| (-1117)) +(((|#1|) . T)) +((((-1281 |#1|)) . T) (((-575)) . T) (($) -3765 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((-1099)) . T) ((|#2|) . T) (((-418 (-575))) -3765 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575)))))) +((((-418 (-575))) . T) (($) . T)) +((((-1016 |#1|)) . T) ((|#1|) . T) (((-575)) -3765 (|has| (-1016 |#1|) (-1055 (-575))) (|has| |#1| (-1055 (-575)))) (((-418 (-575))) -3765 (|has| (-1016 |#1|) (-1055 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) +((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-1194)) |has| |#1| (-913 (-1194)))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T)) ((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) -(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) +(((|#1| (-613 |#1| |#3|) (-613 |#1| |#2|)) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1158 |#1| |#2|) #0#) |has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|)))) +(((#0=(-1157 |#1| |#2|) #0#) |has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) -(|has| |#1| (-296 |#1| |#1|)) -(|has| |#1| (-239)) -(((#0=(-117 |#1|)) |has| #0# (-319 #0#))) +(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) +(|has| |#1| (-295 |#1| |#1|)) +(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) +(((#0=(-117 |#1|)) |has| #0# (-318 #0#))) ((($ $) . T)) -(-3766 (|has| |#1| (-862)) (|has| |#1| (-1118))) -((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-239)) ((|#2| |#1|) |has| |#1| (-239)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-490 . -1118) T) ((-273 . -526) 198194) ((-253 . -526) 198137) ((-251 . -1118) 198087) ((-583 . -111) 198072) ((-543 . -23) T) ((-139 . -1118) T) ((-138 . -1118) T) ((-118 . -319) 198029) ((-134 . -1118) T) ((-1017 . -238) 198008) ((-811 . -1236) 197977) ((-491 . -526) 197769) ((-689 . -628) 197753) ((-706 . -102) T) ((-1159 . -526) 197672) ((-402 . -132) T) ((-1299 . -994) 197641) ((-1042 . -1069) 197578) ((-31 . -93) T) ((-614 . -501) 197562) ((-1042 . -652) 197499) ((-633 . -132) T) ((-831 . -858) T) ((-535 . -57) 197449) ((-531 . -526) 197382) ((-362 . -235) 197369) ((-365 . -1069) 197314) ((-59 . -526) 197247) ((-528 . -526) 197180) ((-430 . -914) 197139) ((-171 . -1067) T) ((-509 . -526) 197072) ((-508 . -526) 197005) ((-365 . -652) 196950) ((-811 . -1056) 196730) ((-711 . -38) 196695) ((-1259 . -628) 196443) ((-354 . -360) T) ((-1112 . -1111) 196427) ((-1112 . -1118) 196405) ((-867 . -628) 196302) ((-171 . -249) 196253) ((-171 . -239) 196204) ((-1112 . -1113) 196162) ((-884 . -296) 196120) ((-227 . -807) T) ((-227 . -804) T) ((-706 . -294) NIL) ((-583 . -628) 196092) ((-1168 . -1212) 196071) ((-419 . -1010) 196055) ((-48 . -1069) 196020) ((-713 . -21) T) ((-713 . -25) T) ((-48 . -652) 195985) ((-1301 . -660) 195959) ((-326 . -161) 195938) ((-326 . -144) 195917) ((-1168 . -107) 195867) ((-117 . -21) T) ((-40 . -233) 195844) ((-135 . -25) T) ((-117 . -25) T) ((-620 . -298) 195820) ((-487 . -298) 195799) ((-1259 . -336) 195776) ((-1259 . -1067) T) ((-867 . -1067) T) ((-811 . -349) 195760) ((-140 . -187) T) ((-118 . -1170) NIL) ((-91 . -625) 195692) ((-489 . -132) T) ((-1259 . -239) T) ((-1114 . -502) 195673) ((-1114 . -625) 195639) ((-1108 . -502) 195620) ((-1108 . -625) 195586) ((-605 . -1236) T) ((-1091 . -502) 195567) ((-583 . -1067) T) ((-1091 . -625) 195533) ((-674 . -729) 195517) ((-1084 . -502) 195498) ((-1084 . -625) 195464) ((-974 . -298) 195441) ((-60 . -34) T) ((-1080 . -807) T) ((-1080 . -804) T) ((-1054 . -502) 195422) ((-1037 . -502) 195403) ((-828 . -738) T) ((-743 . -47) 195368) ((-635 . -38) 195355) ((-366 . -300) T) ((-363 . -300) T) ((-355 . -300) T) ((-273 . -300) 195286) ((-253 . -300) 195217) ((-1054 . -625) 195183) ((-1042 . -102) T) ((-1037 . -625) 195149) ((-638 . -502) 195130) ((-425 . -738) T) ((-118 . -38) 195075) ((-495 . -502) 195056) ((-638 . -625) 195022) ((-425 . -485) T) ((-220 . -502) 195003) ((-495 . -625) 194969) ((-365 . -102) T) ((-220 . -625) 194935) ((-1230 . -1076) T) ((-354 . -658) 194865) ((-723 . -1076) T) ((-1193 . -47) 194842) ((-1192 . -47) 194812) ((-1186 . -47) 194789) ((-129 . -298) 194764) ((-1053 . -152) 194710) ((-926 . -300) T) ((-1144 . -47) 194682) ((-706 . -319) NIL) ((-527 . -625) 194664) ((-522 . -625) 194646) ((-520 . -625) 194628) ((-337 . -1118) 194578) ((-326 . -909) 194542) ((-323 . -909) NIL) ((-724 . -464) 194473) ((-48 . -102) T) ((-1270 . -296) 194431) ((-1249 . -296) 194331) ((-656 . -678) 194315) ((-656 . -663) 194299) ((-350 . -21) T) ((-350 . -25) T) ((-40 . -360) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-656 . -384) 194283) ((-617 . -502) 194265) ((-614 . -296) 194217) ((-617 . -625) 194184) ((-400 . -102) T) ((-1138 . -144) T) ((-127 . -625) 194116) ((-886 . -1118) T) ((-670 . -423) 194100) ((-743 . -1236) T) ((-726 . -625) 194082) ((-255 . -625) 194049) ((-189 . -625) 194031) ((-163 . -625) 194013) ((-158 . -625) 193995) ((-1301 . -738) T) ((-1120 . -34) T) ((-883 . -807) NIL) ((-883 . -804) NIL) ((-870 . -862) T) ((-743 . -899) NIL) ((-1310 . -132) T) ((-392 . -132) T) ((-905 . -628) 193963) ((-920 . -102) T) ((-743 . -1056) 193839) ((-1193 . -1236) T) ((-1192 . -1236) T) ((-543 . -132) T) ((-1186 . -1236) T) ((-1105 . -423) 193823) ((-1018 . -501) 193807) ((-118 . -412) 193784) ((-1144 . -1236) T) ((-794 . -423) 193768) ((-792 . -423) 193752) ((-959 . -34) T) ((-706 . -1170) NIL) ((-258 . -660) 193572) ((-257 . -660) 193379) ((-829 . -936) 193358) ((-466 . -423) 193342) ((-614 . -19) 193326) ((-1164 . -1229) 193295) ((-1186 . -899) NIL) ((-1186 . -897) 193247) ((-614 . -616) 193224) ((-1222 . -625) 193156) ((-1194 . -625) 193138) ((-62 . -407) T) ((-1192 . -1056) 193073) ((-1186 . -1056) 193039) ((-706 . -38) 192989) ((-40 . -658) 192919) ((-486 . -296) 192877) ((-1242 . -625) 192859) ((-743 . -388) 192843) ((-850 . -625) 192825) ((-670 . -1076) T) ((-635 . -916) 192784) ((-1270 . -1020) 192750) ((-1249 . -1020) 192716) ((-256 . -1236) T) ((-1106 . -628) 192700) ((-1081 . -1212) 192675) ((-1094 . -628) 192652) ((-884 . -626) 192459) ((-884 . -625) 192441) ((-118 . -916) NIL) ((-713 . -235) 192428) ((-1208 . -501) 192365) ((-430 . -1040) 192343) ((-48 . -319) 192330) ((-1081 . -107) 192276) ((-491 . -501) 192213) ((-532 . -1236) T) ((-1186 . -349) 192165) ((-1159 . -501) 192136) ((-1186 . -388) 192088) ((-1105 . -1076) T) ((-449 . -102) T) ((-185 . -1118) T) ((-258 . -34) T) ((-257 . -34) T) ((-794 . -1076) T) ((-792 . -1076) T) ((-743 . -914) 192065) ((-466 . -1076) T) ((-59 . -501) 192049) ((-1052 . -1074) 192023) ((-531 . -501) 192007) ((-528 . -501) 191991) ((-509 . -501) 191975) ((-508 . -501) 191959) ((-251 . -526) 191892) ((-1052 . -111) 191859) ((-1193 . -914) 191772) ((-1192 . -914) 191678) ((-682 . -1130) T) ((-1186 . -914) 191511) ((-657 . -93) T) ((-1144 . -914) 191495) ((-365 . -1170) T) ((-332 . -1074) 191477) ((-31 . -502) 191458) ((-258 . -806) 191437) ((-258 . -805) 191416) ((-257 . -806) 191395) ((-257 . -805) 191374) ((-31 . -625) 191340) ((-50 . -1076) T) ((-258 . -738) 191318) ((-257 . -738) 191296) ((-1230 . -1118) T) ((-682 . -23) T) ((-593 . -1076) T) ((-530 . -1076) T) ((-390 . -1074) 191261) ((-332 . -111) 191236) ((-73 . -394) T) ((-73 . -407) T) ((-1042 . -38) 191173) ((-706 . -412) 191155) ((-99 . -102) T) ((-723 . -1118) T) ((-1315 . -1069) 191142) ((-1021 . -146) 191114) ((-1021 . -148) 191086) ((-882 . -658) 191058) ((-390 . -111) 191014) ((-329 . -1240) 190993) ((-486 . -1020) 190959) ((-365 . -38) 190924) ((-40 . -381) 190896) ((-885 . -625) 190768) ((-128 . -126) 190752) ((-122 . -126) 190736) ((-848 . -1074) 190706) ((-845 . -21) 190658) ((-839 . -1074) 190642) ((-845 . -25) 190594) ((-329 . -568) 190545) ((-529 . -628) 190526) ((-576 . -840) T) ((-246 . -1236) T) ((-1052 . -628) 190495) ((-848 . -111) 190460) ((-839 . -111) 190439) ((-1270 . -625) 190421) ((-1249 . -625) 190403) ((-1249 . -626) 190074) ((-1191 . -925) 190053) ((-1143 . -925) 190032) ((-48 . -38) 189997) ((-1308 . -1130) T) ((-548 . -296) 189953) ((-614 . -625) 189865) ((-614 . -626) 189826) ((-1306 . -1130) T) ((-372 . -628) 189810) ((-332 . -628) 189794) ((-1160 . -238) 189773) ((-246 . -1056) 189600) ((-1191 . -660) 189489) ((-1143 . -660) 189378) ((-866 . -660) 189352) ((-730 . -625) 189334) ((-558 . -379) T) ((-1308 . -23) T) ((-706 . -916) NIL) ((-1306 . -23) T) ((-503 . -1118) T) ((-390 . -628) 189284) ((-390 . -630) 189266) ((-1052 . -1067) T) ((-877 . -102) T) ((-1208 . -296) 189245) ((-171 . -379) 189196) ((-1022 . -1236) T) ((-848 . -628) 189150) ((-839 . -628) 189105) ((-44 . -23) T) ((-491 . -296) 189084) ((-598 . -1118) T) ((-1164 . -1127) 189053) ((-1122 . -1121) 189005) ((-402 . -21) T) ((-402 . -25) T) ((-153 . -1130) T) ((-1315 . -102) T) ((-1022 . -897) 188987) ((-1022 . -899) 188969) ((-1230 . -729) 188866) ((-635 . -233) 188850) ((-633 . -21) T) ((-299 . -568) T) ((-633 . -25) T) ((-1216 . -1118) T) ((-723 . -729) 188815) ((-246 . -388) 188784) ((-1022 . -1056) 188744) ((-390 . -1067) T) ((-225 . -1076) T) ((-118 . -233) 188721) ((-59 . -296) 188673) ((-153 . -23) T) ((-528 . -296) 188625) ((-337 . -526) 188558) ((-508 . -296) 188510) ((-390 . -249) T) ((-390 . -239) T) ((-848 . -1067) T) ((-839 . -1067) T) ((-724 . -965) 188479) ((-713 . -862) T) ((-486 . -625) 188461) ((-1272 . -1069) 188366) ((-592 . -658) 188338) ((-576 . -658) 188310) ((-507 . -658) 188260) ((-839 . -239) 188239) ((-135 . -862) T) ((-1272 . -652) 188131) ((-670 . -1118) T) ((-1208 . -616) 188110) ((-562 . -1212) 188089) ((-347 . -1118) T) ((-329 . -374) 188068) ((-419 . -148) 188047) ((-419 . -146) 188026) ((-980 . -1130) 187925) ((-246 . -914) 187857) ((-827 . -1130) 187835) ((-666 . -864) 187819) ((-491 . -616) 187798) ((-562 . -107) 187748) ((-1022 . -388) 187730) ((-1022 . -349) 187712) ((-1195 . -625) 187694) ((-97 . -1118) T) ((-980 . -23) 187505) ((-489 . -21) T) ((-489 . -25) T) ((-827 . -23) 187357) ((-1195 . -626) 187279) ((-59 . -19) 187263) ((-1191 . -738) T) ((-1143 . -738) T) ((-1105 . -1118) T) ((-528 . -19) 187247) ((-508 . -19) 187231) ((-59 . -616) 187208) ((-1021 . -238) 187180) ((-917 . -102) 187158) ((-866 . -738) T) ((-794 . -1118) T) ((-528 . -616) 187135) ((-508 . -616) 187112) ((-792 . -1118) T) ((-792 . -1083) 187079) ((-473 . -1118) T) ((-466 . -1118) T) ((-598 . -729) 187054) ((-661 . -1118) T) ((-1278 . -47) 187031) ((-1272 . -102) T) ((-1271 . -47) 187001) ((-1250 . -47) 186978) ((-1230 . -174) 186929) ((-1192 . -317) 186908) ((-1186 . -317) 186887) ((-1114 . -628) 186868) ((-1108 . -628) 186849) ((-1098 . -568) 186800) ((-1098 . -1240) 186751) ((-1022 . -914) NIL) ((-1091 . -628) 186732) ((-682 . -132) T) ((-639 . -1130) T) ((-1084 . -628) 186713) ((-1054 . -628) 186694) ((-1037 . -628) 186675) ((-726 . -1074) 186645) ((-711 . -658) 186595) ((-284 . -1118) T) ((-85 . -453) T) ((-85 . -407) T) ((-724 . -909) 186534) ((-723 . -174) T) ((-50 . -1118) T) ((-607 . -47) 186511) ((-227 . -660) 186476) ((-593 . -1118) T) ((-530 . -1118) T) ((-499 . -832) T) ((-499 . -936) T) ((-370 . -1240) T) ((-364 . -1240) T) ((-356 . -1240) T) ((-329 . -1130) T) ((-326 . -1069) 186386) ((-323 . -1069) 186315) ((-108 . -1240) T) ((-638 . -628) 186296) ((-370 . -568) T) ((-219 . -936) T) ((-219 . -832) T) ((-326 . -652) 186206) ((-323 . -652) 186135) ((-364 . -568) T) ((-356 . -568) T) ((-495 . -628) 186116) ((-108 . -568) T) ((-670 . -729) 186086) ((-1186 . -1040) NIL) ((-220 . -628) 186067) ((-329 . -23) T) ((-67 . -1236) T) ((-1018 . -625) 185999) ((-706 . -233) 185981) ((-726 . -111) 185946) ((-656 . -34) T) ((-251 . -501) 185930) ((-1315 . -1170) T) ((-1310 . -21) T) ((-1310 . -25) T) ((-1308 . -132) T) ((-1120 . -1116) 185914) ((-173 . -1118) T) ((-1306 . -132) T) ((-1299 . -102) T) ((-1282 . -625) 185880) ((-1278 . -1236) T) ((-1271 . -1236) T) ((-968 . -925) 185859) ((-1271 . -1056) 185794) ((-1250 . -1236) T) ((-1250 . -899) NIL) ((-527 . -628) 185778) ((-1250 . -897) 185730) ((-1250 . -1056) 185696) ((-1230 . -526) 185663) ((-493 . -925) 185642) ((-1208 . -626) NIL) ((-1208 . -625) 185624) ((-1105 . -729) 185473) ((-1080 . -660) 185445) ((-968 . -660) 185334) ((-609 . -502) 185315) ((-597 . -502) 185296) ((-794 . -729) 185125) ((-609 . -625) 185091) ((-597 . -625) 185057) ((-548 . -625) 185039) ((-548 . -626) 185020) ((-792 . -729) 184869) ((-1095 . -102) T) ((-392 . -25) T) ((-635 . -658) 184841) ((-392 . -21) T) ((-493 . -660) 184730) ((-473 . -729) 184701) ((-466 . -729) 184550) ((-1005 . -102) T) ((-1160 . -1141) 184495) ((-1064 . -1229) 184424) ((-917 . -319) 184362) ((-749 . -102) T) ((-118 . -658) 184292) ((-617 . -628) 184274) ((-888 . -93) T) ((-726 . -628) 184228) ((-543 . -25) T) ((-693 . -93) T) ((-688 . -93) T) ((-676 . -625) 184210) ((-657 . -502) 184191) ((-142 . -102) T) ((-44 . -132) T) ((-657 . -625) 184144) ((-607 . -1236) T) ((-354 . -1076) T) ((-299 . -1130) T) ((-490 . -93) T) ((-419 . -238) 184123) ((-366 . -625) 184105) ((-363 . -625) 184087) ((-355 . -625) 184069) ((-273 . -626) 183817) ((-273 . -625) 183799) ((-253 . -625) 183781) ((-253 . -626) 183642) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1159 . -625) 183624) ((-1138 . -652) 183611) ((-1138 . -1069) 183598) ((-831 . -738) T) ((-831 . -869) T) ((-614 . -298) 183575) ((-593 . -729) 183540) ((-491 . -626) NIL) ((-491 . -625) 183522) ((-530 . -729) 183467) ((-326 . -102) T) ((-323 . -102) T) ((-299 . -23) T) ((-153 . -132) T) ((-926 . -625) 183449) ((-926 . -626) 183431) ((-398 . -738) T) ((-884 . -1074) 183383) ((-884 . -111) 183321) ((-726 . -1067) T) ((-724 . -1262) 183305) ((-706 . -360) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-531 . -625) 183237) ((-390 . -807) T) ((-225 . -1118) T) ((-169 . -1236) T) ((-390 . -804) T) ((-227 . -806) T) ((-227 . -803) T) ((-59 . -626) 183198) ((-59 . -625) 183110) ((-227 . -738) T) ((-528 . -626) 183071) ((-528 . -625) 182983) ((-509 . -625) 182915) ((-508 . -626) 182876) ((-508 . -625) 182788) ((-1098 . -374) 182739) ((-40 . -423) 182716) ((-77 . -1236) T) ((-883 . -925) NIL) ((-370 . -339) 182700) ((-370 . -374) T) ((-364 . -339) 182684) ((-364 . -374) T) ((-356 . -339) 182668) ((-356 . -374) T) ((-326 . -294) 182647) ((-108 . -374) T) ((-70 . -1236) T) ((-1250 . -349) 182599) ((-883 . -660) 182544) ((-1250 . -388) 182496) ((-980 . -132) 182351) ((-827 . -132) 182222) ((-974 . -663) 182206) ((-1105 . -174) 182117) ((-974 . -384) 182101) ((-1080 . -806) T) ((-1080 . -803) T) ((-884 . -628) 181999) ((-794 . -174) 181890) ((-792 . -174) 181801) ((-828 . -47) 181763) ((-1080 . -738) T) ((-337 . -501) 181747) ((-968 . -738) T) ((-1299 . -319) 181685) ((-1278 . -914) 181598) ((-466 . -174) 181509) ((-251 . -296) 181461) ((-1271 . -914) 181367) ((-1270 . -1074) 181202) ((-1250 . -914) 181035) ((-493 . -738) T) ((-1249 . -1074) 180843) ((-1230 . -300) 180822) ((-1205 . -1236) T) ((-1202 . -379) T) ((-1201 . -379) T) ((-1164 . -152) 180806) ((-1138 . -102) T) ((-1136 . -1118) T) ((-1098 . -23) T) ((-1098 . -1130) T) ((-1093 . -102) T) ((-1075 . -625) 180773) ((-1021 . -421) 180745) ((-943 . -971) T) ((-749 . -319) 180683) ((-75 . -1236) T) ((-676 . -393) 180655) ((-171 . -925) 180608) ((-30 . -971) T) ((-112 . -856) T) ((-1 . -625) 180590) ((-1017 . -909) 180547) ((-129 . -663) 180529) ((-50 . -632) 180513) ((-706 . -658) 180448) ((-607 . -914) 180361) ((-450 . -102) T) ((-129 . -384) 180343) ((-142 . -319) NIL) ((-884 . -1067) T) ((-845 . -862) 180322) ((-81 . -1236) T) ((-723 . -300) T) ((-40 . -1076) T) ((-593 . -174) T) ((-530 . -174) T) ((-523 . -625) 180304) ((-171 . -660) 180178) ((-519 . -625) 180160) ((-362 . -148) 180142) ((-362 . -146) T) ((-370 . -1130) T) ((-364 . -1130) T) ((-356 . -1130) T) ((-1022 . -317) T) ((-930 . -317) T) ((-884 . -249) T) ((-108 . -1130) T) ((-884 . -239) 180121) ((-1270 . -111) 179942) ((-1249 . -111) 179731) ((-251 . -1274) 179715) ((-576 . -860) T) ((-370 . -23) T) ((-365 . -360) T) ((-326 . -319) 179702) ((-323 . -319) 179643) ((-364 . -23) T) ((-329 . -132) T) ((-356 . -23) T) ((-1022 . -1040) T) ((-31 . -628) 179624) ((-108 . -23) T) ((-666 . -1069) 179608) ((-251 . -616) 179585) ((-343 . -1118) T) ((-666 . -652) 179555) ((-1272 . -38) 179447) ((-1259 . -925) 179426) ((-112 . -1118) T) ((-828 . -1236) T) ((-1053 . -102) T) ((-1259 . -660) 179315) ((-883 . -806) NIL) ((-867 . -660) 179289) ((-883 . -803) NIL) ((-828 . -899) NIL) ((-883 . -738) T) ((-1105 . -526) 179162) ((-794 . -526) 179109) ((-792 . -526) 179061) ((-583 . -660) 179048) ((-828 . -1056) 178876) ((-466 . -526) 178819) ((-400 . -401) T) ((-1270 . -628) 178632) ((-1249 . -628) 178380) ((-60 . -1236) T) ((-633 . -862) 178359) ((-512 . -673) T) ((-1164 . -994) 178328) ((-1042 . -658) 178265) ((-1021 . -464) T) ((-711 . -860) T) ((-522 . -804) T) ((-486 . -1074) 178100) ((-512 . -113) T) ((-354 . -1118) T) ((-323 . -1170) NIL) ((-299 . -132) T) ((-406 . -1118) T) ((-882 . -1076) T) ((-706 . -381) 178067) ((-365 . -658) 177997) ((-225 . -632) 177974) ((-337 . -296) 177926) ((-486 . -111) 177747) ((-1270 . -1067) T) ((-1249 . -1067) T) ((-828 . -388) 177731) ((-171 . -738) T) ((-666 . -102) T) ((-1270 . -249) 177710) ((-1270 . -239) 177662) ((-1249 . -239) 177567) ((-1249 . -249) 177546) ((-1021 . -414) NIL) ((-682 . -651) 177494) ((-326 . -38) 177404) ((-323 . -38) 177333) ((-69 . -625) 177315) ((-329 . -505) 177281) ((-48 . -658) 177231) ((-1208 . -298) 177210) ((-1244 . -862) T) ((-1131 . -1130) 177188) ((-83 . -1236) T) ((-61 . -625) 177170) ((-491 . -298) 177149) ((-1301 . -1056) 177126) ((-1183 . -1118) T) ((-1131 . -23) 176978) ((-828 . -914) 176914) ((-1259 . -738) T) ((-1120 . -1236) T) ((-486 . -628) 176740) ((-362 . -238) T) ((-1105 . -300) 176671) ((-982 . -1118) T) ((-906 . -102) T) ((-794 . -300) 176582) ((-337 . -19) 176566) ((-59 . -298) 176543) ((-792 . -300) 176474) ((-867 . -738) T) ((-118 . -860) NIL) ((-528 . -298) 176451) ((-337 . -616) 176428) ((-508 . -298) 176405) ((-466 . -300) 176336) ((-1053 . -319) 176187) ((-888 . -502) 176168) ((-888 . -625) 176134) ((-693 . -502) 176115) ((-583 . -738) T) ((-688 . -502) 176096) ((-693 . -625) 176046) ((-688 . -625) 176012) ((-674 . -625) 175994) ((-490 . -502) 175975) ((-490 . -625) 175941) ((-251 . -626) 175902) ((-251 . -502) 175879) ((-139 . -502) 175860) ((-138 . -502) 175841) ((-134 . -502) 175822) ((-251 . -625) 175714) ((-215 . -102) T) ((-139 . -625) 175680) ((-138 . -625) 175646) ((-134 . -625) 175612) ((-1165 . -34) T) ((-959 . -1236) T) ((-354 . -729) 175557) ((-682 . -25) T) ((-682 . -21) T) ((-1195 . -628) 175538) ((-486 . -1067) T) ((-647 . -429) 175503) ((-619 . -429) 175468) ((-1138 . -1170) T) ((-724 . -1069) 175291) ((-593 . -300) T) ((-530 . -300) T) ((-1271 . -317) 175270) ((-486 . -239) 175222) ((-486 . -249) 175201) ((-1250 . -317) 175180) ((-724 . -652) 175009) ((-1250 . -1040) NIL) ((-1098 . -132) T) ((-884 . -807) 174988) ((-145 . -102) T) ((-40 . -1118) T) ((-884 . -804) 174967) ((-656 . -1028) 174951) ((-592 . -1076) T) ((-576 . -1076) T) ((-507 . -1076) T) ((-419 . -464) T) ((-370 . -132) T) ((-326 . -412) 174935) ((-323 . -412) 174896) ((-364 . -132) T) ((-356 . -132) T) ((-1200 . -1118) T) ((-1138 . -38) 174883) ((-1112 . -625) 174850) ((-108 . -132) T) ((-970 . -1118) T) ((-937 . -1118) T) ((-783 . -1118) T) ((-684 . -1118) T) ((-713 . -148) T) ((-117 . -148) T) ((-1308 . -21) T) ((-1308 . -25) T) ((-1306 . -21) T) ((-1306 . -25) T) ((-676 . -1074) 174834) ((-543 . -862) T) ((-512 . -862) T) ((-366 . -1074) 174786) ((-363 . -1074) 174738) ((-355 . -1074) 174690) ((-258 . -1236) T) ((-257 . -1236) T) ((-273 . -1074) 174533) ((-253 . -1074) 174376) ((-676 . -111) 174355) ((-829 . -1240) 174334) ((-559 . -856) T) ((-326 . -916) 174300) ((-366 . -111) 174238) ((-363 . -111) 174176) ((-355 . -111) 174114) ((-273 . -111) 173943) ((-253 . -111) 173772) ((-323 . -916) NIL) ((-635 . -423) 173756) ((-44 . -21) T) ((-44 . -25) T) ((-827 . -651) 173662) ((-829 . -568) 173641) ((-258 . -1056) 173468) ((-257 . -1056) 173295) ((-127 . -120) 173279) ((-926 . -1074) 173244) ((-724 . -102) T) ((-711 . -1076) T) ((-609 . -628) 173225) ((-597 . -628) 173206) ((-548 . -630) 173109) ((-354 . -174) T) ((-88 . -625) 173091) ((-153 . -21) T) ((-153 . -25) T) ((-926 . -111) 173047) ((-40 . -729) 172992) ((-882 . -1118) T) ((-676 . -628) 172969) ((-657 . -628) 172950) ((-366 . -628) 172887) ((-363 . -628) 172824) ((-559 . -1118) T) ((-355 . -628) 172761) ((-337 . -626) 172722) ((-337 . -625) 172634) ((-273 . -628) 172387) ((-253 . -628) 172172) ((-1249 . -804) 172125) ((-1249 . -807) 172078) ((-258 . -388) 172047) ((-257 . -388) 172016) ((-666 . -38) 171986) ((-620 . -34) T) ((-494 . -1130) 171964) ((-487 . -34) T) ((-1131 . -132) 171835) ((-980 . -25) 171646) ((-926 . -628) 171596) ((-886 . -625) 171578) ((-980 . -21) 171533) ((-827 . -25) 171366) ((-827 . -21) 171277) ((-1242 . -379) T) ((-635 . -1076) T) ((-1197 . -568) 171256) ((-1191 . -47) 171233) ((-366 . -1067) T) ((-363 . -1067) T) ((-494 . -23) 171085) ((-355 . -1067) T) ((-273 . -1067) T) ((-253 . -1067) T) ((-1143 . -47) 171057) ((-118 . -1076) T) ((-1052 . -660) 171031) ((-974 . -34) T) ((-366 . -239) 171010) ((-366 . -249) T) ((-363 . -239) 170989) ((-363 . -249) T) ((-355 . -239) 170968) ((-355 . -249) T) ((-273 . -336) 170940) ((-253 . -336) 170897) ((-273 . -239) 170876) ((-1175 . -152) 170860) ((-258 . -914) 170792) ((-257 . -914) 170724) ((-1160 . -909) 170681) ((-1100 . -862) T) ((-426 . -1130) T) ((-1072 . -23) T) ((-1042 . -860) T) ((-926 . -1067) T) ((-332 . -660) 170663) ((-713 . -238) T) ((-682 . -235) 170636) ((-1230 . -1020) 170602) ((-1192 . -936) 170581) ((-1186 . -936) 170560) ((-1186 . -832) NIL) ((-1017 . -1069) 170456) ((-983 . -1236) T) ((-926 . -249) T) ((-829 . -374) 170435) ((-396 . -23) T) ((-128 . -1118) 170413) ((-122 . -1118) 170391) ((-926 . -239) T) ((-129 . -34) T) ((-390 . -660) 170356) ((-1017 . -652) 170304) ((-882 . -729) 170291) ((-1315 . -658) 170263) ((-1064 . -152) 170228) ((-1011 . -1236) T) ((-40 . -174) T) ((-706 . -423) 170210) ((-724 . -319) 170197) ((-848 . -660) 170157) ((-839 . -660) 170131) ((-329 . -25) T) ((-329 . -21) T) ((-670 . -296) 170110) ((-592 . -1118) T) ((-576 . -1118) T) ((-507 . -1118) T) ((-251 . -298) 170087) ((-1191 . -1236) T) ((-1143 . -1236) T) ((-323 . -233) 170048) ((-1191 . -899) NIL) ((-55 . -1118) T) ((-1143 . -899) 169907) ((-130 . -862) T) ((-1191 . -1056) 169787) ((-1143 . -1056) 169670) ((-185 . -625) 169652) ((-866 . -1056) 169548) ((-794 . -296) 169475) ((-829 . -1130) T) ((-1052 . -738) T) ((-1064 . -994) 169404) ((-614 . -663) 169388) ((-1021 . -909) 169338) ((-1017 . -102) T) ((-829 . -23) T) ((-724 . -1170) 169316) ((-706 . -1076) T) ((-614 . -384) 169300) ((-362 . -464) T) ((-354 . -300) T) ((-1287 . -1118) T) ((-254 . -1118) T) ((-411 . -102) T) ((-299 . -21) T) ((-299 . -25) T) ((-372 . -738) T) ((-722 . -1118) T) ((-711 . -1118) T) ((-372 . -485) T) ((-1230 . -625) 169282) ((-1191 . -388) 169266) ((-1143 . -388) 169250) ((-1042 . -423) 169212) ((-142 . -231) 169194) ((-390 . -806) T) ((-390 . -803) T) ((-882 . -174) T) ((-390 . -738) T) ((-723 . -625) 169176) ((-724 . -38) 169005) ((-1286 . -1284) 168989) ((-362 . -414) T) ((-1286 . -1118) 168939) ((-1209 . -1118) T) ((-592 . -729) 168926) ((-576 . -729) 168913) ((-507 . -729) 168878) ((-1272 . -658) 168768) ((-326 . -641) 168747) ((-848 . -738) T) ((-839 . -738) T) ((-656 . -1236) T) ((-1098 . -651) 168695) ((-1191 . -914) 168638) ((-1143 . -914) 168622) ((-827 . -235) 168568) ((-674 . -1074) 168552) ((-108 . -651) 168534) ((-494 . -132) 168405) ((-1197 . -1130) T) ((-968 . -47) 168374) ((-635 . -1118) T) ((-674 . -111) 168353) ((-503 . -625) 168319) ((-337 . -298) 168296) ((-493 . -47) 168253) ((-1197 . -23) T) ((-118 . -1118) T) ((-103 . -102) 168231) ((-1298 . -1130) T) ((-560 . -862) T) ((-227 . -1236) T) ((-1072 . -132) T) ((-1042 . -1076) T) ((-1298 . -23) T) ((-831 . -1056) 168215) ((-1216 . -625) 168197) ((-1021 . -736) 168169) ((-1138 . -840) T) ((-711 . -729) 168134) ((-598 . -625) 168116) ((-398 . -1056) 168100) ((-365 . -1076) T) ((-396 . -132) T) ((-334 . -1056) 168084) ((-1123 . -1118) T) ((-1098 . -21) T) ((-1098 . -25) T) ((-227 . -899) 168066) ((-1022 . -936) T) ((-91 . -34) T) ((-1022 . -832) T) ((-930 . -936) T) ((-1017 . -319) 168031) ((-888 . -628) 168012) ((-499 . -1240) T) ((-726 . -660) 167972) ((-693 . -628) 167953) ((-688 . -628) 167934) ((-219 . -1240) T) ((-419 . -909) 167891) ((-227 . -1056) 167851) ((-40 . -300) T) ((-499 . -568) T) ((-490 . -628) 167832) ((-370 . -25) T) ((-326 . -658) 167487) ((-323 . -658) 167401) ((-370 . -21) T) ((-364 . -25) T) ((-364 . -21) T) ((-219 . -568) T) ((-356 . -25) T) ((-356 . -21) T) ((-329 . -235) 167347) ((-251 . -628) 167324) ((-139 . -628) 167305) ((-138 . -628) 167286) ((-134 . -628) 167267) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1076) T) ((-592 . -174) T) ((-576 . -174) T) ((-507 . -174) T) ((-1080 . -1236) T) ((-968 . -1236) T) ((-670 . -625) 167249) ((-493 . -1236) T) ((-749 . -748) 167233) ((-347 . -625) 167215) ((-68 . -394) T) ((-68 . -407) T) ((-1120 . -107) 167199) ((-1080 . -899) 167181) ((-968 . -899) 167106) ((-665 . -1130) T) ((-635 . -729) 167093) ((-493 . -899) NIL) ((-1164 . -102) T) ((-1112 . -630) 167077) ((-1080 . -1056) 167059) ((-97 . -625) 167041) ((-489 . -148) T) ((-968 . -1056) 166921) ((-118 . -729) 166866) ((-724 . -916) 166809) ((-665 . -23) T) ((-493 . -1056) 166685) ((-1105 . -626) NIL) ((-1105 . -625) 166667) ((-794 . -626) NIL) ((-794 . -625) 166628) ((-792 . -626) 166262) ((-792 . -625) 166176) ((-1131 . -651) 166082) ((-473 . -625) 166064) ((-466 . -625) 166046) ((-466 . -626) 165907) ((-1053 . -231) 165853) ((-884 . -925) 165832) ((-127 . -34) T) ((-829 . -132) T) ((-661 . -625) 165814) ((-590 . -102) T) ((-366 . -1305) 165798) ((-363 . -1305) 165782) ((-355 . -1305) 165766) ((-128 . -526) 165699) ((-122 . -526) 165632) ((-523 . -804) T) ((-523 . -807) T) ((-522 . -806) T) ((-103 . -319) 165570) ((-224 . -102) 165548) ((-711 . -174) T) ((-706 . -1118) T) ((-884 . -660) 165464) ((-65 . -395) T) ((-284 . -625) 165446) ((-65 . -407) T) ((-968 . -388) 165430) ((-882 . -300) T) ((-50 . -625) 165412) ((-1017 . -38) 165360) ((-1138 . -658) 165332) ((-593 . -625) 165314) ((-493 . -388) 165298) ((-593 . -626) 165280) ((-530 . -625) 165262) ((-926 . -1305) 165249) ((-883 . -1236) T) ((-713 . -464) T) ((-507 . -526) 165215) ((-499 . -374) T) ((-366 . -379) 165194) ((-363 . -379) 165173) ((-355 . -379) 165152) ((-726 . -738) T) ((-219 . -374) T) ((-117 . -464) T) ((-1309 . -1300) 165136) ((-883 . -897) 165113) ((-883 . -899) NIL) ((-980 . -862) 165012) ((-827 . -862) 164963) ((-1243 . -102) T) ((-666 . -668) 164947) ((-1222 . -34) T) ((-173 . -625) 164929) ((-1131 . -25) 164762) ((-1131 . -21) 164673) ((-883 . -1056) 164650) ((-968 . -914) 164631) ((-1259 . -47) 164608) ((-926 . -379) T) ((-59 . -663) 164592) ((-528 . -663) 164576) ((-493 . -914) 164553) ((-71 . -453) T) ((-71 . -407) T) ((-508 . -663) 164537) ((-59 . -384) 164521) ((-635 . -174) T) ((-528 . -384) 164505) ((-508 . -384) 164489) ((-839 . -720) 164473) ((-1191 . -317) 164452) ((-1197 . -132) T) ((-1160 . -1069) 164436) ((-118 . -174) T) ((-1160 . -652) 164368) ((-1164 . -319) 164306) ((-171 . -1236) T) ((-1298 . -132) T) ((-878 . -1069) 164276) ((-647 . -756) 164260) ((-619 . -756) 164244) ((-1271 . -936) 164223) ((-1250 . -936) 164202) ((-1250 . -832) NIL) ((-878 . -652) 164172) ((-706 . -729) 164122) ((-1249 . -925) 164075) ((-1042 . -1118) T) ((-883 . -388) 164052) ((-883 . -349) 164029) ((-921 . -1130) T) ((-171 . -897) 164013) ((-171 . -899) 163938) ((-1286 . -526) 163871) ((-1270 . -660) 163768) ((-1098 . -235) 163687) ((-499 . -1130) T) ((-365 . -1118) T) ((-219 . -1130) T) ((-76 . -453) T) ((-76 . -407) T) ((-171 . -1056) 163583) ((-304 . -909) 163540) ((-329 . -862) T) ((-1249 . -660) 163348) ((-884 . -806) 163327) ((-884 . -803) 163306) ((-884 . -738) T) ((-499 . -23) T) ((-370 . -235) 163279) ((-364 . -235) 163252) ((-356 . -235) 163225) ((-225 . -625) 163207) ((-176 . -464) T) ((-224 . -319) 163145) ((-86 . -453) T) ((-86 . -407) T) ((-108 . -235) 163132) ((-219 . -23) T) ((-1310 . -1303) 163111) ((-689 . -1056) 163095) ((-592 . -300) T) ((-576 . -300) T) ((-507 . -300) T) ((-137 . -482) 163050) ((-1259 . -1236) T) ((-666 . -658) 163009) ((-48 . -1118) T) ((-724 . -233) 162993) ((-883 . -914) NIL) ((-1259 . -899) NIL) ((-902 . -102) T) ((-898 . -102) T) ((-400 . -1118) T) ((-171 . -388) 162977) ((-171 . -349) 162961) ((-1259 . -1056) 162841) ((-867 . -1056) 162737) ((-1160 . -102) T) ((-1017 . -916) 162696) ((-674 . -804) 162675) ((-665 . -132) T) ((-674 . -807) 162654) ((-118 . -526) 162562) ((-583 . -1056) 162544) ((-304 . -1293) 162514) ((-878 . -102) T) ((-979 . -568) 162493) ((-1230 . -1074) 162376) ((-1021 . -1069) 162321) ((-494 . -651) 162227) ((-920 . -1118) T) ((-1042 . -729) 162164) ((-723 . -1074) 162129) ((-1021 . -652) 162074) ((-629 . -102) T) ((-614 . -34) T) ((-1165 . -1236) T) ((-1230 . -111) 161943) ((-486 . -660) 161840) ((-365 . -729) 161785) ((-171 . -914) 161744) ((-711 . -300) T) ((-706 . -174) T) ((-723 . -111) 161700) ((-1315 . -1076) T) ((-1259 . -388) 161684) ((-430 . -1240) 161662) ((-1136 . -625) 161644) ((-323 . -860) NIL) ((-430 . -568) T) ((-227 . -317) T) ((-1249 . -803) 161597) ((-1249 . -806) 161550) ((-1270 . -738) T) ((-1249 . -738) T) ((-48 . -729) 161515) ((-227 . -1040) T) ((-1272 . -423) 161481) ((-362 . -1293) 161458) ((-1259 . -914) 161401) ((-730 . -738) T) ((-343 . -625) 161383) ((-1230 . -628) 161265) ((-1131 . -235) 161211) ((-112 . -625) 161193) ((-112 . -626) 161175) ((-730 . -485) T) ((-723 . -628) 161125) ((-1309 . -1069) 161109) ((-494 . -25) 160942) ((-128 . -501) 160926) ((-122 . -501) 160910) ((-494 . -21) 160821) ((-1309 . -652) 160791) ((-635 . -300) T) ((-598 . -1074) 160766) ((-449 . -1118) T) ((-1080 . -317) T) ((-118 . -300) T) ((-1122 . -102) T) ((-1021 . -102) T) ((-598 . -111) 160734) ((-1160 . -319) 160672) ((-1230 . -1067) T) ((-1080 . -1040) T) ((-66 . -1236) T) ((-1072 . -25) T) ((-1072 . -21) T) ((-723 . -1067) T) ((-396 . -21) T) ((-396 . -25) T) ((-706 . -526) NIL) ((-1042 . -174) T) ((-723 . -249) T) ((-1080 . -557) T) ((-724 . -658) 160582) ((-518 . -102) T) ((-514 . -102) T) ((-365 . -174) T) ((-354 . -625) 160564) ((-419 . -1069) 160516) ((-406 . -625) 160498) ((-1138 . -860) T) ((-486 . -738) T) ((-905 . -1056) 160466) ((-419 . -652) 160418) ((-108 . -862) T) ((-670 . -1074) 160402) ((-499 . -132) T) ((-1272 . -1076) T) ((-219 . -132) T) ((-1175 . -102) 160380) ((-99 . -1118) T) ((-251 . -678) 160364) ((-251 . -663) 160348) ((-670 . -111) 160327) ((-598 . -628) 160311) ((-326 . -423) 160295) ((-251 . -384) 160279) ((-1178 . -241) 160226) ((-1017 . -233) 160210) ((-74 . -1236) T) ((-48 . -174) T) ((-713 . -399) T) ((-713 . -144) T) ((-1309 . -102) T) ((-1216 . -628) 160192) ((-1106 . -1236) T) ((-1105 . -1074) 160035) ((-1094 . -1236) T) ((-273 . -925) 160014) ((-253 . -925) 159993) ((-794 . -1074) 159816) ((-792 . -1074) 159659) ((-620 . -1236) T) ((-1183 . -625) 159641) ((-1105 . -111) 159470) ((-1064 . -102) T) ((-487 . -1236) T) ((-473 . -1074) 159441) ((-466 . -1074) 159284) ((-676 . -660) 159268) ((-883 . -317) T) ((-794 . -111) 159077) ((-792 . -111) 158906) ((-366 . -660) 158858) ((-363 . -660) 158810) ((-355 . -660) 158762) ((-273 . -660) 158651) ((-253 . -660) 158540) ((-1177 . -862) T) ((-1106 . -1056) 158524) ((-473 . -111) 158485) ((-466 . -111) 158314) ((-1094 . -1056) 158291) ((-1018 . -34) T) ((-982 . -625) 158273) ((-974 . -1236) T) ((-127 . -1028) 158257) ((-979 . -1130) T) ((-883 . -1040) NIL) ((-747 . -1130) T) ((-727 . -1130) T) ((-670 . -628) 158175) ((-1286 . -501) 158159) ((-1160 . -38) 158119) ((-979 . -23) T) ((-926 . -660) 158084) ((-877 . -1118) T) ((-855 . -102) T) ((-829 . -21) T) ((-647 . -1069) 158068) ((-619 . -1069) 158052) ((-829 . -25) T) ((-747 . -23) T) ((-727 . -23) T) ((-647 . -652) 158036) ((-110 . -673) T) ((-619 . -652) 158020) ((-593 . -1074) 157985) ((-530 . -1074) 157930) ((-229 . -57) 157888) ((-465 . -23) T) ((-419 . -102) T) ((-270 . -102) T) ((-110 . -113) T) ((-706 . -300) T) ((-878 . -38) 157858) ((-593 . -111) 157814) ((-530 . -111) 157743) ((-1105 . -628) 157479) ((-430 . -1130) T) ((-326 . -1076) 157369) ((-323 . -1076) T) ((-129 . -1236) T) ((-794 . -628) 157117) ((-792 . -628) 156883) ((-670 . -1067) T) ((-1315 . -1118) T) ((-466 . -628) 156668) ((-171 . -317) 156599) ((-430 . -23) T) ((-40 . -625) 156581) ((-40 . -626) 156565) ((-108 . -1010) 156547) ((-117 . -881) 156531) ((-661 . -628) 156515) ((-48 . -526) 156481) ((-1222 . -1028) 156465) ((-1200 . -625) 156432) ((-1208 . -34) T) ((-970 . -625) 156398) ((-937 . -625) 156380) ((-1131 . -862) 156331) ((-783 . -625) 156313) ((-684 . -625) 156295) ((-1175 . -319) 156233) ((-491 . -34) T) ((-1110 . -1236) T) ((-489 . -464) T) ((-1159 . -34) T) ((-1105 . -1067) T) ((-50 . -628) 156202) ((-794 . -1067) T) ((-792 . -1067) T) ((-659 . -241) 156186) ((-644 . -241) 156132) ((-593 . -628) 156082) ((-530 . -628) 156012) ((-494 . -235) 155958) ((-1259 . -317) 155937) ((-1105 . -336) 155898) ((-466 . -1067) T) ((-1197 . -21) T) ((-1105 . -239) 155877) ((-794 . -336) 155854) ((-794 . -239) T) ((-792 . -336) 155826) ((-743 . -1240) 155805) ((-337 . -663) 155789) ((-1197 . -25) T) ((-59 . -34) T) ((-531 . -34) T) ((-528 . -34) T) ((-466 . -336) 155768) ((-337 . -384) 155752) ((-509 . -34) T) ((-508 . -34) T) ((-1021 . -1170) NIL) ((-743 . -568) 155683) ((-647 . -102) T) ((-619 . -102) T) ((-366 . -738) T) ((-363 . -738) T) ((-355 . -738) T) ((-273 . -738) T) ((-253 . -738) T) ((-390 . -1236) T) ((-1064 . -319) 155591) ((-1298 . -21) T) ((-917 . -1118) 155569) ((-830 . -235) 155556) ((-50 . -1067) T) ((-1298 . -25) T) ((-1193 . -568) 155535) ((-1192 . -1240) 155514) ((-1192 . -568) 155465) ((-1186 . -1240) 155444) ((-1186 . -568) 155395) ((-593 . -1067) T) ((-530 . -1067) T) ((-1042 . -300) T) ((-372 . -1056) 155379) ((-332 . -1056) 155363) ((-1021 . -38) 155308) ((-390 . -899) 155290) ((-1017 . -658) 155213) ((-848 . -1236) T) ((-839 . -1236) 155192) ((-811 . -1130) T) ((-926 . -738) T) ((-593 . -249) T) ((-593 . -239) T) ((-530 . -239) T) ((-530 . -249) T) ((-1144 . -568) 155171) ((-365 . -300) T) ((-659 . -707) 155155) ((-390 . -1056) 155115) ((-304 . -1069) 155036) ((-350 . -909) 155015) ((-1138 . -1076) T) ((-103 . -126) 154999) ((-304 . -652) 154941) ((-811 . -23) T) ((-1308 . -1303) 154917) ((-1306 . -1303) 154896) ((-1286 . -296) 154848) ((-419 . -319) 154813) ((-1272 . -1118) T) ((-1160 . -916) 154772) ((-882 . -625) 154754) ((-848 . -1056) 154723) ((-205 . -799) T) ((-204 . -799) T) ((-203 . -799) T) ((-202 . -799) T) ((-201 . -799) T) ((-200 . -799) T) ((-199 . -799) T) ((-198 . -799) T) ((-197 . -799) T) ((-196 . -799) T) ((-559 . -625) 154705) ((-507 . -1020) T) ((-283 . -851) T) ((-282 . -851) T) ((-281 . -851) T) ((-280 . -851) T) ((-48 . -300) T) ((-279 . -851) T) ((-278 . -851) T) ((-277 . -851) T) ((-195 . -799) T) ((-624 . -862) T) ((-666 . -423) 154689) ((-682 . -238) 154668) ((-225 . -628) 154630) ((-110 . -862) T) ((-665 . -21) T) ((-665 . -25) T) ((-1309 . -38) 154600) ((-118 . -296) 154551) ((-1286 . -19) 154535) ((-1286 . -616) 154512) ((-1299 . -1118) T) ((-362 . -1069) 154457) ((-1095 . -1118) T) ((-1005 . -1118) T) ((-979 . -132) T) ((-829 . -235) 154444) ((-749 . -1118) T) ((-362 . -652) 154389) ((-747 . -132) T) ((-727 . -132) T) ((-523 . -805) T) ((-523 . -806) T) ((-465 . -132) T) ((-419 . -1170) 154367) ((-225 . -1067) T) ((-304 . -102) 154149) ((-142 . -1118) T) ((-711 . -1020) T) ((-1123 . -296) 154105) ((-91 . -1236) T) ((-128 . -625) 154037) ((-122 . -625) 153969) ((-1315 . -174) T) ((-1192 . -374) 153948) ((-1186 . -374) 153927) ((-326 . -1118) T) ((-430 . -132) T) ((-323 . -1118) T) ((-419 . -38) 153879) ((-1151 . -102) T) ((-1272 . -729) 153771) ((-666 . -1076) T) ((-1153 . -1281) T) ((-329 . -146) 153750) ((-329 . -148) 153729) ((-140 . -1118) T) ((-137 . -1118) T) ((-115 . -1118) T) ((-870 . -102) T) ((-592 . -625) 153711) ((-576 . -626) 153610) ((-576 . -625) 153592) ((-507 . -625) 153574) ((-507 . -626) 153519) ((-497 . -23) T) ((-494 . -862) 153470) ((-499 . -651) 153452) ((-981 . -625) 153434) ((-1021 . -916) 153386) ((-219 . -651) 153368) ((-227 . -416) T) ((-674 . -660) 153352) ((-55 . -625) 153334) ((-1191 . -936) 153313) ((-743 . -1130) T) ((-362 . -102) T) ((-1235 . -1101) T) ((-1138 . -856) T) ((-830 . -862) T) ((-743 . -23) T) ((-354 . -1074) 153258) ((-1177 . -1176) T) ((-1165 . -107) 153242) ((-1193 . -1130) T) ((-1192 . -1130) T) ((-527 . -1056) 153226) ((-1186 . -1130) T) ((-1144 . -1130) T) ((-354 . -111) 153155) ((-1022 . -1240) T) ((-127 . -1236) T) ((-930 . -1240) T) ((-706 . -296) NIL) ((-726 . -1236) T) ((-1287 . -625) 153137) ((-1193 . -23) T) ((-1192 . -23) T) ((-1186 . -23) T) ((-1160 . -233) 153121) ((-1022 . -568) T) ((-1144 . -23) T) ((-930 . -568) T) ((-1093 . -1118) T) ((-254 . -625) 153103) ((-827 . -238) 153055) ((-811 . -132) T) ((-722 . -625) 153037) ((-326 . -729) 152947) ((-323 . -729) 152876) ((-711 . -625) 152858) ((-711 . -626) 152803) ((-419 . -412) 152787) ((-450 . -1118) T) ((-499 . -25) T) ((-499 . -21) T) ((-1138 . -1118) T) ((-219 . -25) T) ((-219 . -21) T) ((-724 . -423) 152771) ((-726 . -1056) 152740) ((-1286 . -625) 152652) ((-1286 . -626) 152613) ((-1272 . -174) T) ((-1209 . -625) 152595) ((-251 . -34) T) ((-354 . -628) 152525) ((-406 . -628) 152507) ((-942 . -992) T) ((-1222 . -1236) T) ((-674 . -803) 152486) ((-674 . -806) 152465) ((-410 . -407) T) ((-535 . -102) 152443) ((-1053 . -1118) T) ((-419 . -916) 152402) ((-224 . -1013) 152386) ((-516 . -102) T) ((-635 . -625) 152368) ((-45 . -862) NIL) ((-635 . -626) 152345) ((-1053 . -622) 152320) ((-917 . -526) 152253) ((-329 . -238) 152205) ((-354 . -1067) T) ((-118 . -626) NIL) ((-118 . -625) 152187) ((-884 . -1236) T) ((-682 . -429) 152171) ((-682 . -1141) 152116) ((-512 . -152) 152098) ((-354 . -239) T) ((-354 . -249) T) ((-40 . -1074) 152043) ((-884 . -897) 152027) ((-884 . -899) 151952) ((-724 . -1076) T) ((-706 . -1020) NIL) ((-1270 . -47) 151922) ((-1249 . -47) 151899) ((-1159 . -1028) 151870) ((-3 . |UnionCategory|) T) ((-1138 . -729) 151857) ((-1123 . -625) 151839) ((-1098 . -148) 151818) ((-1098 . -146) 151769) ((-982 . -628) 151753) ((-227 . -936) T) ((-40 . -111) 151682) ((-884 . -1056) 151546) ((-1022 . -374) T) ((-1021 . -233) 151523) ((-713 . -1069) 151510) ((-930 . -374) T) ((-713 . -652) 151497) ((-329 . -1224) 151463) ((-390 . -317) T) ((-329 . -1221) 151429) ((-326 . -174) 151408) ((-323 . -174) T) ((-593 . -1305) 151395) ((-530 . -1305) 151372) ((-370 . -148) 151351) ((-117 . -1069) 151338) ((-370 . -146) 151289) ((-364 . -148) 151268) ((-364 . -146) 151219) ((-356 . -148) 151198) ((-620 . -1212) 151174) ((-117 . -652) 151161) ((-356 . -146) 151112) ((-329 . -35) 151078) ((-487 . -1212) 151057) ((0 . |EnumerationCategory|) T) ((-329 . -95) 151023) ((-390 . -1040) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 150973) ((-666 . -1118) T) ((-620 . -107) 150920) ((-497 . -132) T) ((-487 . -107) 150870) ((-246 . -1130) 150848) ((-884 . -388) 150832) ((-884 . -349) 150816) ((-246 . -23) 150668) ((-40 . -628) 150598) ((-1080 . -936) T) ((-1080 . -832) T) ((-593 . -379) T) ((-530 . -379) T) ((-1299 . -526) 150531) ((-1278 . -568) 150510) ((-1271 . -1240) 150489) ((-362 . -1170) T) ((-337 . -34) T) ((-44 . -429) 150473) ((-1200 . -628) 150409) ((-885 . -1236) T) ((-402 . -756) 150393) ((-1271 . -568) 150344) ((-1270 . -1236) T) ((-1160 . -658) 150303) ((-743 . -132) T) ((-684 . -628) 150287) ((-1250 . -1240) 150266) ((-1250 . -568) 150217) ((-1249 . -1236) T) ((-1249 . -899) 150090) ((-1249 . -897) 150060) ((-1193 . -132) T) ((-321 . -1101) T) ((-1192 . -132) T) ((-749 . -526) 149993) ((-1186 . -132) T) ((-1144 . -132) T) ((-906 . -1118) T) ((-145 . -856) T) ((-1042 . -1020) T) ((-703 . -625) 149975) ((-1022 . -23) T) ((-535 . -319) 149913) ((-1022 . -1130) T) ((-142 . -526) NIL) ((-878 . -658) 149858) ((-1021 . -360) NIL) ((-989 . -23) T) ((-930 . -1130) T) ((-362 . -38) 149823) ((-930 . -23) T) ((-884 . -914) 149782) ((-82 . -625) 149764) ((-40 . -1067) T) ((-882 . -1074) 149751) ((-882 . -111) 149736) ((-713 . -102) T) ((-706 . -625) 149718) ((-614 . -1236) T) ((-608 . -568) 149697) ((-439 . -1130) T) ((-350 . -1069) 149681) ((-215 . -1118) T) ((-176 . -1069) 149613) ((-486 . -47) 149583) ((-40 . -239) 149555) ((-40 . -249) T) ((-135 . -102) T) ((-117 . -102) T) ((-607 . -568) 149534) ((-350 . -652) 149518) ((-706 . -626) 149426) ((-326 . -526) 149392) ((-176 . -652) 149324) ((-323 . -526) 149216) ((-499 . -235) 149203) ((-1270 . -1056) 149187) ((-1249 . -1056) 148973) ((-1017 . -423) 148957) ((-219 . -235) 148944) ((-439 . -23) T) ((-1138 . -174) T) ((-1272 . -300) T) ((-666 . -729) 148914) ((-145 . -1118) T) ((-48 . -1020) T) ((-419 . -233) 148898) ((-305 . -241) 148848) ((-883 . -936) T) ((-883 . -832) NIL) ((-882 . -628) 148820) ((-876 . -862) T) ((-1249 . -349) 148790) ((-1249 . -388) 148760) ((-1098 . -238) 148685) ((-224 . -1139) 148669) ((-304 . -916) 148628) ((-1286 . -298) 148605) ((-370 . -238) 148584) ((-364 . -238) 148563) ((-486 . -1236) T) ((-356 . -238) 148542) ((-108 . -238) T) ((-1230 . -660) 148467) ((-1021 . -658) 148397) ((-979 . -21) T) ((-979 . -25) T) ((-747 . -21) T) ((-747 . -25) T) ((-727 . -21) T) ((-727 . -25) T) ((-723 . -660) 148362) ((-465 . -21) T) ((-465 . -25) T) ((-350 . -102) T) ((-176 . -102) T) ((-1017 . -1076) T) ((-882 . -1067) T) ((-786 . -102) T) ((-1271 . -374) 148341) ((-1270 . -914) 148247) ((-1250 . -374) 148226) ((-1249 . -914) 148077) ((-1042 . -625) 148059) ((-419 . -840) 148012) ((-1193 . -505) 147978) ((-171 . -936) 147909) ((-1192 . -505) 147875) ((-1186 . -505) 147841) ((-724 . -1118) T) ((-1144 . -505) 147807) ((-592 . -1074) 147794) ((-576 . -1074) 147781) ((-507 . -1074) 147746) ((-326 . -300) 147725) ((-323 . -300) T) ((-365 . -625) 147707) ((-430 . -25) T) ((-430 . -21) T) ((-99 . -296) 147686) ((-592 . -111) 147671) ((-576 . -111) 147656) ((-507 . -111) 147612) ((-1195 . -899) 147579) ((-917 . -501) 147563) ((-48 . -625) 147545) ((-48 . -626) 147490) ((-246 . -132) 147361) ((-1309 . -658) 147320) ((-1259 . -936) 147299) ((-828 . -1240) 147278) ((-400 . -502) 147259) ((-1053 . -526) 147103) ((-400 . -625) 147069) ((-828 . -568) 147000) ((-598 . -660) 146975) ((-273 . -47) 146947) ((-253 . -47) 146904) ((-543 . -521) 146881) ((-592 . -628) 146853) ((-576 . -628) 146825) ((-507 . -628) 146758) ((-1092 . -1236) T) ((-1018 . -1236) T) ((-1278 . -23) T) ((-1278 . -1130) T) ((-1271 . -1130) T) ((-711 . -1074) 146723) ((-1271 . -23) T) ((-1250 . -1130) T) ((-1250 . -23) T) ((-1230 . -738) T) ((-1138 . -300) T) ((-1021 . -381) 146695) ((-112 . -379) T) ((-486 . -914) 146601) ((-1131 . -238) 146553) ((-920 . -625) 146535) ((-55 . -628) 146517) ((-91 . -107) 146501) ((-1022 . -132) T) ((-921 . -862) 146452) ((-713 . -1170) T) ((-711 . -111) 146408) ((-855 . -658) 146325) ((-608 . -1130) T) ((-607 . -1130) T) ((-724 . -729) 146154) ((-723 . -738) T) ((-989 . -132) T) ((-930 . -132) T) ((-499 . -862) T) ((-811 . -25) T) ((-811 . -21) T) ((-592 . -1067) T) ((-219 . -862) T) ((-419 . -658) 146091) ((-576 . -1067) T) ((-548 . -1236) T) ((-507 . -1067) T) ((-608 . -23) T) ((-354 . -1305) 146068) ((-329 . -464) 146047) ((-350 . -319) 146034) ((-607 . -23) T) ((-439 . -132) T) ((-670 . -660) 146008) ((-251 . -1028) 145992) ((-884 . -317) T) ((-1310 . -1300) 145976) ((-783 . -804) T) ((-783 . -807) T) ((-713 . -38) 145963) ((-576 . -239) T) ((-507 . -249) T) ((-507 . -239) T) ((-1168 . -241) 145913) ((-1105 . -925) 145892) ((-117 . -38) 145879) ((-211 . -812) T) ((-210 . -812) T) ((-209 . -812) T) ((-208 . -812) T) ((-884 . -1040) 145857) ((-1299 . -501) 145841) ((-794 . -925) 145820) ((-792 . -925) 145799) ((-1208 . -1236) T) ((-366 . -1236) 145778) ((-363 . -1236) 145757) ((-355 . -1236) 145736) ((-273 . -1236) T) ((-253 . -1236) T) ((-466 . -925) 145715) ((-749 . -501) 145699) ((-1105 . -660) 145588) ((-711 . -628) 145523) ((-794 . -660) 145412) ((-635 . -1074) 145399) ((-491 . -1236) T) ((-354 . -379) T) ((-142 . -501) 145381) ((-792 . -660) 145270) ((-1159 . -1236) T) ((-561 . -862) T) ((-473 . -660) 145241) ((-273 . -899) 145100) ((-253 . -899) NIL) ((-118 . -1074) 145045) ((-466 . -660) 144934) ((-676 . -1056) 144911) ((-635 . -111) 144896) ((-402 . -1069) 144880) ((-366 . -1056) 144864) ((-363 . -1056) 144848) ((-355 . -1056) 144832) ((-273 . -1056) 144676) ((-253 . -1056) 144552) ((-926 . -1236) T) ((-118 . -111) 144481) ((-59 . -1236) T) ((-402 . -652) 144465) ((-633 . -1069) 144449) ((-531 . -1236) T) ((-528 . -1236) T) ((-509 . -1236) T) ((-508 . -1236) T) ((-449 . -625) 144431) ((-446 . -625) 144413) ((-633 . -652) 144397) ((-3 . -102) T) ((-1045 . -1229) 144366) ((-845 . -102) T) ((-701 . -57) 144324) ((-711 . -1067) T) ((-647 . -658) 144293) ((-619 . -658) 144262) ((-50 . -660) 144236) ((-299 . -464) T) ((-488 . -1229) 144205) ((0 . -102) T) ((-593 . -660) 144170) ((-530 . -660) 144115) ((-49 . -102) T) ((-926 . -1056) 144102) ((-711 . -249) T) ((-1098 . -421) 144081) ((-743 . -651) 144029) ((-1017 . -1118) T) ((-724 . -174) 143920) ((-635 . -628) 143815) ((-499 . -1010) 143797) ((-430 . -235) 143770) ((-273 . -388) 143754) ((-253 . -388) 143738) ((-411 . -1118) T) ((-1044 . -102) 143716) ((-350 . -38) 143700) ((-219 . -1010) 143682) ((-118 . -628) 143612) ((-176 . -38) 143544) ((-1270 . -317) 143523) ((-1249 . -317) 143502) ((-670 . -738) T) ((-99 . -625) 143484) ((-489 . -1069) 143449) ((-1186 . -651) 143401) ((-489 . -652) 143366) ((-497 . -25) T) ((-497 . -21) T) ((-1249 . -1040) 143318) ((-1075 . -1236) T) ((-635 . -1067) T) ((-390 . -416) T) ((-402 . -102) T) ((-1123 . -630) 143233) ((-273 . -914) 143179) ((-253 . -914) 143156) ((-118 . -1067) T) ((-828 . -1130) T) ((-1105 . -738) T) ((-635 . -239) 143135) ((-633 . -102) T) ((-794 . -738) T) ((-792 . -738) T) ((-425 . -1130) T) ((-118 . -249) T) ((-40 . -379) NIL) ((-118 . -239) NIL) ((-1241 . -862) T) ((-466 . -738) T) ((-828 . -23) T) ((-743 . -25) T) ((-743 . -21) T) ((-682 . -909) 143092) ((-1095 . -296) 143071) ((-78 . -408) T) ((-78 . -407) T) ((-545 . -779) 143053) ((-706 . -1074) 143003) ((-1311 . -102) T) ((-1278 . -132) T) ((-1271 . -132) T) ((-1250 . -132) T) ((-1193 . -25) T) ((-1160 . -423) 142987) ((-647 . -378) 142919) ((-619 . -378) 142851) ((-1175 . -1167) 142835) ((-103 . -1118) 142813) ((-1193 . -21) T) ((-1192 . -21) T) ((-877 . -625) 142795) ((-1017 . -729) 142743) ((-225 . -660) 142710) ((-706 . -111) 142644) ((-50 . -738) T) ((-1192 . -25) T) ((-362 . -360) T) ((-1186 . -21) T) ((-1098 . -464) 142595) ((-1186 . -25) T) ((-724 . -526) 142542) ((-593 . -738) T) ((-530 . -738) T) ((-1144 . -21) T) ((-1144 . -25) T) ((-608 . -132) T) ((-607 . -132) T) ((-304 . -658) 142277) ((-494 . -238) 142229) ((-370 . -464) T) ((-364 . -464) T) ((-356 . -464) T) ((-486 . -317) 142208) ((-1244 . -102) T) ((-323 . -296) 142143) ((-108 . -464) T) ((-79 . -453) T) ((-79 . -407) T) ((-489 . -102) T) ((-703 . -628) 142127) ((-1315 . -625) 142109) ((-1315 . -626) 142091) ((-1098 . -414) 142070) ((-1053 . -501) 142001) ((-137 . -296) 141978) ((-576 . -807) T) ((-576 . -804) T) ((-1081 . -241) 141924) ((-370 . -414) 141875) ((-364 . -414) 141826) ((-356 . -414) 141777) ((-1301 . -1130) T) ((-1310 . -1069) 141761) ((-392 . -1069) 141745) ((-1310 . -652) 141715) ((-830 . -238) T) ((-392 . -652) 141685) ((-706 . -628) 141620) ((-1301 . -23) T) ((-1288 . -102) T) ((-350 . -916) 141601) ((-177 . -625) 141583) ((-1160 . -1076) T) ((-559 . -379) T) ((-682 . -756) 141567) ((-1197 . -146) 141546) ((-1197 . -148) 141525) ((-1164 . -1118) T) ((-1164 . -1089) 141494) ((-69 . -1236) T) ((-1042 . -1074) 141431) ((-362 . -658) 141361) ((-878 . -1076) T) ((-246 . -651) 141267) ((-706 . -1067) T) ((-365 . -1074) 141212) ((-61 . -1236) T) ((-1042 . -111) 141128) ((-917 . -625) 141039) ((-706 . -249) T) ((-706 . -239) NIL) ((-855 . -860) 141018) ((-711 . -807) T) ((-711 . -804) T) ((-1021 . -423) 140995) ((-365 . -111) 140924) ((-390 . -936) T) ((-419 . -860) 140903) ((-724 . -300) 140814) ((-225 . -738) T) ((-1278 . -505) 140780) ((-1271 . -505) 140746) ((-1250 . -505) 140712) ((-590 . -1118) T) ((-326 . -1020) 140691) ((-224 . -1118) 140669) ((-1243 . -856) T) ((-329 . -991) 140631) ((-105 . -102) T) ((-48 . -1074) 140596) ((-1310 . -102) T) ((-392 . -102) T) ((-48 . -111) 140552) ((-827 . -909) 140482) ((-1022 . -651) 140464) ((-1272 . -625) 140446) ((-543 . -102) T) ((-512 . -102) T) ((-1151 . -1152) 140430) ((-153 . -1293) 140414) ((-251 . -1236) T) ((-1235 . -102) T) ((-1042 . -628) 140351) ((-829 . -238) T) ((-1191 . -1240) 140330) ((-365 . -628) 140260) ((-1143 . -1240) 140239) ((-246 . -25) 140072) ((-246 . -21) 139983) ((-128 . -120) 139967) ((-122 . -120) 139951) ((-44 . -756) 139935) ((-1191 . -568) 139846) ((-1143 . -568) 139777) ((-1243 . -1118) T) ((-1053 . -296) 139752) ((-1185 . -1101) T) ((-1012 . -1101) T) ((-828 . -132) T) ((-118 . -807) NIL) ((-118 . -804) NIL) ((-366 . -317) T) ((-363 . -317) T) ((-355 . -317) T) ((-258 . -1130) 139730) ((-257 . -1130) 139708) ((-1042 . -1067) T) ((-1021 . -1076) T) ((-48 . -628) 139641) ((-354 . -660) 139586) ((-1299 . -625) 139548) ((-633 . -38) 139532) ((-1299 . -626) 139493) ((-1193 . -235) 139446) ((-1095 . -625) 139428) ((-1042 . -249) T) ((-365 . -1067) T) ((-827 . -1293) 139398) ((-258 . -23) T) ((-257 . -23) T) ((-1005 . -625) 139380) ((-1192 . -235) 139326) ((-1186 . -235) 139207) ((-749 . -626) 139168) ((-749 . -625) 139150) ((-1178 . -152) 139097) ((-811 . -862) 139076) ((-1022 . -25) T) ((-1017 . -526) 138988) ((-365 . -239) T) ((-365 . -249) T) ((-400 . -628) 138969) ((-926 . -317) T) ((-142 . -625) 138951) ((-142 . -626) 138910) ((-329 . -909) 138814) ((-1022 . -21) T) ((-989 . -25) T) ((-930 . -21) T) ((-930 . -25) T) ((-439 . -21) T) ((-439 . -25) T) ((-855 . -423) 138798) ((-48 . -1067) T) ((-1308 . -1300) 138782) ((-1306 . -1300) 138766) ((-1053 . -616) 138741) ((-326 . -626) 138602) ((-326 . -625) 138584) ((-323 . -626) NIL) ((-323 . -625) 138566) ((-48 . -249) T) ((-48 . -239) T) ((-666 . -296) 138527) ((-562 . -241) 138477) ((-140 . -625) 138444) ((-137 . -625) 138426) ((-115 . -625) 138408) ((-489 . -38) 138373) ((-1310 . -1307) 138352) ((-1301 . -132) T) ((-1309 . -1076) T) ((-1100 . -102) T) ((-88 . -1236) T) ((-512 . -319) NIL) ((-1018 . -107) 138336) ((-902 . -1118) T) ((-898 . -1118) T) ((-1286 . -663) 138320) ((-1286 . -384) 138304) ((-337 . -1236) T) ((-605 . -862) T) ((-1160 . -1118) T) ((-1160 . -1071) 138244) ((-103 . -526) 138177) ((-943 . -625) 138159) ((-354 . -738) T) ((-30 . -625) 138141) ((-878 . -1118) T) ((-855 . -1076) 138120) ((-40 . -660) 138027) ((-227 . -1240) T) ((-419 . -1076) T) ((-1177 . -152) 138009) ((-1017 . -300) 137960) ((-629 . -1118) T) ((-227 . -568) T) ((-329 . -1267) 137944) ((-329 . -1264) 137914) ((-713 . -658) 137886) ((-1208 . -1212) 137865) ((-1093 . -625) 137847) ((-1208 . -107) 137797) ((-659 . -152) 137781) ((-644 . -152) 137727) ((-117 . -658) 137699) ((-491 . -1212) 137678) ((-499 . -148) T) ((-499 . -146) NIL) ((-1138 . -626) 137593) ((-450 . -625) 137575) ((-219 . -148) T) ((-219 . -146) NIL) ((-1138 . -625) 137557) ((-130 . -102) T) ((-52 . -102) T) ((-1250 . -651) 137509) ((-491 . -107) 137459) ((-1011 . -23) T) ((-1310 . -38) 137429) ((-1191 . -1130) T) ((-1143 . -1130) T) ((-1080 . -1240) T) ((-246 . -235) 137375) ((-321 . -102) T) ((-866 . -1130) T) ((-968 . -1240) 137354) ((-493 . -1240) 137333) ((-1080 . -568) T) ((-968 . -568) 137264) ((-1191 . -23) T) ((-1169 . -1101) T) ((-1143 . -23) T) ((-866 . -23) T) ((-493 . -568) 137195) ((-1160 . -729) 137127) ((-682 . -1069) 137111) ((-1164 . -526) 137044) ((-682 . -652) 137028) ((-1053 . -626) NIL) ((-1053 . -625) 137010) ((-96 . -1101) T) ((-1315 . -1074) 136997) ((-878 . -729) 136967) ((-1315 . -111) 136952) ((-1230 . -47) 136921) ((-1186 . -862) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1122 . -1118) T) ((-1021 . -1118) T) ((-62 . -625) 136903) ((-1098 . -909) 136834) ((-1042 . -804) T) ((-1042 . -807) T) ((-1278 . -25) T) ((-1278 . -21) T) ((-1271 . -21) T) ((-1271 . -25) T) ((-882 . -660) 136821) ((-1250 . -21) T) ((-1250 . -25) T) ((-1045 . -152) 136805) ((-1022 . -235) 136792) ((-884 . -832) 136771) ((-884 . -936) T) ((-724 . -296) 136698) ((-608 . -21) T) ((-350 . -658) 136657) ((-108 . -909) NIL) ((-608 . -25) T) ((-607 . -21) T) ((-176 . -658) 136574) ((-40 . -738) T) ((-224 . -526) 136507) ((-607 . -25) T) ((-488 . -152) 136491) ((-475 . -152) 136475) ((-937 . -806) T) ((-937 . -738) T) ((-783 . -805) T) ((-783 . -806) T) ((-518 . -1118) T) ((-514 . -1118) T) ((-783 . -738) T) ((-227 . -374) T) ((-1308 . -1069) 136459) ((-1306 . -1069) 136443) ((-1308 . -652) 136413) ((-1175 . -1118) 136391) ((-883 . -1240) T) ((-1306 . -652) 136361) ((-666 . -625) 136343) ((-883 . -568) T) ((-706 . -379) NIL) ((-44 . -1069) 136327) ((-1315 . -628) 136309) ((-1309 . -1118) T) ((-682 . -102) T) ((-370 . -1293) 136293) ((-364 . -1293) 136277) ((-44 . -652) 136261) ((-356 . -1293) 136245) ((-560 . -102) T) ((-1230 . -1236) T) ((-532 . -862) 136224) ((-499 . -238) T) ((-219 . -238) T) ((-1064 . -1118) T) ((-829 . -464) 136203) ((-153 . -1069) 136187) ((-1064 . -1089) 136116) ((-1045 . -994) 136085) ((-831 . -1130) T) ((-1021 . -729) 136030) ((-153 . -652) 136014) ((-398 . -1130) T) ((-488 . -994) 135983) ((-475 . -994) 135952) ((-110 . -152) 135934) ((-73 . -625) 135916) ((-906 . -625) 135898) ((-1098 . -736) 135877) ((-1315 . -1067) T) ((-828 . -651) 135825) ((-304 . -1076) 135767) ((-171 . -1240) 135672) ((-227 . -1130) T) ((-334 . -23) T) ((-1186 . -1010) 135624) ((-855 . -1118) T) ((-1272 . -1074) 135529) ((-1144 . -752) 135508) ((-1270 . -936) 135487) ((-1249 . -936) 135466) ((-882 . -738) T) ((-171 . -568) 135377) ((-592 . -660) 135364) ((-576 . -660) 135336) ((-419 . -1118) T) ((-270 . -1118) T) ((-215 . -625) 135318) ((-507 . -660) 135268) ((-227 . -23) T) ((-1249 . -832) 135221) ((-1308 . -102) T) ((-365 . -1305) 135198) ((-1306 . -102) T) ((-1272 . -111) 135090) ((-1131 . -909) 135020) ((-827 . -1069) 134921) ((-827 . -652) 134843) ((-145 . -625) 134825) ((-1011 . -132) T) ((-44 . -102) T) ((-246 . -862) 134776) ((-1259 . -1240) 134755) ((-103 . -501) 134739) ((-1309 . -729) 134709) ((-1105 . -47) 134670) ((-1080 . -1130) T) ((-968 . -1130) T) ((-128 . -34) T) ((-122 . -34) T) ((-794 . -47) 134647) ((-792 . -47) 134619) ((-1259 . -568) 134530) ((-365 . -379) T) ((-493 . -1130) T) ((-1191 . -132) T) ((-1143 . -132) T) ((-466 . -47) 134509) ((-883 . -374) T) ((-866 . -132) T) ((-153 . -102) T) ((-1080 . -23) T) ((-968 . -23) T) ((-583 . -568) T) ((-828 . -25) T) ((-828 . -21) T) ((-1160 . -526) 134442) ((-604 . -1101) T) ((-598 . -1056) 134426) ((-1272 . -628) 134300) ((-493 . -23) T) ((-362 . -1076) T) ((-1230 . -914) 134281) ((-682 . -319) 134219) ((-1131 . -1293) 134189) ((-711 . -660) 134154) ((-1022 . -862) T) ((-1021 . -174) T) ((-979 . -146) 134133) ((-647 . -1118) T) ((-619 . -1118) T) ((-979 . -148) 134112) ((-747 . -148) 134091) ((-747 . -146) 134070) ((-670 . -1236) T) ((-989 . -862) T) ((-1278 . -235) 134023) ((-1271 . -235) 133969) ((-1250 . -235) 133850) ((-845 . -658) 133767) ((-486 . -936) 133746) ((-329 . -1069) 133581) ((-326 . -1074) 133491) ((-323 . -1074) 133420) ((-1017 . -296) 133378) ((-419 . -729) 133330) ((-329 . -652) 133171) ((-607 . -235) 133124) ((-713 . -860) T) ((-1272 . -1067) T) ((-326 . -111) 133020) ((-323 . -111) 132933) ((-980 . -102) T) ((-827 . -102) 132685) ((-724 . -626) NIL) ((-724 . -625) 132667) ((-1272 . -336) 132611) ((-670 . -1056) 132507) ((-1105 . -1236) T) ((-1053 . -298) 132482) ((-592 . -738) T) ((-576 . -806) T) ((-171 . -374) 132433) ((-576 . -803) T) ((-576 . -738) T) ((-507 . -738) T) ((-794 . -1236) T) ((-792 . -1236) T) ((-1164 . -501) 132417) ((-466 . -1236) T) ((-1105 . -899) NIL) ((-883 . -1130) T) ((-118 . -925) NIL) ((-1308 . -1307) 132393) ((-1306 . -1307) 132372) ((-794 . -899) NIL) ((-792 . -899) 132231) ((-1301 . -25) T) ((-1301 . -21) T) ((-1233 . -102) 132209) ((-1124 . -407) T) ((-635 . -660) 132196) ((-466 . -899) NIL) ((-687 . -102) 132174) ((-1105 . -1056) 132001) ((-883 . -23) T) ((-794 . -1056) 131860) ((-792 . -1056) 131717) ((-118 . -660) 131662) ((-466 . -1056) 131538) ((-326 . -628) 131102) ((-323 . -628) 130985) ((-402 . -658) 130954) ((-661 . -1056) 130938) ((-593 . -1236) T) ((-639 . -102) T) ((-530 . -1236) T) ((-224 . -501) 130922) ((-1286 . -34) T) ((-633 . -658) 130881) ((-299 . -1069) 130868) ((-137 . -628) 130852) ((-299 . -652) 130839) ((-647 . -729) 130823) ((-619 . -729) 130807) ((-682 . -38) 130767) ((-329 . -102) T) ((-85 . -625) 130749) ((-50 . -1056) 130733) ((-1138 . -1074) 130720) ((-1105 . -388) 130704) ((-794 . -388) 130688) ((-711 . -738) T) ((-711 . -806) T) ((-711 . -803) T) ((-593 . -1056) 130675) ((-530 . -1056) 130652) ((-60 . -57) 130614) ((-334 . -132) T) ((-326 . -1067) 130504) ((-323 . -1067) T) ((-171 . -1130) T) ((-792 . -388) 130488) ((-45 . -152) 130438) ((-1022 . -1010) 130420) ((-466 . -388) 130404) ((-419 . -174) T) ((-326 . -249) 130383) ((-323 . -249) T) ((-323 . -239) NIL) ((-304 . -1118) 130165) ((-227 . -132) T) ((-1138 . -111) 130150) ((-171 . -23) T) ((-811 . -148) 130129) ((-811 . -146) 130108) ((-258 . -651) 130014) ((-257 . -651) 129920) ((-329 . -294) 129886) ((-1175 . -526) 129819) ((-489 . -658) 129769) ((-494 . -909) 129699) ((-1151 . -1118) T) ((-227 . -1078) T) ((-827 . -319) 129637) ((-1105 . -914) 129572) ((-794 . -914) 129515) ((-792 . -914) 129499) ((-1308 . -38) 129469) ((-1306 . -38) 129439) ((-1259 . -1130) T) ((-867 . -1130) T) ((-466 . -914) 129416) ((-870 . -1118) T) ((-1259 . -23) T) ((-1138 . -628) 129388) ((-1080 . -132) T) ((-583 . -1130) T) ((-867 . -23) T) ((-635 . -738) T) ((-366 . -936) T) ((-363 . -936) T) ((-299 . -102) T) ((-355 . -936) T) ((-988 . -1101) T) ((-968 . -132) T) ((-828 . -235) 129361) ((-118 . -806) NIL) ((-118 . -803) NIL) ((-118 . -738) T) ((-1064 . -526) 129262) ((-706 . -925) NIL) ((-583 . -23) T) ((-493 . -132) T) ((-430 . -238) 129241) ((-687 . -319) 129179) ((-647 . -773) T) ((-619 . -773) T) ((-1250 . -862) NIL) ((-1098 . -1069) 129089) ((-1021 . -300) T) ((-706 . -660) 129039) ((-258 . -25) T) ((-362 . -1118) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 129023) ((-2 . -102) T) ((-926 . -936) T) ((-1098 . -652) 128891) ((-494 . -1293) 128861) ((-1138 . -1067) T) ((-723 . -317) T) ((-370 . -1069) 128813) ((-364 . -1069) 128765) ((-356 . -1069) 128717) ((-370 . -652) 128669) ((-225 . -1056) 128646) ((-364 . -652) 128598) ((-108 . -1069) 128548) ((-356 . -652) 128500) ((-304 . -729) 128442) ((-713 . -1076) T) ((-499 . -464) T) ((-419 . -526) 128354) ((-108 . -652) 128304) ((-219 . -464) T) ((-1138 . -239) T) ((-305 . -152) 128254) ((-1017 . -626) 128215) ((-1017 . -625) 128197) ((-1007 . -625) 128179) ((-117 . -1076) T) ((-666 . -1074) 128163) ((-227 . -505) T) ((-411 . -625) 128145) ((-411 . -626) 128122) ((-1072 . -1293) 128092) ((-666 . -111) 128071) ((-682 . -916) 128030) ((-1160 . -501) 128014) ((-1310 . -658) 127973) ((-392 . -658) 127942) ((-63 . -453) T) ((-63 . -407) T) ((-1178 . -102) T) ((-883 . -132) T) ((-496 . -102) 127920) ((-1315 . -379) T) ((-1098 . -102) T) ((-1079 . -102) T) ((-362 . -729) 127865) ((-743 . -148) 127844) ((-743 . -146) 127823) ((-666 . -628) 127741) ((-1042 . -660) 127678) ((-535 . -1118) 127656) ((-370 . -102) T) ((-364 . -102) T) ((-356 . -102) T) ((-108 . -102) T) ((-516 . -1118) T) ((-365 . -660) 127601) ((-1191 . -651) 127549) ((-1143 . -651) 127497) ((-396 . -521) 127476) ((-845 . -860) 127455) ((-390 . -1240) T) ((-706 . -738) T) ((-1250 . -1010) 127407) ((-350 . -1076) T) ((-112 . -1236) T) ((-176 . -1076) T) ((-103 . -625) 127339) ((-1193 . -146) 127318) ((-1193 . -148) 127297) ((-390 . -568) T) ((-1192 . -148) 127276) ((-1192 . -146) 127255) ((-1186 . -146) 127162) ((-419 . -300) T) ((-1186 . -148) 127069) ((-1144 . -148) 127048) ((-1144 . -146) 127027) ((-329 . -38) 126868) ((-171 . -132) T) ((-323 . -807) NIL) ((-323 . -804) NIL) ((-666 . -1067) T) ((-48 . -660) 126818) ((-1131 . -1069) 126719) ((-906 . -628) 126696) ((-1131 . -652) 126618) ((-1185 . -102) T) ((-1012 . -102) T) ((-1011 . -21) T) ((-128 . -1028) 126602) ((-122 . -1028) 126586) ((-1011 . -25) T) ((-917 . -120) 126570) ((-1177 . -102) T) ((-1259 . -132) T) ((-1191 . -25) T) ((-354 . -1236) T) ((-1191 . -21) T) ((-867 . -132) T) ((-1143 . -25) T) ((-1143 . -21) T) ((-866 . -25) T) ((-866 . -21) T) ((-794 . -317) 126549) ((-1178 . -319) 126344) ((-1175 . -501) 126328) ((-1168 . -152) 126278) ((-659 . -102) 126256) ((-644 . -102) T) ((-1164 . -625) 126218) ((-583 . -132) T) ((-633 . -860) 126197) ((-1164 . -626) 126158) ((-1042 . -803) T) ((-1042 . -806) T) ((-1042 . -738) T) ((-827 . -916) 126090) ((-724 . -1074) 125913) ((-496 . -319) 125851) ((-465 . -429) 125821) ((-362 . -174) T) ((-299 . -38) 125808) ((-258 . -235) 125754) ((-257 . -235) 125700) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-354 . -1056) 125677) ((-277 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-365 . -738) T) ((-724 . -111) 125486) ((-682 . -233) 125470) ((-593 . -317) T) ((-530 . -317) T) ((-304 . -526) 125419) ((-108 . -319) NIL) ((-72 . -407) T) ((-1131 . -102) 125171) ((-845 . -423) 125155) ((-1138 . -807) T) ((-1138 . -804) T) ((-713 . -1118) T) ((-590 . -625) 125137) ((-390 . -374) T) ((-171 . -505) 125115) ((-224 . -625) 125047) ((-135 . -1118) T) ((-117 . -1118) T) ((-982 . -1236) T) ((-48 . -738) T) ((-1064 . -501) 125012) ((-142 . -437) 124994) ((-142 . -379) T) ((-1045 . -102) T) ((-524 . -521) 124973) ((-724 . -628) 124729) ((-1193 . -238) 124688) ((-488 . -102) T) ((-475 . -102) T) ((-1192 . -238) 124640) ((-1186 . -238) 124527) ((-1052 . -1130) T) ((-329 . -916) 124433) ((-1243 . -625) 124415) ((-1200 . -1056) 124351) ((-1193 . -35) 124317) ((-1193 . -95) 124283) ((-1193 . -1224) 124249) ((-1193 . -1221) 124215) ((-1192 . -1221) 124181) ((-1192 . -1224) 124147) ((-1177 . -319) NIL) ((-89 . -408) T) ((-89 . -407) T) ((-1098 . -1170) 124126) ((-40 . -1236) 124055) ((-1192 . -95) 124021) ((-1052 . -23) T) ((-1192 . -35) 123987) ((-583 . -505) T) ((-1186 . -1221) 123953) ((-1186 . -1224) 123919) ((-1186 . -95) 123885) ((-1186 . -35) 123851) ((-372 . -1130) T) ((-370 . -1170) 123830) ((-364 . -1170) 123809) ((-356 . -1170) 123788) ((-1122 . -296) 123744) ((-1144 . -35) 123710) ((-1144 . -95) 123676) ((-108 . -1170) T) ((-1144 . -1224) 123642) ((-845 . -1076) 123621) ((-659 . -319) 123559) ((-644 . -319) 123410) ((-1144 . -1221) 123376) ((-724 . -1067) T) ((-1080 . -651) 123358) ((-1098 . -38) 123226) ((-968 . -651) 123174) ((-1022 . -148) T) ((-1022 . -146) NIL) ((-390 . -1130) T) ((-334 . -25) T) ((-332 . -23) T) ((-959 . -862) 123153) ((-724 . -336) 123130) ((-493 . -651) 123078) ((-40 . -1056) 122966) ((-724 . -239) T) ((-713 . -729) 122953) ((-350 . -1118) T) ((-176 . -1118) T) ((-341 . -862) T) ((-430 . -464) 122903) ((-390 . -23) T) ((-370 . -38) 122868) ((-364 . -38) 122833) ((-356 . -38) 122798) ((-80 . -453) T) ((-80 . -407) T) ((-227 . -25) T) ((-227 . -21) T) ((-848 . -1130) T) ((-108 . -38) 122748) ((-839 . -1130) T) ((-786 . -1118) T) ((-117 . -729) 122735) ((-684 . -1056) 122719) ((-624 . -102) T) ((-848 . -23) T) ((-839 . -23) T) ((-1175 . -296) 122671) ((-1131 . -319) 122609) ((-494 . -1069) 122510) ((-1120 . -241) 122494) ((-64 . -408) T) ((-64 . -407) T) ((-1169 . -102) T) ((-110 . -102) T) ((-494 . -652) 122416) ((-40 . -388) 122393) ((-96 . -102) T) ((-665 . -864) 122377) ((-1191 . -235) 122364) ((-1153 . -1101) T) ((-1080 . -21) T) ((-1080 . -25) T) ((-1072 . -1069) 122348) ((-827 . -233) 122317) ((-968 . -25) T) ((-968 . -21) T) ((-1072 . -652) 122259) ((-633 . -1076) T) ((-1138 . -379) T) ((-1045 . -319) 122197) ((-682 . -658) 122156) ((-493 . -25) T) ((-493 . -21) T) ((-396 . -1069) 122140) ((-902 . -625) 122122) ((-898 . -625) 122104) ((-535 . -526) 122037) ((-258 . -862) 121988) ((-257 . -862) 121939) ((-396 . -652) 121909) ((-883 . -651) 121886) ((-488 . -319) 121824) ((-475 . -319) 121762) ((-362 . -300) T) ((-1175 . -1274) 121746) ((-1160 . -625) 121708) ((-1160 . -626) 121669) ((-1158 . -102) T) ((-1017 . -1074) 121565) ((-40 . -914) 121517) ((-1175 . -616) 121494) ((-1315 . -660) 121481) ((-1081 . -152) 121427) ((-499 . -909) NIL) ((-878 . -502) 121404) ((-1017 . -111) 121286) ((-884 . -1240) T) ((-219 . -909) NIL) ((-350 . -729) 121270) ((-878 . -625) 121232) ((-176 . -729) 121164) ((-884 . -568) T) ((-419 . -296) 121122) ((-246 . -238) 121074) ((-108 . -412) 121056) ((-84 . -395) T) ((-84 . -407) T) ((-713 . -174) T) ((-629 . -625) 121038) ((-99 . -738) T) ((-494 . -102) 120790) ((-99 . -485) T) ((-117 . -174) T) ((-1308 . -658) 120749) ((-1306 . -658) 120708) ((-171 . -651) 120656) ((-1098 . -916) 120589) ((-1072 . -102) T) ((-1017 . -628) 120479) ((-883 . -25) T) ((-827 . -244) 120458) ((-883 . -21) T) ((-830 . -102) T) ((-44 . -658) 120401) ((-1022 . -238) T) ((-426 . -102) T) ((-396 . -102) T) ((-110 . -319) NIL) ((-229 . -102) 120379) ((-128 . -1236) T) ((-122 . -1236) T) ((-108 . -916) NIL) ((-829 . -1069) 120330) ((-829 . -652) 120272) ((-1052 . -132) T) ((-682 . -378) 120256) ((-153 . -658) 120215) ((-647 . -296) 120173) ((-619 . -296) 120131) ((-1315 . -738) T) ((-1017 . -1067) T) ((-1259 . -651) 120079) ((-1122 . -625) 120061) ((-1021 . -625) 120043) ((-576 . -1236) T) ((-507 . -1236) T) ((-527 . -23) T) ((-522 . -23) T) ((-354 . -317) T) ((-520 . -23) T) ((-332 . -132) T) ((-3 . -1118) T) ((-1021 . -626) 120027) ((-1017 . -249) 120006) ((-1017 . -239) 119985) ((-1278 . -146) 119964) ((-1278 . -148) 119943) ((-845 . -1118) T) ((-1271 . -148) 119922) ((-1271 . -146) 119901) ((-1270 . -1240) 119880) ((-1250 . -146) 119787) ((-1250 . -148) 119694) ((-1249 . -1240) 119673) ((-390 . -132) T) ((-227 . -235) 119660) ((-576 . -899) 119642) ((0 . -1118) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1118) T) ((-1272 . -660) 119547) ((-1270 . -568) 119498) ((-726 . -1130) T) ((-1249 . -568) 119449) ((-576 . -1056) 119431) ((-607 . -148) 119410) ((-607 . -146) 119389) ((-507 . -1056) 119332) ((-1153 . -1155) T) ((-87 . -395) T) ((-87 . -407) T) ((-884 . -374) T) ((-848 . -132) T) ((-839 . -132) T) ((-980 . -658) 119276) ((-726 . -23) T) ((-518 . -625) 119242) ((-514 . -625) 119224) ((-827 . -658) 119003) ((-1310 . -1076) T) ((-390 . -1078) T) ((-1044 . -1118) 118981) ((-55 . -1056) 118963) ((-917 . -34) T) ((-494 . -319) 118901) ((-604 . -102) T) ((-1175 . -626) 118862) ((-1175 . -625) 118794) ((-1197 . -1069) 118677) ((-45 . -102) T) ((-829 . -102) T) ((-1197 . -652) 118574) ((-1259 . -25) T) ((-1259 . -21) T) ((-1080 . -235) 118561) ((-867 . -25) T) ((-44 . -378) 118545) ((-867 . -21) T) ((-743 . -464) 118496) ((-1309 . -625) 118478) ((-1298 . -1069) 118448) ((-1072 . -319) 118386) ((-683 . -1101) T) ((-618 . -1101) T) ((-402 . -1118) T) ((-583 . -25) T) ((-583 . -21) T) ((-182 . -1101) T) ((-162 . -1101) T) ((-157 . -1101) T) ((-155 . -1101) T) ((-1298 . -652) 118356) ((-633 . -1118) T) ((-711 . -899) 118338) ((-1286 . -1236) T) ((-229 . -319) 118276) ((-145 . -379) T) ((-1064 . -626) 118218) ((-1064 . -625) 118161) ((-323 . -925) NIL) ((-1244 . -856) T) ((-1131 . -916) 118093) ((-711 . -1056) 118038) ((-723 . -936) T) ((-486 . -1240) 118017) ((-1192 . -464) 117996) ((-1186 . -464) 117975) ((-340 . -102) T) ((-884 . -1130) T) ((-329 . -658) 117857) ((-326 . -660) 117586) ((-323 . -660) 117515) ((-486 . -568) 117466) ((-350 . -526) 117432) ((-562 . -152) 117382) ((-40 . -317) T) ((-855 . -625) 117364) ((-713 . -300) T) ((-884 . -23) T) ((-390 . -505) T) ((-1098 . -233) 117334) ((-524 . -102) T) ((-419 . -626) 117141) ((-419 . -625) 117123) ((-270 . -625) 117105) ((-117 . -300) T) ((-1272 . -738) T) ((-635 . -1236) 117048) ((-1311 . -1118) T) ((-1270 . -374) 117027) ((-1249 . -374) 117006) ((-1299 . -34) T) ((-1244 . -1118) T) ((-118 . -1236) T) ((-108 . -233) 116988) ((-1197 . -102) T) ((-489 . -1118) T) ((-535 . -501) 116972) ((-749 . -34) T) ((-665 . -1069) 116956) ((-665 . -652) 116926) ((-883 . -235) NIL) ((-142 . -34) T) ((-118 . -897) 116903) ((-118 . -899) NIL) ((-635 . -1056) 116786) ((-1298 . -102) T) ((-1278 . -238) 116745) ((-656 . -862) 116724) ((-1271 . -238) 116676) ((-1250 . -238) 116563) ((-305 . -102) T) ((-724 . -379) 116542) ((-118 . -1056) 116519) ((-402 . -729) 116503) ((-607 . -238) 116462) ((-633 . -729) 116446) ((-1123 . -1236) T) ((-45 . -319) 116250) ((-828 . -146) 116229) ((-828 . -148) 116208) ((-299 . -658) 116180) ((-1309 . -393) 116159) ((-831 . -862) T) ((-1288 . -1118) T) ((-1178 . -231) 116106) ((-398 . -862) 116085) ((-1278 . -35) 116051) ((-1278 . -1224) 116017) ((-1278 . -1221) 115983) ((-1271 . -1221) 115949) ((-527 . -132) T) ((-1271 . -1224) 115915) ((-1250 . -1221) 115881) ((-1250 . -1224) 115847) ((-1278 . -95) 115813) ((-1271 . -95) 115779) ((-430 . -909) 115736) ((-647 . -625) 115705) ((-619 . -625) 115674) ((-227 . -862) T) ((-1271 . -35) 115640) ((-1270 . -1130) T) ((-1250 . -95) 115606) ((-1138 . -660) 115578) ((-1250 . -35) 115544) ((-1249 . -1130) T) ((-605 . -152) 115526) ((-1098 . -360) 115505) ((-176 . -300) T) ((-118 . -388) 115482) ((-118 . -349) 115459) ((-171 . -235) 115404) ((-882 . -317) T) ((-323 . -806) NIL) ((-323 . -803) NIL) ((-326 . -738) 115253) ((-323 . -738) T) ((-486 . -374) 115232) ((-370 . -360) 115211) ((-364 . -360) 115190) ((-356 . -360) 115169) ((-326 . -485) 115148) ((-1270 . -23) T) ((-1249 . -23) T) ((-730 . -1130) T) ((-726 . -132) T) ((-665 . -102) T) ((-489 . -729) 115113) ((-45 . -292) 115063) ((-105 . -1118) T) ((-68 . -625) 115045) ((-988 . -102) T) ((-876 . -102) T) ((-635 . -914) 115004) ((-1310 . -1118) T) ((-392 . -1118) T) ((-1259 . -235) 114991) ((-82 . -1236) T) ((-1235 . -1118) T) ((-1080 . -862) T) ((-118 . -914) NIL) ((-794 . -936) 114970) ((-725 . -862) T) ((-543 . -1118) T) ((-512 . -1118) T) ((-366 . -1240) T) ((-363 . -1240) T) ((-355 . -1240) T) ((-273 . -1240) 114949) ((-253 . -1240) 114928) ((-545 . -872) T) ((-1131 . -233) 114897) ((-1177 . -840) T) ((-1160 . -1074) 114881) ((-402 . -773) T) ((-706 . -1236) T) ((-703 . -1056) 114865) ((-366 . -568) T) ((-363 . -568) T) ((-355 . -568) T) ((-273 . -568) 114796) ((-253 . -568) 114727) ((-537 . -1101) T) ((-1160 . -111) 114706) ((-465 . -756) 114676) ((-878 . -1074) 114646) ((-829 . -38) 114588) ((-706 . -897) 114570) ((-706 . -899) 114552) ((-305 . -319) 114356) ((-1175 . -298) 114333) ((-926 . -1240) T) ((-1098 . -658) 114228) ((-1022 . -464) T) ((-682 . -423) 114212) ((-878 . -111) 114177) ((-930 . -464) T) ((-706 . -1056) 114122) ((-926 . -568) T) ((-545 . -625) 114104) ((-593 . -936) T) ((-499 . -1069) 114054) ((-486 . -1130) T) ((-530 . -936) T) ((-494 . -916) 113986) ((-65 . -625) 113968) ((-219 . -1069) 113918) ((-499 . -652) 113868) ((-370 . -658) 113805) ((-364 . -658) 113742) ((-356 . -658) 113679) ((-644 . -231) 113625) ((-219 . -652) 113575) ((-108 . -658) 113525) ((-486 . -23) T) ((-1138 . -806) T) ((-884 . -132) T) ((-1138 . -803) T) ((-1301 . -1303) 113504) ((-1138 . -738) T) ((-666 . -660) 113478) ((-304 . -625) 113219) ((-1160 . -628) 113137) ((-1053 . -34) T) ((-828 . -238) 113116) ((-592 . -317) T) ((-576 . -317) T) ((-507 . -317) T) ((-1310 . -729) 113086) ((-706 . -388) 113068) ((-706 . -349) 113050) ((-489 . -174) T) ((-392 . -729) 113020) ((-878 . -628) 112955) ((-883 . -862) NIL) ((-576 . -1040) T) ((-507 . -1040) T) ((-1151 . -625) 112937) ((-1131 . -244) 112916) ((-216 . -102) T) ((-1168 . -102) T) ((-71 . -625) 112898) ((-1160 . -1067) T) ((-1197 . -38) 112795) ((-870 . -625) 112777) ((-576 . -557) T) ((-682 . -1076) T) ((-743 . -965) 112730) ((-365 . -1236) T) ((-1160 . -239) 112709) ((-1100 . -1118) T) ((-1052 . -25) T) ((-1052 . -21) T) ((-1021 . -1074) 112654) ((-921 . -102) T) ((-878 . -1067) T) ((-706 . -914) NIL) ((-366 . -339) 112638) ((-366 . -374) T) ((-363 . -339) 112622) ((-363 . -374) T) ((-355 . -339) 112606) ((-355 . -374) T) ((-499 . -102) T) ((-1298 . -38) 112576) ((-558 . -862) T) ((-535 . -699) 112526) ((-219 . -102) T) ((-1042 . -1056) 112406) ((-1021 . -111) 112335) ((-1193 . -991) 112304) ((-1192 . -991) 112266) ((-532 . -152) 112250) ((-1098 . -381) 112229) ((-362 . -625) 112211) ((-332 . -21) T) ((-365 . -1056) 112188) ((-332 . -25) T) ((-1186 . -991) 112157) ((-48 . -1236) T) ((-76 . -625) 112139) ((-1144 . -991) 112106) ((-711 . -317) T) ((-130 . -856) T) ((-926 . -374) T) ((-390 . -25) T) ((-390 . -21) T) ((-926 . -339) 112093) ((-86 . -625) 112075) ((-711 . -1040) T) ((-689 . -862) T) ((-1270 . -132) T) ((-1249 . -132) T) ((-917 . -1028) 112059) ((-848 . -21) T) ((-48 . -1056) 112002) ((-848 . -25) T) ((-839 . -25) T) ((-839 . -21) T) ((-1131 . -658) 111781) ((-1308 . -1076) T) ((-561 . -102) T) ((-1306 . -1076) T) ((-666 . -738) T) ((-1122 . -630) 111684) ((-1021 . -628) 111614) ((-1309 . -1074) 111598) ((-827 . -423) 111567) ((-103 . -120) 111551) ((-130 . -1118) T) ((-52 . -1118) T) ((-942 . -625) 111533) ((-883 . -1010) 111510) ((-835 . -102) T) ((-1309 . -111) 111489) ((-743 . -909) 111464) ((-665 . -38) 111434) ((-583 . -862) T) ((-366 . -1130) T) ((-363 . -1130) T) ((-355 . -1130) T) ((-273 . -1130) T) ((-253 . -1130) T) ((-1168 . -319) 111238) ((-635 . -317) 111217) ((-1106 . -235) 111204) ((-676 . -23) T) ((-536 . -1101) T) ((-321 . -1118) T) ((-494 . -233) 111173) ((-153 . -1076) T) ((-366 . -23) T) ((-363 . -23) T) ((-355 . -23) T) ((-118 . -317) T) ((-273 . -23) T) ((-253 . -23) T) ((-1021 . -1067) T) ((-724 . -925) 111152) ((-1193 . -909) 111063) ((-1192 . -909) 110967) ((-1186 . -909) 110798) ((-1175 . -628) 110775) ((-1021 . -239) 110747) ((-1021 . -249) T) ((-1144 . -909) 110729) ((-118 . -1040) NIL) ((-926 . -1130) T) ((-1271 . -464) 110708) ((-1250 . -464) 110687) ((-535 . -625) 110619) ((-724 . -660) 110508) ((-419 . -1074) 110460) ((-516 . -625) 110442) ((-926 . -23) T) ((-499 . -319) NIL) ((-1309 . -628) 110398) ((-486 . -132) T) ((-219 . -319) NIL) ((-419 . -111) 110336) ((-827 . -1076) 110314) ((-749 . -1116) 110298) ((-1270 . -505) 110264) ((-1249 . -505) 110230) ((-560 . -856) T) ((-142 . -1116) 110212) ((-489 . -300) T) ((-1309 . -1067) T) ((-258 . -238) 110164) ((-257 . -238) 110116) ((-1241 . -102) T) ((-1081 . -102) T) ((-855 . -628) 109984) ((-512 . -526) NIL) ((-494 . -244) 109963) ((-419 . -628) 109861) ((-979 . -1069) 109744) ((-747 . -1069) 109714) ((-979 . -652) 109611) ((-1191 . -146) 109590) ((-747 . -652) 109560) ((-465 . -1069) 109530) ((-1191 . -148) 109509) ((-1143 . -148) 109488) ((-1143 . -146) 109467) ((-647 . -1074) 109451) ((-619 . -1074) 109435) ((-465 . -652) 109405) ((-1193 . -1277) 109389) ((-1193 . -1264) 109366) ((-1192 . -1269) 109327) ((-682 . -1118) T) ((-682 . -1071) 109267) ((-1192 . -1264) 109237) ((-560 . -1118) T) ((-499 . -1170) T) ((-1192 . -1267) 109221) ((-1186 . -1248) 109182) ((-830 . -275) 109166) ((-219 . -1170) T) ((-354 . -936) T) ((-99 . -1236) T) ((-647 . -111) 109145) ((-619 . -111) 109124) ((-1186 . -1264) 109101) ((-855 . -1067) 109080) ((-1186 . -1246) 109064) ((-527 . -25) T) ((-507 . -312) T) ((-523 . -23) T) ((-522 . -25) T) ((-520 . -25) T) ((-519 . -23) T) ((-430 . -1069) 109038) ((-419 . -1067) T) ((-329 . -1076) T) ((-706 . -317) T) ((-430 . -652) 109012) ((-108 . -860) T) ((-724 . -738) T) ((-419 . -249) T) ((-419 . -239) 108991) ((-390 . -235) 108978) ((-499 . -38) 108928) ((-219 . -38) 108878) ((-486 . -505) 108844) ((-1243 . -379) T) ((-1177 . -1162) T) ((-1119 . -102) T) ((-839 . -235) 108817) ((-713 . -625) 108799) ((-713 . -626) 108714) ((-726 . -21) T) ((-726 . -25) T) ((-1153 . -102) T) ((-494 . -658) 108493) ((-246 . -909) 108423) ((-135 . -625) 108405) ((-117 . -625) 108387) ((-158 . -25) T) ((-1308 . -1118) T) ((-884 . -651) 108335) ((-1306 . -1118) T) ((-979 . -102) T) ((-747 . -102) T) ((-727 . -102) T) ((-465 . -102) T) ((-828 . -464) 108286) ((-44 . -1118) T) ((-1106 . -862) T) ((-1081 . -319) 108137) ((-676 . -132) T) ((-1072 . -658) 108106) ((-682 . -729) 108090) ((-299 . -1076) T) ((-366 . -132) T) ((-363 . -132) T) ((-355 . -132) T) ((-273 . -132) T) ((-253 . -132) T) ((-396 . -658) 108059) ((-430 . -102) T) ((-153 . -1118) T) ((-45 . -231) 108009) ((-1022 . -909) NIL) ((-811 . -1069) 107993) ((-974 . -862) 107972) ((-1017 . -660) 107874) ((-811 . -652) 107858) ((-246 . -1293) 107828) ((-1042 . -317) T) ((-304 . -1074) 107749) ((-926 . -132) T) ((-40 . -936) T) ((-499 . -412) 107731) ((-365 . -317) T) ((-219 . -412) 107713) ((-1098 . -423) 107697) ((-304 . -111) 107613) ((-1202 . -862) T) ((-1201 . -862) T) ((-884 . -25) T) ((-884 . -21) T) ((-1272 . -47) 107557) ((-350 . -625) 107539) ((-1191 . -238) T) ((-227 . -148) T) ((-176 . -625) 107521) ((-786 . -625) 107503) ((-129 . -862) T) ((-620 . -241) 107450) ((-487 . -241) 107400) ((-1308 . -729) 107370) ((-48 . -317) T) ((-1306 . -729) 107340) ((-65 . -628) 107269) ((-980 . -1118) T) ((-827 . -1118) 107021) ((-322 . -102) T) ((-917 . -1236) T) ((-48 . -1040) T) ((-1249 . -651) 106929) ((-701 . -102) 106907) ((-44 . -729) 106891) ((-562 . -102) T) ((-304 . -628) 106822) ((-67 . -394) T) ((-499 . -916) NIL) ((-67 . -407) T) ((-219 . -916) NIL) ((-674 . -23) T) ((-829 . -658) 106758) ((-682 . -773) T) ((-1233 . -1118) 106736) ((-362 . -1074) 106681) ((-687 . -1118) 106659) ((-1080 . -148) T) ((-968 . -148) 106638) ((-968 . -146) 106617) ((-811 . -102) T) ((-153 . -729) 106601) ((-493 . -148) 106580) ((-493 . -146) 106559) ((-362 . -111) 106488) ((-1098 . -1076) T) ((-332 . -862) 106467) ((-1278 . -991) 106436) ((-639 . -1118) T) ((-1271 . -991) 106398) ((-523 . -132) T) ((-519 . -132) T) ((-305 . -231) 106348) ((-370 . -1076) T) ((-364 . -1076) T) ((-356 . -1076) T) ((-304 . -1067) 106290) ((-1250 . -991) 106259) ((-390 . -862) T) ((-108 . -1076) T) ((-1017 . -738) T) ((-882 . -936) T) ((-855 . -807) 106238) ((-855 . -804) 106217) ((-430 . -319) 106156) ((-480 . -102) T) ((-607 . -991) 106125) ((-329 . -1118) T) ((-419 . -807) 106104) ((-419 . -804) 106083) ((-512 . -501) 106065) ((-1272 . -1056) 106031) ((-1270 . -21) T) ((-1270 . -25) T) ((-1249 . -21) T) ((-1249 . -25) T) ((-827 . -729) 105973) ((-362 . -628) 105903) ((-711 . -416) T) ((-1299 . -1236) T) ((-1131 . -423) 105872) ((-618 . -102) T) ((-1095 . -1236) T) ((-1021 . -379) NIL) ((-683 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1197 . -658) 105782) ((-749 . -1236) T) ((-743 . -1069) 105625) ((-44 . -773) T) ((-743 . -652) 105474) ((-605 . -102) T) ((-665 . -668) 105458) ((-77 . -408) T) ((-77 . -407) T) ((-142 . -1236) T) ((-883 . -148) T) ((-883 . -146) NIL) ((-1298 . -658) 105403) ((-1278 . -909) 105314) ((-1235 . -93) T) ((-362 . -1067) T) ((-227 . -238) T) ((-70 . -394) T) ((-70 . -407) T) ((-1184 . -102) T) ((-682 . -526) 105247) ((-1271 . -909) 105151) ((-1250 . -909) 104982) ((-701 . -319) 104920) ((-979 . -38) 104817) ((-1199 . -625) 104799) ((-747 . -38) 104769) ((-562 . -319) 104573) ((-1193 . -1069) 104456) ((-326 . -1236) T) ((-362 . -239) T) ((-362 . -249) T) ((-323 . -1236) T) ((-299 . -1118) T) ((-1192 . -1069) 104291) ((-1186 . -1069) 104081) ((-1144 . -1069) 103964) ((-1193 . -652) 103861) ((-1192 . -652) 103702) ((-723 . -1240) T) ((-1186 . -652) 103498) ((-1175 . -663) 103482) ((-1144 . -652) 103379) ((-1230 . -568) 103358) ((-831 . -397) 103342) ((-723 . -568) T) ((-607 . -909) 103253) ((-326 . -897) 103237) ((-326 . -899) 103162) ((-137 . -1236) T) ((-323 . -897) 103123) ((-323 . -899) NIL) ((-811 . -319) 103088) ((-329 . -729) 102929) ((-398 . -397) 102913) ((-334 . -333) 102890) ((-497 . -102) T) ((-486 . -25) T) ((-486 . -21) T) ((-430 . -38) 102864) ((-326 . -1056) 102527) ((-227 . -1221) T) ((-227 . -1224) T) ((-3 . -625) 102509) ((-323 . -1056) 102439) ((-884 . -235) 102412) ((-2 . -1118) T) ((-2 . |RecordCategory|) T) ((-1131 . -1076) 102390) ((-845 . -625) 102372) ((-1080 . -238) T) ((-592 . -936) T) ((-576 . -832) T) ((-576 . -936) T) ((-507 . -936) T) ((-137 . -1056) 102356) ((-227 . -95) T) ((-171 . -148) 102335) ((-75 . -453) T) ((0 . -625) 102317) ((-75 . -407) T) ((-171 . -146) 102268) ((-227 . -35) T) ((-49 . -625) 102250) ((-489 . -1076) T) ((-499 . -233) 102232) ((-496 . -986) 102216) ((-219 . -233) 102198) ((-81 . -453) T) ((-81 . -407) T) ((-1164 . -34) T) ((-743 . -102) T) ((-665 . -658) 102157) ((-1044 . -625) 102124) ((-512 . -296) 102074) ((-326 . -388) 102043) ((-323 . -388) 102004) ((-323 . -349) 101965) ((-1103 . -625) 101947) ((-828 . -965) 101894) ((-674 . -132) T) ((-1259 . -146) 101873) ((-1259 . -148) 101852) ((-1193 . -102) T) ((-1192 . -102) T) ((-1186 . -102) T) ((-1178 . -1118) T) ((-1144 . -102) T) ((-224 . -34) T) ((-299 . -729) 101839) ((-1178 . -622) 101815) ((-605 . -319) NIL) ((-1278 . -1277) 101799) ((-496 . -1118) 101777) ((-1168 . -231) 101727) ((-402 . -625) 101709) ((-522 . -862) T) ((-1138 . -1236) T) ((-1278 . -1264) 101686) ((-1271 . -1269) 101647) ((-1271 . -1264) 101617) ((-1271 . -1267) 101601) ((-1250 . -1248) 101562) ((-1250 . -1264) 101539) ((-1250 . -1246) 101523) ((-633 . -625) 101505) ((-1193 . -294) 101471) ((-711 . -936) T) ((-1192 . -294) 101437) ((-1186 . -294) 101403) ((-1144 . -294) 101369) ((-1098 . -1118) T) ((-1079 . -1118) T) ((-48 . -312) T) ((-326 . -914) 101335) ((-323 . -914) NIL) ((-1079 . -1086) 101314) ((-1138 . -899) 101296) ((-811 . -38) 101280) ((-273 . -651) 101228) ((-253 . -651) 101176) ((-713 . -1074) 101163) ((-607 . -1264) 101140) ((-1138 . -1056) 101122) ((-329 . -174) 101053) ((-370 . -1118) T) ((-364 . -1118) T) ((-356 . -1118) T) ((-512 . -19) 101035) ((-1120 . -152) 101019) ((-883 . -238) NIL) ((-108 . -1118) T) ((-117 . -1074) 101006) ((-723 . -374) T) ((-512 . -616) 100981) ((-713 . -111) 100966) ((-1311 . -625) 100933) ((-1311 . -502) 100915) ((-1270 . -235) 100861) ((-1249 . -235) 100760) ((-448 . -102) T) ((-888 . -1281) T) ((-256 . -102) T) ((-45 . -1167) 100710) ((-117 . -111) 100695) ((-1288 . -625) 100677) ((-1259 . -238) T) ((-1244 . -625) 100659) ((-1242 . -862) T) ((-647 . -732) T) ((-619 . -732) T) ((-1230 . -1130) T) ((-1230 . -23) T) ((-1191 . -464) 100590) ((-1186 . -319) 100475) ((-1185 . -1118) T) ((-827 . -526) 100408) ((-1053 . -1236) T) ((-246 . -1069) 100309) ((-1177 . -1118) T) ((-1160 . -660) 100247) ((-959 . -152) 100231) ((-1144 . -319) 100218) ((-1143 . -464) 100169) ((-246 . -652) 100091) ((-1105 . -568) 100022) ((-1105 . -1240) 100001) ((-1098 . -729) 99869) ((-537 . -102) T) ((-532 . -102) 99819) ((-1022 . -1069) 99769) ((-1012 . -1118) T) ((-828 . -909) 99701) ((-794 . -1240) 99680) ((-792 . -1240) 99659) ((-62 . -1236) T) ((-489 . -625) 99611) ((-489 . -626) 99533) ((-794 . -568) 99444) ((-792 . -568) 99375) ((-743 . -319) 99362) ((-713 . -628) 99334) ((-494 . -423) 99303) ((-635 . -936) 99282) ((-466 . -1240) 99261) ((-687 . -526) 99194) ((-676 . -25) T) ((-410 . -625) 99176) ((-676 . -21) T) ((-466 . -568) 99107) ((-430 . -916) 99066) ((-366 . -25) T) ((-366 . -21) T) ((-363 . -25) T) ((-118 . -936) T) ((-118 . -832) NIL) ((-363 . -21) T) ((-355 . -25) T) ((-355 . -21) T) ((-273 . -25) T) ((-273 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -238) 99017) ((-83 . -395) T) ((-83 . -407) T) ((-135 . -628) 98999) ((-117 . -628) 98971) ((-1022 . -652) 98921) ((-959 . -998) 98905) ((-930 . -652) 98857) ((-930 . -1069) 98809) ((-926 . -21) T) ((-926 . -25) T) ((-884 . -862) 98760) ((-878 . -660) 98720) ((-723 . -1130) T) ((-723 . -23) T) ((-713 . -1067) T) ((-713 . -239) T) ((-299 . -174) T) ((-666 . -1236) T) ((-321 . -93) T) ((-659 . -1118) 98698) ((-644 . -622) 98673) ((-644 . -1118) T) ((-593 . -1240) T) ((-593 . -568) T) ((-530 . -1240) T) ((-530 . -568) T) ((-499 . -658) 98623) ((-486 . -235) 98569) ((-439 . -1069) 98553) ((-439 . -652) 98537) ((-370 . -729) 98489) ((-364 . -729) 98441) ((-350 . -1074) 98425) ((-356 . -729) 98377) ((-350 . -111) 98356) ((-176 . -1074) 98288) ((-219 . -658) 98238) ((-176 . -111) 98149) ((-108 . -729) 98099) ((-283 . -1118) T) ((-282 . -1118) T) ((-281 . -1118) T) ((-280 . -1118) T) ((-279 . -1118) T) ((-278 . -1118) T) ((-277 . -1118) T) ((-214 . -1118) T) ((-213 . -1118) T) ((-171 . -1224) 98077) ((-171 . -1221) 98055) ((-211 . -1118) T) ((-210 . -1118) T) ((-117 . -1067) T) ((-209 . -1118) T) ((-208 . -1118) T) ((-205 . -1118) T) ((-204 . -1118) T) ((-203 . -1118) T) ((-202 . -1118) T) ((-201 . -1118) T) ((-200 . -1118) T) ((-199 . -1118) T) ((-198 . -1118) T) ((-197 . -1118) T) ((-196 . -1118) T) ((-195 . -1118) T) ((-246 . -102) 97807) ((-171 . -35) 97785) ((-171 . -95) 97763) ((-666 . -1056) 97659) ((-494 . -1076) 97637) ((-1131 . -1118) 97389) ((-1160 . -34) T) ((-682 . -501) 97373) ((-73 . -1236) T) ((-105 . -625) 97355) ((-1310 . -625) 97337) ((-392 . -625) 97319) ((-350 . -628) 97271) ((-176 . -628) 97188) ((-1235 . -502) 97169) ((-743 . -38) 97018) ((-583 . -1224) T) ((-583 . -1221) T) ((-543 . -625) 97000) ((-532 . -319) 96938) ((-512 . -625) 96920) ((-512 . -626) 96902) ((-1235 . -625) 96868) ((-1186 . -1170) NIL) ((-1045 . -1089) 96837) ((-1045 . -1118) T) ((-1022 . -102) T) ((-989 . -102) T) ((-930 . -102) T) ((-906 . -1056) 96814) ((-1160 . -738) T) ((-1021 . -660) 96721) ((-488 . -1118) T) ((-475 . -1118) T) ((-598 . -23) T) ((-583 . -35) T) ((-583 . -95) T) ((-439 . -102) T) ((-1081 . -231) 96667) ((-1193 . -38) 96564) ((-878 . -738) T) ((-706 . -936) T) ((-523 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-1192 . -38) 96405) ((-350 . -1067) T) ((-1186 . -38) 96201) ((-1098 . -174) T) ((-176 . -1067) T) ((-1144 . -38) 96098) ((-724 . -47) 96075) ((-370 . -174) T) ((-364 . -174) T) ((-531 . -57) 96049) ((-509 . -57) 95999) ((-362 . -1305) 95976) ((-227 . -464) T) ((-329 . -300) 95927) ((-356 . -174) T) ((-176 . -249) T) ((-1249 . -862) 95826) ((-108 . -174) T) ((-884 . -1010) 95810) ((-670 . -1130) T) ((-593 . -374) T) ((-593 . -339) 95797) ((-530 . -339) 95774) ((-530 . -374) T) ((-326 . -317) 95753) ((-323 . -317) T) ((-614 . -862) 95732) ((-1131 . -729) 95674) ((-532 . -292) 95658) ((-670 . -23) T) ((-430 . -233) 95642) ((-323 . -1040) NIL) ((-347 . -23) T) ((-103 . -1028) 95626) ((-45 . -36) 95605) ((-624 . -1118) T) ((-362 . -379) T) ((-536 . -102) T) ((-507 . -27) T) ((-246 . -319) 95543) ((-1105 . -1130) T) ((-1309 . -660) 95517) ((-794 . -1130) T) ((-792 . -1130) T) ((-1197 . -423) 95501) ((-466 . -1130) T) ((-1080 . -464) T) ((-1169 . -1118) T) ((-968 . -464) 95452) ((-1133 . -1101) T) ((-110 . -1118) T) ((-1105 . -23) T) ((-1178 . -526) 95235) ((-829 . -1076) T) ((-794 . -23) T) ((-792 . -23) T) ((-493 . -464) 95186) ((-473 . -23) T) ((-392 . -393) 95165) ((-366 . -235) 95138) ((-363 . -235) 95111) ((-355 . -235) 95084) ((-466 . -23) T) ((-273 . -235) 95057) ((-258 . -909) 94987) ((-257 . -909) 94917) ((-96 . -1118) T) ((-724 . -1236) T) ((-682 . -296) 94894) ((-496 . -526) 94827) ((-1278 . -1069) 94710) ((-1278 . -652) 94607) ((-1271 . -652) 94448) ((-1271 . -1069) 94283) ((-1250 . -652) 94079) ((-299 . -300) T) ((-1250 . -1069) 93869) ((-1100 . -625) 93851) ((-1100 . -626) 93832) ((-419 . -925) 93811) ((-1230 . -132) T) ((-50 . -1130) T) ((-1186 . -412) 93763) ((-1042 . -936) T) ((-1021 . -738) T) ((-855 . -660) 93736) ((-724 . -899) NIL) ((-608 . -1069) 93696) ((-593 . -1130) T) ((-530 . -1130) T) ((-607 . -1069) 93579) ((-1175 . -34) T) ((-1022 . -319) NIL) ((-827 . -501) 93563) ((-608 . -652) 93536) ((-365 . -936) T) ((-607 . -652) 93433) ((-926 . -235) 93420) ((-419 . -660) 93336) ((-50 . -23) T) ((-723 . -132) T) ((-724 . -1056) 93216) ((-593 . -23) T) ((-108 . -526) NIL) ((-530 . -23) T) ((-171 . -421) 93187) ((-1158 . -1118) T) ((-1301 . -1300) 93171) ((-743 . -916) 93148) ((-713 . -807) T) ((-713 . -804) T) ((-1138 . -317) T) ((-390 . -148) T) ((-290 . -625) 93130) ((-289 . -625) 93112) ((-1249 . -1010) 93082) ((-48 . -936) T) ((-687 . -501) 93066) ((-258 . -1293) 93036) ((-257 . -1293) 93006) ((-1106 . -238) T) ((-1195 . -862) T) ((-1138 . -1040) T) ((-1064 . -34) T) ((-848 . -148) 92985) ((-848 . -146) 92964) ((-749 . -107) 92948) ((-624 . -133) T) ((-1197 . -1076) T) ((-494 . -1118) 92700) ((-1193 . -916) 92613) ((-1192 . -916) 92519) ((-1186 . -916) 92352) ((-883 . -464) T) ((-85 . -1236) T) ((-142 . -107) 92334) ((-1144 . -916) 92318) ((-724 . -388) 92302) ((-845 . -628) 92170) ((-1309 . -738) T) ((-1298 . -1076) T) ((-1278 . -102) T) ((-1138 . -557) T) ((-591 . -102) T) ((-130 . -502) 92152) ((-1271 . -102) T) ((-402 . -1074) 92136) ((-1191 . -965) 92105) ((-44 . -296) 92082) ((-130 . -625) 92049) ((-52 . -625) 92031) ((-1143 . -965) 91998) ((-665 . -423) 91982) ((-1250 . -102) T) ((-1177 . -526) NIL) ((-674 . -25) T) ((-633 . -1074) 91966) ((-674 . -21) T) ((-979 . -658) 91876) ((-747 . -658) 91821) ((-727 . -658) 91793) ((-402 . -111) 91772) ((-224 . -261) 91756) ((-1072 . -1071) 91696) ((-1072 . -1118) T) ((-1022 . -1170) T) ((-830 . -1118) T) ((-465 . -658) 91611) ((-647 . -660) 91595) ((-354 . -1240) T) ((-633 . -111) 91574) ((-619 . -660) 91558) ((-608 . -102) T) ((-321 . -502) 91539) ((-598 . -132) T) ((-607 . -102) T) ((-426 . -1118) T) ((-396 . -1118) T) ((-321 . -625) 91505) ((-229 . -1118) 91483) ((-659 . -526) 91416) ((-644 . -526) 91260) ((-845 . -1067) 91239) ((-656 . -152) 91223) ((-354 . -568) T) ((-724 . -914) 91166) ((-562 . -231) 91116) ((-1278 . -294) 91082) ((-1271 . -294) 91048) ((-1098 . -300) 90999) ((-499 . -860) T) ((-225 . -1130) T) ((-1250 . -294) 90965) ((-1230 . -505) 90931) ((-1022 . -38) 90881) ((-219 . -860) T) ((-430 . -658) 90840) ((-930 . -38) 90792) ((-855 . -806) 90771) ((-855 . -803) 90750) ((-855 . -738) 90729) ((-370 . -300) T) ((-364 . -300) T) ((-356 . -300) T) ((-171 . -464) 90660) ((-439 . -38) 90644) ((-225 . -23) T) ((-108 . -300) T) ((-419 . -806) 90623) ((-419 . -803) 90602) ((-419 . -738) T) ((-512 . -298) 90577) ((-489 . -1074) 90542) ((-670 . -132) T) ((-633 . -628) 90511) ((-1131 . -526) 90444) ((-347 . -132) T) ((-171 . -414) 90423) ((-494 . -729) 90365) ((-827 . -296) 90342) ((-489 . -111) 90298) ((-665 . -1076) T) ((-1191 . -909) 90237) ((-1143 . -909) 90219) ((-828 . -1069) 90062) ((-1297 . -1101) T) ((-1259 . -464) 89993) ((-828 . -652) 89842) ((-1296 . -1101) T) ((-1105 . -132) T) ((-1072 . -729) 89784) ((-1045 . -526) 89717) ((-794 . -132) T) ((-792 . -132) T) ((-583 . -464) T) ((-633 . -1067) T) ((-604 . -1118) T) ((-545 . -175) T) ((-473 . -132) T) ((-466 . -132) T) ((-390 . -238) T) ((-1017 . -1236) 89630) ((-45 . -1118) T) ((-396 . -729) 89600) ((-829 . -1118) T) ((-488 . -526) 89533) ((-475 . -526) 89466) ((-1311 . -628) 89448) ((-465 . -378) 89418) ((-45 . -622) 89397) ((-326 . -312) T) ((-839 . -238) 89376) ((-489 . -628) 89326) ((-1250 . -319) 89211) ((-682 . -625) 89173) ((-59 . -862) 89152) ((-1022 . -412) 89134) ((-560 . -625) 89116) ((-811 . -658) 89075) ((-827 . -616) 89052) ((-528 . -862) 89031) ((-508 . -862) 89010) ((-1017 . -1056) 88906) ((-40 . -1240) T) ((-246 . -916) 88838) ((-50 . -132) T) ((-593 . -132) T) ((-530 . -132) T) ((-304 . -660) 88698) ((-354 . -339) 88675) ((-354 . -374) T) ((-332 . -333) 88652) ((-329 . -296) 88610) ((-40 . -568) T) ((-390 . -1221) T) ((-390 . -1224) T) ((-1053 . -1212) 88585) ((-1208 . -241) 88535) ((-1186 . -233) 88487) ((-340 . -1118) T) ((-390 . -95) T) ((-390 . -35) T) ((-1053 . -107) 88433) ((-489 . -1067) T) ((-1310 . -1074) 88417) ((-491 . -241) 88367) ((-1178 . -501) 88301) ((-1301 . -1069) 88285) ((-392 . -1074) 88269) ((-1301 . -652) 88239) ((-489 . -249) T) ((-828 . -102) T) ((-726 . -148) 88218) ((-726 . -146) 88197) ((-496 . -501) 88181) ((-497 . -346) 88150) ((-524 . -1118) T) ((-1310 . -111) 88129) ((-1017 . -388) 88113) ((-425 . -102) T) ((-392 . -111) 88092) ((-1017 . -349) 88076) ((-288 . -1001) 88060) ((-287 . -1001) 88044) ((-1022 . -916) NIL) ((-1308 . -625) 88026) ((-1306 . -625) 88008) ((-110 . -526) NIL) ((-1191 . -1262) 87992) ((-866 . -864) 87976) ((-1197 . -1118) T) ((-103 . -1236) T) ((-968 . -965) 87937) ((-829 . -729) 87879) ((-1250 . -1170) NIL) ((-493 . -965) 87824) ((-1080 . -144) T) ((-60 . -102) 87802) ((-44 . -625) 87784) ((-78 . -625) 87766) ((-362 . -660) 87711) ((-1298 . -1118) T) ((-523 . -862) T) ((-299 . -296) 87690) ((-354 . -1130) T) ((-305 . -1118) T) ((-1017 . -914) 87649) ((-305 . -622) 87628) ((-1310 . -628) 87577) ((-1278 . -38) 87474) ((-1271 . -38) 87315) ((-1250 . -38) 87111) ((-499 . -1076) T) ((-392 . -628) 87095) ((-219 . -1076) T) ((-354 . -23) T) ((-153 . -625) 87077) ((-845 . -807) 87056) ((-845 . -804) 87035) ((-1235 . -628) 87016) ((-608 . -38) 86989) ((-607 . -38) 86886) ((-882 . -568) T) ((-225 . -132) T) ((-329 . -1020) 86852) ((-79 . -625) 86834) ((-724 . -317) 86813) ((-304 . -738) 86715) ((-836 . -102) T) ((-876 . -856) T) ((-304 . -485) 86694) ((-1301 . -102) T) ((-40 . -374) T) ((-884 . -148) 86673) ((-497 . -658) 86655) ((-884 . -146) 86634) ((-1177 . -501) 86616) ((-1310 . -1067) T) ((-494 . -526) 86549) ((-1164 . -1236) T) ((-980 . -625) 86531) ((-659 . -501) 86515) ((-644 . -501) 86446) ((-827 . -625) 86139) ((-48 . -27) T) ((-1197 . -729) 86036) ((-968 . -909) 86015) ((-665 . -1118) T) ((-873 . -872) T) ((-448 . -375) 85989) ((-743 . -658) 85899) ((-493 . -909) 85874) ((-1120 . -102) T) ((-988 . -1118) T) ((-876 . -1118) T) ((-828 . -319) 85861) ((-545 . -539) T) ((-545 . -588) T) ((-1306 . -393) 85833) ((-1072 . -526) 85766) ((-1178 . -296) 85742) ((-246 . -233) 85711) ((-258 . -1069) 85612) ((-257 . -1069) 85513) ((-1298 . -729) 85483) ((-1185 . -93) T) ((-1012 . -93) T) ((-829 . -174) 85462) ((-258 . -652) 85384) ((-257 . -652) 85306) ((-1233 . -502) 85283) ((-229 . -526) 85216) ((-633 . -807) 85195) ((-633 . -804) 85174) ((-1233 . -625) 85086) ((-224 . -1236) T) ((-687 . -625) 85018) ((-1193 . -658) 84928) ((-1175 . -1028) 84912) ((-959 . -102) 84862) ((-362 . -738) T) ((-873 . -625) 84844) ((-1192 . -658) 84726) ((-1186 . -658) 84563) ((-1144 . -658) 84473) ((-1250 . -412) 84425) ((-1131 . -501) 84409) ((-60 . -319) 84347) ((-341 . -102) T) ((-1230 . -21) T) ((-1230 . -25) T) ((-40 . -1130) T) ((-723 . -21) T) ((-639 . -625) 84329) ((-527 . -333) 84308) ((-723 . -25) T) ((-451 . -102) T) ((-108 . -296) NIL) ((-937 . -1130) T) ((-40 . -23) T) ((-783 . -1130) T) ((-576 . -1240) T) ((-507 . -1240) T) ((-329 . -625) 84290) ((-1022 . -233) 84272) ((-171 . -167) 84256) ((-592 . -568) T) ((-576 . -568) T) ((-507 . -568) T) ((-783 . -23) T) ((-1270 . -148) 84235) ((-1178 . -616) 84211) ((-1270 . -146) 84190) ((-1045 . -501) 84174) ((-1249 . -146) 84099) ((-1249 . -148) 84024) ((-1301 . -1307) 84003) ((-883 . -909) NIL) ((-488 . -501) 83987) ((-475 . -501) 83971) ((-535 . -34) T) ((-665 . -729) 83941) ((-1278 . -916) 83854) ((-1271 . -916) 83760) ((-1250 . -916) 83593) ((-112 . -985) T) ((-1197 . -174) 83544) ((-674 . -862) 83523) ((-376 . -102) T) ((-607 . -916) 83436) ((-246 . -244) 83415) ((-258 . -102) T) ((-257 . -102) T) ((-1259 . -965) 83384) ((-251 . -862) 83363) ((-828 . -38) 83212) ((-45 . -526) 83004) ((-1177 . -296) 82954) ((-216 . -1118) T) ((-1168 . -1118) T) ((-884 . -238) 82933) ((-1168 . -622) 82912) ((-598 . -25) T) ((-598 . -21) T) ((-1120 . -319) 82850) ((-979 . -423) 82834) ((-711 . -1240) T) ((-644 . -296) 82787) ((-1105 . -651) 82735) ((-921 . -1118) T) ((-794 . -651) 82683) ((-792 . -651) 82631) ((-354 . -132) T) ((-299 . -625) 82613) ((-882 . -1130) T) ((-711 . -568) T) ((-130 . -628) 82595) ((-466 . -651) 82543) ((-171 . -909) 82500) ((-921 . -919) 82484) ((-390 . -464) T) ((-499 . -1118) T) ((-959 . -319) 82422) ((-713 . -660) 82394) ((-561 . -856) T) ((-219 . -1118) T) ((-326 . -936) 82373) ((-323 . -936) T) ((-323 . -832) NIL) ((-402 . -732) T) ((-882 . -23) T) ((-117 . -660) 82360) ((-486 . -146) 82339) ((-430 . -423) 82323) ((-486 . -148) 82302) ((-110 . -501) 82284) ((-321 . -628) 82265) ((-2 . -625) 82247) ((-188 . -102) T) ((-1177 . -19) 82229) ((-1177 . -616) 82204) ((-670 . -21) T) ((-670 . -25) T) ((-605 . -1162) T) ((-1131 . -296) 82181) ((-347 . -25) T) ((-347 . -21) T) ((-246 . -658) 81960) ((-507 . -374) T) ((-1308 . -1074) 81944) ((-1306 . -1074) 81928) ((-1301 . -38) 81898) ((-1259 . -909) 81837) ((-1191 . -1069) 81660) ((-1160 . -1236) T) ((-1143 . -1069) 81503) ((-866 . -1069) 81487) ((-644 . -616) 81462) ((-1270 . -1221) 81428) ((-1270 . -1224) 81394) ((-1270 . -95) 81360) ((-1191 . -652) 81189) ((-1143 . -652) 81038) ((-866 . -652) 81008) ((-1270 . -238) 80960) ((-1253 . -102) 80938) ((-561 . -1118) T) ((-1105 . -25) T) ((-1105 . -21) T) ((-543 . -804) T) ((-543 . -807) T) ((-118 . -1240) T) ((-979 . -1076) T) ((-635 . -568) T) ((-794 . -25) T) ((-794 . -21) T) ((-792 . -21) T) ((-792 . -25) T) ((-747 . -1076) T) ((-727 . -1076) T) ((-682 . -1074) 80922) ((-529 . -1101) T) ((-473 . -25) T) ((-118 . -568) T) ((-473 . -21) T) ((-466 . -25) T) ((-466 . -21) T) ((-1250 . -233) 80874) ((-1169 . -93) T) ((-1160 . -1056) 80770) ((-829 . -300) 80749) ((-1249 . -1221) 80715) ((-835 . -1118) T) ((-982 . -985) T) ((-682 . -111) 80694) ((-629 . -1236) T) ((-305 . -526) 80486) ((-1249 . -1224) 80452) ((-1249 . -238) 80357) ((-1244 . -379) T) ((-258 . -319) 80295) ((-257 . -319) 80233) ((-1241 . -856) T) ((-1178 . -626) NIL) ((-1178 . -625) 80215) ((-1160 . -388) 80199) ((-1138 . -832) T) ((-1138 . -936) T) ((-96 . -93) T) ((-1131 . -616) 80176) ((-1098 . -626) 80160) ((-1098 . -625) 80142) ((-1022 . -658) 80092) ((-930 . -658) 80029) ((-827 . -298) 80006) ((-496 . -625) 79938) ((-620 . -152) 79885) ((-499 . -729) 79835) ((-430 . -1076) T) ((-494 . -501) 79819) ((-439 . -658) 79778) ((-337 . -862) 79757) ((-350 . -660) 79731) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -729) 79681) ((-171 . -736) 79652) ((-176 . -660) 79584) ((-593 . -21) T) ((-593 . -25) T) ((-530 . -25) T) ((-530 . -21) T) ((-487 . -152) 79534) ((-1079 . -625) 79516) ((-1011 . -102) T) ((-874 . -102) T) ((-828 . -916) 79452) ((-811 . -423) 79415) ((-40 . -132) T) ((-711 . -374) T) ((-713 . -738) T) ((-713 . -806) T) ((-713 . -803) T) ((-214 . -910) T) ((-592 . -1130) T) ((-576 . -1130) T) ((-507 . -1130) T) ((-370 . -625) 79397) ((-364 . -625) 79379) ((-356 . -625) 79361) ((-66 . -408) T) ((-66 . -407) T) ((-108 . -626) 79291) ((-108 . -625) 79233) ((-213 . -910) T) ((-974 . -152) 79217) ((-783 . -132) T) ((-682 . -628) 79135) ((-135 . -738) T) ((-117 . -738) T) ((-1270 . -35) 79101) ((-1072 . -501) 79085) ((-592 . -23) T) ((-576 . -23) T) ((-507 . -23) T) ((-1249 . -95) 79051) ((-1249 . -35) 79017) ((-1191 . -102) T) ((-1143 . -102) T) ((-866 . -102) T) ((-229 . -501) 79001) ((-1308 . -111) 78980) ((-1306 . -111) 78959) ((-44 . -1074) 78943) ((-1308 . -628) 78889) ((-1308 . -1067) T) ((-1259 . -1262) 78873) ((-867 . -864) 78857) ((-1197 . -300) 78836) ((-1122 . -1236) T) ((-110 . -296) 78786) ((-1021 . -1236) 78715) ((-129 . -152) 78697) ((-1160 . -914) 78656) ((-44 . -111) 78635) ((-1306 . -628) 78564) ((-1241 . -1118) T) ((-1200 . -1281) T) ((-1185 . -502) 78545) ((-682 . -1067) T) ((-1185 . -625) 78511) ((-1177 . -626) NIL) ((-486 . -238) 78463) ((-1081 . -622) 78438) ((-1012 . -502) 78419) ((-74 . -453) T) ((-74 . -407) T) ((-1081 . -1118) T) ((-153 . -1074) 78403) ((-1012 . -625) 78369) ((-682 . -239) 78348) ((-583 . -566) 78332) ((-366 . -148) 78311) ((-366 . -146) 78262) ((-363 . -148) 78241) ((-363 . -146) 78192) ((-355 . -148) 78171) ((-355 . -146) 78122) ((-273 . -146) 78101) ((-273 . -148) 78080) ((-253 . -148) 78059) ((-118 . -374) T) ((-253 . -146) 78038) ((-1177 . -625) 78020) ((-153 . -111) 77999) ((-1021 . -1056) 77887) ((-1186 . -860) NIL) ((-706 . -1240) T) ((-811 . -1076) T) ((-711 . -1130) T) ((-1306 . -1067) T) ((-1175 . -1236) T) ((-1021 . -388) 77864) ((-926 . -146) T) ((-926 . -148) 77846) ((-882 . -132) T) ((-827 . -1074) 77767) ((-711 . -23) T) ((-706 . -568) T) ((-227 . -1069) 77732) ((-659 . -625) 77664) ((-659 . -626) 77625) ((-644 . -626) NIL) ((-644 . -625) 77607) ((-499 . -174) T) ((-227 . -652) 77572) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-486 . -1224) 77538) ((-486 . -1221) 77504) ((-283 . -625) 77486) ((-282 . -625) 77468) ((-281 . -625) 77450) ((-280 . -625) 77432) ((-279 . -625) 77414) ((-512 . -663) 77396) ((-278 . -625) 77378) ((-350 . -738) T) ((-277 . -625) 77360) ((-110 . -19) 77342) ((-176 . -738) T) ((-512 . -384) 77324) ((-214 . -625) 77306) ((-532 . -1167) 77290) ((-512 . -124) T) ((-110 . -616) 77265) ((-213 . -625) 77247) ((-486 . -35) 77213) ((-486 . -95) 77179) ((-211 . -625) 77161) ((-210 . -625) 77143) ((-209 . -625) 77125) ((-208 . -625) 77107) ((-205 . -625) 77089) ((-204 . -625) 77071) ((-203 . -625) 77053) ((-202 . -625) 77035) ((-201 . -625) 77017) ((-200 . -625) 76999) ((-199 . -625) 76981) ((-548 . -1121) 76933) ((-198 . -625) 76915) ((-197 . -625) 76897) ((-45 . -501) 76834) ((-196 . -625) 76816) ((-195 . -625) 76798) ((-153 . -628) 76767) ((-1133 . -102) T) ((-827 . -111) 76683) ((-656 . -102) 76633) ((-494 . -296) 76610) ((-1309 . -1056) 76594) ((-1131 . -625) 76287) ((-1119 . -1118) T) ((-1064 . -1236) T) ((-1191 . -319) 76274) ((-1080 . -1069) 76261) ((-1153 . -1118) T) ((-968 . -1069) 76104) ((-1143 . -319) 76091) ((-1114 . -1101) T) ((-635 . -1130) T) ((-1080 . -652) 76078) ((-1108 . -1101) T) ((-968 . -652) 75927) ((-1105 . -235) 75900) ((-493 . -1069) 75743) ((-1091 . -1101) T) ((-1084 . -1101) T) ((-1054 . -1101) T) ((-1037 . -1101) T) ((-118 . -1130) T) ((-493 . -652) 75592) ((-794 . -235) 75579) ((-831 . -102) T) ((-638 . -1101) T) ((-635 . -23) T) ((-1168 . -526) 75371) ((-495 . -1101) T) ((-398 . -102) T) ((-334 . -102) T) ((-220 . -1101) T) ((-979 . -1118) T) ((-153 . -1067) T) ((-743 . -423) 75355) ((-118 . -23) T) ((-1021 . -914) 75307) ((-747 . -1118) T) ((-727 . -1118) T) ((-465 . -1118) T) ((-419 . -1236) T) ((-326 . -442) 75291) ((-604 . -93) T) ((-1278 . -658) 75201) ((-1045 . -626) 75162) ((-1042 . -1240) T) ((-227 . -102) T) ((-1045 . -625) 75124) ((-1271 . -658) 75006) ((-828 . -233) 74990) ((-827 . -628) 74788) ((-1250 . -658) 74625) ((-1042 . -568) T) ((-845 . -660) 74598) ((-365 . -1240) T) ((-488 . -625) 74560) ((-488 . -626) 74521) ((-475 . -626) 74482) ((-475 . -625) 74444) ((-608 . -658) 74403) ((-419 . -897) 74387) ((-329 . -1074) 74222) ((-419 . -899) 74147) ((-607 . -658) 74057) ((-855 . -1056) 73953) ((-499 . -526) NIL) ((-494 . -616) 73930) ((-593 . -235) 73917) ((-365 . -568) T) ((-530 . -235) 73904) ((-219 . -526) NIL) ((-884 . -464) T) ((-430 . -1118) T) ((-419 . -1056) 73768) ((-329 . -111) 73589) ((-706 . -374) T) ((-227 . -294) T) ((-1233 . -628) 73566) ((-48 . -1240) T) ((-1191 . -1170) 73544) ((-1178 . -298) 73520) ((-1080 . -102) T) ((-968 . -102) T) ((-827 . -1067) 73498) ((-592 . -132) T) ((-576 . -132) T) ((-507 . -132) T) ((-366 . -238) 73477) ((-363 . -238) 73456) ((-355 . -238) 73435) ((-48 . -568) T) ((-883 . -1069) 73380) ((-273 . -238) 73359) ((-827 . -239) 73311) ((-326 . -27) 73290) ((-258 . -916) 73222) ((-257 . -916) 73154) ((-255 . -847) 73136) ((-189 . -847) 73118) ((-725 . -102) T) ((-305 . -501) 73055) ((-883 . -652) 73000) ((-493 . -102) T) ((-743 . -1076) T) ((-624 . -625) 72982) ((-624 . -626) 72843) ((-419 . -388) 72827) ((-419 . -349) 72811) ((-1191 . -38) 72640) ((-1143 . -38) 72489) ((-329 . -628) 72315) ((-926 . -238) T) ((-647 . -1236) 72289) ((-619 . -1236) 72263) ((-866 . -38) 72233) ((-402 . -660) 72217) ((-656 . -319) 72155) ((-1169 . -502) 72136) ((-1169 . -625) 72102) ((-979 . -729) 71999) ((-747 . -729) 71969) ((-224 . -107) 71953) ((-45 . -296) 71853) ((-633 . -660) 71827) ((-322 . -1118) T) ((-299 . -1074) 71814) ((-110 . -625) 71796) ((-110 . -626) 71778) ((-465 . -729) 71748) ((-828 . -260) 71687) ((-701 . -1118) 71665) ((-562 . -1118) T) ((-1193 . -1076) T) ((-1192 . -1076) T) ((-96 . -502) 71646) ((-1186 . -1076) T) ((-299 . -111) 71631) ((-1144 . -1076) T) ((-562 . -622) 71610) ((-96 . -625) 71576) ((-1022 . -860) T) ((-229 . -699) 71534) ((-706 . -1130) T) ((-1230 . -752) 71510) ((-1042 . -374) T) ((-850 . -847) 71492) ((-845 . -806) 71471) ((-419 . -914) 71430) ((-329 . -1067) T) ((-354 . -25) T) ((-354 . -21) T) ((-171 . -1069) 71340) ((-68 . -1236) T) ((-845 . -803) 71319) ((-430 . -729) 71293) ((-811 . -1118) T) ((-724 . -936) 71272) ((-711 . -132) T) ((-171 . -652) 71100) ((-706 . -23) T) ((-499 . -300) T) ((-845 . -738) 71079) ((-329 . -239) 71031) ((-329 . -249) 71010) ((-219 . -300) T) ((-130 . -379) T) ((-1270 . -464) 70989) ((-1249 . -464) 70968) ((-365 . -339) 70945) ((-365 . -374) T) ((-1158 . -625) 70927) ((-45 . -1274) 70877) ((-883 . -102) T) ((-656 . -292) 70861) ((-711 . -1078) T) ((-1297 . -102) T) ((-1296 . -102) T) ((-489 . -660) 70826) ((-480 . -1118) T) ((-45 . -616) 70751) ((-1177 . -298) 70726) ((-299 . -628) 70698) ((-40 . -651) 70637) ((-1259 . -1069) 70460) ((-867 . -1069) 70444) ((-48 . -374) T) ((-1124 . -625) 70426) ((-1259 . -652) 70255) ((-867 . -652) 70225) ((-644 . -298) 70200) ((-828 . -658) 70110) ((-583 . -1069) 70097) ((-494 . -625) 69790) ((-246 . -423) 69759) ((-968 . -319) 69746) ((-583 . -652) 69733) ((-65 . -1236) T) ((-1081 . -526) 69577) ((-683 . -1118) T) ((-635 . -132) T) ((-493 . -319) 69564) ((-618 . -1118) T) ((-558 . -102) T) ((-118 . -132) T) ((-299 . -1067) T) ((-182 . -1118) T) ((-162 . -1118) T) ((-157 . -1118) T) ((-155 . -1118) T) ((-465 . -773) T) ((-31 . -1101) T) ((-979 . -174) 69515) ((-1191 . -916) 69458) ((-988 . -93) T) ((-1184 . -1118) T) ((-1098 . -1074) 69368) ((-633 . -806) 69347) ((-605 . -1118) T) ((-633 . -803) 69326) ((-633 . -738) T) ((-305 . -296) 69305) ((-304 . -1236) T) ((-1072 . -625) 69267) ((-1072 . -626) 69228) ((-1042 . -1130) T) ((-171 . -102) T) ((-284 . -862) T) ((-1143 . -916) 69212) ((-830 . -625) 69194) ((-1131 . -298) 69171) ((-1120 . -231) 69155) ((-1021 . -317) T) ((-811 . -729) 69139) ((-370 . -1074) 69091) ((-365 . -1130) T) ((-364 . -1074) 69043) ((-426 . -625) 69025) ((-396 . -625) 69007) ((-356 . -1074) 68959) ((-229 . -625) 68891) ((-1098 . -111) 68787) ((-1042 . -23) T) ((-108 . -1074) 68737) ((-913 . -102) T) ((-853 . -102) T) ((-820 . -102) T) ((-781 . -102) T) ((-689 . -102) T) ((-486 . -464) 68716) ((-430 . -174) T) ((-370 . -111) 68654) ((-364 . -111) 68592) ((-356 . -111) 68530) ((-258 . -233) 68499) ((-257 . -233) 68468) ((-365 . -23) T) ((-71 . -1236) T) ((-227 . -38) 68433) ((-108 . -111) 68367) ((-40 . -25) T) ((-40 . -21) T) ((-682 . -732) T) ((-171 . -294) 68345) ((-48 . -1130) T) ((-937 . -25) T) ((-783 . -25) T) ((-1310 . -660) 68319) ((-1168 . -501) 68256) ((-497 . -1118) T) ((-1301 . -658) 68215) ((-1259 . -102) T) ((-1080 . -1170) T) ((-867 . -102) T) ((-246 . -1076) 68193) ((-980 . -804) 68146) ((-980 . -807) 68099) ((-392 . -660) 68083) ((-48 . -23) T) ((-827 . -807) 68062) ((-827 . -804) 68041) ((-560 . -379) T) ((-305 . -616) 68020) ((-489 . -738) T) ((-583 . -102) T) ((-1098 . -628) 67838) ((-255 . -187) T) ((-189 . -187) T) ((-883 . -319) 67795) ((-665 . -296) 67774) ((-112 . -673) T) ((-362 . -1236) T) ((-370 . -628) 67711) ((-364 . -628) 67648) ((-356 . -628) 67585) ((-76 . -1236) T) ((-108 . -628) 67535) ((-112 . -113) T) ((-1080 . -38) 67522) ((-676 . -385) 67501) ((-968 . -38) 67350) ((-743 . -1118) T) ((-493 . -38) 67199) ((-86 . -1236) T) ((-604 . -502) 67180) ((-1250 . -860) NIL) ((-583 . -294) T) ((-1193 . -1118) T) ((-604 . -625) 67146) ((-1192 . -1118) T) ((-1186 . -1118) T) ((-1098 . -1067) T) ((-362 . -1056) 67123) ((-829 . -502) 67107) ((-1022 . -1076) T) ((-45 . -625) 67089) ((-45 . -626) NIL) ((-930 . -1076) T) ((-829 . -625) 67058) ((-1165 . -102) 67036) ((-1098 . -249) 66987) ((-439 . -1076) T) ((-370 . -1067) T) ((-364 . -1067) T) ((-376 . -375) 66964) ((-356 . -1067) T) ((-354 . -235) 66951) ((-258 . -244) 66930) ((-257 . -244) 66909) ((-1098 . -239) 66834) ((-1144 . -1118) T) ((-304 . -914) 66793) ((-108 . -1067) T) ((-706 . -132) T) ((-430 . -526) 66635) ((-370 . -239) 66614) ((-370 . -249) T) ((-44 . -732) T) ((-364 . -239) 66593) ((-364 . -249) T) ((-356 . -239) 66572) ((-356 . -249) T) ((-1185 . -628) 66553) ((-171 . -319) 66518) ((-108 . -249) T) ((-108 . -239) T) ((-1012 . -628) 66499) ((-329 . -804) T) ((-882 . -21) T) ((-882 . -25) T) ((-419 . -317) T) ((-512 . -34) T) ((-110 . -298) 66474) ((-1131 . -1074) 66395) ((-883 . -1170) NIL) ((-340 . -625) 66377) ((-419 . -1040) 66355) ((-1131 . -111) 66271) ((-703 . -1281) T) ((-448 . -1118) T) ((-256 . -1118) T) ((-1310 . -738) T) ((-63 . -625) 66253) ((-883 . -38) 66198) ((-535 . -1236) T) ((-614 . -152) 66182) ((-524 . -625) 66164) ((-1259 . -319) 66151) ((-743 . -729) 66000) ((-543 . -805) T) ((-543 . -806) T) ((-576 . -651) 65982) ((-507 . -651) 65942) ((-366 . -464) T) ((-363 . -464) T) ((-355 . -464) T) ((-273 . -464) 65893) ((-537 . -1118) T) ((-532 . -1118) 65843) ((-253 . -464) 65794) ((-1168 . -296) 65773) ((-1197 . -625) 65755) ((-701 . -526) 65688) ((-979 . -300) 65667) ((-562 . -526) 65459) ((-258 . -658) 65307) ((-257 . -658) 65142) ((-1298 . -625) 65111) ((-1298 . -502) 65095) ((-1193 . -729) 64992) ((-1191 . -233) 64976) ((-1131 . -628) 64774) ((-171 . -1170) 64753) ((-1192 . -729) 64594) ((-1186 . -729) 64390) ((-982 . -113) T) ((-905 . -102) T) ((-1175 . -686) 64374) ((-1144 . -729) 64271) ((-1042 . -132) T) ((-366 . -414) 64222) ((-363 . -414) 64173) ((-355 . -414) 64124) ((-980 . -379) 64077) ((-811 . -526) 63989) ((-305 . -626) NIL) ((-305 . -625) 63971) ((-926 . -464) T) ((-921 . -296) 63950) ((-827 . -379) 63929) ((-522 . -521) 63908) ((-520 . -521) 63887) ((-884 . -909) 63844) ((-499 . -296) NIL) ((-494 . -298) 63821) ((-430 . -300) T) ((-365 . -132) T) ((-219 . -296) NIL) ((-706 . -505) NIL) ((-99 . -1130) T) ((-40 . -235) 63787) ((-171 . -38) 63615) ((-968 . -916) 63596) ((-1270 . -991) 63558) ((-1165 . -319) 63496) ((-493 . -916) 63473) ((-1249 . -991) 63442) ((-926 . -414) T) ((-1131 . -1067) 63420) ((-1272 . -568) T) ((-1168 . -616) 63399) ((-112 . -862) T) ((-1081 . -501) 63330) ((-592 . -21) T) ((-592 . -25) T) ((-576 . -21) T) ((-576 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-1259 . -1170) 63308) ((-1131 . -239) 63260) ((-48 . -132) T) ((-1217 . -102) T) ((-246 . -1118) 63012) ((-883 . -412) 62989) ((-1106 . -102) T) ((-1094 . -102) T) ((-620 . -102) T) ((-487 . -102) T) ((-1259 . -38) 62818) ((-867 . -38) 62788) ((-1052 . -1069) 62762) ((-743 . -174) 62673) ((-665 . -625) 62655) ((-657 . -1101) T) ((-1052 . -652) 62639) ((-583 . -38) 62626) ((-988 . -502) 62607) ((-988 . -625) 62573) ((-974 . -102) 62523) ((-876 . -625) 62505) ((-876 . -626) 62427) ((-605 . -526) NIL) ((-1315 . -1130) T) ((-1278 . -1076) T) ((-1271 . -1076) T) ((-1270 . -909) 62331) ((-332 . -1069) 62313) ((-1250 . -1076) T) ((-1249 . -909) 62162) ((-1230 . -148) 62141) ((-1230 . -146) 62120) ((-1203 . -102) T) ((-332 . -652) 62102) ((-713 . -1236) T) ((-1202 . -102) T) ((-1201 . -102) T) ((-1193 . -174) 62053) ((-1192 . -174) 61984) ((-608 . -1076) T) ((-607 . -1076) T) ((-1186 . -174) 61915) ((-1169 . -628) 61896) ((-390 . -1069) 61861) ((-1144 . -174) 61812) ((-1022 . -1118) T) ((-989 . -1118) T) ((-930 . -1118) T) ((-883 . -916) NIL) ((-390 . -652) 61777) ((-811 . -809) 61761) ((-711 . -25) T) ((-711 . -21) T) ((-118 . -651) 61738) ((-713 . -899) 61720) ((-439 . -1118) T) ((-326 . -1240) 61699) ((-323 . -1240) T) ((-171 . -412) 61683) ((-848 . -1069) 61653) ((-486 . -991) 61615) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -625) 61597) ((-839 . -1069) 61581) ((-108 . -807) T) ((-108 . -804) T) ((-713 . -1056) 61563) ((-326 . -568) 61542) ((-323 . -568) T) ((-848 . -652) 61512) ((-839 . -652) 61482) ((-1315 . -23) T) ((-135 . -1056) 61464) ((-96 . -628) 61445) ((-1011 . -658) 61427) ((-494 . -1074) 61348) ((-45 . -298) 61273) ((-246 . -729) 61215) ((-529 . -102) T) ((-494 . -111) 61131) ((-1110 . -102) 61101) ((-1052 . -102) T) ((-1191 . -658) 61011) ((-1143 . -658) 60921) ((-866 . -658) 60880) ((-656 . -840) 60859) ((-743 . -526) 60802) ((-1072 . -1074) 60786) ((-171 . -916) 60745) ((-1153 . -93) T) ((-1081 . -296) 60720) ((-635 . -21) T) ((-635 . -25) T) ((-536 . -1118) T) ((-682 . -660) 60658) ((-372 . -102) T) ((-332 . -102) T) ((-396 . -1074) 60642) ((-1072 . -111) 60621) ((-828 . -423) 60605) ((-118 . -25) T) ((-89 . -625) 60587) ((-118 . -21) T) ((-620 . -319) 60382) ((-487 . -319) 60186) ((-1168 . -626) NIL) ((-350 . -1236) T) ((-396 . -111) 60165) ((-390 . -102) T) ((-216 . -625) 60147) ((-1168 . -625) 60129) ((-1186 . -526) 59898) ((-1022 . -729) 59848) ((-1144 . -526) 59818) ((-930 . -729) 59770) ((-494 . -628) 59568) ((-362 . -317) T) ((-1208 . -152) 59518) ((-486 . -909) 59422) ((-974 . -319) 59360) ((-848 . -102) T) ((-439 . -729) 59344) ((-227 . -840) T) ((-839 . -102) T) ((-837 . -102) T) ((-1308 . -660) 59318) ((-1270 . -1269) 59297) ((-491 . -152) 59247) ((-1270 . -1264) 59217) ((-1138 . -1240) T) ((-350 . -1056) 59184) ((-1270 . -1267) 59168) ((-1259 . -916) 59111) ((-1249 . -1248) 59090) ((-80 . -625) 59072) ((-921 . -625) 59054) ((-1249 . -1264) 59031) ((-1138 . -568) T) ((-937 . -862) T) ((-783 . -862) T) ((-684 . -862) T) ((-499 . -626) 58961) ((-499 . -625) 58902) ((-390 . -294) T) ((-1249 . -1246) 58886) ((-1272 . -1130) T) ((-219 . -626) 58816) ((-219 . -625) 58757) ((-1081 . -616) 58732) ((-830 . -628) 58716) ((-576 . -235) 58703) ((-528 . -152) 58687) ((-59 . -152) 58671) ((-508 . -152) 58655) ((-507 . -235) 58642) ((-370 . -1305) 58626) ((-364 . -1305) 58610) ((-356 . -1305) 58594) ((-326 . -374) 58573) ((-323 . -374) T) ((-494 . -1067) 58551) ((-706 . -651) 58533) ((-1306 . -660) 58507) ((-129 . -319) NIL) ((-1272 . -23) T) ((-701 . -501) 58491) ((-64 . -625) 58473) ((-1131 . -807) 58452) ((-1131 . -804) 58431) ((-562 . -501) 58368) ((-682 . -34) T) ((-494 . -239) 58320) ((-305 . -298) 58299) ((-828 . -1076) T) ((-44 . -660) 58257) ((-1098 . -379) 58208) ((-743 . -300) 58139) ((-532 . -526) 58072) ((-829 . -1074) 58023) ((-561 . -625) 58005) ((-370 . -379) 57984) ((-364 . -379) 57963) ((-356 . -379) 57942) ((-1105 . -146) 57921) ((-1105 . -148) 57900) ((-984 . -1236) T) ((-883 . -233) 57877) ((-829 . -111) 57819) ((-794 . -146) 57798) ((-273 . -965) 57765) ((-253 . -965) 57710) ((-794 . -148) 57689) ((-792 . -146) 57668) ((-792 . -148) 57647) ((-153 . -660) 57621) ((-591 . -1118) T) ((-465 . -296) 57584) ((-466 . -148) 57563) ((-466 . -146) 57542) ((-682 . -738) T) ((-835 . -625) 57524) ((-1278 . -1118) T) ((-1271 . -1118) T) ((-1250 . -1118) T) ((-1230 . -1224) 57490) ((-1230 . -1221) 57456) ((-1193 . -300) 57435) ((-1192 . -300) 57386) ((-1186 . -300) 57337) ((-1144 . -300) 57316) ((-350 . -914) 57297) ((-1022 . -174) T) ((-930 . -174) T) ((-706 . -21) T) ((-706 . -25) T) ((-227 . -658) 57247) ((-608 . -1118) T) ((-607 . -1118) T) ((-486 . -1267) 57231) ((-486 . -1264) 57201) ((-430 . -296) 57129) ((-559 . -862) T) ((-326 . -1130) 56978) ((-323 . -1130) T) ((-1230 . -35) 56944) ((-1230 . -95) 56910) ((-84 . -625) 56892) ((-91 . -102) 56870) ((-1315 . -132) T) ((-726 . -1069) 56840) ((-604 . -628) 56821) ((-593 . -146) T) ((-593 . -148) 56803) ((-530 . -148) 56785) ((-530 . -146) T) ((-726 . -652) 56755) ((-326 . -23) 56607) ((-40 . -353) 56581) ((-323 . -23) T) ((-829 . -628) 56495) ((-1177 . -663) 56477) ((-1301 . -1076) T) ((-1177 . -384) 56459) ((-827 . -660) 56292) ((-1114 . -102) T) ((-1108 . -102) T) ((-1091 . -102) T) ((-171 . -233) 56276) ((-1084 . -102) T) ((-1054 . -102) T) ((-1037 . -102) T) ((-605 . -501) 56258) ((-638 . -102) T) ((-246 . -526) 56191) ((-495 . -102) T) ((-1308 . -738) T) ((-1306 . -738) T) ((-220 . -102) T) ((-1197 . -1074) 56074) ((-1080 . -658) 56046) ((-968 . -658) 55956) ((-1197 . -111) 55825) ((-888 . -1101) T) ((-873 . -175) T) ((-493 . -658) 55735) ((-273 . -909) 55677) ((-253 . -909) 55652) ((-829 . -1067) T) ((-693 . -1101) T) ((-688 . -1101) T) ((-635 . -235) 55625) ((-527 . -102) T) ((-522 . -102) T) ((-48 . -651) 55585) ((-520 . -102) T) ((-490 . -1101) T) ((-1298 . -1074) 55555) ((-118 . -235) NIL) ((-139 . -1101) T) ((-138 . -1101) T) ((-134 . -1101) T) ((-1052 . -38) 55539) ((-829 . -239) T) ((-829 . -249) 55518) ((-1298 . -111) 55483) ((-1278 . -729) 55380) ((-1271 . -729) 55221) ((-562 . -296) 55200) ((-1259 . -233) 55184) ((-1241 . -625) 55166) ((-618 . -93) T) ((-1081 . -626) NIL) ((-1081 . -625) 55148) ((-683 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1250 . -729) 54944) ((-1021 . -936) T) ((-153 . -738) T) ((-1197 . -628) 54797) ((-1131 . -379) 54776) ((-1042 . -25) T) ((-1022 . -526) NIL) ((-258 . -423) 54745) ((-257 . -423) 54714) ((-1042 . -21) T) ((-884 . -1069) 54666) ((-608 . -729) 54639) ((-607 . -729) 54536) ((-811 . -296) 54494) ((-127 . -102) 54472) ((-845 . -1056) 54368) ((-171 . -840) 54347) ((-329 . -660) 54244) ((-827 . -34) T) ((-726 . -102) T) ((-1138 . -1130) T) ((-1044 . -1236) T) ((-884 . -652) 54196) ((-390 . -38) 54161) ((-365 . -25) T) ((-365 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-366 . -1293) 54145) ((-363 . -1293) 54129) ((-355 . -1293) 54113) ((-171 . -360) 54092) ((-576 . -862) T) ((-1105 . -238) 54071) ((-1138 . -23) T) ((-87 . -625) 54053) ((-794 . -238) T) ((-713 . -317) T) ((-848 . -38) 54023) ((-839 . -38) 53993) ((-1298 . -628) 53935) ((-1272 . -132) T) ((-1168 . -298) 53914) ((-980 . -738) 53813) ((-980 . -805) 53766) ((-980 . -806) 53719) ((-117 . -317) T) ((-91 . -319) 53657) ((-687 . -34) T) ((-562 . -616) 53636) ((-48 . -25) T) ((-48 . -21) T) ((-827 . -806) 53615) ((-827 . -805) 53594) ((-713 . -1040) T) ((-665 . -1074) 53578) ((-883 . -658) 53508) ((-827 . -738) 53486) ((-980 . -485) 53439) ((-494 . -807) 53418) ((-494 . -804) 53397) ((-926 . -1293) 53384) ((-1197 . -1067) T) ((-665 . -111) 53363) ((-1197 . -336) 53340) ((-1222 . -102) 53318) ((-1119 . -625) 53300) ((-713 . -557) T) ((-828 . -1118) T) ((-593 . -238) T) ((-530 . -238) T) ((-1298 . -1067) T) ((-1153 . -502) 53281) ((-1242 . -102) T) ((-425 . -1118) T) ((-1153 . -625) 53247) ((-258 . -1076) 53225) ((-257 . -1076) 53203) ((-850 . -102) T) ((-299 . -660) 53190) ((-605 . -296) 53140) ((-701 . -699) 53098) ((-979 . -625) 53080) ((-884 . -102) T) ((-747 . -625) 53062) ((-727 . -625) 53044) ((-1278 . -174) 52995) ((-1271 . -174) 52926) ((-1250 . -174) 52857) ((-711 . -862) T) ((-1022 . -300) T) ((-465 . -625) 52839) ((-639 . -738) T) ((-60 . -1118) 52817) ((-251 . -152) 52801) ((-930 . -300) T) ((-1042 . -1030) T) ((-639 . -485) T) ((-724 . -1240) 52780) ((-706 . -235) NIL) ((-665 . -628) 52698) ((-171 . -658) 52593) ((-1286 . -862) 52572) ((-608 . -174) 52551) ((-607 . -174) 52502) ((-1270 . -652) 52343) ((-1270 . -1069) 52178) ((-1249 . -652) 51992) ((-1249 . -1069) 51800) ((-724 . -568) 51711) ((-419 . -936) T) ((-419 . -832) 51690) ((-329 . -806) T) ((-988 . -628) 51671) ((-329 . -738) T) ((-656 . -1167) 51655) ((-430 . -625) 51637) ((-430 . -626) 51544) ((-110 . -663) 51526) ((-176 . -317) T) ((-127 . -319) 51464) ((-110 . -384) 51446) ((-410 . -1236) T) ((-326 . -132) 51317) ((-323 . -132) T) ((-69 . -407) T) ((-110 . -124) T) ((-532 . -501) 51301) ((-666 . -1130) T) ((-605 . -19) 51283) ((-61 . -453) T) ((-61 . -407) T) ((-836 . -1118) T) ((-605 . -616) 51258) ((-489 . -1056) 51218) ((-665 . -1067) T) ((-666 . -23) T) ((-1301 . -1118) T) ((-31 . -102) T) ((-1259 . -658) 51128) ((-867 . -658) 51087) ((-828 . -729) 50936) ((-589 . -872) T) ((-583 . -658) 50908) ((-118 . -862) NIL) ((-1191 . -423) 50892) ((-1143 . -423) 50876) ((-866 . -423) 50860) ((-885 . -102) 50811) ((-1270 . -102) T) ((-1250 . -526) 50580) ((-1249 . -102) T) ((-1222 . -319) 50518) ((-1193 . -296) 50483) ((-1192 . -296) 50441) ((-537 . -93) T) ((-1186 . -296) 50269) ((-322 . -625) 50251) ((-1120 . -1118) T) ((-1098 . -660) 50125) ((-723 . -464) T) ((-701 . -625) 50057) ((-299 . -738) T) ((-108 . -925) NIL) ((-701 . -626) 50018) ((-613 . -625) 50000) ((-589 . -625) 49982) ((-562 . -626) NIL) ((-562 . -625) 49964) ((-541 . -625) 49946) ((-523 . -521) 49925) ((-499 . -1074) 49875) ((-486 . -1069) 49710) ((-519 . -521) 49689) ((-486 . -652) 49530) ((-219 . -1074) 49480) ((-370 . -660) 49432) ((-364 . -660) 49384) ((-227 . -860) T) ((-356 . -660) 49336) ((-614 . -102) 49286) ((-499 . -111) 49220) ((-494 . -379) 49199) ((-108 . -660) 49149) ((-365 . -235) 49136) ((-246 . -501) 49120) ((-354 . -148) 49102) ((-354 . -146) T) ((-171 . -381) 49073) ((-959 . -1284) 49057) ((-219 . -111) 48991) ((-884 . -319) 48956) ((-959 . -1118) 48906) ((-811 . -626) 48867) ((-811 . -625) 48849) ((-730 . -102) T) ((-341 . -1118) T) ((-216 . -628) 48826) ((-1138 . -132) T) ((-726 . -38) 48796) ((-326 . -505) 48775) ((-512 . -1236) T) ((-1270 . -294) 48741) ((-1249 . -294) 48707) ((-337 . -152) 48691) ((-451 . -1118) T) ((-1081 . -298) 48666) ((-1301 . -729) 48636) ((-48 . -235) 48623) ((-1178 . -34) T) ((-1310 . -1056) 48600) ((-496 . -34) T) ((-480 . -625) 48582) ((-256 . -296) 48556) ((-392 . -1056) 48540) ((-1191 . -1076) T) ((-1143 . -1076) T) ((-866 . -1076) T) ((-1080 . -860) T) ((-499 . -628) 48490) ((-219 . -628) 48440) ((-828 . -174) 48351) ((-532 . -296) 48303) ((-1278 . -300) 48282) ((-1217 . -375) 48256) ((-1106 . -275) 48240) ((-683 . -502) 48221) ((-683 . -625) 48187) ((-618 . -502) 48168) ((-118 . -1010) 48145) ((-618 . -625) 48095) ((-486 . -102) T) ((-182 . -502) 48076) ((-182 . -625) 48042) ((-162 . -502) 48023) ((-162 . -625) 47989) ((-157 . -502) 47970) ((-155 . -502) 47951) ((-157 . -625) 47917) ((-376 . -1118) T) ((-258 . -1118) T) ((-257 . -1118) T) ((-155 . -625) 47883) ((-1271 . -300) 47834) ((-1250 . -300) 47785) ((-884 . -1170) 47763) ((-1193 . -1020) 47729) ((-620 . -375) 47669) ((-1192 . -1020) 47635) ((-620 . -231) 47582) ((-706 . -862) T) ((-605 . -625) 47564) ((-605 . -626) NIL) ((-487 . -231) 47514) ((-499 . -1067) T) ((-1186 . -1020) 47480) ((-88 . -452) T) ((-88 . -407) T) ((-219 . -1067) T) ((-1144 . -1020) 47446) ((-1098 . -738) T) ((-724 . -1130) T) ((-608 . -300) 47425) ((-607 . -300) 47404) ((-499 . -249) T) ((-499 . -239) T) ((-219 . -249) T) ((-219 . -239) T) ((-1184 . -625) 47386) ((-884 . -38) 47338) ((-370 . -738) T) ((-364 . -738) T) ((-356 . -738) T) ((-108 . -806) T) ((-108 . -803) T) ((-724 . -23) T) ((-108 . -738) T) ((-532 . -1274) 47322) ((-1315 . -25) T) ((-486 . -294) 47288) ((-1315 . -21) T) ((-1249 . -319) 47227) ((-1195 . -102) T) ((-40 . -146) 47199) ((-40 . -148) 47171) ((-532 . -616) 47148) ((-1131 . -660) 46981) ((-614 . -319) 46919) ((-45 . -663) 46869) ((-45 . -678) 46819) ((-45 . -384) 46769) ((-1177 . -34) T) ((-883 . -860) NIL) ((-666 . -132) T) ((-497 . -625) 46751) ((-246 . -296) 46728) ((-188 . -1118) T) ((-1105 . -464) 46679) ((-828 . -526) 46553) ((-794 . -464) 46484) ((-676 . -1069) 46468) ((-659 . -34) T) ((-644 . -34) T) ((-676 . -652) 46452) ((-366 . -1069) 46404) ((-354 . -238) T) ((-363 . -1069) 46356) ((-355 . -1069) 46308) ((-273 . -1069) 46151) ((-253 . -1069) 45994) ((-792 . -464) 45945) ((-366 . -652) 45897) ((-363 . -652) 45849) ((-355 . -652) 45801) ((-273 . -652) 45650) ((-253 . -652) 45499) ((-466 . -464) 45450) ((-968 . -423) 45434) ((-743 . -625) 45416) ((-258 . -729) 45358) ((-257 . -729) 45300) ((-743 . -626) 45161) ((-493 . -423) 45145) ((-350 . -312) T) ((-536 . -93) T) ((-362 . -936) T) ((-1018 . -102) 45123) ((-926 . -1069) 45088) ((-1042 . -862) T) ((-60 . -526) 45021) ((-926 . -652) 44986) ((-1249 . -1170) 44938) ((-1022 . -296) NIL) ((-227 . -1076) T) ((-390 . -840) T) ((-1131 . -34) T) ((-593 . -464) T) ((-530 . -464) T) ((-1253 . -1111) 44922) ((-1253 . -1118) 44900) ((-246 . -616) 44877) ((-1253 . -1113) 44834) ((-1193 . -625) 44816) ((-1192 . -625) 44798) ((-1186 . -625) 44780) ((-1186 . -626) NIL) ((-1144 . -625) 44762) ((-884 . -412) 44746) ((-609 . -102) T) ((-597 . -102) T) ((-548 . -102) T) ((-1270 . -38) 44587) ((-1249 . -38) 44401) ((-882 . -148) T) ((-593 . -414) T) ((-530 . -414) T) ((-1282 . -102) T) ((-1272 . -21) T) ((-1272 . -25) T) ((-1131 . -806) 44380) ((-1131 . -805) 44359) ((-1011 . -1118) T) ((-1045 . -34) T) ((-874 . -1118) T) ((-1131 . -738) 44337) ((-676 . -102) T) ((-657 . -102) T) ((-562 . -298) 44316) ((-1208 . -102) T) ((-488 . -34) T) ((-475 . -34) T) ((-366 . -102) T) ((-363 . -102) T) ((-355 . -102) T) ((-273 . -102) T) ((-253 . -102) T) ((-489 . -317) T) ((-1080 . -1076) T) ((-968 . -1076) T) ((-326 . -651) 44222) ((-323 . -651) 44183) ((-1191 . -1118) T) ((-493 . -1076) T) ((-491 . -102) T) ((-448 . -625) 44165) ((-1143 . -1118) T) ((-256 . -625) 44147) ((-866 . -1118) T) ((-1159 . -102) T) ((-828 . -300) 44078) ((-979 . -1074) 43961) ((-489 . -1040) T) ((-884 . -916) 43920) ((-747 . -1074) 43890) ((-1052 . -658) 43849) ((-1165 . -1139) 43833) ((-465 . -1074) 43803) ((-1120 . -526) 43736) ((-979 . -111) 43605) ((-926 . -102) T) ((-40 . -238) 43577) ((-747 . -111) 43542) ((-537 . -502) 43523) ((-537 . -625) 43489) ((-59 . -102) 43439) ((-532 . -626) 43400) ((-532 . -625) 43312) ((-531 . -102) 43290) ((-528 . -102) 43240) ((-509 . -102) 43218) ((-508 . -102) 43168) ((-465 . -111) 43131) ((-332 . -658) 43113) ((-430 . -1074) 43087) ((-1230 . -991) 43049) ((-1017 . -1130) T) ((-390 . -658) 42999) ((-1153 . -628) 42980) ((-959 . -526) 42913) ((-499 . -807) T) ((-486 . -38) 42754) ((-430 . -111) 42721) ((-499 . -804) T) ((-1018 . -319) 42659) ((-219 . -807) T) ((-219 . -804) T) ((-1017 . -23) T) ((-724 . -132) T) ((-1249 . -412) 42629) ((-848 . -658) 42574) ((-839 . -658) 42533) ((-326 . -25) 42385) ((-171 . -423) 42369) ((-326 . -21) 42240) ((-323 . -25) T) ((-323 . -21) T) ((-876 . -379) T) ((-979 . -628) 42093) ((-110 . -34) T) ((-747 . -628) 42049) ((-727 . -628) 42031) ((-494 . -660) 41864) ((-883 . -1076) T) ((-605 . -298) 41839) ((-592 . -148) T) ((-576 . -148) T) ((-507 . -148) T) ((-1191 . -729) 41668) ((-1075 . -102) 41646) ((-1143 . -729) 41495) ((-1138 . -651) 41477) ((-866 . -729) 41447) ((-682 . -1236) T) ((-1 . -102) T) ((-430 . -628) 41355) ((-246 . -625) 41048) ((-1133 . -1118) T) ((-1259 . -423) 41032) ((-1208 . -319) 40836) ((-979 . -1067) T) ((-747 . -1067) T) ((-727 . -1067) T) ((-656 . -1118) 40786) ((-1072 . -660) 40770) ((-867 . -423) 40754) ((-523 . -102) T) ((-519 . -102) T) ((-273 . -319) 40741) ((-253 . -319) 40728) ((-1270 . -916) 40634) ((-979 . -336) 40613) ((-1249 . -916) 40464) ((-396 . -660) 40448) ((-682 . -1056) 40344) ((-491 . -319) 40148) ((-258 . -526) 40081) ((-257 . -526) 40014) ((-1159 . -319) 39940) ((-1230 . -909) 39919) ((-831 . -1118) T) ((-811 . -1074) 39903) ((-1278 . -296) 39868) ((-1271 . -296) 39826) ((-1250 . -296) 39654) ((-398 . -1118) T) ((-334 . -1118) T) ((-430 . -1067) T) ((-171 . -1076) T) ((-59 . -319) 39592) ((-811 . -111) 39571) ((-607 . -296) 39536) ((-531 . -319) 39474) ((-528 . -319) 39412) ((-509 . -319) 39350) ((-508 . -319) 39288) ((-430 . -239) 39267) ((-494 . -34) T) ((-227 . -1118) T) ((-1022 . -626) 39197) ((-1022 . -625) 39157) ((-989 . -625) 39117) ((-930 . -625) 39099) ((-711 . -148) T) ((-713 . -936) T) ((-713 . -832) T) ((-439 . -625) 39081) ((-1138 . -21) T) ((-1138 . -25) T) ((-682 . -388) 39065) ((-117 . -936) T) ((-884 . -233) 39049) ((-44 . -1236) T) ((-78 . -1236) T) ((-127 . -126) 39033) ((-1072 . -34) T) ((-1308 . -1056) 39007) ((-1306 . -1056) 38964) ((-1259 . -1076) T) ((-867 . -1076) T) ((-366 . -1170) 38943) ((-363 . -1170) 38922) ((-355 . -1170) 38901) ((-494 . -806) 38880) ((-494 . -805) 38859) ((-229 . -34) T) ((-494 . -738) 38837) ((-811 . -628) 38683) ((-674 . -1069) 38667) ((-60 . -501) 38651) ((-583 . -1076) T) ((-1191 . -174) 38542) ((-674 . -652) 38526) ((-486 . -916) 38432) ((-1143 . -174) 38343) ((-1080 . -1118) T) ((-1105 . -965) 38288) ((-968 . -1118) T) ((-829 . -660) 38239) ((-794 . -965) 38208) ((-725 . -1118) T) ((-792 . -965) 38175) ((-528 . -292) 38159) ((-682 . -914) 38118) ((-493 . -1118) T) ((-466 . -965) 38085) ((-79 . -1236) T) ((-366 . -38) 38050) ((-363 . -38) 38015) ((-355 . -38) 37980) ((-273 . -38) 37829) ((-253 . -38) 37678) ((-926 . -1170) T) ((-536 . -502) 37659) ((-635 . -148) 37638) ((-635 . -146) 37617) ((-536 . -625) 37583) ((-118 . -148) T) ((-118 . -146) NIL) ((-426 . -738) T) ((-811 . -1067) T) ((-576 . -238) T) ((-507 . -238) T) ((-354 . -464) T) ((-1278 . -1020) 37549) ((-1271 . -1020) 37515) ((-1250 . -1020) 37481) ((-926 . -38) 37446) ((-227 . -729) 37411) ((-329 . -47) 37381) ((-40 . -421) 37353) ((-141 . -625) 37335) ((-1017 . -132) T) ((-827 . -1236) T) ((-176 . -936) T) ((-561 . -379) T) ((-726 . -658) 37280) ((-618 . -628) 37261) ((-354 . -414) T) ((-683 . -628) 37242) ((-323 . -235) NIL) ((-182 . -628) 37223) ((-162 . -628) 37204) ((-157 . -628) 37185) ((-155 . -628) 37166) ((-532 . -298) 37143) ((-1249 . -233) 37113) ((-1197 . -660) 37038) ((-888 . -102) T) ((-827 . -1056) 36865) ((-45 . -34) T) ((-693 . -102) T) ((-688 . -102) T) ((-674 . -102) T) ((-666 . -21) T) ((-666 . -25) T) ((-1120 . -501) 36849) ((-687 . -1236) T) ((-490 . -102) T) ((-251 . -102) 36799) ((-558 . -856) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-1105 . -909) 36730) ((-883 . -1118) T) ((-1191 . -526) 36677) ((-1080 . -729) 36664) ((-794 . -909) 36603) ((-743 . -1074) 36446) ((-792 . -909) 36428) ((-968 . -729) 36277) ((-1143 . -526) 36229) ((-1297 . -1118) T) ((-1296 . -1118) T) ((-466 . -909) 36204) ((-493 . -729) 36053) ((-67 . -625) 36035) ((-743 . -111) 35864) ((-959 . -501) 35848) ((-1298 . -660) 35808) ((-1193 . -1074) 35691) ((-829 . -738) T) ((-1192 . -1074) 35526) ((-1186 . -1074) 35316) ((-329 . -1236) T) ((-1144 . -1074) 35199) ((-1021 . -1240) T) ((-1112 . -102) 35177) ((-827 . -388) 35146) ((-591 . -625) 35128) ((-558 . -1118) T) ((-1021 . -568) T) ((-1193 . -111) 34997) ((-1192 . -111) 34818) ((-1186 . -111) 34587) ((-1144 . -111) 34456) ((-1123 . -1121) 34420) ((-390 . -860) T) ((-1278 . -625) 34402) ((-1271 . -625) 34384) ((-884 . -658) 34321) ((-1250 . -625) 34303) ((-1250 . -626) NIL) ((-246 . -298) 34280) ((-40 . -464) T) ((-227 . -174) T) ((-171 . -1118) T) ((-743 . -628) 34065) ((-706 . -148) T) ((-706 . -146) NIL) ((-608 . -625) 34047) ((-607 . -625) 34029) ((-1138 . -235) 34016) ((-913 . -1118) T) ((-853 . -1118) T) ((-820 . -1118) T) ((-273 . -916) 33962) ((-253 . -916) 33939) ((-781 . -1118) T) ((-689 . -1118) T) ((-670 . -864) 33923) ((-635 . -238) 33902) ((-827 . -914) 33834) ((-1241 . -379) T) ((-40 . -414) NIL) ((-118 . -238) NIL) ((-1193 . -628) 33716) ((-1138 . -673) T) ((-883 . -729) 33661) ((-258 . -501) 33645) ((-257 . -501) 33629) ((-1192 . -628) 33372) ((-1186 . -628) 33167) ((-724 . -651) 33115) ((-665 . -660) 33089) ((-1144 . -628) 32971) ((-305 . -34) T) ((-1138 . -113) T) ((-743 . -1067) T) ((-593 . -1293) 32958) ((-530 . -1293) 32935) ((-1259 . -1118) T) ((-1191 . -300) 32846) ((-1143 . -300) 32777) ((-1080 . -174) T) ((-299 . -1236) T) ((-867 . -1118) T) ((-968 . -174) 32688) ((-794 . -1262) 32672) ((-656 . -526) 32605) ((-77 . -625) 32587) ((-743 . -336) 32552) ((-1197 . -738) T) ((-583 . -1118) T) ((-493 . -174) 32463) ((-251 . -319) 32401) ((-1160 . -1130) T) ((-70 . -625) 32383) ((-1298 . -738) T) ((-1193 . -1067) T) ((-1192 . -1067) T) ((-337 . -102) 32333) ((-1186 . -1067) T) ((-1160 . -23) T) ((-1144 . -1067) T) ((-91 . -1139) 32317) ((-878 . -1130) T) ((-1193 . -239) 32276) ((-1192 . -249) 32255) ((-1192 . -239) 32207) ((-1186 . -239) 32094) ((-1186 . -249) 32073) ((-329 . -914) 31979) ((-878 . -23) T) ((-171 . -729) 31807) ((-419 . -1240) T) ((-1119 . -379) T) ((-1021 . -374) T) ((-882 . -464) T) ((-1042 . -148) T) ((-959 . -296) 31759) ((-323 . -862) NIL) ((-1270 . -658) 31641) ((-886 . -102) T) ((-1249 . -658) 31496) ((-724 . -25) T) ((-419 . -568) T) ((-724 . -21) T) ((-537 . -628) 31477) ((-365 . -148) 31459) ((-365 . -146) T) ((-1165 . -1118) 31437) ((-465 . -732) T) ((-75 . -625) 31419) ((-115 . -862) T) ((-251 . -292) 31403) ((-246 . -1074) 31324) ((-81 . -625) 31306) ((-747 . -379) 31259) ((-1195 . -840) T) ((-749 . -241) 31243) ((-1178 . -1236) T) ((-142 . -241) 31225) ((-246 . -111) 31141) ((-1259 . -729) 30970) ((-48 . -148) T) ((-883 . -174) T) ((-867 . -729) 30940) ((-496 . -1236) T) ((-968 . -526) 30887) ((-665 . -738) T) ((-583 . -729) 30874) ((-1052 . -1076) T) ((-706 . -238) NIL) ((-493 . -526) 30817) ((-959 . -19) 30801) ((-959 . -616) 30778) ((-1098 . -1236) 30649) ((-828 . -626) NIL) ((-828 . -625) 30631) ((-1230 . -1069) 30514) ((-1022 . -1074) 30464) ((-425 . -625) 30446) ((-258 . -296) 30423) ((-370 . -1236) 30402) ((-364 . -1236) 30381) ((-356 . -1236) 30360) ((-257 . -296) 30337) ((-499 . -925) NIL) ((-326 . -29) 30307) ((-108 . -1236) T) ((-1021 . -1130) T) ((-219 . -925) NIL) ((-1230 . -652) 30204) ((-930 . -1074) 30156) ((-1098 . -1056) 30052) ((-1022 . -111) 29986) ((-723 . -1069) 29951) ((-1021 . -23) T) ((-930 . -111) 29889) ((-749 . -707) 29873) ((-723 . -652) 29838) ((-273 . -233) 29822) ((-439 . -1074) 29806) ((-390 . -1076) T) ((-246 . -628) 29604) ((-706 . -1224) NIL) ((-499 . -660) 29554) ((-486 . -658) 29436) ((-108 . -897) 29418) ((-108 . -899) 29400) ((-706 . -1221) NIL) ((-219 . -660) 29350) ((-370 . -1056) 29334) ((-364 . -1056) 29318) ((-337 . -319) 29256) ((-356 . -1056) 29240) ((-227 . -300) T) ((-439 . -111) 29219) ((-60 . -625) 29151) ((-171 . -174) T) ((-1138 . -862) T) ((-108 . -1056) 29111) ((-905 . -1118) T) ((-848 . -1076) T) ((-839 . -1076) T) ((-706 . -35) NIL) ((-706 . -95) NIL) ((-323 . -1010) 29072) ((-185 . -102) T) ((-592 . -464) T) ((-576 . -464) T) ((-507 . -464) T) ((-419 . -374) T) ((-246 . -1067) 29050) ((-1168 . -34) T) ((-489 . -936) T) ((-1017 . -651) 28998) ((-258 . -616) 28975) ((-257 . -616) 28952) ((-1098 . -388) 28936) ((-883 . -526) 28844) ((-246 . -239) 28796) ((-1177 . -1236) T) ((-1022 . -628) 28746) ((-930 . -628) 28683) ((-836 . -625) 28665) ((-1309 . -1130) T) ((-1301 . -625) 28647) ((-1259 . -174) 28538) ((-439 . -628) 28507) ((-108 . -388) 28489) ((-108 . -349) 28471) ((-1080 . -300) T) ((-968 . -300) 28402) ((-811 . -379) 28381) ((-659 . -1236) T) ((-644 . -1236) T) ((-1309 . -23) T) ((-598 . -1069) 28356) ((-493 . -300) 28287) ((-583 . -174) T) ((-337 . -292) 28271) ((-365 . -238) T) ((-1230 . -102) T) ((-1217 . -1118) T) ((-1106 . -1118) T) ((-1094 . -1118) T) ((-598 . -652) 28246) ((-83 . -625) 28228) ((-1202 . -856) T) ((-1201 . -856) T) ((-723 . -102) T) ((-366 . -360) 28207) ((-620 . -1118) T) ((-363 . -360) 28186) ((-355 . -360) 28165) ((-487 . -1118) T) ((-1208 . -231) 28115) ((-273 . -260) 28077) ((-1160 . -132) T) ((-620 . -622) 28053) ((-1098 . -914) 27986) ((-1022 . -1067) T) ((-930 . -1067) T) ((-487 . -622) 27965) ((-1186 . -804) NIL) ((-1186 . -807) NIL) ((-1120 . -626) 27926) ((-1120 . -625) 27908) ((-491 . -231) 27858) ((-1022 . -249) T) ((-1022 . -239) T) ((-974 . -1118) 27808) ((-439 . -1067) T) ((-930 . -249) T) ((-878 . -132) T) ((-48 . -238) T) ((-711 . -464) T) ((-855 . -1130) 27787) ((-108 . -914) NIL) ((-1230 . -294) 27753) ((-1131 . -1236) T) ((-884 . -860) 27732) ((-1017 . -25) T) ((-921 . -738) T) ((-171 . -526) 27644) ((-1017 . -21) T) ((-921 . -485) T) ((-419 . -1130) T) ((-499 . -806) T) ((-499 . -803) T) ((-926 . -360) T) ((-499 . -738) T) ((-219 . -806) T) ((-219 . -803) T) ((-724 . -235) 27631) ((-219 . -738) T) ((-855 . -23) 27583) ((-1203 . -1118) T) ((-670 . -1069) 27567) ((-1202 . -1118) T) ((-536 . -628) 27548) ((-1201 . -1118) T) ((-329 . -317) 27527) ((-1053 . -241) 27473) ((-670 . -652) 27443) ((-419 . -23) T) ((-959 . -626) 27404) ((-959 . -625) 27316) ((-656 . -501) 27300) ((-45 . -1028) 27250) ((-1131 . -1056) 27077) ((-629 . -985) T) ((-503 . -102) T) ((-341 . -625) 27059) ((-1011 . -296) 27026) ((-605 . -663) 27008) ((-131 . -1118) T) ((-129 . -1118) T) ((-605 . -384) 26990) ((-354 . -1293) 26967) ((-451 . -625) 26949) ((-1259 . -526) 26896) ((-1105 . -1069) 26739) ((-1045 . -1236) T) ((-883 . -300) T) ((-1191 . -296) 26666) ((-1105 . -652) 26515) ((-1018 . -1013) 26499) ((-794 . -1069) 26322) ((-792 . -1069) 26165) ((-794 . -652) 25994) ((-792 . -652) 25843) ((-488 . -1236) T) ((-475 . -1236) T) ((-598 . -102) T) ((-473 . -1069) 25814) ((-466 . -1069) 25657) ((-676 . -658) 25626) ((-635 . -464) 25605) ((-473 . -652) 25576) ((-466 . -652) 25425) ((-366 . -658) 25362) ((-363 . -658) 25299) ((-355 . -658) 25236) ((-273 . -658) 25146) ((-253 . -658) 25056) ((-1301 . -393) 25028) ((-529 . -1118) T) ((-118 . -464) T) ((-1216 . -102) T) ((-1110 . -1118) 24998) ((-1052 . -1118) T) ((-1133 . -93) T) ((-906 . -862) T) ((-1278 . -111) 24867) ((-362 . -1240) T) ((-1278 . -1074) 24750) ((-1131 . -388) 24719) ((-1271 . -1074) 24554) ((-1250 . -1074) 24344) ((-1271 . -111) 24165) ((-1250 . -111) 23934) ((-1230 . -319) 23921) ((-1021 . -132) T) ((-926 . -658) 23871) ((-376 . -625) 23853) ((-362 . -568) T) ((-299 . -317) T) ((-608 . -1074) 23813) ((-607 . -1074) 23696) ((-593 . -1069) 23661) ((-530 . -1069) 23606) ((-372 . -1118) T) ((-332 . -1118) T) ((-258 . -625) 23567) ((-257 . -625) 23528) ((-593 . -652) 23493) ((-530 . -652) 23438) ((-706 . -421) 23405) ((-647 . -23) T) ((-619 . -23) T) ((-40 . -909) 23355) ((-670 . -102) T) ((-608 . -111) 23308) ((-607 . -111) 23177) ((-390 . -1118) T) ((-347 . -102) T) ((-171 . -300) 23088) ((-1249 . -860) 23041) ((-726 . -1076) T) ((-1165 . -526) 22974) ((-1209 . -847) 22958) ((-1131 . -914) 22890) ((-848 . -1118) T) ((-839 . -1118) T) ((-837 . -1118) T) ((-97 . -102) T) ((-145 . -862) T) ((-624 . -897) 22874) ((-110 . -1236) T) ((-1105 . -102) T) ((-1081 . -34) T) ((-794 . -102) T) ((-792 . -102) T) ((-1278 . -628) 22756) ((-1271 . -628) 22499) ((-473 . -102) T) ((-466 . -102) T) ((-1250 . -628) 22294) ((-246 . -807) 22273) ((-246 . -804) 22252) ((-661 . -102) T) ((-608 . -628) 22210) ((-607 . -628) 22092) ((-1259 . -300) 22003) ((-676 . -646) 21987) ((-188 . -625) 21969) ((-656 . -296) 21921) ((-1052 . -729) 21905) ((-583 . -300) T) ((-979 . -660) 21830) ((-1309 . -132) T) ((-747 . -660) 21790) ((-727 . -660) 21777) ((-284 . -102) T) ((-465 . -660) 21707) ((-50 . -102) T) ((-593 . -102) T) ((-530 . -102) T) ((-1278 . -1067) T) ((-1271 . -1067) T) ((-1250 . -1067) T) ((-519 . -658) 21689) ((-332 . -729) 21671) ((-1278 . -239) 21630) ((-1271 . -249) 21609) ((-1271 . -239) 21561) ((-1250 . -239) 21448) ((-1250 . -249) 21427) ((-1230 . -38) 21324) ((-608 . -1067) T) ((-607 . -1067) T) ((-1022 . -807) T) ((-1022 . -804) T) ((-989 . -807) T) ((-989 . -804) T) ((-884 . -1076) T) ((-109 . -625) 21306) ((-706 . -464) T) ((-390 . -729) 21271) ((-430 . -660) 21245) ((-882 . -881) 21229) ((-723 . -38) 21194) ((-607 . -239) 21153) ((-40 . -736) 21125) ((-362 . -339) 21102) ((-362 . -374) T) ((-1098 . -317) 21053) ((-304 . -1130) 20934) ((-1124 . -1236) T) ((-1017 . -235) 20907) ((-173 . -102) T) ((-1253 . -625) 20874) ((-855 . -132) 20826) ((-656 . -1274) 20810) ((-848 . -729) 20780) ((-839 . -729) 20750) ((-494 . -1236) T) ((-370 . -317) T) ((-364 . -317) T) ((-356 . -317) T) ((-656 . -616) 20727) ((-419 . -132) T) ((-532 . -678) 20711) ((-108 . -317) T) ((-304 . -23) 20594) ((-532 . -663) 20578) ((-706 . -414) NIL) ((-532 . -384) 20562) ((-301 . -625) 20544) ((-91 . -1118) 20522) ((-108 . -1040) T) ((-576 . -144) T) ((-1286 . -152) 20506) ((-494 . -1056) 20333) ((-1272 . -146) 20294) ((-1272 . -148) 20255) ((-1072 . -1236) T) ((-1011 . -625) 20237) ((-830 . -1236) T) ((-874 . -625) 20219) ((-828 . -1074) 20062) ((-1297 . -93) T) ((-1296 . -93) T) ((-1191 . -626) NIL) ((-1114 . -1118) T) ((-1108 . -1118) T) ((-1105 . -319) 20049) ((-1091 . -1118) T) ((-229 . -1236) T) ((-1084 . -1118) T) ((-1054 . -1118) T) ((-1037 . -1118) T) ((-794 . -319) 20036) ((-792 . -319) 20023) ((-1191 . -625) 20005) ((-828 . -111) 19834) ((-1143 . -625) 19816) ((-638 . -1118) T) ((-589 . -175) T) ((-541 . -175) T) ((-466 . -319) 19803) ((-495 . -1118) T) ((-1143 . -626) 19551) ((-1052 . -174) T) ((-959 . -298) 19528) ((-220 . -1118) T) ((-866 . -625) 19510) ((-620 . -526) 19293) ((-81 . -628) 19234) ((-830 . -1056) 19218) ((-487 . -526) 19010) ((-979 . -738) T) ((-747 . -738) T) ((-727 . -738) T) ((-362 . -1130) T) ((-1198 . -625) 18992) ((-225 . -102) T) ((-494 . -388) 18961) ((-527 . -1118) T) ((-522 . -1118) T) ((-520 . -1118) T) ((-811 . -660) 18935) ((-1042 . -464) T) ((-974 . -526) 18868) ((-362 . -23) T) ((-647 . -132) T) ((-619 . -132) T) ((-365 . -464) T) ((-246 . -379) 18847) ((-390 . -174) T) ((-1270 . -1076) T) ((-1249 . -1076) T) ((-227 . -1020) T) ((-828 . -628) 18584) ((-711 . -399) T) ((-430 . -738) T) ((-713 . -1240) T) ((-1160 . -651) 18532) ((-592 . -881) 18516) ((-1301 . -1074) 18500) ((-1178 . -1212) 18476) ((-713 . -568) T) ((-127 . -1118) 18454) ((-726 . -1118) T) ((-670 . -38) 18424) ((-494 . -914) 18356) ((-255 . -1118) T) ((-189 . -1118) T) ((-365 . -414) T) ((-326 . -148) 18335) ((-326 . -146) 18314) ((-129 . -526) NIL) ((-117 . -568) T) ((-323 . -148) 18270) ((-323 . -146) 18226) ((-48 . -464) T) ((-163 . -1118) T) ((-158 . -1118) T) ((-1178 . -107) 18173) ((-794 . -1170) 18151) ((-701 . -34) T) ((-1301 . -111) 18130) ((-562 . -34) T) ((-496 . -107) 18114) ((-258 . -298) 18091) ((-257 . -298) 18068) ((-1242 . -856) T) ((-883 . -296) 18019) ((-45 . -1236) T) ((-1230 . -916) 18000) ((-829 . -1236) T) ((-828 . -1067) T) ((-674 . -658) 17969) ((-1197 . -47) 17946) ((-828 . -336) 17908) ((-1105 . -38) 17757) ((-828 . -239) 17736) ((-794 . -38) 17565) ((-792 . -38) 17414) ((-1133 . -502) 17395) ((-466 . -38) 17244) ((-1133 . -625) 17210) ((-1136 . -102) T) ((-656 . -626) 17171) ((-656 . -625) 17083) ((-593 . -1170) T) ((-530 . -1170) T) ((-1165 . -501) 17067) ((-354 . -1069) 17012) ((-1222 . -1118) 16990) ((-1160 . -25) T) ((-1160 . -21) T) ((-354 . -652) 16935) ((-1301 . -628) 16884) ((-486 . -1076) T) ((-1242 . -1118) T) ((-1250 . -804) NIL) ((-1250 . -807) NIL) ((-1017 . -862) 16863) ((-850 . -1118) T) ((-831 . -625) 16845) ((-878 . -21) T) ((-878 . -25) T) ((-811 . -738) T) ((-176 . -1240) T) ((-593 . -38) 16810) ((-530 . -38) 16775) ((-398 . -625) 16757) ((-343 . -102) T) ((-334 . -625) 16739) ((-171 . -296) 16697) ((-63 . -1236) T) ((-112 . -102) T) ((-884 . -1118) T) ((-176 . -568) T) ((-726 . -729) 16667) ((-304 . -132) 16550) ((-227 . -625) 16532) ((-227 . -626) 16462) ((-1021 . -651) 16401) ((-1301 . -1067) T) ((-1138 . -148) T) ((-644 . -1212) 16376) ((-743 . -925) 16355) ((-605 . -34) T) ((-659 . -107) 16339) ((-644 . -107) 16285) ((-635 . -909) 16242) ((-1259 . -296) 16169) ((-743 . -660) 16058) ((-305 . -1236) T) ((-1197 . -1056) 15954) ((-959 . -630) 15931) ((-589 . -588) T) ((-589 . -539) T) ((-541 . -539) T) ((-118 . -909) NIL) ((-1186 . -925) NIL) ((-1080 . -626) 15846) ((-1080 . -625) 15828) ((-968 . -625) 15810) ((-725 . -502) 15760) ((-354 . -102) T) ((-258 . -1074) 15681) ((-257 . -1074) 15602) ((-406 . -102) T) ((-31 . -1118) T) ((-968 . -626) 15463) ((-725 . -625) 15398) ((-1299 . -1229) 15367) ((-493 . -625) 15349) ((-493 . -626) 15210) ((-273 . -423) 15194) ((-253 . -423) 15178) ((-323 . -238) NIL) ((-258 . -111) 15094) ((-257 . -111) 15010) ((-1193 . -660) 14935) ((-1192 . -660) 14832) ((-1186 . -660) 14684) ((-1144 . -660) 14609) ((-362 . -132) T) ((-82 . -453) T) ((-82 . -407) T) ((-1021 . -25) T) ((-1021 . -21) T) ((-885 . -1118) 14560) ((-40 . -1069) 14505) ((-884 . -729) 14457) ((-40 . -652) 14402) ((-390 . -300) T) ((-171 . -1020) 14353) ((-1105 . -916) 14288) ((-706 . -399) T) ((-1017 . -1015) 14272) ((-713 . -1130) T) ((-706 . -167) 14254) ((-794 . -916) 14197) ((-792 . -916) 14181) ((-1270 . -1118) T) ((-1249 . -1118) T) ((-1183 . -102) T) ((-326 . -1221) 14160) ((-326 . -1224) 14139) ((-466 . -916) 14116) ((-326 . -975) 14095) ((-135 . -1130) T) ((-117 . -1130) T) ((-665 . -1236) T) ((-614 . -1284) 14079) ((-713 . -23) T) ((-614 . -1118) 14029) ((-326 . -95) 14008) ((-91 . -526) 13941) ((-176 . -374) T) ((-258 . -628) 13739) ((-257 . -628) 13537) ((-326 . -35) 13516) ((-620 . -501) 13450) ((-135 . -23) T) ((-117 . -23) T) ((-982 . -102) T) ((-730 . -1118) T) ((-487 . -501) 13387) ((-419 . -651) 13335) ((-665 . -1056) 13231) ((-974 . -501) 13215) ((-366 . -1076) T) ((-363 . -1076) T) ((-355 . -1076) T) ((-273 . -1076) T) ((-253 . -1076) T) ((-883 . -626) NIL) ((-883 . -625) 13197) ((-1297 . -502) 13178) ((-1296 . -502) 13159) ((-1309 . -21) T) ((-1297 . -625) 13125) ((-1296 . -625) 13091) ((-583 . -1020) T) ((-743 . -738) T) ((-1309 . -25) T) ((-258 . -1067) 13069) ((-257 . -1067) 13047) ((-72 . -1236) T) ((-1160 . -235) 13020) ((-258 . -239) 12972) ((-257 . -239) 12924) ((-1138 . -238) T) ((-40 . -102) T) ((-926 . -1076) T) ((-706 . -909) NIL) ((-1200 . -102) T) ((-129 . -501) 12906) ((-1193 . -738) T) ((-1192 . -738) T) ((-1186 . -738) T) ((-1186 . -803) NIL) ((-1186 . -806) NIL) ((-970 . -102) T) ((-937 . -102) T) ((-882 . -1069) 12893) ((-1144 . -738) T) ((-783 . -102) T) ((-684 . -102) T) ((-882 . -652) 12880) ((-558 . -625) 12862) ((-486 . -1118) T) ((-350 . -1130) T) ((-176 . -1130) T) ((-329 . -936) 12841) ((-1270 . -729) 12682) ((-884 . -174) T) ((-1249 . -729) 12496) ((-855 . -21) 12448) ((-855 . -25) 12400) ((-251 . -1167) 12384) ((-127 . -526) 12317) ((-419 . -25) T) ((-419 . -21) T) ((-350 . -23) T) ((-171 . -626) 12083) ((-171 . -625) 12065) ((-176 . -23) T) ((-656 . -298) 12042) ((-532 . -34) T) ((-913 . -625) 12024) ((-89 . -1236) T) ((-853 . -625) 12006) ((-820 . -625) 11988) ((-781 . -625) 11970) ((-689 . -625) 11952) ((-246 . -660) 11785) ((-629 . -113) T) ((-1195 . -1118) T) ((-1191 . -1074) 11608) ((-1168 . -1236) T) ((-1143 . -1074) 11451) ((-866 . -1074) 11435) ((-1253 . -630) 11419) ((-1191 . -111) 11228) ((-1143 . -111) 11057) ((-866 . -111) 11036) ((-1243 . -862) T) ((-1259 . -626) NIL) ((-1259 . -625) 11018) ((-354 . -1170) T) ((-867 . -625) 11000) ((-1094 . -296) 10979) ((-80 . -1236) T) ((-921 . -1236) T) ((-1022 . -925) NIL) ((-1230 . -658) 10889) ((-620 . -296) 10865) ((-1222 . -526) 10798) ((-499 . -1236) T) ((-583 . -625) 10780) ((-487 . -296) 10759) ((-1105 . -233) 10743) ((-529 . -93) T) ((-1022 . -660) 10693) ((-219 . -1236) T) ((-1021 . -235) 10659) ((-974 . -296) 10611) ((-299 . -936) T) ((-829 . -317) 10590) ((-882 . -102) T) ((-794 . -233) 10574) ((-930 . -660) 10526) ((-723 . -658) 10476) ((-706 . -736) 10443) ((-647 . -21) T) ((-647 . -25) T) ((-619 . -21) T) ((-559 . -102) T) ((-354 . -38) 10408) ((-499 . -897) 10390) ((-499 . -899) 10372) ((-486 . -729) 10213) ((-219 . -897) 10195) ((-64 . -1236) T) ((-219 . -899) 10177) ((-619 . -25) T) ((-439 . -660) 10151) ((-1191 . -628) 9920) ((-499 . -1056) 9880) ((-884 . -526) 9792) ((-1143 . -628) 9584) ((-866 . -628) 9502) ((-219 . -1056) 9462) ((-246 . -34) T) ((-1018 . -1118) 9440) ((-592 . -1069) 9427) ((-576 . -1069) 9414) ((-507 . -1069) 9379) ((-1270 . -174) 9310) ((-1249 . -174) 9241) ((-592 . -652) 9228) ((-576 . -652) 9215) ((-507 . -652) 9180) ((-724 . -146) 9159) ((-724 . -148) 9138) ((-713 . -132) T) ((-137 . -477) 9115) ((-1165 . -625) 9047) ((-670 . -668) 9031) ((-129 . -296) 8981) ((-117 . -132) T) ((-489 . -1240) T) ((-620 . -616) 8957) ((-487 . -616) 8936) ((-347 . -346) 8905) ((-609 . -1118) T) ((-597 . -1118) T) ((-548 . -1118) T) ((-489 . -568) T) ((-1191 . -1067) T) ((-1143 . -1067) T) ((-866 . -1067) T) ((-246 . -806) 8884) ((-246 . -805) 8863) ((-1191 . -336) 8840) ((-246 . -738) 8818) ((-974 . -19) 8802) ((-499 . -388) 8784) ((-499 . -349) 8766) ((-1143 . -336) 8738) ((-365 . -1293) 8715) ((-219 . -388) 8697) ((-219 . -349) 8679) ((-974 . -616) 8656) ((-1191 . -239) T) ((-1282 . -1118) T) ((-676 . -1118) T) ((-657 . -1118) T) ((-1208 . -1118) T) ((-1105 . -260) 8593) ((-598 . -658) 8553) ((-366 . -1118) T) ((-363 . -1118) T) ((-355 . -1118) T) ((-273 . -1118) T) ((-253 . -1118) T) ((-84 . -1236) T) ((-128 . -102) 8531) ((-122 . -102) 8509) ((-1249 . -526) 8369) ((-1208 . -622) 8348) ((-1159 . -1118) T) ((-1133 . -628) 8329) ((-1098 . -936) 8280) ((-491 . -1118) T) ((-1022 . -806) T) ((-1022 . -803) T) ((-491 . -622) 8259) ((-258 . -807) 8238) ((-258 . -804) 8217) ((-257 . -807) 8196) ((-40 . -1170) NIL) ((-257 . -804) 8175) ((-1022 . -738) T) ((-129 . -19) 8157) ((-989 . -806) T) ((-711 . -1069) 8122) ((-930 . -738) T) ((-926 . -1118) T) ((-905 . -625) 8104) ((-129 . -616) 8079) ((-711 . -652) 8044) ((-91 . -501) 8028) ((-499 . -914) NIL) ((-884 . -300) T) ((-227 . -1074) 7993) ((-848 . -296) 7972) ((-219 . -914) NIL) ((-845 . -1130) 7951) ((-59 . -1118) 7901) ((-531 . -1118) 7879) ((-528 . -1118) 7829) ((-509 . -1118) 7807) ((-508 . -1118) 7757) ((-592 . -102) T) ((-576 . -102) T) ((-507 . -102) T) ((-486 . -174) 7688) ((-370 . -936) T) ((-364 . -936) T) ((-356 . -936) T) ((-227 . -111) 7644) ((-845 . -23) 7596) ((-439 . -738) T) ((-108 . -936) T) ((-40 . -38) 7541) ((-108 . -832) T) ((-593 . -360) T) ((-530 . -360) T) ((-670 . -658) 7500) ((-326 . -464) 7479) ((-323 . -464) T) ((-614 . -526) 7412) ((-419 . -235) 7385) ((-350 . -132) T) ((-176 . -132) T) ((-304 . -25) 7249) ((-304 . -21) 7132) ((-45 . -1212) 7111) ((-66 . -625) 7093) ((-55 . -102) T) ((-347 . -658) 7075) ((-1287 . -102) T) ((-1286 . -102) 7025) ((-45 . -107) 6975) ((-831 . -628) 6959) ((-1278 . -660) 6884) ((-1271 . -660) 6781) ((-1250 . -660) 6633) ((-1250 . -925) NIL) ((-1217 . -625) 6615) ((-1120 . -437) 6599) ((-1120 . -379) 6578) ((-398 . -628) 6562) ((-334 . -628) 6546) ((-1209 . -102) T) ((-1114 . -93) T) ((-1081 . -1236) T) ((-1105 . -658) 6456) ((-1080 . -1074) 6443) ((-1080 . -111) 6428) ((-968 . -1074) 6271) ((-968 . -111) 6100) ((-794 . -658) 6010) ((-792 . -658) 5920) ((-635 . -1069) 5907) ((-676 . -729) 5891) ((-635 . -652) 5878) ((-493 . -1074) 5721) ((-489 . -374) T) ((-473 . -658) 5677) ((-466 . -658) 5587) ((-227 . -628) 5537) ((-366 . -729) 5489) ((-363 . -729) 5441) ((-118 . -1069) 5386) ((-355 . -729) 5338) ((-273 . -729) 5187) ((-253 . -729) 5036) ((-1108 . -93) T) ((-1091 . -93) T) ((-118 . -652) 4981) ((-1084 . -93) T) ((-959 . -663) 4965) ((-1075 . -1118) 4943) ((-493 . -111) 4772) ((-1054 . -93) T) ((-1037 . -93) T) ((-959 . -384) 4756) ((-254 . -102) T) ((-979 . -47) 4735) ((-74 . -625) 4717) ((-724 . -238) T) ((-722 . -102) T) ((-711 . -102) T) ((-1 . -1118) T) ((-633 . -1130) T) ((-1106 . -625) 4699) ((-638 . -93) T) ((-1094 . -625) 4681) ((-926 . -729) 4646) ((-127 . -501) 4630) ((-495 . -93) T) ((-633 . -23) T) ((-402 . -23) T) ((-87 . -1236) T) ((-220 . -93) T) ((-620 . -625) 4612) ((-620 . -626) NIL) ((-487 . -626) NIL) ((-487 . -625) 4594) ((-362 . -25) T) ((-362 . -21) T) ((-50 . -658) 4553) ((-523 . -1118) T) ((-519 . -1118) T) ((-128 . -319) 4491) ((-122 . -319) 4429) ((-608 . -660) 4403) ((-607 . -660) 4328) ((-593 . -658) 4278) ((-227 . -1067) T) ((-530 . -658) 4208) ((-390 . -1020) T) ((-227 . -249) T) ((-227 . -239) T) ((-1080 . -628) 4180) ((-1080 . -630) 4161) ((-974 . -626) 4122) ((-974 . -625) 4034) ((-968 . -628) 3823) ((-882 . -38) 3810) ((-725 . -628) 3760) ((-1270 . -300) 3711) ((-1249 . -300) 3662) ((-493 . -628) 3447) ((-1138 . -464) T) ((-514 . -862) T) ((-326 . -1157) 3426) ((-1017 . -148) 3405) ((-1017 . -146) 3384) ((-507 . -319) 3371) ((-305 . -1212) 3350) ((-1203 . -625) 3332) ((-1202 . -625) 3314) ((-1201 . -625) 3296) ((-883 . -1074) 3241) ((-489 . -1130) T) ((-140 . -847) 3223) ((-115 . -847) 3204) ((-635 . -102) T) ((-1222 . -501) 3188) ((-258 . -379) 3167) ((-257 . -379) 3146) ((-1080 . -1067) T) ((-305 . -107) 3096) ((-131 . -625) 3078) ((-129 . -626) NIL) ((-129 . -625) 3022) ((-118 . -102) T) ((-968 . -1067) T) ((-883 . -111) 2951) ((-489 . -23) T) ((-465 . -1236) T) ((-493 . -1067) T) ((-1080 . -239) T) ((-968 . -336) 2920) ((-40 . -916) 2872) ((-493 . -336) 2829) ((-366 . -174) T) ((-363 . -174) T) ((-355 . -174) T) ((-273 . -174) 2740) ((-253 . -174) 2651) ((-979 . -1056) 2547) ((-529 . -502) 2528) ((-747 . -1056) 2499) ((-529 . -625) 2465) ((-430 . -1236) 2354) ((-1123 . -102) T) ((-1110 . -625) 2313) ((-1052 . -625) 2295) ((-706 . -1069) 2245) ((-1299 . -152) 2229) ((-1297 . -628) 2210) ((-1296 . -628) 2191) ((-1291 . -625) 2173) ((-1278 . -738) T) ((-706 . -652) 2123) ((-1271 . -738) T) ((-1250 . -803) NIL) ((-1250 . -806) NIL) ((-171 . -1074) 2033) ((-926 . -174) T) ((-883 . -628) 1963) ((-1250 . -738) T) ((-1021 . -353) 1937) ((-225 . -658) 1889) ((-1018 . -526) 1822) ((-855 . -862) 1801) ((-576 . -1170) T) ((-486 . -300) 1752) ((-608 . -738) T) ((-372 . -625) 1734) ((-332 . -625) 1716) ((-430 . -1056) 1612) ((-607 . -738) T) ((-419 . -862) 1563) ((-171 . -111) 1459) ((-845 . -132) 1411) ((-749 . -152) 1395) ((-1286 . -319) 1333) ((-499 . -317) T) ((-390 . -625) 1300) ((-532 . -1028) 1284) ((-390 . -626) 1198) ((-219 . -317) T) ((-142 . -152) 1180) ((-726 . -296) 1159) ((-499 . -1040) T) ((-592 . -38) 1146) ((-576 . -38) 1133) ((-507 . -38) 1098) ((-219 . -1040) T) ((-883 . -1067) T) ((-848 . -625) 1080) ((-839 . -625) 1062) ((-837 . -625) 1044) ((-828 . -925) 1023) ((-1310 . -1130) T) ((-1259 . -1074) 846) ((-867 . -1074) 830) ((-883 . -249) T) ((-883 . -239) NIL) ((-701 . -1236) T) ((-1310 . -23) T) ((-828 . -660) 719) ((-562 . -1236) T) ((-430 . -349) 703) ((-583 . -1074) 690) ((-1259 . -111) 499) ((-713 . -651) 481) ((-867 . -111) 460) ((-392 . -23) T) ((-171 . -628) 238) ((-1208 . -526) 30) ((-888 . -1118) T) ((-693 . -1118) T) ((-688 . -1118) T) ((-674 . -1118) T))
\ No newline at end of file +(-3765 (|has| |#1| (-861)) (|has| |#1| (-1117))) +((($ $) . T) ((#0=(-875 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-238)) ((|#2| |#1|) |has| |#1| (-238)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-489 . -1117) T) ((-272 . -525) 202888) ((-252 . -525) 202831) ((-250 . -1117) 202781) ((-582 . -111) 202766) ((-542 . -23) T) ((-139 . -1117) T) ((-138 . -1117) T) ((-118 . -318) 202723) ((-134 . -1117) T) ((-1016 . -237) 202674) ((-810 . -1235) 202643) ((-490 . -525) 202435) ((-688 . -627) 202419) ((-705 . -102) T) ((-1158 . -525) 202338) ((-401 . -132) T) ((-1298 . -993) 202307) ((-1041 . -1068) 202244) ((-31 . -93) T) ((-613 . -500) 202228) ((-1041 . -651) 202165) ((-632 . -132) T) ((-830 . -857) T) ((-534 . -57) 202115) ((-530 . -525) 202048) ((-361 . -234) 202035) ((-364 . -1068) 201980) ((-59 . -525) 201913) ((-527 . -525) 201846) ((-429 . -913) 201805) ((-171 . -1066) T) ((-508 . -525) 201738) ((-507 . -525) 201671) ((-364 . -651) 201616) ((-810 . -1055) 201396) ((-710 . -38) 201361) ((-1258 . -627) 201109) ((-353 . -359) T) ((-1111 . -1110) 201093) ((-1111 . -1117) 201071) ((-866 . -627) 200968) ((-171 . -248) 200919) ((-171 . -238) 200870) ((-1111 . -1112) 200828) ((-883 . -295) 200786) ((-227 . -806) T) ((-227 . -803) T) ((-705 . -293) NIL) ((-582 . -627) 200758) ((-1167 . -1211) 200737) ((-418 . -1009) 200721) ((-48 . -1068) 200686) ((-712 . -21) T) ((-712 . -25) T) ((-48 . -651) 200651) ((-1300 . -659) 200625) ((-1167 . -107) 200575) ((-325 . -161) 200554) ((-325 . -144) 200533) ((-117 . -21) T) ((-40 . -232) 200510) ((-40 . -271) 200487) ((-135 . -25) T) ((-117 . -25) T) ((-619 . -297) 200463) ((-486 . -297) 200442) ((-1258 . -335) 200419) ((-1258 . -1066) T) ((-866 . -1066) T) ((-810 . -348) 200403) ((-140 . -187) T) ((-118 . -1169) NIL) ((-91 . -624) 200335) ((-488 . -132) T) ((-1258 . -238) T) ((-1113 . -501) 200316) ((-1113 . -624) 200282) ((-1107 . -501) 200263) ((-1107 . -624) 200229) ((-604 . -1235) T) ((-1090 . -501) 200210) ((-582 . -1066) T) ((-1090 . -624) 200176) ((-673 . -728) 200160) ((-1083 . -501) 200141) ((-1083 . -624) 200107) ((-973 . -297) 200084) ((-60 . -34) T) ((-1079 . -806) T) ((-1079 . -803) T) ((-1053 . -501) 200065) ((-1036 . -501) 200046) ((-827 . -737) T) ((-742 . -47) 200011) ((-634 . -38) 199998) ((-365 . -299) T) ((-362 . -299) T) ((-354 . -299) T) ((-272 . -299) 199929) ((-252 . -299) 199860) ((-1053 . -624) 199826) ((-1041 . -102) T) ((-1036 . -624) 199792) ((-637 . -501) 199773) ((-424 . -737) T) ((-118 . -38) 199718) ((-494 . -501) 199699) ((-637 . -624) 199665) ((-424 . -484) T) ((-220 . -501) 199646) ((-494 . -624) 199612) ((-364 . -102) T) ((-220 . -624) 199578) ((-1229 . -1075) T) ((-353 . -657) 199508) ((-722 . -1075) T) ((-1192 . -47) 199485) ((-1191 . -47) 199455) ((-1185 . -47) 199432) ((-129 . -297) 199407) ((-1052 . -152) 199353) ((-925 . -299) T) ((-1143 . -47) 199325) ((-705 . -318) NIL) ((-526 . -624) 199307) ((-521 . -624) 199289) ((-519 . -624) 199271) ((-336 . -1117) 199221) ((-325 . -908) 199185) ((-322 . -908) NIL) ((-723 . -463) 199116) ((-48 . -102) T) ((-1269 . -295) 199074) ((-1248 . -295) 198974) ((-655 . -677) 198958) ((-655 . -662) 198942) ((-349 . -21) T) ((-349 . -25) T) ((-40 . -359) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-655 . -383) 198926) ((-616 . -501) 198908) ((-613 . -295) 198860) ((-616 . -624) 198827) ((-399 . -102) T) ((-1137 . -144) T) ((-127 . -624) 198759) ((-885 . -1117) T) ((-669 . -422) 198743) ((-742 . -1235) T) ((-725 . -624) 198725) ((-254 . -624) 198692) ((-189 . -624) 198674) ((-163 . -624) 198656) ((-158 . -624) 198638) ((-1300 . -737) T) ((-1119 . -34) T) ((-882 . -806) NIL) ((-882 . -803) NIL) ((-869 . -861) T) ((-742 . -898) NIL) ((-1309 . -132) T) ((-391 . -132) T) ((-904 . -627) 198606) ((-919 . -102) T) ((-742 . -1055) 198482) ((-1192 . -1235) T) ((-1191 . -1235) T) ((-542 . -132) T) ((-1185 . -1235) T) ((-1104 . -422) 198466) ((-1017 . -500) 198450) ((-118 . -411) 198427) ((-1143 . -1235) T) ((-793 . -422) 198411) ((-791 . -422) 198395) ((-958 . -34) T) ((-705 . -1169) NIL) ((-257 . -659) 198215) ((-256 . -659) 198022) ((-828 . -935) 198001) ((-465 . -422) 197985) ((-613 . -19) 197969) ((-1163 . -1228) 197938) ((-1185 . -898) NIL) ((-1185 . -896) 197890) ((-613 . -615) 197867) ((-1221 . -624) 197799) ((-1193 . -624) 197781) ((-62 . -406) T) ((-1191 . -1055) 197716) ((-1185 . -1055) 197682) ((-705 . -38) 197632) ((-40 . -657) 197562) ((-485 . -295) 197520) ((-1241 . -624) 197502) ((-742 . -387) 197486) ((-849 . -624) 197468) ((-669 . -1075) T) ((-634 . -915) 197391) ((-1269 . -1019) 197357) ((-1248 . -1019) 197323) ((-255 . -1235) T) ((-1105 . -627) 197307) ((-1080 . -1211) 197282) ((-1093 . -627) 197259) ((-883 . -625) 197066) ((-883 . -624) 197048) ((-118 . -915) NIL) ((-712 . -234) 197035) ((-1207 . -500) 196972) ((-429 . -1039) 196950) ((-48 . -318) 196937) ((-1080 . -107) 196883) ((-490 . -500) 196820) ((-531 . -1235) T) ((-1185 . -348) 196772) ((-1158 . -500) 196743) ((-1185 . -387) 196695) ((-1104 . -1075) T) ((-448 . -102) T) ((-185 . -1117) T) ((-257 . -34) T) ((-256 . -34) T) ((-793 . -1075) T) ((-791 . -1075) T) ((-742 . -913) 196672) ((-465 . -1075) T) ((-59 . -500) 196656) ((-1051 . -1073) 196630) ((-530 . -500) 196614) ((-527 . -500) 196598) ((-508 . -500) 196582) ((-507 . -500) 196566) ((-250 . -525) 196499) ((-1051 . -111) 196466) ((-1192 . -913) 196379) ((-1191 . -913) 196285) ((-681 . -1129) T) ((-1185 . -913) 196118) ((-656 . -93) T) ((-1143 . -913) 196102) ((-364 . -1169) T) ((-331 . -1073) 196084) ((-31 . -501) 196065) ((-257 . -805) 196044) ((-257 . -804) 196023) ((-256 . -805) 196002) ((-256 . -804) 195981) ((-31 . -624) 195947) ((-50 . -1075) T) ((-257 . -737) 195925) ((-256 . -737) 195903) ((-1229 . -1117) T) ((-681 . -23) T) ((-592 . -1075) T) ((-529 . -1075) T) ((-389 . -1073) 195868) ((-331 . -111) 195843) ((-73 . -393) T) ((-73 . -406) T) ((-1041 . -38) 195780) ((-705 . -411) 195762) ((-99 . -102) T) ((-722 . -1117) T) ((-1314 . -1068) 195749) ((-1020 . -146) 195721) ((-1020 . -148) 195693) ((-881 . -657) 195665) ((-389 . -111) 195621) ((-328 . -1239) 195600) ((-485 . -1019) 195566) ((-364 . -38) 195531) ((-40 . -380) 195503) ((-884 . -624) 195375) ((-128 . -126) 195359) ((-122 . -126) 195343) ((-847 . -1073) 195313) ((-844 . -21) 195265) ((-838 . -1073) 195249) ((-844 . -25) 195201) ((-328 . -567) 195152) ((-528 . -627) 195133) ((-575 . -839) T) ((-245 . -1235) T) ((-1051 . -627) 195102) ((-847 . -111) 195067) ((-838 . -111) 195046) ((-1269 . -624) 195028) ((-1248 . -624) 195010) ((-1248 . -625) 194681) ((-1190 . -924) 194660) ((-1142 . -924) 194639) ((-48 . -38) 194604) ((-1307 . -1129) T) ((-547 . -295) 194560) ((-613 . -624) 194472) ((-613 . -625) 194433) ((-1305 . -1129) T) ((-371 . -627) 194417) ((-331 . -627) 194401) ((-1159 . -237) 194352) ((-245 . -1055) 194179) ((-1190 . -659) 194068) ((-1142 . -659) 193957) ((-865 . -659) 193931) ((-729 . -624) 193913) ((-557 . -378) T) ((-1307 . -23) T) ((-705 . -915) NIL) ((-1305 . -23) T) ((-502 . -1117) T) ((-389 . -627) 193863) ((-389 . -629) 193845) ((-1051 . -1066) T) ((-876 . -102) T) ((-1207 . -295) 193824) ((-171 . -378) 193775) ((-1021 . -1235) T) ((-847 . -627) 193729) ((-838 . -627) 193684) ((-44 . -23) T) ((-490 . -295) 193663) ((-597 . -1117) T) ((-1314 . -102) T) ((-1163 . -1126) 193632) ((-1121 . -1120) 193584) ((-401 . -21) T) ((-401 . -25) T) ((-153 . -1129) T) ((-1229 . -728) 193481) ((-1215 . -1117) T) ((-1021 . -896) 193463) ((-1021 . -898) 193445) ((-634 . -232) 193429) ((-634 . -271) 193413) ((-632 . -21) T) ((-298 . -567) T) ((-632 . -25) T) ((-1021 . -1055) 193373) ((-722 . -728) 193338) ((-245 . -387) 193307) ((-389 . -1066) T) ((-225 . -1075) T) ((-118 . -271) 193284) ((-118 . -232) 193261) ((-59 . -295) 193213) ((-153 . -23) T) ((-527 . -295) 193165) ((-336 . -525) 193098) ((-507 . -295) 193050) ((-389 . -248) T) ((-389 . -238) T) ((-847 . -1066) T) ((-838 . -1066) T) ((-723 . -964) 193019) ((-712 . -861) T) ((-485 . -624) 193001) ((-1271 . -1068) 192906) ((-591 . -657) 192878) ((-575 . -657) 192850) ((-506 . -657) 192800) ((-838 . -238) 192779) ((-135 . -861) T) ((-1271 . -651) 192671) ((-669 . -1117) T) ((-1207 . -615) 192650) ((-561 . -1211) 192629) ((-346 . -1117) T) ((-328 . -373) 192608) ((-418 . -148) 192587) ((-418 . -146) 192566) ((-979 . -1129) 192465) ((-245 . -913) 192397) ((-826 . -1129) 192375) ((-665 . -863) 192359) ((-490 . -615) 192338) ((-561 . -107) 192288) ((-1021 . -387) 192270) ((-1021 . -348) 192252) ((-1194 . -624) 192234) ((-97 . -1117) T) ((-979 . -23) 192045) ((-488 . -21) T) ((-488 . -25) T) ((-826 . -23) 191897) ((-1194 . -625) 191819) ((-59 . -19) 191803) ((-1190 . -737) T) ((-1142 . -737) T) ((-1104 . -1117) T) ((-527 . -19) 191787) ((-507 . -19) 191771) ((-59 . -615) 191748) ((-1020 . -237) 191685) ((-916 . -102) 191663) ((-865 . -737) T) ((-793 . -1117) T) ((-527 . -615) 191640) ((-507 . -615) 191617) ((-791 . -1117) T) ((-791 . -1082) 191584) ((-472 . -1117) T) ((-465 . -1117) T) ((-597 . -728) 191559) ((-660 . -1117) T) ((-1277 . -47) 191536) ((-1271 . -102) T) ((-1270 . -47) 191506) ((-1249 . -47) 191483) ((-1229 . -174) 191434) ((-1191 . -316) 191413) ((-1185 . -316) 191392) ((-1113 . -627) 191373) ((-1107 . -627) 191354) ((-1097 . -567) 191305) ((-1097 . -1239) 191256) ((-1021 . -913) NIL) ((-1090 . -627) 191237) ((-681 . -132) T) ((-638 . -1129) T) ((-1083 . -627) 191218) ((-1053 . -627) 191199) ((-1036 . -627) 191180) ((-725 . -1073) 191150) ((-710 . -657) 191100) ((-283 . -1117) T) ((-85 . -452) T) ((-85 . -406) T) ((-723 . -908) 191003) ((-722 . -174) T) ((-50 . -1117) T) ((-606 . -47) 190980) ((-227 . -659) 190945) ((-592 . -1117) T) ((-529 . -1117) T) ((-498 . -831) T) ((-498 . -935) T) ((-369 . -1239) T) ((-363 . -1239) T) ((-355 . -1239) T) ((-328 . -1129) T) ((-325 . -1068) 190855) ((-322 . -1068) 190784) ((-108 . -1239) T) ((-637 . -627) 190765) ((-369 . -567) T) ((-219 . -935) T) ((-219 . -831) T) ((-325 . -651) 190675) ((-322 . -651) 190604) ((-363 . -567) T) ((-355 . -567) T) ((-494 . -627) 190585) ((-108 . -567) T) ((-669 . -728) 190555) ((-1185 . -1039) NIL) ((-220 . -627) 190536) ((-328 . -23) T) ((-67 . -1235) T) ((-1017 . -624) 190468) ((-705 . -271) 190450) ((-705 . -232) 190432) ((-725 . -111) 190397) ((-655 . -34) T) ((-250 . -500) 190381) ((-1314 . -1169) T) ((-1309 . -21) T) ((-1309 . -25) T) ((-1307 . -132) T) ((-1119 . -1115) 190365) ((-173 . -1117) T) ((-1305 . -132) T) ((-1298 . -102) T) ((-1281 . -624) 190331) ((-1277 . -1235) T) ((-1270 . -1235) T) ((-967 . -924) 190310) ((-1270 . -1055) 190245) ((-1249 . -1235) T) ((-1249 . -898) NIL) ((-526 . -627) 190229) ((-1249 . -896) 190181) ((-1249 . -1055) 190147) ((-1229 . -525) 190114) ((-492 . -924) 190093) ((-1207 . -625) NIL) ((-1207 . -624) 190075) ((-1104 . -728) 189924) ((-1079 . -659) 189896) ((-967 . -659) 189785) ((-608 . -501) 189766) ((-596 . -501) 189747) ((-793 . -728) 189576) ((-608 . -624) 189542) ((-596 . -624) 189508) ((-547 . -624) 189490) ((-547 . -625) 189471) ((-791 . -728) 189320) ((-1094 . -102) T) ((-391 . -25) T) ((-634 . -657) 189292) ((-391 . -21) T) ((-492 . -659) 189181) ((-472 . -728) 189152) ((-465 . -728) 189001) ((-1004 . -102) T) ((-1159 . -1140) 188946) ((-1063 . -1228) 188875) ((-916 . -318) 188813) ((-748 . -102) T) ((-118 . -657) 188743) ((-616 . -627) 188725) ((-887 . -93) T) ((-725 . -627) 188679) ((-542 . -25) T) ((-692 . -93) T) ((-687 . -93) T) ((-675 . -624) 188661) ((-656 . -501) 188642) ((-142 . -102) T) ((-44 . -132) T) ((-656 . -624) 188595) ((-606 . -1235) T) ((-353 . -1075) T) ((-298 . -1129) T) ((-489 . -93) T) ((-418 . -237) 188546) ((-365 . -624) 188528) ((-362 . -624) 188510) ((-354 . -624) 188492) ((-272 . -625) 188240) ((-272 . -624) 188222) ((-252 . -624) 188204) ((-252 . -625) 188065) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1158 . -624) 188047) ((-1137 . -651) 188034) ((-1137 . -1068) 188021) ((-830 . -737) T) ((-830 . -868) T) ((-613 . -297) 187998) ((-592 . -728) 187963) ((-490 . -625) NIL) ((-490 . -624) 187945) ((-529 . -728) 187890) ((-325 . -102) T) ((-322 . -102) T) ((-298 . -23) T) ((-153 . -132) T) ((-925 . -624) 187872) ((-925 . -625) 187854) ((-397 . -737) T) ((-883 . -1073) 187806) ((-883 . -111) 187744) ((-725 . -1066) T) ((-723 . -1261) 187728) ((-705 . -359) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-530 . -624) 187660) ((-389 . -806) T) ((-225 . -1117) T) ((-169 . -1235) T) ((-389 . -803) T) ((-227 . -805) T) ((-227 . -802) T) ((-59 . -625) 187621) ((-59 . -624) 187533) ((-227 . -737) T) ((-527 . -625) 187494) ((-527 . -624) 187406) ((-508 . -624) 187338) ((-507 . -625) 187299) ((-507 . -624) 187211) ((-1097 . -373) 187162) ((-40 . -422) 187139) ((-77 . -1235) T) ((-882 . -924) NIL) ((-369 . -338) 187123) ((-369 . -373) T) ((-363 . -338) 187107) ((-363 . -373) T) ((-355 . -338) 187091) ((-355 . -373) T) ((-325 . -293) 187070) ((-108 . -373) T) ((-70 . -1235) T) ((-1249 . -348) 187022) ((-882 . -659) 186967) ((-1249 . -387) 186919) ((-979 . -132) 186774) ((-826 . -132) 186645) ((-973 . -662) 186629) ((-1104 . -174) 186540) ((-973 . -383) 186524) ((-1079 . -805) T) ((-1079 . -802) T) ((-883 . -627) 186422) ((-793 . -174) 186313) ((-791 . -174) 186224) ((-827 . -47) 186186) ((-1079 . -737) T) ((-336 . -500) 186170) ((-967 . -737) T) ((-1298 . -318) 186108) ((-1277 . -913) 186021) ((-465 . -174) 185932) ((-250 . -295) 185884) ((-1270 . -913) 185790) ((-1269 . -1073) 185625) ((-1249 . -913) 185458) ((-492 . -737) T) ((-1248 . -1073) 185266) ((-1229 . -299) 185245) ((-1204 . -1235) T) ((-1201 . -378) T) ((-1200 . -378) T) ((-1163 . -152) 185229) ((-1137 . -102) T) ((-1135 . -1117) T) ((-1097 . -23) T) ((-1097 . -1129) T) ((-1092 . -102) T) ((-1074 . -624) 185196) ((-1020 . -420) 185168) ((-942 . -970) T) ((-748 . -318) 185106) ((-75 . -1235) T) ((-675 . -392) 185078) ((-171 . -924) 185031) ((-30 . -970) T) ((-112 . -855) T) ((-1 . -624) 185013) ((-1016 . -908) 184934) ((-129 . -662) 184916) ((-50 . -631) 184900) ((-705 . -657) 184835) ((-606 . -913) 184748) ((-449 . -102) T) ((-129 . -383) 184730) ((-142 . -318) NIL) ((-883 . -1066) T) ((-844 . -861) 184709) ((-81 . -1235) T) ((-722 . -299) T) ((-40 . -1075) T) ((-592 . -174) T) ((-529 . -174) T) ((-522 . -624) 184691) ((-171 . -659) 184565) ((-518 . -624) 184547) ((-361 . -148) 184529) ((-361 . -146) T) ((-369 . -1129) T) ((-363 . -1129) T) ((-355 . -1129) T) ((-1021 . -316) T) ((-929 . -316) T) ((-883 . -248) T) ((-108 . -1129) T) ((-883 . -238) 184508) ((-1269 . -111) 184329) ((-1248 . -111) 184118) ((-250 . -1273) 184102) ((-575 . -859) T) ((-369 . -23) T) ((-364 . -359) T) ((-325 . -318) 184089) ((-322 . -318) 184030) ((-363 . -23) T) ((-328 . -132) T) ((-355 . -23) T) ((-1021 . -1039) T) ((-31 . -627) 184011) ((-108 . -23) T) ((-665 . -1068) 183995) ((-250 . -615) 183972) ((-342 . -1117) T) ((-665 . -651) 183942) ((-1271 . -38) 183834) ((-1258 . -924) 183813) ((-112 . -1117) T) ((-827 . -1235) T) ((-1052 . -102) T) ((-1258 . -659) 183702) ((-882 . -805) NIL) ((-866 . -659) 183676) ((-882 . -802) NIL) ((-827 . -898) NIL) ((-882 . -737) T) ((-1104 . -525) 183549) ((-793 . -525) 183496) ((-791 . -525) 183448) ((-582 . -659) 183435) ((-827 . -1055) 183263) ((-465 . -525) 183206) ((-399 . -400) T) ((-1269 . -627) 183019) ((-1248 . -627) 182767) ((-60 . -1235) T) ((-632 . -861) 182746) ((-511 . -672) T) ((-1163 . -993) 182715) ((-1041 . -657) 182652) ((-1020 . -463) T) ((-710 . -859) T) ((-521 . -803) T) ((-485 . -1073) 182487) ((-511 . -113) T) ((-353 . -1117) T) ((-322 . -1169) NIL) ((-298 . -132) T) ((-405 . -1117) T) ((-881 . -1075) T) ((-705 . -380) 182454) ((-364 . -657) 182384) ((-225 . -631) 182361) ((-336 . -295) 182313) ((-485 . -111) 182134) ((-1269 . -1066) T) ((-1248 . -1066) T) ((-827 . -387) 182118) ((-171 . -737) T) ((-665 . -102) T) ((-1269 . -248) 182097) ((-1269 . -238) 182049) ((-1248 . -238) 181954) ((-1248 . -248) 181933) ((-1020 . -413) NIL) ((-681 . -650) 181881) ((-325 . -38) 181791) ((-322 . -38) 181720) ((-69 . -624) 181702) ((-328 . -504) 181668) ((-48 . -657) 181618) ((-1207 . -297) 181597) ((-1243 . -861) T) ((-1130 . -1129) 181575) ((-83 . -1235) T) ((-61 . -624) 181557) ((-490 . -297) 181536) ((-1300 . -1055) 181513) ((-1182 . -1117) T) ((-1130 . -23) 181365) ((-827 . -913) 181301) ((-1258 . -737) T) ((-1119 . -1235) T) ((-485 . -627) 181127) ((-361 . -237) T) ((-1104 . -299) 181058) ((-981 . -1117) T) ((-905 . -102) T) ((-793 . -299) 180969) ((-336 . -19) 180953) ((-59 . -297) 180930) ((-791 . -299) 180861) ((-866 . -737) T) ((-118 . -859) NIL) ((-527 . -297) 180838) ((-336 . -615) 180815) ((-507 . -297) 180792) ((-465 . -299) 180723) ((-1052 . -318) 180574) ((-887 . -501) 180555) ((-887 . -624) 180521) ((-692 . -501) 180502) ((-582 . -737) T) ((-687 . -501) 180483) ((-692 . -624) 180433) ((-687 . -624) 180399) ((-673 . -624) 180381) ((-489 . -501) 180362) ((-489 . -624) 180328) ((-250 . -625) 180289) ((-250 . -501) 180266) ((-139 . -501) 180247) ((-138 . -501) 180228) ((-134 . -501) 180209) ((-250 . -624) 180101) ((-215 . -102) T) ((-139 . -624) 180067) ((-138 . -624) 180033) ((-134 . -624) 179999) ((-1164 . -34) T) ((-958 . -1235) T) ((-353 . -728) 179944) ((-681 . -25) T) ((-681 . -21) T) ((-1194 . -627) 179925) ((-485 . -1066) T) ((-646 . -428) 179890) ((-618 . -428) 179855) ((-1137 . -1169) T) ((-723 . -1068) 179678) ((-592 . -299) T) ((-529 . -299) T) ((-1270 . -316) 179657) ((-485 . -238) 179609) ((-485 . -248) 179588) ((-1249 . -316) 179567) ((-723 . -651) 179396) ((-1249 . -1039) NIL) ((-1097 . -132) T) ((-883 . -806) 179375) ((-145 . -102) T) ((-40 . -1117) T) ((-883 . -803) 179354) ((-655 . -1027) 179338) ((-591 . -1075) T) ((-575 . -1075) T) ((-506 . -1075) T) ((-418 . -463) T) ((-369 . -132) T) ((-325 . -411) 179322) ((-322 . -411) 179283) ((-363 . -132) T) ((-355 . -132) T) ((-1199 . -1117) T) ((-1137 . -38) 179270) ((-1111 . -624) 179237) ((-108 . -132) T) ((-969 . -1117) T) ((-936 . -1117) T) ((-782 . -1117) T) ((-683 . -1117) T) ((-712 . -148) T) ((-117 . -148) T) ((-1307 . -21) T) ((-1307 . -25) T) ((-1305 . -21) T) ((-1305 . -25) T) ((-675 . -1073) 179221) ((-542 . -861) T) ((-511 . -861) T) ((-365 . -1073) 179173) ((-362 . -1073) 179125) ((-354 . -1073) 179077) ((-257 . -1235) T) ((-256 . -1235) T) ((-272 . -1073) 178920) ((-252 . -1073) 178763) ((-675 . -111) 178742) ((-828 . -1239) 178721) ((-558 . -855) T) ((-325 . -915) 178687) ((-365 . -111) 178625) ((-362 . -111) 178563) ((-354 . -111) 178501) ((-272 . -111) 178330) ((-252 . -111) 178159) ((-322 . -915) NIL) ((-634 . -422) 178143) ((-44 . -21) T) ((-44 . -25) T) ((-826 . -650) 178049) ((-828 . -567) 178028) ((-257 . -1055) 177855) ((-256 . -1055) 177682) ((-127 . -120) 177666) ((-925 . -1073) 177631) ((-723 . -102) T) ((-710 . -1075) T) ((-608 . -627) 177612) ((-596 . -627) 177593) ((-547 . -629) 177496) ((-353 . -174) T) ((-88 . -624) 177478) ((-153 . -21) T) ((-153 . -25) T) ((-925 . -111) 177434) ((-40 . -728) 177379) ((-881 . -1117) T) ((-675 . -627) 177356) ((-656 . -627) 177337) ((-365 . -627) 177274) ((-362 . -627) 177211) ((-558 . -1117) T) ((-354 . -627) 177148) ((-336 . -625) 177109) ((-336 . -624) 177021) ((-272 . -627) 176774) ((-252 . -627) 176559) ((-1248 . -803) 176512) ((-1248 . -806) 176465) ((-257 . -387) 176434) ((-256 . -387) 176403) ((-665 . -38) 176373) ((-619 . -34) T) ((-493 . -1129) 176351) ((-486 . -34) T) ((-1130 . -132) 176222) ((-979 . -25) 176033) ((-925 . -627) 175983) ((-885 . -624) 175965) ((-979 . -21) 175920) ((-826 . -25) 175753) ((-826 . -21) 175664) ((-1241 . -378) T) ((-634 . -1075) T) ((-1196 . -567) 175643) ((-1190 . -47) 175620) ((-365 . -1066) T) ((-362 . -1066) T) ((-493 . -23) 175472) ((-354 . -1066) T) ((-272 . -1066) T) ((-252 . -1066) T) ((-1142 . -47) 175444) ((-118 . -1075) T) ((-1051 . -659) 175418) ((-973 . -34) T) ((-365 . -238) 175397) ((-365 . -248) T) ((-362 . -238) 175376) ((-362 . -248) T) ((-354 . -238) 175355) ((-354 . -248) T) ((-272 . -335) 175327) ((-252 . -335) 175284) ((-272 . -238) 175263) ((-1174 . -152) 175247) ((-257 . -913) 175179) ((-256 . -913) 175111) ((-1159 . -908) 175032) ((-1099 . -861) T) ((-425 . -1129) T) ((-1071 . -23) T) ((-1041 . -859) T) ((-925 . -1066) T) ((-331 . -659) 175014) ((-712 . -237) T) ((-681 . -234) 174959) ((-1229 . -1019) 174925) ((-1191 . -935) 174904) ((-1185 . -935) 174883) ((-1185 . -831) NIL) ((-1016 . -1068) 174779) ((-982 . -1235) T) ((-925 . -248) T) ((-828 . -373) 174758) ((-395 . -23) T) ((-128 . -1117) 174736) ((-122 . -1117) 174714) ((-925 . -238) T) ((-129 . -34) T) ((-389 . -659) 174679) ((-1016 . -651) 174627) ((-881 . -728) 174614) ((-1314 . -657) 174586) ((-1063 . -152) 174551) ((-1010 . -1235) T) ((-40 . -174) T) ((-705 . -422) 174533) ((-723 . -318) 174520) ((-847 . -659) 174480) ((-838 . -659) 174454) ((-328 . -25) T) ((-328 . -21) T) ((-669 . -295) 174433) ((-591 . -1117) T) ((-575 . -1117) T) ((-506 . -1117) T) ((-250 . -297) 174410) ((-1190 . -1235) T) ((-1142 . -1235) T) ((-322 . -271) 174371) ((-322 . -232) 174332) ((-1190 . -898) NIL) ((-55 . -1117) T) ((-1142 . -898) 174191) ((-130 . -861) T) ((-1190 . -1055) 174071) ((-1142 . -1055) 173954) ((-185 . -624) 173936) ((-865 . -1055) 173832) ((-793 . -295) 173759) ((-828 . -1129) T) ((-1051 . -737) T) ((-1063 . -993) 173688) ((-613 . -662) 173672) ((-1020 . -908) 173579) ((-1016 . -102) T) ((-828 . -23) T) ((-723 . -1169) 173557) ((-705 . -1075) T) ((-613 . -383) 173541) ((-361 . -463) T) ((-353 . -299) T) ((-1286 . -1117) T) ((-253 . -1117) T) ((-410 . -102) T) ((-298 . -21) T) ((-298 . -25) T) ((-371 . -737) T) ((-721 . -1117) T) ((-710 . -1117) T) ((-371 . -484) T) ((-1229 . -624) 173523) ((-1190 . -387) 173507) ((-1142 . -387) 173491) ((-1041 . -422) 173453) ((-142 . -231) 173435) ((-389 . -805) T) ((-389 . -802) T) ((-881 . -174) T) ((-389 . -737) T) ((-722 . -624) 173417) ((-723 . -38) 173246) ((-1285 . -1283) 173230) ((-361 . -413) T) ((-1285 . -1117) 173180) ((-1208 . -1117) T) ((-591 . -728) 173167) ((-575 . -728) 173154) ((-506 . -728) 173119) ((-1271 . -657) 173009) ((-325 . -640) 172988) ((-847 . -737) T) ((-838 . -737) T) ((-655 . -1235) T) ((-1097 . -650) 172936) ((-1190 . -913) 172879) ((-1142 . -913) 172863) ((-826 . -234) 172754) ((-673 . -1073) 172738) ((-108 . -650) 172720) ((-493 . -132) 172591) ((-1196 . -1129) T) ((-967 . -47) 172560) ((-634 . -1117) T) ((-673 . -111) 172539) ((-502 . -624) 172505) ((-336 . -297) 172482) ((-492 . -47) 172439) ((-1196 . -23) T) ((-118 . -1117) T) ((-103 . -102) 172417) ((-1297 . -1129) T) ((-559 . -861) T) ((-227 . -1235) T) ((-1071 . -132) T) ((-1041 . -1075) T) ((-1297 . -23) T) ((-830 . -1055) 172401) ((-1215 . -624) 172383) ((-1020 . -735) 172355) ((-1137 . -839) T) ((-710 . -728) 172320) ((-597 . -624) 172302) ((-397 . -1055) 172286) ((-364 . -1075) T) ((-395 . -132) T) ((-333 . -1055) 172270) ((-1122 . -1117) T) ((-1097 . -21) T) ((-1097 . -25) T) ((-227 . -898) 172252) ((-1021 . -935) T) ((-91 . -34) T) ((-1021 . -831) T) ((-929 . -935) T) ((-1016 . -318) 172217) ((-887 . -627) 172198) ((-498 . -1239) T) ((-725 . -659) 172158) ((-692 . -627) 172139) ((-687 . -627) 172120) ((-219 . -1239) T) ((-418 . -908) 172041) ((-227 . -1055) 172001) ((-40 . -299) T) ((-498 . -567) T) ((-489 . -627) 171982) ((-369 . -25) T) ((-325 . -657) 171637) ((-322 . -657) 171551) ((-369 . -21) T) ((-363 . -25) T) ((-363 . -21) T) ((-219 . -567) T) ((-355 . -25) T) ((-355 . -21) T) ((-328 . -234) 171497) ((-250 . -627) 171474) ((-139 . -627) 171455) ((-138 . -627) 171436) ((-134 . -627) 171417) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1075) T) ((-591 . -174) T) ((-575 . -174) T) ((-506 . -174) T) ((-1079 . -1235) T) ((-967 . -1235) T) ((-669 . -624) 171399) ((-492 . -1235) T) ((-748 . -747) 171383) ((-346 . -624) 171365) ((-68 . -393) T) ((-68 . -406) T) ((-1119 . -107) 171349) ((-1079 . -898) 171331) ((-967 . -898) 171256) ((-664 . -1129) T) ((-634 . -728) 171243) ((-492 . -898) NIL) ((-1163 . -102) T) ((-1111 . -629) 171227) ((-1079 . -1055) 171209) ((-97 . -624) 171191) ((-488 . -148) T) ((-967 . -1055) 171071) ((-118 . -728) 171016) ((-723 . -915) 170923) ((-664 . -23) T) ((-492 . -1055) 170799) ((-1104 . -625) NIL) ((-1104 . -624) 170781) ((-793 . -625) NIL) ((-793 . -624) 170742) ((-791 . -625) 170376) ((-791 . -624) 170290) ((-1130 . -650) 170196) ((-472 . -624) 170178) ((-465 . -624) 170160) ((-465 . -625) 170021) ((-1052 . -231) 169967) ((-883 . -924) 169946) ((-127 . -34) T) ((-828 . -132) T) ((-660 . -624) 169928) ((-589 . -102) T) ((-365 . -1304) 169912) ((-362 . -1304) 169896) ((-354 . -1304) 169880) ((-128 . -525) 169813) ((-122 . -525) 169746) ((-522 . -803) T) ((-522 . -806) T) ((-521 . -805) T) ((-103 . -318) 169684) ((-224 . -102) 169662) ((-710 . -174) T) ((-705 . -1117) T) ((-883 . -659) 169578) ((-65 . -394) T) ((-283 . -624) 169560) ((-65 . -406) T) ((-967 . -387) 169544) ((-881 . -299) T) ((-50 . -624) 169526) ((-1016 . -38) 169474) ((-1137 . -657) 169446) ((-592 . -624) 169428) ((-492 . -387) 169412) ((-592 . -625) 169394) ((-529 . -624) 169376) ((-925 . -1304) 169363) ((-882 . -1235) T) ((-712 . -463) T) ((-506 . -525) 169329) ((-498 . -373) T) ((-365 . -378) 169308) ((-362 . -378) 169287) ((-354 . -378) 169266) ((-725 . -737) T) ((-219 . -373) T) ((-117 . -463) T) ((-1308 . -1299) 169250) ((-882 . -896) 169227) ((-882 . -898) NIL) ((-979 . -861) 169126) ((-826 . -861) 169077) ((-1242 . -102) T) ((-665 . -667) 169061) ((-1221 . -34) T) ((-173 . -624) 169043) ((-1130 . -25) 168876) ((-1130 . -21) 168787) ((-882 . -1055) 168764) ((-967 . -913) 168745) ((-1258 . -47) 168722) ((-925 . -378) T) ((-59 . -662) 168706) ((-527 . -662) 168690) ((-492 . -913) 168667) ((-71 . -452) T) ((-71 . -406) T) ((-507 . -662) 168651) ((-59 . -383) 168635) ((-634 . -174) T) ((-527 . -383) 168619) ((-507 . -383) 168603) ((-838 . -719) 168587) ((-1190 . -316) 168566) ((-1196 . -132) T) ((-1159 . -1068) 168550) ((-118 . -174) T) ((-1159 . -651) 168482) ((-1163 . -318) 168420) ((-171 . -1235) T) ((-1297 . -132) T) ((-877 . -1068) 168390) ((-646 . -755) 168374) ((-618 . -755) 168358) ((-1270 . -935) 168337) ((-1249 . -935) 168316) ((-1249 . -831) NIL) ((-877 . -651) 168286) ((-705 . -728) 168236) ((-1248 . -924) 168189) ((-1041 . -1117) T) ((-882 . -387) 168166) ((-882 . -348) 168143) ((-920 . -1129) T) ((-171 . -896) 168127) ((-171 . -898) 168052) ((-1285 . -525) 167985) ((-1269 . -659) 167882) ((-1097 . -234) 167755) ((-498 . -1129) T) ((-364 . -1117) T) ((-219 . -1129) T) ((-76 . -452) T) ((-76 . -406) T) ((-171 . -1055) 167651) ((-303 . -908) 167608) ((-328 . -861) T) ((-1248 . -659) 167416) ((-883 . -805) 167395) ((-883 . -802) 167374) ((-883 . -737) T) ((-498 . -23) T) ((-369 . -234) 167347) ((-363 . -234) 167320) ((-355 . -234) 167293) ((-225 . -624) 167275) ((-176 . -463) T) ((-224 . -318) 167213) ((-86 . -452) T) ((-86 . -406) T) ((-108 . -234) 167200) ((-219 . -23) T) ((-1309 . -1302) 167179) ((-688 . -1055) 167163) ((-591 . -299) T) ((-575 . -299) T) ((-506 . -299) T) ((-137 . -481) 167118) ((-1258 . -1235) T) ((-665 . -657) 167077) ((-48 . -1117) T) ((-723 . -271) 167061) ((-723 . -232) 167045) ((-882 . -913) NIL) ((-1258 . -898) NIL) ((-901 . -102) T) ((-897 . -102) T) ((-399 . -1117) T) ((-171 . -387) 167029) ((-171 . -348) 167013) ((-1258 . -1055) 166893) ((-866 . -1055) 166789) ((-1159 . -102) T) ((-1016 . -915) 166712) ((-673 . -803) 166691) ((-664 . -132) T) ((-673 . -806) 166670) ((-118 . -525) 166578) ((-582 . -1055) 166560) ((-303 . -1292) 166530) ((-877 . -102) T) ((-978 . -567) 166509) ((-1229 . -1073) 166392) ((-1020 . -1068) 166337) ((-493 . -650) 166243) ((-919 . -1117) T) ((-1041 . -728) 166180) ((-722 . -1073) 166145) ((-1020 . -651) 166090) ((-628 . -102) T) ((-613 . -34) T) ((-1164 . -1235) T) ((-1229 . -111) 165959) ((-485 . -659) 165856) ((-364 . -728) 165801) ((-171 . -913) 165760) ((-710 . -299) T) ((-705 . -174) T) ((-722 . -111) 165716) ((-1314 . -1075) T) ((-1258 . -387) 165700) ((-429 . -1239) 165678) ((-1135 . -624) 165660) ((-322 . -859) NIL) ((-429 . -567) T) ((-227 . -316) T) ((-1248 . -802) 165613) ((-1248 . -805) 165566) ((-1269 . -737) T) ((-1248 . -737) T) ((-48 . -728) 165531) ((-227 . -1039) T) ((-1271 . -422) 165497) ((-361 . -1292) 165474) ((-1258 . -913) 165417) ((-729 . -737) T) ((-342 . -624) 165399) ((-1229 . -627) 165281) ((-1130 . -234) 165172) ((-112 . -624) 165154) ((-112 . -625) 165136) ((-729 . -484) T) ((-722 . -627) 165086) ((-1308 . -1068) 165070) ((-493 . -25) 164903) ((-128 . -500) 164887) ((-122 . -500) 164871) ((-493 . -21) 164782) ((-1308 . -651) 164752) ((-634 . -299) T) ((-597 . -1073) 164727) ((-448 . -1117) T) ((-1079 . -316) T) ((-118 . -299) T) ((-1121 . -102) T) ((-1020 . -102) T) ((-597 . -111) 164695) ((-1159 . -318) 164633) ((-1229 . -1066) T) ((-1079 . -1039) T) ((-66 . -1235) T) ((-1071 . -25) T) ((-1071 . -21) T) ((-722 . -1066) T) ((-395 . -21) T) ((-395 . -25) T) ((-705 . -525) NIL) ((-1041 . -174) T) ((-722 . -248) T) ((-1079 . -556) T) ((-723 . -657) 164543) ((-517 . -102) T) ((-513 . -102) T) ((-364 . -174) T) ((-353 . -624) 164525) ((-418 . -1068) 164477) ((-405 . -624) 164459) ((-1137 . -859) T) ((-485 . -737) T) ((-904 . -1055) 164427) ((-418 . -651) 164379) ((-108 . -861) T) ((-669 . -1073) 164363) ((-498 . -132) T) ((-1271 . -1075) T) ((-219 . -132) T) ((-1174 . -102) 164341) ((-99 . -1117) T) ((-250 . -677) 164325) ((-250 . -662) 164309) ((-669 . -111) 164288) ((-597 . -627) 164272) ((-325 . -422) 164256) ((-250 . -383) 164240) ((-1177 . -240) 164187) ((-1016 . -271) 164171) ((-1016 . -232) 164155) ((-74 . -1235) T) ((-48 . -174) T) ((-712 . -398) T) ((-712 . -144) T) ((-1308 . -102) T) ((-1215 . -627) 164137) ((-1105 . -1235) T) ((-1104 . -1073) 163980) ((-1093 . -1235) T) ((-272 . -924) 163959) ((-252 . -924) 163938) ((-793 . -1073) 163761) ((-791 . -1073) 163604) ((-619 . -1235) T) ((-1182 . -624) 163586) ((-1104 . -111) 163415) ((-1063 . -102) T) ((-486 . -1235) T) ((-472 . -1073) 163386) ((-465 . -1073) 163229) ((-675 . -659) 163213) ((-882 . -316) T) ((-793 . -111) 163022) ((-791 . -111) 162851) ((-365 . -659) 162803) ((-362 . -659) 162755) ((-354 . -659) 162707) ((-272 . -659) 162596) ((-252 . -659) 162485) ((-1176 . -861) T) ((-1105 . -1055) 162469) ((-472 . -111) 162430) ((-465 . -111) 162259) ((-1093 . -1055) 162236) ((-1017 . -34) T) ((-981 . -624) 162218) ((-973 . -1235) T) ((-127 . -1027) 162202) ((-978 . -1129) T) ((-882 . -1039) NIL) ((-746 . -1129) T) ((-726 . -1129) T) ((-669 . -627) 162120) ((-1285 . -500) 162104) ((-1159 . -38) 162064) ((-978 . -23) T) ((-925 . -659) 162029) ((-876 . -1117) T) ((-854 . -102) T) ((-828 . -21) T) ((-646 . -1068) 162013) ((-618 . -1068) 161997) ((-828 . -25) T) ((-746 . -23) T) ((-726 . -23) T) ((-646 . -651) 161981) ((-110 . -672) T) ((-618 . -651) 161965) ((-592 . -1073) 161930) ((-529 . -1073) 161875) ((-229 . -57) 161833) ((-464 . -23) T) ((-418 . -102) T) ((-269 . -102) T) ((-110 . -113) T) ((-705 . -299) T) ((-877 . -38) 161803) ((-592 . -111) 161759) ((-529 . -111) 161688) ((-1104 . -627) 161424) ((-429 . -1129) T) ((-325 . -1075) 161314) ((-322 . -1075) T) ((-129 . -1235) T) ((-793 . -627) 161062) ((-791 . -627) 160828) ((-669 . -1066) T) ((-1314 . -1117) T) ((-465 . -627) 160613) ((-171 . -316) 160544) ((-429 . -23) T) ((-40 . -624) 160526) ((-40 . -625) 160510) ((-108 . -1009) 160492) ((-117 . -880) 160476) ((-660 . -627) 160460) ((-48 . -525) 160426) ((-1221 . -1027) 160410) ((-1199 . -624) 160377) ((-1207 . -34) T) ((-969 . -624) 160343) ((-936 . -624) 160325) ((-1130 . -861) 160276) ((-782 . -624) 160258) ((-683 . -624) 160240) ((-1174 . -318) 160178) ((-490 . -34) T) ((-1109 . -1235) T) ((-488 . -463) T) ((-1158 . -34) T) ((-1104 . -1066) T) ((-50 . -627) 160147) ((-793 . -1066) T) ((-791 . -1066) T) ((-658 . -240) 160131) ((-643 . -240) 160077) ((-592 . -627) 160027) ((-529 . -627) 159957) ((-493 . -234) 159848) ((-1258 . -316) 159827) ((-1104 . -335) 159788) ((-465 . -1066) T) ((-1196 . -21) T) ((-1104 . -238) 159767) ((-793 . -335) 159744) ((-793 . -238) T) ((-791 . -335) 159716) ((-742 . -1239) 159695) ((-336 . -662) 159679) ((-1196 . -25) T) ((-59 . -34) T) ((-530 . -34) T) ((-527 . -34) T) ((-465 . -335) 159658) ((-336 . -383) 159642) ((-508 . -34) T) ((-507 . -34) T) ((-1020 . -1169) NIL) ((-742 . -567) 159573) ((-646 . -102) T) ((-618 . -102) T) ((-365 . -737) T) ((-362 . -737) T) ((-354 . -737) T) ((-272 . -737) T) ((-252 . -737) T) ((-389 . -1235) T) ((-1063 . -318) 159481) ((-1297 . -21) T) ((-916 . -1117) 159459) ((-829 . -234) 159446) ((-50 . -1066) T) ((-1297 . -25) T) ((-1192 . -567) 159425) ((-1191 . -1239) 159404) ((-1191 . -567) 159355) ((-1185 . -1239) 159334) ((-1185 . -567) 159285) ((-592 . -1066) T) ((-529 . -1066) T) ((-1041 . -299) T) ((-371 . -1055) 159269) ((-331 . -1055) 159253) ((-1020 . -38) 159198) ((-389 . -898) 159180) ((-1016 . -657) 159103) ((-847 . -1235) T) ((-838 . -1235) 159082) ((-810 . -1129) T) ((-925 . -737) T) ((-592 . -248) T) ((-592 . -238) T) ((-529 . -238) T) ((-529 . -248) T) ((-1143 . -567) 159061) ((-364 . -299) T) ((-658 . -706) 159045) ((-389 . -1055) 159005) ((-303 . -1068) 158926) ((-349 . -908) 158905) ((-1137 . -1075) T) ((-103 . -126) 158889) ((-303 . -651) 158831) ((-810 . -23) T) ((-1307 . -1302) 158807) ((-1305 . -1302) 158786) ((-1285 . -295) 158738) ((-418 . -318) 158703) ((-1271 . -1117) T) ((-1159 . -915) 158626) ((-881 . -624) 158608) ((-847 . -1055) 158577) ((-205 . -798) T) ((-204 . -798) T) ((-203 . -798) T) ((-202 . -798) T) ((-201 . -798) T) ((-200 . -798) T) ((-199 . -798) T) ((-198 . -798) T) ((-197 . -798) T) ((-196 . -798) T) ((-558 . -624) 158559) ((-506 . -1019) T) ((-282 . -850) T) ((-281 . -850) T) ((-280 . -850) T) ((-279 . -850) T) ((-48 . -299) T) ((-278 . -850) T) ((-277 . -850) T) ((-276 . -850) T) ((-195 . -798) T) ((-623 . -861) T) ((-665 . -422) 158543) ((-681 . -237) 158494) ((-225 . -627) 158456) ((-110 . -861) T) ((-664 . -21) T) ((-664 . -25) T) ((-1308 . -38) 158426) ((-118 . -295) 158377) ((-1285 . -19) 158361) ((-1285 . -615) 158338) ((-1298 . -1117) T) ((-361 . -1068) 158283) ((-1094 . -1117) T) ((-1004 . -1117) T) ((-978 . -132) T) ((-828 . -234) 158270) ((-748 . -1117) T) ((-361 . -651) 158215) ((-746 . -132) T) ((-726 . -132) T) ((-522 . -804) T) ((-522 . -805) T) ((-464 . -132) T) ((-418 . -1169) 158193) ((-225 . -1066) T) ((-303 . -102) 157975) ((-142 . -1117) T) ((-710 . -1019) T) ((-1122 . -295) 157931) ((-91 . -1235) T) ((-128 . -624) 157863) ((-122 . -624) 157795) ((-1314 . -174) T) ((-1191 . -373) 157774) ((-1185 . -373) 157753) ((-325 . -1117) T) ((-429 . -132) T) ((-322 . -1117) T) ((-418 . -38) 157705) ((-1150 . -102) T) ((-1271 . -728) 157597) ((-665 . -1075) T) ((-1152 . -1280) T) ((-328 . -146) 157576) ((-328 . -148) 157555) ((-140 . -1117) T) ((-137 . -1117) T) ((-115 . -1117) T) ((-869 . -102) T) ((-591 . -624) 157537) ((-575 . -625) 157436) ((-575 . -624) 157418) ((-506 . -624) 157400) ((-506 . -625) 157345) ((-496 . -23) T) ((-493 . -861) 157296) ((-498 . -650) 157278) ((-980 . -624) 157260) ((-1020 . -915) 157169) ((-219 . -650) 157151) ((-227 . -415) T) ((-673 . -659) 157135) ((-55 . -624) 157117) ((-1190 . -935) 157096) ((-742 . -1129) T) ((-361 . -102) T) ((-1234 . -1100) T) ((-1137 . -855) T) ((-829 . -861) T) ((-742 . -23) T) ((-353 . -1073) 157041) ((-1176 . -1175) T) ((-1164 . -107) 157025) ((-1192 . -1129) T) ((-1191 . -1129) T) ((-526 . -1055) 157009) ((-1185 . -1129) T) ((-1143 . -1129) T) ((-353 . -111) 156938) ((-1021 . -1239) T) ((-127 . -1235) T) ((-929 . -1239) T) ((-1286 . -624) 156920) ((-705 . -295) NIL) ((-725 . -1235) T) ((-1192 . -23) T) ((-1191 . -23) T) ((-1185 . -23) T) ((-1159 . -271) 156904) ((-1159 . -232) 156888) ((-1021 . -567) T) ((-1143 . -23) T) ((-929 . -567) T) ((-1092 . -1117) T) ((-253 . -624) 156870) ((-826 . -237) 156767) ((-810 . -132) T) ((-721 . -624) 156749) ((-325 . -728) 156659) ((-322 . -728) 156588) ((-710 . -624) 156570) ((-710 . -625) 156515) ((-418 . -411) 156499) ((-449 . -1117) T) ((-498 . -25) T) ((-498 . -21) T) ((-1137 . -1117) T) ((-219 . -25) T) ((-219 . -21) T) ((-723 . -422) 156483) ((-725 . -1055) 156452) ((-1285 . -624) 156364) ((-1285 . -625) 156325) ((-1271 . -174) T) ((-1208 . -624) 156307) ((-250 . -34) T) ((-353 . -627) 156237) ((-405 . -627) 156219) ((-941 . -991) T) ((-1221 . -1235) T) ((-673 . -802) 156198) ((-673 . -805) 156177) ((-409 . -406) T) ((-534 . -102) 156155) ((-1052 . -1117) T) ((-418 . -915) 156078) ((-224 . -1012) 156062) ((-515 . -102) T) ((-634 . -624) 156044) ((-45 . -861) NIL) ((-634 . -625) 156021) ((-1052 . -621) 155996) ((-916 . -525) 155929) ((-328 . -237) 155881) ((-353 . -1066) T) ((-118 . -625) NIL) ((-118 . -624) 155863) ((-883 . -1235) T) ((-681 . -428) 155847) ((-681 . -1140) 155792) ((-511 . -152) 155774) ((-353 . -238) T) ((-353 . -248) T) ((-40 . -1073) 155719) ((-883 . -896) 155703) ((-883 . -898) 155628) ((-723 . -1075) T) ((-705 . -1019) NIL) ((-1269 . -47) 155598) ((-1248 . -47) 155575) ((-1158 . -1027) 155546) ((-1137 . -728) 155533) ((-3 . |UnionCategory|) T) ((-1122 . -624) 155515) ((-1097 . -148) 155494) ((-1097 . -146) 155445) ((-1021 . -373) T) ((-981 . -627) 155429) ((-227 . -935) T) ((-40 . -111) 155358) ((-883 . -1055) 155222) ((-1020 . -232) 155199) ((-1020 . -271) 155176) ((-712 . -1068) 155163) ((-929 . -373) T) ((-712 . -651) 155150) ((-328 . -1223) 155116) ((-389 . -316) T) ((-328 . -1220) 155082) ((-325 . -174) 155061) ((-322 . -174) T) ((-592 . -1304) 155048) ((-529 . -1304) 155025) ((-369 . -148) 155004) ((-117 . -1068) 154991) ((-369 . -146) 154942) ((-363 . -148) 154921) ((-363 . -146) 154872) ((-355 . -148) 154851) ((-619 . -1211) 154827) ((-117 . -651) 154814) ((-355 . -146) 154765) ((-328 . -35) 154731) ((-486 . -1211) 154710) ((0 . |EnumerationCategory|) T) ((-328 . -95) 154676) ((-389 . -1039) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 154626) ((-665 . -1117) T) ((-619 . -107) 154573) ((-496 . -132) T) ((-486 . -107) 154523) ((-245 . -1129) 154501) ((-883 . -387) 154485) ((-883 . -348) 154469) ((-245 . -23) 154321) ((-40 . -627) 154251) ((-1079 . -935) T) ((-1079 . -831) T) ((-592 . -378) T) ((-529 . -378) T) ((-1298 . -525) 154184) ((-1277 . -567) 154163) ((-1270 . -1239) 154142) ((-361 . -1169) T) ((-336 . -34) T) ((-44 . -428) 154126) ((-1199 . -627) 154062) ((-884 . -1235) T) ((-401 . -755) 154046) ((-1270 . -567) 153997) ((-1269 . -1235) T) ((-1159 . -657) 153956) ((-742 . -132) T) ((-683 . -627) 153940) ((-1249 . -1239) 153919) ((-1249 . -567) 153870) ((-1248 . -1235) T) ((-1248 . -898) 153743) ((-1248 . -896) 153713) ((-1192 . -132) T) ((-320 . -1100) T) ((-1191 . -132) T) ((-748 . -525) 153646) ((-1185 . -132) T) ((-1143 . -132) T) ((-905 . -1117) T) ((-145 . -855) T) ((-1041 . -1019) T) ((-702 . -624) 153628) ((-1021 . -23) T) ((-534 . -318) 153566) ((-1021 . -1129) T) ((-142 . -525) NIL) ((-877 . -657) 153511) ((-1020 . -359) NIL) ((-988 . -23) T) ((-929 . -1129) T) ((-361 . -38) 153476) ((-929 . -23) T) ((-883 . -913) 153435) ((-82 . -624) 153417) ((-40 . -1066) T) ((-881 . -1073) 153404) ((-881 . -111) 153389) ((-712 . -102) T) ((-705 . -624) 153371) ((-613 . -1235) T) ((-607 . -567) 153350) ((-438 . -1129) T) ((-349 . -1068) 153334) ((-215 . -1117) T) ((-176 . -1068) 153266) ((-485 . -47) 153236) ((-40 . -238) 153208) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-606 . -567) 153187) ((-349 . -651) 153171) ((-705 . -625) 153079) ((-325 . -525) 153045) ((-176 . -651) 152977) ((-322 . -525) 152869) ((-498 . -234) 152856) ((-1269 . -1055) 152840) ((-1248 . -1055) 152626) ((-1016 . -422) 152610) ((-219 . -234) 152597) ((-438 . -23) T) ((-1137 . -174) T) ((-1271 . -299) T) ((-665 . -728) 152567) ((-145 . -1117) T) ((-48 . -1019) T) ((-418 . -271) 152551) ((-418 . -232) 152535) ((-304 . -240) 152485) ((-882 . -935) T) ((-882 . -831) NIL) ((-881 . -627) 152457) ((-875 . -861) T) ((-1248 . -348) 152427) ((-1248 . -387) 152397) ((-1097 . -237) 152276) ((-224 . -1138) 152260) ((-303 . -915) 152219) ((-1285 . -297) 152196) ((-369 . -237) 152175) ((-363 . -237) 152154) ((-485 . -1235) T) ((-355 . -237) 152133) ((-108 . -237) T) ((-1229 . -659) 152058) ((-1020 . -657) 151988) ((-978 . -21) T) ((-978 . -25) T) ((-746 . -21) T) ((-746 . -25) T) ((-726 . -21) T) ((-726 . -25) T) ((-722 . -659) 151953) ((-464 . -21) T) ((-464 . -25) T) ((-349 . -102) T) ((-176 . -102) T) ((-1016 . -1075) T) ((-881 . -1066) T) ((-785 . -102) T) ((-1270 . -373) 151932) ((-1269 . -913) 151838) ((-1249 . -373) 151817) ((-1248 . -913) 151668) ((-1041 . -624) 151650) ((-418 . -839) 151603) ((-1192 . -504) 151569) ((-171 . -935) 151500) ((-1191 . -504) 151466) ((-1185 . -504) 151432) ((-723 . -1117) T) ((-1143 . -504) 151398) ((-591 . -1073) 151385) ((-575 . -1073) 151372) ((-506 . -1073) 151337) ((-325 . -299) 151316) ((-322 . -299) T) ((-364 . -624) 151298) ((-429 . -25) T) ((-429 . -21) T) ((-99 . -295) 151277) ((-591 . -111) 151262) ((-575 . -111) 151247) ((-506 . -111) 151203) ((-1194 . -898) 151170) ((-916 . -500) 151154) ((-48 . -624) 151136) ((-48 . -625) 151081) ((-245 . -132) 150952) ((-1308 . -657) 150911) ((-1258 . -935) 150890) ((-827 . -1239) 150869) ((-399 . -501) 150850) ((-1052 . -525) 150694) ((-399 . -624) 150660) ((-827 . -567) 150591) ((-597 . -659) 150566) ((-272 . -47) 150538) ((-252 . -47) 150495) ((-542 . -520) 150472) ((-591 . -627) 150444) ((-575 . -627) 150416) ((-506 . -627) 150349) ((-1091 . -1235) T) ((-1017 . -1235) T) ((-1277 . -23) T) ((-1277 . -1129) T) ((-1270 . -1129) T) ((-710 . -1073) 150314) ((-1270 . -23) T) ((-1249 . -1129) T) ((-1249 . -23) T) ((-1229 . -737) T) ((-1137 . -299) T) ((-1020 . -380) 150286) ((-112 . -378) T) ((-485 . -913) 150192) ((-1130 . -237) 150089) ((-919 . -624) 150071) ((-55 . -627) 150053) ((-91 . -107) 150037) ((-1021 . -132) T) ((-920 . -861) 149988) ((-712 . -1169) T) ((-710 . -111) 149944) ((-854 . -657) 149861) ((-607 . -1129) T) ((-606 . -1129) T) ((-723 . -728) 149690) ((-722 . -737) T) ((-988 . -132) T) ((-929 . -132) T) ((-498 . -861) T) ((-810 . -25) T) ((-810 . -21) T) ((-591 . -1066) T) ((-219 . -861) T) ((-418 . -657) 149627) ((-575 . -1066) T) ((-547 . -1235) T) ((-506 . -1066) T) ((-607 . -23) T) ((-353 . -1304) 149604) ((-328 . -463) 149583) ((-349 . -318) 149570) ((-606 . -23) T) ((-438 . -132) T) ((-669 . -659) 149544) ((-250 . -1027) 149528) ((-883 . -316) T) ((-1309 . -1299) 149512) ((-782 . -803) T) ((-782 . -806) T) ((-712 . -38) 149499) ((-575 . -238) T) ((-506 . -248) T) ((-506 . -238) T) ((-1167 . -240) 149449) ((-1104 . -924) 149428) ((-117 . -38) 149415) ((-211 . -811) T) ((-210 . -811) T) ((-209 . -811) T) ((-208 . -811) T) ((-883 . -1039) 149393) ((-1298 . -500) 149377) ((-793 . -924) 149356) ((-791 . -924) 149335) ((-1207 . -1235) T) ((-365 . -1235) 149314) ((-362 . -1235) 149293) ((-354 . -1235) 149272) ((-272 . -1235) T) ((-252 . -1235) T) ((-465 . -924) 149251) ((-748 . -500) 149235) ((-1104 . -659) 149124) ((-710 . -627) 149059) ((-793 . -659) 148948) ((-634 . -1073) 148935) ((-490 . -1235) T) ((-353 . -378) T) ((-142 . -500) 148917) ((-791 . -659) 148806) ((-1158 . -1235) T) ((-560 . -861) T) ((-472 . -659) 148777) ((-272 . -898) 148636) ((-252 . -898) NIL) ((-118 . -1073) 148581) ((-465 . -659) 148470) ((-675 . -1055) 148447) ((-634 . -111) 148432) ((-401 . -1068) 148416) ((-365 . -1055) 148400) ((-362 . -1055) 148384) ((-354 . -1055) 148368) ((-272 . -1055) 148212) ((-252 . -1055) 148088) ((-925 . -1235) T) ((-118 . -111) 148017) ((-59 . -1235) T) ((-401 . -651) 148001) ((-632 . -1068) 147985) ((-530 . -1235) T) ((-527 . -1235) T) ((-508 . -1235) T) ((-507 . -1235) T) ((-448 . -624) 147967) ((-445 . -624) 147949) ((-632 . -651) 147933) ((-3 . -102) T) ((-1044 . -1228) 147902) ((-844 . -102) T) ((-700 . -57) 147860) ((-710 . -1066) T) ((-646 . -657) 147829) ((-618 . -657) 147798) ((-50 . -659) 147772) ((-298 . -463) T) ((-487 . -1228) 147741) ((0 . -102) T) ((-592 . -659) 147706) ((-529 . -659) 147651) ((-49 . -102) T) ((-925 . -1055) 147638) ((-710 . -248) T) ((-1097 . -420) 147617) ((-742 . -650) 147565) ((-1016 . -1117) T) ((-723 . -174) 147456) ((-634 . -627) 147351) ((-498 . -1009) 147333) ((-429 . -234) 147278) ((-272 . -387) 147262) ((-252 . -387) 147246) ((-410 . -1117) T) ((-1043 . -102) 147224) ((-349 . -38) 147208) ((-219 . -1009) 147190) ((-118 . -627) 147120) ((-176 . -38) 147052) ((-1269 . -316) 147031) ((-1248 . -316) 147010) ((-669 . -737) T) ((-99 . -624) 146992) ((-488 . -1068) 146957) ((-1185 . -650) 146909) ((-488 . -651) 146874) ((-496 . -25) T) ((-496 . -21) T) ((-1248 . -1039) 146826) ((-1074 . -1235) T) ((-634 . -1066) T) ((-389 . -415) T) ((-401 . -102) T) ((-1122 . -629) 146741) ((-272 . -913) 146687) ((-252 . -913) 146664) ((-118 . -1066) T) ((-827 . -1129) T) ((-1104 . -737) T) ((-634 . -238) 146643) ((-632 . -102) T) ((-793 . -737) T) ((-791 . -737) T) ((-424 . -1129) T) ((-118 . -248) T) ((-40 . -378) NIL) ((-118 . -238) NIL) ((-1240 . -861) T) ((-465 . -737) T) ((-827 . -23) T) ((-742 . -25) T) ((-742 . -21) T) ((-681 . -908) 146564) ((-1094 . -295) 146543) ((-78 . -407) T) ((-78 . -406) T) ((-544 . -778) 146525) ((-705 . -1073) 146475) ((-1310 . -102) T) ((-1277 . -132) T) ((-1270 . -132) T) ((-1249 . -132) T) ((-1192 . -25) T) ((-1159 . -422) 146459) ((-646 . -377) 146391) ((-618 . -377) 146323) ((-1174 . -1166) 146307) ((-103 . -1117) 146285) ((-1192 . -21) T) ((-1191 . -21) T) ((-876 . -624) 146267) ((-1016 . -728) 146215) ((-225 . -659) 146182) ((-705 . -111) 146116) ((-50 . -737) T) ((-1191 . -25) T) ((-361 . -359) T) ((-1185 . -21) T) ((-1097 . -463) 146067) ((-1185 . -25) T) ((-723 . -525) 146014) ((-592 . -737) T) ((-529 . -737) T) ((-1143 . -21) T) ((-1143 . -25) T) ((-607 . -132) T) ((-606 . -132) T) ((-303 . -657) 145749) ((-493 . -237) 145646) ((-369 . -463) T) ((-363 . -463) T) ((-355 . -463) T) ((-485 . -316) 145625) ((-1243 . -102) T) ((-322 . -295) 145560) ((-108 . -463) T) ((-79 . -452) T) ((-79 . -406) T) ((-488 . -102) T) ((-702 . -627) 145544) ((-1314 . -624) 145526) ((-1314 . -625) 145508) ((-1097 . -413) 145487) ((-1052 . -500) 145418) ((-137 . -295) 145395) ((-575 . -806) T) ((-575 . -803) T) ((-1080 . -240) 145341) ((-369 . -413) 145292) ((-363 . -413) 145243) ((-355 . -413) 145194) ((-1300 . -1129) T) ((-1309 . -1068) 145178) ((-391 . -1068) 145162) ((-1309 . -651) 145132) ((-829 . -237) T) ((-391 . -651) 145102) ((-705 . -627) 145037) ((-1300 . -23) T) ((-1287 . -102) T) ((-349 . -915) 145018) ((-177 . -624) 145000) ((-1159 . -1075) T) ((-558 . -378) T) ((-681 . -755) 144984) ((-1196 . -146) 144963) ((-1196 . -148) 144942) ((-1163 . -1117) T) ((-1163 . -1088) 144911) ((-69 . -1235) T) ((-1041 . -1073) 144848) ((-361 . -657) 144778) ((-877 . -1075) T) ((-245 . -650) 144684) ((-705 . -1066) T) ((-364 . -1073) 144629) ((-61 . -1235) T) ((-1041 . -111) 144545) ((-916 . -624) 144456) ((-705 . -248) T) ((-705 . -238) NIL) ((-854 . -859) 144435) ((-710 . -806) T) ((-710 . -803) T) ((-1020 . -422) 144412) ((-364 . -111) 144341) ((-389 . -935) T) ((-418 . -859) 144320) ((-723 . -299) 144231) ((-225 . -737) T) ((-1277 . -504) 144197) ((-1270 . -504) 144163) ((-1249 . -504) 144129) ((-589 . -1117) T) ((-325 . -1019) 144108) ((-224 . -1117) 144086) ((-1242 . -855) T) ((-328 . -990) 144048) ((-105 . -102) T) ((-48 . -1073) 144013) ((-1309 . -102) T) ((-391 . -102) T) ((-48 . -111) 143969) ((-826 . -908) 143836) ((-1021 . -650) 143818) ((-1271 . -624) 143800) ((-542 . -102) T) ((-511 . -102) T) ((-1150 . -1151) 143784) ((-153 . -1292) 143768) ((-250 . -1235) T) ((-1234 . -102) T) ((-1041 . -627) 143705) ((-828 . -237) T) ((-1190 . -1239) 143684) ((-364 . -627) 143614) ((-1142 . -1239) 143593) ((-245 . -25) 143426) ((-245 . -21) 143337) ((-128 . -120) 143321) ((-122 . -120) 143305) ((-44 . -755) 143289) ((-1190 . -567) 143200) ((-1142 . -567) 143131) ((-1242 . -1117) T) ((-1052 . -295) 143106) ((-1184 . -1100) T) ((-1011 . -1100) T) ((-827 . -132) T) ((-118 . -806) NIL) ((-118 . -803) NIL) ((-365 . -316) T) ((-362 . -316) T) ((-354 . -316) T) ((-257 . -1129) 143084) ((-256 . -1129) 143062) ((-1041 . -1066) T) ((-1020 . -1075) T) ((-48 . -627) 142995) ((-353 . -659) 142940) ((-1298 . -624) 142902) ((-632 . -38) 142886) ((-1298 . -625) 142847) ((-1192 . -234) 142800) ((-1094 . -624) 142782) ((-1041 . -248) T) ((-364 . -1066) T) ((-826 . -1292) 142752) ((-257 . -23) T) ((-256 . -23) T) ((-1004 . -624) 142734) ((-1191 . -234) 142680) ((-1185 . -234) 142497) ((-748 . -625) 142458) ((-748 . -624) 142440) ((-1177 . -152) 142387) ((-810 . -861) 142366) ((-1021 . -25) T) ((-1016 . -525) 142278) ((-364 . -238) T) ((-364 . -248) T) ((-399 . -627) 142259) ((-925 . -316) T) ((-142 . -624) 142241) ((-142 . -625) 142200) ((-328 . -908) 142104) ((-1021 . -21) T) ((-988 . -25) T) ((-929 . -21) T) ((-929 . -25) T) ((-438 . -21) T) ((-438 . -25) T) ((-854 . -422) 142088) ((-48 . -1066) T) ((-1307 . -1299) 142072) ((-1305 . -1299) 142056) ((-1052 . -615) 142031) ((-325 . -625) 141892) ((-325 . -624) 141874) ((-322 . -625) NIL) ((-322 . -624) 141856) ((-48 . -248) T) ((-48 . -238) T) ((-665 . -295) 141817) ((-561 . -240) 141767) ((-140 . -624) 141734) ((-137 . -624) 141716) ((-115 . -624) 141698) ((-488 . -38) 141663) ((-1309 . -1306) 141642) ((-1300 . -132) T) ((-1308 . -1075) T) ((-1099 . -102) T) ((-88 . -1235) T) ((-511 . -318) NIL) ((-1017 . -107) 141626) ((-901 . -1117) T) ((-897 . -1117) T) ((-1285 . -662) 141610) ((-1285 . -383) 141594) ((-336 . -1235) T) ((-604 . -861) T) ((-1159 . -1117) T) ((-1159 . -1070) 141534) ((-103 . -525) 141467) ((-942 . -624) 141449) ((-353 . -737) T) ((-30 . -624) 141431) ((-877 . -1117) T) ((-854 . -1075) 141410) ((-40 . -659) 141317) ((-227 . -1239) T) ((-418 . -1075) T) ((-1176 . -152) 141299) ((-1016 . -299) 141250) ((-628 . -1117) T) ((-227 . -567) T) ((-328 . -1266) 141234) ((-328 . -1263) 141204) ((-712 . -657) 141176) ((-1207 . -1211) 141155) ((-1092 . -624) 141137) ((-1207 . -107) 141087) ((-658 . -152) 141071) ((-643 . -152) 141017) ((-117 . -657) 140989) ((-490 . -1211) 140968) ((-498 . -148) T) ((-498 . -146) NIL) ((-1137 . -625) 140883) ((-449 . -624) 140865) ((-219 . -148) T) ((-219 . -146) NIL) ((-1137 . -624) 140847) ((-130 . -102) T) ((-52 . -102) T) ((-1249 . -650) 140799) ((-490 . -107) 140749) ((-1010 . -23) T) ((-1309 . -38) 140719) ((-1190 . -1129) T) ((-1142 . -1129) T) ((-1079 . -1239) T) ((-245 . -234) 140610) ((-320 . -102) T) ((-865 . -1129) T) ((-967 . -1239) 140589) ((-492 . -1239) 140568) ((-1079 . -567) T) ((-967 . -567) 140499) ((-1190 . -23) T) ((-1168 . -1100) T) ((-1142 . -23) T) ((-865 . -23) T) ((-492 . -567) 140430) ((-1159 . -728) 140362) ((-681 . -1068) 140346) ((-1163 . -525) 140279) ((-681 . -651) 140263) ((-1052 . -625) NIL) ((-1052 . -624) 140245) ((-96 . -1100) T) ((-1314 . -1073) 140232) ((-877 . -728) 140202) ((-1314 . -111) 140187) ((-1229 . -47) 140156) ((-1185 . -861) NIL) ((-257 . -132) T) ((-256 . -132) T) ((-1121 . -1117) T) ((-1020 . -1117) T) ((-62 . -624) 140138) ((-1097 . -908) 140007) ((-1041 . -803) T) ((-1041 . -806) T) ((-1277 . -25) T) ((-1277 . -21) T) ((-1270 . -21) T) ((-1270 . -25) T) ((-881 . -659) 139994) ((-1249 . -21) T) ((-1249 . -25) T) ((-1044 . -152) 139978) ((-1021 . -234) 139965) ((-883 . -831) 139944) ((-883 . -935) T) ((-723 . -295) 139871) ((-607 . -21) T) ((-349 . -657) 139830) ((-108 . -908) NIL) ((-607 . -25) T) ((-606 . -21) T) ((-176 . -657) 139747) ((-40 . -737) T) ((-224 . -525) 139680) ((-606 . -25) T) ((-487 . -152) 139664) ((-474 . -152) 139648) ((-936 . -805) T) ((-936 . -737) T) ((-782 . -804) T) ((-782 . -805) T) ((-517 . -1117) T) ((-513 . -1117) T) ((-782 . -737) T) ((-227 . -373) T) ((-1307 . -1068) 139632) ((-1305 . -1068) 139616) ((-1307 . -651) 139586) ((-1174 . -1117) 139564) ((-882 . -1239) T) ((-1305 . -651) 139534) ((-665 . -624) 139516) ((-882 . -567) T) ((-705 . -378) NIL) ((-44 . -1068) 139500) ((-1314 . -627) 139482) ((-1308 . -1117) T) ((-681 . -102) T) ((-369 . -1292) 139466) ((-363 . -1292) 139450) ((-44 . -651) 139434) ((-355 . -1292) 139418) ((-559 . -102) T) ((-1229 . -1235) T) ((-531 . -861) 139397) ((-498 . -237) T) ((-219 . -237) T) ((-1063 . -1117) T) ((-828 . -463) 139376) ((-153 . -1068) 139360) ((-1063 . -1088) 139289) ((-1044 . -993) 139258) ((-830 . -1129) T) ((-1020 . -728) 139203) ((-153 . -651) 139187) ((-397 . -1129) T) ((-487 . -993) 139156) ((-474 . -993) 139125) ((-110 . -152) 139107) ((-73 . -624) 139089) ((-905 . -624) 139071) ((-1097 . -735) 139050) ((-1314 . -1066) T) ((-827 . -650) 138998) ((-303 . -1075) 138940) ((-171 . -1239) 138845) ((-227 . -1129) T) ((-333 . -23) T) ((-1185 . -1009) 138797) ((-854 . -1117) T) ((-1271 . -1073) 138702) ((-1143 . -751) 138681) ((-1269 . -935) 138660) ((-1248 . -935) 138639) ((-881 . -737) T) ((-171 . -567) 138550) ((-591 . -659) 138537) ((-575 . -659) 138509) ((-418 . -1117) T) ((-269 . -1117) T) ((-215 . -624) 138491) ((-506 . -659) 138441) ((-227 . -23) T) ((-1248 . -831) 138394) ((-1307 . -102) T) ((-364 . -1304) 138371) ((-1305 . -102) T) ((-1271 . -111) 138263) ((-1130 . -908) 138130) ((-826 . -1068) 138031) ((-826 . -651) 137953) ((-145 . -624) 137935) ((-1010 . -132) T) ((-44 . -102) T) ((-245 . -861) 137886) ((-1258 . -1239) 137865) ((-103 . -500) 137849) ((-1308 . -728) 137819) ((-1104 . -47) 137780) ((-1079 . -1129) T) ((-967 . -1129) T) ((-128 . -34) T) ((-122 . -34) T) ((-793 . -47) 137757) ((-791 . -47) 137729) ((-1258 . -567) 137640) ((-364 . -378) T) ((-492 . -1129) T) ((-1190 . -132) T) ((-1142 . -132) T) ((-465 . -47) 137619) ((-882 . -373) T) ((-865 . -132) T) ((-153 . -102) T) ((-1079 . -23) T) ((-967 . -23) T) ((-582 . -567) T) ((-827 . -25) T) ((-827 . -21) T) ((-1159 . -525) 137552) ((-603 . -1100) T) ((-597 . -1055) 137536) ((-1271 . -627) 137410) ((-492 . -23) T) ((-361 . -1075) T) ((-1229 . -913) 137391) ((-681 . -318) 137329) ((-1130 . -1292) 137299) ((-710 . -659) 137264) ((-1021 . -861) T) ((-1020 . -174) T) ((-978 . -146) 137243) ((-646 . -1117) T) ((-618 . -1117) T) ((-978 . -148) 137222) ((-746 . -148) 137201) ((-746 . -146) 137180) ((-669 . -1235) T) ((-988 . -861) T) ((-1277 . -234) 137133) ((-1270 . -234) 137079) ((-1249 . -234) 136896) ((-844 . -657) 136813) ((-485 . -935) 136792) ((-328 . -1068) 136627) ((-325 . -1073) 136537) ((-322 . -1073) 136466) ((-1016 . -295) 136424) ((-418 . -728) 136376) ((-328 . -651) 136217) ((-606 . -234) 136170) ((-712 . -859) T) ((-1271 . -1066) T) ((-325 . -111) 136066) ((-322 . -111) 135979) ((-979 . -102) T) ((-826 . -102) 135731) ((-723 . -625) NIL) ((-723 . -624) 135713) ((-1271 . -335) 135657) ((-669 . -1055) 135553) ((-1104 . -1235) T) ((-1052 . -297) 135528) ((-591 . -737) T) ((-575 . -805) T) ((-171 . -373) 135479) ((-575 . -802) T) ((-575 . -737) T) ((-506 . -737) T) ((-793 . -1235) T) ((-791 . -1235) T) ((-1163 . -500) 135463) ((-465 . -1235) T) ((-1104 . -898) NIL) ((-882 . -1129) T) ((-118 . -924) NIL) ((-1307 . -1306) 135439) ((-1305 . -1306) 135418) ((-793 . -898) NIL) ((-791 . -898) 135277) ((-1300 . -25) T) ((-1300 . -21) T) ((-1232 . -102) 135255) ((-1123 . -406) T) ((-634 . -659) 135242) ((-465 . -898) NIL) ((-686 . -102) 135220) ((-1104 . -1055) 135047) ((-882 . -23) T) ((-793 . -1055) 134906) ((-791 . -1055) 134763) ((-118 . -659) 134708) ((-465 . -1055) 134584) ((-325 . -627) 134148) ((-322 . -627) 134031) ((-401 . -657) 134000) ((-660 . -1055) 133984) ((-592 . -1235) T) ((-638 . -102) T) ((-529 . -1235) T) ((-224 . -500) 133968) ((-1285 . -34) T) ((-632 . -657) 133927) ((-298 . -1068) 133914) ((-137 . -627) 133898) ((-298 . -651) 133885) ((-646 . -728) 133869) ((-618 . -728) 133853) ((-681 . -38) 133813) ((-328 . -102) T) ((-85 . -624) 133795) ((-50 . -1055) 133779) ((-1137 . -1073) 133766) ((-1104 . -387) 133750) ((-793 . -387) 133734) ((-710 . -737) T) ((-710 . -805) T) ((-710 . -802) T) ((-592 . -1055) 133721) ((-529 . -1055) 133698) ((-60 . -57) 133660) ((-333 . -132) T) ((-325 . -1066) 133550) ((-322 . -1066) T) ((-171 . -1129) T) ((-791 . -387) 133534) ((-45 . -152) 133484) ((-1021 . -1009) 133466) ((-465 . -387) 133450) ((-418 . -174) T) ((-325 . -248) 133429) ((-322 . -248) T) ((-322 . -238) NIL) ((-303 . -1117) 133211) ((-227 . -132) T) ((-1137 . -111) 133196) ((-171 . -23) T) ((-810 . -148) 133175) ((-810 . -146) 133154) ((-257 . -650) 133060) ((-256 . -650) 132966) ((-328 . -293) 132932) ((-1174 . -525) 132865) ((-488 . -657) 132815) ((-493 . -908) 132682) ((-1150 . -1117) T) ((-227 . -1077) T) ((-826 . -318) 132620) ((-1104 . -913) 132555) ((-793 . -913) 132498) ((-791 . -913) 132482) ((-1307 . -38) 132452) ((-1305 . -38) 132422) ((-1258 . -1129) T) ((-866 . -1129) T) ((-465 . -913) 132399) ((-869 . -1117) T) ((-1258 . -23) T) ((-1137 . -627) 132371) ((-1079 . -132) T) ((-582 . -1129) T) ((-866 . -23) T) ((-634 . -737) T) ((-365 . -935) T) ((-362 . -935) T) ((-298 . -102) T) ((-354 . -935) T) ((-987 . -1100) T) ((-967 . -132) T) ((-827 . -234) 132316) ((-118 . -805) NIL) ((-118 . -802) NIL) ((-118 . -737) T) ((-1063 . -525) 132217) ((-705 . -924) NIL) ((-582 . -23) T) ((-492 . -132) T) ((-429 . -237) 132168) ((-686 . -318) 132106) ((-646 . -772) T) ((-618 . -772) T) ((-1249 . -861) NIL) ((-1097 . -1068) 132016) ((-1020 . -299) T) ((-705 . -659) 131966) ((-257 . -25) T) ((-361 . -1117) T) ((-257 . -21) T) ((-256 . -25) T) ((-256 . -21) T) ((-153 . -38) 131950) ((-2 . -102) T) ((-925 . -935) T) ((-1097 . -651) 131818) ((-493 . -1292) 131788) ((-1137 . -1066) T) ((-722 . -316) T) ((-369 . -1068) 131740) ((-363 . -1068) 131692) ((-355 . -1068) 131644) ((-369 . -651) 131596) ((-225 . -1055) 131573) ((-363 . -651) 131525) ((-108 . -1068) 131475) ((-355 . -651) 131427) ((-303 . -728) 131369) ((-712 . -1075) T) ((-498 . -463) T) ((-418 . -525) 131281) ((-108 . -651) 131231) ((-219 . -463) T) ((-1137 . -238) T) ((-304 . -152) 131181) ((-1016 . -625) 131142) ((-1016 . -624) 131124) ((-1006 . -624) 131106) ((-117 . -1075) T) ((-665 . -1073) 131090) ((-227 . -504) T) ((-410 . -624) 131072) ((-410 . -625) 131049) ((-1071 . -1292) 131019) ((-665 . -111) 130998) ((-681 . -915) 130921) ((-1159 . -500) 130905) ((-1309 . -657) 130864) ((-391 . -657) 130833) ((-63 . -452) T) ((-63 . -406) T) ((-1177 . -102) T) ((-882 . -132) T) ((-495 . -102) 130811) ((-1314 . -378) T) ((-1097 . -102) T) ((-1078 . -102) T) ((-361 . -728) 130756) ((-742 . -148) 130735) ((-742 . -146) 130714) ((-665 . -627) 130632) ((-1041 . -659) 130569) ((-534 . -1117) 130547) ((-369 . -102) T) ((-363 . -102) T) ((-355 . -102) T) ((-108 . -102) T) ((-515 . -1117) T) ((-364 . -659) 130492) ((-1190 . -650) 130440) ((-1142 . -650) 130388) ((-395 . -520) 130367) ((-844 . -859) 130346) ((-389 . -1239) T) ((-705 . -737) T) ((-1249 . -1009) 130298) ((-349 . -1075) T) ((-112 . -1235) T) ((-176 . -1075) T) ((-103 . -624) 130230) ((-1192 . -146) 130209) ((-1192 . -148) 130188) ((-389 . -567) T) ((-1191 . -148) 130167) ((-1191 . -146) 130146) ((-1185 . -146) 130053) ((-418 . -299) T) ((-1185 . -148) 129960) ((-1143 . -148) 129939) ((-1143 . -146) 129918) ((-328 . -38) 129759) ((-171 . -132) T) ((-322 . -806) NIL) ((-322 . -803) NIL) ((-665 . -1066) T) ((-48 . -659) 129709) ((-1130 . -1068) 129610) ((-905 . -627) 129587) ((-1130 . -651) 129509) ((-1184 . -102) T) ((-1011 . -102) T) ((-1010 . -21) T) ((-128 . -1027) 129493) ((-122 . -1027) 129477) ((-1010 . -25) T) ((-916 . -120) 129461) ((-1176 . -102) T) ((-1258 . -132) T) ((-1190 . -25) T) ((-353 . -1235) T) ((-1190 . -21) T) ((-866 . -132) T) ((-1142 . -25) T) ((-1142 . -21) T) ((-865 . -25) T) ((-865 . -21) T) ((-793 . -316) 129440) ((-1177 . -318) 129235) ((-1174 . -500) 129219) ((-1167 . -152) 129169) ((-658 . -102) 129147) ((-643 . -102) T) ((-1163 . -624) 129109) ((-582 . -132) T) ((-632 . -859) 129088) ((-1163 . -625) 129049) ((-1041 . -802) T) ((-1041 . -805) T) ((-1041 . -737) T) ((-826 . -915) 128918) ((-723 . -1073) 128741) ((-495 . -318) 128679) ((-464 . -428) 128649) ((-361 . -174) T) ((-298 . -38) 128636) ((-257 . -234) 128527) ((-256 . -234) 128418) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-353 . -1055) 128395) ((-276 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-723 . -111) 128204) ((-364 . -737) T) ((-681 . -271) 128188) ((-681 . -232) 128172) ((-592 . -316) T) ((-529 . -316) T) ((-303 . -525) 128121) ((-108 . -318) NIL) ((-72 . -406) T) ((-1130 . -102) 127873) ((-844 . -422) 127857) ((-1137 . -806) T) ((-1137 . -803) T) ((-712 . -1117) T) ((-589 . -624) 127839) ((-389 . -373) T) ((-171 . -504) 127817) ((-224 . -624) 127749) ((-135 . -1117) T) ((-117 . -1117) T) ((-981 . -1235) T) ((-48 . -737) T) ((-1063 . -500) 127714) ((-142 . -436) 127696) ((-142 . -378) T) ((-1044 . -102) T) ((-523 . -520) 127675) ((-723 . -627) 127431) ((-1192 . -237) 127390) ((-487 . -102) T) ((-474 . -102) T) ((-1191 . -237) 127342) ((-1185 . -237) 127165) ((-1051 . -1129) T) ((-328 . -915) 127071) ((-1242 . -624) 127053) ((-1199 . -1055) 126989) ((-1192 . -35) 126955) ((-1192 . -95) 126921) ((-1192 . -1223) 126887) ((-1192 . -1220) 126853) ((-1191 . -1220) 126819) ((-1191 . -1223) 126785) ((-1176 . -318) NIL) ((-89 . -407) T) ((-89 . -406) T) ((-1097 . -1169) 126764) ((-40 . -1235) T) ((-1191 . -95) 126730) ((-1051 . -23) T) ((-1191 . -35) 126696) ((-582 . -504) T) ((-1185 . -1220) 126662) ((-1185 . -1223) 126628) ((-1185 . -95) 126594) ((-1185 . -35) 126560) ((-371 . -1129) T) ((-369 . -1169) 126539) ((-363 . -1169) 126518) ((-355 . -1169) 126497) ((-1121 . -295) 126453) ((-1143 . -35) 126419) ((-1143 . -95) 126385) ((-108 . -1169) T) ((-1143 . -1223) 126351) ((-844 . -1075) 126330) ((-658 . -318) 126268) ((-643 . -318) 126119) ((-1143 . -1220) 126085) ((-723 . -1066) T) ((-1079 . -650) 126067) ((-1097 . -38) 125935) ((-967 . -650) 125883) ((-1021 . -148) T) ((-1021 . -146) NIL) ((-389 . -1129) T) ((-333 . -25) T) ((-331 . -23) T) ((-958 . -861) 125862) ((-723 . -335) 125839) ((-492 . -650) 125787) ((-40 . -1055) 125675) ((-723 . -238) T) ((-712 . -728) 125662) ((-349 . -1117) T) ((-176 . -1117) T) ((-340 . -861) T) ((-429 . -463) 125612) ((-389 . -23) T) ((-369 . -38) 125577) ((-363 . -38) 125542) ((-355 . -38) 125507) ((-80 . -452) T) ((-80 . -406) T) ((-227 . -25) T) ((-227 . -21) T) ((-847 . -1129) T) ((-108 . -38) 125457) ((-838 . -1129) T) ((-785 . -1117) T) ((-117 . -728) 125444) ((-683 . -1055) 125428) ((-623 . -102) T) ((-847 . -23) T) ((-838 . -23) T) ((-1174 . -295) 125380) ((-1130 . -318) 125318) ((-493 . -1068) 125219) ((-1119 . -240) 125203) ((-64 . -407) T) ((-64 . -406) T) ((-1168 . -102) T) ((-110 . -102) T) ((-493 . -651) 125125) ((-40 . -387) 125102) ((-96 . -102) T) ((-664 . -863) 125086) ((-1190 . -234) 125073) ((-1152 . -1100) T) ((-1079 . -21) T) ((-1079 . -25) T) ((-1071 . -1068) 125057) ((-826 . -271) 125026) ((-826 . -232) 124995) ((-967 . -25) T) ((-967 . -21) T) ((-1071 . -651) 124937) ((-632 . -1075) T) ((-1137 . -378) T) ((-1044 . -318) 124875) ((-681 . -657) 124834) ((-492 . -25) T) ((-492 . -21) T) ((-395 . -1068) 124818) ((-901 . -624) 124800) ((-897 . -624) 124782) ((-534 . -525) 124715) ((-257 . -861) 124666) ((-256 . -861) 124617) ((-395 . -651) 124587) ((-882 . -650) 124564) ((-487 . -318) 124502) ((-474 . -318) 124440) ((-361 . -299) T) ((-1174 . -1273) 124424) ((-1159 . -624) 124386) ((-1159 . -625) 124347) ((-1157 . -102) T) ((-1016 . -1073) 124243) ((-40 . -913) 124195) ((-1174 . -615) 124172) ((-1314 . -659) 124159) ((-1080 . -152) 124105) ((-498 . -908) NIL) ((-877 . -501) 124082) ((-1016 . -111) 123964) ((-883 . -1239) T) ((-219 . -908) NIL) ((-349 . -728) 123948) ((-877 . -624) 123910) ((-176 . -728) 123842) ((-883 . -567) T) ((-418 . -295) 123800) ((-245 . -237) 123697) ((-108 . -411) 123679) ((-84 . -394) T) ((-84 . -406) T) ((-712 . -174) T) ((-628 . -624) 123661) ((-99 . -737) T) ((-493 . -102) 123413) ((-99 . -484) T) ((-117 . -174) T) ((-1307 . -657) 123372) ((-1305 . -657) 123331) ((-171 . -650) 123279) ((-1097 . -915) 123150) ((-1071 . -102) T) ((-1016 . -627) 123040) ((-882 . -25) T) ((-826 . -243) 123019) ((-882 . -21) T) ((-829 . -102) T) ((-44 . -657) 122962) ((-1021 . -237) T) ((-425 . -102) T) ((-395 . -102) T) ((-110 . -318) NIL) ((-229 . -102) 122940) ((-128 . -1235) T) ((-122 . -1235) T) ((-108 . -915) NIL) ((-828 . -1068) 122891) ((-828 . -651) 122833) ((-1051 . -132) T) ((-681 . -377) 122817) ((-153 . -657) 122776) ((-646 . -295) 122734) ((-618 . -295) 122692) ((-1314 . -737) T) ((-1016 . -1066) T) ((-1258 . -650) 122640) ((-1121 . -624) 122622) ((-1020 . -624) 122604) ((-575 . -1235) T) ((-506 . -1235) T) ((-526 . -23) T) ((-521 . -23) T) ((-353 . -316) T) ((-519 . -23) T) ((-331 . -132) T) ((-3 . -1117) T) ((-1020 . -625) 122588) ((-1016 . -248) 122567) ((-1016 . -238) 122546) ((-1277 . -146) 122525) ((-1277 . -148) 122504) ((-844 . -1117) T) ((-1270 . -148) 122483) ((-1270 . -146) 122462) ((-1269 . -1239) 122441) ((-1249 . -146) 122348) ((-1249 . -148) 122255) ((-1248 . -1239) 122234) ((-389 . -132) T) ((-227 . -234) 122221) ((-575 . -898) 122203) ((0 . -1117) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1117) T) ((-1271 . -659) 122108) ((-1269 . -567) 122059) ((-725 . -1129) T) ((-1248 . -567) 122010) ((-575 . -1055) 121992) ((-606 . -148) 121971) ((-606 . -146) 121950) ((-506 . -1055) 121893) ((-1152 . -1154) T) ((-87 . -394) T) ((-87 . -406) T) ((-883 . -373) T) ((-847 . -132) T) ((-838 . -132) T) ((-979 . -657) 121837) ((-725 . -23) T) ((-517 . -624) 121803) ((-513 . -624) 121785) ((-826 . -657) 121564) ((-1309 . -1075) T) ((-389 . -1077) T) ((-1043 . -1117) 121542) ((-55 . -1055) 121524) ((-916 . -34) T) ((-493 . -318) 121462) ((-603 . -102) T) ((-1174 . -625) 121423) ((-1174 . -624) 121355) ((-1196 . -1068) 121238) ((-45 . -102) T) ((-828 . -102) T) ((-1196 . -651) 121135) ((-1258 . -25) T) ((-1258 . -21) T) ((-1079 . -234) 121122) ((-866 . -25) T) ((-44 . -377) 121106) ((-866 . -21) T) ((-742 . -463) 121057) ((-1308 . -624) 121039) ((-1297 . -1068) 121009) ((-1071 . -318) 120947) ((-682 . -1100) T) ((-617 . -1100) T) ((-401 . -1117) T) ((-582 . -25) T) ((-582 . -21) T) ((-182 . -1100) T) ((-162 . -1100) T) ((-157 . -1100) T) ((-155 . -1100) T) ((-1297 . -651) 120917) ((-632 . -1117) T) ((-710 . -898) 120899) ((-1285 . -1235) T) ((-229 . -318) 120837) ((-145 . -378) T) ((-1063 . -625) 120779) ((-1063 . -624) 120722) ((-322 . -924) NIL) ((-1243 . -855) T) ((-1130 . -915) 120591) ((-710 . -1055) 120536) ((-722 . -935) T) ((-485 . -1239) 120515) ((-1191 . -463) 120494) ((-1185 . -463) 120473) ((-339 . -102) T) ((-883 . -1129) T) ((-328 . -657) 120355) ((-325 . -659) 120084) ((-322 . -659) 120013) ((-485 . -567) 119964) ((-349 . -525) 119930) ((-561 . -152) 119880) ((-40 . -316) T) ((-854 . -624) 119862) ((-712 . -299) T) ((-883 . -23) T) ((-389 . -504) T) ((-1097 . -271) 119832) ((-1097 . -232) 119802) ((-523 . -102) T) ((-418 . -625) 119609) ((-418 . -624) 119591) ((-269 . -624) 119573) ((-117 . -299) T) ((-1271 . -737) T) ((-634 . -1235) T) ((-1310 . -1117) T) ((-1269 . -373) 119552) ((-1248 . -373) 119531) ((-1298 . -34) T) ((-1243 . -1117) T) ((-118 . -1235) T) ((-108 . -271) 119513) ((-108 . -232) 119495) ((-1196 . -102) T) ((-488 . -1117) T) ((-534 . -500) 119479) ((-748 . -34) T) ((-664 . -1068) 119463) ((-664 . -651) 119433) ((-882 . -234) NIL) ((-142 . -34) T) ((-118 . -896) 119410) ((-118 . -898) NIL) ((-634 . -1055) 119293) ((-1297 . -102) T) ((-1277 . -237) 119252) ((-655 . -861) 119231) ((-1270 . -237) 119183) ((-1249 . -237) 119006) ((-304 . -102) T) ((-723 . -378) 118985) ((-118 . -1055) 118962) ((-401 . -728) 118946) ((-606 . -237) 118905) ((-632 . -728) 118889) ((-1122 . -1235) T) ((-45 . -318) 118693) ((-827 . -146) 118672) ((-827 . -148) 118651) ((-298 . -657) 118623) ((-1308 . -392) 118602) ((-830 . -861) T) ((-1287 . -1117) T) ((-1177 . -231) 118549) ((-397 . -861) 118528) ((-1277 . -35) 118494) ((-1277 . -1223) 118460) ((-1277 . -1220) 118426) ((-1270 . -1220) 118392) ((-526 . -132) T) ((-1270 . -1223) 118358) ((-1249 . -1220) 118324) ((-1249 . -1223) 118290) ((-1277 . -95) 118256) ((-1270 . -95) 118222) ((-429 . -908) 118143) ((-646 . -624) 118112) ((-618 . -624) 118081) ((-227 . -861) T) ((-1270 . -35) 118047) ((-1269 . -1129) T) ((-1249 . -95) 118013) ((-1137 . -659) 117985) ((-1249 . -35) 117951) ((-1248 . -1129) T) ((-604 . -152) 117933) ((-1097 . -359) 117912) ((-176 . -299) T) ((-118 . -387) 117889) ((-118 . -348) 117866) ((-171 . -234) 117791) ((-881 . -316) T) ((-322 . -805) NIL) ((-322 . -802) NIL) ((-325 . -737) 117640) ((-322 . -737) T) ((-485 . -373) 117619) ((-369 . -359) 117598) ((-363 . -359) 117577) ((-355 . -359) 117556) ((-325 . -484) 117535) ((-1269 . -23) T) ((-1248 . -23) T) ((-729 . -1129) T) ((-725 . -132) T) ((-664 . -102) T) ((-488 . -728) 117500) ((-45 . -291) 117450) ((-105 . -1117) T) ((-68 . -624) 117432) ((-987 . -102) T) ((-875 . -102) T) ((-634 . -913) 117391) ((-1309 . -1117) T) ((-391 . -1117) T) ((-1258 . -234) 117378) ((-1234 . -1117) T) ((-82 . -1235) T) ((-1130 . -271) 117347) ((-1079 . -861) T) ((-118 . -913) NIL) ((-793 . -935) 117326) ((-724 . -861) T) ((-542 . -1117) T) ((-511 . -1117) T) ((-365 . -1239) T) ((-362 . -1239) T) ((-354 . -1239) T) ((-272 . -1239) 117305) ((-252 . -1239) 117284) ((-544 . -871) T) ((-1130 . -232) 117253) ((-1176 . -839) T) ((-1159 . -1073) 117237) ((-401 . -772) T) ((-705 . -1235) T) ((-702 . -1055) 117221) ((-365 . -567) T) ((-362 . -567) T) ((-354 . -567) T) ((-272 . -567) 117152) ((-252 . -567) 117083) ((-536 . -1100) T) ((-1159 . -111) 117062) ((-464 . -755) 117032) ((-877 . -1073) 117002) ((-828 . -38) 116944) ((-705 . -896) 116926) ((-705 . -898) 116908) ((-304 . -318) 116712) ((-1174 . -297) 116689) ((-925 . -1239) T) ((-1097 . -657) 116584) ((-1021 . -463) T) ((-681 . -422) 116568) ((-877 . -111) 116533) ((-929 . -463) T) ((-705 . -1055) 116478) ((-925 . -567) T) ((-544 . -624) 116460) ((-592 . -935) T) ((-498 . -1068) 116410) ((-485 . -1129) T) ((-529 . -935) T) ((-493 . -915) 116279) ((-65 . -624) 116261) ((-219 . -1068) 116211) ((-498 . -651) 116161) ((-369 . -657) 116098) ((-363 . -657) 116035) ((-355 . -657) 115972) ((-643 . -231) 115918) ((-219 . -651) 115868) ((-108 . -657) 115818) ((-485 . -23) T) ((-1137 . -805) T) ((-883 . -132) T) ((-1137 . -802) T) ((-1300 . -1302) 115797) ((-1137 . -737) T) ((-665 . -659) 115771) ((-303 . -624) 115512) ((-1159 . -627) 115430) ((-1052 . -34) T) ((-827 . -237) 115381) ((-591 . -316) T) ((-575 . -316) T) ((-506 . -316) T) ((-1309 . -728) 115351) ((-705 . -387) 115333) ((-705 . -348) 115315) ((-488 . -174) T) ((-391 . -728) 115285) ((-877 . -627) 115220) ((-882 . -861) NIL) ((-575 . -1039) T) ((-506 . -1039) T) ((-1150 . -624) 115202) ((-1130 . -243) 115181) ((-216 . -102) T) ((-1167 . -102) T) ((-71 . -624) 115163) ((-1159 . -1066) T) ((-1196 . -38) 115060) ((-869 . -624) 115042) ((-575 . -556) T) ((-681 . -1075) T) ((-742 . -964) 114995) ((-364 . -1235) T) ((-1159 . -238) 114974) ((-1099 . -1117) T) ((-1051 . -25) T) ((-1051 . -21) T) ((-1020 . -1073) 114919) ((-920 . -102) T) ((-877 . -1066) T) ((-705 . -913) NIL) ((-365 . -338) 114903) ((-365 . -373) T) ((-362 . -338) 114887) ((-362 . -373) T) ((-354 . -338) 114871) ((-354 . -373) T) ((-498 . -102) T) ((-1297 . -38) 114841) ((-557 . -861) T) ((-534 . -698) 114791) ((-219 . -102) T) ((-1041 . -1055) 114671) ((-1020 . -111) 114600) ((-1192 . -990) 114569) ((-1191 . -990) 114531) ((-531 . -152) 114515) ((-1097 . -380) 114494) ((-361 . -624) 114476) ((-331 . -21) T) ((-364 . -1055) 114453) ((-331 . -25) T) ((-1185 . -990) 114422) ((-48 . -1235) T) ((-76 . -624) 114404) ((-1143 . -990) 114371) ((-710 . -316) T) ((-130 . -855) T) ((-925 . -373) T) ((-389 . -25) T) ((-389 . -21) T) ((-925 . -338) 114358) ((-86 . -624) 114340) ((-710 . -1039) T) ((-688 . -861) T) ((-1269 . -132) T) ((-1248 . -132) T) ((-916 . -1027) 114324) ((-847 . -21) T) ((-48 . -1055) 114267) ((-847 . -25) T) ((-838 . -25) T) ((-838 . -21) T) ((-1130 . -657) 114046) ((-1307 . -1075) T) ((-560 . -102) T) ((-1305 . -1075) T) ((-665 . -737) T) ((-1121 . -629) 113949) ((-1020 . -627) 113879) ((-1308 . -1073) 113863) ((-826 . -422) 113832) ((-103 . -120) 113816) ((-130 . -1117) T) ((-52 . -1117) T) ((-941 . -624) 113798) ((-882 . -1009) 113775) ((-834 . -102) T) ((-1308 . -111) 113754) ((-742 . -908) 113729) ((-664 . -38) 113699) ((-582 . -861) T) ((-365 . -1129) T) ((-362 . -1129) T) ((-354 . -1129) T) ((-272 . -1129) T) ((-252 . -1129) T) ((-1167 . -318) 113503) ((-1105 . -234) 113490) ((-634 . -316) 113469) ((-675 . -23) T) ((-535 . -1100) T) ((-320 . -1117) T) ((-493 . -271) 113438) ((-493 . -232) 113407) ((-153 . -1075) T) ((-365 . -23) T) ((-362 . -23) T) ((-354 . -23) T) ((-118 . -316) T) ((-272 . -23) T) ((-252 . -23) T) ((-1020 . -1066) T) ((-723 . -924) 113386) ((-1192 . -908) 113297) ((-1191 . -908) 113201) ((-1185 . -908) 112960) ((-1174 . -627) 112937) ((-1020 . -238) 112909) ((-1020 . -248) T) ((-1143 . -908) 112891) ((-118 . -1039) NIL) ((-925 . -1129) T) ((-1270 . -463) 112870) ((-1249 . -463) 112849) ((-534 . -624) 112781) ((-723 . -659) 112670) ((-418 . -1073) 112622) ((-515 . -624) 112604) ((-925 . -23) T) ((-498 . -318) NIL) ((-1308 . -627) 112560) ((-485 . -132) T) ((-219 . -318) NIL) ((-418 . -111) 112498) ((-826 . -1075) 112476) ((-748 . -1115) 112460) ((-1269 . -504) 112426) ((-1248 . -504) 112392) ((-559 . -855) T) ((-142 . -1115) 112374) ((-488 . -299) T) ((-1308 . -1066) T) ((-257 . -237) 112271) ((-256 . -237) 112168) ((-1240 . -102) T) ((-1080 . -102) T) ((-854 . -627) 112036) ((-511 . -525) NIL) ((-493 . -243) 112015) ((-418 . -627) 111913) ((-978 . -1068) 111796) ((-746 . -1068) 111766) ((-978 . -651) 111663) ((-1190 . -146) 111642) ((-746 . -651) 111612) ((-464 . -1068) 111582) ((-1190 . -148) 111561) ((-1142 . -148) 111540) ((-1142 . -146) 111519) ((-646 . -1073) 111503) ((-618 . -1073) 111487) ((-464 . -651) 111457) ((-1192 . -1276) 111441) ((-1192 . -1263) 111418) ((-1191 . -1268) 111379) ((-681 . -1117) T) ((-681 . -1070) 111319) ((-1191 . -1263) 111289) ((-559 . -1117) T) ((-498 . -1169) T) ((-1191 . -1266) 111273) ((-1185 . -1247) 111234) ((-829 . -274) 111218) ((-219 . -1169) T) ((-353 . -935) T) ((-99 . -1235) T) ((-646 . -111) 111197) ((-618 . -111) 111176) ((-1185 . -1263) 111153) ((-854 . -1066) 111132) ((-1185 . -1245) 111116) ((-526 . -25) T) ((-506 . -311) T) ((-522 . -23) T) ((-521 . -25) T) ((-519 . -25) T) ((-518 . -23) T) ((-429 . -1068) 111090) ((-418 . -1066) T) ((-328 . -1075) T) ((-705 . -316) T) ((-429 . -651) 111064) ((-108 . -859) T) ((-723 . -737) T) ((-418 . -248) T) ((-418 . -238) 111043) ((-389 . -234) 111030) ((-498 . -38) 110980) ((-219 . -38) 110930) ((-485 . -504) 110896) ((-1242 . -378) T) ((-1176 . -1161) T) ((-1118 . -102) T) ((-838 . -234) 110869) ((-712 . -624) 110851) ((-712 . -625) 110766) ((-725 . -21) T) ((-725 . -25) T) ((-1152 . -102) T) ((-493 . -657) 110545) ((-245 . -908) 110412) ((-135 . -624) 110394) ((-117 . -624) 110376) ((-158 . -25) T) ((-1307 . -1117) T) ((-883 . -650) 110324) ((-1305 . -1117) T) ((-978 . -102) T) ((-746 . -102) T) ((-726 . -102) T) ((-464 . -102) T) ((-827 . -463) 110275) ((-44 . -1117) T) ((-1105 . -861) T) ((-1080 . -318) 110126) ((-675 . -132) T) ((-1071 . -657) 110095) ((-681 . -728) 110079) ((-298 . -1075) T) ((-365 . -132) T) ((-362 . -132) T) ((-354 . -132) T) ((-272 . -132) T) ((-252 . -132) T) ((-395 . -657) 110048) ((-429 . -102) T) ((-153 . -1117) T) ((-45 . -231) 109998) ((-1021 . -908) NIL) ((-810 . -1068) 109982) ((-973 . -861) 109961) ((-1016 . -659) 109863) ((-810 . -651) 109847) ((-245 . -1292) 109817) ((-1041 . -316) T) ((-303 . -1073) 109738) ((-925 . -132) T) ((-40 . -935) T) ((-498 . -411) 109720) ((-364 . -316) T) ((-219 . -411) 109702) ((-1097 . -422) 109686) ((-303 . -111) 109602) ((-1201 . -861) T) ((-1200 . -861) T) ((-883 . -25) T) ((-883 . -21) T) ((-1271 . -47) 109546) ((-349 . -624) 109528) ((-1190 . -237) T) ((-227 . -148) T) ((-176 . -624) 109510) ((-785 . -624) 109492) ((-129 . -861) T) ((-619 . -240) 109439) ((-486 . -240) 109389) ((-1307 . -728) 109359) ((-48 . -316) T) ((-1305 . -728) 109329) ((-65 . -627) 109258) ((-979 . -1117) T) ((-826 . -1117) 109010) ((-321 . -102) T) ((-916 . -1235) T) ((-48 . -1039) T) ((-1248 . -650) 108918) ((-700 . -102) 108896) ((-44 . -728) 108880) ((-561 . -102) T) ((-303 . -627) 108811) ((-67 . -393) T) ((-498 . -915) NIL) ((-67 . -406) T) ((-219 . -915) NIL) ((-673 . -23) T) ((-828 . -657) 108747) ((-681 . -772) T) ((-1232 . -1117) 108725) ((-361 . -1073) 108670) ((-686 . -1117) 108648) ((-1079 . -148) T) ((-967 . -148) 108627) ((-967 . -146) 108606) ((-810 . -102) T) ((-153 . -728) 108590) ((-492 . -148) 108569) ((-492 . -146) 108548) ((-361 . -111) 108477) ((-1097 . -1075) T) ((-331 . -861) 108456) ((-1277 . -990) 108425) ((-638 . -1117) T) ((-1270 . -990) 108387) ((-522 . -132) T) ((-518 . -132) T) ((-304 . -231) 108337) ((-369 . -1075) T) ((-363 . -1075) T) ((-355 . -1075) T) ((-303 . -1066) 108279) ((-1249 . -990) 108248) ((-389 . -861) T) ((-108 . -1075) T) ((-1016 . -737) T) ((-881 . -935) T) ((-854 . -806) 108227) ((-854 . -803) 108206) ((-429 . -318) 108145) ((-479 . -102) T) ((-606 . -990) 108114) ((-328 . -1117) T) ((-418 . -806) 108093) ((-418 . -803) 108072) ((-511 . -500) 108054) ((-1271 . -1055) 108020) ((-1269 . -21) T) ((-1269 . -25) T) ((-1248 . -21) T) ((-1248 . -25) T) ((-826 . -728) 107962) ((-361 . -627) 107892) ((-710 . -415) T) ((-1298 . -1235) T) ((-1130 . -422) 107861) ((-617 . -102) T) ((-1094 . -1235) T) ((-1020 . -378) NIL) ((-682 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1196 . -657) 107771) ((-748 . -1235) T) ((-742 . -1068) 107614) ((-44 . -772) T) ((-742 . -651) 107463) ((-604 . -102) T) ((-664 . -667) 107447) ((-77 . -407) T) ((-77 . -406) T) ((-142 . -1235) T) ((-882 . -148) T) ((-882 . -146) NIL) ((-1297 . -657) 107392) ((-1277 . -908) 107303) ((-1234 . -93) T) ((-361 . -1066) T) ((-227 . -237) T) ((-70 . -393) T) ((-70 . -406) T) ((-1183 . -102) T) ((-681 . -525) 107236) ((-1270 . -908) 107140) ((-1249 . -908) 106899) ((-700 . -318) 106837) ((-978 . -38) 106734) ((-1198 . -624) 106716) ((-746 . -38) 106686) ((-561 . -318) 106490) ((-1192 . -1068) 106373) ((-325 . -1235) T) ((-361 . -238) T) ((-361 . -248) T) ((-322 . -1235) T) ((-298 . -1117) T) ((-1191 . -1068) 106208) ((-1185 . -1068) 105998) ((-1143 . -1068) 105881) ((-1192 . -651) 105778) ((-1191 . -651) 105619) ((-722 . -1239) T) ((-1185 . -651) 105415) ((-1174 . -662) 105399) ((-1143 . -651) 105296) ((-1229 . -567) 105275) ((-830 . -396) 105259) ((-722 . -567) T) ((-606 . -908) 105170) ((-325 . -896) 105154) ((-325 . -898) 105079) ((-137 . -1235) T) ((-322 . -896) 105040) ((-322 . -898) NIL) ((-810 . -318) 105005) ((-328 . -728) 104846) ((-397 . -396) 104830) ((-333 . -332) 104807) ((-496 . -102) T) ((-485 . -25) T) ((-485 . -21) T) ((-429 . -38) 104781) ((-325 . -1055) 104444) ((-227 . -1220) T) ((-227 . -1223) T) ((-3 . -624) 104426) ((-322 . -1055) 104356) ((-883 . -234) 104301) ((-2 . -1117) T) ((-2 . |RecordCategory|) T) ((-1130 . -1075) 104279) ((-844 . -624) 104261) ((-1079 . -237) T) ((-591 . -935) T) ((-575 . -831) T) ((-575 . -935) T) ((-506 . -935) T) ((-137 . -1055) 104245) ((-227 . -95) T) ((-171 . -148) 104224) ((-75 . -452) T) ((0 . -624) 104206) ((-75 . -406) T) ((-171 . -146) 104157) ((-227 . -35) T) ((-49 . -624) 104139) ((-488 . -1075) T) ((-498 . -271) 104121) ((-498 . -232) 104103) ((-495 . -985) 104087) ((-219 . -271) 104069) ((-219 . -232) 104051) ((-81 . -452) T) ((-81 . -406) T) ((-1163 . -34) T) ((-742 . -102) T) ((-664 . -657) 104010) ((-1043 . -624) 103977) ((-511 . -295) 103927) ((-325 . -387) 103896) ((-322 . -387) 103857) ((-322 . -348) 103818) ((-1102 . -624) 103800) ((-827 . -964) 103747) ((-673 . -132) T) ((-1258 . -146) 103726) ((-1258 . -148) 103705) ((-1192 . -102) T) ((-1191 . -102) T) ((-1185 . -102) T) ((-1177 . -1117) T) ((-1143 . -102) T) ((-224 . -34) T) ((-298 . -728) 103692) ((-1177 . -621) 103668) ((-604 . -318) NIL) ((-1277 . -1276) 103652) ((-495 . -1117) 103630) ((-1167 . -231) 103580) ((-401 . -624) 103562) ((-521 . -861) T) ((-1137 . -1235) T) ((-1277 . -1263) 103539) ((-1270 . -1268) 103500) ((-1270 . -1263) 103470) ((-1270 . -1266) 103454) ((-1249 . -1247) 103415) ((-1249 . -1263) 103392) ((-1249 . -1245) 103376) ((-632 . -624) 103358) ((-1192 . -293) 103324) ((-710 . -935) T) ((-1191 . -293) 103290) ((-1185 . -293) 103256) ((-1143 . -293) 103222) ((-1097 . -1117) T) ((-1078 . -1117) T) ((-48 . -311) T) ((-325 . -913) 103188) ((-322 . -913) NIL) ((-1078 . -1085) 103167) ((-1137 . -898) 103149) ((-810 . -38) 103133) ((-272 . -650) 103081) ((-252 . -650) 103029) ((-712 . -1073) 103016) ((-606 . -1263) 102993) ((-1137 . -1055) 102975) ((-328 . -174) 102906) ((-369 . -1117) T) ((-363 . -1117) T) ((-355 . -1117) T) ((-511 . -19) 102888) ((-1119 . -152) 102872) ((-882 . -237) NIL) ((-108 . -1117) T) ((-117 . -1073) 102859) ((-722 . -373) T) ((-511 . -615) 102834) ((-712 . -111) 102819) ((-1310 . -624) 102786) ((-1310 . -501) 102768) ((-1269 . -234) 102714) ((-1248 . -234) 102567) ((-447 . -102) T) ((-887 . -1280) T) ((-255 . -102) T) ((-45 . -1166) 102517) ((-117 . -111) 102502) ((-1287 . -624) 102484) ((-1258 . -237) T) ((-1243 . -624) 102466) ((-1241 . -861) T) ((-646 . -731) T) ((-618 . -731) T) ((-1229 . -1129) T) ((-1229 . -23) T) ((-1190 . -463) 102397) ((-1185 . -318) 102282) ((-1184 . -1117) T) ((-826 . -525) 102215) ((-1052 . -1235) T) ((-245 . -1068) 102116) ((-1176 . -1117) T) ((-1159 . -659) 102054) ((-958 . -152) 102038) ((-1143 . -318) 102025) ((-1142 . -463) 101976) ((-245 . -651) 101898) ((-1104 . -567) 101829) ((-1104 . -1239) 101808) ((-1097 . -728) 101676) ((-536 . -102) T) ((-531 . -102) 101626) ((-1021 . -1068) 101576) ((-1011 . -1117) T) ((-827 . -908) 101472) ((-793 . -1239) 101451) ((-791 . -1239) 101430) ((-62 . -1235) T) ((-488 . -624) 101382) ((-488 . -625) 101304) ((-793 . -567) 101215) ((-791 . -567) 101146) ((-742 . -318) 101133) ((-712 . -627) 101105) ((-493 . -422) 101074) ((-634 . -935) 101053) ((-465 . -1239) 101032) ((-686 . -525) 100965) ((-675 . -25) T) ((-409 . -624) 100947) ((-675 . -21) T) ((-465 . -567) 100878) ((-429 . -915) 100801) ((-365 . -25) T) ((-365 . -21) T) ((-362 . -25) T) ((-118 . -935) T) ((-118 . -831) NIL) ((-362 . -21) T) ((-354 . -25) T) ((-354 . -21) T) ((-272 . -25) T) ((-272 . -21) T) ((-252 . -25) T) ((-252 . -21) T) ((-171 . -237) 100732) ((-83 . -394) T) ((-83 . -406) T) ((-135 . -627) 100714) ((-117 . -627) 100686) ((-1021 . -651) 100636) ((-958 . -997) 100620) ((-929 . -651) 100572) ((-929 . -1068) 100524) ((-925 . -21) T) ((-925 . -25) T) ((-883 . -861) 100475) ((-877 . -659) 100435) ((-722 . -1129) T) ((-722 . -23) T) ((-712 . -1066) T) ((-712 . -238) T) ((-298 . -174) T) ((-665 . -1235) T) ((-320 . -93) T) ((-658 . -1117) 100413) ((-643 . -621) 100388) ((-643 . -1117) T) ((-592 . -1239) T) ((-592 . -567) T) ((-529 . -1239) T) ((-529 . -567) T) ((-498 . -657) 100338) ((-485 . -234) 100284) ((-438 . -1068) 100268) ((-438 . -651) 100252) ((-369 . -728) 100204) ((-363 . -728) 100156) ((-349 . -1073) 100140) ((-355 . -728) 100092) ((-349 . -111) 100071) ((-176 . -1073) 100003) ((-219 . -657) 99953) ((-176 . -111) 99864) ((-108 . -728) 99814) ((-282 . -1117) T) ((-281 . -1117) T) ((-280 . -1117) T) ((-279 . -1117) T) ((-278 . -1117) T) ((-277 . -1117) T) ((-276 . -1117) T) ((-214 . -1117) T) ((-213 . -1117) T) ((-171 . -1223) 99792) ((-171 . -1220) 99770) ((-211 . -1117) T) ((-210 . -1117) T) ((-117 . -1066) T) ((-209 . -1117) T) ((-208 . -1117) T) ((-205 . -1117) T) ((-204 . -1117) T) ((-203 . -1117) T) ((-202 . -1117) T) ((-201 . -1117) T) ((-200 . -1117) T) ((-199 . -1117) T) ((-198 . -1117) T) ((-197 . -1117) T) ((-196 . -1117) T) ((-195 . -1117) T) ((-245 . -102) 99522) ((-171 . -35) 99500) ((-171 . -95) 99478) ((-665 . -1055) 99374) ((-493 . -1075) 99352) ((-1130 . -1117) 99104) ((-1159 . -34) T) ((-681 . -500) 99088) ((-73 . -1235) T) ((-105 . -624) 99070) ((-1309 . -624) 99052) ((-391 . -624) 99034) ((-349 . -627) 98986) ((-176 . -627) 98903) ((-1234 . -501) 98884) ((-742 . -38) 98733) ((-582 . -1223) T) ((-582 . -1220) T) ((-542 . -624) 98715) ((-531 . -318) 98653) ((-511 . -624) 98635) ((-511 . -625) 98617) ((-1234 . -624) 98583) ((-1185 . -1169) NIL) ((-1044 . -1088) 98552) ((-1044 . -1117) T) ((-1021 . -102) T) ((-988 . -102) T) ((-929 . -102) T) ((-905 . -1055) 98529) ((-1159 . -737) T) ((-1020 . -659) 98436) ((-487 . -1117) T) ((-474 . -1117) T) ((-597 . -23) T) ((-582 . -35) T) ((-582 . -95) T) ((-438 . -102) T) ((-1080 . -231) 98382) ((-1192 . -38) 98279) ((-877 . -737) T) ((-705 . -935) T) ((-522 . -25) T) ((-518 . -21) T) ((-518 . -25) T) ((-1191 . -38) 98120) ((-349 . -1066) T) ((-1185 . -38) 97916) ((-1097 . -174) T) ((-176 . -1066) T) ((-1143 . -38) 97813) ((-723 . -47) 97790) ((-369 . -174) T) ((-363 . -174) T) ((-530 . -57) 97764) ((-508 . -57) 97714) ((-361 . -1304) 97691) ((-227 . -463) T) ((-328 . -299) 97642) ((-355 . -174) T) ((-176 . -248) T) ((-1248 . -861) 97541) ((-108 . -174) T) ((-883 . -1009) 97525) ((-669 . -1129) T) ((-592 . -373) T) ((-592 . -338) 97512) ((-529 . -338) 97489) ((-529 . -373) T) ((-325 . -316) 97468) ((-322 . -316) T) ((-613 . -861) 97447) ((-1130 . -728) 97389) ((-531 . -291) 97373) ((-669 . -23) T) ((-429 . -232) 97357) ((-429 . -271) 97341) ((-322 . -1039) NIL) ((-346 . -23) T) ((-103 . -1027) 97325) ((-45 . -36) 97304) ((-623 . -1117) T) ((-361 . -378) T) ((-535 . -102) T) ((-506 . -27) T) ((-245 . -318) 97242) ((-1104 . -1129) T) ((-1308 . -659) 97216) ((-793 . -1129) T) ((-791 . -1129) T) ((-1196 . -422) 97200) ((-465 . -1129) T) ((-1079 . -463) T) ((-1168 . -1117) T) ((-967 . -463) 97151) ((-1132 . -1100) T) ((-110 . -1117) T) ((-1104 . -23) T) ((-1177 . -525) 96934) ((-828 . -1075) T) ((-793 . -23) T) ((-791 . -23) T) ((-492 . -463) 96885) ((-472 . -23) T) ((-391 . -392) 96864) ((-365 . -234) 96837) ((-362 . -234) 96810) ((-354 . -234) 96783) ((-465 . -23) T) ((-272 . -234) 96728) ((-257 . -908) 96595) ((-256 . -908) 96462) ((-96 . -1117) T) ((-723 . -1235) T) ((-681 . -295) 96439) ((-495 . -525) 96372) ((-1277 . -1068) 96255) ((-1277 . -651) 96152) ((-1270 . -651) 95993) ((-1270 . -1068) 95828) ((-1249 . -651) 95624) ((-298 . -299) T) ((-1249 . -1068) 95414) ((-1099 . -624) 95396) ((-1099 . -625) 95377) ((-418 . -924) 95356) ((-1229 . -132) T) ((-50 . -1129) T) ((-1185 . -411) 95308) ((-1041 . -935) T) ((-1020 . -737) T) ((-854 . -659) 95281) ((-723 . -898) NIL) ((-607 . -1068) 95241) ((-592 . -1129) T) ((-529 . -1129) T) ((-606 . -1068) 95124) ((-1174 . -34) T) ((-1021 . -318) NIL) ((-826 . -500) 95108) ((-607 . -651) 95081) ((-364 . -935) T) ((-606 . -651) 94978) ((-925 . -234) 94965) ((-418 . -659) 94881) ((-50 . -23) T) ((-722 . -132) T) ((-723 . -1055) 94761) ((-592 . -23) T) ((-108 . -525) NIL) ((-529 . -23) T) ((-171 . -420) 94732) ((-1157 . -1117) T) ((-1300 . -1299) 94716) ((-742 . -915) 94693) ((-712 . -806) T) ((-712 . -803) T) ((-1137 . -316) T) ((-389 . -148) T) ((-289 . -624) 94675) ((-288 . -624) 94657) ((-1248 . -1009) 94627) ((-48 . -935) T) ((-686 . -500) 94611) ((-257 . -1292) 94581) ((-256 . -1292) 94551) ((-1105 . -237) T) ((-1194 . -861) T) ((-1137 . -1039) T) ((-1063 . -34) T) ((-847 . -148) 94530) ((-847 . -146) 94509) ((-748 . -107) 94493) ((-623 . -133) T) ((-1196 . -1075) T) ((-493 . -1117) 94245) ((-1192 . -915) 94158) ((-1191 . -915) 94064) ((-1185 . -915) 93825) ((-882 . -463) T) ((-85 . -1235) T) ((-142 . -107) 93807) ((-1143 . -915) 93791) ((-723 . -387) 93775) ((-844 . -627) 93643) ((-1308 . -737) T) ((-1297 . -1075) T) ((-1277 . -102) T) ((-1137 . -556) T) ((-590 . -102) T) ((-130 . -501) 93625) ((-1270 . -102) T) ((-401 . -1073) 93609) ((-1190 . -964) 93578) ((-44 . -295) 93555) ((-130 . -624) 93522) ((-52 . -624) 93504) ((-1142 . -964) 93471) ((-664 . -422) 93455) ((-1249 . -102) T) ((-1176 . -525) NIL) ((-673 . -25) T) ((-632 . -1073) 93439) ((-673 . -21) T) ((-978 . -657) 93349) ((-746 . -657) 93294) ((-726 . -657) 93266) ((-401 . -111) 93245) ((-224 . -260) 93229) ((-1071 . -1070) 93169) ((-1071 . -1117) T) ((-1021 . -1169) T) ((-829 . -1117) T) ((-464 . -657) 93084) ((-646 . -659) 93068) ((-353 . -1239) T) ((-632 . -111) 93047) ((-618 . -659) 93031) ((-607 . -102) T) ((-320 . -501) 93012) ((-597 . -132) T) ((-606 . -102) T) ((-425 . -1117) T) ((-395 . -1117) T) ((-320 . -624) 92978) ((-229 . -1117) 92956) ((-658 . -525) 92889) ((-643 . -525) 92733) ((-844 . -1066) 92712) ((-655 . -152) 92696) ((-353 . -567) T) ((-723 . -913) 92639) ((-561 . -231) 92589) ((-1277 . -293) 92555) ((-1270 . -293) 92521) ((-1097 . -299) 92472) ((-498 . -859) T) ((-225 . -1129) T) ((-1249 . -293) 92438) ((-1229 . -504) 92404) ((-1021 . -38) 92354) ((-219 . -859) T) ((-429 . -657) 92313) ((-929 . -38) 92265) ((-854 . -805) 92244) ((-854 . -802) 92223) ((-854 . -737) 92202) ((-369 . -299) T) ((-363 . -299) T) ((-355 . -299) T) ((-171 . -463) 92133) ((-438 . -38) 92117) ((-225 . -23) T) ((-108 . -299) T) ((-418 . -805) 92096) ((-418 . -802) 92075) ((-418 . -737) T) ((-511 . -297) 92050) ((-488 . -1073) 92015) ((-669 . -132) T) ((-632 . -627) 91984) ((-1130 . -525) 91917) ((-346 . -132) T) ((-171 . -413) 91896) ((-493 . -728) 91838) ((-826 . -295) 91815) ((-488 . -111) 91771) ((-664 . -1075) T) ((-1190 . -908) 91674) ((-1142 . -908) 91656) ((-827 . -1068) 91499) ((-1296 . -1100) T) ((-1258 . -463) 91430) ((-827 . -651) 91279) ((-1295 . -1100) T) ((-1104 . -132) T) ((-1071 . -728) 91221) ((-1044 . -525) 91154) ((-793 . -132) T) ((-791 . -132) T) ((-582 . -463) T) ((-632 . -1066) T) ((-603 . -1117) T) ((-544 . -175) T) ((-472 . -132) T) ((-465 . -132) T) ((-389 . -237) T) ((-1016 . -1235) T) ((-45 . -1117) T) ((-395 . -728) 91124) ((-828 . -1117) T) ((-487 . -525) 91057) ((-474 . -525) 90990) ((-1310 . -627) 90972) ((-464 . -377) 90942) ((-45 . -621) 90921) ((-325 . -311) T) ((-838 . -237) 90900) ((-488 . -627) 90850) ((-1249 . -318) 90735) ((-681 . -624) 90697) ((-59 . -861) 90676) ((-1021 . -411) 90658) ((-559 . -624) 90640) ((-810 . -657) 90599) ((-826 . -615) 90576) ((-527 . -861) 90555) ((-507 . -861) 90534) ((-1016 . -1055) 90430) ((-40 . -1239) T) ((-245 . -915) 90299) ((-50 . -132) T) ((-592 . -132) T) ((-529 . -132) T) ((-303 . -659) 90159) ((-353 . -338) 90136) ((-353 . -373) T) ((-331 . -332) 90113) ((-328 . -295) 90071) ((-40 . -567) T) ((-389 . -1220) T) ((-389 . -1223) T) ((-1052 . -1211) 90046) ((-1207 . -240) 89996) ((-1185 . -232) 89948) ((-1185 . -271) 89900) ((-339 . -1117) T) ((-389 . -95) T) ((-389 . -35) T) ((-1052 . -107) 89846) ((-488 . -1066) T) ((-1309 . -1073) 89830) ((-490 . -240) 89780) ((-1177 . -500) 89714) ((-1300 . -1068) 89698) ((-391 . -1073) 89682) ((-1300 . -651) 89652) ((-488 . -248) T) ((-827 . -102) T) ((-725 . -148) 89631) ((-725 . -146) 89610) ((-495 . -500) 89594) ((-496 . -345) 89563) ((-523 . -1117) T) ((-1309 . -111) 89542) ((-1016 . -387) 89526) ((-424 . -102) T) ((-391 . -111) 89505) ((-1016 . -348) 89489) ((-287 . -1000) 89473) ((-286 . -1000) 89457) ((-1021 . -915) NIL) ((-1307 . -624) 89439) ((-1305 . -624) 89421) ((-110 . -525) NIL) ((-1190 . -1261) 89405) ((-865 . -863) 89389) ((-1196 . -1117) T) ((-103 . -1235) T) ((-967 . -964) 89350) ((-828 . -728) 89292) ((-1249 . -1169) NIL) ((-492 . -964) 89237) ((-1079 . -144) T) ((-60 . -102) 89215) ((-44 . -624) 89197) ((-78 . -624) 89179) ((-361 . -659) 89124) ((-1297 . -1117) T) ((-522 . -861) T) ((-298 . -295) 89103) ((-353 . -1129) T) ((-304 . -1117) T) ((-1016 . -913) 89062) ((-304 . -621) 89041) ((-1309 . -627) 88990) ((-1277 . -38) 88887) ((-1270 . -38) 88728) ((-1249 . -38) 88524) ((-498 . -1075) T) ((-391 . -627) 88508) ((-219 . -1075) T) ((-353 . -23) T) ((-153 . -624) 88490) ((-844 . -806) 88469) ((-844 . -803) 88448) ((-1234 . -627) 88429) ((-607 . -38) 88402) ((-606 . -38) 88299) ((-881 . -567) T) ((-225 . -132) T) ((-328 . -1019) 88265) ((-79 . -624) 88247) ((-723 . -316) 88226) ((-303 . -737) 88128) ((-835 . -102) T) ((-875 . -855) T) ((-303 . -484) 88107) ((-1300 . -102) T) ((-40 . -373) T) ((-883 . -148) 88086) ((-496 . -657) 88068) ((-883 . -146) 88047) ((-1176 . -500) 88029) ((-1309 . -1066) T) ((-493 . -525) 87962) ((-1163 . -1235) T) ((-979 . -624) 87944) ((-658 . -500) 87928) ((-643 . -500) 87859) ((-826 . -624) 87552) ((-48 . -27) T) ((-1196 . -728) 87449) ((-967 . -908) 87428) ((-664 . -1117) T) ((-872 . -871) T) ((-447 . -374) 87402) ((-742 . -657) 87312) ((-492 . -908) 87287) ((-1119 . -102) T) ((-987 . -1117) T) ((-875 . -1117) T) ((-827 . -318) 87274) ((-544 . -538) T) ((-544 . -587) T) ((-1305 . -392) 87246) ((-1071 . -525) 87179) ((-1177 . -295) 87155) ((-245 . -232) 87124) ((-245 . -271) 87093) ((-257 . -1068) 86994) ((-256 . -1068) 86895) ((-1297 . -728) 86865) ((-1184 . -93) T) ((-1011 . -93) T) ((-828 . -174) 86844) ((-257 . -651) 86766) ((-256 . -651) 86688) ((-1232 . -501) 86665) ((-229 . -525) 86598) ((-632 . -806) 86577) ((-632 . -803) 86556) ((-1232 . -624) 86468) ((-224 . -1235) T) ((-686 . -624) 86400) ((-1192 . -657) 86310) ((-1174 . -1027) 86294) ((-958 . -102) 86244) ((-361 . -737) T) ((-872 . -624) 86226) ((-1191 . -657) 86108) ((-1185 . -657) 85945) ((-1143 . -657) 85855) ((-1249 . -411) 85807) ((-1130 . -500) 85791) ((-60 . -318) 85729) ((-340 . -102) T) ((-1229 . -21) T) ((-1229 . -25) T) ((-40 . -1129) T) ((-722 . -21) T) ((-638 . -624) 85711) ((-526 . -332) 85690) ((-722 . -25) T) ((-450 . -102) T) ((-108 . -295) NIL) ((-936 . -1129) T) ((-40 . -23) T) ((-782 . -1129) T) ((-575 . -1239) T) ((-506 . -1239) T) ((-1021 . -271) 85672) ((-328 . -624) 85654) ((-1021 . -232) 85636) ((-171 . -167) 85620) ((-591 . -567) T) ((-575 . -567) T) ((-506 . -567) T) ((-782 . -23) T) ((-1269 . -148) 85599) ((-1177 . -615) 85575) ((-1269 . -146) 85554) ((-1044 . -500) 85538) ((-1248 . -146) 85463) ((-1248 . -148) 85388) ((-1300 . -1306) 85367) ((-882 . -908) NIL) ((-487 . -500) 85351) ((-474 . -500) 85335) ((-534 . -34) T) ((-664 . -728) 85305) ((-1277 . -915) 85218) ((-1270 . -915) 85124) ((-1249 . -915) 84885) ((-112 . -984) T) ((-1196 . -174) 84836) ((-673 . -861) 84815) ((-375 . -102) T) ((-606 . -915) 84728) ((-245 . -243) 84707) ((-257 . -102) T) ((-256 . -102) T) ((-1258 . -964) 84676) ((-250 . -861) 84655) ((-827 . -38) 84504) ((-45 . -525) 84296) ((-1176 . -295) 84246) ((-216 . -1117) T) ((-1167 . -1117) T) ((-883 . -237) 84197) ((-1167 . -621) 84176) ((-597 . -25) T) ((-597 . -21) T) ((-1119 . -318) 84114) ((-978 . -422) 84098) ((-710 . -1239) T) ((-643 . -295) 84051) ((-1104 . -650) 83999) ((-920 . -1117) T) ((-793 . -650) 83947) ((-791 . -650) 83895) ((-353 . -132) T) ((-298 . -624) 83877) ((-881 . -1129) T) ((-710 . -567) T) ((-130 . -627) 83859) ((-465 . -650) 83807) ((-171 . -908) 83728) ((-920 . -918) 83712) ((-389 . -463) T) ((-498 . -1117) T) ((-958 . -318) 83650) ((-712 . -659) 83622) ((-560 . -855) T) ((-219 . -1117) T) ((-325 . -935) 83601) ((-322 . -935) T) ((-322 . -831) NIL) ((-401 . -731) T) ((-881 . -23) T) ((-117 . -659) 83588) ((-485 . -146) 83567) ((-429 . -422) 83551) ((-485 . -148) 83530) ((-110 . -500) 83512) ((-320 . -627) 83493) ((-2 . -624) 83475) ((-188 . -102) T) ((-1176 . -19) 83457) ((-1176 . -615) 83432) ((-669 . -21) T) ((-669 . -25) T) ((-604 . -1161) T) ((-1130 . -295) 83409) ((-346 . -25) T) ((-346 . -21) T) ((-245 . -657) 83188) ((-506 . -373) T) ((-1307 . -1073) 83172) ((-1305 . -1073) 83156) ((-1300 . -38) 83126) ((-1269 . -1220) 83092) ((-1258 . -908) 82995) ((-1190 . -1068) 82818) ((-1159 . -1235) T) ((-1142 . -1068) 82661) ((-865 . -1068) 82645) ((-643 . -615) 82620) ((-1269 . -1223) 82586) ((-1269 . -95) 82552) ((-1269 . -237) 82504) ((-1190 . -651) 82333) ((-1142 . -651) 82182) ((-865 . -651) 82152) ((-1252 . -102) 82130) ((-1249 . -232) 82082) ((-560 . -1117) T) ((-1104 . -25) T) ((-1104 . -21) T) ((-542 . -803) T) ((-542 . -806) T) ((-118 . -1239) T) ((-978 . -1075) T) ((-634 . -567) T) ((-793 . -25) T) ((-793 . -21) T) ((-791 . -21) T) ((-791 . -25) T) ((-746 . -1075) T) ((-726 . -1075) T) ((-681 . -1073) 82066) ((-528 . -1100) T) ((-472 . -25) T) ((-118 . -567) T) ((-472 . -21) T) ((-465 . -25) T) ((-465 . -21) T) ((-1249 . -271) 82018) ((-1168 . -93) T) ((-1159 . -1055) 81914) ((-828 . -299) 81893) ((-1248 . -1220) 81859) ((-834 . -1117) T) ((-981 . -984) T) ((-681 . -111) 81838) ((-628 . -1235) T) ((-304 . -525) 81630) ((-1248 . -1223) 81596) ((-1248 . -237) 81455) ((-1243 . -378) T) ((-257 . -318) 81393) ((-256 . -318) 81331) ((-1240 . -855) T) ((-1177 . -625) NIL) ((-1177 . -624) 81313) ((-1159 . -387) 81297) ((-1137 . -831) T) ((-1137 . -935) T) ((-96 . -93) T) ((-1130 . -615) 81274) ((-1097 . -625) 81258) ((-1097 . -624) 81240) ((-1021 . -657) 81190) ((-929 . -657) 81127) ((-826 . -297) 81104) ((-495 . -624) 81036) ((-619 . -152) 80983) ((-498 . -728) 80933) ((-429 . -1075) T) ((-493 . -500) 80917) ((-438 . -657) 80876) ((-336 . -861) 80855) ((-349 . -659) 80829) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -728) 80779) ((-171 . -735) 80750) ((-176 . -659) 80682) ((-592 . -21) T) ((-592 . -25) T) ((-529 . -25) T) ((-529 . -21) T) ((-486 . -152) 80632) ((-1078 . -624) 80614) ((-1010 . -102) T) ((-873 . -102) T) ((-827 . -915) 80514) ((-810 . -422) 80477) ((-40 . -132) T) ((-710 . -373) T) ((-712 . -737) T) ((-712 . -805) T) ((-712 . -802) T) ((-214 . -909) T) ((-591 . -1129) T) ((-575 . -1129) T) ((-506 . -1129) T) ((-369 . -624) 80459) ((-363 . -624) 80441) ((-355 . -624) 80423) ((-66 . -407) T) ((-66 . -406) T) ((-108 . -625) 80353) ((-108 . -624) 80295) ((-213 . -909) T) ((-973 . -152) 80279) ((-782 . -132) T) ((-681 . -627) 80197) ((-135 . -737) T) ((-117 . -737) T) ((-1269 . -35) 80163) ((-1071 . -500) 80147) ((-591 . -23) T) ((-575 . -23) T) ((-506 . -23) T) ((-1248 . -95) 80113) ((-1248 . -35) 80079) ((-1190 . -102) T) ((-1142 . -102) T) ((-865 . -102) T) ((-229 . -500) 80063) ((-1307 . -111) 80042) ((-1305 . -111) 80021) ((-44 . -1073) 80005) ((-1307 . -627) 79951) ((-1307 . -1066) T) ((-1258 . -1261) 79935) ((-866 . -863) 79919) ((-1196 . -299) 79898) ((-1121 . -1235) T) ((-110 . -295) 79848) ((-1020 . -1235) T) ((-129 . -152) 79830) ((-1159 . -913) 79789) ((-44 . -111) 79768) ((-1305 . -627) 79697) ((-1240 . -1117) T) ((-1199 . -1280) T) ((-1184 . -501) 79678) ((-681 . -1066) T) ((-1184 . -624) 79644) ((-1176 . -625) NIL) ((-485 . -237) 79596) ((-1080 . -621) 79571) ((-1011 . -501) 79552) ((-74 . -452) T) ((-74 . -406) T) ((-1080 . -1117) T) ((-153 . -1073) 79536) ((-1011 . -624) 79502) ((-681 . -238) 79481) ((-582 . -565) 79465) ((-365 . -148) 79444) ((-365 . -146) 79395) ((-362 . -148) 79374) ((-362 . -146) 79325) ((-354 . -148) 79304) ((-354 . -146) 79255) ((-272 . -146) 79234) ((-272 . -148) 79213) ((-252 . -148) 79192) ((-118 . -373) T) ((-252 . -146) 79171) ((-1176 . -624) 79153) ((-153 . -111) 79132) ((-1020 . -1055) 79020) ((-1185 . -859) NIL) ((-705 . -1239) T) ((-810 . -1075) T) ((-710 . -1129) T) ((-1305 . -1066) T) ((-1174 . -1235) T) ((-1020 . -387) 78997) ((-925 . -146) T) ((-925 . -148) 78979) ((-881 . -132) T) ((-826 . -1073) 78900) ((-710 . -23) T) ((-705 . -567) T) ((-227 . -1068) 78865) ((-658 . -624) 78797) ((-658 . -625) 78758) ((-643 . -625) NIL) ((-643 . -624) 78740) ((-498 . -174) T) ((-227 . -651) 78705) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-485 . -1223) 78671) ((-485 . -1220) 78637) ((-282 . -624) 78619) ((-281 . -624) 78601) ((-280 . -624) 78583) ((-279 . -624) 78565) ((-278 . -624) 78547) ((-511 . -662) 78529) ((-277 . -624) 78511) ((-349 . -737) T) ((-276 . -624) 78493) ((-110 . -19) 78475) ((-176 . -737) T) ((-511 . -383) 78457) ((-214 . -624) 78439) ((-531 . -1166) 78423) ((-511 . -124) T) ((-110 . -615) 78398) ((-213 . -624) 78380) ((-485 . -35) 78346) ((-485 . -95) 78312) ((-211 . -624) 78294) ((-210 . -624) 78276) ((-209 . -624) 78258) ((-208 . -624) 78240) ((-205 . -624) 78222) ((-204 . -624) 78204) ((-203 . -624) 78186) ((-202 . -624) 78168) ((-201 . -624) 78150) ((-200 . -624) 78132) ((-199 . -624) 78114) ((-547 . -1120) 78066) ((-198 . -624) 78048) ((-197 . -624) 78030) ((-45 . -500) 77967) ((-196 . -624) 77949) ((-195 . -624) 77931) ((-153 . -627) 77900) ((-1132 . -102) T) ((-826 . -111) 77816) ((-655 . -102) 77766) ((-493 . -295) 77743) ((-1308 . -1055) 77727) ((-1130 . -624) 77420) ((-1118 . -1117) T) ((-1063 . -1235) T) ((-1190 . -318) 77407) ((-1079 . -1068) 77394) ((-1152 . -1117) T) ((-967 . -1068) 77237) ((-1142 . -318) 77224) ((-1113 . -1100) T) ((-634 . -1129) T) ((-1079 . -651) 77211) ((-1107 . -1100) T) ((-967 . -651) 77060) ((-1104 . -234) 77005) ((-492 . -1068) 76848) ((-1090 . -1100) T) ((-1083 . -1100) T) ((-1053 . -1100) T) ((-1036 . -1100) T) ((-118 . -1129) T) ((-492 . -651) 76697) ((-793 . -234) 76684) ((-830 . -102) T) ((-637 . -1100) T) ((-634 . -23) T) ((-1167 . -525) 76476) ((-494 . -1100) T) ((-397 . -102) T) ((-333 . -102) T) ((-220 . -1100) T) ((-978 . -1117) T) ((-153 . -1066) T) ((-742 . -422) 76460) ((-118 . -23) T) ((-1020 . -913) 76412) ((-746 . -1117) T) ((-726 . -1117) T) ((-1277 . -657) 76322) ((-464 . -1117) T) ((-418 . -1235) T) ((-325 . -441) 76306) ((-603 . -93) T) ((-1270 . -657) 76188) ((-1044 . -625) 76149) ((-1041 . -1239) T) ((-227 . -102) T) ((-1044 . -624) 76111) ((-827 . -271) 76095) ((-827 . -232) 76079) ((-826 . -627) 75877) ((-1249 . -657) 75714) ((-1041 . -567) T) ((-844 . -659) 75687) ((-364 . -1239) T) ((-487 . -624) 75649) ((-487 . -625) 75610) ((-474 . -625) 75571) ((-474 . -624) 75533) ((-607 . -657) 75492) ((-418 . -896) 75476) ((-328 . -1073) 75311) ((-418 . -898) 75236) ((-606 . -657) 75146) ((-854 . -1055) 75042) ((-498 . -525) NIL) ((-493 . -615) 75019) ((-592 . -234) 75006) ((-364 . -567) T) ((-529 . -234) 74993) ((-219 . -525) NIL) ((-883 . -463) T) ((-429 . -1117) T) ((-418 . -1055) 74857) ((-328 . -111) 74678) ((-705 . -373) T) ((-227 . -293) T) ((-1232 . -627) 74655) ((-48 . -1239) T) ((-1190 . -1169) 74633) ((-1177 . -297) 74609) ((-1079 . -102) T) ((-967 . -102) T) ((-826 . -1066) 74587) ((-591 . -132) T) ((-575 . -132) T) ((-506 . -132) T) ((-365 . -237) 74566) ((-362 . -237) 74545) ((-354 . -237) 74524) ((-48 . -567) T) ((-882 . -1068) 74469) ((-272 . -237) 74420) ((-826 . -238) 74372) ((-325 . -27) 74351) ((-257 . -915) 74220) ((-256 . -915) 74089) ((-254 . -846) 74071) ((-189 . -846) 74053) ((-724 . -102) T) ((-304 . -500) 73990) ((-882 . -651) 73935) ((-492 . -102) T) ((-742 . -1075) T) ((-623 . -624) 73917) ((-623 . -625) 73778) ((-418 . -387) 73762) ((-418 . -348) 73746) ((-1190 . -38) 73575) ((-1142 . -38) 73424) ((-328 . -627) 73250) ((-925 . -237) T) ((-646 . -1235) 73224) ((-618 . -1235) 73198) ((-865 . -38) 73168) ((-401 . -659) 73152) ((-655 . -318) 73090) ((-1168 . -501) 73071) ((-1168 . -624) 73037) ((-978 . -728) 72934) ((-746 . -728) 72904) ((-224 . -107) 72888) ((-45 . -295) 72788) ((-632 . -659) 72762) ((-321 . -1117) T) ((-298 . -1073) 72749) ((-110 . -624) 72731) ((-110 . -625) 72713) ((-464 . -728) 72683) ((-827 . -259) 72622) ((-700 . -1117) 72600) ((-561 . -1117) T) ((-1192 . -1075) T) ((-1191 . -1075) T) ((-96 . -501) 72581) ((-1185 . -1075) T) ((-298 . -111) 72566) ((-1143 . -1075) T) ((-561 . -621) 72545) ((-96 . -624) 72511) ((-1021 . -859) T) ((-229 . -698) 72469) ((-705 . -1129) T) ((-1229 . -751) 72445) ((-1041 . -373) T) ((-849 . -846) 72427) ((-844 . -805) 72406) ((-418 . -913) 72365) ((-328 . -1066) T) ((-353 . -25) T) ((-353 . -21) T) ((-171 . -1068) 72275) ((-68 . -1235) T) ((-844 . -802) 72254) ((-429 . -728) 72228) ((-810 . -1117) T) ((-723 . -935) 72207) ((-710 . -132) T) ((-171 . -651) 72035) ((-705 . -23) T) ((-498 . -299) T) ((-844 . -737) 72014) ((-328 . -238) 71966) ((-328 . -248) 71945) ((-219 . -299) T) ((-130 . -378) T) ((-1269 . -463) 71924) ((-1248 . -463) 71903) ((-364 . -338) 71880) ((-364 . -373) T) ((-1157 . -624) 71862) ((-45 . -1273) 71812) ((-882 . -102) T) ((-655 . -291) 71796) ((-710 . -1077) T) ((-1296 . -102) T) ((-1295 . -102) T) ((-488 . -659) 71761) ((-479 . -1117) T) ((-45 . -615) 71686) ((-1176 . -297) 71661) ((-298 . -627) 71633) ((-40 . -650) 71572) ((-1258 . -1068) 71395) ((-866 . -1068) 71379) ((-48 . -373) T) ((-1123 . -624) 71361) ((-1258 . -651) 71190) ((-866 . -651) 71160) ((-643 . -297) 71135) ((-827 . -657) 71045) ((-582 . -1068) 71032) ((-493 . -624) 70725) ((-245 . -422) 70694) ((-967 . -318) 70681) ((-582 . -651) 70668) ((-65 . -1235) T) ((-1190 . -915) 70575) ((-1183 . -1117) T) ((-1080 . -525) 70419) ((-682 . -1117) T) ((-634 . -132) T) ((-492 . -318) 70406) ((-617 . -1117) T) ((-557 . -102) T) ((-118 . -132) T) ((-298 . -1066) T) ((-182 . -1117) T) ((-162 . -1117) T) ((-157 . -1117) T) ((-155 . -1117) T) ((-464 . -772) T) ((-31 . -1100) T) ((-978 . -174) 70357) ((-1142 . -915) 70341) ((-987 . -93) T) ((-1130 . -297) 70318) ((-1097 . -1073) 70228) ((-632 . -805) 70207) ((-604 . -1117) T) ((-632 . -802) 70186) ((-632 . -737) T) ((-304 . -295) 70165) ((-303 . -1235) T) ((-1071 . -624) 70127) ((-1071 . -625) 70088) ((-1041 . -1129) T) ((-171 . -102) T) ((-283 . -861) T) ((-1119 . -231) 70072) ((-829 . -624) 70054) ((-1097 . -111) 69950) ((-1041 . -23) T) ((-1020 . -316) T) ((-810 . -728) 69934) ((-369 . -1073) 69886) ((-364 . -1129) T) ((-363 . -1073) 69838) ((-425 . -624) 69820) ((-395 . -624) 69802) ((-355 . -1073) 69754) ((-229 . -624) 69686) ((-912 . -102) T) ((-852 . -102) T) ((-108 . -1073) 69636) ((-819 . -102) T) ((-780 . -102) T) ((-688 . -102) T) ((-485 . -463) 69615) ((-429 . -174) T) ((-369 . -111) 69553) ((-363 . -111) 69491) ((-355 . -111) 69429) ((-257 . -271) 69398) ((-257 . -232) 69367) ((-256 . -271) 69336) ((-256 . -232) 69305) ((-364 . -23) T) ((-71 . -1235) T) ((-227 . -38) 69270) ((-108 . -111) 69204) ((-40 . -25) T) ((-40 . -21) T) ((-681 . -731) T) ((-171 . -293) 69182) ((-48 . -1129) T) ((-936 . -25) T) ((-782 . -25) T) ((-1309 . -659) 69156) ((-1167 . -500) 69093) ((-496 . -1117) T) ((-1300 . -657) 69052) ((-1258 . -102) T) ((-1079 . -1169) T) ((-866 . -102) T) ((-245 . -1075) 69030) ((-979 . -803) 68983) ((-979 . -806) 68936) ((-391 . -659) 68920) ((-48 . -23) T) ((-826 . -806) 68899) ((-826 . -803) 68878) ((-559 . -378) T) ((-304 . -615) 68857) ((-488 . -737) T) ((-582 . -102) T) ((-1097 . -627) 68675) ((-254 . -187) T) ((-189 . -187) T) ((-882 . -318) 68632) ((-664 . -295) 68611) ((-112 . -672) T) ((-361 . -1235) T) ((-369 . -627) 68548) ((-363 . -627) 68485) ((-355 . -627) 68422) ((-76 . -1235) T) ((-108 . -627) 68372) ((-112 . -113) T) ((-1079 . -38) 68359) ((-675 . -384) 68338) ((-967 . -38) 68187) ((-742 . -1117) T) ((-492 . -38) 68036) ((-86 . -1235) T) ((-603 . -501) 68017) ((-1249 . -859) NIL) ((-582 . -293) T) ((-1192 . -1117) T) ((-603 . -624) 67983) ((-1191 . -1117) T) ((-1185 . -1117) T) ((-1097 . -1066) T) ((-361 . -1055) 67960) ((-828 . -501) 67944) ((-1021 . -1075) T) ((-45 . -624) 67926) ((-45 . -625) NIL) ((-929 . -1075) T) ((-828 . -624) 67895) ((-1164 . -102) 67873) ((-1097 . -248) 67824) ((-438 . -1075) T) ((-369 . -1066) T) ((-363 . -1066) T) ((-375 . -374) 67801) ((-355 . -1066) T) ((-353 . -234) 67788) ((-257 . -243) 67767) ((-256 . -243) 67746) ((-1097 . -238) 67671) ((-1143 . -1117) T) ((-303 . -913) 67630) ((-108 . -1066) T) ((-705 . -132) T) ((-429 . -525) 67472) ((-369 . -238) 67451) ((-369 . -248) T) ((-44 . -731) T) ((-363 . -238) 67430) ((-363 . -248) T) ((-355 . -238) 67409) ((-355 . -248) T) ((-1184 . -627) 67390) ((-171 . -318) 67355) ((-108 . -248) T) ((-108 . -238) T) ((-1011 . -627) 67336) ((-328 . -803) T) ((-881 . -21) T) ((-881 . -25) T) ((-418 . -316) T) ((-511 . -34) T) ((-110 . -297) 67311) ((-1130 . -1073) 67232) ((-882 . -1169) NIL) ((-339 . -624) 67214) ((-418 . -1039) 67192) ((-1130 . -111) 67108) ((-702 . -1280) T) ((-447 . -1117) T) ((-255 . -1117) T) ((-1309 . -737) T) ((-63 . -624) 67090) ((-882 . -38) 67035) ((-534 . -1235) T) ((-613 . -152) 67019) ((-523 . -624) 67001) ((-1258 . -318) 66988) ((-742 . -728) 66837) ((-542 . -804) T) ((-542 . -805) T) ((-575 . -650) 66819) ((-506 . -650) 66779) ((-365 . -463) T) ((-362 . -463) T) ((-354 . -463) T) ((-272 . -463) 66730) ((-536 . -1117) T) ((-531 . -1117) 66680) ((-252 . -463) 66631) ((-1167 . -295) 66610) ((-1196 . -624) 66592) ((-700 . -525) 66525) ((-978 . -299) 66504) ((-561 . -525) 66296) ((-257 . -657) 66144) ((-256 . -657) 65979) ((-1297 . -624) 65948) ((-1297 . -501) 65932) ((-1192 . -728) 65829) ((-1190 . -271) 65813) ((-1190 . -232) 65797) ((-1130 . -627) 65595) ((-171 . -1169) 65574) ((-1191 . -728) 65415) ((-1185 . -728) 65211) ((-981 . -113) T) ((-904 . -102) T) ((-1174 . -685) 65195) ((-1143 . -728) 65092) ((-1041 . -132) T) ((-365 . -413) 65043) ((-362 . -413) 64994) ((-354 . -413) 64945) ((-979 . -378) 64898) ((-810 . -525) 64810) ((-304 . -625) NIL) ((-304 . -624) 64792) ((-925 . -463) T) ((-920 . -295) 64771) ((-826 . -378) 64750) ((-521 . -520) 64729) ((-519 . -520) 64708) ((-883 . -908) 64629) ((-498 . -295) NIL) ((-493 . -297) 64606) ((-429 . -299) T) ((-364 . -132) T) ((-219 . -295) NIL) ((-705 . -504) NIL) ((-99 . -1129) T) ((-40 . -234) 64537) ((-171 . -38) 64365) ((-967 . -915) 64346) ((-1269 . -990) 64308) ((-1164 . -318) 64246) ((-492 . -915) 64223) ((-1248 . -990) 64192) ((-925 . -413) T) ((-1130 . -1066) 64170) ((-1271 . -567) T) ((-1167 . -615) 64149) ((-112 . -861) T) ((-1080 . -500) 64080) ((-591 . -21) T) ((-591 . -25) T) ((-575 . -21) T) ((-575 . -25) T) ((-506 . -25) T) ((-506 . -21) T) ((-1258 . -1169) 64058) ((-1130 . -238) 64010) ((-48 . -132) T) ((-1216 . -102) T) ((-245 . -1117) 63762) ((-882 . -411) 63739) ((-1105 . -102) T) ((-1093 . -102) T) ((-619 . -102) T) ((-486 . -102) T) ((-1258 . -38) 63568) ((-866 . -38) 63538) ((-1051 . -1068) 63512) ((-742 . -174) 63423) ((-664 . -624) 63405) ((-656 . -1100) T) ((-1051 . -651) 63389) ((-582 . -38) 63376) ((-987 . -501) 63357) ((-987 . -624) 63323) ((-973 . -102) 63273) ((-875 . -624) 63255) ((-875 . -625) 63177) ((-604 . -525) NIL) ((-1314 . -1129) T) ((-1277 . -1075) T) ((-1270 . -1075) T) ((-1269 . -908) 63081) ((-331 . -1068) 63063) ((-1249 . -1075) T) ((-1248 . -908) 62858) ((-1229 . -148) 62837) ((-1229 . -146) 62816) ((-1202 . -102) T) ((-331 . -651) 62798) ((-712 . -1235) T) ((-1201 . -102) T) ((-1200 . -102) T) ((-1192 . -174) 62749) ((-1191 . -174) 62680) ((-607 . -1075) T) ((-606 . -1075) T) ((-1185 . -174) 62611) ((-1168 . -627) 62592) ((-389 . -1068) 62557) ((-1143 . -174) 62508) ((-1021 . -1117) T) ((-988 . -1117) T) ((-929 . -1117) T) ((-882 . -915) NIL) ((-389 . -651) 62473) ((-810 . -808) 62457) ((-710 . -25) T) ((-710 . -21) T) ((-118 . -650) 62434) ((-712 . -898) 62416) ((-438 . -1117) T) ((-325 . -1239) 62395) ((-322 . -1239) T) ((-171 . -411) 62379) ((-847 . -1068) 62349) ((-485 . -990) 62311) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -624) 62293) ((-838 . -1068) 62277) ((-108 . -806) T) ((-108 . -803) T) ((-712 . -1055) 62259) ((-325 . -567) 62238) ((-322 . -567) T) ((-847 . -651) 62208) ((-838 . -651) 62178) ((-1314 . -23) T) ((-135 . -1055) 62160) ((-96 . -627) 62141) ((-1010 . -657) 62123) ((-493 . -1073) 62044) ((-45 . -297) 61969) ((-245 . -728) 61911) ((-528 . -102) T) ((-493 . -111) 61827) ((-1109 . -102) 61797) ((-1051 . -102) T) ((-1190 . -657) 61707) ((-1142 . -657) 61617) ((-865 . -657) 61576) ((-655 . -839) 61555) ((-742 . -525) 61498) ((-1071 . -1073) 61482) ((-171 . -915) 61405) ((-1152 . -93) T) ((-1080 . -295) 61380) ((-634 . -21) T) ((-634 . -25) T) ((-535 . -1117) T) ((-681 . -659) 61318) ((-371 . -102) T) ((-331 . -102) T) ((-395 . -1073) 61302) ((-1071 . -111) 61281) ((-827 . -422) 61265) ((-118 . -25) T) ((-89 . -624) 61247) ((-118 . -21) T) ((-619 . -318) 61042) ((-486 . -318) 60846) ((-1167 . -625) NIL) ((-349 . -1235) T) ((-395 . -111) 60825) ((-389 . -102) T) ((-216 . -624) 60807) ((-1167 . -624) 60789) ((-1185 . -525) 60558) ((-1021 . -728) 60508) ((-1143 . -525) 60478) ((-929 . -728) 60430) ((-493 . -627) 60228) ((-361 . -316) T) ((-1207 . -152) 60178) ((-485 . -908) 60082) ((-973 . -318) 60020) ((-847 . -102) T) ((-438 . -728) 60004) ((-227 . -839) T) ((-838 . -102) T) ((-836 . -102) T) ((-1307 . -659) 59978) ((-1269 . -1268) 59957) ((-490 . -152) 59907) ((-1269 . -1263) 59877) ((-1137 . -1239) T) ((-349 . -1055) 59844) ((-1269 . -1266) 59828) ((-1258 . -915) 59735) ((-1248 . -1247) 59714) ((-80 . -624) 59696) ((-920 . -624) 59678) ((-1248 . -1263) 59655) ((-1137 . -567) T) ((-936 . -861) T) ((-782 . -861) T) ((-683 . -861) T) ((-498 . -625) 59585) ((-498 . -624) 59526) ((-389 . -293) T) ((-1248 . -1245) 59510) ((-1271 . -1129) T) ((-219 . -625) 59440) ((-219 . -624) 59381) ((-1080 . -615) 59356) ((-829 . -627) 59340) ((-575 . -234) 59327) ((-527 . -152) 59311) ((-59 . -152) 59295) ((-507 . -152) 59279) ((-506 . -234) 59266) ((-369 . -1304) 59250) ((-363 . -1304) 59234) ((-355 . -1304) 59218) ((-325 . -373) 59197) ((-322 . -373) T) ((-493 . -1066) 59175) ((-705 . -650) 59157) ((-1305 . -659) 59131) ((-129 . -318) NIL) ((-1271 . -23) T) ((-700 . -500) 59115) ((-64 . -624) 59097) ((-1130 . -806) 59076) ((-1130 . -803) 59055) ((-561 . -500) 58992) ((-681 . -34) T) ((-493 . -238) 58944) ((-304 . -297) 58923) ((-827 . -1075) T) ((-44 . -659) 58881) ((-1097 . -378) 58832) ((-742 . -299) 58763) ((-531 . -525) 58696) ((-828 . -1073) 58647) ((-1104 . -146) 58626) ((-560 . -624) 58608) ((-369 . -378) 58587) ((-363 . -378) 58566) ((-355 . -378) 58545) ((-1104 . -148) 58524) ((-983 . -1235) T) ((-882 . -271) 58501) ((-882 . -232) 58478) ((-828 . -111) 58420) ((-793 . -146) 58399) ((-272 . -964) 58366) ((-252 . -964) 58311) ((-793 . -148) 58290) ((-791 . -146) 58269) ((-791 . -148) 58248) ((-153 . -659) 58222) ((-590 . -1117) T) ((-464 . -295) 58185) ((-465 . -148) 58164) ((-465 . -146) 58143) ((-681 . -737) T) ((-834 . -624) 58125) ((-1277 . -1117) T) ((-1270 . -1117) T) ((-1249 . -1117) T) ((-1229 . -1223) 58091) ((-1229 . -1220) 58057) ((-1192 . -299) 58036) ((-1191 . -299) 57987) ((-1185 . -299) 57938) ((-1143 . -299) 57917) ((-349 . -913) 57898) ((-1021 . -174) T) ((-929 . -174) T) ((-705 . -21) T) ((-705 . -25) T) ((-227 . -657) 57848) ((-607 . -1117) T) ((-606 . -1117) T) ((-485 . -1266) 57832) ((-485 . -1263) 57802) ((-429 . -295) 57730) ((-558 . -861) T) ((-325 . -1129) 57579) ((-322 . -1129) T) ((-1229 . -35) 57545) ((-1229 . -95) 57511) ((-84 . -624) 57493) ((-91 . -102) 57471) ((-1314 . -132) T) ((-725 . -1068) 57441) ((-603 . -627) 57422) ((-592 . -146) T) ((-592 . -148) 57404) ((-529 . -148) 57386) ((-529 . -146) T) ((-725 . -651) 57356) ((-325 . -23) 57208) ((-40 . -352) 57182) ((-322 . -23) T) ((-828 . -627) 57096) ((-1176 . -662) 57078) ((-1300 . -1075) T) ((-1176 . -383) 57060) ((-1113 . -102) T) ((-826 . -659) 56893) ((-1107 . -102) T) ((-1090 . -102) T) ((-171 . -271) 56877) ((-171 . -232) 56861) ((-1083 . -102) T) ((-1053 . -102) T) ((-1036 . -102) T) ((-604 . -500) 56843) ((-637 . -102) T) ((-245 . -525) 56776) ((-494 . -102) T) ((-1307 . -737) T) ((-1305 . -737) T) ((-220 . -102) T) ((-1196 . -1073) 56659) ((-1079 . -657) 56631) ((-967 . -657) 56541) ((-1196 . -111) 56410) ((-887 . -1100) T) ((-872 . -175) T) ((-492 . -657) 56320) ((-272 . -908) 56226) ((-252 . -908) 56201) ((-828 . -1066) T) ((-692 . -1100) T) ((-687 . -1100) T) ((-634 . -234) 56146) ((-526 . -102) T) ((-521 . -102) T) ((-48 . -650) 56106) ((-519 . -102) T) ((-489 . -1100) T) ((-1297 . -1073) 56076) ((-118 . -234) NIL) ((-139 . -1100) T) ((-138 . -1100) T) ((-134 . -1100) T) ((-1051 . -38) 56060) ((-828 . -238) T) ((-828 . -248) 56039) ((-1297 . -111) 56004) ((-1277 . -728) 55901) ((-1270 . -728) 55742) ((-1258 . -271) 55726) ((-561 . -295) 55705) ((-1258 . -232) 55689) ((-1240 . -624) 55671) ((-617 . -93) T) ((-1080 . -625) NIL) ((-1080 . -624) 55653) ((-682 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1249 . -728) 55449) ((-1020 . -935) T) ((-153 . -737) T) ((-1196 . -627) 55302) ((-1130 . -378) 55281) ((-1041 . -25) T) ((-1021 . -525) NIL) ((-257 . -422) 55250) ((-256 . -422) 55219) ((-1041 . -21) T) ((-883 . -1068) 55171) ((-607 . -728) 55144) ((-606 . -728) 55041) ((-810 . -295) 54999) ((-127 . -102) 54977) ((-844 . -1055) 54873) ((-171 . -839) 54852) ((-328 . -659) 54749) ((-826 . -34) T) ((-725 . -102) T) ((-1137 . -1129) T) ((-1043 . -1235) T) ((-883 . -651) 54701) ((-389 . -38) 54666) ((-364 . -25) T) ((-364 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-254 . -102) T) ((-158 . -102) T) ((-365 . -1292) 54650) ((-362 . -1292) 54634) ((-354 . -1292) 54618) ((-171 . -359) 54597) ((-575 . -861) T) ((-1104 . -237) 54548) ((-1137 . -23) T) ((-87 . -624) 54530) ((-793 . -237) T) ((-712 . -316) T) ((-847 . -38) 54500) ((-838 . -38) 54470) ((-1297 . -627) 54412) ((-1271 . -132) T) ((-1167 . -297) 54391) ((-979 . -737) 54290) ((-979 . -804) 54243) ((-979 . -805) 54196) ((-117 . -316) T) ((-91 . -318) 54134) ((-686 . -34) T) ((-561 . -615) 54113) ((-48 . -25) T) ((-48 . -21) T) ((-826 . -805) 54092) ((-826 . -804) 54071) ((-712 . -1039) T) ((-664 . -1073) 54055) ((-882 . -657) 53985) ((-826 . -737) 53963) ((-979 . -484) 53916) ((-493 . -806) 53895) ((-493 . -803) 53874) ((-925 . -1292) 53861) ((-1196 . -1066) T) ((-664 . -111) 53840) ((-1196 . -335) 53817) ((-1221 . -102) 53795) ((-1118 . -624) 53777) ((-712 . -556) T) ((-827 . -1117) T) ((-592 . -237) T) ((-529 . -237) T) ((-1297 . -1066) T) ((-1152 . -501) 53758) ((-1241 . -102) T) ((-424 . -1117) T) ((-1152 . -624) 53724) ((-257 . -1075) 53702) ((-256 . -1075) 53680) ((-849 . -102) T) ((-298 . -659) 53667) ((-604 . -295) 53617) ((-700 . -698) 53575) ((-978 . -624) 53557) ((-883 . -102) T) ((-746 . -624) 53539) ((-726 . -624) 53521) ((-1277 . -174) 53472) ((-1270 . -174) 53403) ((-1249 . -174) 53334) ((-710 . -861) T) ((-1021 . -299) T) ((-464 . -624) 53316) ((-638 . -737) T) ((-60 . -1117) 53294) ((-250 . -152) 53278) ((-929 . -299) T) ((-1041 . -1029) T) ((-638 . -484) T) ((-723 . -1239) 53257) ((-705 . -234) NIL) ((-664 . -627) 53175) ((-171 . -657) 53070) ((-1285 . -861) 53049) ((-607 . -174) 53028) ((-606 . -174) 52979) ((-1269 . -651) 52820) ((-1269 . -1068) 52655) ((-1248 . -651) 52469) ((-1248 . -1068) 52277) ((-723 . -567) 52188) ((-418 . -935) T) ((-418 . -831) 52167) ((-328 . -805) T) ((-987 . -627) 52148) ((-328 . -737) T) ((-655 . -1166) 52132) ((-429 . -624) 52114) ((-429 . -625) 52021) ((-110 . -662) 52003) ((-176 . -316) T) ((-127 . -318) 51941) ((-110 . -383) 51923) ((-409 . -1235) T) ((-325 . -132) 51794) ((-322 . -132) T) ((-69 . -406) T) ((-110 . -124) T) ((-531 . -500) 51778) ((-665 . -1129) T) ((-604 . -19) 51760) ((-61 . -452) T) ((-61 . -406) T) ((-835 . -1117) T) ((-604 . -615) 51735) ((-488 . -1055) 51695) ((-664 . -1066) T) ((-665 . -23) T) ((-1300 . -1117) T) ((-31 . -102) T) ((-1258 . -657) 51605) ((-866 . -657) 51564) ((-827 . -728) 51413) ((-588 . -871) T) ((-582 . -657) 51385) ((-118 . -861) NIL) ((-1190 . -422) 51369) ((-1142 . -422) 51353) ((-865 . -422) 51337) ((-884 . -102) 51288) ((-1269 . -102) T) ((-1249 . -525) 51057) ((-1248 . -102) T) ((-1221 . -318) 50995) ((-1192 . -295) 50960) ((-1191 . -295) 50918) ((-536 . -93) T) ((-1185 . -295) 50746) ((-321 . -624) 50728) ((-1119 . -1117) T) ((-1097 . -659) 50602) ((-722 . -463) T) ((-700 . -624) 50534) ((-298 . -737) T) ((-108 . -924) NIL) ((-700 . -625) 50495) ((-612 . -624) 50477) ((-588 . -624) 50459) ((-561 . -625) NIL) ((-561 . -624) 50441) ((-540 . -624) 50423) ((-522 . -520) 50402) ((-498 . -1073) 50352) ((-485 . -1068) 50187) ((-518 . -520) 50166) ((-485 . -651) 50007) ((-219 . -1073) 49957) ((-369 . -659) 49909) ((-363 . -659) 49861) ((-227 . -859) T) ((-355 . -659) 49813) ((-613 . -102) 49763) ((-498 . -111) 49697) ((-493 . -378) 49676) ((-108 . -659) 49626) ((-364 . -234) 49613) ((-245 . -500) 49597) ((-353 . -148) 49579) ((-353 . -146) T) ((-171 . -380) 49550) ((-958 . -1283) 49534) ((-219 . -111) 49468) ((-883 . -318) 49433) ((-958 . -1117) 49383) ((-810 . -625) 49344) ((-810 . -624) 49326) ((-729 . -102) T) ((-340 . -1117) T) ((-216 . -627) 49303) ((-1137 . -132) T) ((-725 . -38) 49273) ((-325 . -504) 49252) ((-511 . -1235) T) ((-1269 . -293) 49218) ((-1248 . -293) 49184) ((-336 . -152) 49168) ((-450 . -1117) T) ((-1080 . -297) 49143) ((-1300 . -728) 49113) ((-48 . -234) 49100) ((-1177 . -34) T) ((-1309 . -1055) 49077) ((-495 . -34) T) ((-479 . -624) 49059) ((-255 . -295) 49033) ((-391 . -1055) 49017) ((-1190 . -1075) T) ((-1142 . -1075) T) ((-865 . -1075) T) ((-1079 . -859) T) ((-498 . -627) 48967) ((-219 . -627) 48917) ((-827 . -174) 48828) ((-531 . -295) 48780) ((-1277 . -299) 48759) ((-1216 . -374) 48733) ((-1105 . -274) 48717) ((-682 . -501) 48698) ((-682 . -624) 48664) ((-617 . -501) 48645) ((-118 . -1009) 48622) ((-617 . -624) 48572) ((-485 . -102) T) ((-182 . -501) 48553) ((-182 . -624) 48519) ((-162 . -501) 48500) ((-162 . -624) 48466) ((-157 . -501) 48447) ((-155 . -501) 48428) ((-157 . -624) 48394) ((-375 . -1117) T) ((-257 . -1117) T) ((-256 . -1117) T) ((-155 . -624) 48360) ((-1270 . -299) 48311) ((-1249 . -299) 48262) ((-883 . -1169) 48240) ((-1192 . -1019) 48206) ((-619 . -374) 48146) ((-1191 . -1019) 48112) ((-619 . -231) 48059) ((-705 . -861) T) ((-604 . -624) 48041) ((-604 . -625) NIL) ((-486 . -231) 47991) ((-498 . -1066) T) ((-1185 . -1019) 47957) ((-88 . -451) T) ((-88 . -406) T) ((-219 . -1066) T) ((-1143 . -1019) 47923) ((-1097 . -737) T) ((-723 . -1129) T) ((-607 . -299) 47902) ((-606 . -299) 47881) ((-498 . -248) T) ((-498 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1183 . -624) 47863) ((-883 . -38) 47815) ((-369 . -737) T) ((-363 . -737) T) ((-355 . -737) T) ((-108 . -805) T) ((-108 . -802) T) ((-723 . -23) T) ((-108 . -737) T) ((-531 . -1273) 47799) ((-1314 . -25) T) ((-485 . -293) 47765) ((-1314 . -21) T) ((-1248 . -318) 47704) ((-1194 . -102) T) ((-40 . -146) 47676) ((-40 . -148) 47648) ((-531 . -615) 47625) ((-1130 . -659) 47458) ((-613 . -318) 47396) ((-45 . -662) 47346) ((-45 . -677) 47296) ((-45 . -383) 47246) ((-1176 . -34) T) ((-882 . -859) NIL) ((-665 . -132) T) ((-496 . -624) 47228) ((-245 . -295) 47205) ((-188 . -1117) T) ((-1104 . -463) 47156) ((-827 . -525) 47030) ((-793 . -463) 46961) ((-675 . -1068) 46945) ((-658 . -34) T) ((-643 . -34) T) ((-675 . -651) 46929) ((-365 . -1068) 46881) ((-353 . -237) T) ((-362 . -1068) 46833) ((-354 . -1068) 46785) ((-272 . -1068) 46628) ((-252 . -1068) 46471) ((-791 . -463) 46422) ((-365 . -651) 46374) ((-362 . -651) 46326) ((-354 . -651) 46278) ((-272 . -651) 46127) ((-252 . -651) 45976) ((-465 . -463) 45927) ((-967 . -422) 45911) ((-742 . -624) 45893) ((-257 . -728) 45835) ((-256 . -728) 45777) ((-742 . -625) 45638) ((-492 . -422) 45622) ((-349 . -311) T) ((-535 . -93) T) ((-361 . -935) T) ((-1017 . -102) 45600) ((-925 . -1068) 45565) ((-1041 . -861) T) ((-60 . -525) 45498) ((-925 . -651) 45463) ((-1248 . -1169) 45415) ((-1021 . -295) NIL) ((-227 . -1075) T) ((-389 . -839) T) ((-1130 . -34) T) ((-592 . -463) T) ((-529 . -463) T) ((-1252 . -1110) 45399) ((-1252 . -1117) 45377) ((-245 . -615) 45354) ((-1252 . -1112) 45311) ((-1192 . -624) 45293) ((-1191 . -624) 45275) ((-1185 . -624) 45257) ((-1185 . -625) NIL) ((-1143 . -624) 45239) ((-883 . -411) 45223) ((-608 . -102) T) ((-596 . -102) T) ((-547 . -102) T) ((-1269 . -38) 45064) ((-1248 . -38) 44878) ((-881 . -148) T) ((-592 . -413) T) ((-529 . -413) T) ((-1281 . -102) T) ((-1271 . -21) T) ((-1271 . -25) T) ((-1130 . -805) 44857) ((-1130 . -804) 44836) ((-1010 . -1117) T) ((-1044 . -34) T) ((-873 . -1117) T) ((-1130 . -737) 44814) ((-675 . -102) T) ((-656 . -102) T) ((-561 . -297) 44793) ((-1207 . -102) T) ((-487 . -34) T) ((-474 . -34) T) ((-365 . -102) T) ((-362 . -102) T) ((-354 . -102) T) ((-272 . -102) T) ((-252 . -102) T) ((-488 . -316) T) ((-1079 . -1075) T) ((-967 . -1075) T) ((-325 . -650) 44699) ((-322 . -650) 44660) ((-1190 . -1117) T) ((-492 . -1075) T) ((-490 . -102) T) ((-447 . -624) 44642) ((-1142 . -1117) T) ((-255 . -624) 44624) ((-865 . -1117) T) ((-1158 . -102) T) ((-827 . -299) 44555) ((-978 . -1073) 44438) ((-488 . -1039) T) ((-883 . -915) 44361) ((-746 . -1073) 44331) ((-1051 . -657) 44290) ((-1164 . -1138) 44274) ((-464 . -1073) 44244) ((-1119 . -525) 44177) ((-978 . -111) 44046) ((-925 . -102) T) ((-40 . -237) 43983) ((-746 . -111) 43948) ((-536 . -501) 43929) ((-536 . -624) 43895) ((-59 . -102) 43845) ((-531 . -625) 43806) ((-531 . -624) 43718) ((-530 . -102) 43696) ((-527 . -102) 43646) ((-508 . -102) 43624) ((-507 . -102) 43574) ((-464 . -111) 43537) ((-331 . -657) 43519) ((-429 . -1073) 43493) ((-1229 . -990) 43455) ((-1016 . -1129) T) ((-389 . -657) 43405) ((-1152 . -627) 43386) ((-958 . -525) 43319) ((-498 . -806) T) ((-485 . -38) 43160) ((-429 . -111) 43127) ((-498 . -803) T) ((-1017 . -318) 43065) ((-219 . -806) T) ((-219 . -803) T) ((-1016 . -23) T) ((-723 . -132) T) ((-1248 . -411) 43035) ((-847 . -657) 42980) ((-838 . -657) 42939) ((-325 . -25) 42791) ((-171 . -422) 42775) ((-325 . -21) 42646) ((-322 . -25) T) ((-322 . -21) T) ((-875 . -378) T) ((-978 . -627) 42499) ((-110 . -34) T) ((-746 . -627) 42455) ((-726 . -627) 42437) ((-493 . -659) 42270) ((-882 . -1075) T) ((-604 . -297) 42245) ((-591 . -148) T) ((-575 . -148) T) ((-506 . -148) T) ((-1190 . -728) 42074) ((-1074 . -102) 42052) ((-1142 . -728) 41901) ((-1137 . -650) 41883) ((-865 . -728) 41853) ((-681 . -1235) T) ((-1 . -102) T) ((-429 . -627) 41761) ((-245 . -624) 41454) ((-1132 . -1117) T) ((-1258 . -422) 41438) ((-1207 . -318) 41242) ((-978 . -1066) T) ((-746 . -1066) T) ((-726 . -1066) T) ((-655 . -1117) 41192) ((-1071 . -659) 41176) ((-866 . -422) 41160) ((-522 . -102) T) ((-518 . -102) T) ((-272 . -318) 41147) ((-252 . -318) 41134) ((-1269 . -915) 41040) ((-978 . -335) 41019) ((-1248 . -915) 40816) ((-395 . -659) 40800) ((-681 . -1055) 40696) ((-490 . -318) 40500) ((-257 . -525) 40433) ((-256 . -525) 40366) ((-1158 . -318) 40292) ((-1229 . -908) 40271) ((-830 . -1117) T) ((-810 . -1073) 40255) ((-1277 . -295) 40220) ((-1270 . -295) 40178) ((-1249 . -295) 40006) ((-397 . -1117) T) ((-333 . -1117) T) ((-429 . -1066) T) ((-171 . -1075) T) ((-59 . -318) 39944) ((-810 . -111) 39923) ((-606 . -295) 39888) ((-530 . -318) 39826) ((-527 . -318) 39764) ((-508 . -318) 39702) ((-507 . -318) 39640) ((-429 . -238) 39619) ((-493 . -34) T) ((-227 . -1117) T) ((-1021 . -625) 39549) ((-1021 . -624) 39509) ((-988 . -624) 39469) ((-929 . -624) 39451) ((-710 . -148) T) ((-712 . -935) T) ((-712 . -831) T) ((-438 . -624) 39433) ((-1137 . -21) T) ((-1137 . -25) T) ((-681 . -387) 39417) ((-117 . -935) T) ((-883 . -271) 39401) ((-883 . -232) 39385) ((-44 . -1235) T) ((-78 . -1235) T) ((-127 . -126) 39369) ((-1071 . -34) T) ((-1307 . -1055) 39343) ((-1305 . -1055) 39300) ((-1258 . -1075) T) ((-866 . -1075) T) ((-365 . -1169) 39279) ((-362 . -1169) 39258) ((-354 . -1169) 39237) ((-493 . -805) 39216) ((-493 . -804) 39195) ((-229 . -34) T) ((-493 . -737) 39173) ((-810 . -627) 39019) ((-673 . -1068) 39003) ((-60 . -500) 38987) ((-582 . -1075) T) ((-1190 . -174) 38878) ((-673 . -651) 38862) ((-485 . -915) 38768) ((-1142 . -174) 38679) ((-1079 . -1117) T) ((-1104 . -964) 38624) ((-967 . -1117) T) ((-828 . -659) 38575) ((-793 . -964) 38544) ((-724 . -1117) T) ((-791 . -964) 38511) ((-527 . -291) 38495) ((-681 . -913) 38454) ((-492 . -1117) T) ((-465 . -964) 38421) ((-79 . -1235) T) ((-365 . -38) 38386) ((-362 . -38) 38351) ((-354 . -38) 38316) ((-272 . -38) 38165) ((-252 . -38) 38014) ((-925 . -1169) T) ((-535 . -501) 37995) ((-634 . -148) 37974) ((-634 . -146) 37953) ((-535 . -624) 37919) ((-118 . -148) T) ((-118 . -146) NIL) ((-425 . -737) T) ((-810 . -1066) T) ((-575 . -237) T) ((-506 . -237) T) ((-353 . -463) T) ((-1277 . -1019) 37885) ((-1270 . -1019) 37851) ((-1249 . -1019) 37817) ((-925 . -38) 37782) ((-227 . -728) 37747) ((-328 . -47) 37717) ((-40 . -420) 37689) ((-141 . -624) 37671) ((-1016 . -132) T) ((-826 . -1235) T) ((-176 . -935) T) ((-560 . -378) T) ((-725 . -657) 37616) ((-617 . -627) 37597) ((-353 . -413) T) ((-682 . -627) 37578) ((-322 . -234) NIL) ((-182 . -627) 37559) ((-162 . -627) 37540) ((-157 . -627) 37521) ((-155 . -627) 37502) ((-531 . -297) 37479) ((-1248 . -232) 37449) ((-1248 . -271) 37419) ((-1196 . -659) 37344) ((-887 . -102) T) ((-826 . -1055) 37171) ((-45 . -34) T) ((-692 . -102) T) ((-687 . -102) T) ((-673 . -102) T) ((-665 . -21) T) ((-665 . -25) T) ((-1119 . -500) 37155) ((-686 . -1235) T) ((-489 . -102) T) ((-250 . -102) 37105) ((-557 . -855) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1104 . -908) 37000) ((-882 . -1117) T) ((-1190 . -525) 36947) ((-1079 . -728) 36934) ((-793 . -908) 36837) ((-742 . -1073) 36680) ((-791 . -908) 36662) ((-967 . -728) 36511) ((-1142 . -525) 36463) ((-1296 . -1117) T) ((-1295 . -1117) T) ((-465 . -908) 36438) ((-492 . -728) 36287) ((-67 . -624) 36269) ((-742 . -111) 36098) ((-958 . -500) 36082) ((-1297 . -659) 36042) ((-1192 . -1073) 35925) ((-828 . -737) T) ((-1191 . -1073) 35760) ((-1185 . -1073) 35550) ((-328 . -1235) T) ((-1143 . -1073) 35433) ((-1020 . -1239) T) ((-1111 . -102) 35411) ((-826 . -387) 35380) ((-590 . -624) 35362) ((-557 . -1117) T) ((-1020 . -567) T) ((-1192 . -111) 35231) ((-1191 . -111) 35052) ((-1185 . -111) 34821) ((-1143 . -111) 34690) ((-1122 . -1120) 34654) ((-389 . -859) T) ((-1277 . -624) 34636) ((-1270 . -624) 34618) ((-883 . -657) 34555) ((-1249 . -624) 34537) ((-1249 . -625) NIL) ((-245 . -297) 34514) ((-40 . -463) T) ((-227 . -174) T) ((-171 . -1117) T) ((-742 . -627) 34299) ((-705 . -148) T) ((-705 . -146) NIL) ((-607 . -624) 34281) ((-606 . -624) 34263) ((-1137 . -234) 34250) ((-912 . -1117) T) ((-852 . -1117) T) ((-819 . -1117) T) ((-272 . -915) 34160) ((-252 . -915) 34137) ((-780 . -1117) T) ((-688 . -1117) T) ((-669 . -863) 34121) ((-634 . -237) 34072) ((-826 . -913) 34004) ((-1240 . -378) T) ((-40 . -413) NIL) ((-118 . -237) NIL) ((-1192 . -627) 33886) ((-1137 . -672) T) ((-882 . -728) 33831) ((-257 . -500) 33815) ((-256 . -500) 33799) ((-1191 . -627) 33542) ((-1185 . -627) 33337) ((-723 . -650) 33285) ((-664 . -659) 33259) ((-1143 . -627) 33141) ((-304 . -34) T) ((-1137 . -113) T) ((-742 . -1066) T) ((-592 . -1292) 33128) ((-529 . -1292) 33105) ((-1258 . -1117) T) ((-1190 . -299) 33016) ((-1142 . -299) 32947) ((-1079 . -174) T) ((-298 . -1235) T) ((-866 . -1117) T) ((-967 . -174) 32858) ((-793 . -1261) 32842) ((-655 . -525) 32775) ((-77 . -624) 32757) ((-742 . -335) 32722) ((-1196 . -737) T) ((-582 . -1117) T) ((-492 . -174) 32633) ((-250 . -318) 32571) ((-1159 . -1129) T) ((-70 . -624) 32553) ((-1297 . -737) T) ((-1192 . -1066) T) ((-1191 . -1066) T) ((-336 . -102) 32503) ((-1185 . -1066) T) ((-1159 . -23) T) ((-1143 . -1066) T) ((-91 . -1138) 32487) ((-877 . -1129) T) ((-1192 . -238) 32446) ((-1191 . -248) 32425) ((-1191 . -238) 32377) ((-1185 . -238) 32264) ((-1185 . -248) 32243) ((-328 . -913) 32149) ((-877 . -23) T) ((-171 . -728) 31977) ((-418 . -1239) T) ((-1118 . -378) T) ((-1020 . -373) T) ((-881 . -463) T) ((-1041 . -148) T) ((-958 . -295) 31929) ((-322 . -861) NIL) ((-1269 . -657) 31811) ((-885 . -102) T) ((-1248 . -657) 31666) ((-723 . -25) T) ((-418 . -567) T) ((-723 . -21) T) ((-536 . -627) 31647) ((-364 . -148) 31629) ((-364 . -146) T) ((-1164 . -1117) 31607) ((-464 . -731) T) ((-75 . -624) 31589) ((-115 . -861) T) ((-250 . -291) 31573) ((-245 . -1073) 31494) ((-81 . -624) 31476) ((-746 . -378) 31429) ((-1194 . -839) T) ((-748 . -240) 31413) ((-1177 . -1235) T) ((-142 . -240) 31395) ((-245 . -111) 31311) ((-1258 . -728) 31140) ((-48 . -148) T) ((-882 . -174) T) ((-866 . -728) 31110) ((-495 . -1235) T) ((-967 . -525) 31057) ((-664 . -737) T) ((-582 . -728) 31044) ((-1051 . -1075) T) ((-705 . -237) NIL) ((-492 . -525) 30987) ((-958 . -19) 30971) ((-958 . -615) 30948) ((-1097 . -1235) 30899) ((-827 . -625) NIL) ((-827 . -624) 30881) ((-1229 . -651) 30778) ((-1229 . -1068) 30661) ((-1021 . -1073) 30611) ((-424 . -624) 30593) ((-257 . -295) 30570) ((-369 . -1235) 30549) ((-363 . -1235) 30528) ((-355 . -1235) 30507) ((-256 . -295) 30484) ((-498 . -924) NIL) ((-325 . -29) 30454) ((-108 . -1235) T) ((-1020 . -1129) T) ((-219 . -924) NIL) ((-1097 . -1055) 30350) ((-929 . -1073) 30302) ((-1021 . -111) 30236) ((-1020 . -23) T) ((-722 . -1068) 30201) ((-929 . -111) 30139) ((-748 . -706) 30123) ((-722 . -651) 30088) ((-272 . -271) 30072) ((-272 . -232) 30056) ((-438 . -1073) 30040) ((-389 . -1075) T) ((-245 . -627) 29838) ((-705 . -1223) NIL) ((-498 . -659) 29788) ((-485 . -657) 29670) ((-108 . -896) 29652) ((-108 . -898) 29634) ((-705 . -1220) NIL) ((-219 . -659) 29584) ((-369 . -1055) 29568) ((-363 . -1055) 29552) ((-336 . -318) 29490) ((-355 . -1055) 29474) ((-227 . -299) T) ((-438 . -111) 29453) ((-60 . -624) 29385) ((-171 . -174) T) ((-1137 . -861) T) ((-108 . -1055) 29345) ((-904 . -1117) T) ((-847 . -1075) T) ((-838 . -1075) T) ((-705 . -35) NIL) ((-705 . -95) NIL) ((-322 . -1009) 29306) ((-185 . -102) T) ((-591 . -463) T) ((-575 . -463) T) ((-506 . -463) T) ((-418 . -373) T) ((-245 . -1066) 29284) ((-1167 . -34) T) ((-488 . -935) T) ((-1016 . -650) 29232) ((-257 . -615) 29209) ((-256 . -615) 29186) ((-1097 . -387) 29170) ((-882 . -525) 29078) ((-245 . -238) 29030) ((-1176 . -1235) T) ((-1021 . -627) 28980) ((-929 . -627) 28917) ((-835 . -624) 28899) ((-1308 . -1129) T) ((-1300 . -624) 28881) ((-1258 . -174) 28772) ((-438 . -627) 28741) ((-108 . -387) 28723) ((-108 . -348) 28705) ((-1079 . -299) T) ((-967 . -299) 28636) ((-810 . -378) 28615) ((-658 . -1235) T) ((-643 . -1235) T) ((-1308 . -23) T) ((-597 . -1068) 28590) ((-492 . -299) 28521) ((-582 . -174) T) ((-336 . -291) 28505) ((-364 . -237) T) ((-1229 . -102) T) ((-1216 . -1117) T) ((-1105 . -1117) T) ((-1093 . -1117) T) ((-597 . -651) 28480) ((-83 . -624) 28462) ((-1201 . -855) T) ((-1200 . -855) T) ((-722 . -102) T) ((-365 . -359) 28441) ((-619 . -1117) T) ((-362 . -359) 28420) ((-354 . -359) 28399) ((-486 . -1117) T) ((-1207 . -231) 28349) ((-272 . -259) 28311) ((-1159 . -132) T) ((-619 . -621) 28287) ((-1097 . -913) 28220) ((-1021 . -1066) T) ((-929 . -1066) T) ((-486 . -621) 28199) ((-1185 . -803) NIL) ((-1185 . -806) NIL) ((-1119 . -625) 28160) ((-1119 . -624) 28142) ((-490 . -231) 28092) ((-1021 . -248) T) ((-1021 . -238) T) ((-973 . -1117) 28042) ((-438 . -1066) T) ((-929 . -248) T) ((-877 . -132) T) ((-48 . -237) T) ((-710 . -463) T) ((-854 . -1129) 28021) ((-108 . -913) NIL) ((-1229 . -293) 27987) ((-1130 . -1235) T) ((-883 . -859) 27966) ((-1016 . -25) T) ((-920 . -737) T) ((-171 . -525) 27878) ((-1016 . -21) T) ((-920 . -484) T) ((-418 . -1129) T) ((-498 . -805) T) ((-498 . -802) T) ((-925 . -359) T) ((-498 . -737) T) ((-219 . -805) T) ((-219 . -802) T) ((-723 . -234) 27865) ((-219 . -737) T) ((-854 . -23) 27817) ((-1202 . -1117) T) ((-669 . -1068) 27801) ((-1201 . -1117) T) ((-535 . -627) 27782) ((-1200 . -1117) T) ((-328 . -316) 27761) ((-1052 . -240) 27707) ((-669 . -651) 27677) ((-418 . -23) T) ((-958 . -625) 27638) ((-958 . -624) 27550) ((-655 . -500) 27534) ((-45 . -1027) 27484) ((-1130 . -1055) 27311) ((-628 . -984) T) ((-502 . -102) T) ((-340 . -624) 27293) ((-1010 . -295) 27260) ((-604 . -662) 27242) ((-131 . -1117) T) ((-129 . -1117) T) ((-604 . -383) 27224) ((-353 . -1292) 27201) ((-450 . -624) 27183) ((-1258 . -525) 27130) ((-1104 . -1068) 26973) ((-1044 . -1235) T) ((-882 . -299) T) ((-1190 . -295) 26900) ((-1104 . -651) 26749) ((-1017 . -1012) 26733) ((-793 . -1068) 26556) ((-791 . -1068) 26399) ((-793 . -651) 26228) ((-791 . -651) 26077) ((-487 . -1235) T) ((-474 . -1235) T) ((-597 . -102) T) ((-472 . -1068) 26048) ((-465 . -1068) 25891) ((-675 . -657) 25860) ((-634 . -463) 25839) ((-472 . -651) 25810) ((-465 . -651) 25659) ((-365 . -657) 25596) ((-362 . -657) 25533) ((-354 . -657) 25470) ((-272 . -657) 25380) ((-252 . -657) 25290) ((-1300 . -392) 25262) ((-528 . -1117) T) ((-118 . -463) T) ((-1215 . -102) T) ((-1109 . -1117) 25232) ((-1051 . -1117) T) ((-1132 . -93) T) ((-905 . -861) T) ((-1277 . -111) 25101) ((-361 . -1239) T) ((-1277 . -1073) 24984) ((-1130 . -387) 24953) ((-1270 . -1073) 24788) ((-1249 . -1073) 24578) ((-1270 . -111) 24399) ((-1249 . -111) 24168) ((-1229 . -318) 24155) ((-1020 . -132) T) ((-925 . -657) 24105) ((-375 . -624) 24087) ((-361 . -567) T) ((-298 . -316) T) ((-607 . -1073) 24047) ((-606 . -1073) 23930) ((-592 . -1068) 23895) ((-529 . -1068) 23840) ((-371 . -1117) T) ((-331 . -1117) T) ((-257 . -624) 23801) ((-256 . -624) 23762) ((-592 . -651) 23727) ((-529 . -651) 23672) ((-705 . -420) 23639) ((-646 . -23) T) ((-618 . -23) T) ((-40 . -908) 23546) ((-669 . -102) T) ((-607 . -111) 23499) ((-606 . -111) 23368) ((-389 . -1117) T) ((-346 . -102) T) ((-171 . -299) 23279) ((-1248 . -859) 23232) ((-725 . -1075) T) ((-1164 . -525) 23165) ((-1208 . -846) 23149) ((-1130 . -913) 23081) ((-847 . -1117) T) ((-838 . -1117) T) ((-836 . -1117) T) ((-97 . -102) T) ((-145 . -861) T) ((-623 . -896) 23065) ((-110 . -1235) T) ((-1104 . -102) T) ((-1080 . -34) T) ((-793 . -102) T) ((-791 . -102) T) ((-1277 . -627) 22947) ((-1270 . -627) 22690) ((-472 . -102) T) ((-465 . -102) T) ((-1249 . -627) 22485) ((-245 . -806) 22464) ((-245 . -803) 22443) ((-660 . -102) T) ((-607 . -627) 22401) ((-606 . -627) 22283) ((-1258 . -299) 22194) ((-675 . -645) 22178) ((-188 . -624) 22160) ((-655 . -295) 22112) ((-1051 . -728) 22096) ((-582 . -299) T) ((-978 . -659) 22021) ((-1308 . -132) T) ((-746 . -659) 21981) ((-726 . -659) 21968) ((-283 . -102) T) ((-464 . -659) 21898) ((-50 . -102) T) ((-592 . -102) T) ((-529 . -102) T) ((-1277 . -1066) T) ((-1270 . -1066) T) ((-1249 . -1066) T) ((-518 . -657) 21880) ((-331 . -728) 21862) ((-1277 . -238) 21821) ((-1270 . -248) 21800) ((-1270 . -238) 21752) ((-1249 . -238) 21639) ((-1249 . -248) 21618) ((-1229 . -38) 21515) ((-607 . -1066) T) ((-606 . -1066) T) ((-1021 . -806) T) ((-1021 . -803) T) ((-988 . -806) T) ((-988 . -803) T) ((-883 . -1075) T) ((-109 . -624) 21497) ((-705 . -463) T) ((-389 . -728) 21462) ((-429 . -659) 21436) ((-881 . -880) 21420) ((-722 . -38) 21385) ((-606 . -238) 21344) ((-40 . -735) 21316) ((-361 . -338) 21293) ((-361 . -373) T) ((-1097 . -316) 21244) ((-303 . -1129) 21125) ((-1123 . -1235) T) ((-1016 . -234) 21070) ((-173 . -102) T) ((-1252 . -624) 21037) ((-854 . -132) 20989) ((-655 . -1273) 20973) ((-847 . -728) 20943) ((-838 . -728) 20913) ((-493 . -1235) T) ((-369 . -316) T) ((-363 . -316) T) ((-355 . -316) T) ((-655 . -615) 20890) ((-418 . -132) T) ((-531 . -677) 20874) ((-108 . -316) T) ((-303 . -23) 20757) ((-531 . -662) 20741) ((-705 . -413) NIL) ((-531 . -383) 20725) ((-300 . -624) 20707) ((-91 . -1117) 20685) ((-108 . -1039) T) ((-575 . -144) T) ((-1285 . -152) 20669) ((-493 . -1055) 20496) ((-1271 . -146) 20457) ((-1271 . -148) 20418) ((-1071 . -1235) T) ((-1010 . -624) 20400) ((-829 . -1235) T) ((-873 . -624) 20382) ((-827 . -1073) 20225) ((-1296 . -93) T) ((-1295 . -93) T) ((-1190 . -625) NIL) ((-1113 . -1117) T) ((-1107 . -1117) T) ((-1104 . -318) 20212) ((-1090 . -1117) T) ((-229 . -1235) T) ((-1083 . -1117) T) ((-1053 . -1117) T) ((-1036 . -1117) T) ((-793 . -318) 20199) ((-791 . -318) 20186) ((-1190 . -624) 20168) ((-827 . -111) 19997) ((-1142 . -624) 19979) ((-637 . -1117) T) ((-588 . -175) T) ((-540 . -175) T) ((-465 . -318) 19966) ((-494 . -1117) T) ((-1142 . -625) 19714) ((-1051 . -174) T) ((-958 . -297) 19691) ((-220 . -1117) T) ((-865 . -624) 19673) ((-619 . -525) 19456) ((-81 . -627) 19397) ((-829 . -1055) 19381) ((-486 . -525) 19173) ((-978 . -737) T) ((-746 . -737) T) ((-726 . -737) T) ((-361 . -1129) T) ((-1197 . -624) 19155) ((-225 . -102) T) ((-493 . -387) 19124) ((-526 . -1117) T) ((-521 . -1117) T) ((-519 . -1117) T) ((-810 . -659) 19098) ((-1041 . -463) T) ((-973 . -525) 19031) ((-361 . -23) T) ((-646 . -132) T) ((-618 . -132) T) ((-364 . -463) T) ((-245 . -378) 19010) ((-389 . -174) T) ((-1269 . -1075) T) ((-1248 . -1075) T) ((-227 . -1019) T) ((-827 . -627) 18747) ((-710 . -398) T) ((-429 . -737) T) ((-712 . -1239) T) ((-1159 . -650) 18695) ((-591 . -880) 18679) ((-1300 . -1073) 18663) ((-1177 . -1211) 18639) ((-712 . -567) T) ((-127 . -1117) 18617) ((-725 . -1117) T) ((-669 . -38) 18587) ((-493 . -913) 18519) ((-254 . -1117) T) ((-189 . -1117) T) ((-364 . -413) T) ((-325 . -148) 18498) ((-325 . -146) 18477) ((-129 . -525) NIL) ((-117 . -567) T) ((-322 . -148) 18433) ((-322 . -146) 18389) ((-48 . -463) T) ((-163 . -1117) T) ((-158 . -1117) T) ((-1177 . -107) 18336) ((-793 . -1169) 18314) ((-700 . -34) T) ((-1300 . -111) 18293) ((-561 . -34) T) ((-495 . -107) 18277) ((-257 . -297) 18254) ((-256 . -297) 18231) ((-1241 . -855) T) ((-882 . -295) 18182) ((-45 . -1235) T) ((-1229 . -915) 18163) ((-828 . -1235) T) ((-827 . -1066) T) ((-673 . -657) 18132) ((-1196 . -47) 18109) ((-827 . -335) 18071) ((-1104 . -38) 17920) ((-827 . -238) 17899) ((-793 . -38) 17728) ((-791 . -38) 17577) ((-1132 . -501) 17558) ((-465 . -38) 17407) ((-1132 . -624) 17373) ((-1135 . -102) T) ((-655 . -625) 17334) ((-655 . -624) 17246) ((-592 . -1169) T) ((-529 . -1169) T) ((-1164 . -500) 17230) ((-353 . -1068) 17175) ((-1221 . -1117) 17153) ((-1159 . -25) T) ((-1159 . -21) T) ((-353 . -651) 17098) ((-1300 . -627) 17047) ((-485 . -1075) T) ((-1241 . -1117) T) ((-1249 . -803) NIL) ((-1249 . -806) NIL) ((-1016 . -861) 17026) ((-849 . -1117) T) ((-830 . -624) 17008) ((-877 . -21) T) ((-877 . -25) T) ((-810 . -737) T) ((-176 . -1239) T) ((-592 . -38) 16973) ((-529 . -38) 16938) ((-397 . -624) 16920) ((-342 . -102) T) ((-333 . -624) 16902) ((-171 . -295) 16860) ((-63 . -1235) T) ((-112 . -102) T) ((-883 . -1117) T) ((-176 . -567) T) ((-725 . -728) 16830) ((-303 . -132) 16713) ((-227 . -624) 16695) ((-227 . -625) 16625) ((-1020 . -650) 16564) ((-1300 . -1066) T) ((-1137 . -148) T) ((-643 . -1211) 16539) ((-742 . -924) 16518) ((-604 . -34) T) ((-658 . -107) 16502) ((-643 . -107) 16448) ((-634 . -908) 16369) ((-1258 . -295) 16296) ((-742 . -659) 16185) ((-304 . -1235) T) ((-1196 . -1055) 16081) ((-958 . -629) 16058) ((-588 . -587) T) ((-588 . -538) T) ((-540 . -538) T) ((-118 . -908) NIL) ((-1185 . -924) NIL) ((-1079 . -625) 15973) ((-1079 . -624) 15955) ((-967 . -624) 15937) ((-724 . -501) 15887) ((-353 . -102) T) ((-257 . -1073) 15808) ((-256 . -1073) 15729) ((-405 . -102) T) ((-31 . -1117) T) ((-967 . -625) 15590) ((-724 . -624) 15525) ((-1298 . -1228) 15494) ((-492 . -624) 15476) ((-492 . -625) 15337) ((-272 . -422) 15321) ((-252 . -422) 15305) ((-322 . -237) NIL) ((-257 . -111) 15221) ((-256 . -111) 15137) ((-1192 . -659) 15062) ((-1191 . -659) 14959) ((-1185 . -659) 14811) ((-1143 . -659) 14736) ((-361 . -132) T) ((-82 . -452) T) ((-82 . -406) T) ((-1020 . -25) T) ((-1020 . -21) T) ((-884 . -1117) 14687) ((-40 . -1068) 14632) ((-883 . -728) 14584) ((-40 . -651) 14529) ((-389 . -299) T) ((-171 . -1019) 14480) ((-1104 . -915) 14379) ((-705 . -398) T) ((-1016 . -1014) 14363) ((-712 . -1129) T) ((-705 . -167) 14345) ((-793 . -915) 14252) ((-791 . -915) 14236) ((-1269 . -1117) T) ((-1248 . -1117) T) ((-1182 . -102) T) ((-325 . -1220) 14215) ((-325 . -1223) 14194) ((-465 . -915) 14171) ((-325 . -974) 14150) ((-135 . -1129) T) ((-117 . -1129) T) ((-664 . -1235) T) ((-613 . -1283) 14134) ((-712 . -23) T) ((-613 . -1117) 14084) ((-325 . -95) 14063) ((-91 . -525) 13996) ((-176 . -373) T) ((-257 . -627) 13794) ((-256 . -627) 13592) ((-325 . -35) 13571) ((-619 . -500) 13505) ((-135 . -23) T) ((-117 . -23) T) ((-981 . -102) T) ((-729 . -1117) T) ((-486 . -500) 13442) ((-418 . -650) 13390) ((-664 . -1055) 13286) ((-973 . -500) 13270) ((-365 . -1075) T) ((-362 . -1075) T) ((-354 . -1075) T) ((-272 . -1075) T) ((-252 . -1075) T) ((-882 . -625) NIL) ((-882 . -624) 13252) ((-1296 . -501) 13233) ((-1295 . -501) 13214) ((-1308 . -21) T) ((-1296 . -624) 13180) ((-1295 . -624) 13146) ((-582 . -1019) T) ((-742 . -737) T) ((-1308 . -25) T) ((-257 . -1066) 13124) ((-256 . -1066) 13102) ((-72 . -1235) T) ((-1159 . -234) 13047) ((-257 . -238) 12999) ((-256 . -238) 12951) ((-1137 . -237) T) ((-40 . -102) T) ((-925 . -1075) T) ((-705 . -908) NIL) ((-1199 . -102) T) ((-129 . -500) 12933) ((-1192 . -737) T) ((-1191 . -737) T) ((-1185 . -737) T) ((-1185 . -802) NIL) ((-1185 . -805) NIL) ((-969 . -102) T) ((-936 . -102) T) ((-881 . -1068) 12920) ((-1143 . -737) T) ((-782 . -102) T) ((-683 . -102) T) ((-881 . -651) 12907) ((-557 . -624) 12889) ((-485 . -1117) T) ((-349 . -1129) T) ((-176 . -1129) T) ((-328 . -935) 12868) ((-1269 . -728) 12709) ((-883 . -174) T) ((-1248 . -728) 12523) ((-854 . -21) 12475) ((-854 . -25) 12427) ((-250 . -1166) 12411) ((-127 . -525) 12344) ((-418 . -25) T) ((-418 . -21) T) ((-349 . -23) T) ((-171 . -625) 12110) ((-171 . -624) 12092) ((-176 . -23) T) ((-655 . -297) 12069) ((-531 . -34) T) ((-912 . -624) 12051) ((-89 . -1235) T) ((-852 . -624) 12033) ((-819 . -624) 12015) ((-780 . -624) 11997) ((-688 . -624) 11979) ((-245 . -659) 11812) ((-628 . -113) T) ((-1194 . -1117) T) ((-1190 . -1073) 11635) ((-1167 . -1235) T) ((-1142 . -1073) 11478) ((-865 . -1073) 11462) ((-1252 . -629) 11446) ((-1190 . -111) 11255) ((-1142 . -111) 11084) ((-865 . -111) 11063) ((-1242 . -861) T) ((-1258 . -625) NIL) ((-1258 . -624) 11045) ((-353 . -1169) T) ((-866 . -624) 11027) ((-1093 . -295) 11006) ((-1229 . -657) 10916) ((-80 . -1235) T) ((-920 . -1235) T) ((-1221 . -525) 10849) ((-1021 . -924) NIL) ((-1104 . -271) 10833) ((-619 . -295) 10809) ((-1104 . -232) 10793) ((-498 . -1235) T) ((-582 . -624) 10775) ((-486 . -295) 10754) ((-1021 . -659) 10704) ((-528 . -93) T) ((-1020 . -234) 10635) ((-219 . -1235) T) ((-973 . -295) 10587) ((-881 . -102) T) ((-298 . -935) T) ((-828 . -316) 10566) ((-793 . -271) 10550) ((-793 . -232) 10534) ((-929 . -659) 10486) ((-722 . -657) 10436) ((-705 . -735) 10403) ((-646 . -21) T) ((-646 . -25) T) ((-618 . -21) T) ((-558 . -102) T) ((-353 . -38) 10368) ((-498 . -896) 10350) ((-498 . -898) 10332) ((-485 . -728) 10173) ((-219 . -896) 10155) ((-64 . -1235) T) ((-219 . -898) 10137) ((-618 . -25) T) ((-438 . -659) 10111) ((-1190 . -627) 9880) ((-498 . -1055) 9840) ((-883 . -525) 9752) ((-1142 . -627) 9544) ((-865 . -627) 9462) ((-219 . -1055) 9422) ((-245 . -34) T) ((-1017 . -1117) 9400) ((-591 . -1068) 9387) ((-575 . -1068) 9374) ((-506 . -1068) 9339) ((-1269 . -174) 9270) ((-1248 . -174) 9201) ((-591 . -651) 9188) ((-575 . -651) 9175) ((-506 . -651) 9140) ((-723 . -146) 9119) ((-723 . -148) 9098) ((-712 . -132) T) ((-137 . -476) 9075) ((-1164 . -624) 9007) ((-669 . -667) 8991) ((-129 . -295) 8941) ((-117 . -132) T) ((-488 . -1239) T) ((-619 . -615) 8917) ((-486 . -615) 8896) ((-346 . -345) 8865) ((-608 . -1117) T) ((-596 . -1117) T) ((-547 . -1117) T) ((-488 . -567) T) ((-1190 . -1066) T) ((-1142 . -1066) T) ((-865 . -1066) T) ((-245 . -805) 8844) ((-245 . -804) 8823) ((-1190 . -335) 8800) ((-245 . -737) 8778) ((-973 . -19) 8762) ((-498 . -387) 8744) ((-498 . -348) 8726) ((-1142 . -335) 8698) ((-364 . -1292) 8675) ((-219 . -387) 8657) ((-219 . -348) 8639) ((-973 . -615) 8616) ((-1190 . -238) T) ((-1281 . -1117) T) ((-675 . -1117) T) ((-656 . -1117) T) ((-1207 . -1117) T) ((-1104 . -259) 8553) ((-597 . -657) 8513) ((-365 . -1117) T) ((-362 . -1117) T) ((-354 . -1117) T) ((-272 . -1117) T) ((-252 . -1117) T) ((-84 . -1235) T) ((-128 . -102) 8491) ((-122 . -102) 8469) ((-1248 . -525) 8329) ((-1207 . -621) 8308) ((-1158 . -1117) T) ((-1132 . -627) 8289) ((-1097 . -935) 8240) ((-490 . -1117) T) ((-1021 . -805) T) ((-1021 . -802) T) ((-490 . -621) 8219) ((-257 . -806) 8198) ((-257 . -803) 8177) ((-256 . -806) 8156) ((-40 . -1169) NIL) ((-256 . -803) 8135) ((-1021 . -737) T) ((-129 . -19) 8117) ((-988 . -805) T) ((-710 . -1068) 8082) ((-929 . -737) T) ((-925 . -1117) T) ((-904 . -624) 8064) ((-129 . -615) 8039) ((-710 . -651) 8004) ((-91 . -500) 7988) ((-498 . -913) NIL) ((-883 . -299) T) ((-227 . -1073) 7953) ((-847 . -295) 7932) ((-219 . -913) NIL) ((-844 . -1129) 7911) ((-59 . -1117) 7861) ((-530 . -1117) 7839) ((-527 . -1117) 7789) ((-508 . -1117) 7767) ((-507 . -1117) 7717) ((-591 . -102) T) ((-575 . -102) T) ((-506 . -102) T) ((-485 . -174) 7648) ((-369 . -935) T) ((-363 . -935) T) ((-355 . -935) T) ((-227 . -111) 7604) ((-844 . -23) 7556) ((-438 . -737) T) ((-108 . -935) T) ((-40 . -38) 7501) ((-108 . -831) T) ((-592 . -359) T) ((-529 . -359) T) ((-669 . -657) 7460) ((-325 . -463) 7439) ((-322 . -463) T) ((-613 . -525) 7372) ((-418 . -234) 7317) ((-349 . -132) T) ((-176 . -132) T) ((-303 . -25) 7181) ((-303 . -21) 7064) ((-45 . -1211) 7043) ((-66 . -624) 7025) ((-55 . -102) T) ((-346 . -657) 7007) ((-1286 . -102) T) ((-1285 . -102) 6957) ((-45 . -107) 6907) ((-830 . -627) 6891) ((-1277 . -659) 6816) ((-1270 . -659) 6713) ((-1249 . -659) 6565) ((-1249 . -924) NIL) ((-1216 . -624) 6547) ((-1119 . -436) 6531) ((-1119 . -378) 6510) ((-397 . -627) 6494) ((-333 . -627) 6478) ((-1208 . -102) T) ((-1113 . -93) T) ((-1080 . -1235) T) ((-1104 . -657) 6388) ((-1079 . -1073) 6375) ((-1079 . -111) 6360) ((-967 . -1073) 6203) ((-967 . -111) 6032) ((-793 . -657) 5942) ((-791 . -657) 5852) ((-634 . -1068) 5839) ((-675 . -728) 5823) ((-634 . -651) 5810) ((-492 . -1073) 5653) ((-488 . -373) T) ((-472 . -657) 5609) ((-465 . -657) 5519) ((-227 . -627) 5469) ((-365 . -728) 5421) ((-362 . -728) 5373) ((-118 . -1068) 5318) ((-354 . -728) 5270) ((-272 . -728) 5119) ((-252 . -728) 4968) ((-1107 . -93) T) ((-1090 . -93) T) ((-118 . -651) 4913) ((-1083 . -93) T) ((-958 . -662) 4897) ((-1074 . -1117) 4875) ((-492 . -111) 4704) ((-1053 . -93) T) ((-1036 . -93) T) ((-958 . -383) 4688) ((-253 . -102) T) ((-978 . -47) 4667) ((-74 . -624) 4649) ((-723 . -237) T) ((-721 . -102) T) ((-710 . -102) T) ((-1 . -1117) T) ((-632 . -1129) T) ((-1105 . -624) 4631) ((-637 . -93) T) ((-1093 . -624) 4613) ((-925 . -728) 4578) ((-127 . -500) 4562) ((-494 . -93) T) ((-632 . -23) T) ((-401 . -23) T) ((-87 . -1235) T) ((-220 . -93) T) ((-619 . -624) 4544) ((-619 . -625) NIL) ((-486 . -625) NIL) ((-486 . -624) 4526) ((-361 . -25) T) ((-361 . -21) T) ((-50 . -657) 4485) ((-522 . -1117) T) ((-518 . -1117) T) ((-128 . -318) 4423) ((-122 . -318) 4361) ((-607 . -659) 4335) ((-606 . -659) 4260) ((-592 . -657) 4210) ((-227 . -1066) T) ((-529 . -657) 4140) ((-389 . -1019) T) ((-227 . -248) T) ((-227 . -238) T) ((-1079 . -627) 4112) ((-1079 . -629) 4093) ((-973 . -625) 4054) ((-973 . -624) 3966) ((-967 . -627) 3755) ((-881 . -38) 3742) ((-724 . -627) 3692) ((-1269 . -299) 3643) ((-1248 . -299) 3594) ((-492 . -627) 3379) ((-1137 . -463) T) ((-513 . -861) T) ((-325 . -1156) 3358) ((-1016 . -148) 3337) ((-1016 . -146) 3316) ((-506 . -318) 3303) ((-304 . -1211) 3282) ((-1202 . -624) 3264) ((-1201 . -624) 3246) ((-1200 . -624) 3228) ((-882 . -1073) 3173) ((-488 . -1129) T) ((-140 . -846) 3155) ((-115 . -846) 3136) ((-634 . -102) T) ((-1221 . -500) 3120) ((-257 . -378) 3099) ((-256 . -378) 3078) ((-1079 . -1066) T) ((-304 . -107) 3028) ((-131 . -624) 3010) ((-129 . -625) NIL) ((-129 . -624) 2954) ((-118 . -102) T) ((-967 . -1066) T) ((-882 . -111) 2883) ((-488 . -23) T) ((-464 . -1235) T) ((-492 . -1066) T) ((-1079 . -238) T) ((-967 . -335) 2852) ((-40 . -915) 2761) ((-492 . -335) 2718) ((-365 . -174) T) ((-362 . -174) T) ((-354 . -174) T) ((-272 . -174) 2629) ((-252 . -174) 2540) ((-978 . -1055) 2436) ((-528 . -501) 2417) ((-746 . -1055) 2388) ((-528 . -624) 2354) ((-429 . -1235) T) ((-1122 . -102) T) ((-1109 . -624) 2313) ((-1051 . -624) 2295) ((-705 . -1068) 2245) ((-1298 . -152) 2229) ((-1296 . -627) 2210) ((-1295 . -627) 2191) ((-1290 . -624) 2173) ((-1277 . -737) T) ((-705 . -651) 2123) ((-1270 . -737) T) ((-1249 . -802) NIL) ((-1249 . -805) NIL) ((-171 . -1073) 2033) ((-925 . -174) T) ((-882 . -627) 1963) ((-1249 . -737) T) ((-1020 . -352) 1937) ((-225 . -657) 1889) ((-1017 . -525) 1822) ((-854 . -861) 1801) ((-575 . -1169) T) ((-485 . -299) 1752) ((-607 . -737) T) ((-371 . -624) 1734) ((-331 . -624) 1716) ((-429 . -1055) 1612) ((-606 . -737) T) ((-418 . -861) 1563) ((-171 . -111) 1459) ((-844 . -132) 1411) ((-748 . -152) 1395) ((-1285 . -318) 1333) ((-498 . -316) T) ((-389 . -624) 1300) ((-531 . -1027) 1284) ((-389 . -625) 1198) ((-219 . -316) T) ((-142 . -152) 1180) ((-725 . -295) 1159) ((-498 . -1039) T) ((-591 . -38) 1146) ((-575 . -38) 1133) ((-506 . -38) 1098) ((-219 . -1039) T) ((-882 . -1066) T) ((-847 . -624) 1080) ((-838 . -624) 1062) ((-836 . -624) 1044) ((-827 . -924) 1023) ((-1309 . -1129) T) ((-1258 . -1073) 846) ((-866 . -1073) 830) ((-882 . -248) T) ((-882 . -238) NIL) ((-700 . -1235) T) ((-1309 . -23) T) ((-827 . -659) 719) ((-561 . -1235) T) ((-429 . -348) 703) ((-582 . -1073) 690) ((-1258 . -111) 499) ((-712 . -650) 481) ((-866 . -111) 460) ((-391 . -23) T) ((-171 . -627) 238) ((-1207 . -525) 30) ((-887 . -1117) T) ((-692 . -1117) T) ((-687 . -1117) T) ((-673 . -1117) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 3f6e304c..5b37d486 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3485817771) -(4464 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3485824332) +(4463 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -67,16 +67,16 @@ |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| - |Dictionary| |DifferentialExtension&| |DifferentialExtension| - |DifferentialDomain&| |DifferentialDomain| |DifferentialModule| - |DifferentialSpace&| |DifferentialSpace| |DifferentialRing| - |DictionaryOperations&| |DictionaryOperations| - |DiophantineSolutionPackage| |DirectProductCategory&| - |DirectProductCategory| |DirectProductFunctions2| |DirectProduct| - |DisplayPackage| |DivisionRing&| |DivisionRing| - |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| - |DistributedMultivariatePolynomial| |Domain| |DomainConstructor| - |DomainTemplate| |DirectProductMatrixModule| |DirectProductModule| + |Dictionary| |DifferentialExtension| |DifferentialDomain&| + |DifferentialDomain| |DifferentialModule| |DifferentialSpace&| + |DifferentialSpace| |DifferentialRing| |DictionaryOperations&| + |DictionaryOperations| |DiophantineSolutionPackage| + |DirectProductCategory&| |DirectProductCategory| + |DirectProductFunctions2| |DirectProduct| |DisplayPackage| + |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| + |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| + |Domain| |DomainConstructor| |DomainTemplate| + |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| @@ -488,670 +488,669 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |rightDiscriminant| |sub| |An| |mvar| - |makeViewport3D| |rischNormalize| |eulerPhi| |partitions| - |argumentList!| |leftDiscriminant| |set| |rarrow| |UnVectorise| - |relativeApprox| |viewport3D| |realElementary| |fibonacci| |partition| - |endSubProgram| |represents| |assign| |Vectorise| |rootOf| - |viewDeltaYDefault| |validExponential| |harmonic| |complete| - |currentSubProgram| |mergeFactors| |slash| |setPoly| |allRootsOf| - |viewDeltaXDefault| |rootNormalize| |jacobi| |pole?| |newSubProgram| - |isMult| |over| |exponent| |definingPolynomial| |viewZoomDefault| - |tanQ| |moebiusMu| |listBranches| |clearTheSymbolTable| |lists| - |exprToXXP| |zag| |exQuo| |positive?| |viewPhiDefault| |callForm?| - |numberOfDivisors| |triangular?| |showTheSymbolTable| |exprToUPS| - |postfix| |moebius| |negative?| |viewThetaDefault| |getIdentifier| - |signature| |sumOfDivisors| |rewriteIdealWithRemainder| |printTypes| - |exprToGenUPS| |infix| |rightRecip| |zero?| |pointColorDefault| - |setButtonValue| |variable?| |sumOfKthPowerDivisors| - |rewriteIdealWithHeadRemainder| |newTypeLists| |localAbs| |search| - |vconcat| |leftRecip| |augment| |expr| |lineColorDefault| - |setAttributeButtonStep| |getConstant| |HermiteIntegrate| |remainder| - |typeLists| |universe| |hconcat| |leftPower| |lastSubResultant| - |axesColorDefault| |environment| |palgint| |headRemainder| - |externalList| |outputList| |complement| |rspace| |rightPower| - |lastSubResultantElseSplit| |unitsColorDefault| |irForm| |palgextint| - |roughUnitIdeal?| |typeList| |cardinality| |show| |vspace| - |derivationCoordinates| |invertibleSet| |pointSizeDefault| - |elaboration| |palglimint| |roughEqualIdeals?| |parametersOf| - |internalIntegrate0| |hspace| |one?| |invertible?| |variable| - |viewPosDefault| |select!| |palgRDE| |roughSubIdeal?| |fortranTypeOf| - |makeCos| |trace| |superHeight| |splitSquarefree| - |invertibleElseSplit?| |iterators| |viewSizeDefault| - |binarySearchTree| |delete!| |palgLODE| |roughBase?| |empty| - |subtractIfCan| |makeSin| |subHeight| |normalDenom| - |purelyAlgebraicLeadingMonomial?| |datalist| |viewDefaults| |nor| |dn| - |systemCommand| |splitConstant| |trivialIdeal?| |compound?| - |setPosition| |char| |subst| |checkPrecision| |iiGamma| - |doubleFloatFormat| |totalfract| |algebraicCoefficients?| - |viewWriteDefault| |sncndn| |pmComplexintegrate| |collectUpper| - |getOperands| |bitior| |iiabs| |messagePrint| |pushdterm| - |purelyTranscendental?| |viewWriteAvailable| |categoryFrame| - |pmintegrate| |collect| |getOperator| |bringDown| |members| - |pushucoef| |purelyAlgebraic?| |var1StepsDefault| |interactiveEnv| - |precision| |normal| |infieldint| |collectUnder| |nil?| |newReduc| - |padecf| |pushuconst| |prepareSubResAlgo| |var2StepsDefault| |cond| - |extendedint| |mainVariable?| |concat| |buildSyntax| |logical?| |pade| - |numberOfMonomials| |internalLastSubResultant| |tubePointsDefault| - |hypergeometric0F1| |sech| |limitedint| |mainVariables| |solve| - |character?| |root| |multiset| |integralLastSubResultant| - |tubeRadiusDefault| |rotatez| |csch| |operation| |integerIfCan| - |removeSquaresIfCan| |triangularSystems| |doubleComplex?| |objects| - |quotientByP| |float| |mergeDifference| |toseLastSubResultant| - |dimension| |rotatey| |asinh| |internalIntegrate| - |unprotectedRemoveRedundantFactors| |nativeModuleExtension| |base| - |squareFreePrim| |toseInvertible?| |setRow!| |crest| |rotatex| |acosh| - |infieldIntegrate| |removeRedundantFactors| |kroneckerDelta| - |hostByteOrder| |kind| |close!| |OMgetEndAttr| |oneDimensionalArray| - |nand| |compdegd| |toseInvertibleSet| |identity| |cfirst| |arg1| - |atanh| |limitedIntegrate| |certainlySubVariety?| |reindex| - |hostPlatform| |reopen!| |OMgetEndBind| |op| |binaryTournament| - |univcase| |toseSquareFreePart| |dictionary| |sts2stst| |arg2| |acoth| - |extendedIntegrate| |possiblyNewVariety?| |rootDirectory| |rightUnit| - |OMgetEndBVar| |consnewpol| |quotedOperators| |clikeUniv| |dioSolve| - |asech| |numer| |bumprow| |leftUnit| |OMgetEndError| - |resetAttributeButtons| |nsqfree| |rur| |newLine| |weierstrass| - |shrinkable| |conditions| |patternMatch| |variables| |denom| |bumptab| - |rightMinimalPolynomial| |OMgetEndObject| |getButtonValue| |copies| - |intChoose| |create| |match| |qqq| |options| |multiple| - |physicalLength!| |patternMatchTimes| |bumptab1| - |leftMinimalPolynomial| |OMgetInteger| |coefChoose| |enterInCache| - |integralBasis| |sayLength| |applyQuote| |physicalLength| |bernoulli| - |pi| |untab| |tree| |associatorDependence| |OMgetFloat| - |localIntegralBasis| |setnext!| |flexibleArray| |chebyshevT| - |infinity| |bat1| |lieAlgebra?| |OMgetVariable| |union| |lyndon| - |uniform| |any| |qualifier| |setprevious!| |string| |elseBranch| - |chebyshevU| |bat| |jordanAlgebra?| |OMgetString| |lyndon?| |binomial| - |mainExpression| |shanksDiscLogAlgorithm| |ruleset| |thenBranch| - |cyclotomic| |tab1| |noncommutativeJordanAlgebra?| |OMgetSymbol| - |numberOfComputedEntries| |poisson| |changeWeightLevel| |reflect| - |generalizedInverse| |euler| |kernel| |previous| |jordanAdmissible?| - |OMgetType| |rst| |geometric| |characteristicSerie| |reify| |imports| - |fixedDivisor| |connectTo| |lowerCase| |list| |complexNumeric| - |lieAdmissible?| |OMencodingBinary| |frst| |ridHack1| |binaryTree| - |characteristicSet| |functorData| |suchThat| |sequence| |laguerre| - |normalizedAssociate| |KrullNumber| |draw| |jacobiIdentity?| - |OMencodingSGML| |lazyEvaluate| |interpolate| |medialSet| |setLength!| - |separant| |readBytes!| |legendre| |normalize| |numberOfVariables| - |powerAssociative?| |OMencodingXML| |lazy?| |nullSpace| |isobaric?| - |readUInt32!| |dmpToHdmp| |outputArgs| |algebraicDecompose| - |lowerCase?| |alternative?| |OMencodingUnknown| |explicitlyEmpty?| - |nullity| |dominantTerm| |weights| |readInt32!| |hdmpToDmp| - |normInvertible?| |transcendentalDecompose| |bfEntry| |flexible?| - |omError| |explicitEntries?| |rowEchelon| |limitPlus| - |differentialVariables| |readUInt16!| |pToHdmp| |normFactors| - |internalDecompose| |makeObject| |bfKeys| |rightAlternative?| - |errorInfo| |matrixDimensions| |column| |split!| |extractBottom!| - |readInt16!| |hdmpToP| |center| |npcoef| |decompose| |coef| - |leftAlternative?| |errorKind| |matrixConcat3D| |row| |stack| - |setlast!| |extractTop!| |readUInt8!| |listexp| |dmpToP| - |upDateBranches| |label| |antiAssociative?| |OMReadError?| |setelt!| - |maxColIndex| |setrest!| |insertBottom!| |readInt8!| |pToDmp| - |characteristicPolynomial| |preprocess| |name| |associative?| - |OMUnknownSymbol?| |identityMatrix| |minColIndex| |setfirst!| - |insertTop!| |readByte!| |sylvesterSequence| |realEigenvalues| - |internalZeroSetSplit| |body| |antiCommutative?| |OMUnknownCD?| - |zeroMatrix| |maxRowIndex| |cycleSplit!| |bottom!| |typeForm| - |setFieldInfo| |sturmSequence| |realEigenvectors| |internalAugment| - |commutative?| |interpret| |OMParseError?| |mappingAst| |minRowIndex| - |concat!| |top!| |pol| |boundOfCauchy| |halfExtendedResultant2| - |possiblyInfinite?| |rightCharacteristicPolynomial| |OMwrite| - |nullary| |antisymmetric?| |cycleTail| |dequeue| |xn| - |sturmVariationsOf| |halfExtendedResultant1| |explicitlyFinite?| - |leftCharacteristicPolynomial| |po| |fixedPoint| |symmetric?| - |cycleLength| |recolor| |dAndcExp| |lazyVariations| - |extendedResultant| |nextItem| |rightNorm| |OMread| |recur| - |diagonal?| |cycleEntry| |drawComplex| |repSq| |point| |length| - |content| |subResultantsChain| |upperBound| |leftNorm| |OMreadFile| - |const| |square?| |invmultisect| |drawComplexVectorField| |option| - |expPot| |scripts| |totalDegree| |lazyPseudoQuotient| |lowerBound| - |rightTrace| |curry| |OMreadStr| |rectangularMatrix| SEGMENT - |multisect| |setRealSteps| |qPot| |minimumDegree| - |lazyPseudoRemainder| |iterationVar| |port| |leftTrace| |OMlistCDs| - |diag| |characteristic| |revert| |setImagSteps| |series| |lookup| - |monomials| |bernoulliB| |infiniteProduct| |someBasis| |OMlistSymbols| - |curryRight| |round| |generalLambert| |rootPoly| |setClipValue| - |normal?| |isPlus| |eulerE| |evenInfiniteProduct| |t| |sort!| - |OMsupportsCD?| |curryLeft| |fractionPart| |evenlambert| |goodPoint| - |option?| |basis| |isTimes| |numericIfCan| |oddInfiniteProduct| - |copyInto!| |OMsupportsSymbol?| |constantRight| |wholePart| - |oddlambert| |chvar| |range| |normalElement| |isExpt| - |complexNumericIfCan| |generalInfiniteProduct| |sorted?| - |OMunhandledSymbol| |constantLeft| |floor| |lambert| - |brillhartIrreducible?| |removeDuplicates| |colorFunction| |min| - |minimalPolynomial| |isPower| |FormatArabic| |showAll?| |LiePoly| - |OMreceive| |twist| |ceiling| |lagrange| |brillhartTrials| |find| - |curveColor| |position!| |rroot| |ScanArabic| |showAllElements| - |quickSort| |OMsend| |setsubMatrix!| |norm| |univariatePolynomial| - |clipParametric| |pointColor| |eof?| |qroot| |FormatRoman| |delay| - |unknown| |apply| |heapSort| |OMserve| |subMatrix| |mightHaveRoots| - |upperCase?| |integrate| |clip| |inputBinaryFile| |froot| |ScanRoman| - |findCycle| |first| |shellSort| |makeop| |swapColumns!| |refine| - |alphabetic?| |multiplyCoefficients| |clipBoolean| |increment| |xor| - |imag| |nthr| |ScanFloatIgnoreSpaces| |repeating?| |rest| - |outputSpacing| |opeval| |swapRows!| |middle| |quoByVar| - |directProduct| |style| |charpol| |case| |firstUncouplingMatrix| - |ScanFloatIgnoreSpacesIfCan| |repeating| |outputGeneral| - |evaluateInverse| |vertConcat| |roman| |coefficients| |toScale| - |solve1| |Zero| |integral| |numericalIntegration| |recip| - |outputFixed| |comp| |keys| |evaluate| |true| |horizConcat| - |recoverAfterFail| |stFunc1| |void| |pointColorPalette| - |innerEigenvectors| |One| |top| |primitiveElement| |rk4| |integers| - |outputFloating| |conjug| |squareTop| |showTheRoutinesTable| |stFunc2| - |curveColorPalette| |continue| |parseString| |nextPrime| |rk4a| - |oddintegers| |exp1| |adjoint| |elRow1!| |deleteRoutine!| |stFuncN| - |sort| |plusInfinity| |var1Steps| |unparse| |prevPrime| |rk4qc| - |mapmult| |log2| |arity| |elRow2!| |getExplanations| |fixedPointExquo| - |minusInfinity| |var2Steps| |binary| |primes| |rk4f| |deriv| - |equality| |rationalApproximation| |getDatabase| |elColumn2!| - |getMeasure| |ode1| |space| |packageCall| |id| |selectsecond| - |aromberg| |gderiv| |nary?| |relerror| |numericalOptimization| - |fractionFreeGauss!| |changeMeasure| |ode2| |tubePoints| |innerSolve1| - |asimpson| |elt| |selectfirst| |lo| |compose| |complexSolve| - |goodnessOfFit| |invertIfCan| |changeThreshhold| |ode| |random| - |tubeRadius| |innerSolve| |makeprod| |atrapezoidal| |addiag| |next| - |complexRoots| |whatInfinity| |copy!| |selectMultiDimensionalRoutines| - |mpsode| |weight| |makeEq| |property| |romberg| |lazyIntegrate| - |realRoots| |infinite?| |plus!| |selectNonFiniteRoutines| UP2UTS - |makeVariable| |modularGcdPrimitive| |disjunction| |simpson| |nlde| - |leadingTerm| |finite?| |minus!| |selectSumOfSquaresRoutines| UTS2UP - |finiteBound| |modularGcd| |conjunction| |trapezoidal| |powern| - |overlap| |pureLex| |leftScalarTimes!| |selectFiniteRoutines| LODO2FUN - |sortConstraints| |reduction| |isEquiv| |rombergo| |mapdiv| |hcrf| - |totalLex| |rightScalarTimes!| |selectODEIVPRoutines| RF2UTS - |sumOfSquares| |signAround| |insert| |isImplies| |simpsono| - |lazyGintegrate| |hclf| |reverseLex| |times!| |selectPDERoutines| - |magnitude| |splitLinear| |invmod| |isOr| |trapezoidalo| |power| - |leader| |writable?| |leftLcm| |power!| |selectOptimizationRoutines| - |cross| |capacity| |simpleBounds?| |powmod| |isAnd| |sup| |sincos| - |noLinearFactor?| |readable?| |rightExtendedGcd| |just| - |selectIntegrationRoutines| |dot| |mulmod| |isNot| |imagE| |sinhcosh| - |insertRoot!| |exists?| |rightGcd| |gradient| |routines| |hexDigit?| - |scan| |rootRadius| |submod| |isAtom| |imagk| |subresultantVector| - |extension| |rightExactQuotient| |divergence| |mainSquareFreePart| - |digit?| |graphCurves| |schwerpunkt| |addmod| |atoms| |imagj| - |primitivePart| |shallowExpand| |rightRemainder| |laplacian| - |mainPrimitivePart| |drawCurves| |setErrorBound| |symmetricRemainder| - |dual| |imagi| |pointData| |hessian| |mainContent| |scale| - |startPolynomial| |symbolTable| |positiveRemainder| |equiv| |octon| - |parent| |integralDerivationMatrix| |denomLODE| |bandedHessian| - |primitivePart!| |connect| |cycleElt| |bit?| |implies| |ODESolve| - |extractProperty| |integralRepresents| |indicialEquations| |jacobian| - |nextsubResultant2| |region| |computeCycleLength| - |pushFortranOutputStack| |algint| |merge!| |constDsolve| - |extractClosed| |integralCoordinates| |indicialEquation| - |bandedJacobian| |LazardQuotient2| |points| |computeCycleEntry| - |popFortranOutputStack| |showTheIFTable| |width| |extractIndex| - |yCoordinates| |denomRicDE| |duplicates| |super| |LazardQuotient| - |getGraph| |findConstructor| |putColorInfo| |outputAsFortran| - |rubiksGroup| |clearTheIFTable| |extractPoint| - |inverseIntegralMatrixAtInfinity| |leadingCoefficientRicDE| - |removeDuplicates!| |subResultantChain| |putGraph| Y |dualSignature| - |appendPoint| |youngGroup| |iFTable| |traverse| - |integralMatrixAtInfinity| |constantCoefficientRicDE| |linears| - |halfExtendedSubResultantGcd2| |graphs| |coerceP| |component| - |lexGroebner| |showIntensityFunctions| |defineProperty| - |inverseIntegralMatrix| |changeVar| |graphStates| |powerSum| |ranges| - |totalGroebner| |expint| |closeComponent| |integralMatrix| |ratDsolve| - |LyndonCoordinates| |mainForm| |graphState| |elementary| |pointLists| - |expressIdealMember| |clearCache| |diff| |modifyPoint| - |reduceBasisAtInfinity| |indicialEquationAtInfinity| |lift| |table| - |LyndonBasis| |rischDE| |makeViewport2D| |alternating| - |makeGraphImage| |principalIdeal| |algDsolve| |addPointLast| - |normalizeAtInfinity| |reduceLODE| |reduce| |new| |zeroDimensional?| - |rischDEsys| |viewport2D| |obj| |cyclic| |graphImage| - |LagrangeInterpolation| |complementaryBasis| |singRicDE| |fglmIfCan| - |monomRDE| |getPickedPoints| |dihedral| |groebSolve| |cache| |psolve| - |f04mbf| |insertionSort!| |integral?| |groebner| |polyRicDE| |li| - |baseRDE| |colorDef| |cap| |testDim| |wrregime| |f04mcf| |check| - |integralAtInfinity?| |ricDsolve| |lexTriangular| |polyRDE| - |intensity| |cup| |genericPosition| |rdregime| |f04qaf| |lprop| - |integralBasisAtInfinity| |triangulate| |squareFreeLexTriangular| - |monomRDEsys| |factor| |wreath| |lfunc| |bsolve| |f07adf| |llprop| - |ramified?| |solveInField| |belong?| |baseRDEsys| |getOrder| - |SFunction| |inHallBasis?| |dmp2rfi| |f07aef| |lllp| - |ramifiedAtInfinity?| |wronskianMatrix| |Ci| |weighted| |less?| - |skewSFunction| |reorder| |box| |vector| |se2rfi| |f07fdf| |lllip| - |singular?| |variationOfParameters| |Si| |rdHack1| |userOrdered?| - |cyclotomicDecomposition| |headAst| |pr2dmp| |differentiate| |f07fef| - |mesh?| |singularAtInfinity?| |lexico| |Ei| |midpoint| |largest| - |predicate| |cyclotomicFactorization| |heap| |hasoln| |s01eaf| |mesh| - |branchPoint?| |OMmakeConn| |linGenPos| |midpoints| |more?| |mapDown!| - |rangeIsFinite| |gcdprim| |ParCondList| |s13aaf| |polygon?| - |branchPointAtInfinity?| |size| |groebgen| |OMcloseConn| |left| ** - |monomial| |realZeros| |setVariableOrder| |dom| |test| - |functionIsContinuousAtEndPoints| |gcdcofact| |redpps| |s13acf| - |polygon| |mapUp!| |byte| |rationalPoint?| |totolex| |OMconnInDevice| - |right| |multivariate| |mainCharacterization| |getVariableOrder| - |functionIsOscillatory| |gcdcofactprim| |B1solve| |s13adf| - |closedCurve?| |absolutelyIrreducible?| |OMconnOutDevice| |minPol| - |algebraicOf| |retractIfCan| |resetVariableOrder| |byteBuffer| - |changeName| |lintgcd| |factorset| |s14aaf| |closedCurve| |genus| - |computeBasis| |close| |OMconnectTCP| |ReduceOrder| |linear| |prime?| - |exprHasWeightCosWXorSinWX| |hex| |maxrank| |s14abf| |curve?| - |getZechTable| |OMbindTCP| |coord| |setref| |sample| |sqrt| - |exprHasAlgebraicWeight| |every?| |minrank| |s14baf| |curve| - |createZechTable| |anticoord| |leaves| |display| |OMopenFile| |deref| - |polynomial| |rationalFunction| |real| |title| |ravel| - |exprHasLogarithmicWeights| |any?| |minset| |s15adf| |point?| - |createMultiplicationTable| |units| |intcompBasis| |OMopenString| - |prefix| |ref| |taylorIfCan| |combineFeatureCompatibility| |host| - |reshape| |nextSublist| |s15aef| |enterPointData| - |createMultiplicationMatrix| |OMclose| |choosemon| - |radicalEigenvectors| |parameters| |removeZeroes| |sparsityIF| - |trueEqual| |overset?| |s17acf| |composites| |unary?| - |createLowComplexityTable| |OMsetEncoding| |int| |transform| - |radicalEigenvector| |taylorRep| |e| |stiffnessAndStabilityFactor| - |factorList| |ParCond| |s17adf| |components| |node| |nullary?| - |createLowComplexityNormalBasis| |OMputApp| |pack!| - |radicalEigenvalues| |factorSquareFree| |stiffnessAndStabilityOfODEIF| - |listConjugateBases| |redmat| |s17aef| |numberOfComposites| - |representationType| |input| |OMputAtp| |complexLimit| |eigenMatrix| - |henselFact| |map| |systemSizeIF| |matrixGcd| |s17aff| |regime| - |numberOfComponents| |brace| |kernels| |code| |createPrimitiveElement| - |library| |OMputAttr| |limit| |normalise| |hasHi| - |expenseOfEvaluationIF| |divideIfCan!| |s17agf| |sqfree| - |create3Space| |update| |eq| |operator| |has?| - |tableForDiscreteLogarithm| |OMputBind| |fortran| |linearlyDependent?| - |gramschmidt| |showSummary| |fmecg| |accuracyIF| |leastPower| - |inconsistent?| |s17ahf| |outputAsScript| |iter| - |factorsOfCyclicGroupSize| |optimize| |OMputBVar| |linearDependence| - |orthonormalBasis| |comparison| |commonDenominator| - |intermediateResultsIF| |idealiser| |numFunEvals| |s17ajf| - |outputAsTex| |sizeMultiplication| |OMputError| |solveLinear| - |antisymmetricTensors| |clearDenominator| |subscriptedVariables| - |idealiserMatrix| |setAdaptive| |assert| |s17akf| |abs| - |getMultiplicationMatrix| |OMputObject| |reducedSystem| - |createGenericMatrix| |splitDenominator| |convert| |central?| - |moduleSum| |adaptive?| |s17dcf| |Beta| |getMultiplicationTable| - |showAttributes| |OMputEndApp| |setDifference| |symmetricTensors| - |monicRightFactorIfCan| |level| |elliptic?| |mapUnivariate| |s17def| - |setScreenResolution| |digamma| |position| |primitive?| |OMputEndAtp| - |setIntersection| |tensorProduct| |rightFactorIfCan| |doubleResultant| - |mapUnivariateIfCan| |screenResolution| |s17dgf| |polygamma| - |numberOfIrreduciblePoly| |OMputEndAttr| |setUnion| - |permutationRepresentation| |leftFactorIfCan| |distdfact| - |mapMatrixIfCan| |setMaxPoints| |s17dhf| |Gamma| - |numberOfPrimitivePoly| |OMputEndBind| |substitute| - |completeEchelonBasis| |monicDecomposeIfCan| |separateDegrees| - |compile| |mapBivariate| |maxPoints| |s17dlf| |besselJ| |exp| - |numberOfNormalPoly| |OMputEndBVar| |duplicates?| - |createRandomElement| |monicCompleteDecompose| |trace2PowMod| - |fullDisplay| |setMinPoints| |s18acf| |besselY| |equation| - |createIrreduciblePoly| |mapGen| |OMputEndError| |numeric| - |cyclicSubmodule| |divideIfCan| |tracePowMod| |relationsIdeal| - |minPoints| |s18adf| |besselI| |createPrimitivePoly| |radical| - |OMputEndObject| |mapExpon| |standardBasisOfCyclicSubmodule| - |noKaratsuba| |irreducible?| |saturate| |parametric?| |s18aef| - |besselK| |createNormalPoly| |OMputInteger| |commutativeEquality| - |areEquivalent?| |karatsubaOnce| |decimal| |groebner?| |plotPolar| - |s18aff| |airyAi| |createNormalPrimitivePoly| |OMputFloat| |script| - |leftMult| |isAbsolutelyIrreducible?| |karatsuba| |innerint| - |groebnerIdeal| |debug3D| |s18dcf| |airyBi| - |createPrimitiveNormalPoly| |printInfo| |OMputVariable| |rightMult| - |meatAxe| |separate| |exteriorDifferential| |ideal| |numFunEvals3D| - |s18def| |subNode?| |nextIrreduciblePoly| |OMputString| |makeUnit| - |scanOneDimSubspaces| |pseudoDivide| |totalDifferential| - |leadingIdeal| |setAdaptive3D| |s19aaf| |infLex?| |nextPrimitivePoly| - |OMputSymbol| |tex| |reverse!| |expt| |pseudoQuotient| |homogeneous?| - |backOldPos| |adaptive3D?| |s19abf| |setEmpty!| |nothing| - |nextNormalPoly| |OMgetApp| |nthFactor| |showArrayValues| |composite| - |leadingBasisTerm| |generalPosition| |setScreenResolution3D| |s19acf| - |setStatus!| |nextNormalPrimitivePoly| |OMgetAtp| |nthExpon| - |showScalarValues| |subResultantGcd| |ignore?| |quotient| - |screenResolution3D| |s19adf| |setCondition!| - |nextPrimitiveNormalPoly| |OMgetAttr| |makeMulti| |solveRetract| - |resultant| |computeInt| |zeroDim?| |setMaxPoints3D| |s20acf| - |setValue!| |derivative| |leastAffineMultiple| |makeTerm| |OMgetBind| - |mainVariable| |qelt| |discriminant| |checkForZero| |inRadical?| - |maxPoints3D| |s20adf| |status| |constantOperator| |type| |qsetelt| - |reducedQPowers| |listOfMonoms| |OMgetBVar| |uniform01| |rem| - |pseudoRemainder| |logGamma| |in?| |setMinPoints3D| |s21baf| |empty?| - |rootOfIrreduciblePoly| |symmetricSquare| |normal01| |OMgetError| - |quo| |xRange| |shiftLeft| |initial| |element?| |s21bbf| |minPoints3D| - |splitNodeOf!| |cons| |write!| |factor1| |OMgetObject| |exponential1| - |yRange| |shiftRight| |clipWithRanges| |zeroDimPrime?| |s21bcf| - |tValues| |remove!| |dim| |read!| |symmetricProduct| |chiSquare1| - |OMgetEndApp| |div| |zRange| |karatsubaDivide| |numberOfHues| - |zeroDimPrimary?| |tRange| |s21bdf| |subNodeOf?| |iomode| |map!| - |symmetricPower| |OMgetEndAtp| |exponential| |exquo| |monicDivide| - |yellow| |primaryDecomp| |plot| |fortranCompilerName| |nodeOf?| - |qsetelt!| |directSum| |chiSquare| ~= |divideExponents| |iifact| - |contract| |pointPlot| |fortranLinkerArgs| |updateStatus!| |mat| - |solveLinearPolynomialEquationByFractions| |factorFraction| |#| - |unmakeSUP| |iibinom| |gensym| |calcRanges| |aspFilename| - |extractSplittingLeaf| |neglist| ~ |zero| |hasSolution?| - |componentUpperBound| |coerce| |makeSUP| |iiperm| |leadingSupport| - |dimensionsOf| |fixPredicate| |squareMatrix| |source| |multiEuclidean| - |linSolve| |blue| |construct| |vectorise| |iipow| |restorePrecision| - |transpose| |extendedEuclidean| |And| |LyndonWordsList| |green| - |extend| |iidsum| |redPol| |coerceListOfPairs| |antiCommutator| |trim| - |euclideanSize| |/\\| |LyndonWordsList1| |Or| |red| |acsch| |truncate| - |iidprod| |gbasis| |coercePreimagesImages| |commutator| |split| - |sizeLess?| |\\/| |Not| |lyndonIfCan| |whitePoint| |order| |ipow| - |critT| |listRepresentation| |associator| |replace| |simplifyPower| - |terms| |factorial| |critM| |permanent| |complexEigenvalues| - |upperCase!| |target| |number?| |cTanh| |cothIfCan| |squareFreePart| - |multinomial| |critB| |cycles| |complexEigenvectors| |upperCase| - |seriesSolve| |cCosh| |sechIfCan| |BumInSepFFE| |permutation| - |critBonD| |cycle| |isConnected?| |lowerCase!| - |constantToUnaryFunction| |cSinh| |cschIfCan| |multiplyExponents| - |stirling1| |critMTonD1| |initializeGroupForWordProblem| - |associatedSystem| |tubePlot| |cAcsc| |asinhIfCan| |size?| - |laurentIfCan| |stirling2| |critMonD1| |support| |e02ahf| - |stoseLastSubResultant| |uncouplingMatrices| |second| - |exponentialOrder| |open| |cAsec| |acoshIfCan| |eq?| |laurentRep| - |summation| |redPo| |wordInGenerators| |e02ajf| - |stoseInvertible?sqfreg| |third| |completeEval| |cAcot| |atanhIfCan| - |doublyTransitive?| |rationalPower| |factorials| |hMonic| - |wordInStrongGenerators| |e02akf| |stoseInvertibleSetsqfreg| - |lowerPolynomial| |cAtan| |acothIfCan| |knownInfBasis| |mkcomm| - |updatF| |orbits| |e02baf| |stoseInvertible?reg| |raisePolynomial| - |cAcos| |asechIfCan| |rootSplit| |cot2trig| |polarCoordinates| |sPol| - |orbit| |reset| |e02bbf| |stoseInvertibleSetreg| |escape| |bright| - |operations| |normalDeriv| |cAsin| |acschIfCan| |ratDenom| - |coth2trigh| |imaginary| F |updatD| |permutationGroup| |e02bcf| - |stoseInvertible?| |ord| |ran| |cCsc| |pushdown| |ratPoly| |csc2sin| - |elaborateFile| |minGbasis| |wordsForStrongGenerators| |write| - |e02bdf| |stoseInvertibleSet| |mkIntegral| |inc| |eval| - |highCommonTerms| |cSec| |pushup| |rootPower| |csch2sinh| |setelt| - |elaborate| |save| |lepol| |strongGenerators| |e02bef| - |stoseSquareFreePart| |radPoly| |mapCoef| |cCot| |reducedDiscriminant| - |rootProduct| |sec2cos| |solid| |prinshINFO| |generators| |e02daf| - |coleman| |sn| |nthCoef| |cTan| |idealSimplify| |rootSimp| |sech2cosh| - |copy| |solid?| |prindINFO| |bivariateSLPEBR| |e02dcf| - |inverseColeman| |error| |binomThmExpt| |cCos| |definingInequation| - |rootKerSimp| |sin2csc| |denominators| |fprindINFO| - |solveLinearPolynomialEquationByRecursion| EQ |e02ddf| - |listYoungTableaus| |leftRank| |pomopo!| |cSin| |definingEquations| - |generalizedContinuumHypothesisAssumed| |sinh2csch| |numerators| - |prinpolINFO| |factorByRecursion| |e02def| |makeYoungTableau| - |rightRank| |mapExponents| |cLog| |setStatus| - |generalizedContinuumHypothesisAssumed?| |tan2trig| |convergents| - |prinb| |factorSquareFreeByRecursion| |e02dff| |nextColeman| - |linearAssociatedLog| |cExp| |quasiAlgebraicSet| |doubleRank| - |tanh2trigh| |approximants| |critpOrder| |randomR| |e02gaf| - |nextLatticePermutation| |match?| |linearAssociatedOrder| - |cRationalPower| |radicalSimplify| |weakBiRank| |tan2cot| |autoCoerce| - |reducedForm| |makeCrit| |factorSFBRlcUnit| |e02zaf| |nextPartition| - |linearAssociatedExp| |cPower| |denominator| |biRank| |tanh2coth| - |partialQuotients| |virtualDegree| |charthRoot| |e04dgf| - |numberOfImproperPartitions| |setProperties| |createNormalElement| - |seriesToOutputForm| |numerator| |basisOfCommutingElements| |cot2tan| - |partialDenominators| |conditionsForIdempotents| |conditionP| |e04fdf| - |subSet| |setLabelValue| |iCompose| |quadraticForm| - |basisOfLeftAnnihilator| |coth2tanh| |partialNumerators| - |genericRightDiscriminant| |solveLinearPolynomialEquation| |e04gcf| - |unrankImproperPartitions0| |setProperty| |getCode| |taylorQuoByVar| - |back| |basisOfRightAnnihilator| |removeCosSq| - |reducedContinuedFraction| |genericRightTraceForm| |entry| - |factorSquareFreePolynomial| |e04jaf| |unrankImproperPartitions1| - |deleteProperty!| |printCode| |iExquo| |front| |basisOfLeftNucleus| - |removeSinSq| |push| |genericLeftDiscriminant| |factorPolynomial| - |e04mbf| |subresultantSequence| |printStatement| |getStream| |rotate!| - |basisOfRightNucleus| |removeCoshSq| |bindings| |genericLeftTraceForm| - |null| |squareFreePolynomial| |e04naf| |SturmHabichtSequence| |block| - |getRef| |dequeue!| |basisOfMiddleNucleus| |removeSinhSq| |cartesian| - |genericRightNorm| |e04ucf| |gcdPolynomial| |SturmHabichtCoefficients| - |not| |returns| |makeSeries| |enqueue!| |basisOfNucleus| - |expandTrigProducts| |polar| |genericRightTrace| |e04ycf| |torsion?| - |SturmHabicht| |and| |call| |mappingMode| |quatern| |basisOfCenter| - |fintegrate| |categories| |cylindrical| - |genericRightMinimalPolynomial| |f01brf| |torsionIfCan| - |countRealRoots| |or| |delete| |goto| |categoryMode| |imagK| - |basisOfLeftNucloid| |coefficient| |spherical| |rightRankPolynomial| - |getGoodPrime| |f01bsf| |SturmHabichtMultiple| |repeatUntilLoop| - |voidMode| |imagJ| |basisOfRightNucloid| |coHeight| |parabolic| - |genericLeftNorm| |badNum| |f01maf| |countRealRootsMultiple| - |associatedEquations| |whileLoop| |noValueMode| |imagI| - |basisOfCentroid| |extendIfCan| |unknownEndian| |parabolicCylindrical| - |genericLeftTrace| |mix| |f01mcf| |signatureAst| |arrayStack| - |forLoop| |jokerMode| |conjugate| |radicalOfLeftTraceForm| - |algebraicVariables| |bigEndian| |principalAncestors| |paraboloidal| - |genericLeftMinimalPolynomial| |doubleDisc| |f01qcf| |pop!| |sin?| - GF2FG |queue| |zeroSetSplitIntoTriangularSystems| - |ellipticCylindrical| |leftRankPolynomial| |f01qdf| |polyred| - |isQuotient| |push!| |zeroVector| FG2F |nthRoot| |zeroSetSplit| - |prolateSpheroidal| |generic| |padicFraction| |f01qef| |minordet| - |zeroSquareMatrix| F2FG |fractRadix| |reduceByQuasiMonic| - |exportedOperators| |oblateSpheroidal| |rightUnits| |padicallyExpand| - |f01rcf| |determinant| |identitySquareMatrix| |explogs2trigs| - |wholeRadix| |collectQuasiMonic| |bipolar| |leftUnits| - |numberOfFractionalTerms| |f01rdf| |diagonalProduct| |depth| - |lookupFunction| |trigs2explogs| |cycleRagits| |removeZero| - |bipolarCylindrical| |compBound| |nthFractionalTerm| |f01ref| - |diagonal| |cn| |encodingDirectory| |swap!| |prefixRagits| - |initiallyReduce| |toroidal| |tablePow| |f02aaf| |firstNumer| |height| - |diagonalMatrix| |attributeData| |fill!| |fractRagits| |headReduce| - |conical| |solveid| |firstDenom| |f02abf| |scalarMatrix| - |domainTemplate| |dec| |minIndex| |wholeRagits| |stronglyReduce| - |modTree| |testModulus| |compactFraction| |f02adf| |hermite| - |lSpaceBasis| |maxIndex| |radix| |rewriteSetWithReduction| - |multiEuclideanTree| |HenselLift| |partialFraction| |f02aef| - |completeHermite| |log10| |finiteBasis| |entry?| |randnum| - |autoReduced?| |complexZeros| |completeHensel| |gcdPrimitive| |f02aff| - |smith| |bitand| |principal?| |indices| |reseed| |initiallyReduced?| - |divisorCascade| |multMonom| |symmetricGroup| |f02agf| |completeSmith| - |divisor| |index?| |seed| |headReduced?| |graeffe| |build| - |alternatingGroup| |f02ajf| |diophantineSystem| |useNagFunctions| - |entries| |rational| |stronglyReduced?| |pleskenSplit| |leadingIndex| - |abelianGroup| |f02akf| |csubst| |rationalPoints| |key?| |rational?| - |reduced?| |reciprocalPolynomial| |leadingExponent| |cyclicGroup| - |f02awf| |particularSolution| |debug| |nonSingularModel| |failed| - |symbolIfCan| |rationalIfCan| |normalized?| |GospersMethod| |f02axf| - |dihedralGroup| |mapSolve| |substring?| D |algSplitSimple| |argument| - |setvalue!| |quasiComponent| |nextSubsetGray| |mathieu11| |f02bbf| - |quadratic| |hyperelliptic| |constantKernel| |setchildren!| |initials| - |firstSubsetGray| |f02bjf| |mathieu12| |cubic| |suffix?| |inspect| - |elliptic| |constantIfCan| |node?| |basicSet| |clipPointsDefault| - |mathieu22| |f02fjf| |quartic| |extract!| |kovacic| |nil| |infRittWu?| - |child?| |tail| |log| |drawToScale| |f02wef| |univariate| |mathieu23| - |prefix?| |aLinear| |putProperties| |laplace| |distance| |getCurve| - |init| |adaptive| |mathieu24| |f02xef| |aQuadratic| |decrease| - |getProperties| |macroExpand| |trailingCoefficient| |nodes| - |listLoops| |figureUnits| |f04adf| |janko2| |varList| |aCubic| - |increase| |arbitrary| |putProperty| |normalizeIfCan| |approximate| - |rename| |countable?| |closed?| |f04arf| |aQuartic| |setColumn!| - |getProperty| |complex| |polCase| |rename!| |Aleph| |open?| |complex?| - |moduloP| |f04asf| |radicalSolve| |scopes| |distFact| |mainValue| - |setClosed| |double?| |modulus| |f04atf| |radicalRoots| |eigenvalues| - |print| |identification| |mainDefiningPolynomial| |tube| |properties| - |ffactor| |digits| |f04axf| |infix?| |contractSolve| |eigenvector| - |resolve| |unitVector| |translate| |qfactor| |continuedFraction| - |mask| |f04faf| |decomposeFunc| |declare| |bag| - |generalizedEigenvector| |varselect| |probablyZeroDim?| |cosSinInfo| - |UP2ifCan| |light| |f04jgf| |unvectorise| |binding| - |generalizedEigenvectors| |kmax| |selectPolynomials| |loopPoints| - |anfactor| |pastel| |f04maf| |bubbleSort!| |eigenvectors| |ksec| - |selectOrPolynomials| |generalTwoFactor| |fortranCharacter| |dark| - |factorAndSplit| |vark| |selectAndPolynomials| |generalSqFr| - |fortranDoubleComplex| |getSyntaxFormsFromFile| GE |myDegree| - |currentCategoryFrame| |constantOpIfCan| |rightOne| - |removeConstantTerm| |quasiMonicPolynomials| |twoFactor| - |fortranComplex| |surface| GT |normDeriv2| |currentScope| - |integerBound| |leftOne| |mkPrim| |univariate?| |setOrder| |say| - |fortranLogical| |coordinate| LE |plenaryPower| |pushNewContour| - |delta| |rightZero| |intPatternMatch| |univariatePolynomials| - |fortranInteger| |conjugates| LT |c02aff| |findBinding| |leftZero| - |primintegrate| |linear?| |tab| |fortranDouble| |shuffle| |c02agf| - |contours| |plus| |swap| |expintegrate| |linearPolynomials| |lex| - |fortranReal| |shufflein| |c05adf| |structuralConstants| |minPoly| - |tanintegrate| |bivariate?| |slex| |external?| |shift| |sequences| - |c05nbf| |coordinates| |freeOf?| |primextendedint| - |bivariatePolynomials| |inverse| |remove| |scalarTypeOf| - |permutations| |c05pbf| |bounds| |Hausdorff| |operators| - |expextendedint| |removeRoughlyRedundantFactorsInPols| |maxrow| - |fortranCarriageReturn| |makeResult| |c06eaf| |high| |times| - |Frobenius| |mainKernel| |primlimitedint| - |removeRoughlyRedundantFactorsInPol| |tableau| |last| |littleEndian| - |fortranLiteral| |is?| |c06ebf| |low| |generator| - |transcendenceDegree| |setright!| |distribute| |explimitedint| - |mantissa| |interReduce| |listOfLists| |assoc| |fortranLiteralLine| - |Is| |c06ecf| |subset?| |extensionDegree| |setleft!| - |functionIsFracPolynomial?| |primextintfrac| |roughBasicSet| |tanSum| - |processTemplate| |addMatchRestricted| |c06ekf| |symmetricDifference| - |inGroundField?| |problemPoints| BY |primlimintfrac| |crushedSet| - |tanAn| |makeFR| |condition| |insertMatch| |c06fpf| |difference| - |monom| |transcendent?| |zerosOf| |primintfldpoly| - |rewriteSetByReducingWithParticularGenerators| |tanNa| |musserTrials| - |addMatch| |c06fqf| |intersect| |algebraic?| |singularitiesOf| - |expintfldpoly| |rewriteIdealWithQuasiMonicGenerators| |initTable!| - |stopMusserTrials| |getMatch| |c06frf| |part?| |sh| |polynomialZeros| - |monomialIntegrate| |squareFreeFactors| |printInfo!| |erf| - |numberOfFactors| |c06fuf| |failed?| |before?| |output| |common| - |mirror| |f2df| |monomialIntPoly| |univariatePolynomialsGcds| - |startStats!| |modularFactor| |optpair| |c06gbf| |latex| |monomial?| - |ef2edf| |inverseLaplace| |removeRoughlyRedundantFactorsInContents| - |printStats!| |constant| |useSingleFactorBound?| |getBadValues| - |c06gcf| |member?| |constructor| |rquo| |ocf2ocdf| - |inputOutputBinaryFile| |removeRedundantFactorsInContents| - |clearTable!| |dilog| |useSingleFactorBound| |resetBadValues| NOT - |c06gqf| |enumerate| |incr| |lquo| |socf2socdf| |closed| - |removeRedundantFactorsInPols| |usingTable?| |sin| - |useEisensteinCriterion?| |function| |hasTopPredicate?| OR |c06gsf| - |setOfMinN| |hi| |mindegTerm| |df2fi| |bothWays| |irreducibleFactors| - |printingInfo?| |cos| |useEisensteinCriterion| |d01ajf| |topPredicate| - AND |elements| |rightTrim| |product| |edf2fi| |bytes| - |lazyIrreducibleFactors| |makingStats?| |tan| |eisensteinIrreducible?| - |d01akf| |setTopPredicate| |replaceKthElement| |leftTrim| - |LiePolyIfCan| |edf2df| |ip4Address| - |removeIrreducibleRedundantFactors| |extractIfCan| |cot| - |tryFunctionalDecomposition?| |patternVariable| |d01alf| - |incrementKthElement| |trunc| |expenseOfEvaluation| |iprint| - |normalForm| |insert!| |sec| |tryFunctionalDecomposition| - |withPredicates| |d01amf| |cdr| |degree| |numberOfOperations| |elem?| - |changeBase| |interpretString| |csc| |symbol| |btwFact| - |setPredicates| |d01anf| |car| |quasiRegular| |edf2efi| |notelem| - |companionBlocks| |stripCommentsAndBlanks| |asin| |expression| - |beauzamyBound| |predicates| |d01apf| |float?| |quasiRegular?| - |dfRange| |logpart| |xCoord| |setPrologue!| |acos| |bombieriNorm| - |integer| |hasPredicate?| |destruct| |d01aqf| |integer?| |constant?| - |dflist| |ratpart| |yCoord| |morphism| |setTex!| |atan| |rootBound| - |optional?| |d01asf| |symbol?| |mindeg| |df2mf| |mkAnswer| |zCoord| - |balancedFactorisation| |setEpilogue!| |acot| |singleFactorBound| - |multiple?| |d01bbf| |string?| |maxdeg| |ldf2vmf| |irDef| |rCoord| - |prologue| |asec| |quadraticNorm| |generic?| * |d01fcf| |list?| |lhs| - |RemainderList| |edf2ef| |irCtor| |thetaCoord| |epilogue| |acsc| - |infinityNorm| |lcm| |quoted?| |d01gaf| |pair?| |rhs| |unexpand| - |vedf2vef| |irVar| |phiCoord| |endOfFile?| |sinh| |scaleRoots| |inR?| - |d01gbf| |atom?| |generate| |shape| |df2st| |perfectNthPower?| |color| - |readIfCan!| |shiftRoots| |cosh| |append| |d02bbf| |isList| |hash| = - |null?| |currentEnv| |youngDiagram| |f2st| |perfectNthRoot| |hue| - |pattern| |readLineIfCan!| |tanh| |degreePartition| |count| |isOp| - |gcd| |d02bhf| |startTable!| |incrementBy| |triangSolve| |ldf2lst| - |approxNthRoot| |shade| |readLine!| |factorOfDegree| |coth| |d02cjf| - |satisfy?| |false| |lp| < |stopTable!| |expand| |univariateSolve| - |category| |sdf2lst| |perfectSquare?| |nthRootIfCan| |ptree| - |writeLine!| |factorsOfDegree| |flatten| |d02ejf| |addBadValue| > - |supDimElseRittWu?| |filterWhile| |realSolve| |domain| |getlo| - |perfectSqrt| |expIfCan| |loadNativeModule| |sign| |pascalTriangle| - |d02gaf| |badValues| <= |algebraicSort| |filterUntil| |positiveSolve| - |package| |gethi| |approxSqrt| |logIfCan| |message| |nonQsign| - |rangePascalTriangle| |d02gbf| |retractable?| >= |moreAlgebraic?| - |select| |squareFree| |outputMeasure| |generateIrredPoly| |sinIfCan| - |direction| |hexDigit| |sizePascalTriangle| |ListOfTerms| |d02kef| - |subTriSet?| |linearlyDependentOverZ?| |double| |measure2Result| - |complexExpand| |cosIfCan| |parts| |createThreeSpace| |digit| - |fillPascalTriangle| |PDESolve| |d02raf| |subPolSet?| - |linearDependenceOverZ| |att2Result| |complexIntegrate| |tanIfCan| - |cyclicParents| |safeCeiling| |d03edf| |leftFactor| - |internalSubPolSet?| + |solveLinearlyOverQ| |iflist2Result| - |dimensionOfIrreducibleRepresentation| |cotIfCan| |cyclicEqual?| - |zeroOf| |parents| |safeFloor| |d03eef| |rightFactorCandidate| - |internalInfRittWu?| - |pdf2ef| |irreducibleRepresentation| |secIfCan| - |cyclicEntries| |rootsOf| |safetyMargin| |d03faf| |measure| - |internalSubQuasiComponent?| / |pdf2df| |checkRur| |cscIfCan| |rule| - |cyclicCopy| |sumSquares| |coerceImages| |e01baf| |subQuasiComponent?| - |makeRecord| |df2ef| |cAcsch| |asinIfCan| |cyclic?| - |euclideanNormalForm| |e01bef| |fixedPoints| |outerProduct| - |removeSuperfluousQuasiComponents| |fi2df| |cAsech| |acosIfCan| - |complexNormalize| |euclideanGroebner| |odd?| |e01bff| |subCase?| - |declare!| |cAcoth| |atanIfCan| |complexElementary| - |factorGroebnerBasis| |even?| |e01bgf| |removeSuperfluousCases| - |linearMatrix| |cAtanh| |acotIfCan| |setleaves!| |trigs| - |groebnerFactorize| |numberOfCycles| |e01bhf| |prepareDecompose| - |linearPart| |cAcosh| |asecIfCan| |balancedBinaryTree| |real?| - |credPol| |cyclePartition| |e01daf| |branchIfCan| |rules| - |nonLinearPart| |cAsinh| |acscIfCan| |complexForm| |e01saf| - |startTableGcd!| |quadratic?| |cCsch| |sinhIfCan| |UpTriBddDenomInv| - |deepExpand| |rightQuotient| |makeSketch| |e01sbf| |step| - |stopTableGcd!| |changeNameToObjf| |cSech| |coshIfCan| - |LowTriBddDenomInv| |clearFortranOutputStack| |rightLcm| |inrootof| - |e01sef| |startTableInvSet!| |optAttributes| |cCoth| |tanhIfCan| - |simplify| |showFortranOutputStack| |leftExtendedGcd| |e01sff| - |stopTableInvSet!| |Nul| |segment| |sylvesterMatrix| |htrigs| - |topFortranOutputStack| |leftGcd| |e02adf| |stosePrepareSubResAlgo| - |exponents| |algintegrate| |max| |bezoutMatrix| |simplifyExp| - |setFormula!| |leftExactQuotient| |e02aef| - |stoseInternalLastSubResultant| |iisqrt2| |palgintegrate| - |resultantEuclidean| |simplifyLog| |linkToFortran| |leftRemainder| - |e02agf| |stoseIntegralLastSubResultant| |iisqrt3| |palginfieldint| - |semiResultantEuclidean2| |expandPower| - |setLegalFortranSourceExtensions| |leftQuotient| |iiexp| |bitLength| - |semiResultantEuclidean1| |expandLog| |fracPart| |monicLeftDivide| - |ddFact| |halfExtendedSubResultantGcd1| |iilog| |bitCoef| - |indiceSubResultant| |key| |cos2sec| |polyPart| |monicRightDivide| - |separateFactors| |extendedSubResultantGcd| |iisin| |bitTruth| - |indiceSubResultantEuclidean| |cosh2sech| |fullPartialFraction| - |exptMod| |leftDivide| |exactQuotient!| |value| |iicos| |contains?| - |semiIndiceSubResultantEuclidean| |filename| |primeFrobenius| - |rightDivide| |meshPar2Var| |exactQuotient| |iitan| |inf| - |degreeSubResultant| |optional| |addPoint2| |discreteLog| |hermiteH| - |meshFun2Var| |primPartElseUnitCanonical!| |iicot| |qinterval| - |degreeSubResultantEuclidean| |addPoint| |formula| |parse| - |decreasePrecision| |laguerreL| |meshPar1Var| - |primPartElseUnitCanonical| |iisec| |interval| - |semiDegreeSubResultantEuclidean| |merge| |stop| |increasePrecision| - |legendreP| |ptFunc| |lazyResidueClass| |iicsc| |unit?| - |lastSubResultantEuclidean| |mr| |arguments| |deepCopy| |bits| - |writeBytes!| |minimumExponent| |monicModulo| |lighting| |iiasin| - |associates?| |semiLastSubResultantEuclidean| |shallowCopy| - |unitNormalize| |writeUInt8!| |maximumExponent| |lazyPseudoDivide| - |clipSurface| |iiacos| |unitCanonical| |subResultantGcdEuclidean| - |numberOfChildren| |nrows| |result| |unit| |writeInt8!| |rowEch| - |lazyPremWithDefault| |showClipRegion| |applyRules| |iiatan| - |unitNormal| |semiSubResultantGcdEuclidean2| |children| |ncols| - |flagFactor| |writeByte!| |rowEchLocal| |lazyPquo| |showRegion| - |localUnquote| |iiacot| |lfextendedint| - |semiSubResultantGcdEuclidean1| |child| |sqfrFactor| |isOpen?| - |rowEchelonLocal| |lazyPrem| |tower| |hitherPlane| |iiasec| - |lflimitedint| |discriminantEuclidean| |birth| |primeFactor| - |outputBinaryFile| |normalizedDivide| |pquo| |eyeDistance| |iiacsc| - |lfinfieldint| |semiDiscriminantEuclidean| |internal?| |nthFlag| - |blankSeparate| |maxint| |prem| |taylor| |perspective| |iisinh| - |comment| |lfintegrate| |chainSubResultants| |root?| |nthExponent| - |semicolonSeparate| |binaryFunction| |supRittWu?| |laurent| |zoom| - |iicosh| |lfextlimint| |schema| |leaf?| |irreducibleFactor| - |commaSeparate| |makeFloatFunction| |RittWuCompare| |puiseux| |rotate| - |iitanh| |BasicMethod| |resultantReduit| |outputForm| |matrix| |index| - |factors| |pile| |unaryFunction| |mainMonomials| |drawStyle| |iicoth| - |PollardSmallFactor| |resultantReduitEuclidean| |argscript| - |bezoutResultant| |nilFactor| |paren| |compiledFunction| - |mainCoefficients| |inv| |outlineRender| |lambda| |iisech| - |showTheFTable| |semiResultantReduitEuclidean| |superscript| - |bezoutDiscriminant| |alphanumeric| |regularRepresentation| |bracket| - |corrPoly| |leastMonomial| |ground?| |diagonals| |iicsch| - |clearTheFTable| |divide| |subscript| |pair| |droot| |alphabetic| - |traceMatrix| |prod| |lifting| |mainMonomial| |ground| |axes| - |iiasinh| |fTable| |Lazard| |scripted?| |directory| |iroot| |randomLC| - |overlabel| |lifting1| |quasiMonic?| |leadingMonomial| |controlPanel| - |iiacosh| |palgint0| |Lazard2| |resetNew| |sum| |minimize| |reverse| - |overbar| |exprex| |monic?| |leadingCoefficient| |viewpoint| |iiatanh| - |palgextint0| |nextsousResultant2| |symFunc| |charClass| |module| - |prime| |coerceL| |deepestInitial| |primitiveMonomials| |dimensions| - |iiacoth| |palglimint0| |resultantnaif| |symbolTableOf| - |alphanumeric?| |retract| |rightRegularRepresentation| |quote| - |coerceS| |iteratedInitials| |resize| |reductum| |iiasech| |palgRDE0| - |resultantEuclideannaif| |unravel| |argumentListOf| - |leftRegularRepresentation| |supersub| |frobenius| |deepestTail| - |move| |iiacsch| |palgLODE0| |semiResultantEuclideannaif| - |leviCivitaSymbol| |returnTypeOf| |rank| |rightTraceMatrix| |presuper| - |computePowers| |head| |modifyPointData| |specialTrigs| - |chineseRemainder| |pdct| |printHeader| |leftTraceMatrix| |presub| - |pow| |mdeg| |subspace| |localReal?| |divisors| |powers| |returnType!| - |nil| |infinite| |arbitraryExponent| |approximate| |complex| - |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |lfextlimint| |palgextint| |partialQuotients| + |s17acf| |rischDEsys| |cAcos| |f04faf| |pastel| |OMUnknownCD?| + |toroidal| |set| |endSubProgram| |tubePoints| |clipSurface| |df2ef| + |twist| |showTheFTable| |prime?| |f02xef| |chebyshevU| + |viewWriteAvailable| |binaryTournament| |saturate| |rischNormalize| + |tanintegrate| |rotatey| |rightDivide| |hasoln| |bindings| |iFTable| + |symmetricRemainder| |removeRedundantFactorsInPols| + |solveLinearPolynomialEquationByRecursion| |regime| |repeatUntilLoop| + |limitedint| |algintegrate| |redPol| |rombergo| |supersub| + |algebraicVariables| |primitiveElement| |physicalLength!| + |basisOfCenter| |rightGcd| |modularGcdPrimitive| |lists| |notelem| + |cosIfCan| |read!| |errorKind| |mapUnivariateIfCan| + |integralCoordinates| |simpleBounds?| |OMgetBVar| |removeCosSq| |clip| + |setEmpty!| |constantKernel| |youngDiagram| |c06fqf| |rightUnits| + |signature| |mkAnswer| |RemainderList| |d01alf| |represents| + |minGbasis| |uncouplingMatrices| |dmp2rfi| |traceMatrix| |iibinom| + |seriesSolve| |euclideanGroebner| |setMaxPoints3D| |numFunEvals3D| + |comparison| |goodPoint| |cycleTail| |deepExpand| |search| |expr| + |medialSet| |pascalTriangle| |const| |e02def| |iterationVar| |s01eaf| + |removeRoughlyRedundantFactorsInPol| |rename!| |virtualDegree| + |mkPrim| |initiallyReduced?| |viewPosDefault| + |exprHasWeightCosWXorSinWX| |f04maf| |aQuadratic| |outputList| + |schema| |polygon| |innerSolve1| |composites| |viewport2D| + |asechIfCan| |OMopenFile| |decomposeFunc| |max| |bitLength| |show| + |bat| |iiacos| |parametric?| |cAcsch| |ceiling| |meshPar2Var| + |semiResultantReduitEuclidean| |reducedContinuedFraction| |tablePow| + |roughUnitIdeal?| |univcase| |usingTable?| |e02ddf| |variable| + |bivariate?| |internalIntegrate| |mainVariables| |disjunction| + |categoryFrame| |trace| |traverse| |bigEndian| |frobenius| |rk4| + |iterators| |numberOfFactors| |numberOfComponents| |powmod| |voidMode| + |s18def| |Lazard2| |genericLeftTraceForm| |coerceListOfPairs| + |matrixConcat3D| |dual| |datalist| |screenResolution| |substitute| + |systemCommand| |birth| |gradient| |fintegrate| |incrementKthElement| + |char| |alternative?| |subst| |checkPrecision| |mapdiv| + |createThreeSpace| |f2st| |f07aef| |intersect| |patternMatchTimes| + |edf2ef| |s20acf| |numberOfComputedEntries| |bitior| |nextNormalPoly| + |inputBinaryFile| |symmetricProduct| |setchildren!| |prod| + |indicialEquation| |zCoord| |uniform01| |decrease| + |wordsForStrongGenerators| |companionBlocks| |option?| |rightQuotient| + |setLength!| |precision| |normal| |padicallyExpand| |leftTrace| + |square?| |mesh| |dequeue| |tableau| |exponentialOrder| |asimpson| + |divisorCascade| |cond| |bag| |cCosh| |bezoutMatrix| |concat| |mapUp!| + |commonDenominator| |unary?| |charthRoot| |cyclic| |lowerPolynomial| + |sech| |hex| |deref| |exprToUPS| |Aleph| |leaf?| + |useEisensteinCriterion?| |univariate?| |asinIfCan| |csch| |lambert| + |operation| |exactQuotient| |bubbleSort!| |genericRightTraceForm| + |jordanAlgebra?| |objects| |assign| |float| |unitCanonical| |s18aef| + |one?| |integralRepresents| |asinh| |superscript| |solve| |simpson| + |base| |deepestTail| |toseSquareFreePart| |setMaxPoints| + |listYoungTableaus| |besselY| |acosh| |cylindrical| + |unprotectedRemoveRedundantFactors| |subNode?| |monicDecomposeIfCan| + |kind| |qroot| |powern| |principalAncestors| |palgint0| |arg1| |row| + |integers| |sh| |atanh| |printStats!| |isAnd| |imagJ| |resetNew| + |trunc| |accuracyIF| |nextPrimitivePoly| |op| |lowerCase?| |imagi| + |lllp| |shrinkable| |s17dgf| |arg2| |acoth| |balancedFactorisation| + |routines| |poisson| |elem?| |removeRoughlyRedundantFactorsInPols| + |perfectNthRoot| |initials| |algebraic?| |asech| |dimensions| + |getProperties| |numer| |top!| |chainSubResultants| |makeSketch| + |basisOfNucleus| |chiSquare1| |lifting| |conditions| |oddintegers| + |zag| |upperCase!| |variables| |branchPoint?| |denom| |hexDigit| + |branchPointAtInfinity?| |separant| |polynomialZeros| + |createLowComplexityTable| |e04dgf| |generic| |match| |options| + |multiple| |invmod| |lowerBound| |postfix| |normalizeIfCan| |bat1| + |basis| |selectfirst| |multMonom| |applyQuote| |asecIfCan| |setleft!| + |ratpart| |pi| |simplifyExp| |tree| |leftDiscriminant| |remainder| + |graphImage| |brillhartIrreducible?| |OMputObject| + |screenResolution3D| |infinity| |factorSquareFreePolynomial| |sncndn| + |inverseIntegralMatrixAtInfinity| |union| |nonLinearPart| |cAcsc| + |any| |cyclic?| |cAtan| |string| |recur| |resultantReduitEuclidean| + |nlde| |overlap| |compBound| |makeCrit| |removeConstantTerm| + |invertible?| |iiacoth| |ruleset| |changeName| |rotatez| + |expenseOfEvaluation| |iipow| |factorPolynomial| |iiasin| + |selectsecond| |leftRank| |createIrreduciblePoly| |testModulus| |tube| + |kernel| |identity| |palgLODE| |OMputSymbol| |previous| |minPoints| + |outputFloating| |useSingleFactorBound?| |closeComponent| |cosh2sech| + |listConjugateBases| |f02wef| |list| |complexNumeric| |FormatRoman| + |changeBase| |df2st| |removeRedundantFactorsInContents| + |singularitiesOf| |entries| |exQuo| |suchThat| |palglimint| + |listRepresentation| |f07fef| |shuffle| |draw| |pol| + |stoseInvertible?| |matrixDimensions| |imagj| |polygamma| + |patternMatch| |polyRicDE| |extendedint| |cotIfCan| |localUnquote| + |stopTableInvSet!| |leastPower| |groebgen| |algSplitSimple| |mix| + |indicialEquations| |number?| |isOr| |genericRightDiscriminant| + |purelyAlgebraicLeadingMonomial?| |minimize| |rename| |maxrow| + |f07adf| |OMgetObject| |pdf2df| |padicFraction| |rightTrace| + |expandTrigProducts| |s18dcf| |ODESolve| |cAsinh| |rarrow| |root?| + |f02ajf| |isPlus| |inverseColeman| |balancedBinaryTree| + |functionIsFracPolynomial?| |s19adf| |property| |zeroSetSplit| + |makeObject| |lieAlgebra?| |aromberg| |stoseIntegralLastSubResultant| + |asinhIfCan| |insertionSort!| |recip| |removeDuplicates| + |reducedSystem| |yCoord| |center| |perfectSquare?| |setTopPredicate| + |coef| |sizePascalTriangle| |pmComplexintegrate| |OMclose| + |factorSFBRlcUnit| |setScreenResolution| |stack| |directSum| + |acothIfCan| |diagonal?| |argscript| |subspace| |label| |e04mbf| + |typeLists| |s18adf| |quasiMonicPolynomials| |difference| |mapGen| + |ffactor| |integerIfCan| |minColIndex| |maxRowIndex| |name| + |leadingCoefficientRicDE| |pureLex| |associates?| |clearTable!| + |leastMonomial| |getBadValues| |lintgcd| |associator| |c02agf| + |mathieu23| |body| |reverse!| |nthFractionalTerm| |perfectNthPower?| + |column| |sequence| |typeForm| |palglimint0| |fullPartialFraction| + |cyclicEqual?| |redmat| |mesh?| |interpret| |restorePrecision| + |interpretString| |argument| |cfirst| |complexZeros| |bumptab| |cTanh| + |mainVariable?| |Nul| |iiacot| |makeCos| |roughBase?| |f01mcf| + |llprop| |makeGraphImage| |jacobian| |polar| |curry| |romberg| + |viewDefaults| |ord| |boundOfCauchy| |acscIfCan| |primitivePart| + |checkRur| |f01qef| |primextintfrac| |trapezoidalo| + |prolateSpheroidal| |solveLinearPolynomialEquation| |countable?| + |delay| |e02zaf| |exponential1| |binomThmExpt| |morphism| |real?| + |point| |length| |createGenericMatrix| |replaceKthElement| + |extractProperty| |fortranCarriageReturn| |OMcloseConn| |size?| + |gderiv| |outputFixed| |knownInfBasis| |bezoutResultant| |option| + |scripts| |setCondition!| |nthRootIfCan| |airyBi| |iisqrt3| + |useSingleFactorBound| |inconsistent?| |eulerE| SEGMENT |digamma| + |colorFunction| |basisOfLeftNucloid| |cycleEntry| |localReal?| + |chiSquare| |port| |nthExponent| |UnVectorise| |choosemon| |besselI| + |transcendent?| |resultantnaif| |series| |digits| |removeSquaresIfCan| + |setfirst!| |cycleSplit!| |removeDuplicates!| |collectUpper| + |twoFactor| |resize| |diagonals| |singularAtInfinity?| + |rightMinimalPolynomial| |factorset| |dot| |s17aef| |overbar| |t| + |leftScalarTimes!| |OMgetVariable| |variable?| |split!| |laguerre| + |zeroOf| |nextsubResultant2| |exptMod| |leftPower| |contours| + |aLinear| |f01ref| |subresultantSequence| |ramified?| + |semiLastSubResultantEuclidean| |completeHensel| |sylvesterMatrix| + |minordet| |replace| |buildSyntax| |lfextendedint| |nullity| |btwFact| + |ListOfTerms| |limitedIntegrate| |setvalue!| |principalIdeal| |nor| + |credPol| |groebner| |min| |genericRightTrace| |OMreadStr| + |internalIntegrate0| |leadingIndex| |expt| |transpose| |shallowExpand| + |complexForm| |cscIfCan| |mkcomm| |testDim| |cAcoth| |cothIfCan| + |power| |e04gcf| |writeLine!| |superHeight| |empty| |nary?| + |signatureAst| |cCos| |nextPrimitiveNormalPoly| |minimalPolynomial| + |e01bgf| |roughBasicSet| |lazyIntegrate| |divideExponents| |unknown| + |apply| |ran| |halfExtendedResultant2| |color| |nextPartition| + |explicitlyEmpty?| |evaluate| |complexLimit| |setTex!| + |splitDenominator| |bottom!| |createPrimitiveNormalPoly| |first| + |heapSort| |realZeros| |createPrimitivePoly| |shiftRight| + |pleskenSplit| |zerosOf| |drawComplex| |nilFactor| |lex| |xor| |imag| + |swap| |LiePolyIfCan| |rest| |s17ahf| |closed?| |resetBadValues| + |evenInfiniteProduct| |primitive?| |directProduct| |f04axf| + |symbolTableOf| |case| |triangularSystems| |divisors| + |numberOfComposites| |palginfieldint| |makeResult| |iiasech| + |laurentIfCan| |iicsch| |mulmod| |OMgetEndObject| |s14aaf| |Zero| + |insertTop!| |semiSubResultantGcdEuclidean1| |select!| |comp| |keys| + |true| |relativeApprox| |extractBottom!| |fortranComplex| + |normalizedAssociate| |void| |zeroSquareMatrix| |One| |top| + |leftDivide| |coefficient| |dn| |putProperties| |printStatement| + |semicolonSeparate| |solveInField| |radicalEigenvectors| |algDsolve| + |simplifyPower| |region| |continue| |writable?| |leadingTerm| |lexico| + |lyndon| |getOperands| |sumOfKthPowerDivisors| |quasiComponent| + |gcdPrimitive| |sort| |plusInfinity| |cyclePartition| |logical?| + |safeFloor| |e04jaf| |htrigs| |selectFiniteRoutines| + |subResultantChain| |e01saf| |shallowCopy| |cyclicCopy| + |minusInfinity| |updatF| |rootBound| |rectangularMatrix| |iifact| + |realRoots| |setPredicates| |diagonal| |diophantineSystem| + |certainlySubVariety?| |lastSubResultantElseSplit| |horizConcat| + |factorsOfDegree| |isPower| |e04ycf| |squareFreePart| |id| |hspace| + |extendedEuclidean| |pseudoQuotient| |subCase?| |arrayStack| + |linearAssociatedExp| |definingInequation| |central?| + |representationType| |fortranReal| |elt| |OMgetAttr| |lo| + |unrankImproperPartitions0| |splitSquarefree| |d02kef| |relerror| + |rightRemainder| |primintfldpoly| |random| |eigenMatrix| |repSq| + |tanSum| |edf2df| |setFieldInfo| |next| |cCsc| |possiblyInfinite?| + |clipWithRanges| |c06gqf| |OMputEndAtp| |alphanumeric?| |paren| + |contractSolve| |expintegrate| |OMputVariable| |f04arf| |OMserve| + |OMputEndObject| |readIfCan!| |clearTheFTable| |getButtonValue| + |doubleComplex?| |closedCurve| |powers| |child| |c06eaf| + |setVariableOrder| |stirling2| |palgRDE0| |KrullNumber| + |computeCycleLength| |spherical| |exactQuotient!| |readByte!| + |splitConstant| |outputAsScript| |viewport3D| |getConstant| |sort!| + |f02aff| F2FG |pade| |isNot| |laplace| |finite?| |palgRDE| + |semiResultantEuclidean2| |nextSubsetGray| |surface| |addPointLast| + |Ei| |e01daf| |d03eef| |leftLcm| |insert| |unrankImproperPartitions1| + |iiabs| |binaryFunction| |readInt16!| |removeZeroes| |sumSquares| + |FormatArabic| |torsion?| |terms| |topFortranOutputStack| |contract| + |leader| |encodingDirectory| |getStream| |unitNormalize| |belong?| + |rootKerSimp| |atanIfCan| |orbits| |multinomial| |makeMulti| + |setProperty| |d02ejf| |cLog| |uniform| LODO2FUN |reindex| + |startTableGcd!| |recoverAfterFail| |optional?| |multisect| + |ip4Address| |sturmSequence| |deleteRoutine!| |homogeneous?| + |putGraph| |forLoop| |cPower| |cap| |setIntersection| + |quasiAlgebraicSet| |compiledFunction| |content| |OMputAtp| + |infinite?| |LyndonWordsList| |d01anf| |laplacian| + |numericalOptimization| |even?| + |rewriteSetByReducingWithParticularGenerators| |fixedPointExquo| + |eigenvector| |quotientByP| |rightMult| |linearPolynomials| + |invertibleElseSplit?| |subTriSet?| |shiftRoots| |mapExpon| |divide| + |c06gbf| |genus| |rightRankPolynomial| |sqfrFactor| |returnType!| + |zeroDimPrime?| |enumerate| |jacobiIdentity?| |createRandomElement| + |symbolTable| |iicos| |imagE| |sylvesterSequence| |trivialIdeal?| + |fortranLinkerArgs| |fixPredicate| |critMonD1| + |resultantEuclideannaif| |normalizeAtInfinity| |symFunc| |factorial| + |numberOfMonomials| |deleteProperty!| |distance| |supDimElseRittWu?| + |moreAlgebraic?| |HermiteIntegrate| |OMsupportsCD?| |smith| + |OMgetEndError| |pushFortranOutputStack| |power!| + |rightFactorCandidate| |minus!| |midpoint| |ratDenom| + |internalAugment| |sparsityIF| |hdmpToP| |coerceImages| |polyRDE| + |popFortranOutputStack| |leftGcd| |width| |addBadValue| |mapDown!| + |tableForDiscreteLogarithm| |normDeriv2| |super| |mathieu11| + |viewThetaDefault| |outputAsFortran| |reduced?| |pile| |allRootsOf| + |getCode| |pointPlot| |f04adf| |norm| |writeUInt8!| |baseRDEsys| + |sin2csc| Y |groebnerFactorize| |changeVar| |monicRightDivide| + |rightDiscriminant| |realEigenvectors| |rowEchelonLocal| |c05pbf| + |quadratic?| |hostPlatform| |stFunc1| |doubleRank| |scalarMatrix| + |nil?| |plus!| |isOpen?| |setPosition| |maxint| |tensorProduct| + |var2Steps| |sizeLess?| |reverseLex| + |removeIrreducibleRedundantFactors| |compound?| |iExquo| |OMgetFloat| + |element?| |lprop| |tanNa| |latex| |d03edf| |gcdPolynomial| + |clearCache| |printCode| |meatAxe| |findConstructor| |lift| UTS2UP + |table| |laguerreL| |endOfFile?| |subscript| |monicCompleteDecompose| + |nthExpon| |hconcat| |realEigenvalues| |selectSumOfSquaresRoutines| + |lookupFunction| |updateStatus!| |reduce| |new| |stirling1| + |rationalApproximation| |OMencodingSGML| |obj| |charClass| |e02bef| + |hasPredicate?| |squareMatrix| |realSolve| + |combineFeatureCompatibility| |nextLatticePermutation| |principal?| + |resetAttributeButtons| |cache| |lazyVariations| |nthr| + |chineseRemainder| |atanhIfCan| |commutative?| |li| |squareFree| + |listOfMonoms| |curryRight| |reduceLODE| |reciprocalPolynomial| + |fortranLiteralLine| |f04atf| |readInt8!| |findBinding| + |rangeIsFinite| |coth2trigh| |getSyntaxFormsFromFile| |list?| |e01baf| + |intensity| |idealiserMatrix| |OMconnOutDevice| |Si| |children| + |janko2| |univariatePolynomial| |bits| |readUInt16!| |factor| + |numberOfCycles| |separateFactors| |unaryFunction| |quartic| |bumprow| + |OMputBind| |lazyPrem| |basisOfCentroid| |integralBasisAtInfinity| + |modifyPoint| |trace2PowMod| |roughSubIdeal?| |viewDeltaXDefault| + |cCoth| |bandedHessian| |iiGamma| |bounds| |symbolIfCan| + |OMgetEndAttr| |cyclicEntries| |newReduc| |character?| |monomial?| + |box| |vector| |setLabelValue| |f01qdf| |finiteBound| |prem| |digit?| + |meshPar1Var| |rootSimp| |domainTemplate| |module| |times!| + |differentiate| |factorOfDegree| |whatInfinity| |front| + |localIntegralBasis| |linearAssociatedOrder| |scaleRoots| |roman| + |predicate| |exponent| |SturmHabichtCoefficients| |graphStates| + |edf2fi| |monicDivide| |getlo| |putColorInfo| |s21bbf| |getDatabase| + |primlimintfrac| |doublyTransitive?| |nsqfree| |lyndonIfCan| |d01aqf| + |mat| |leftMult| |critMTonD1| |size| |trigs2explogs| |monomial| |left| + ** |alternatingGroup| |pToHdmp| |setDifference| |dom| |test| |cup| + |leftFactor| |showScalarValues| |leftZero| |pdct| |byte| + |outputMeasure| |host| |multivariate| |OMParseError?| |right| + |triangulate| |odd?| |reduceBasisAtInfinity| |leadingExponent| + |moebiusMu| |ScanFloatIgnoreSpaces| |OMputApp| |pToDmp| + |multiEuclidean| |gcdprim| |rationalIfCan| |round| |OMencodingBinary| + |retractIfCan| |setStatus| |e01bhf| |extendedResultant| + |stoseSquareFreePart| |extract!| |isExpt| |clipParametric| |myDegree| + |close| |aCubic| |primPartElseUnitCanonical| |linear| |f02aef| + |invertibleSet| |minPol| |Is| |flagFactor| |rdHack1| |imaginary| + |hitherPlane| |cRationalPower| |writeBytes!| |rootsOf| |sqrt| + |OMunhandledSymbol| |setAdaptive| |radicalRoots| |yellow| |tanhIfCan| + |oneDimensionalArray| |linearlyDependent?| |elColumn2!| |leaves| + |doubleFloatFormat| |display| |polynomial| |sech2cosh| |real| |title| + |ravel| |wordInStrongGenerators| |rootNormalize| |mainMonomials| + |iCompose| |polyred| |basisOfLeftNucleus| |units| |c06gcf| |Hausdorff| + |prefix| |extendIfCan| |coefficients| |ef2edf| |copy!| + |extendedSubResultantGcd| |fortranTypeOf| |reshape| |primitivePart!| + |modularGcd| |perspective| |OMputEndError| |graphCurves| |parameters| + |crushedSet| |fullDisplay| |rspace| |root| |bytes| |d02cjf| |setnext!| + |mapExponents| |int| |viewZoomDefault| |squareFreeLexTriangular| + |inR?| |symmetricTensors| |e| |axesColorDefault| |powerSum| |padecf| + |primintegrate| |isAbsolutelyIrreducible?| |node| |generateIrredPoly| + |mappingAst| |elRow1!| |normFactors| |minPoints3D| + |bezoutDiscriminant| |prime| |returns| |minIndex| + |complexNumericIfCan| |printHeader| |increase| |input| |rubiksGroup| + |initializeGroupForWordProblem| |normalized?| |frst| |map| + |characteristicPolynomial| |definingPolynomial| |whitePoint| + |selectPDERoutines| |rationalPower| |brace| |kernels| |code| |library| + |ParCondList| |cycleRagits| |generalLambert| |lineColorDefault| + |indicialEquationAtInfinity| |kovacic| |rur| |integer?| + |internalSubPolSet?| |pack!| |update| |eq| |operator| |showSummary| + |eulerPhi| |linSolve| |fortran| |iisec| |nextSublist| |outputArgs| + |completeHermite| |genericPosition| |radPoly| |subResultantGcd| + |writeByte!| |userOrdered?| |iter| |iiasec| |optimize| + |viewSizeDefault| |radicalSimplify| |currentCategoryFrame| + |safetyMargin| |clearTheSymbolTable| |cyclicGroup| |listBranches| + |repeating?| |subtractIfCan| |simplify| |pointColor| |totalfract| + |minimumExponent| |getMeasure| |solid?| |c06ecf| |prepareDecompose| + |assert| |nextItem| |primaryDecomp| |quadraticForm| |updatD| + |conjunction| |nand| |cyclicSubmodule| |toScale| |convert| + |pointSizeDefault| |eigenvalues| |s17akf| + |selectMultiDimensionalRoutines| |push!| |unknownEndian| |operators| + |removeSinSq| |showAttributes| |member?| |tanAn| |level| + |constantLeft| |algebraicOf| |drawStyle| |lazyIrreducibleFactors| + |position| |connect| |s19aaf| |gramschmidt| |setAttributeButtonStep| + |schwerpunkt| |monicRightFactorIfCan| |e02akf| |iisin| |multiset| + |satisfy?| |karatsuba| |iisinh| |degree| |d01gbf| |internalDecompose| + |alphanumeric| |newLine| |ranges| |jacobi| |factorials| + |leftTraceMatrix| |binarySearchTree| |tanQ| |GospersMethod| + |splitNodeOf!| |ridHack1| |compile| |inverseLaplace| |rightPower| + |wholeRagits| |cyclotomicDecomposition| |linear?| |exp| + |flexibleArray| |minRowIndex| |associatedSystem| |monomRDEsys| + |finiteBasis| |setMinPoints| |elaboration| |order| + |radicalEigenvalues| |preprocess| |equation| |arbitrary| + |constantOpIfCan| |clearTheIFTable| |interval| |numeric| |LyndonBasis| + |environment| |pushuconst| |solveLinearlyOverQ| + |generalInfiniteProduct| |infRittWu?| |weakBiRank| |s13aaf| + |removeZero| |rootPoly| |radical| |d03faf| |coerceL| |makeSeries| + |subset?| |showFortranOutputStack| |rowEchLocal| |partitions| + |sinIfCan| |localAbs| |ode1| |prindINFO| |f02awf| |abs| |magnitude| + |basisOfLeftAnnihilator| |makeSin| |lflimitedint| |blue| |script| + |s15aef| |divideIfCan| |solve1| |rdregime| |ignore?| |iicoth| + |cycleElt| |innerint| |eof?| |printInfo| |algebraicCoefficients?| + |monicModulo| |rquo| |elliptic?| |linearPart| + |integralLastSubResultant| |constant?| |zeroVector| |mpsode| |push| + |permutationGroup| |bfKeys| |compdegd| |makeFR| |floor| |rightNorm| + |totalGroebner| |plot| |makingStats?| |expextendedint| |trapezoidal| + |tex| |parabolicCylindrical| |wreath| |regularRepresentation| + |stoseInvertibleSetsqfreg| |identification| |stronglyReduce| |presub| + |stopTable!| |nothing| |numberOfOperations| |fmecg| |addmod| |f02axf| + |binaryTree| |s18acf| |ipow| |resetVariableOrder| |associative?| + |sorted?| |lfintegrate| |infLex?| |space| |write!| |entry?| + |removeRoughlyRedundantFactorsInContents| |iflist2Result| |bitTruth| + |hMonic| |headAst| |bipolarCylindrical| |concat!| |atom?| |tan2cot| + |rischDE| |deepestInitial| |splitLinear| |complexEigenvalues| |child?| + |tab| |tracePowMod| |putProperty| |OMputEndBind| |chebyshevT| + |setClipValue| |qelt| |pole?| |weierstrass| |lazyPseudoQuotient| + |prepareSubResAlgo| |leftExtendedGcd| |factorSquareFree| |qsetelt| + |type| |delete!| |rightOne| |printInfo!| |polygon?| |ocf2ocdf| |rem| + |measure| |cAcosh| |dflist| |getMultiplicationMatrix| |weight| + |lazyPquo| |tubePlot| |rightAlternative?| |extractPoint| + |argumentList!| |quo| |xRange| |bivariateSLPEBR| |initial| + |eisensteinIrreducible?| |enqueue!| |extensionDegree| |subHeight| + |cons| |lfunc| |discriminantEuclidean| |direction| |vconcat| |yRange| + |integral| |unitsColorDefault| |quotient| |bit?| |PollardSmallFactor| + |coth2tanh| |dim| |dihedralGroup| |enterPointData| |vectorise| + |viewWriteDefault| |div| |zRange| |mapUnivariate| |prinb| |OMread| + |tubeRadiusDefault| |groebnerIdeal| FG2F |genericLeftDiscriminant| + |map!| |e02bcf| |branchIfCan| |lighting| |exquo| |insertMatch| |rk4qc| + |byteBuffer| |modTree| |pow| |fortranCompilerName| |reducedForm| + |qsetelt!| |toseInvertibleSet| ~= |bracket| |f2df| |expint| + |mainDefiningPolynomial| |drawToScale| |univariateSolve| + |expenseOfEvaluationIF| |genericLeftTrace| |packageCall| |#| |randnum| + |maxPoints| |critT| |indiceSubResultantEuclidean| + |stiffnessAndStabilityOfODEIF| |OMUnknownSymbol?| |freeOf?| + |relationsIdeal| |zero| ~ |atoms| |coerce| |characteristicSet| + |exprex| |fortranDouble| |dimensionOfIrreducibleRepresentation| + |var2StepsDefault| |pr2dmp| |source| |iiacsc| |inputOutputBinaryFile| + |factor1| |construct| |makeViewport2D| |lastSubResultant| |e01sff| + |showRegion| |integralBasis| |And| |errorInfo| |shape| |newSubProgram| + |dominantTerm| |swapColumns!| |dequeue!| |partialNumerators| + |normalDenom| |createMultiplicationMatrix| |extractIndex| |/\\| |Or| + |bsolve| |acsch| |internalSubQuasiComponent?| |abelianGroup| |pushup| + |quasiRegular?| |makeEq| |implies| |collectQuasiMonic| |normal?| |Not| + |\\/| |mapSolve| |e02dcf| |wrregime| |setButtonValue| + |sizeMultiplication| |d01akf| |nthRoot| |logIfCan| + |numericalIntegration| |removeSuperfluousCases| |po| + |transcendenceDegree| |sdf2lst| |debug3D| |target| + |componentUpperBound| |rotatex| |imagK| |c06fpf| |irForm| + |functionIsOscillatory| |iitanh| |mdeg| |nodeOf?| |divideIfCan!| + |factorAndSplit| |selectIntegrationRoutines| |s17def| + |factorSquareFreeByRecursion| |scopes| |thenBranch| |identityMatrix| + |zeroMatrix| |ScanArabic| |ldf2vmf| |f01maf| |corrPoly| |mapmult| + |iilog| |component| |overlabel| |stoseInvertibleSetreg| |imagk| + |viewPhiDefault| |index?| |functorData| |monomialIntPoly| |complete| + |headReduce| |rightTraceMatrix| |s21bdf| |isobaric?| |second| |open| + |primextendedint| |bfEntry| |rootOfIrreduciblePoly| |monomRDE| + |alternating| |s17dlf| |iidprod| |purelyAlgebraic?| |antiAssociative?| + |startTable!| |third| |lfinfieldint| |isMult| |pair?| |fi2df| + |autoReduced?| |monic?| |basisOfMiddleNucleus| |att2Result| |reorder| + |constantRight| |sayLength| |createMultiplicationTable| |unvectorise| + |curveColorPalette| |weights| |rootPower| |signAround| |constantIfCan| + |wordInGenerators| |bipolar| |monomials| |sample| |sinh2csch| |cdr| + |dfRange| |f02akf| |refine| |reset| |clearFortranOutputStack| + |factorList| |convergents| |bright| |operations| |yCoordinates| + |primPartElseUnitCanonical!| |lowerCase!| |getMatch| |geometric| + |f04mcf| F |setright!| |setScreenResolution3D| |tubeRadius| + |intPatternMatch| |prevPrime| |nonQsign| |triangular?| |typeList| + |LyndonCoordinates| |leftFactorIfCan| |linearMatrix| |fixedPoint| + |OMputError| |write| |cot2tan| |showClipRegion| |mapBivariate| |inc| + |eval| |makeSUP| |inRadical?| |lazyResidueClass| |scripted?| |hermite| + |setelt| |save| |log2| |gcdcofactprim| |BasicMethod| |groebner?| + |OMgetEndBVar| |mirror| |escape| |infieldIntegrate| |irDef| + |OMencodingXML| |simplifyLog| |e02dff| |distFact| |cyclotomic| GF2FG + |printingInfo?| |sn| |showAllElements| |flexible?| + |countRealRootsMultiple| |prinshINFO| |seed| |copy| + |univariatePolynomialsGcds| |conical| |bitCoef| |presuper| |equiv| + |error| |s17agf| |over| |subresultantVector| |charpol| + |getPickedPoints| |lexGroebner| |besselJ| EQ |currentSubProgram| + |OMReadError?| |subNodeOf?| |binding| |bivariatePolynomials| |cAsech| + |symmetricSquare| |rational| |characteristicSerie| |viewpoint| + |gbasis| |logpart| |se2rfi| |triangSolve| |numerators| + |semiDiscriminantEuclidean| |exprHasAlgebraicWeight| |unexpand| + |lSpaceBasis| |baseRDE| |readInt32!| |complexIntegrate| + |var1StepsDefault| |e02ajf| |node?| |physicalLength| |iicot| + |constantToUnaryFunction| |parseString| |mainForm| |csubst| + |alphabetic?| |isImplies| |rightLcm| |wholePart| |match?| |leftUnits| + |cardinality| |vark| |distdfact| |linkToFortran| |autoCoerce| |check| + |csch2sinh| |removeSinhSq| |partialDenominators| |ParCond| + |denomRicDE| |binary| |intcompBasis| |c06frf| |generators| |cAtanh| + |distribute| |s19acf| |innerSolve| |univariatePolynomials| |iiperm| + |bernoulliB| |squareFreeFactors| |tanh2trigh| |iroot| + |firstUncouplingMatrix| |arity| |solveLinear| |symmetric?| + |applyRules| |useEisensteinCriterion| |rangePascalTriangle| + |maxPoints3D| |showTheSymbolTable| |processTemplate| |lazy?| + |nextColeman| |B1solve| |resultantReduit| |consnewpol| |plotPolar| + |iicsc| |normalDeriv| |rCoord| |controlPanel| |dihedral| |moduleSum| + |numberOfNormalPoly| |solveid| |entry| |mainValue| |computePowers| + |octon| |integral?| |quickSort| |omError| |removeRedundantFactors| + |reify| |headReduced?| |startStats!| |mergeFactors| |tab1| |setelt!| + |queue| |sqfree| |associatedEquations| |generalizedEigenvectors| + |maxIndex| |acosIfCan| |iiatanh| |ldf2lst| |showIntensityFunctions| + |indiceSubResultant| |null| |f07fdf| |inverse| |extension| |every?| + |prinpolINFO| |graphState| |cartesian| |hdmpToDmp| |iomode| + |coercePreimagesImages| |basicSet| |not| |internal?| |vedf2vef| + |qinterval| |nextPrime| |leftRemainder| |inrootof| |rationalPoints| + |interactiveEnv| |tanIfCan| |stoseInvertible?sqfreg| |and| |bernoulli| + |approximants| |normal01| |mapMatrixIfCan| |e02daf| |categories| + |elaborate| |integralAtInfinity?| |conditionsForIdempotents| |xCoord| + |oddlambert| |or| |delete| |duplicates| |cSinh| |primes| + |ScanFloatIgnoreSpacesIfCan| |part?| |acotIfCan| |simpsono| + |multiplyCoefficients| |fortranInteger| |makeprod| + |numberOfFractionalTerms| |s20adf| |infiniteProduct| |randomLC| + |addMatchRestricted| |linearAssociatedLog| |explimitedint| + |setStatus!| |d01ajf| |s17adf| |build| |leadingSupport| |OMopenString| + |prologue| |nullSpace| |adaptive?| |stFuncN| |elRow2!| + |antisymmetricTensors| |cycleLength| |iiatan| |s18aff| |psolve| + |d02gbf| |explicitEntries?| |selectAndPolynomials| |graeffe| |imports| + |c06fuf| |modularFactor| |OMencodingUnknown| |s13adf| |outputForm| + |head| |quotedOperators| |cAsin| |unit?| |kmax| |elementary| + |noncommutativeJordanAlgebra?| |OMputEndBVar| |isQuotient| |setClosed| + |maxColIndex| |parent| |OMsend| |complement| |minrank| |radix| + |palgextint0| |slash| |firstDenom| |clipPointsDefault| + |zeroSetSplitIntoTriangularSystems| |scalarTypeOf| |kroneckerDelta| + |degreeSubResultantEuclidean| |e02agf| |key?| |stronglyReduced?| + |defineProperty| |cos2sec| |approxNthRoot| |lllip| |create3Space| + |whileLoop| |critpOrder| |c06ekf| |ricDsolve| + |nextNormalPrimitivePoly| |commutator| |callForm?| |symmetricPower| + |depth| |nthFlag| |rk4f| |rightExactQuotient| |coleman| |setleaves!| + |infieldint| |cyclicParents| |chvar| |e01sef| |cn| |f01rdf| + |quadraticNorm| |irVar| |repeating| |clipBoolean| |cExp| + |completeEval| |genericRightNorm| |atrapezoidal| |height| |untab| + |OMgetError| |status| |s17dcf| |getExplanations| |lepol| + |lazyGintegrate| |conjugates| |conditionP| |dec| |LazardQuotient| + |someBasis| |rowEchelon| |fixedDivisor| |duplicates?| |interReduce| + |setPrologue!| |topPredicate| |components| |dimensionsOf| |cschIfCan| + |addPoint| |pointLists| |optpair| |recolor| |clearDenominator| + |unitNormal| |airyAi| |log10| |retractable?| |randomR| |ref| + |rewriteSetWithReduction| |nextsousResultant2| |factors| |double?| + |modifyPointData| |clikeUniv| |bitand| |setsubMatrix!| |deriv| + |generalSqFr| |nthCoef| |leftUnit| |closedCurve?| |externalList| + |ellipticCylindrical| |setrest!| |acschIfCan| |constantOperator| + |lastSubResultantEuclidean| |outputGeneral| |lexTriangular| |polyPart| + |OMgetSymbol| |integralDerivationMatrix| |singular?| |has?| |generic?| + |hostByteOrder| |symmetricDifference| |rational?| + |inverseIntegralMatrix| |setPoly| |OMgetEndAtp| |mathieu22| + |permutations| |noValueMode| |limitPlus| |Beta| |trigs| |hclf| + |f02abf| |numberOfDivisors| |shade| |debug| |failed| |blankSeparate| + |divergence| |infix| |connectTo| |nullary?| |safeCeiling| + |collectUnder| |startTableInvSet!| |substring?| D + |associatorDependence| |f04qaf| |phiCoord| |multiEuclideanTree| + |bombieriNorm| |split| |range| |e04fdf| |diagonalProduct| + |particularSolution| |shiftLeft| |expressIdealMember| |universe| + |cAcot| |e04ucf| |addiag| |suffix?| |e01bff| |getGraph| + |decreasePrecision| |OMlistSymbols| |irreducibleRepresentation| + |increment| |OMgetAtp| |createNormalPrimitivePoly| |leftRecip| + |rightRank| |equality| |cTan| |nil| |multiplyExponents| |tail| |log| + |dAndcExp| |c02aff| |univariate| |strongGenerators| |prefix?| + |elements| |gensym| |fortranDoubleComplex| |e02gaf| |evaluateInverse| + |init| |subscriptedVariables| |absolutelyIrreducible?| |specialTrigs| + |semiSubResultantGcdEuclidean2| |s17dhf| |d02gaf| |macroExpand| + |reducedQPowers| |taylorIfCan| |getMultiplicationTable| |dioSolve| + |modulus| |listOfLists| |insertBottom!| |varList| |lifting1| + |rootSplit| |rk4a| |d01fcf| |approximate| |deepCopy| + |complexElementary| |inGroundField?| |leftRankPolynomial| |f02fjf| + |createPrimitiveElement| |factorByRecursion| |complex| + |differentialVariables| |close!| + |generalizedContinuumHypothesisAssumed?| |lowerCase| + |integralMatrixAtInfinity| |semiResultantEuclidean1| |denomLODE| + |variationOfParameters| |lagrange| |rightRecip| |imagI| |HenselLift| + |pmintegrate| |f02aaf| |optAttributes| |exponential| |sumOfDivisors| + |print| |nonSingularModel| |mainSquareFreePart| |diff| |properties| + |digit| |hcrf| |complexRoots| |infix?| |readLine!| |resolve| |slex| + |secIfCan| |translate| |antiCommutator| |squareFreePolynomial| + |createLowComplexityNormalBasis| |mask| |subSet| |declare| + |primeFactor| |adjoint| |irCtor| |setValue!| |vertConcat| |e02bdf| + |OMgetApp| |normalElement| |OMputFloat| |numberOfPrimitivePoly| + |bumptab1| |pseudoRemainder| |invmultisect| |idealSimplify| |froot| + |stripCommentsAndBlanks| |augment| |product| |bandedJacobian| + |generalizedEigenvector| |OMlistCDs| |problemPoints| |xn| + |rewriteIdealWithHeadRemainder| |f01rcf| |maxrank| |sechIfCan| + |OMputEndApp| |littleEndian| |rationalPoint?| GE |cAsec| + |hasTopPredicate?| |iitan| |badValues| |iiacosh| |eigenvectors| + |lieAdmissible?| |intermediateResultsIF| GT |open?| |besselK| + |setOrder| |derivative| |calcRanges| |useNagFunctions| + |rationalFunction| |partialFraction| |say| |irreducibleFactor| + |Vectorise| LE |subResultantGcdEuclidean| |move| |delta| + |brillhartTrials| |genericRightMinimalPolynomial| + |nativeModuleExtension| |fillPascalTriangle| LT |expandLog| + |dictionary| |setlast!| |external?| |basisOfRightNucloid| |sup| + |nextIrreduciblePoly| |OMgetString| |collect| |paraboloidal| + |ramifiedAtInfinity?| |plus| |cot2trig| |hexDigit?| |setEpilogue!| + |changeWeightLevel| |e04naf| |constantCoefficientRicDE| + |firstSubsetGray| |pointData| |OMputAttr| |logGamma| + |drawComplexVectorField| |trailingCoefficient| |shift| |totalLex| + |firstNumer| |e01sbf| |OMgetEndApp| |rewriteIdealWithRemainder| + |varselect| |thetaCoord| |OMmakeConn| |remove| |beauzamyBound| |trim| + |hue| |numberOfImproperPartitions| |mainMonomial| |outputBinaryFile| + |diag| |s14abf| |setFormula!| |nthFactor| |ScanRoman| |fortranLogical| + |compose| |readBytes!| |times| |leftMinimalPolynomial| |inf| + |BumInSepFFE| |iprint| |last| |completeEchelonBasis| + |sturmVariationsOf| |stoseInvertibleSet| |createNormalPoly| |isTimes| + |generator| |symmetricGroup| |exprHasLogarithmicWeights| |mantissa| + |LazardQuotient2| |f01brf| |algebraicDecompose| |OMputString| |assoc| + |complex?| |newTypeLists| |c06gsf| |acoshIfCan| + |LagrangeInterpolation| |exprToXXP| |determinant| |ksec| |sincos| + |reflect| |fortranLiteral| |totolex| |iiacsch| |OMsetEncoding| + |euclideanNormalForm| |aspFilename| BY |leastAffineMultiple| + |semiDegreeSubResultantEuclidean| |linGenPos| |fracPart| |idealiser| + |condition| |extractTop!| |numberOfChildren| |monom| |vspace| + |algebraicSort| |singleFactorBound| |squareFreePrim| |nodes| + |commaSeparate| |rootOf| |f02bjf| |sts2stst| |pomopo!| |find| |expPot| + |coHeight| |leftExactQuotient| |euclideanSize| |getOperator| + |genericLeftMinimalPolynomial| |wronskianMatrix| |conjug| + |polarCoordinates| |probablyZeroDim?| |scan| |mapCoef| |erf| |lyndon?| + |rightScalarTimes!| |hessian| |stopTableGcd!| |output| |common| + |numberOfIrreduciblePoly| |limit| |in?| |curve?| |outputSpacing| + |linears| |SturmHabichtSequence| |setProperties| |readLineIfCan!| + |expintfldpoly| |sequences| |degreeSubResultant| |epilogue| |makeUnit| + |constant| |predicates| |diagonalMatrix| |complexSolve| + |karatsubaDivide| |constructor| |axes| |normalizedDivide| + |noLinearFactor?| |permutation| |An| |dilog| |PDESolve| + |showArrayValues| NOT |eq?| |OMputInteger| |legendre| |incr| + |identitySquareMatrix| |makeTerm| |characteristic| |normalForm| |sin| + |mkIntegral| |function| |halfExtendedResultant1| OR |numericIfCan| + |setOfMinN| |complementaryBasis| |hi| |OMgetInteger| |any?| + |torsionIfCan| |generalizedInverse| |cos| |palgLODE0| |OMconnInDevice| + |findCycle| AND |transform| |rightTrim| |f02agf| + |extractSplittingLeaf| |multiple?| |selectOrPolynomials| |midpoints| + |tan| |readUInt8!| |moduloP| |is?| |coordinate| |leftTrim| + |derivationCoordinates| |points| |merge| |printTypes| |listLoops| + |cot| |numFunEvals| |zero?| |unit| |Ci| |e01bef| |positiveSolve| + |parabolic| |totalDegree| |e02aef| |sec| |makeFloatFunction| + |viewDeltaYDefault| |extendedIntegrate| |mathieu12| |cSin| + |curveColor| |rootRadius| |getZechTable| |cCot| |csc| |symbol| + |monicLeftDivide| |binomial| |changeNameToObjf| |doubleDisc| + |squareTop| |sPol| |toseInvertible?| |cosSinInfo| |opeval| |asin| + |expression| |attributeData| |bringDown| |createNormalElement| + |mainContent| |OMputEndAttr| |c05nbf| |infinityNorm| |addPoint2| + |mvar| |acos| |block| |integer| |halfExtendedSubResultantGcd2| + |destruct| |numberOfHues| |commutativeEquality| + |rewriteIdealWithQuasiMonicGenerators| |normalise| |readable?| + |setMinPoints3D| |readUInt32!| |scanOneDimSubspaces| |atan| + |LyndonWordsList1| |selectODEIVPRoutines| |degreePartition| + |goodnessOfFit| |iiasinh| |pquo| |critBonD| |countRealRoots| |f04mbf| + |insert!| |acot| |d01apf| |d02raf| |oddInfiniteProduct| |mindegTerm| + |normalize| |coefChoose| |d01bbf| |revert| |euler| |asec| + |highCommonTerms| |composite| * |semiResultantEuclideannaif| + |laurentRep| |singRicDE| |lhs| |computeCycleEntry| |OMgetBind| + |minset| |figureUnits| |acsc| |shellSort| |lcm| |explicitlyFinite?| + |plenaryPower| |listexp| |completeSmith| |rhs| |explogs2trigs| + |exprToGenUPS| |generalTwoFactor| |more?| |sinh| |c06ebf| |f04asf| + |weighted| |radicalEigenvector| |fixedPoints| |generate| |neglist| + |discreteLog| |increasePrecision| |stoseInternalLastSubResultant| + |append| |cosh| |s17ajf| |mainCharacterization| |hash| |writeInt8!| = + |cubic| |currentEnv| |definingEquations| |setRow!| |gethi| |UP2ifCan| + |pattern| |swapRows!| |tanh| |validExponential| |count| |gcd| + |RittWuCompare| |cSech| |possiblyNewVariety?| |incrementBy| + |showTheRoutinesTable| |position!| |genericLeftNorm| |OMbindTCP| + |reducedDiscriminant| |df2fi| |coth| |ddFact| |false| |lp| + |mainExpression| |f01qcf| < |setUnion| |expand| |category| |goto| + |orbit| |submod| |ptree| |tryFunctionalDecomposition| |flatten| + |seriesToOutputForm| |fill!| |members| > |scale| |filterWhile| + |initTable!| |domain| |s21baf| |coordinates| |rightExtendedGcd| + |loadNativeModule| |pseudoDivide| |zeroDimPrimary?| |getRef| |graphs| + |invertIfCan| <= |fTable| |filterUntil| |package| |hasHi| |quoted?| + |mainVariable| |message| |jordanAdmissible?| |red| RF2UTS >= |isOp| + |areEquivalent?| |numberOfVariables| |select| |eyeDistance| + |setImagSteps| |string?| |iisqrt2| |leadingBasisTerm| |unparse| + |subPolSet?| |leviCivitaSymbol| |summation| |divisor| |double| + |enterInCache| |normInvertible?| |cycle| |moebius| |parts| |cSec| + |float?| |tan2trig| |copyInto!| |dmpToP| |fglmIfCan| |showTheIFTable| + |fortranCharacter| |coord| |rootProduct| |inspect| + |leftCharacteristicPolynomial| |makeop| |pushNewContour| + + |removeSuperfluousQuasiComponents| |wholeRadix| |s15adf| |light| + |middle| |generalizedContinuumHypothesisAssumed| |parents| |low| + |radicalSolve| |less?| |taylorRep| - |approxSqrt| |hermiteH| + |legendreP| |totalDifferential| |rowEch| |outputAsTex| + |getVariableOrder| |stFunc2| |coshIfCan| / |categoryMode| + |hasSolution?| |crest| |rule| |withPredicates| |rotate| + |pointColorDefault| |numerator| |rootDirectory| |makeRecord| |e02bbf| + |just| |badNum| |OMgetType| |startPolynomial| |shanksDiscLogAlgorithm| + |harmonic| |outerProduct| |changeThreshhold| |rroot| |isAtom| + |discriminant| |integralMatrix| |coerceP| + |halfExtendedSubResultantGcd1| |bothWays| |pop!| |declare!| |d01gaf| + |maxdeg| |compactFraction| |sumOfSquares| |fractRagits| |d02bhf| + |karatsubaOnce| |shufflein| |positive?| |empty?| |exp1| + |palgintegrate| |pushucoef| |truncate| |tRange| |returnTypeOf| + |henselFact| |lookup| |transcendentalDecompose| |makeYoungTableau| + |negative?| |generalPosition| |linearDependenceOverZ| |redPo| + |upDateBranches| |rules| |rightRegularRepresentation| |f04jgf| + |isConnected?| |sec2cos| |skewSFunction| |OMsupportsSymbol?| |copies| + |dark| |setref| |quoByVar| |rightCharacteristicPolynomial| |subMatrix| + |stiffnessAndStabilityFactor| |elliptic| |stopMusserTrials| |step| + |algint| |meshFun2Var| |point?| |leadingIdeal| + |functionIsContinuousAtEndPoints| |pushdown| |rightZero| + |permutationRepresentation| |LowTriBddDenomInv| |fractRadix| + |checkForZero| |ptFunc| |d01amf| |factorsOfCyclicGroupSize| |aQuartic| + |basisOfCommutingElements| |lazyPremWithDefault| |systemSizeIF| + |segment| |monomialIntegrate| |rst| |realElementary| |high| + |rightUnit| |ode| |e02baf| |setRealSteps| |SturmHabicht| |f02adf| + |Gamma| |supRittWu?| |expandPower| |decimal| |sin?| |showAll?| |critB| + |d01asf| |ratDsolve| |dualSignature| |messagePrint| + |positiveRemainder| |irreducibleFactors| |c05adf| |s14baf| + |solveRetract| |resultantEuclidean| |sortConstraints| |qualifier| + |quote| |subResultantsChain| |selectPolynomials| |solid| |swap!| + |rotate!| |jokerMode| |fractionFreeGauss!| |intChoose| |computeBasis| + |mainCoefficients| |style| |key| |backOldPos| |green| |denominator| + |mainPrimitivePart| |merge!| |mergeDifference| |unitVector| + |setAdaptive3D| |d02bbf| |car| |linearlyDependentOverZ?| + |standardBasisOfCyclicSubmodule| |value| |reduceByQuasiMonic| + |contains?| |getGoodPrime| |filename| |ratPoly| |setColumn!| |s21bcf| + |lquo| |perfectSqrt| |internalLastSubResultant| |sinhcosh| |optional| + |getCurve| |OMwrite| |mightHaveRoots| |unravel| |trueEqual| + |solveLinearPolynomialEquationByFractions| |call| |critM| |largest| + |formula| |parse| |gcdcofact| |OMputBVar| |curryLeft| |npcoef| + |LiePoly| |selectOptimizationRoutines| |internalInfRittWu?| |e02adf| + |stop| |setLegalFortranSourceExtensions| |Frobenius| |f02bbf| + |support| |qPot| |stoseInvertible?reg| |symbol?| |mr| |arguments| + |taylorQuoByVar| |fibonacci| |zoom| |currentScope| |getOrder| + |getIdentifier| |matrixGcd| |cycles| |resultant| + |selectNonFiniteRoutines| |setprevious!| |pushdterm| |cCsch| + |maximumExponent| |droot| |structuralConstants| |curve| |upperBound| + |sub| |nrows| |result| |basisOfRightNucleus| |appendPoint| |biRank| + |reopen!| |denominators| |qfactor| |palgint| |groebSolve| |loopPoints| + |extractIfCan| |ncols| |reduction| |prefixRagits| |conjugate| + |changeMeasure| |pointColorPalette| |coerceS| |OMconnectTCP| + |outlineRender| |complexNormalize| |separate| |measure2Result| + |adaptive3D?| |socf2socdf| |drawCurves| |tower| |musserTrials| + |create| |semiIndiceSubResultantEuclidean| |toseLastSubResultant| + |cyclotomicFactorization| |extend| |quasiRegular| |isList| + |noKaratsuba| |rightFactorIfCan| |exportedOperators| |insertRoot!| + |tubePointsDefault| |internalZeroSetSplit| |upperCase?| |nullary| + |tValues| |argumentListOf| |roughEqualIdeals?| |taylor| |comment| + |constDsolve| |mappingMode| |f01bsf| |adaptive| |getProperty| + |csc2sin| |e02ahf| |decompose| |lazyEvaluate| |laurent| |expIfCan| + |pdf2ef| |cross| |stosePrepareSubResAlgo| |mainKernel| |redpps| + |SFunction| |fractionPart| |indices| |puiseux| |factorFraction| + |computeInt| |permanent| |back| |matrix| |index| |linearDependence| + |partition| |integerBound| |quadratic| |zeroDimensional?| + |raisePolynomial| |complexEigenvectors| |mindeg| UP2UTS |quasiMonic?| + |iicosh| |leftQuotient| |overset?| |sinhIfCan| |inv| + |subQuasiComponent?| |lambda| |OMreceive| |leftNorm| |minimumDegree| + |exteriorDifferential| |dmpToHdmp| |alphabetic| |elseBranch| |isEquiv| + |lazyPseudoDivide| |tanh2coth| |ground?| |colorDef| |minPoly| + |createZechTable| |continuedFraction| |tryFunctionalDecomposition?| + |pair| |doubleResultant| |ground| |youngGroup| |purelyTranscendental?| + |OMgetEndBind| |ode2| |factorGroebnerBasis| |Lazard| |s17aff| + |anfactor| |ReduceOrder| |antiCommutative?| |directory| + |radicalOfLeftTraceForm| |removeCoshSq| |initiallyReduce| + |irreducible?| |powerAssociative?| |fprindINFO| |leadingMonomial| + |iteratedInitials| |iisech| |primeFrobenius| |heap| |sum| |iidsum| + |setErrorBound| |edf2efi| |closed| |reverse| |innerEigenvectors| + |leadingCoefficient| |qqq| |hypergeometric0F1| |dimension| |mathieu24| + |separateDegrees| |complexExpand| |s19abf| |leftRegularRepresentation| + |null?| |addMatch| |primitiveMonomials| |headRemainder| |capacity| + |exists?| |exponents| |retract| |before?| |elaborateFile| |iiexp| + |leftAlternative?| |remove!| |parametersOf| |reductum| + |oblateSpheroidal| |quatern| |SturmHabichtMultiple| + |basisOfRightAnnihilator| |var1Steps| |antisymmetric?| |integrate| + |hyperelliptic| |stoseLastSubResultant| |makeViewport3D| + |extractClosed| |df2mf| |lazyPseudoRemainder| |makeVariable| |failed?| + |rank| |primlimitedint| |polCase| |inHallBasis?| |evenlambert| + |interpolate| |sign| |zeroDim?| |upperCase| |ideal| |s13acf| + |orthonormalBasis| |leftOne| |UpTriBddDenomInv| |reseed| |unmakeSUP| + |anticoord| |OMreadFile| |patternVariable| |nil| |infinite| + |arbitraryExponent| |approximate| |complex| |shallowMutable| + |canonical| |noetherian| |central| |partiallyOrderedSet| + |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| + |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| + |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| + |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 99aca987..a6b472c5 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5433 +1,5429 @@ -(3242103 . 3485817792) -((-1913 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-1891 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3055 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1253 (-576)) |#2|) 44)) (-2745 (($ $) 80)) (-2309 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-2634 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-4001 (((-656 |#2|) $) 13)) (-4214 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2848 (($ (-1 |#2| |#2|) $) 37)) (-2551 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2134 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-1932 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2476 (((-112) (-1 (-112) |#2|) $) 23)) (-2071 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1253 (-576))) 66)) (-3240 (($ $ (-576)) 76) (($ $ (-1253 (-576))) 75)) (-3926 (((-783) (-1 (-112) |#2|) $) 34) (((-783) |#2| $) NIL)) (-1902 (($ $ $ (-576)) 69)) (-3079 (($ $) 68)) (-2895 (($ (-656 |#2|)) 73)) (-1514 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-656 $)) 85)) (-2884 (((-874) $) 92)) (-2492 (((-112) (-1 (-112) |#2|) $) 22)) (-3915 (((-112) $ $) 95)) (-3943 (((-112) $ $) 99))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3915 ((-112) |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -1891 (|#1| |#1|)) (-15 -1891 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -1902 (|#1| |#1| |#1| (-576))) (-15 -1913 ((-112) |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -2634 ((-576) |#2| |#1| (-576))) (-15 -2634 ((-576) |#2| |#1|)) (-15 -2634 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1913 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4214 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3055 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -2134 (|#1| |#1| |#1| (-576))) (-15 -2134 (|#1| |#2| |#1| (-576))) (-15 -3240 (|#1| |#1| (-1253 (-576)))) (-15 -3240 (|#1| |#1| (-576))) (-15 -2551 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1514 (|#1| (-656 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -2071 (|#1| |#1| (-1253 (-576)))) (-15 -2895 (|#1| (-656 |#2|))) (-15 -1932 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2071 (|#2| |#1| (-576))) (-15 -2071 (|#2| |#1| (-576) |#2|)) (-15 -3055 (|#2| |#1| (-576) |#2|)) (-15 -3926 ((-783) |#2| |#1|)) (-15 -4001 ((-656 |#2|) |#1|)) (-15 -3926 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -2476 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2848 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3079 (|#1| |#1|))) (-19 |#2|) (-1236)) (T -18)) +(3249866 . 3485824353) +((-2762 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-2119 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3054 ((|#2| $ (-575) |#2|) NIL) ((|#2| $ (-1252 (-575)) |#2|) 44)) (-1789 (($ $) 80)) (-2308 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-2632 (((-575) (-1 (-112) |#2|) $) 27) (((-575) |#2| $) NIL) (((-575) |#2| $ (-575)) 96)) (-4001 (((-655 |#2|) $) 13)) (-3794 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2847 (($ (-1 |#2| |#2|) $) 37)) (-2550 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2135 (($ |#2| $ (-575)) NIL) (($ $ $ (-575)) 67)) (-3704 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3207 (((-112) (-1 (-112) |#2|) $) 23)) (-2070 ((|#2| $ (-575) |#2|) NIL) ((|#2| $ (-575)) NIL) (($ $ (-1252 (-575))) 66)) (-3239 (($ $ (-575)) 76) (($ $ (-1252 (-575))) 75)) (-3925 (((-782) (-1 (-112) |#2|) $) 34) (((-782) |#2| $) NIL)) (-4005 (($ $ $ (-575)) 69)) (-3078 (($ $) 68)) (-2894 (($ (-655 |#2|)) 73)) (-1514 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-655 $)) 85)) (-2883 (((-873) $) 92)) (-3771 (((-112) (-1 (-112) |#2|) $) 22)) (-3914 (((-112) $ $) 95)) (-3943 (((-112) $ $) 99))) +(((-18 |#1| |#2|) (-10 -8 (-15 -3914 ((-112) |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2119 (|#1| |#1|)) (-15 -2119 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1789 (|#1| |#1|)) (-15 -4005 (|#1| |#1| |#1| (-575))) (-15 -2762 ((-112) |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -2632 ((-575) |#2| |#1| (-575))) (-15 -2632 ((-575) |#2| |#1|)) (-15 -2632 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -2762 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3794 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3054 (|#2| |#1| (-1252 (-575)) |#2|)) (-15 -2135 (|#1| |#1| |#1| (-575))) (-15 -2135 (|#1| |#2| |#1| (-575))) (-15 -3239 (|#1| |#1| (-1252 (-575)))) (-15 -3239 (|#1| |#1| (-575))) (-15 -2550 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1514 (|#1| (-655 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -2070 (|#1| |#1| (-1252 (-575)))) (-15 -2894 (|#1| (-655 |#2|))) (-15 -3704 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2070 (|#2| |#1| (-575))) (-15 -2070 (|#2| |#1| (-575) |#2|)) (-15 -3054 (|#2| |#1| (-575) |#2|)) (-15 -3925 ((-782) |#2| |#1|)) (-15 -4001 ((-655 |#2|) |#1|)) (-15 -3925 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -3207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3078 (|#1| |#1|))) (-19 |#2|) (-1235)) (T -18)) NIL -(-10 -8 (-15 -3915 ((-112) |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -1891 (|#1| |#1|)) (-15 -1891 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -1902 (|#1| |#1| |#1| (-576))) (-15 -1913 ((-112) |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -2634 ((-576) |#2| |#1| (-576))) (-15 -2634 ((-576) |#2| |#1|)) (-15 -2634 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1913 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4214 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3055 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -2134 (|#1| |#1| |#1| (-576))) (-15 -2134 (|#1| |#2| |#1| (-576))) (-15 -3240 (|#1| |#1| (-1253 (-576)))) (-15 -3240 (|#1| |#1| (-576))) (-15 -2551 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1514 (|#1| (-656 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -2071 (|#1| |#1| (-1253 (-576)))) (-15 -2895 (|#1| (-656 |#2|))) (-15 -1932 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2071 (|#2| |#1| (-576))) (-15 -2071 (|#2| |#1| (-576) |#2|)) (-15 -3055 (|#2| |#1| (-576) |#2|)) (-15 -3926 ((-783) |#2| |#1|)) (-15 -4001 ((-656 |#2|) |#1|)) (-15 -3926 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -2476 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2848 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3079 (|#1| |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3336 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) 8)) (-3055 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-2745 (($ $) 93 (|has| $ (-6 -4462)))) (-4379 (($ $) 103)) (-1919 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) 52)) (-2634 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1118)))) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2310 (($ (-783) |#1|) 70)) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 44 (|has| (-576) (-862)))) (-1921 (($ $ $) 90 (|has| |#1| (-862)))) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 45 (|has| (-576) (-862)))) (-4137 (($ $ $) 89 (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2134 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3385 (((-656 (-576)) $) 47)) (-3394 (((-112) (-576) $) 48)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1962 ((|#1| $) 43 (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3346 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) 49)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-3240 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1902 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3079 (($ $) 13)) (-2616 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 72)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3957 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-3970 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-862)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-19 |#1|) (-141) (-1236)) (T -19)) +(-10 -8 (-15 -3914 ((-112) |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2119 (|#1| |#1|)) (-15 -2119 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1789 (|#1| |#1|)) (-15 -4005 (|#1| |#1| |#1| (-575))) (-15 -2762 ((-112) |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -2632 ((-575) |#2| |#1| (-575))) (-15 -2632 ((-575) |#2| |#1|)) (-15 -2632 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -2762 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3794 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3054 (|#2| |#1| (-1252 (-575)) |#2|)) (-15 -2135 (|#1| |#1| |#1| (-575))) (-15 -2135 (|#1| |#2| |#1| (-575))) (-15 -3239 (|#1| |#1| (-1252 (-575)))) (-15 -3239 (|#1| |#1| (-575))) (-15 -2550 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1514 (|#1| (-655 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -2070 (|#1| |#1| (-1252 (-575)))) (-15 -2894 (|#1| (-655 |#2|))) (-15 -3704 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2070 (|#2| |#1| (-575))) (-15 -2070 (|#2| |#1| (-575) |#2|)) (-15 -3054 (|#2| |#1| (-575) |#2|)) (-15 -3925 ((-782) |#2| |#1|)) (-15 -4001 ((-655 |#2|) |#1|)) (-15 -3925 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -3207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3078 (|#1| |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4161 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4461))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) 8)) (-3054 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1789 (($ $) 93 (|has| $ (-6 -4461)))) (-4381 (($ $) 103)) (-1748 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) 52)) (-2632 (((-575) (-1 (-112) |#1|) $) 100) (((-575) |#1| $) 99 (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) 98 (|has| |#1| (-1117)))) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-2309 (($ (-782) |#1|) 70)) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 44 (|has| (-575) (-861)))) (-1920 (($ $ $) 90 (|has| |#1| (-861)))) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 45 (|has| (-575) (-861)))) (-1425 (($ $ $) 89 (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-2135 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-4310 (((-655 (-575)) $) 47)) (-2969 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1961 ((|#1| $) 43 (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3954 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) 49)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-3239 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4005 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3078 (($ $) 13)) (-2615 (((-547) $) 81 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 72)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3956 (((-112) $ $) 86 (|has| |#1| (-861)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-3970 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-861)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-19 |#1|) (-141) (-1235)) (T -19)) NIL -(-13 (-384 |t#1|) (-10 -7 (-6 -4462))) -(((-34) . T) ((-102) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1118) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-1236) . T)) -((-1459 (((-3 $ "failed") $ $) 12)) (-4029 (($ $) NIL) (($ $ $) 9)) (* (($ (-937) $) NIL) (($ (-783) $) 16) (($ (-576) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -1459 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) (-21)) (T -20)) +(-13 (-383 |t#1|) (-10 -7 (-6 -4461))) +(((-34) . T) ((-102) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-383 |#1|) . T) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-861) |has| |#1| (-861)) ((-1117) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-1235) . T)) +((-2597 (((-3 $ "failed") $ $) 12)) (-4028 (($ $) NIL) (($ $ $) 9)) (* (($ (-936) $) NIL) (($ (-782) $) 16) (($ (-575) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -2597 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -1459 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) +(-10 -8 (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -2597 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24))) (((-21) (-141)) (T -21)) -((-4029 (*1 *1 *1) (-4 *1 (-21))) (-4029 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-132) (-658 (-576)) (-10 -8 (-15 -4029 ($ $)) (-15 -4029 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1118) . T)) -((-1389 (((-112) $) 10)) (-2473 (($) 15)) (* (($ (-937) $) 14) (($ (-783) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -1389 ((-112) |#1|)) (-15 -2473 (|#1|)) (-15 * (|#1| (-937) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -1389 ((-112) |#1|)) (-15 -2473 (|#1|)) (-15 * (|#1| (-937) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-2473 (($) 18 T CONST)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16))) +((-4028 (*1 *1 *1) (-4 *1 (-21))) (-4028 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-132) (-657 (-575)) (-10 -8 (-15 -4028 ($ $)) (-15 -4028 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-1117) . T)) +((-3799 (((-112) $) 10)) (-3011 (($) 15)) (* (($ (-936) $) 14) (($ (-782) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-782) |#1|)) (-15 -3799 ((-112) |#1|)) (-15 -3011 (|#1|)) (-15 * (|#1| (-936) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-782) |#1|)) (-15 -3799 ((-112) |#1|)) (-15 -3011 (|#1|)) (-15 * (|#1| (-936) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3011 (($) 18 T CONST)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16))) (((-23) (-141)) (T -23)) -((-1996 (*1 *1) (-4 *1 (-23))) (-2473 (*1 *1) (-4 *1 (-23))) (-1389 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783))))) -(-13 (-25) (-10 -8 (-15 (-1996) ($) -3739) (-15 -2473 ($) -3739) (-15 -1389 ((-112) $)) (-15 * ($ (-783) $)))) -(((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((* (($ (-937) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-937) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-937) |#1|))) -((-2862 (((-112) $ $) 7)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14))) +((-1996 (*1 *1) (-4 *1 (-23))) (-3011 (*1 *1) (-4 *1 (-23))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-782))))) +(-13 (-25) (-10 -8 (-15 (-1996) ($) -3738) (-15 -3011 ($) -3738) (-15 -3799 ((-112) $)) (-15 * ($ (-782) $)))) +(((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((* (($ (-936) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-936) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-936) |#1|))) +((-2861 (((-112) $ $) 7)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14))) (((-25) (-141)) (T -25)) -((-4017 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-937))))) -(-13 (-1118) (-10 -8 (-15 -4017 ($ $ $)) (-15 * ($ (-937) $)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-3696 (((-656 $) (-968 $)) 32) (((-656 $) (-1191 $)) 16) (((-656 $) (-1191 $) (-1195)) 20)) (-4023 (($ (-968 $)) 30) (($ (-1191 $)) 11) (($ (-1191 $) (-1195)) 60)) (-4034 (((-656 $) (-968 $)) 33) (((-656 $) (-1191 $)) 18) (((-656 $) (-1191 $) (-1195)) 19)) (-1342 (($ (-968 $)) 31) (($ (-1191 $)) 13) (($ (-1191 $) (-1195)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3696 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3696 ((-656 |#1|) (-1191 |#1|))) (-15 -3696 ((-656 |#1|) (-968 |#1|))) (-15 -4023 (|#1| (-1191 |#1|) (-1195))) (-15 -4023 (|#1| (-1191 |#1|))) (-15 -4023 (|#1| (-968 |#1|))) (-15 -4034 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -4034 ((-656 |#1|) (-1191 |#1|))) (-15 -4034 ((-656 |#1|) (-968 |#1|))) (-15 -1342 (|#1| (-1191 |#1|) (-1195))) (-15 -1342 (|#1| (-1191 |#1|))) (-15 -1342 (|#1| (-968 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3696 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3696 ((-656 |#1|) (-1191 |#1|))) (-15 -3696 ((-656 |#1|) (-968 |#1|))) (-15 -4023 (|#1| (-1191 |#1|) (-1195))) (-15 -4023 (|#1| (-1191 |#1|))) (-15 -4023 (|#1| (-968 |#1|))) (-15 -4034 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -4034 ((-656 |#1|) (-1191 |#1|))) (-15 -4034 ((-656 |#1|) (-968 |#1|))) (-15 -1342 (|#1| (-1191 |#1|) (-1195))) (-15 -1342 (|#1| (-1191 |#1|))) (-15 -1342 (|#1| (-968 |#1|)))) -((-2862 (((-112) $ $) 7)) (-3696 (((-656 $) (-968 $)) 88) (((-656 $) (-1191 $)) 87) (((-656 $) (-1191 $) (-1195)) 86)) (-4023 (($ (-968 $)) 91) (($ (-1191 $)) 90) (($ (-1191 $) (-1195)) 89)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 81)) (-3986 (((-430 $) $) 80)) (-2474 (($ $) 100)) (-2922 (((-112) $ $) 65)) (-2473 (($) 18 T CONST)) (-4034 (((-656 $) (-968 $)) 94) (((-656 $) (-1191 $)) 93) (((-656 $) (-1191 $) (-1195)) 92)) (-1342 (($ (-968 $)) 97) (($ (-1191 $)) 96) (($ (-1191 $) (-1195)) 95)) (-2803 (($ $ $) 61)) (-1999 (((-3 $ "failed") $) 37)) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-2463 (((-112) $) 79)) (-1439 (((-112) $) 35)) (-3298 (($ $ (-576)) 99)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 78)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2354 (((-430 $) $) 82)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2910 (((-783) $) 64)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ $) 73)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-4016 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-936))))) +(-13 (-1117) (-10 -8 (-15 -4016 ($ $ $)) (-15 * ($ (-936) $)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-1967 (((-655 $) (-967 $)) 32) (((-655 $) (-1190 $)) 16) (((-655 $) (-1190 $) (-1194)) 20)) (-1895 (($ (-967 $)) 30) (($ (-1190 $)) 11) (($ (-1190 $) (-1194)) 60)) (-2472 (((-655 $) (-967 $)) 33) (((-655 $) (-1190 $)) 18) (((-655 $) (-1190 $) (-1194)) 19)) (-3700 (($ (-967 $)) 31) (($ (-1190 $)) 13) (($ (-1190 $) (-1194)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1967 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -1967 ((-655 |#1|) (-1190 |#1|))) (-15 -1967 ((-655 |#1|) (-967 |#1|))) (-15 -1895 (|#1| (-1190 |#1|) (-1194))) (-15 -1895 (|#1| (-1190 |#1|))) (-15 -1895 (|#1| (-967 |#1|))) (-15 -2472 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -2472 ((-655 |#1|) (-1190 |#1|))) (-15 -2472 ((-655 |#1|) (-967 |#1|))) (-15 -3700 (|#1| (-1190 |#1|) (-1194))) (-15 -3700 (|#1| (-1190 |#1|))) (-15 -3700 (|#1| (-967 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1967 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -1967 ((-655 |#1|) (-1190 |#1|))) (-15 -1967 ((-655 |#1|) (-967 |#1|))) (-15 -1895 (|#1| (-1190 |#1|) (-1194))) (-15 -1895 (|#1| (-1190 |#1|))) (-15 -1895 (|#1| (-967 |#1|))) (-15 -2472 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -2472 ((-655 |#1|) (-1190 |#1|))) (-15 -2472 ((-655 |#1|) (-967 |#1|))) (-15 -3700 (|#1| (-1190 |#1|) (-1194))) (-15 -3700 (|#1| (-1190 |#1|))) (-15 -3700 (|#1| (-967 |#1|)))) +((-2861 (((-112) $ $) 7)) (-1967 (((-655 $) (-967 $)) 88) (((-655 $) (-1190 $)) 87) (((-655 $) (-1190 $) (-1194)) 86)) (-1895 (($ (-967 $)) 91) (($ (-1190 $)) 90) (($ (-1190 $) (-1194)) 89)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 81)) (-2330 (((-429 $) $) 80)) (-2473 (($ $) 100)) (-2279 (((-112) $ $) 65)) (-3011 (($) 18 T CONST)) (-2472 (((-655 $) (-967 $)) 94) (((-655 $) (-1190 $)) 93) (((-655 $) (-1190 $) (-1194)) 92)) (-3700 (($ (-967 $)) 97) (($ (-1190 $)) 96) (($ (-1190 $) (-1194)) 95)) (-2802 (($ $ $) 61)) (-1747 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-1336 (((-112) $) 79)) (-1542 (((-112) $) 35)) (-2931 (($ $ (-575)) 99)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2353 (((-429 $) $) 82)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3708 (((-782) $) 64)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ $) 73)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77) (($ $ (-418 (-575))) 98)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75))) (((-27) (-141)) (T -27)) -((-1342 (*1 *1 *2) (-12 (-5 *2 (-968 *1)) (-4 *1 (-27)))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) (-1342 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27)))) (-4034 (*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-4034 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-4034 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-968 *1)) (-4 *1 (-27)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) (-4023 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3696 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27)) (-5 *2 (-656 *1))))) -(-13 (-374) (-1020) (-10 -8 (-15 -1342 ($ (-968 $))) (-15 -1342 ($ (-1191 $))) (-15 -1342 ($ (-1191 $) (-1195))) (-15 -4034 ((-656 $) (-968 $))) (-15 -4034 ((-656 $) (-1191 $))) (-15 -4034 ((-656 $) (-1191 $) (-1195))) (-15 -4023 ($ (-968 $))) (-15 -4023 ($ (-1191 $))) (-15 -4023 ($ (-1191 $) (-1195))) (-15 -3696 ((-656 $) (-968 $))) (-15 -3696 ((-656 $) (-1191 $))) (-15 -3696 ((-656 $) (-1191 $) (-1195))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1020) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T)) -((-3696 (((-656 $) (-968 $)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-1191 $) (-1195)) 55) (((-656 $) $) 22) (((-656 $) $ (-1195)) 46)) (-4023 (($ (-968 $)) NIL) (($ (-1191 $)) NIL) (($ (-1191 $) (-1195)) 57) (($ $) 20) (($ $ (-1195)) 40)) (-4034 (((-656 $) (-968 $)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-1191 $) (-1195)) 53) (((-656 $) $) 18) (((-656 $) $ (-1195)) 48)) (-1342 (($ (-968 $)) NIL) (($ (-1191 $)) NIL) (($ (-1191 $) (-1195)) NIL) (($ $) 15) (($ $ (-1195)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3696 ((-656 |#1|) |#1| (-1195))) (-15 -4023 (|#1| |#1| (-1195))) (-15 -3696 ((-656 |#1|) |#1|)) (-15 -4023 (|#1| |#1|)) (-15 -4034 ((-656 |#1|) |#1| (-1195))) (-15 -1342 (|#1| |#1| (-1195))) (-15 -4034 ((-656 |#1|) |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -3696 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3696 ((-656 |#1|) (-1191 |#1|))) (-15 -3696 ((-656 |#1|) (-968 |#1|))) (-15 -4023 (|#1| (-1191 |#1|) (-1195))) (-15 -4023 (|#1| (-1191 |#1|))) (-15 -4023 (|#1| (-968 |#1|))) (-15 -4034 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -4034 ((-656 |#1|) (-1191 |#1|))) (-15 -4034 ((-656 |#1|) (-968 |#1|))) (-15 -1342 (|#1| (-1191 |#1|) (-1195))) (-15 -1342 (|#1| (-1191 |#1|))) (-15 -1342 (|#1| (-968 |#1|)))) (-29 |#2|) (-568)) (T -28)) -NIL -(-10 -8 (-15 -3696 ((-656 |#1|) |#1| (-1195))) (-15 -4023 (|#1| |#1| (-1195))) (-15 -3696 ((-656 |#1|) |#1|)) (-15 -4023 (|#1| |#1|)) (-15 -4034 ((-656 |#1|) |#1| (-1195))) (-15 -1342 (|#1| |#1| (-1195))) (-15 -4034 ((-656 |#1|) |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -3696 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3696 ((-656 |#1|) (-1191 |#1|))) (-15 -3696 ((-656 |#1|) (-968 |#1|))) (-15 -4023 (|#1| (-1191 |#1|) (-1195))) (-15 -4023 (|#1| (-1191 |#1|))) (-15 -4023 (|#1| (-968 |#1|))) (-15 -4034 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -4034 ((-656 |#1|) (-1191 |#1|))) (-15 -4034 ((-656 |#1|) (-968 |#1|))) (-15 -1342 (|#1| (-1191 |#1|) (-1195))) (-15 -1342 (|#1| (-1191 |#1|))) (-15 -1342 (|#1| (-968 |#1|)))) -((-2862 (((-112) $ $) 7)) (-3696 (((-656 $) (-968 $)) 88) (((-656 $) (-1191 $)) 87) (((-656 $) (-1191 $) (-1195)) 86) (((-656 $) $) 137) (((-656 $) $ (-1195)) 135)) (-4023 (($ (-968 $)) 91) (($ (-1191 $)) 90) (($ (-1191 $) (-1195)) 89) (($ $) 138) (($ $ (-1195)) 136)) (-1389 (((-112) $) 17)) (-1607 (((-656 (-1195)) $) 206)) (-3467 (((-419 (-1191 $)) $ (-624 $)) 238 (|has| |#1| (-568)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-4271 (((-656 (-624 $)) $) 169)) (-1459 (((-3 $ "failed") $ $) 20)) (-1474 (($ $ (-656 (-624 $)) (-656 $)) 159) (($ $ (-656 (-304 $))) 158) (($ $ (-304 $)) 157)) (-2944 (($ $) 81)) (-3986 (((-430 $) $) 80)) (-2474 (($ $) 100)) (-2922 (((-112) $ $) 65)) (-2473 (($) 18 T CONST)) (-4034 (((-656 $) (-968 $)) 94) (((-656 $) (-1191 $)) 93) (((-656 $) (-1191 $) (-1195)) 92) (((-656 $) $) 141) (((-656 $) $ (-1195)) 139)) (-1342 (($ (-968 $)) 97) (($ (-1191 $)) 96) (($ (-1191 $) (-1195)) 95) (($ $) 142) (($ $ (-1195)) 140)) (-2449 (((-3 (-968 |#1|) "failed") $) 256 (|has| |#1| (-1067))) (((-3 (-419 (-968 |#1|)) "failed") $) 240 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 202) (((-3 (-576) "failed") $) 199 (|has| |#1| (-1056 (-576)))) (((-3 (-1195) "failed") $) 193) (((-3 (-624 $) "failed") $) 144) (((-3 (-419 (-576)) "failed") $) 132 (-3766 (-12 (|has| |#1| (-1056 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1056 (-419 (-576))))))) (-4401 (((-968 |#1|) $) 255 (|has| |#1| (-1067))) (((-419 (-968 |#1|)) $) 239 (|has| |#1| (-568))) ((|#1| $) 201) (((-576) $) 200 (|has| |#1| (-1056 (-576)))) (((-1195) $) 192) (((-624 $) $) 143) (((-419 (-576)) $) 133 (-3766 (-12 (|has| |#1| (-1056 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1056 (-419 (-576))))))) (-2803 (($ $ $) 61)) (-2613 (((-701 |#1|) (-1286 $)) 246 (|has| |#1| (-1067))) (((-701 |#1|) (-701 $)) 245 (|has| |#1| (-1067))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 244 (|has| |#1| (-1067))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 131 (-3766 (-3227 (|has| |#1| (-1067)) (|has| |#1| (-651 (-576)))) (-3227 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (((-701 (-576)) (-701 $)) 130 (-3766 (-3227 (|has| |#1| (-1067)) (|has| |#1| (-651 (-576)))) (-3227 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (((-701 (-576)) (-1286 $)) 129 (-3766 (-3227 (|has| |#1| (-1067)) (|has| |#1| (-651 (-576)))) (-3227 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))))) (-1999 (((-3 $ "failed") $) 37)) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-2463 (((-112) $) 79)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 198 (|has| |#1| (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 197 (|has| |#1| (-899 (-576))))) (-4330 (($ (-656 $)) 163) (($ $) 162)) (-3640 (((-656 (-115)) $) 170)) (-2573 (((-115) (-115)) 171)) (-1439 (((-112) $) 35)) (-4064 (((-112) $) 191 (|has| $ (-1056 (-576))))) (-3154 (($ $) 223 (|has| |#1| (-1067)))) (-1595 (((-1143 |#1| (-624 $)) $) 222 (|has| |#1| (-1067)))) (-3298 (($ $ (-576)) 99)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3621 (((-1191 $) (-624 $)) 188 (|has| $ (-1067)))) (-2551 (($ (-1 $ $) (-624 $)) 177)) (-3650 (((-3 (-624 $) "failed") $) 167)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-2558 (((-656 (-624 $)) $) 168)) (-1673 (($ (-115) (-656 $)) 176) (($ (-115) $) 175)) (-1899 (((-3 (-656 $) "failed") $) 217 (|has| |#1| (-1130)))) (-1923 (((-3 (-2 (|:| |val| $) (|:| -1359 (-576))) "failed") $) 226 (|has| |#1| (-1067)))) (-1887 (((-3 (-656 $) "failed") $) 219 (|has| |#1| (-25)))) (-1357 (((-3 (-2 (|:| -1755 (-576)) (|:| |var| (-624 $))) "failed") $) 220 (|has| |#1| (-25)))) (-1910 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $ (-1195)) 225 (|has| |#1| (-1067))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $ (-115)) 224 (|has| |#1| (-1067))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $) 218 (|has| |#1| (-1130)))) (-3657 (((-112) $ (-1195)) 174) (((-112) $ (-115)) 173)) (-4333 (($ $) 78)) (-3343 (((-783) $) 166)) (-3914 (((-1138) $) 11)) (-4346 (((-112) $) 204)) (-4359 ((|#1| $) 205)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-3630 (((-112) $ (-1195)) 179) (((-112) $ $) 178)) (-2354 (((-430 $) $) 82)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-4072 (((-112) $) 190 (|has| $ (-1056 (-576))))) (-3049 (($ $ (-1195) (-783) (-1 $ $)) 230 (|has| |#1| (-1067))) (($ $ (-1195) (-783) (-1 $ (-656 $))) 229 (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 228 (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) 227 (|has| |#1| (-1067))) (($ $ (-656 (-115)) (-656 $) (-1195)) 216 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1195)) 215 (|has| |#1| (-626 (-548)))) (($ $) 214 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195))) 213 (|has| |#1| (-626 (-548)))) (($ $ (-1195)) 212 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 187) (($ $ (-115) (-1 $ (-656 $))) 186) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 185) (($ $ (-656 (-115)) (-656 (-1 $ $))) 184) (($ $ (-1195) (-1 $ $)) 183) (($ $ (-1195) (-1 $ (-656 $))) 182) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 181) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 180) (($ $ (-656 $) (-656 $)) 151) (($ $ $ $) 150) (($ $ (-304 $)) 149) (($ $ (-656 (-304 $))) 148) (($ $ (-656 (-624 $)) (-656 $)) 147) (($ $ (-624 $) $) 146)) (-2910 (((-783) $) 64)) (-2071 (($ (-115) (-656 $)) 156) (($ (-115) $ $ $ $) 155) (($ (-115) $ $ $) 154) (($ (-115) $ $) 153) (($ (-115) $) 152)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-3663 (($ $ $) 165) (($ $) 164)) (-2390 (($ $ (-656 (-1195)) (-656 (-783))) 251 (|has| |#1| (-1067))) (($ $ (-1195) (-783)) 250 (|has| |#1| (-1067))) (($ $ (-656 (-1195))) 249 (|has| |#1| (-1067))) (($ $ (-1195)) 247 (|has| |#1| (-1067)))) (-3143 (($ $) 233 (|has| |#1| (-568)))) (-1608 (((-1143 |#1| (-624 $)) $) 232 (|has| |#1| (-568)))) (-1360 (($ $) 189 (|has| $ (-1067)))) (-2616 (((-548) $) 260 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 231 (|has| |#1| (-568))) (((-905 (-390)) $) 196 (|has| |#1| (-626 (-905 (-390))))) (((-905 (-576)) $) 195 (|has| |#1| (-626 (-905 (-576)))))) (-3276 (($ $ $) 259 (|has| |#1| (-485)))) (-2920 (($ $ $) 258 (|has| |#1| (-485)))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-968 |#1|)) 257 (|has| |#1| (-1067))) (($ (-419 (-968 |#1|))) 241 (|has| |#1| (-568))) (($ (-419 (-968 (-419 |#1|)))) 237 (|has| |#1| (-568))) (($ (-968 (-419 |#1|))) 236 (|has| |#1| (-568))) (($ (-419 |#1|)) 235 (|has| |#1| (-568))) (($ (-1143 |#1| (-624 $))) 221 (|has| |#1| (-1067))) (($ |#1|) 203) (($ (-1195)) 194) (($ (-624 $)) 145)) (-3148 (((-3 $ "failed") $) 243 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-2377 (($ (-656 $)) 161) (($ $) 160)) (-2362 (((-112) (-115)) 172)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1629 (($ (-1195) (-656 $)) 211) (($ (-1195) $ $ $ $) 210) (($ (-1195) $ $ $) 209) (($ (-1195) $ $) 208) (($ (-1195) $) 207)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-656 (-1195)) (-656 (-783))) 254 (|has| |#1| (-1067))) (($ $ (-1195) (-783)) 253 (|has| |#1| (-1067))) (($ $ (-656 (-1195))) 252 (|has| |#1| (-1067))) (($ $ (-1195)) 248 (|has| |#1| (-1067)))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ $) 73) (($ (-1143 |#1| (-624 $)) (-1143 |#1| (-624 $))) 234 (|has| |#1| (-568)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 242 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1067))))) -(((-29 |#1|) (-141) (-568)) (T -29)) -((-1342 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-4034 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-1342 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-4034 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))) (-4023 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-3696 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-4023 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-3696 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -1342 ($ $)) (-15 -4034 ((-656 $) $)) (-15 -1342 ($ $ (-1195))) (-15 -4034 ((-656 $) $ (-1195))) (-15 -4023 ($ $)) (-15 -3696 ((-656 $) $)) (-15 -4023 ($ $ (-1195))) (-15 -3696 ((-656 $) $ (-1195))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-968 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-968 |#1|)) |has| |#1| (-1067)) ((-628 #4=(-1195)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-249) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1067)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) -3766 (|has| |#1| (-1067)) (|has| |#1| (-174))) ((-658 $) . T) ((-660 #0#) . T) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))) ((-660 |#1|) -3766 (|has| |#1| (-1067)) (|has| |#1| (-174))) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))) ((-651 |#1|) |has| |#1| (-1067)) ((-729 #0#) . T) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) . T) ((-738) . T) ((-909 $ #6=(-1195)) |has| |#1| (-1067)) ((-914 #6#) |has| |#1| (-1067)) ((-916 #6#) |has| |#1| (-1067)) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-936) . T) ((-1020) . T) ((-1056 (-419 (-576))) -3766 (|has| |#1| (-1056 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))))) ((-1056 #1#) |has| |#1| (-568)) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 #2#) . T) ((-1056 #3#) |has| |#1| (-1067)) ((-1056 #4#) . T) ((-1056 |#1|) . T) ((-1069 #0#) . T) ((-1069 |#1|) |has| |#1| (-174)) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 |#1|) |has| |#1| (-174)) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T) ((-1240) . T)) -((-2827 (((-1112 (-227)) $) NIL)) (-2815 (((-1112 (-227)) $) NIL)) (-1966 (($ $ (-227)) 164)) (-4106 (($ (-968 (-576)) (-1195) (-1195) (-1112 (-419 (-576))) (-1112 (-419 (-576)))) 104)) (-1364 (((-656 (-656 (-959 (-227)))) $) 180)) (-2884 (((-874) $) 194))) -(((-30) (-13 (-971) (-10 -8 (-15 -4106 ($ (-968 (-576)) (-1195) (-1195) (-1112 (-419 (-576))) (-1112 (-419 (-576))))) (-15 -1966 ($ $ (-227)))))) (T -30)) -((-4106 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-968 (-576))) (-5 *3 (-1195)) (-5 *4 (-1112 (-419 (-576)))) (-5 *1 (-30)))) (-1966 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) -(-13 (-971) (-10 -8 (-15 -4106 ($ (-968 (-576)) (-1195) (-1195) (-1112 (-419 (-576))) (-1112 (-419 (-576))))) (-15 -1966 ($ $ (-227))))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-1789 (((-1153) $) 11)) (-3722 (((-112) $ $) NIL)) (-1549 (((-1153) $) 9)) (-3915 (((-112) $ $) NIL))) -(((-31) (-13 (-1101) (-10 -8 (-15 -1549 ((-1153) $)) (-15 -1789 ((-1153) $))))) (T -31)) -((-1549 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-31)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-31))))) -(-13 (-1101) (-10 -8 (-15 -1549 ((-1153) $)) (-15 -1789 ((-1153) $)))) -((-1342 ((|#2| (-1191 |#2|) (-1195)) 41)) (-2573 (((-115) (-115)) 55)) (-3621 (((-1191 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1056 (-576))))) (-4366 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1056 (-576))))) (-4116 ((|#2| (-1191 |#2|) |#2|) 29)) (-4353 (((-874) (-656 |#2|)) 86)) (-1360 ((|#2| |#2|) 144 (|has| |#1| (-1056 (-576))))) (-2362 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1056 (-576)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -1342 (|#2| (-1191 |#2|) (-1195))) (-15 -2573 ((-115) (-115))) (-15 -2362 ((-112) (-115))) (-15 -4116 (|#2| (-1191 |#2|) |#2|)) (-15 -4353 ((-874) (-656 |#2|))) (IF (|has| |#1| (-1056 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3621 ((-1191 |#2|) (-624 |#2|))) (-15 -1360 (|#2| |#2|)) (-15 -4366 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32)) -((-4366 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1056 *4)) (-4 *3 (-568)))) (-1360 (*1 *2 *2) (-12 (-4 *3 (-1056 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1056 (-576))) (-4 *4 (-568)) (-5 *2 (-1191 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1056 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-874)) (-5 *1 (-32 *4 *5)))) (-4116 (*1 *2 *3 *2) (-12 (-5 *3 (-1191 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-2573 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-1342 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *2)) (-5 *4 (-1195)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))) -(-10 -7 (-15 -1342 (|#2| (-1191 |#2|) (-1195))) (-15 -2573 ((-115) (-115))) (-15 -2362 ((-112) (-115))) (-15 -4116 (|#2| (-1191 |#2|) |#2|)) (-15 -4353 ((-874) (-656 |#2|))) (IF (|has| |#1| (-1056 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3621 ((-1191 |#2|) (-624 |#2|))) (-15 -1360 (|#2| |#2|)) (-15 -4366 (|#2| |#1| (-576)))) |%noBranch|)) -((-2970 (((-112) $ (-783)) 20)) (-2473 (($) 10)) (-2408 (((-112) $ (-783)) 19)) (-2374 (((-112) $ (-783)) 17)) (-2983 (((-112) $ $) 8)) (-2809 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -2473 (|#1|)) (-15 -2970 ((-112) |#1| (-783))) (-15 -2408 ((-112) |#1| (-783))) (-15 -2374 ((-112) |#1| (-783))) (-15 -2809 ((-112) |#1|)) (-15 -2983 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -2473 (|#1|)) (-15 -2970 ((-112) |#1| (-783))) (-15 -2408 ((-112) |#1| (-783))) (-15 -2374 ((-112) |#1| (-783))) (-15 -2809 ((-112) |#1|)) (-15 -2983 ((-112) |#1| |#1|))) -((-2970 (((-112) $ (-783)) 8)) (-2473 (($) 7 T CONST)) (-2408 (((-112) $ (-783)) 9)) (-2374 (((-112) $ (-783)) 10)) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-3079 (($ $) 13)) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) +((-3700 (*1 *1 *2) (-12 (-5 *2 (-967 *1)) (-4 *1 (-27)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27)))) (-3700 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1194)) (-4 *1 (-27)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1194)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-967 *1)) (-4 *1 (-27)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27)))) (-1895 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1194)) (-4 *1 (-27)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) (-1967 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1194)) (-4 *1 (-27)) (-5 *2 (-655 *1))))) +(-13 (-373) (-1019) (-10 -8 (-15 -3700 ($ (-967 $))) (-15 -3700 ($ (-1190 $))) (-15 -3700 ($ (-1190 $) (-1194))) (-15 -2472 ((-655 $) (-967 $))) (-15 -2472 ((-655 $) (-1190 $))) (-15 -2472 ((-655 $) (-1190 $) (-1194))) (-15 -1895 ($ (-967 $))) (-15 -1895 ($ (-1190 $))) (-15 -1895 ($ (-1190 $) (-1194))) (-15 -1967 ((-655 $) (-967 $))) (-15 -1967 ((-655 $) (-1190 $))) (-15 -1967 ((-655 $) (-1190 $) (-1194))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1019) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T)) +((-1967 (((-655 $) (-967 $)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-1190 $) (-1194)) 55) (((-655 $) $) 22) (((-655 $) $ (-1194)) 46)) (-1895 (($ (-967 $)) NIL) (($ (-1190 $)) NIL) (($ (-1190 $) (-1194)) 57) (($ $) 20) (($ $ (-1194)) 40)) (-2472 (((-655 $) (-967 $)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-1190 $) (-1194)) 53) (((-655 $) $) 18) (((-655 $) $ (-1194)) 48)) (-3700 (($ (-967 $)) NIL) (($ (-1190 $)) NIL) (($ (-1190 $) (-1194)) NIL) (($ $) 15) (($ $ (-1194)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1967 ((-655 |#1|) |#1| (-1194))) (-15 -1895 (|#1| |#1| (-1194))) (-15 -1967 ((-655 |#1|) |#1|)) (-15 -1895 (|#1| |#1|)) (-15 -2472 ((-655 |#1|) |#1| (-1194))) (-15 -3700 (|#1| |#1| (-1194))) (-15 -2472 ((-655 |#1|) |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -1967 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -1967 ((-655 |#1|) (-1190 |#1|))) (-15 -1967 ((-655 |#1|) (-967 |#1|))) (-15 -1895 (|#1| (-1190 |#1|) (-1194))) (-15 -1895 (|#1| (-1190 |#1|))) (-15 -1895 (|#1| (-967 |#1|))) (-15 -2472 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -2472 ((-655 |#1|) (-1190 |#1|))) (-15 -2472 ((-655 |#1|) (-967 |#1|))) (-15 -3700 (|#1| (-1190 |#1|) (-1194))) (-15 -3700 (|#1| (-1190 |#1|))) (-15 -3700 (|#1| (-967 |#1|)))) (-29 |#2|) (-567)) (T -28)) +NIL +(-10 -8 (-15 -1967 ((-655 |#1|) |#1| (-1194))) (-15 -1895 (|#1| |#1| (-1194))) (-15 -1967 ((-655 |#1|) |#1|)) (-15 -1895 (|#1| |#1|)) (-15 -2472 ((-655 |#1|) |#1| (-1194))) (-15 -3700 (|#1| |#1| (-1194))) (-15 -2472 ((-655 |#1|) |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -1967 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -1967 ((-655 |#1|) (-1190 |#1|))) (-15 -1967 ((-655 |#1|) (-967 |#1|))) (-15 -1895 (|#1| (-1190 |#1|) (-1194))) (-15 -1895 (|#1| (-1190 |#1|))) (-15 -1895 (|#1| (-967 |#1|))) (-15 -2472 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -2472 ((-655 |#1|) (-1190 |#1|))) (-15 -2472 ((-655 |#1|) (-967 |#1|))) (-15 -3700 (|#1| (-1190 |#1|) (-1194))) (-15 -3700 (|#1| (-1190 |#1|))) (-15 -3700 (|#1| (-967 |#1|)))) +((-2861 (((-112) $ $) 7)) (-1967 (((-655 $) (-967 $)) 88) (((-655 $) (-1190 $)) 87) (((-655 $) (-1190 $) (-1194)) 86) (((-655 $) $) 137) (((-655 $) $ (-1194)) 135)) (-1895 (($ (-967 $)) 91) (($ (-1190 $)) 90) (($ (-1190 $) (-1194)) 89) (($ $) 138) (($ $ (-1194)) 136)) (-3799 (((-112) $) 17)) (-1606 (((-655 (-1194)) $) 206)) (-3466 (((-418 (-1190 $)) $ (-623 $)) 238 (|has| |#1| (-567)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-4270 (((-655 (-623 $)) $) 169)) (-2597 (((-3 $ "failed") $ $) 20)) (-1473 (($ $ (-655 (-623 $)) (-655 $)) 159) (($ $ (-655 (-303 $))) 158) (($ $ (-303 $)) 157)) (-2058 (($ $) 81)) (-2330 (((-429 $) $) 80)) (-2473 (($ $) 100)) (-2279 (((-112) $ $) 65)) (-3011 (($) 18 T CONST)) (-2472 (((-655 $) (-967 $)) 94) (((-655 $) (-1190 $)) 93) (((-655 $) (-1190 $) (-1194)) 92) (((-655 $) $) 141) (((-655 $) $ (-1194)) 139)) (-3700 (($ (-967 $)) 97) (($ (-1190 $)) 96) (($ (-1190 $) (-1194)) 95) (($ $) 142) (($ $ (-1194)) 140)) (-2449 (((-3 (-967 |#1|) "failed") $) 256 (|has| |#1| (-1066))) (((-3 (-418 (-967 |#1|)) "failed") $) 240 (|has| |#1| (-567))) (((-3 |#1| "failed") $) 202) (((-3 (-575) "failed") $) 199 (|has| |#1| (-1055 (-575)))) (((-3 (-1194) "failed") $) 193) (((-3 (-623 $) "failed") $) 144) (((-3 (-418 (-575)) "failed") $) 132 (-3765 (-12 (|has| |#1| (-1055 (-575))) (|has| |#1| (-567))) (|has| |#1| (-1055 (-418 (-575))))))) (-4399 (((-967 |#1|) $) 255 (|has| |#1| (-1066))) (((-418 (-967 |#1|)) $) 239 (|has| |#1| (-567))) ((|#1| $) 201) (((-575) $) 200 (|has| |#1| (-1055 (-575)))) (((-1194) $) 192) (((-623 $) $) 143) (((-418 (-575)) $) 133 (-3765 (-12 (|has| |#1| (-1055 (-575))) (|has| |#1| (-567))) (|has| |#1| (-1055 (-418 (-575))))))) (-2802 (($ $ $) 61)) (-1749 (((-700 |#1|) (-1285 $)) 246 (|has| |#1| (-1066))) (((-700 |#1|) (-700 $)) 245 (|has| |#1| (-1066))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 244 (|has| |#1| (-1066))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 131 (-3765 (-3226 (|has| |#1| (-1066)) (|has| |#1| (-650 (-575)))) (-3226 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (((-700 (-575)) (-700 $)) 130 (-3765 (-3226 (|has| |#1| (-1066)) (|has| |#1| (-650 (-575)))) (-3226 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (((-700 (-575)) (-1285 $)) 129 (-3765 (-3226 (|has| |#1| (-1066)) (|has| |#1| (-650 (-575)))) (-3226 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))))) (-1747 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-1336 (((-112) $) 79)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 198 (|has| |#1| (-898 (-389)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 197 (|has| |#1| (-898 (-575))))) (-2092 (($ (-655 $)) 163) (($ $) 162)) (-2622 (((-655 (-115)) $) 170)) (-2572 (((-115) (-115)) 171)) (-1542 (((-112) $) 35)) (-2437 (((-112) $) 191 (|has| $ (-1055 (-575))))) (-4046 (($ $) 223 (|has| |#1| (-1066)))) (-1595 (((-1142 |#1| (-623 $)) $) 222 (|has| |#1| (-1066)))) (-2931 (($ $ (-575)) 99)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-4347 (((-1190 $) (-623 $)) 188 (|has| $ (-1066)))) (-2550 (($ (-1 $ $) (-623 $)) 177)) (-4306 (((-3 (-623 $) "failed") $) 167)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-2557 (((-655 (-623 $)) $) 168)) (-1672 (($ (-115) (-655 $)) 176) (($ (-115) $) 175)) (-3658 (((-3 (-655 $) "failed") $) 217 (|has| |#1| (-1129)))) (-2056 (((-3 (-2 (|:| |val| $) (|:| -2398 (-575))) "failed") $) 226 (|has| |#1| (-1066)))) (-1734 (((-3 (-655 $) "failed") $) 219 (|has| |#1| (-25)))) (-2991 (((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 $))) "failed") $) 220 (|has| |#1| (-25)))) (-2455 (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $ (-1194)) 225 (|has| |#1| (-1066))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $ (-115)) 224 (|has| |#1| (-1066))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $) 218 (|has| |#1| (-1129)))) (-3789 (((-112) $ (-1194)) 174) (((-112) $ (-115)) 173)) (-4332 (($ $) 78)) (-3343 (((-782) $) 166)) (-3912 (((-1137) $) 11)) (-4345 (((-112) $) 204)) (-4353 ((|#1| $) 205)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2878 (((-112) $ (-1194)) 179) (((-112) $ $) 178)) (-2353 (((-429 $) $) 82)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-2185 (((-112) $) 190 (|has| $ (-1055 (-575))))) (-3048 (($ $ (-1194) (-782) (-1 $ $)) 230 (|has| |#1| (-1066))) (($ $ (-1194) (-782) (-1 $ (-655 $))) 229 (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ (-655 $)))) 228 (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ $))) 227 (|has| |#1| (-1066))) (($ $ (-655 (-115)) (-655 $) (-1194)) 216 (|has| |#1| (-625 (-547)))) (($ $ (-115) $ (-1194)) 215 (|has| |#1| (-625 (-547)))) (($ $) 214 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-1194))) 213 (|has| |#1| (-625 (-547)))) (($ $ (-1194)) 212 (|has| |#1| (-625 (-547)))) (($ $ (-115) (-1 $ $)) 187) (($ $ (-115) (-1 $ (-655 $))) 186) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) 185) (($ $ (-655 (-115)) (-655 (-1 $ $))) 184) (($ $ (-1194) (-1 $ $)) 183) (($ $ (-1194) (-1 $ (-655 $))) 182) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) 181) (($ $ (-655 (-1194)) (-655 (-1 $ $))) 180) (($ $ (-655 $) (-655 $)) 151) (($ $ $ $) 150) (($ $ (-303 $)) 149) (($ $ (-655 (-303 $))) 148) (($ $ (-655 (-623 $)) (-655 $)) 147) (($ $ (-623 $) $) 146)) (-3708 (((-782) $) 64)) (-2070 (($ (-115) (-655 $)) 156) (($ (-115) $ $ $ $) 155) (($ (-115) $ $ $) 154) (($ (-115) $ $) 153) (($ (-115) $) 152)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-3146 (($ $ $) 165) (($ $) 164)) (-2389 (($ $ (-655 (-1194)) (-655 (-782))) 251 (|has| |#1| (-1066))) (($ $ (-1194) (-782)) 250 (|has| |#1| (-1066))) (($ $ (-655 (-1194))) 249 (|has| |#1| (-1066))) (($ $ (-1194)) 247 (|has| |#1| (-1066)))) (-4172 (($ $) 233 (|has| |#1| (-567)))) (-1608 (((-1142 |#1| (-623 $)) $) 232 (|has| |#1| (-567)))) (-2552 (($ $) 189 (|has| $ (-1066)))) (-2615 (((-547) $) 260 (|has| |#1| (-625 (-547)))) (($ (-429 $)) 231 (|has| |#1| (-567))) (((-904 (-389)) $) 196 (|has| |#1| (-625 (-904 (-389))))) (((-904 (-575)) $) 195 (|has| |#1| (-625 (-904 (-575)))))) (-4258 (($ $ $) 259 (|has| |#1| (-484)))) (-3320 (($ $ $) 258 (|has| |#1| (-484)))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ (-967 |#1|)) 257 (|has| |#1| (-1066))) (($ (-418 (-967 |#1|))) 241 (|has| |#1| (-567))) (($ (-418 (-967 (-418 |#1|)))) 237 (|has| |#1| (-567))) (($ (-967 (-418 |#1|))) 236 (|has| |#1| (-567))) (($ (-418 |#1|)) 235 (|has| |#1| (-567))) (($ (-1142 |#1| (-623 $))) 221 (|has| |#1| (-1066))) (($ |#1|) 203) (($ (-1194)) 194) (($ (-623 $)) 145)) (-1518 (((-3 $ "failed") $) 243 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-2377 (($ (-655 $)) 161) (($ $) 160)) (-2151 (((-112) (-115)) 172)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1627 (($ (-1194) (-655 $)) 211) (($ (-1194) $ $ $ $) 210) (($ (-1194) $ $ $) 209) (($ (-1194) $ $) 208) (($ (-1194) $) 207)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-655 (-1194)) (-655 (-782))) 254 (|has| |#1| (-1066))) (($ $ (-1194) (-782)) 253 (|has| |#1| (-1066))) (($ $ (-655 (-1194))) 252 (|has| |#1| (-1066))) (($ $ (-1194)) 248 (|has| |#1| (-1066)))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ $) 73) (($ (-1142 |#1| (-623 $)) (-1142 |#1| (-623 $))) 234 (|has| |#1| (-567)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77) (($ $ (-418 (-575))) 98)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75) (($ $ |#1|) 242 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1066))))) +(((-29 |#1|) (-141) (-567)) (T -29)) +((-3700 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-567)))) (-2472 (*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *3)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-4 *1 (-29 *3)) (-4 *3 (-567)))) (-2472 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *4)))) (-1895 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-567)))) (-1967 (*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *3)))) (-1895 (*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-4 *1 (-29 *3)) (-4 *3 (-567)))) (-1967 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-441 |t#1|) (-10 -8 (-15 -3700 ($ $)) (-15 -2472 ((-655 $) $)) (-15 -3700 ($ $ (-1194))) (-15 -2472 ((-655 $) $ (-1194))) (-15 -1895 ($ $)) (-15 -1967 ((-655 $) $)) (-15 -1895 ($ $ (-1194))) (-15 -1967 ((-655 $) $ (-1194))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) . T) ((-627 #1=(-418 (-967 |#1|))) |has| |#1| (-567)) ((-627 (-575)) . T) ((-627 #2=(-623 $)) . T) ((-627 #3=(-967 |#1|)) |has| |#1| (-1066)) ((-627 #4=(-1194)) . T) ((-627 |#1|) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-625 (-904 (-389))) |has| |#1| (-625 (-904 (-389)))) ((-625 (-904 (-575))) |has| |#1| (-625 (-904 (-575)))) ((-248) . T) ((-299) . T) ((-316) . T) ((-318 $) . T) ((-311) . T) ((-373) . T) ((-387 |#1|) |has| |#1| (-1066)) ((-411 |#1|) . T) ((-422 |#1|) . T) ((-441 |#1|) . T) ((-463) . T) ((-484) |has| |#1| (-484)) ((-525 (-623 $) $) . T) ((-525 $ $) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 |#1|) -3765 (|has| |#1| (-1066)) (|has| |#1| (-174))) ((-657 $) . T) ((-659 #0#) . T) ((-659 #5=(-575)) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))) ((-659 |#1|) -3765 (|has| |#1| (-1066)) (|has| |#1| (-174))) ((-659 $) . T) ((-651 #0#) . T) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) . T) ((-650 #5#) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))) ((-650 |#1|) |has| |#1| (-1066)) ((-728 #0#) . T) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) . T) ((-737) . T) ((-908 $ #6=(-1194)) |has| |#1| (-1066)) ((-913 #6#) |has| |#1| (-1066)) ((-915 #6#) |has| |#1| (-1066)) ((-898 (-389)) |has| |#1| (-898 (-389))) ((-898 (-575)) |has| |#1| (-898 (-575))) ((-896 |#1|) . T) ((-935) . T) ((-1019) . T) ((-1055 (-418 (-575))) -3765 (|has| |#1| (-1055 (-418 (-575)))) (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))))) ((-1055 #1#) |has| |#1| (-567)) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 #2#) . T) ((-1055 #3#) |has| |#1| (-1066)) ((-1055 #4#) . T) ((-1055 |#1|) . T) ((-1068 #0#) . T) ((-1068 |#1|) |has| |#1| (-174)) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 |#1|) |has| |#1| (-174)) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T) ((-1239) . T)) +((-2826 (((-1111 (-227)) $) NIL)) (-2814 (((-1111 (-227)) $) NIL)) (-3016 (($ $ (-227)) 164)) (-1598 (($ (-967 (-575)) (-1194) (-1194) (-1111 (-418 (-575))) (-1111 (-418 (-575)))) 104)) (-2595 (((-655 (-655 (-958 (-227)))) $) 180)) (-2883 (((-873) $) 194))) +(((-30) (-13 (-970) (-10 -8 (-15 -1598 ($ (-967 (-575)) (-1194) (-1194) (-1111 (-418 (-575))) (-1111 (-418 (-575))))) (-15 -3016 ($ $ (-227)))))) (T -30)) +((-1598 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-967 (-575))) (-5 *3 (-1194)) (-5 *4 (-1111 (-418 (-575)))) (-5 *1 (-30)))) (-3016 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) +(-13 (-970) (-10 -8 (-15 -1598 ($ (-967 (-575)) (-1194) (-1194) (-1111 (-418 (-575))) (-1111 (-418 (-575))))) (-15 -3016 ($ $ (-227))))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 11)) (-4400 (((-112) $ $) NIL)) (-1548 (((-1152) $) 9)) (-3914 (((-112) $ $) NIL))) +(((-31) (-13 (-1100) (-10 -8 (-15 -1548 ((-1152) $)) (-15 -1788 ((-1152) $))))) (T -31)) +((-1548 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-31)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-31))))) +(-13 (-1100) (-10 -8 (-15 -1548 ((-1152) $)) (-15 -1788 ((-1152) $)))) +((-3700 ((|#2| (-1190 |#2|) (-1194)) 41)) (-2572 (((-115) (-115)) 55)) (-4347 (((-1190 |#2|) (-623 |#2|)) 149 (|has| |#1| (-1055 (-575))))) (-3154 ((|#2| |#1| (-575)) 137 (|has| |#1| (-1055 (-575))))) (-3221 ((|#2| (-1190 |#2|) |#2|) 29)) (-4238 (((-873) (-655 |#2|)) 86)) (-2552 ((|#2| |#2|) 144 (|has| |#1| (-1055 (-575))))) (-2151 (((-112) (-115)) 17)) (** ((|#2| |#2| (-418 (-575))) 103 (|has| |#1| (-1055 (-575)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3700 (|#2| (-1190 |#2|) (-1194))) (-15 -2572 ((-115) (-115))) (-15 -2151 ((-112) (-115))) (-15 -3221 (|#2| (-1190 |#2|) |#2|)) (-15 -4238 ((-873) (-655 |#2|))) (IF (|has| |#1| (-1055 (-575))) (PROGN (-15 ** (|#2| |#2| (-418 (-575)))) (-15 -4347 ((-1190 |#2|) (-623 |#2|))) (-15 -2552 (|#2| |#2|)) (-15 -3154 (|#2| |#1| (-575)))) |%noBranch|)) (-567) (-441 |#1|)) (T -32)) +((-3154 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-4 *2 (-441 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1055 *4)) (-4 *3 (-567)))) (-2552 (*1 *2 *2) (-12 (-4 *3 (-1055 (-575))) (-4 *3 (-567)) (-5 *1 (-32 *3 *2)) (-4 *2 (-441 *3)))) (-4347 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-441 *4)) (-4 *4 (-1055 (-575))) (-4 *4 (-567)) (-5 *2 (-1190 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-418 (-575))) (-4 *4 (-1055 (-575))) (-4 *4 (-567)) (-5 *1 (-32 *4 *2)) (-4 *2 (-441 *4)))) (-4238 (*1 *2 *3) (-12 (-5 *3 (-655 *5)) (-4 *5 (-441 *4)) (-4 *4 (-567)) (-5 *2 (-873)) (-5 *1 (-32 *4 *5)))) (-3221 (*1 *2 *3 *2) (-12 (-5 *3 (-1190 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567)) (-5 *1 (-32 *4 *2)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-441 *4)))) (-2572 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-32 *3 *4)) (-4 *4 (-441 *3)))) (-3700 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *2)) (-5 *4 (-1194)) (-4 *2 (-441 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-567))))) +(-10 -7 (-15 -3700 (|#2| (-1190 |#2|) (-1194))) (-15 -2572 ((-115) (-115))) (-15 -2151 ((-112) (-115))) (-15 -3221 (|#2| (-1190 |#2|) |#2|)) (-15 -4238 ((-873) (-655 |#2|))) (IF (|has| |#1| (-1055 (-575))) (PROGN (-15 ** (|#2| |#2| (-418 (-575)))) (-15 -4347 ((-1190 |#2|) (-623 |#2|))) (-15 -2552 (|#2| |#2|)) (-15 -3154 (|#2| |#1| (-575)))) |%noBranch|)) +((-1845 (((-112) $ (-782)) 20)) (-3011 (($) 10)) (-3896 (((-112) $ (-782)) 19)) (-4026 (((-112) $ (-782)) 17)) (-3753 (((-112) $ $) 8)) (-4076 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -3011 (|#1|)) (-15 -1845 ((-112) |#1| (-782))) (-15 -3896 ((-112) |#1| (-782))) (-15 -4026 ((-112) |#1| (-782))) (-15 -4076 ((-112) |#1|)) (-15 -3753 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3011 (|#1|)) (-15 -1845 ((-112) |#1| (-782))) (-15 -3896 ((-112) |#1| (-782))) (-15 -4026 ((-112) |#1| (-782))) (-15 -4076 ((-112) |#1|)) (-15 -3753 ((-112) |#1| |#1|))) +((-1845 (((-112) $ (-782)) 8)) (-3011 (($) 7 T CONST)) (-3896 (((-112) $ (-782)) 9)) (-4026 (((-112) $ (-782)) 10)) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3078 (($ $) 13)) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) (((-34) (-141)) (T -34)) -((-2983 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3079 (*1 *1 *1) (-4 *1 (-34))) (-1458 (*1 *1) (-4 *1 (-34))) (-2809 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2374 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-2408 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-2970 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-2473 (*1 *1) (-4 *1 (-34))) (-2872 (*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-34)) (-5 *2 (-783))))) -(-13 (-1236) (-10 -8 (-15 -2983 ((-112) $ $)) (-15 -3079 ($ $)) (-15 -1458 ($)) (-15 -2809 ((-112) $)) (-15 -2374 ((-112) $ (-783))) (-15 -2408 ((-112) $ (-783))) (-15 -2970 ((-112) $ (-783))) (-15 -2473 ($) -3739) (IF (|has| $ (-6 -4461)) (-15 -2872 ((-783) $)) |%noBranch|))) -(((-1236) . T)) -((-1570 (($ $) 11)) (-1545 (($ $) 10)) (-1594 (($ $) 9)) (-2915 (($ $) 8)) (-1584 (($ $) 7)) (-1555 (($ $) 6))) +((-3753 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3078 (*1 *1 *1) (-4 *1 (-34))) (-1938 (*1 *1) (-4 *1 (-34))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4026 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112)))) (-3896 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112)))) (-1845 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112)))) (-3011 (*1 *1) (-4 *1 (-34))) (-2871 (*1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-34)) (-5 *2 (-782))))) +(-13 (-1235) (-10 -8 (-15 -3753 ((-112) $ $)) (-15 -3078 ($ $)) (-15 -1938 ($)) (-15 -4076 ((-112) $)) (-15 -4026 ((-112) $ (-782))) (-15 -3896 ((-112) $ (-782))) (-15 -1845 ((-112) $ (-782))) (-15 -3011 ($) -3738) (IF (|has| $ (-6 -4460)) (-15 -2871 ((-782) $)) |%noBranch|))) +(((-1235) . T)) +((-1568 (($ $) 11)) (-1544 (($ $) 10)) (-1592 (($ $) 9)) (-2914 (($ $) 8)) (-1583 (($ $) 7)) (-1554 (($ $) 6))) (((-35) (-141)) (T -35)) -((-1570 (*1 *1 *1) (-4 *1 (-35))) (-1545 (*1 *1 *1) (-4 *1 (-35))) (-1594 (*1 *1 *1) (-4 *1 (-35))) (-2915 (*1 *1 *1) (-4 *1 (-35))) (-1584 (*1 *1 *1) (-4 *1 (-35))) (-1555 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -1555 ($ $)) (-15 -1584 ($ $)) (-15 -2915 ($ $)) (-15 -1594 ($ $)) (-15 -1545 ($ $)) (-15 -1570 ($ $)))) -((-2862 (((-112) $ $) 19 (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-4183 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 127)) (-2990 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 150)) (-3463 (($ $) 148)) (-2298 (($) 73) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 72)) (-3336 (((-1291) $ |#1| |#1|) 100 (|has| $ (-6 -4462))) (((-1291) $ (-576) (-576)) 180 (|has| $ (-6 -4462)))) (-1748 (($ $ (-576)) 161 (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-1891 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 202 (|has| $ (-6 -4462))) (($ $) 201 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)) (|has| $ (-6 -4462))))) (-2032 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-2970 (((-112) $ (-783)) 8)) (-3434 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 136 (|has| $ (-6 -4462)))) (-1772 (($ $ $) 157 (|has| $ (-6 -4462)))) (-1761 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 159 (|has| $ (-6 -4462)))) (-1783 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 155 (|has| $ (-6 -4462)))) (-3055 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 191 (|has| $ (-6 -4462))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-1253 (-576)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 162 (|has| $ (-6 -4462))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "last" (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 160 (|has| $ (-6 -4462))) (($ $ "rest" $) 158 (|has| $ (-6 -4462))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "first" (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 156 (|has| $ (-6 -4462))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "value" (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 135 (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) 134 (|has| $ (-6 -4462)))) (-1443 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 46 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 218)) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 56 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 177 (|has| $ (-6 -4461)))) (-2978 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 149)) (-1397 (((-3 |#2| "failed") |#1| $) 62)) (-2473 (($) 7 T CONST)) (-2745 (($ $) 203 (|has| $ (-6 -4462)))) (-4379 (($ $) 213)) (-1976 (($ $ (-783)) 144) (($ $) 142)) (-2257 (($ $) 216 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-1919 (($ $) 59 (-3766 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461))) (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))))) (-2833 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 47 (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 222) (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 217 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-3634 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 55 (|has| $ (-6 -4461))) (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 176 (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 57 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 54 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 53 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 178 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 175 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 174 (|has| $ (-6 -4461)))) (-2859 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4462))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 192 (|has| $ (-6 -4462)))) (-2789 ((|#2| $ |#1|) 89) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576)) 190)) (-1811 (((-112) $) 194)) (-2634 (((-576) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 210) (((-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 209 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))) (((-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-4001 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 31 (|has| $ (-6 -4461))) (((-656 |#2|) $) 80 (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 116 (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) 125)) (-3452 (((-112) $ $) 133 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-2310 (($ (-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 170)) (-2408 (((-112) $ (-783)) 9)) (-3356 ((|#1| $) 97 (|has| |#1| (-862))) (((-576) $) 182 (|has| (-576) (-862)))) (-1921 (($ $ $) 200 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-2230 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-4214 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-1496 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 30 (|has| $ (-6 -4461))) (((-656 |#2|) $) 81 (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 117 (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461))))) (-3365 ((|#1| $) 96 (|has| |#1| (-862))) (((-576) $) 183 (|has| (-576) (-862)))) (-4137 (($ $ $) 199 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 35 (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4462))) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 112 (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 111)) (-1685 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 227)) (-2374 (((-112) $ (-783)) 10)) (-2482 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 130)) (-4306 (((-112) $) 126)) (-3733 (((-1177) $) 22 (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-3654 (($ $ (-783)) 147) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 145)) (-2002 (((-656 |#1|) $) 64)) (-3412 (((-112) |#1| $) 65)) (-3449 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 40)) (-3807 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 41) (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-2134 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-3385 (((-656 |#1|) $) 94) (((-656 (-576)) $) 185)) (-3394 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-3914 (((-1138) $) 21 (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-1962 ((|#2| $) 98 (|has| |#1| (-862))) (($ $ (-783)) 141) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 139)) (-1932 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 52) (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 173)) (-3346 (($ $ |#2|) 99 (|has| $ (-6 -4462))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 181 (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 42)) (-1821 (((-112) $) 193)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 33 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 114 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) 27 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 26 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 25 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 24 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 123 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 122 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 121 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) 120 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 184 (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-3403 (((-656 |#2|) $) 92) (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 187)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 189) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576)) 188) (($ $ (-1253 (-576))) 171) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "first") 140) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "value") 128)) (-3473 (((-576) $ $) 131)) (-1581 (($) 50) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 49)) (-1455 (($ $ (-576)) 224) (($ $ (-1253 (-576))) 223)) (-3240 (($ $ (-576)) 166) (($ $ (-1253 (-576))) 165)) (-4053 (((-112) $) 129)) (-1816 (($ $) 153)) (-1794 (($ $) 154 (|has| $ (-6 -4462)))) (-1826 (((-783) $) 152)) (-1836 (($ $) 151)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 32 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 115 (|has| $ (-6 -4461)))) (-1902 (($ $ $ (-576)) 204 (|has| $ (-6 -4462)))) (-3079 (($ $) 13)) (-2616 (((-548) $) 60 (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548)))))) (-2895 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 51) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 172)) (-1806 (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 226) (($ $ $) 225)) (-1514 (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 169) (($ (-656 $)) 168) (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 138) (($ $ $) 137)) (-2884 (((-874) $) 18 (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874)))))) (-4255 (((-656 $) $) 124)) (-3462 (((-112) $ $) 132 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-3722 (((-112) $ $) 23 (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 43)) (-3668 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") |#1| $) 110)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 34 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 113 (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) 197 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-3957 (((-112) $ $) 196 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-3915 (((-112) $ $) 20 (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-3970 (((-112) $ $) 198 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-3943 (((-112) $ $) 195 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-36 |#1| |#2|) (-141) (-1118) (-1118)) (T -36)) -((-3668 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-5 *2 (-2 (|:| -4169 *3) (|:| -3180 *4)))))) -(-13 (-1212 |t#1| |t#2|) (-678 (-2 (|:| -4169 |t#1|) (|:| -3180 |t#2|))) (-10 -8 (-15 -3668 ((-3 (-2 (|:| -4169 |t#1|) (|:| -3180 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T) ((-102) -3766 (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862))) ((-625 (-874)) -3766 (|has| |#2| (-1118)) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874)))) ((-152 #1=(-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-241 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1253 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-622 |#1| |#2|) . T) ((-663 #1#) . T) ((-678 #1#) . T) ((-862) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)) ((-1028 #1#) . T) ((-1118) -3766 (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862))) ((-1167 #1#) . T) ((-1212 |#1| |#2|) . T) ((-1236) . T) ((-1274 #1#) . T)) -((-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -2884 (|#1| |#2|)) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) (-38 |#2|) (-174)) (T -37)) -NIL -(-10 -8 (-15 -2884 (|#1| |#2|)) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-1568 (*1 *1 *1) (-4 *1 (-35))) (-1544 (*1 *1 *1) (-4 *1 (-35))) (-1592 (*1 *1 *1) (-4 *1 (-35))) (-2914 (*1 *1 *1) (-4 *1 (-35))) (-1583 (*1 *1 *1) (-4 *1 (-35))) (-1554 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -1554 ($ $)) (-15 -1583 ($ $)) (-15 -2914 ($ $)) (-15 -1592 ($ $)) (-15 -1544 ($ $)) (-15 -1568 ($ $)))) +((-2861 (((-112) $ $) 19 (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-4182 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 127)) (-2989 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 150)) (-3462 (($ $) 148)) (-2297 (($) 73) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 72)) (-4161 (((-1290) $ |#1| |#1|) 100 (|has| $ (-6 -4461))) (((-1290) $ (-575) (-575)) 180 (|has| $ (-6 -4461)))) (-1893 (($ $ (-575)) 161 (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-2119 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 202 (|has| $ (-6 -4461))) (($ $) 201 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)) (|has| $ (-6 -4461))))) (-2031 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-1845 (((-112) $ (-782)) 8)) (-1915 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 136 (|has| $ (-6 -4461)))) (-3391 (($ $ $) 157 (|has| $ (-6 -4461)))) (-3602 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 159 (|has| $ (-6 -4461)))) (-1876 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 155 (|has| $ (-6 -4461)))) (-3054 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 191 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-1252 (-575)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 162 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "last" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 160 (|has| $ (-6 -4461))) (($ $ "rest" $) 158 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "first" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 156 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "value" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 135 (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) 134 (|has| $ (-6 -4461)))) (-1999 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 46 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 218)) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 56 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 177 (|has| $ (-6 -4460)))) (-2977 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 149)) (-1399 (((-3 |#2| "failed") |#1| $) 62)) (-3011 (($) 7 T CONST)) (-1789 (($ $) 203 (|has| $ (-6 -4461)))) (-4381 (($ $) 213)) (-1975 (($ $ (-782)) 144) (($ $) 142)) (-1878 (($ $) 216 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-1748 (($ $) 59 (-3765 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))) (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))))) (-4404 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 47 (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 222) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 217 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-3633 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 55 (|has| $ (-6 -4460))) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 176 (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 57 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 54 (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 53 (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 178 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 175 (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 174 (|has| $ (-6 -4460)))) (-2859 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 192 (|has| $ (-6 -4461)))) (-2788 ((|#2| $ |#1|) 89) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) 190)) (-2087 (((-112) $) 194)) (-2632 (((-575) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 210) (((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 209 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) (((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) 208 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-4001 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 31 (|has| $ (-6 -4460))) (((-655 |#2|) $) 80 (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 116 (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) 125)) (-3117 (((-112) $ $) 133 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-2309 (($ (-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 170)) (-3896 (((-112) $ (-782)) 9)) (-2541 ((|#1| $) 97 (|has| |#1| (-861))) (((-575) $) 182 (|has| (-575) (-861)))) (-1920 (($ $ $) 200 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-4174 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3794 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3955 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 30 (|has| $ (-6 -4460))) (((-655 |#2|) $) 81 (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 117 (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))))) (-3197 ((|#1| $) 96 (|has| |#1| (-861))) (((-575) $) 183 (|has| (-575) (-861)))) (-1425 (($ $ $) 199 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 35 (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4461))) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 112 (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 111)) (-1684 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 227)) (-4026 (((-112) $ (-782)) 10)) (-2482 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 130)) (-1526 (((-112) $) 126)) (-2288 (((-1176) $) 22 (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-3653 (($ $ (-782)) 147) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 145)) (-2001 (((-655 |#1|) $) 64)) (-3308 (((-112) |#1| $) 65)) (-4012 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 40)) (-3862 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 41) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) 221) (($ $ $ (-575)) 220)) (-2135 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) 164) (($ $ $ (-575)) 163)) (-4310 (((-655 |#1|) $) 94) (((-655 (-575)) $) 185)) (-2969 (((-112) |#1| $) 93) (((-112) (-575) $) 186)) (-3912 (((-1137) $) 21 (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-1961 ((|#2| $) 98 (|has| |#1| (-861))) (($ $ (-782)) 141) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 139)) (-3704 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 52) (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 173)) (-3954 (($ $ |#2|) 99 (|has| $ (-6 -4461))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 181 (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 42)) (-3888 (((-112) $) 193)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 33 (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 114 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) 27 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 26 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 25 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 24 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) 87 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) 85 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) 84 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 123 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 122 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 121 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) 120 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 184 (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-1691 (((-655 |#2|) $) 92) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 187)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 189) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) 188) (($ $ (-1252 (-575))) 171) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "first") 140) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "value") 128)) (-2220 (((-575) $ $) 131)) (-3601 (($) 50) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 49)) (-2797 (($ $ (-575)) 224) (($ $ (-1252 (-575))) 223)) (-3239 (($ $ (-575)) 166) (($ $ (-1252 (-575))) 165)) (-1648 (((-112) $) 129)) (-1397 (($ $) 153)) (-1877 (($ $) 154 (|has| $ (-6 -4461)))) (-3269 (((-782) $) 152)) (-1863 (($ $) 151)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 32 (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-782) |#2| $) 82 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 115 (|has| $ (-6 -4460)))) (-4005 (($ $ $ (-575)) 204 (|has| $ (-6 -4461)))) (-3078 (($ $) 13)) (-2615 (((-547) $) 60 (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547)))))) (-2894 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 51) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 172)) (-2774 (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 226) (($ $ $) 225)) (-1514 (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 169) (($ (-655 $)) 168) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 138) (($ $ $) 137)) (-2883 (((-873) $) 18 (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873)))))) (-2348 (((-655 $) $) 124)) (-2781 (((-112) $ $) 132 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-4400 (((-112) $ $) 23 (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 43)) (-3667 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") |#1| $) 110)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 34 (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 113 (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) 197 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3956 (((-112) $ $) 196 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3914 (((-112) $ $) 20 (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-3970 (((-112) $ $) 198 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3943 (((-112) $ $) 195 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-36 |#1| |#2|) (-141) (-1117) (-1117)) (T -36)) +((-3667 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-5 *2 (-2 (|:| -4169 *3) (|:| -3179 *4)))))) +(-13 (-1211 |t#1| |t#2|) (-677 (-2 (|:| -4169 |t#1|) (|:| -3179 |t#2|))) (-10 -8 (-15 -3667 ((-3 (-2 (|:| -4169 |t#1|) (|:| -3179 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((-102) -3765 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861))) ((-624 (-873)) -3765 (|has| |#2| (-1117)) (|has| |#2| (-624 (-873))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873)))) ((-152 #1=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((-625 (-547)) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))) ((-231 #0#) . T) ((-240 #0#) . T) ((-295 #2=(-575) #1#) . T) ((-295 (-1252 (-575)) $) . T) ((-295 |#1| |#2|) . T) ((-297 #2# #1#) . T) ((-297 |#1| |#2|) . T) ((-318 #1#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-318 |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-291 #1#) . T) ((-383 #1#) . T) ((-500 #1#) . T) ((-500 |#2|) . T) ((-615 #2# #1#) . T) ((-615 |#1| |#2|) . T) ((-525 #1# #1#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-525 |#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-621 |#1| |#2|) . T) ((-662 #1#) . T) ((-677 #1#) . T) ((-861) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)) ((-1027 #1#) . T) ((-1117) -3765 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861))) ((-1166 #1#) . T) ((-1211 |#1| |#2|) . T) ((-1235) . T) ((-1273 #1#) . T)) +((-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -2883 (|#1| |#2|)) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) (-38 |#2|) (-174)) (T -37)) +NIL +(-10 -8 (-15 -2883 (|#1| |#2|)) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-141) (-174)) (T -38)) NIL -(-13 (-1067) (-729 |t#1|) (-628 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2921 (((-430 |#1|) |#1|) 41)) (-2354 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-656 (-48))) 33)) (-2994 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -2354 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -2921 ((-430 |#1|) |#1|)) (-15 -2994 ((-112) |#1|))) (-1262 (-48))) (T -39)) -((-2994 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-2921 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-2354 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48)))))) -(-10 -7 (-15 -2354 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -2921 ((-430 |#1|) |#1|)) (-15 -2994 ((-112) |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2243 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-4241 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4221 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-4355 (((-701 (-419 |#2|)) (-1286 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-1448 (((-419 |#2|) $) NIL)) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3986 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2922 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2416 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-2393 (((-112)) NIL)) (-2382 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| (-419 |#2|) (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-1339 (($ (-1286 (-419 |#2|)) (-1286 $)) NIL) (($ (-1286 (-419 |#2|))) 61) (($ (-1286 |#2|) |#2|) 131)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-2803 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4342 (((-701 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-701 $) (-1286 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL) (((-701 (-419 |#2|)) (-1286 $)) NIL)) (-2295 (((-1286 $) (-1286 $)) NIL)) (-2309 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-1999 (((-3 $ "failed") $) NIL)) (-3411 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-2433 (((-112) |#1| |#1|) NIL)) (-4423 (((-937)) NIL)) (-2080 (($) NIL (|has| (-419 |#2|) (-379)))) (-2370 (((-112)) NIL)) (-2360 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2814 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-2192 (($ $) NIL)) (-2013 (($) NIL (|has| (-419 |#2|) (-360)))) (-2635 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-4188 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-2463 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2927 (((-937) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-937)) $) NIL (|has| (-419 |#2|) (-360)))) (-1439 (((-112) $) NIL)) (-2556 (((-783)) NIL)) (-2307 (((-1286 $) (-1286 $)) 106)) (-1941 (((-419 |#2|) $) NIL)) (-3421 (((-656 (-968 |#1|)) (-1195)) NIL (|has| |#1| (-374)))) (-1831 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1922 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-1875 (((-937) $) NIL (|has| (-419 |#2|) (-379)))) (-2297 ((|#3| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3733 (((-1177) $) NIL)) (-3004 (((-1291) (-783)) 84)) (-2255 (((-701 (-419 |#2|))) 56)) (-2276 (((-701 (-419 |#2|))) 49)) (-4333 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2222 (($ (-1286 |#2|) |#2|) 132)) (-2266 (((-701 (-419 |#2|))) 50)) (-2284 (((-701 (-419 |#2|))) 48)) (-2212 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-2233 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 68)) (-2350 (((-1286 $)) 47)) (-1627 (((-1286 $)) 46)) (-2340 (((-112) $) NIL)) (-2329 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3475 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-4318 (($ (-937)) NIL (|has| (-419 |#2|) (-379)))) (-3440 (((-3 |#2| "failed")) NIL)) (-3914 (((-1138) $) NIL)) (-2457 (((-783)) NIL)) (-3660 (($) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-419 |#2|) (-374)))) (-3928 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-2354 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2910 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2071 ((|#1| $ |#1| |#1|) NIL)) (-3450 (((-3 |#2| "failed")) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2790 (((-419 |#2|) (-1286 $)) NIL) (((-419 |#2|)) 44)) (-4197 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2390 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-1195)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $) NIL (-3766 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) NIL (-3766 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-1430 (((-701 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-1360 ((|#3|) 55)) (-2560 (($) NIL (|has| (-419 |#2|) (-360)))) (-3629 (((-1286 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) (-1286 $) (-1286 $)) NIL) (((-1286 (-419 |#2|)) $) 62) (((-701 (-419 |#2|)) (-1286 $)) 107)) (-2616 (((-1286 (-419 |#2|)) $) NIL) (($ (-1286 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2318 (((-1286 $) (-1286 $)) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-3766 (|has| (-419 |#2|) (-1056 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3148 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-1776 ((|#3| $) NIL)) (-1871 (((-783)) NIL T CONST)) (-2415 (((-112)) 42)) (-2404 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL)) (-4232 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3432 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2445 (((-112)) NIL)) (-1996 (($) 17 T CONST)) (-2011 (($) 27 T CONST)) (-3431 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1195)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $) NIL (-3766 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) NIL (-3766 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3004 ((-1291) (-783))))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) |#3|) (T -40)) -((-3004 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *2 (-1291)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1262 (-419 *5))) (-14 *7 *6)))) -(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3004 ((-1291) (-783))))) -((-3013 ((|#2| |#2|) 47)) (-3077 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1056 (-576))))))) (-3066 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1056 (-576))))))) (-3053 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1056 (-576))))))) (-3089 ((|#2| (-115) |#2| (-783)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1056 (-576))))))) (-3039 (((-1191 |#2|) |#2|) 44)) (-3027 ((|#2| |#2| (-656 (-624 |#2|))) 18) ((|#2| |#2| (-656 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -3013 (|#2| |#2|)) (-15 -3027 (|#2| |#2|)) (-15 -3027 (|#2| |#2| |#2|)) (-15 -3027 (|#2| |#2| (-656 |#2|))) (-15 -3027 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -3039 ((-1191 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1056 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -3053 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -3089 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -1595 ((-1143 |#1| (-624 $)) $)) (-15 -1608 ((-1143 |#1| (-624 $)) $)) (-15 -2884 ($ (-1143 |#1| (-624 $))))))) (T -41)) -((-3089 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1056 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1595 ((-1143 *5 (-624 $)) $)) (-15 -1608 ((-1143 *5 (-624 $)) $)) (-15 -2884 ($ (-1143 *5 (-624 $))))))))) (-3077 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) (-15 -1608 ((-1143 *3 (-624 $)) $)) (-15 -2884 ($ (-1143 *3 (-624 $))))))))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) (-15 -1608 ((-1143 *3 (-624 $)) $)) (-15 -2884 ($ (-1143 *3 (-624 $))))))))) (-3053 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) (-15 -1608 ((-1143 *3 (-624 $)) $)) (-15 -2884 ($ (-1143 *3 (-624 $))))))))) (-3039 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1191 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -1595 ((-1143 *4 (-624 $)) $)) (-15 -1608 ((-1143 *4 (-624 $)) $)) (-15 -2884 ($ (-1143 *4 (-624 $))))))))) (-3027 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1595 ((-1143 *4 (-624 $)) $)) (-15 -1608 ((-1143 *4 (-624 $)) $)) (-15 -2884 ($ (-1143 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3027 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1595 ((-1143 *4 (-624 $)) $)) (-15 -1608 ((-1143 *4 (-624 $)) $)) (-15 -2884 ($ (-1143 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3027 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) (-15 -1608 ((-1143 *3 (-624 $)) $)) (-15 -2884 ($ (-1143 *3 (-624 $))))))))) (-3027 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) (-15 -1608 ((-1143 *3 (-624 $)) $)) (-15 -2884 ($ (-1143 *3 (-624 $))))))))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) (-15 -1608 ((-1143 *3 (-624 $)) $)) (-15 -2884 ($ (-1143 *3 (-624 $)))))))))) -(-10 -7 (-15 -3013 (|#2| |#2|)) (-15 -3027 (|#2| |#2|)) (-15 -3027 (|#2| |#2| |#2|)) (-15 -3027 (|#2| |#2| (-656 |#2|))) (-15 -3027 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -3039 ((-1191 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1056 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -3053 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -3089 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) -((-2354 (((-430 (-1191 |#3|)) (-1191 |#3|) (-656 (-48))) 23) (((-430 |#3|) |#3| (-656 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2354 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -2354 ((-430 (-1191 |#3|)) (-1191 |#3|) (-656 (-48))))) (-862) (-805) (-965 (-48) |#2| |#1|)) (T -42)) -((-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *7 (-965 (-48) *6 *5)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-965 (-48) *6 *5))))) -(-10 -7 (-15 -2354 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -2354 ((-430 (-1191 |#3|)) (-1191 |#3|) (-656 (-48))))) -((-3133 (((-783) |#2|) 70)) (-3108 (((-783) |#2|) 74)) (-3277 (((-656 |#2|)) 37)) (-3097 (((-783) |#2|) 73)) (-3122 (((-783) |#2|) 69)) (-3144 (((-783) |#2|) 72)) (-3254 (((-656 (-701 |#1|))) 65)) (-3198 (((-656 |#2|)) 60)) (-3176 (((-656 |#2|) |#2|) 48)) (-3220 (((-656 |#2|)) 62)) (-3209 (((-656 |#2|)) 61)) (-3244 (((-656 (-701 |#1|))) 53)) (-3188 (((-656 |#2|)) 59)) (-3165 (((-656 |#2|) |#2|) 47)) (-3155 (((-656 |#2|)) 55)) (-3265 (((-656 (-701 |#1|))) 66)) (-3231 (((-656 |#2|)) 64)) (-1898 (((-1286 |#2|) (-1286 |#2|)) 99 (|has| |#1| (-317))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -3097 ((-783) |#2|)) (-15 -3108 ((-783) |#2|)) (-15 -3122 ((-783) |#2|)) (-15 -3133 ((-783) |#2|)) (-15 -3144 ((-783) |#2|)) (-15 -3155 ((-656 |#2|))) (-15 -3165 ((-656 |#2|) |#2|)) (-15 -3176 ((-656 |#2|) |#2|)) (-15 -3188 ((-656 |#2|))) (-15 -3198 ((-656 |#2|))) (-15 -3209 ((-656 |#2|))) (-15 -3220 ((-656 |#2|))) (-15 -3231 ((-656 |#2|))) (-15 -3244 ((-656 (-701 |#1|)))) (-15 -3254 ((-656 (-701 |#1|)))) (-15 -3265 ((-656 (-701 |#1|)))) (-15 -3277 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -1898 ((-1286 |#2|) (-1286 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43)) -((-1898 (*1 *2 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-3277 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3265 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3254 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3244 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3231 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3220 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3209 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3198 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3188 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3176 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3165 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3155 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3144 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3133 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3122 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3097 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) -(-10 -7 (-15 -3097 ((-783) |#2|)) (-15 -3108 ((-783) |#2|)) (-15 -3122 ((-783) |#2|)) (-15 -3133 ((-783) |#2|)) (-15 -3144 ((-783) |#2|)) (-15 -3155 ((-656 |#2|))) (-15 -3165 ((-656 |#2|) |#2|)) (-15 -3176 ((-656 |#2|) |#2|)) (-15 -3188 ((-656 |#2|))) (-15 -3198 ((-656 |#2|))) (-15 -3209 ((-656 |#2|))) (-15 -3220 ((-656 |#2|))) (-15 -3231 ((-656 |#2|))) (-15 -3244 ((-656 (-701 |#1|)))) (-15 -3254 ((-656 (-701 |#1|)))) (-15 -3265 ((-656 (-701 |#1|)))) (-15 -3277 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -1898 ((-1286 |#2|) (-1286 |#2|))) |%noBranch|)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4246 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-3620 (((-1286 (-701 |#1|)) (-1286 $)) NIL) (((-1286 (-701 |#1|))) 24)) (-1879 (((-1286 $)) 52)) (-2473 (($) NIL T CONST)) (-3311 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-1588 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-4424 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) NIL)) (-1856 ((|#1| $) NIL)) (-4402 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-1388 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-3247 (((-1191 (-968 |#1|))) NIL (|has| |#1| (-374)))) (-1420 (($ $ (-937)) NIL)) (-1832 ((|#1| $) NIL)) (-1610 (((-1191 |#1|) $) NIL (|has| |#1| (-568)))) (-1320 ((|#1| (-1286 $)) NIL) ((|#1|) NIL)) (-1812 (((-1191 |#1|) $) NIL)) (-1744 (((-112)) 99)) (-1339 (($ (-1286 |#1|) (-1286 $)) NIL) (($ (-1286 |#1|)) NIL)) (-1999 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-4423 (((-937)) 53)) (-1711 (((-112)) NIL)) (-3593 (($ $ (-937)) NIL)) (-1665 (((-112)) NIL)) (-1643 (((-112)) NIL)) (-1687 (((-112)) 101)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-1597 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-4433 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) NIL)) (-1868 ((|#1| $) NIL)) (-4413 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-1399 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-3291 (((-1191 (-968 |#1|))) NIL (|has| |#1| (-374)))) (-1410 (($ $ (-937)) NIL)) (-1844 ((|#1| $) NIL)) (-1623 (((-1191 |#1|) $) NIL (|has| |#1| (-568)))) (-1329 ((|#1| (-1286 $)) NIL) ((|#1|) NIL)) (-1822 (((-1191 |#1|) $) NIL)) (-1756 (((-112)) 98)) (-3733 (((-1177) $) NIL)) (-1655 (((-112)) 106)) (-1675 (((-112)) 105)) (-1700 (((-112)) 107)) (-3914 (((-1138) $) NIL)) (-1732 (((-112)) 100)) (-2071 ((|#1| $ (-576)) 55)) (-3629 (((-1286 |#1|) $ (-1286 $)) 48) (((-701 |#1|) (-1286 $) (-1286 $)) NIL) (((-1286 |#1|) $) 28) (((-701 |#1|) (-1286 $)) NIL)) (-2616 (((-1286 |#1|) $) NIL) (($ (-1286 |#1|)) NIL)) (-3158 (((-656 (-968 |#1|)) (-1286 $)) NIL) (((-656 (-968 |#1|))) NIL)) (-2920 (($ $ $) NIL)) (-1801 (((-112)) 95)) (-2884 (((-874) $) 71) (($ (-1286 |#1|)) 22)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) 51)) (-1635 (((-656 (-1286 |#1|))) NIL (|has| |#1| (-568)))) (-2931 (($ $ $ $) NIL)) (-1779 (((-112)) 91)) (-1950 (($ (-701 |#1|) $) 18)) (-2908 (($ $ $) NIL)) (-1790 (((-112)) 97)) (-1768 (((-112)) 92)) (-1721 (((-112)) 90)) (-1996 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1160 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-660 (-1160 |#2| |#1|)) (-10 -8 (-15 -2884 ($ (-1286 |#1|))))) (-374) (-937) (-656 (-1195)) (-1286 (-701 |#1|))) (T -44)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-14 *6 (-1286 (-701 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-937)) (-14 *5 (-656 (-1195)))))) -(-13 (-429 |#1|) (-660 (-1160 |#2| |#1|)) (-10 -8 (-15 -2884 ($ (-1286 |#1|))))) -((-2862 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-4183 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-2990 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3463 (($ $) NIL)) (-2298 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3336 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462))) (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1748 (($ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-1891 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862))))) (-2032 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-3434 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4462)))) (-1772 (($ $ $) 33 (|has| $ (-6 -4462)))) (-1761 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4462)))) (-1783 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 35 (|has| $ (-6 -4462)))) (-3055 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-1253 (-576)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "last" (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4462))) (($ $ "rest" $) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "first" (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "value" (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-1443 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL)) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2978 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-1397 (((-3 |#2| "failed") |#1| $) 43)) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1976 (($ $ (-783)) NIL) (($ $) 29)) (-2257 (($ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2833 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-3634 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4462)))) (-2789 ((|#2| $ |#1|) NIL) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576)) NIL)) (-1811 (((-112) $) NIL)) (-2634 (((-576) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (((-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))) (((-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-4001 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 20 (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 20 (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) NIL)) (-3452 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-2310 (($ (-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 38 (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-2230 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-4214 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-1496 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-3365 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 40 (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL)) (-1685 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-2482 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL)) (-4306 (((-112) $) NIL)) (-3733 (((-1177) $) 49 (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3654 (($ $ (-783)) NIL) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-2002 (((-656 |#1|) $) 22)) (-3412 (((-112) |#1| $) NIL)) (-3449 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3807 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL) (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2134 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3385 (((-656 |#1|) $) NIL) (((-656 (-576)) $) NIL)) (-3394 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1962 ((|#2| $) NIL (|has| |#1| (-862))) (($ $ (-783)) NIL) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 27)) (-1932 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL)) (-3346 (($ $ |#2|) NIL (|has| $ (-6 -4462))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-1821 (((-112) $) NIL)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-3403 (((-656 |#2|) $) NIL) (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 19)) (-2809 (((-112) $) 18)) (-1458 (($) 14)) (-2071 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ (-576)) NIL) (($ $ (-1253 (-576))) NIL) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "first") NIL) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $ "value") NIL)) (-3473 (((-576) $ $) NIL)) (-1581 (($) 13) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-1455 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-4053 (((-112) $) NIL)) (-1816 (($ $) NIL)) (-1794 (($ $) NIL (|has| $ (-6 -4462)))) (-1826 (((-783) $) NIL)) (-1836 (($ $) NIL)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-1806 (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL) (($ $ $) NIL)) (-1514 (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL) (($ (-656 $)) NIL) (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 31) (($ $ $) NIL)) (-2884 (((-874) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-4255 (((-656 $) $) NIL)) (-3462 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-3722 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3668 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") |#1| $) 51)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-3957 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-3915 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3970 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-3943 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-862)))) (-2872 (((-783) $) 25 (|has| $ (-6 -4461))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1118) (-1118)) (T -45)) +(-13 (-1066) (-728 |t#1|) (-627 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-737) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-3436 (((-429 |#1|) |#1|) 41)) (-2353 (((-429 |#1|) |#1|) 30) (((-429 |#1|) |#1| (-655 (-48))) 33)) (-2408 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -2353 ((-429 |#1|) |#1| (-655 (-48)))) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -3436 ((-429 |#1|) |#1|)) (-15 -2408 ((-112) |#1|))) (-1261 (-48))) (T -39)) +((-2408 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48))))) (-3436 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48))))) (-2353 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48))))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-48))) (-5 *2 (-429 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48)))))) +(-10 -7 (-15 -2353 ((-429 |#1|) |#1| (-655 (-48)))) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -3436 ((-429 |#1|) |#1|)) (-15 -2408 ((-112) |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3023 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| (-418 |#2|) (-373)))) (-1540 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-3286 (((-112) $) NIL (|has| (-418 |#2|) (-373)))) (-1389 (((-700 (-418 |#2|)) (-1285 $)) NIL) (((-700 (-418 |#2|))) NIL)) (-1447 (((-418 |#2|) $) NIL)) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-418 |#2|) (-359)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-2330 (((-429 $) $) NIL (|has| (-418 |#2|) (-373)))) (-2279 (((-112) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2415 (((-782)) NIL (|has| (-418 |#2|) (-378)))) (-1883 (((-112)) NIL)) (-3400 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| (-418 |#2|) (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-3 (-418 |#2|) "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| (-418 |#2|) (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-418 |#2|) $) NIL)) (-1385 (($ (-1285 (-418 |#2|)) (-1285 $)) NIL) (($ (-1285 (-418 |#2|))) 61) (($ (-1285 |#2|) |#2|) 131)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-418 |#2|) (-359)))) (-2802 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-2746 (((-700 (-418 |#2|)) $ (-1285 $)) NIL) (((-700 (-418 |#2|)) $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-418 |#2|))) (|:| |vec| (-1285 (-418 |#2|)))) (-700 $) (-1285 $)) NIL) (((-700 (-418 |#2|)) (-700 $)) NIL) (((-700 (-418 |#2|)) (-1285 $)) NIL)) (-2438 (((-1285 $) (-1285 $)) NIL)) (-2308 (($ |#3|) NIL) (((-3 $ "failed") (-418 |#3|)) NIL (|has| (-418 |#2|) (-373)))) (-1747 (((-3 $ "failed") $) NIL)) (-3222 (((-655 (-655 |#1|))) NIL (|has| |#1| (-378)))) (-3569 (((-112) |#1| |#1|) NIL)) (-4422 (((-936)) NIL)) (-2079 (($) NIL (|has| (-418 |#2|) (-378)))) (-3610 (((-112)) NIL)) (-1903 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2813 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| (-418 |#2|) (-373)))) (-1824 (($ $) NIL)) (-1360 (($) NIL (|has| (-418 |#2|) (-359)))) (-1980 (((-112) $) NIL (|has| (-418 |#2|) (-359)))) (-4374 (($ $ (-782)) NIL (|has| (-418 |#2|) (-359))) (($ $) NIL (|has| (-418 |#2|) (-359)))) (-1336 (((-112) $) NIL (|has| (-418 |#2|) (-373)))) (-2673 (((-936) $) NIL (|has| (-418 |#2|) (-359))) (((-844 (-936)) $) NIL (|has| (-418 |#2|) (-359)))) (-1542 (((-112) $) NIL)) (-1454 (((-782)) NIL)) (-2215 (((-1285 $) (-1285 $)) 106)) (-2255 (((-418 |#2|) $) NIL)) (-3521 (((-655 (-967 |#1|)) (-1194)) NIL (|has| |#1| (-373)))) (-2607 (((-3 $ "failed") $) NIL (|has| (-418 |#2|) (-359)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-418 |#2|) (-373)))) (-1943 ((|#3| $) NIL (|has| (-418 |#2|) (-373)))) (-4084 (((-936) $) NIL (|has| (-418 |#2|) (-378)))) (-2295 ((|#3| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| (-418 |#2|) (-373))) (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-2288 (((-1176) $) NIL)) (-1848 (((-1290) (-782)) 84)) (-1643 (((-700 (-418 |#2|))) 56)) (-3406 (((-700 (-418 |#2|))) 49)) (-4332 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-1543 (($ (-1285 |#2|) |#2|) 132)) (-3507 (((-700 (-418 |#2|))) 50)) (-4061 (((-700 (-418 |#2|))) 48)) (-3399 (((-2 (|:| |num| (-700 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-1371 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) 68)) (-2362 (((-1285 $)) 47)) (-2899 (((-1285 $)) 46)) (-3234 (((-112) $) NIL)) (-3183 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3474 (($) NIL (|has| (-418 |#2|) (-359)) CONST)) (-4317 (($ (-936)) NIL (|has| (-418 |#2|) (-378)))) (-4414 (((-3 |#2| "failed")) NIL)) (-3912 (((-1137) $) NIL)) (-2198 (((-782)) NIL)) (-3659 (($) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| (-418 |#2|) (-373)))) (-3926 (($ (-655 $)) NIL (|has| (-418 |#2|) (-373))) (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| (-418 |#2|) (-359)))) (-2353 (((-429 $) $) NIL (|has| (-418 |#2|) (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-418 |#2|) (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2851 (((-3 $ "failed") $ $) NIL (|has| (-418 |#2|) (-373)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-418 |#2|) (-373)))) (-3708 (((-782) $) NIL (|has| (-418 |#2|) (-373)))) (-2070 ((|#1| $ |#1| |#1|) NIL)) (-4106 (((-3 |#2| "failed")) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| (-418 |#2|) (-373)))) (-4060 (((-418 |#2|) (-1285 $)) NIL) (((-418 |#2|)) 44)) (-3905 (((-782) $) NIL (|has| (-418 |#2|) (-359))) (((-3 (-782) "failed") $ $) NIL (|has| (-418 |#2|) (-359)))) (-2389 (($ $ (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-782)) NIL (-3765 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) NIL (-3765 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3792 (((-700 (-418 |#2|)) (-1285 $) (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373)))) (-2552 ((|#3|) 55)) (-3500 (($) NIL (|has| (-418 |#2|) (-359)))) (-3962 (((-1285 (-418 |#2|)) $ (-1285 $)) NIL) (((-700 (-418 |#2|)) (-1285 $) (-1285 $)) NIL) (((-1285 (-418 |#2|)) $) 62) (((-700 (-418 |#2|)) (-1285 $)) 107)) (-2615 (((-1285 (-418 |#2|)) $) NIL) (($ (-1285 (-418 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-418 |#2|) (-359)))) (-3768 (((-1285 $) (-1285 $)) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 |#2|)) NIL) (($ (-418 (-575))) NIL (-3765 (|has| (-418 |#2|) (-1055 (-418 (-575)))) (|has| (-418 |#2|) (-373)))) (($ $) NIL (|has| (-418 |#2|) (-373)))) (-1518 (($ $) NIL (|has| (-418 |#2|) (-359))) (((-3 $ "failed") $) NIL (|has| (-418 |#2|) (-146)))) (-2551 ((|#3| $) NIL)) (-3759 (((-782)) NIL T CONST)) (-1610 (((-112)) 42)) (-1607 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL)) (-1780 (((-112) $ $) NIL (|has| (-418 |#2|) (-373)))) (-1712 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3476 (((-112)) NIL)) (-1996 (($) 17 T CONST)) (-2009 (($) 27 T CONST)) (-3430 (($ $ (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) NIL (|has| (-418 |#2|) (-373))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-782)) NIL (-3765 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) NIL (-3765 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| (-418 |#2|) (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 |#2|)) NIL) (($ (-418 |#2|) $) NIL) (($ (-418 (-575)) $) NIL (|has| (-418 |#2|) (-373))) (($ $ (-418 (-575))) NIL (|has| (-418 |#2|) (-373))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-352 |#1| |#2| |#3|) (-10 -7 (-15 -1848 ((-1290) (-782))))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) |#3|) (T -40)) +((-1848 (*1 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-373)) (-4 *5 (-1261 *4)) (-5 *2 (-1290)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1261 (-418 *5))) (-14 *7 *6)))) +(-13 (-352 |#1| |#2| |#3|) (-10 -7 (-15 -1848 ((-1290) (-782))))) +((-3491 ((|#2| |#2|) 47)) (-2385 ((|#2| |#2|) 139 (-12 (|has| |#2| (-441 |#1|)) (|has| |#1| (-13 (-463) (-1055 (-575))))))) (-4011 ((|#2| |#2|) 100 (-12 (|has| |#2| (-441 |#1|)) (|has| |#1| (-13 (-463) (-1055 (-575))))))) (-3005 ((|#2| |#2|) 101 (-12 (|has| |#2| (-441 |#1|)) (|has| |#1| (-13 (-463) (-1055 (-575))))))) (-2152 ((|#2| (-115) |#2| (-782)) 135 (-12 (|has| |#2| (-441 |#1|)) (|has| |#1| (-13 (-463) (-1055 (-575))))))) (-4187 (((-1190 |#2|) |#2|) 44)) (-2232 ((|#2| |#2| (-655 (-623 |#2|))) 18) ((|#2| |#2| (-655 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -3491 (|#2| |#2|)) (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| |#2|)) (-15 -2232 (|#2| |#2| (-655 |#2|))) (-15 -2232 (|#2| |#2| (-655 (-623 |#2|)))) (-15 -4187 ((-1190 |#2|) |#2|)) (IF (|has| |#1| (-13 (-463) (-1055 (-575)))) (IF (|has| |#2| (-441 |#1|)) (PROGN (-15 -3005 (|#2| |#2|)) (-15 -4011 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -2152 (|#2| (-115) |#2| (-782)))) |%noBranch|) |%noBranch|)) (-567) (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 |#1| (-623 $)) $)) (-15 -1608 ((-1142 |#1| (-623 $)) $)) (-15 -2883 ($ (-1142 |#1| (-623 $))))))) (T -41)) +((-2152 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-782)) (-4 *5 (-13 (-463) (-1055 (-575)))) (-4 *5 (-567)) (-5 *1 (-41 *5 *2)) (-4 *2 (-441 *5)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *5 (-623 $)) $)) (-15 -1608 ((-1142 *5 (-623 $)) $)) (-15 -2883 ($ (-1142 *5 (-623 $))))))))) (-2385 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2883 ($ (-1142 *3 (-623 $))))))))) (-4011 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2883 ($ (-1142 *3 (-623 $))))))))) (-3005 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2883 ($ (-1142 *3 (-623 $))))))))) (-4187 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-1190 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $)) (-15 -1608 ((-1142 *4 (-623 $)) $)) (-15 -2883 ($ (-1142 *4 (-623 $))))))))) (-2232 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-623 *2))) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $)) (-15 -1608 ((-1142 *4 (-623 $)) $)) (-15 -2883 ($ (-1142 *4 (-623 $))))))) (-4 *4 (-567)) (-5 *1 (-41 *4 *2)))) (-2232 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $)) (-15 -1608 ((-1142 *4 (-623 $)) $)) (-15 -2883 ($ (-1142 *4 (-623 $))))))) (-4 *4 (-567)) (-5 *1 (-41 *4 *2)))) (-2232 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2883 ($ (-1142 *3 (-623 $))))))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2883 ($ (-1142 *3 (-623 $))))))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2883 ($ (-1142 *3 (-623 $)))))))))) +(-10 -7 (-15 -3491 (|#2| |#2|)) (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| |#2|)) (-15 -2232 (|#2| |#2| (-655 |#2|))) (-15 -2232 (|#2| |#2| (-655 (-623 |#2|)))) (-15 -4187 ((-1190 |#2|) |#2|)) (IF (|has| |#1| (-13 (-463) (-1055 (-575)))) (IF (|has| |#2| (-441 |#1|)) (PROGN (-15 -3005 (|#2| |#2|)) (-15 -4011 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -2152 (|#2| (-115) |#2| (-782)))) |%noBranch|) |%noBranch|)) +((-2353 (((-429 (-1190 |#3|)) (-1190 |#3|) (-655 (-48))) 23) (((-429 |#3|) |#3| (-655 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2353 ((-429 |#3|) |#3| (-655 (-48)))) (-15 -2353 ((-429 (-1190 |#3|)) (-1190 |#3|) (-655 (-48))))) (-861) (-804) (-964 (-48) |#2| |#1|)) (T -42)) +((-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-48))) (-4 *5 (-861)) (-4 *6 (-804)) (-4 *7 (-964 (-48) *6 *5)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-48))) (-4 *5 (-861)) (-4 *6 (-804)) (-5 *2 (-429 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-964 (-48) *6 *5))))) +(-10 -7 (-15 -2353 ((-429 |#3|) |#3| (-655 (-48)))) (-15 -2353 ((-429 (-1190 |#3|)) (-1190 |#3|) (-655 (-48))))) +((-2688 (((-782) |#2|) 70)) (-3457 (((-782) |#2|) 74)) (-4365 (((-655 |#2|)) 37)) (-1668 (((-782) |#2|) 73)) (-2270 (((-782) |#2|) 69)) (-4247 (((-782) |#2|) 72)) (-3604 (((-655 (-700 |#1|))) 65)) (-4245 (((-655 |#2|)) 60)) (-4410 (((-655 |#2|) |#2|) 48)) (-1599 (((-655 |#2|)) 62)) (-2996 (((-655 |#2|)) 61)) (-1862 (((-655 (-700 |#1|))) 53)) (-2495 (((-655 |#2|)) 59)) (-2707 (((-655 |#2|) |#2|) 47)) (-4124 (((-655 |#2|)) 55)) (-2361 (((-655 (-700 |#1|))) 66)) (-1362 (((-655 |#2|)) 64)) (-1624 (((-1285 |#2|) (-1285 |#2|)) 99 (|has| |#1| (-316))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1668 ((-782) |#2|)) (-15 -3457 ((-782) |#2|)) (-15 -2270 ((-782) |#2|)) (-15 -2688 ((-782) |#2|)) (-15 -4247 ((-782) |#2|)) (-15 -4124 ((-655 |#2|))) (-15 -2707 ((-655 |#2|) |#2|)) (-15 -4410 ((-655 |#2|) |#2|)) (-15 -2495 ((-655 |#2|))) (-15 -4245 ((-655 |#2|))) (-15 -2996 ((-655 |#2|))) (-15 -1599 ((-655 |#2|))) (-15 -1362 ((-655 |#2|))) (-15 -1862 ((-655 (-700 |#1|)))) (-15 -3604 ((-655 (-700 |#1|)))) (-15 -2361 ((-655 (-700 |#1|)))) (-15 -4365 ((-655 |#2|))) (IF (|has| |#1| (-316)) (-15 -1624 ((-1285 |#2|) (-1285 |#2|))) |%noBranch|)) (-567) (-428 |#1|)) (T -43)) +((-1624 (*1 *2 *2) (-12 (-5 *2 (-1285 *4)) (-4 *4 (-428 *3)) (-4 *3 (-316)) (-4 *3 (-567)) (-5 *1 (-43 *3 *4)))) (-4365 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-2361 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-3604 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-1862 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-1362 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-1599 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-2996 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-4245 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-2495 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-4410 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-2707 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-4124 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-4247 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-3457 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-1668 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4))))) +(-10 -7 (-15 -1668 ((-782) |#2|)) (-15 -3457 ((-782) |#2|)) (-15 -2270 ((-782) |#2|)) (-15 -2688 ((-782) |#2|)) (-15 -4247 ((-782) |#2|)) (-15 -4124 ((-655 |#2|))) (-15 -2707 ((-655 |#2|) |#2|)) (-15 -4410 ((-655 |#2|) |#2|)) (-15 -2495 ((-655 |#2|))) (-15 -4245 ((-655 |#2|))) (-15 -2996 ((-655 |#2|))) (-15 -1599 ((-655 |#2|))) (-15 -1362 ((-655 |#2|))) (-15 -1862 ((-655 (-700 |#1|)))) (-15 -3604 ((-655 (-700 |#1|)))) (-15 -2361 ((-655 (-700 |#1|)))) (-15 -4365 ((-655 |#2|))) (IF (|has| |#1| (-316)) (-15 -1624 ((-1285 |#2|) (-1285 |#2|))) |%noBranch|)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3800 (((-3 $ "failed")) NIL (|has| |#1| (-567)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-4239 (((-1285 (-700 |#1|)) (-1285 $)) NIL) (((-1285 (-700 |#1|))) 24)) (-3355 (((-1285 $)) 52)) (-3011 (($) NIL T CONST)) (-1380 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) NIL (|has| |#1| (-567)))) (-4132 (((-3 $ "failed")) NIL (|has| |#1| (-567)))) (-2974 (((-700 |#1|) (-1285 $)) NIL) (((-700 |#1|)) NIL)) (-1726 ((|#1| $) NIL)) (-4093 (((-700 |#1|) $ (-1285 $)) NIL) (((-700 |#1|) $) NIL)) (-3512 (((-3 $ "failed") $) NIL (|has| |#1| (-567)))) (-2199 (((-1190 (-967 |#1|))) NIL (|has| |#1| (-373)))) (-2661 (($ $ (-936)) NIL)) (-2737 ((|#1| $) NIL)) (-1884 (((-1190 |#1|) $) NIL (|has| |#1| (-567)))) (-2263 ((|#1| (-1285 $)) NIL) ((|#1|) NIL)) (-4103 (((-1190 |#1|) $) NIL)) (-2810 (((-112)) 99)) (-1385 (($ (-1285 |#1|) (-1285 $)) NIL) (($ (-1285 |#1|)) NIL)) (-1747 (((-3 $ "failed") $) 14 (|has| |#1| (-567)))) (-4422 (((-936)) 53)) (-4369 (((-112)) NIL)) (-3889 (($ $ (-936)) NIL)) (-3289 (((-112)) NIL)) (-1742 (((-112)) NIL)) (-3577 (((-112)) 101)) (-3129 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) NIL (|has| |#1| (-567)))) (-3387 (((-3 $ "failed")) NIL (|has| |#1| (-567)))) (-2653 (((-700 |#1|) (-1285 $)) NIL) (((-700 |#1|)) NIL)) (-1502 ((|#1| $) NIL)) (-4391 (((-700 |#1|) $ (-1285 $)) NIL) (((-700 |#1|) $) NIL)) (-3456 (((-3 $ "failed") $) NIL (|has| |#1| (-567)))) (-3498 (((-1190 (-967 |#1|))) NIL (|has| |#1| (-373)))) (-1898 (($ $ (-936)) NIL)) (-4336 ((|#1| $) NIL)) (-3649 (((-1190 |#1|) $) NIL (|has| |#1| (-567)))) (-1634 ((|#1| (-1285 $)) NIL) ((|#1|) NIL)) (-4013 (((-1190 |#1|) $) NIL)) (-4403 (((-112)) 98)) (-2288 (((-1176) $) NIL)) (-1536 (((-112)) 106)) (-3978 (((-112)) 105)) (-2204 (((-112)) 107)) (-3912 (((-1137) $) NIL)) (-3074 (((-112)) 100)) (-2070 ((|#1| $ (-575)) 55)) (-3962 (((-1285 |#1|) $ (-1285 $)) 48) (((-700 |#1|) (-1285 $) (-1285 $)) NIL) (((-1285 |#1|) $) 28) (((-700 |#1|) (-1285 $)) NIL)) (-2615 (((-1285 |#1|) $) NIL) (($ (-1285 |#1|)) NIL)) (-3235 (((-655 (-967 |#1|)) (-1285 $)) NIL) (((-655 (-967 |#1|))) NIL)) (-3320 (($ $ $) NIL)) (-2328 (((-112)) 95)) (-2883 (((-873) $) 71) (($ (-1285 |#1|)) 22)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) 51)) (-3431 (((-655 (-1285 |#1|))) NIL (|has| |#1| (-567)))) (-1785 (($ $ $ $) NIL)) (-2761 (((-112)) 91)) (-1949 (($ (-700 |#1|) $) 18)) (-3534 (($ $ $) NIL)) (-4363 (((-112)) 97)) (-2987 (((-112)) 92)) (-1472 (((-112)) 90)) (-1996 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1159 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-428 |#1|) (-659 (-1159 |#2| |#1|)) (-10 -8 (-15 -2883 ($ (-1285 |#1|))))) (-373) (-936) (-655 (-1194)) (-1285 (-700 |#1|))) (T -44)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-373)) (-14 *6 (-1285 (-700 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-936)) (-14 *5 (-655 (-1194)))))) +(-13 (-428 |#1|) (-659 (-1159 |#2| |#1|)) (-10 -8 (-15 -2883 ($ (-1285 |#1|))))) +((-2861 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-4182 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-2989 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3462 (($ $) NIL)) (-2297 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4161 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461))) (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1893 (($ $ (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-2119 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861))))) (-2031 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-1915 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461)))) (-3391 (($ $ $) 33 (|has| $ (-6 -4461)))) (-3602 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461)))) (-1876 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 35 (|has| $ (-6 -4461)))) (-3054 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-1252 (-575)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "last" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461))) (($ $ "rest" $) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "first" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "value" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-1999 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2977 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-1399 (((-3 |#2| "failed") |#1| $) 43)) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1975 (($ $ (-782)) NIL) (($ $) 29)) (-1878 (($ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-4404 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-3633 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461)))) (-2788 ((|#2| $ |#1|) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) NIL)) (-2087 (((-112) $) NIL)) (-2632 (((-575) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) (((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-4001 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 20 (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 20 (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) NIL)) (-3117 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-2309 (($ (-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 ((|#1| $) NIL (|has| |#1| (-861))) (((-575) $) 38 (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-4174 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3794 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3955 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-3197 ((|#1| $) NIL (|has| |#1| (-861))) (((-575) $) 40 (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-1684 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2482 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-1526 (((-112) $) NIL)) (-2288 (((-1176) $) 49 (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-3653 (($ $ (-782)) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-2001 (((-655 |#1|) $) 22)) (-3308 (((-112) |#1| $) NIL)) (-4012 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3862 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-2135 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-4310 (((-655 |#1|) $) NIL) (((-655 (-575)) $) NIL)) (-2969 (((-112) |#1| $) NIL) (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1961 ((|#2| $) NIL (|has| |#1| (-861))) (($ $ (-782)) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 27)) (-3704 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-3954 (($ $ |#2|) NIL (|has| $ (-6 -4461))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3888 (((-112) $) NIL)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-1691 (((-655 |#2|) $) NIL) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 19)) (-4076 (((-112) $) 18)) (-1938 (($) 14)) (-2070 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) NIL) (($ $ (-1252 (-575))) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "first") NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "value") NIL)) (-2220 (((-575) $ $) NIL)) (-3601 (($) 13) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2797 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-1648 (((-112) $) NIL)) (-1397 (($ $) NIL)) (-1877 (($ $) NIL (|has| $ (-6 -4461)))) (-3269 (((-782) $) NIL)) (-1863 (($ $) NIL)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2774 (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL) (($ $ $) NIL)) (-1514 (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL) (($ (-655 $)) NIL) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 31) (($ $ $) NIL)) (-2883 (((-873) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-2348 (((-655 $) $) NIL)) (-2781 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-4400 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3667 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") |#1| $) 51)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3956 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3914 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-3970 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3943 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-2871 (((-782) $) 25 (|has| $ (-6 -4460))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1117) (-1117)) (T -45)) NIL (-36 |#1| |#2|) -((-3734 (((-112) $) 12)) (-2551 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3734 ((-112) |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) (-47 |#2| |#3|) (-1067) (-804)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3734 ((-112) |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4241 (($ $) 64 (|has| |#1| (-568)))) (-4221 (((-112) $) 66 (|has| |#1| (-568)))) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-4407 (($ $) 72)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3734 (((-112) $) 74)) (-2421 (($ |#1| |#2|) 73)) (-2551 (($ (-1 |#1| |#1|) $) 75)) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3813 ((|#2| $) 76)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3245 ((|#1| $ |#2|) 71)) (-3148 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-47 |#1| |#2|) (-141) (-1067) (-804)) (T -47)) -((-4383 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))) (-4371 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-112)))) (-2421 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))) (-4407 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))) (-3245 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))) (-4039 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)) (-4 *2 (-374))))) -(-13 (-1067) (-111 |t#1| |t#1|) (-10 -8 (-15 -4383 (|t#1| $)) (-15 -4371 ($ $)) (-15 -3813 (|t#2| $)) (-15 -2551 ($ (-1 |t#1| |t#1|) $)) (-15 -3734 ((-112) $)) (-15 -2421 ($ |t#1| |t#2|)) (-15 -4407 ($ $)) (-15 -3245 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -4039 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-3696 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-968 $)) NIL)) (-4023 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-968 $)) NIL)) (-1389 (((-112) $) 9)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-4271 (((-656 (-624 $)) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-1474 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2474 (($ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-4034 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-968 $)) NIL)) (-1342 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-968 $)) NIL)) (-2449 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-4401 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-2803 (($ $ $) NIL)) (-2613 (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL) (((-2 (|:| -2869 (-701 (-419 (-576)))) (|:| |vec| (-1286 (-419 (-576))))) (-701 $) (-1286 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL) (((-701 (-419 (-576))) (-1286 $)) NIL)) (-2309 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-4330 (($ $) NIL) (($ (-656 $)) NIL)) (-3640 (((-656 (-115)) $) NIL)) (-2573 (((-115) (-115)) NIL)) (-1439 (((-112) $) 11)) (-4064 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-1595 (((-1143 (-576) (-624 $)) $) NIL)) (-3298 (($ $ (-576)) NIL)) (-1941 (((-1191 $) (-1191 $) (-624 $)) NIL) (((-1191 $) (-1191 $) (-656 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-656 (-624 $))) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3621 (((-1191 $) (-624 $)) NIL (|has| $ (-1067)))) (-2551 (($ (-1 $ $) (-624 $)) NIL)) (-3650 (((-3 (-624 $) "failed") $) NIL)) (-3888 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-2558 (((-656 (-624 $)) $) NIL)) (-1673 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-3657 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) NIL)) (-4333 (($ $) NIL)) (-3343 (((-783) $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3630 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-2354 (((-430 $) $) NIL)) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4072 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-3049 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2910 (((-783) $) NIL)) (-2071 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-3663 (($ $) NIL) (($ $ $) NIL)) (-2390 (($ $) NIL) (($ $ (-783)) NIL)) (-1608 (((-1143 (-576) (-624 $)) $) NIL)) (-1360 (($ $) NIL (|has| $ (-1067)))) (-2616 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-2884 (((-874) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1143 (-576) (-624 $))) NIL)) (-1871 (((-783)) NIL T CONST)) (-2377 (($ $) NIL) (($ (-656 $)) NIL)) (-2362 (((-112) (-115)) NIL)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-1996 (($) 6 T CONST)) (-2011 (($) 10 T CONST)) (-3431 (($ $) NIL) (($ $ (-783)) NIL)) (-3915 (((-112) $ $) 13)) (-4039 (($ $ $) NIL)) (-4029 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL))) -(((-48) (-13 (-312) (-27) (-1056 (-576)) (-1056 (-419 (-576))) (-651 (-576)) (-1040) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-239) (-10 -8 (-15 -2884 ($ (-1143 (-576) (-624 $)))) (-15 -1595 ((-1143 (-576) (-624 $)) $)) (-15 -1608 ((-1143 (-576) (-624 $)) $)) (-15 -2309 ($ $)) (-15 -1941 ((-1191 $) (-1191 $) (-624 $))) (-15 -1941 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -1941 ($ $ (-624 $))) (-15 -1941 ($ $ (-656 (-624 $))))))) (T -48)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2309 (*1 *1 *1) (-5 *1 (-48))) (-1941 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-1941 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48))))) -(-13 (-312) (-27) (-1056 (-576)) (-1056 (-419 (-576))) (-651 (-576)) (-1040) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-239) (-10 -8 (-15 -2884 ($ (-1143 (-576) (-624 $)))) (-15 -1595 ((-1143 (-576) (-624 $)) $)) (-15 -1608 ((-1143 (-576) (-624 $)) $)) (-15 -2309 ($ $)) (-15 -1941 ((-1191 $) (-1191 $) (-624 $))) (-15 -1941 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -1941 ($ $ (-624 $))) (-15 -1941 ($ $ (-656 (-624 $)))))) -((-2862 (((-112) $ $) NIL)) (-2513 (((-656 (-518)) $) 17)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 7)) (-1789 (((-1200) $) 18)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-49) (-13 (-1118) (-10 -8 (-15 -2513 ((-656 (-518)) $)) (-15 -1789 ((-1200) $))))) (T -49)) -((-2513 (*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-49))))) -(-13 (-1118) (-10 -8 (-15 -2513 ((-656 (-518)) $)) (-15 -1789 ((-1200) $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 85)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-3982 (((-112) $) 30)) (-2449 (((-3 |#1| "failed") $) 33)) (-4401 ((|#1| $) 34)) (-4407 (($ $) 40)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-4383 ((|#1| $) 31)) (-2759 (($ $) 74)) (-3733 (((-1177) $) NIL)) (-2748 (((-112) $) 43)) (-3914 (((-1138) $) NIL)) (-3660 (($ (-783)) 72)) (-2666 (($ (-656 (-576))) 73)) (-3813 (((-783) $) 44)) (-2884 (((-874) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-3245 ((|#1| $ $) 28)) (-1871 (((-783)) 71 T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 45 T CONST)) (-2011 (($) 17 T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 64)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) -(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1056 |#1|) (-10 -8 (-15 -4383 (|#1| $)) (-15 -2759 ($ $)) (-15 -4407 ($ $)) (-15 -3245 (|#1| $ $)) (-15 -3660 ($ (-783))) (-15 -2666 ($ (-656 (-576)))) (-15 -2748 ((-112) $)) (-15 -3982 ((-112) $)) (-15 -3813 ((-783) $)) (-15 -2551 ($ (-1 |#1| |#1|) $)))) (-1067) (-656 (-1195))) (T -50)) -((-4383 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195))))) (-2759 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1067)) (-14 *3 (-656 (-1195))))) (-4407 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1067)) (-14 *3 (-656 (-1195))))) (-3245 (*1 *2 *1 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195))))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-656 (-1195))))) (-2666 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-656 (-1195))))) (-2748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-656 (-1195))))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-656 (-1195))))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-656 (-1195))))) (-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-50 *3 *4)) (-14 *4 (-656 (-1195)))))) -(-13 (-632 |#1|) (-1056 |#1|) (-10 -8 (-15 -4383 (|#1| $)) (-15 -2759 ($ $)) (-15 -4407 ($ $)) (-15 -3245 (|#1| $ $)) (-15 -3660 ($ (-783))) (-15 -2666 ($ (-656 (-576)))) (-15 -2748 ((-112) $)) (-15 -3982 ((-112) $)) (-15 -3813 ((-783) $)) (-15 -2551 ($ (-1 |#1| |#1|) $)))) -((-3982 (((-112) (-52)) 18)) (-2449 (((-3 |#1| "failed") (-52)) 20)) (-4401 ((|#1| (-52)) 21)) (-2884 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -2884 ((-52) |#1|)) (-15 -2449 ((-3 |#1| "failed") (-52))) (-15 -3982 ((-112) (-52))) (-15 -4401 (|#1| (-52)))) (-1236)) (T -51)) -((-4401 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1236)))) (-2449 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236)))) (-2884 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1236))))) -(-10 -7 (-15 -2884 ((-52) |#1|)) (-15 -2449 ((-3 |#1| "failed") (-52))) (-15 -3982 ((-112) (-52))) (-15 -4401 (|#1| (-52)))) -((-2862 (((-112) $ $) NIL)) (-2314 (((-786) $) 8)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2424 (((-1122) $) 10)) (-2884 (((-874) $) 15)) (-3722 (((-112) $ $) NIL)) (-1648 (($ (-1122) (-786)) 16)) (-3915 (((-112) $ $) 12))) -(((-52) (-13 (-1118) (-10 -8 (-15 -1648 ($ (-1122) (-786))) (-15 -2424 ((-1122) $)) (-15 -2314 ((-786) $))))) (T -52)) -((-1648 (*1 *1 *2 *3) (-12 (-5 *2 (-1122)) (-5 *3 (-786)) (-5 *1 (-52)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-52)))) (-2314 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) -(-13 (-1118) (-10 -8 (-15 -1648 ($ (-1122) (-786))) (-15 -2424 ((-1122) $)) (-15 -2314 ((-786) $)))) -((-1950 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1950 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1067) (-660 |#1|) (-864 |#1|)) (T -53)) -((-1950 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1067)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5))))) -(-10 -7 (-15 -1950 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-4262 ((|#3| |#3| (-656 (-1195))) 44)) (-4251 ((|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3| (-937)) 32) ((|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4251 (|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3|)) (-15 -4251 (|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3| (-937))) (-15 -4262 (|#3| |#3| (-656 (-1195))))) (-1118) (-13 (-1067) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -54)) -((-4262 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-4251 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 (-1094 *5 *6 *2))) (-5 *4 (-937)) (-4 *5 (-1118)) (-4 *6 (-13 (-1067) (-899 *5) (-626 (-905 *5)))) (-4 *2 (-13 (-442 *6) (-899 *5) (-626 (-905 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4251 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-1094 *4 *5 *2))) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -4251 (|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3|)) (-15 -4251 (|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3| (-937))) (-15 -4262 (|#3| |#3| (-656 (-1195))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 14)) (-2449 (((-3 (-783) "failed") $) 34)) (-4401 (((-783) $) NIL)) (-1439 (((-112) $) 16)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) 18)) (-2884 (((-874) $) 23) (($ (-783)) 29)) (-3722 (((-112) $ $) NIL)) (-3492 (($) 11 T CONST)) (-3915 (((-112) $ $) 20))) -(((-55) (-13 (-1118) (-1056 (-783)) (-10 -8 (-15 -3492 ($) -3739) (-15 -1389 ((-112) $)) (-15 -1439 ((-112) $))))) (T -55)) -((-3492 (*1 *1) (-5 *1 (-55))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1439 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1118) (-1056 (-783)) (-10 -8 (-15 -3492 ($) -3739) (-15 -1389 ((-112) $)) (-15 -1439 ((-112) $)))) -((-2970 (((-112) $ (-783)) 27)) (-1552 (($ $ (-576) |#3|) 66)) (-3501 (($ $ (-576) |#4|) 70)) (-1759 ((|#3| $ (-576)) 79)) (-4001 (((-656 |#2|) $) 47)) (-2408 (((-112) $ (-783)) 31)) (-3743 (((-112) |#2| $) 74)) (-2848 (($ (-1 |#2| |#2|) $) 55)) (-2551 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2374 (((-112) $ (-783)) 29)) (-3346 (($ $ |#2|) 52)) (-2476 (((-112) (-1 (-112) |#2|) $) 21)) (-2071 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-3926 (((-783) (-1 (-112) |#2|) $) 41) (((-783) |#2| $) 76)) (-3079 (($ $) 51)) (-1747 ((|#4| $ (-576)) 82)) (-2884 (((-874) $) 88)) (-2492 (((-112) (-1 (-112) |#2|) $) 20)) (-3915 (((-112) $ $) 73)) (-2872 (((-783) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2884 ((-874) |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2551 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2848 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3501 (|#1| |#1| (-576) |#4|)) (-15 -1552 (|#1| |#1| (-576) |#3|)) (-15 -4001 ((-656 |#2|) |#1|)) (-15 -1747 (|#4| |#1| (-576))) (-15 -1759 (|#3| |#1| (-576))) (-15 -2071 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576) (-576))) (-15 -3346 (|#1| |#1| |#2|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -3743 ((-112) |#2| |#1|)) (-15 -3926 ((-783) |#2| |#1|)) (-15 -3926 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -2476 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2872 ((-783) |#1|)) (-15 -2970 ((-112) |#1| (-783))) (-15 -2408 ((-112) |#1| (-783))) (-15 -2374 ((-112) |#1| (-783))) (-15 -3079 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1236) (-384 |#2|) (-384 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -2884 ((-874) |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2551 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2848 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3501 (|#1| |#1| (-576) |#4|)) (-15 -1552 (|#1| |#1| (-576) |#3|)) (-15 -4001 ((-656 |#2|) |#1|)) (-15 -1747 (|#4| |#1| (-576))) (-15 -1759 (|#3| |#1| (-576))) (-15 -2071 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576) (-576))) (-15 -3346 (|#1| |#1| |#2|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -3743 ((-112) |#2| |#1|)) (-15 -3926 ((-783) |#2| |#1|)) (-15 -3926 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -2476 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2872 ((-783) |#1|)) (-15 -2970 ((-112) |#1| (-783))) (-15 -2408 ((-112) |#1| (-783))) (-15 -2374 ((-112) |#1| (-783))) (-15 -3079 (|#1| |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) 8)) (-3055 ((|#1| $ (-576) (-576) |#1|) 45)) (-1552 (($ $ (-576) |#2|) 43)) (-3501 (($ $ (-576) |#3|) 42)) (-2473 (($) 7 T CONST)) (-1759 ((|#2| $ (-576)) 47)) (-2859 ((|#1| $ (-576) (-576) |#1|) 44)) (-2789 ((|#1| $ (-576) (-576)) 49)) (-4001 (((-656 |#1|) $) 31)) (-4244 (((-783) $) 52)) (-2310 (($ (-783) (-783) |#1|) 58)) (-4256 (((-783) $) 51)) (-2408 (((-112) $ (-783)) 9)) (-1805 (((-576) $) 56)) (-1782 (((-576) $) 54)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1793 (((-576) $) 55)) (-1771 (((-576) $) 53)) (-2848 (($ (-1 |#1| |#1|) $) 35)) (-2551 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-3346 (($ $ |#1|) 57)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-1747 ((|#3| $ (-576)) 46)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-57 |#1| |#2| |#3|) (-141) (-1236) (-384 |t#1|) (-384 |t#1|)) (T -57)) -((-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2310 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1236)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3346 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1236)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-4256 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-2071 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1236)))) (-2789 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1236)))) (-2071 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-1759 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1236)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-1747 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1236)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) (-3055 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-2859 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-1552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1236)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-3501 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1236)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-2848 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2551 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2551 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -2310 ($ (-783) (-783) |t#1|)) (-15 -3346 ($ $ |t#1|)) (-15 -1805 ((-576) $)) (-15 -1793 ((-576) $)) (-15 -1782 ((-576) $)) (-15 -1771 ((-576) $)) (-15 -4244 ((-783) $)) (-15 -4256 ((-783) $)) (-15 -2071 (|t#1| $ (-576) (-576))) (-15 -2789 (|t#1| $ (-576) (-576))) (-15 -2071 (|t#1| $ (-576) (-576) |t#1|)) (-15 -1759 (|t#2| $ (-576))) (-15 -1747 (|t#3| $ (-576))) (-15 -4001 ((-656 |t#1|) $)) (-15 -3055 (|t#1| $ (-576) (-576) |t#1|)) (-15 -2859 (|t#1| $ (-576) (-576) |t#1|)) (-15 -1552 ($ $ (-576) |t#2|)) (-15 -3501 ($ $ (-576) |t#3|)) (-15 -2551 ($ (-1 |t#1| |t#1|) $)) (-15 -2848 ($ (-1 |t#1| |t#1|) $)) (-15 -2551 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2551 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-2176 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2309 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2551 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -2176 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2309 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2551 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1236) (-1236)) (T -58)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2309 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-58 *5 *2)))) (-2176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -2176 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2309 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2551 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) NIL)) (-2634 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-1563 (($ (-656 |#1|)) 11) (($ (-783) |#1|) 14)) (-2310 (($ (-783) |#1|) 13)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2134 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1962 ((|#1| $) NIL (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3346 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 10)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1563 ($ (-656 |#1|))) (-15 -1563 ($ (-783) |#1|)))) (-1236)) (T -59)) -((-1563 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-59 *3)))) (-1563 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1236))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1563 ($ (-656 |#1|))) (-15 -1563 ($ (-783) |#1|)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1552 (($ $ (-576) (-59 |#1|)) NIL)) (-3501 (($ $ (-576) (-59 |#1|)) NIL)) (-2473 (($) NIL T CONST)) (-1759 (((-59 |#1|) $ (-576)) NIL)) (-2859 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2789 ((|#1| $ (-576) (-576)) NIL)) (-4001 (((-656 |#1|) $) NIL)) (-4244 (((-783) $) NIL)) (-2310 (($ (-783) (-783) |#1|) NIL)) (-4256 (((-783) $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-1805 (((-576) $) NIL)) (-1782 (((-576) $) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1793 (((-576) $) NIL)) (-1771 (((-576) $) NIL)) (-2848 (($ (-1 |#1| |#1|) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3346 (($ $ |#1|) NIL)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-1747 (((-59 |#1|) $ (-576)) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4462))) (-1236)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4462))) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 74) (((-3 $ "failed") (-1286 (-326 (-576)))) 63) (((-3 $ "failed") (-1286 (-968 (-390)))) 94) (((-3 $ "failed") (-1286 (-968 (-576)))) 84) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 52) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 39)) (-4401 (($ (-1286 (-326 (-390)))) 70) (($ (-1286 (-326 (-576)))) 59) (($ (-1286 (-968 (-390)))) 90) (($ (-1286 (-968 (-576)))) 80) (($ (-1286 (-419 (-968 (-390))))) 48) (($ (-1286 (-419 (-968 (-576))))) 32)) (-2251 (((-1291) $) 124)) (-2884 (((-874) $) 118) (($ (-656 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 101) (($ (-1286 (-350 (-2895 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2895) (-711)))) 31))) -(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2895) (-711))))))) (-1195)) (T -61)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2895 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2895) (-711)))) (-5 *1 (-61 *3)) (-14 *3 (-1195))))) -(-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2895) (-711))))))) -((-2251 (((-1291) $) 54) (((-1291)) 55)) (-2884 (((-874) $) 51))) -(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -2251 ((-1291))))) (-1195)) (T -62)) -((-2251 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-62 *3)) (-14 *3 (-1195))))) -(-13 (-407) (-10 -7 (-15 -2251 ((-1291))))) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 150) (((-3 $ "failed") (-1286 (-326 (-576)))) 140) (((-3 $ "failed") (-1286 (-968 (-390)))) 170) (((-3 $ "failed") (-1286 (-968 (-576)))) 160) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 129) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 117)) (-4401 (($ (-1286 (-326 (-390)))) 146) (($ (-1286 (-326 (-576)))) 136) (($ (-1286 (-968 (-390)))) 166) (($ (-1286 (-968 (-576)))) 156) (($ (-1286 (-419 (-968 (-390))))) 125) (($ (-1286 (-419 (-968 (-576))))) 110)) (-2251 (((-1291) $) 103)) (-2884 (((-874) $) 97) (($ (-656 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 33) (($ (-1286 (-350 (-2895) (-2895 (QUOTE XC)) (-711)))) 95))) -(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895) (-2895 (QUOTE XC)) (-711))))))) (-1195)) (T -63)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2895) (-2895 (QUOTE XC)) (-711)))) (-5 *1 (-63 *3)) (-14 *3 (-1195))))) -(-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895) (-2895 (QUOTE XC)) (-711))))))) -((-2449 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-968 (-390))) 50) (((-3 $ "failed") (-968 (-576))) 54) (((-3 $ "failed") (-419 (-968 (-390)))) 36) (((-3 $ "failed") (-419 (-968 (-576)))) 29)) (-4401 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-968 (-390))) 48) (($ (-968 (-576))) 52) (($ (-419 (-968 (-390)))) 34) (($ (-419 (-968 (-576)))) 26)) (-2251 (((-1291) $) 76)) (-2884 (((-874) $) 69) (($ (-656 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 64) (($ (-350 (-2895 (QUOTE X)) (-2895) (-711))) 25))) -(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -2884 ($ (-350 (-2895 (QUOTE X)) (-2895) (-711)))))) (-1195)) (T -64)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-350 (-2895 (QUOTE X)) (-2895) (-711))) (-5 *1 (-64 *3)) (-14 *3 (-1195))))) -(-13 (-408) (-10 -8 (-15 -2884 ($ (-350 (-2895 (QUOTE X)) (-2895) (-711)))))) -((-2449 (((-3 $ "failed") (-701 (-326 (-390)))) 111) (((-3 $ "failed") (-701 (-326 (-576)))) 99) (((-3 $ "failed") (-701 (-968 (-390)))) 133) (((-3 $ "failed") (-701 (-968 (-576)))) 122) (((-3 $ "failed") (-701 (-419 (-968 (-390))))) 87) (((-3 $ "failed") (-701 (-419 (-968 (-576))))) 73)) (-4401 (($ (-701 (-326 (-390)))) 107) (($ (-701 (-326 (-576)))) 95) (($ (-701 (-968 (-390)))) 129) (($ (-701 (-968 (-576)))) 118) (($ (-701 (-419 (-968 (-390))))) 83) (($ (-701 (-419 (-968 (-576))))) 66)) (-2251 (((-1291) $) 141)) (-2884 (((-874) $) 135) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 32) (($ (-701 (-350 (-2895) (-2895 (QUOTE X) (QUOTE HESS)) (-711)))) 56))) -(((-65 |#1|) (-13 (-395) (-628 (-701 (-350 (-2895) (-2895 (QUOTE X) (QUOTE HESS)) (-711))))) (-1195)) (T -65)) -NIL -(-13 (-395) (-628 (-701 (-350 (-2895) (-2895 (QUOTE X) (QUOTE HESS)) (-711))))) -((-2449 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-968 (-390))) 69) (((-3 $ "failed") (-968 (-576))) 73) (((-3 $ "failed") (-419 (-968 (-390)))) 55) (((-3 $ "failed") (-419 (-968 (-576)))) 48)) (-4401 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-968 (-390))) 67) (($ (-968 (-576))) 71) (($ (-419 (-968 (-390)))) 53) (($ (-419 (-968 (-576)))) 45)) (-2251 (((-1291) $) 82)) (-2884 (((-874) $) 76) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 32) (($ (-350 (-2895) (-2895 (QUOTE XC)) (-711))) 40))) -(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -2884 ($ (-350 (-2895) (-2895 (QUOTE XC)) (-711)))))) (-1195)) (T -66)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-350 (-2895) (-2895 (QUOTE XC)) (-711))) (-5 *1 (-66 *3)) (-14 *3 (-1195))))) -(-13 (-408) (-10 -8 (-15 -2884 ($ (-350 (-2895) (-2895 (QUOTE XC)) (-711)))))) -((-2251 (((-1291) $) 65)) (-2884 (((-874) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 55))) -(((-67 |#1|) (-394) (-1195)) (T -67)) -NIL -(-394) -((-2251 (((-1291) $) 66)) (-2884 (((-874) $) 60) (($ (-701 (-711))) 52) (($ (-656 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 57))) -(((-68 |#1|) (-394) (-1195)) (T -68)) -NIL -(-394) -((-2251 (((-1291) $) NIL) (((-1291)) 33)) (-2884 (((-874) $) NIL))) -(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -2251 ((-1291))))) (-1195)) (T -69)) -((-2251 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-69 *3)) (-14 *3 (-1195))))) -(-13 (-407) (-10 -7 (-15 -2251 ((-1291))))) -((-2251 (((-1291) $) 75)) (-2884 (((-874) $) 69) (($ (-701 (-711))) 61) (($ (-656 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 60))) -(((-70 |#1|) (-394) (-1195)) (T -70)) -NIL -(-394) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 109) (((-3 $ "failed") (-1286 (-326 (-576)))) 98) (((-3 $ "failed") (-1286 (-968 (-390)))) 129) (((-3 $ "failed") (-1286 (-968 (-576)))) 119) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 87) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 74)) (-4401 (($ (-1286 (-326 (-390)))) 105) (($ (-1286 (-326 (-576)))) 94) (($ (-1286 (-968 (-390)))) 125) (($ (-1286 (-968 (-576)))) 115) (($ (-1286 (-419 (-968 (-390))))) 83) (($ (-1286 (-419 (-968 (-576))))) 67)) (-2251 (((-1291) $) 142)) (-2884 (((-874) $) 136) (($ (-656 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 59) (($ (-1286 (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711)))) 60))) -(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711))))))) (-1195)) (T -71)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711)))) (-5 *1 (-71 *3)) (-14 *3 (-1195))))) -(-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711))))))) -((-2251 (((-1291) $) 33) (((-1291)) 32)) (-2884 (((-874) $) 36))) -(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -2251 ((-1291))))) (-1195)) (T -72)) -((-2251 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-72 *3)) (-14 *3 (-1195))))) -(-13 (-407) (-10 -7 (-15 -2251 ((-1291))))) -((-2251 (((-1291) $) 65)) (-2884 (((-874) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 50))) -(((-73 |#1|) (-394) (-1195)) (T -73)) -NIL -(-394) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 127) (((-3 $ "failed") (-1286 (-326 (-576)))) 117) (((-3 $ "failed") (-1286 (-968 (-390)))) 147) (((-3 $ "failed") (-1286 (-968 (-576)))) 137) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 107) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 95)) (-4401 (($ (-1286 (-326 (-390)))) 123) (($ (-1286 (-326 (-576)))) 113) (($ (-1286 (-968 (-390)))) 143) (($ (-1286 (-968 (-576)))) 133) (($ (-1286 (-419 (-968 (-390))))) 103) (($ (-1286 (-419 (-968 (-576))))) 88)) (-2251 (((-1291) $) 80)) (-2884 (((-874) $) 28) (($ (-656 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 73) (($ (-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711)))) 67))) -(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711))))))) (-1195)) (T -74)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711)))) (-5 *1 (-74 *3)) (-14 *3 (-1195))))) -(-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711))))))) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 132) (((-3 $ "failed") (-1286 (-326 (-576)))) 121) (((-3 $ "failed") (-1286 (-968 (-390)))) 152) (((-3 $ "failed") (-1286 (-968 (-576)))) 142) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 110) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 97)) (-4401 (($ (-1286 (-326 (-390)))) 128) (($ (-1286 (-326 (-576)))) 117) (($ (-1286 (-968 (-390)))) 148) (($ (-1286 (-968 (-576)))) 138) (($ (-1286 (-419 (-968 (-390))))) 106) (($ (-1286 (-419 (-968 (-576))))) 90)) (-2251 (((-1291) $) 82)) (-2884 (((-874) $) 74) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) NIL) (($ (-1286 (-350 (-2895 (QUOTE X) (QUOTE EPS)) (-2895 (QUOTE -2260)) (-711)))) 69))) -(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE X) (QUOTE EPS)) (-2895 (QUOTE -2260)) (-711))))))) (-1195) (-1195) (-1195)) (T -75)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2895 (QUOTE X) (QUOTE EPS)) (-2895 (QUOTE -2260)) (-711)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195)) (-14 *5 (-1195))))) -(-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE X) (QUOTE EPS)) (-2895 (QUOTE -2260)) (-711))))))) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 138) (((-3 $ "failed") (-1286 (-326 (-576)))) 127) (((-3 $ "failed") (-1286 (-968 (-390)))) 158) (((-3 $ "failed") (-1286 (-968 (-576)))) 148) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 116) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 103)) (-4401 (($ (-1286 (-326 (-390)))) 134) (($ (-1286 (-326 (-576)))) 123) (($ (-1286 (-968 (-390)))) 154) (($ (-1286 (-968 (-576)))) 144) (($ (-1286 (-419 (-968 (-390))))) 112) (($ (-1286 (-419 (-968 (-576))))) 96)) (-2251 (((-1291) $) 88)) (-2884 (((-874) $) 80) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) NIL) (($ (-1286 (-350 (-2895 (QUOTE EPS)) (-2895 (QUOTE YA) (QUOTE YB)) (-711)))) 75))) -(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE EPS)) (-2895 (QUOTE YA) (QUOTE YB)) (-711))))))) (-1195) (-1195) (-1195)) (T -76)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2895 (QUOTE EPS)) (-2895 (QUOTE YA) (QUOTE YB)) (-711)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195)) (-14 *5 (-1195))))) -(-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE EPS)) (-2895 (QUOTE YA) (QUOTE YB)) (-711))))))) -((-2449 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-968 (-390))) 92) (((-3 $ "failed") (-968 (-576))) 96) (((-3 $ "failed") (-419 (-968 (-390)))) 78) (((-3 $ "failed") (-419 (-968 (-576)))) 71)) (-4401 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-968 (-390))) 90) (($ (-968 (-576))) 94) (($ (-419 (-968 (-390)))) 76) (($ (-419 (-968 (-576)))) 68)) (-2251 (((-1291) $) 63)) (-2884 (((-874) $) 51) (($ (-656 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 55) (($ (-350 (-2895) (-2895 (QUOTE X)) (-711))) 48))) -(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -2884 ($ (-350 (-2895) (-2895 (QUOTE X)) (-711)))))) (-1195)) (T -77)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-350 (-2895) (-2895 (QUOTE X)) (-711))) (-5 *1 (-77 *3)) (-14 *3 (-1195))))) -(-13 (-408) (-10 -8 (-15 -2884 ($ (-350 (-2895) (-2895 (QUOTE X)) (-711)))))) -((-2449 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-968 (-390))) 56) (((-3 $ "failed") (-968 (-576))) 60) (((-3 $ "failed") (-419 (-968 (-390)))) 42) (((-3 $ "failed") (-419 (-968 (-576)))) 35)) (-4401 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-968 (-390))) 54) (($ (-968 (-576))) 58) (($ (-419 (-968 (-390)))) 40) (($ (-419 (-968 (-576)))) 32)) (-2251 (((-1291) $) 81)) (-2884 (((-874) $) 75) (($ (-656 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 70) (($ (-350 (-2895) (-2895 (QUOTE X)) (-711))) 31))) -(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -2884 ($ (-350 (-2895) (-2895 (QUOTE X)) (-711)))))) (-1195)) (T -78)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-350 (-2895) (-2895 (QUOTE X)) (-711))) (-5 *1 (-78 *3)) (-14 *3 (-1195))))) -(-13 (-408) (-10 -8 (-15 -2884 ($ (-350 (-2895) (-2895 (QUOTE X)) (-711)))))) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 90) (((-3 $ "failed") (-1286 (-326 (-576)))) 79) (((-3 $ "failed") (-1286 (-968 (-390)))) 110) (((-3 $ "failed") (-1286 (-968 (-576)))) 100) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 68) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 55)) (-4401 (($ (-1286 (-326 (-390)))) 86) (($ (-1286 (-326 (-576)))) 75) (($ (-1286 (-968 (-390)))) 106) (($ (-1286 (-968 (-576)))) 96) (($ (-1286 (-419 (-968 (-390))))) 64) (($ (-1286 (-419 (-968 (-576))))) 48)) (-2251 (((-1291) $) 126)) (-2884 (((-874) $) 120) (($ (-656 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 116) (($ (-1286 (-350 (-2895) (-2895 (QUOTE XC)) (-711)))) 39))) -(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895) (-2895 (QUOTE XC)) (-711))))))) (-1195)) (T -79)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2895) (-2895 (QUOTE XC)) (-711)))) (-5 *1 (-79 *3)) (-14 *3 (-1195))))) -(-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895) (-2895 (QUOTE XC)) (-711))))))) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 151) (((-3 $ "failed") (-1286 (-326 (-576)))) 141) (((-3 $ "failed") (-1286 (-968 (-390)))) 171) (((-3 $ "failed") (-1286 (-968 (-576)))) 161) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 131) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 119)) (-4401 (($ (-1286 (-326 (-390)))) 147) (($ (-1286 (-326 (-576)))) 137) (($ (-1286 (-968 (-390)))) 167) (($ (-1286 (-968 (-576)))) 157) (($ (-1286 (-419 (-968 (-390))))) 127) (($ (-1286 (-419 (-968 (-576))))) 112)) (-2251 (((-1291) $) 105)) (-2884 (((-874) $) 99) (($ (-656 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 95) (($ (-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711)))) 91))) -(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711))))))) (-1195)) (T -80)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711)))) (-5 *1 (-80 *3)) (-14 *3 (-1195))))) -(-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711))))))) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 79) (((-3 $ "failed") (-1286 (-326 (-576)))) 68) (((-3 $ "failed") (-1286 (-968 (-390)))) 99) (((-3 $ "failed") (-1286 (-968 (-576)))) 89) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 57) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 44)) (-4401 (($ (-1286 (-326 (-390)))) 75) (($ (-1286 (-326 (-576)))) 64) (($ (-1286 (-968 (-390)))) 95) (($ (-1286 (-968 (-576)))) 85) (($ (-1286 (-419 (-968 (-390))))) 53) (($ (-1286 (-419 (-968 (-576))))) 37)) (-2251 (((-1291) $) 125)) (-2884 (((-874) $) 119) (($ (-656 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 114) (($ (-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711)))) 36))) -(((-81 |#1|) (-13 (-453) (-628 (-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711))))) (-1195)) (T -81)) -NIL -(-13 (-453) (-628 (-1286 (-350 (-2895) (-2895 (QUOTE X)) (-711))))) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 98) (((-3 $ "failed") (-1286 (-326 (-576)))) 87) (((-3 $ "failed") (-1286 (-968 (-390)))) 118) (((-3 $ "failed") (-1286 (-968 (-576)))) 108) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 76) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 63)) (-4401 (($ (-1286 (-326 (-390)))) 94) (($ (-1286 (-326 (-576)))) 83) (($ (-1286 (-968 (-390)))) 114) (($ (-1286 (-968 (-576)))) 104) (($ (-1286 (-419 (-968 (-390))))) 72) (($ (-1286 (-419 (-968 (-576))))) 56)) (-2251 (((-1291) $) 48)) (-2884 (((-874) $) 42) (($ (-656 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 38) (($ (-1286 (-350 (-2895 (QUOTE X) (QUOTE -2260)) (-2895) (-711)))) 33))) -(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE X) (QUOTE -2260)) (-2895) (-711))))))) (-1195)) (T -82)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2895 (QUOTE X) (QUOTE -2260)) (-2895) (-711)))) (-5 *1 (-82 *3)) (-14 *3 (-1195))))) -(-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE X) (QUOTE -2260)) (-2895) (-711))))))) -((-2449 (((-3 $ "failed") (-701 (-326 (-390)))) 118) (((-3 $ "failed") (-701 (-326 (-576)))) 107) (((-3 $ "failed") (-701 (-968 (-390)))) 140) (((-3 $ "failed") (-701 (-968 (-576)))) 129) (((-3 $ "failed") (-701 (-419 (-968 (-390))))) 96) (((-3 $ "failed") (-701 (-419 (-968 (-576))))) 83)) (-4401 (($ (-701 (-326 (-390)))) 114) (($ (-701 (-326 (-576)))) 103) (($ (-701 (-968 (-390)))) 136) (($ (-701 (-968 (-576)))) 125) (($ (-701 (-419 (-968 (-390))))) 92) (($ (-701 (-419 (-968 (-576))))) 76)) (-2251 (((-1291) $) 66)) (-2884 (((-874) $) 53) (($ (-656 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 58) (($ (-701 (-350 (-2895 (QUOTE X) (QUOTE -2260)) (-2895) (-711)))) 50))) -(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -2884 ($ (-701 (-350 (-2895 (QUOTE X) (QUOTE -2260)) (-2895) (-711))))))) (-1195)) (T -83)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-2895 (QUOTE X) (QUOTE -2260)) (-2895) (-711)))) (-5 *1 (-83 *3)) (-14 *3 (-1195))))) -(-13 (-395) (-10 -8 (-15 -2884 ($ (-701 (-350 (-2895 (QUOTE X) (QUOTE -2260)) (-2895) (-711))))))) -((-2449 (((-3 $ "failed") (-701 (-326 (-390)))) 113) (((-3 $ "failed") (-701 (-326 (-576)))) 101) (((-3 $ "failed") (-701 (-968 (-390)))) 135) (((-3 $ "failed") (-701 (-968 (-576)))) 124) (((-3 $ "failed") (-701 (-419 (-968 (-390))))) 89) (((-3 $ "failed") (-701 (-419 (-968 (-576))))) 75)) (-4401 (($ (-701 (-326 (-390)))) 109) (($ (-701 (-326 (-576)))) 97) (($ (-701 (-968 (-390)))) 131) (($ (-701 (-968 (-576)))) 120) (($ (-701 (-419 (-968 (-390))))) 85) (($ (-701 (-419 (-968 (-576))))) 68)) (-2251 (((-1291) $) 60)) (-2884 (((-874) $) 54) (($ (-656 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 45) (($ (-701 (-350 (-2895 (QUOTE X)) (-2895) (-711)))) 46))) -(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -2884 ($ (-701 (-350 (-2895 (QUOTE X)) (-2895) (-711))))))) (-1195)) (T -84)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-2895 (QUOTE X)) (-2895) (-711)))) (-5 *1 (-84 *3)) (-14 *3 (-1195))))) -(-13 (-395) (-10 -8 (-15 -2884 ($ (-701 (-350 (-2895 (QUOTE X)) (-2895) (-711))))))) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 105) (((-3 $ "failed") (-1286 (-326 (-576)))) 94) (((-3 $ "failed") (-1286 (-968 (-390)))) 125) (((-3 $ "failed") (-1286 (-968 (-576)))) 115) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 83) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 70)) (-4401 (($ (-1286 (-326 (-390)))) 101) (($ (-1286 (-326 (-576)))) 90) (($ (-1286 (-968 (-390)))) 121) (($ (-1286 (-968 (-576)))) 111) (($ (-1286 (-419 (-968 (-390))))) 79) (($ (-1286 (-419 (-968 (-576))))) 63)) (-2251 (((-1291) $) 47)) (-2884 (((-874) $) 41) (($ (-656 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 53) (($ (-1286 (-350 (-2895 (QUOTE X)) (-2895) (-711)))) 38))) -(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE X)) (-2895) (-711))))))) (-1195)) (T -85)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2895 (QUOTE X)) (-2895) (-711)))) (-5 *1 (-85 *3)) (-14 *3 (-1195))))) -(-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE X)) (-2895) (-711))))))) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 80) (((-3 $ "failed") (-1286 (-326 (-576)))) 69) (((-3 $ "failed") (-1286 (-968 (-390)))) 100) (((-3 $ "failed") (-1286 (-968 (-576)))) 90) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 58) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 45)) (-4401 (($ (-1286 (-326 (-390)))) 76) (($ (-1286 (-326 (-576)))) 65) (($ (-1286 (-968 (-390)))) 96) (($ (-1286 (-968 (-576)))) 86) (($ (-1286 (-419 (-968 (-390))))) 54) (($ (-1286 (-419 (-968 (-576))))) 38)) (-2251 (((-1291) $) 126)) (-2884 (((-874) $) 120) (($ (-656 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 115) (($ (-1286 (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711)))) 37))) -(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711))))))) (-1195)) (T -86)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711)))) (-5 *1 (-86 *3)) (-14 *3 (-1195))))) -(-13 (-453) (-10 -8 (-15 -2884 ($ (-1286 (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711))))))) -((-2449 (((-3 $ "failed") (-701 (-326 (-390)))) 117) (((-3 $ "failed") (-701 (-326 (-576)))) 105) (((-3 $ "failed") (-701 (-968 (-390)))) 139) (((-3 $ "failed") (-701 (-968 (-576)))) 128) (((-3 $ "failed") (-701 (-419 (-968 (-390))))) 93) (((-3 $ "failed") (-701 (-419 (-968 (-576))))) 79)) (-4401 (($ (-701 (-326 (-390)))) 113) (($ (-701 (-326 (-576)))) 101) (($ (-701 (-968 (-390)))) 135) (($ (-701 (-968 (-576)))) 124) (($ (-701 (-419 (-968 (-390))))) 89) (($ (-701 (-419 (-968 (-576))))) 72)) (-2251 (((-1291) $) 63)) (-2884 (((-874) $) 57) (($ (-656 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 52) (($ (-701 (-350 (-2895 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2895) (-711)))) 48))) -(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -2884 ($ (-701 (-350 (-2895 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2895) (-711))))))) (-1195)) (T -87)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-2895 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2895) (-711)))) (-5 *1 (-87 *3)) (-14 *3 (-1195))))) -(-13 (-395) (-10 -8 (-15 -2884 ($ (-701 (-350 (-2895 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2895) (-711))))))) -((-2251 (((-1291) $) 45)) (-2884 (((-874) $) 39) (($ (-1286 (-711))) 100) (($ (-656 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 34))) -(((-88 |#1|) (-452) (-1195)) (T -88)) -NIL -(-452) -((-2449 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-968 (-390))) 57) (((-3 $ "failed") (-968 (-576))) 61) (((-3 $ "failed") (-419 (-968 (-390)))) 43) (((-3 $ "failed") (-419 (-968 (-576)))) 36)) (-4401 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-968 (-390))) 55) (($ (-968 (-576))) 59) (($ (-419 (-968 (-390)))) 41) (($ (-419 (-968 (-576)))) 33)) (-2251 (((-1291) $) 91)) (-2884 (((-874) $) 85) (($ (-656 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 77) (($ (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711))) 32))) -(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -2884 ($ (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711)))))) (-1195)) (T -89)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711))) (-5 *1 (-89 *3)) (-14 *3 (-1195))))) -(-13 (-408) (-10 -8 (-15 -2884 ($ (-350 (-2895 (QUOTE X)) (-2895 (QUOTE -2260)) (-711)))))) -((-2977 (((-1286 (-701 |#1|)) (-701 |#1|)) 61)) (-2966 (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 (-656 (-937))))) |#2| (-937)) 49)) (-3261 (((-2 (|:| |minor| (-656 (-937))) (|:| -2572 |#2|) (|:| |minors| (-656 (-656 (-937)))) (|:| |ops| (-656 |#2|))) |#2| (-937)) 72 (|has| |#1| (-374))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -2966 ((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 (-656 (-937))))) |#2| (-937))) (-15 -2977 ((-1286 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -3261 ((-2 (|:| |minor| (-656 (-937))) (|:| -2572 |#2|) (|:| |minors| (-656 (-656 (-937)))) (|:| |ops| (-656 |#2|))) |#2| (-937))) |%noBranch|)) (-568) (-668 |#1|)) (T -90)) -((-3261 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-656 (-937))) (|:| -2572 *3) (|:| |minors| (-656 (-656 (-937)))) (|:| |ops| (-656 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-668 *5)))) (-2977 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))) (-2966 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -2869 (-701 *5)) (|:| |vec| (-1286 (-656 (-937)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-668 *5))))) -(-10 -7 (-15 -2966 ((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 (-656 (-937))))) |#2| (-937))) (-15 -2977 ((-1286 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -3261 ((-2 (|:| |minor| (-656 (-937))) (|:| -2572 |#2|) (|:| |minors| (-656 (-656 (-937)))) (|:| |ops| (-656 |#2|))) |#2| (-937))) |%noBranch|)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2012 ((|#1| $) 40)) (-2970 (((-112) $ (-783)) NIL)) (-2473 (($) NIL T CONST)) (-3295 ((|#1| |#1| $) 35)) (-3285 ((|#1| $) 33)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3449 ((|#1| $) NIL)) (-3807 (($ |#1| $) 36)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3458 ((|#1| $) 34)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 18)) (-1458 (($) 45)) (-3324 (((-783) $) 31)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) 17)) (-2884 (((-874) $) 30 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) NIL)) (-3273 (($ (-656 |#1|)) 42)) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 15 (|has| |#1| (-1118)))) (-2872 (((-783) $) 12 (|has| $ (-6 -4461))))) -(((-91 |#1|) (-13 (-1139 |#1|) (-10 -8 (-15 -3273 ($ (-656 |#1|))))) (-1118)) (T -91)) -((-3273 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-91 *3))))) -(-13 (-1139 |#1|) (-10 -8 (-15 -3273 ($ (-656 |#1|))))) -((-2884 (((-874) $) 13) (($ (-1200)) 9) (((-1200) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -2884 ((-1200) |#1|)) (-15 -2884 (|#1| (-1200))) (-15 -2884 ((-874) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -2884 ((-1200) |#1|)) (-15 -2884 (|#1| (-1200))) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-1200)) 17) (((-1200) $) 16)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) +((-2376 (((-112) $) 12)) (-2550 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-418 (-575)) $) 25) (($ $ (-418 (-575))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -2376 ((-112) |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) (-47 |#2| |#3|) (-1066) (-803)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -2376 ((-112) |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-1540 (($ $) 64 (|has| |#1| (-567)))) (-3286 (((-112) $) 66 (|has| |#1| (-567)))) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-4406 (($ $) 72)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2376 (((-112) $) 74)) (-2417 (($ |#1| |#2|) 73)) (-2550 (($ (-1 |#1| |#1|) $) 75)) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2851 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-2645 ((|#2| $) 76)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2012 ((|#1| $ |#2|) 71)) (-1518 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575))))))) +(((-47 |#1| |#2|) (-141) (-1066) (-803)) (T -47)) +((-4383 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))) (-4371 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-112)))) (-2417 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))) (-4406 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))) (-4038 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)) (-4 *2 (-373))))) +(-13 (-1066) (-111 |t#1| |t#1|) (-10 -8 (-15 -4383 (|t#1| $)) (-15 -4371 ($ $)) (-15 -2645 (|t#2| $)) (-15 -2550 ($ (-1 |t#1| |t#1|) $)) (-15 -2376 ((-112) $)) (-15 -2417 ($ |t#1| |t#2|)) (-15 -4406 ($ $)) (-15 -2012 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-373)) (-15 -4038 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-567)) (-6 (-567)) |%noBranch|) (IF (|has| |t#1| (-38 (-418 (-575)))) (-6 (-38 (-418 (-575)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) |has| |#1| (-38 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-299) |has| |#1| (-567)) ((-567) |has| |#1| (-567)) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-1967 (((-655 $) (-1190 $) (-1194)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-967 $)) NIL)) (-1895 (($ (-1190 $) (-1194)) NIL) (($ (-1190 $)) NIL) (($ (-967 $)) NIL)) (-3799 (((-112) $) 9)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4270 (((-655 (-623 $)) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-1473 (($ $ (-303 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2473 (($ $) NIL)) (-2279 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-2472 (((-655 $) (-1190 $) (-1194)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-967 $)) NIL)) (-3700 (($ (-1190 $) (-1194)) NIL) (($ (-1190 $)) NIL) (($ (-967 $)) NIL)) (-2449 (((-3 (-623 $) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL)) (-4399 (((-623 $) $) NIL) (((-575) $) NIL) (((-418 (-575)) $) NIL)) (-2802 (($ $ $) NIL)) (-1749 (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL) (((-2 (|:| -2412 (-700 (-418 (-575)))) (|:| |vec| (-1285 (-418 (-575))))) (-700 $) (-1285 $)) NIL) (((-700 (-418 (-575))) (-700 $)) NIL) (((-700 (-418 (-575))) (-1285 $)) NIL)) (-2308 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-2092 (($ $) NIL) (($ (-655 $)) NIL)) (-2622 (((-655 (-115)) $) NIL)) (-2572 (((-115) (-115)) NIL)) (-1542 (((-112) $) 11)) (-2437 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-1595 (((-1142 (-575) (-623 $)) $) NIL)) (-2931 (($ $ (-575)) NIL)) (-2255 (((-1190 $) (-1190 $) (-623 $)) NIL) (((-1190 $) (-1190 $) (-655 (-623 $))) NIL) (($ $ (-623 $)) NIL) (($ $ (-655 (-623 $))) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-4347 (((-1190 $) (-623 $)) NIL (|has| $ (-1066)))) (-2550 (($ (-1 $ $) (-623 $)) NIL)) (-4306 (((-3 (-623 $) "failed") $) NIL)) (-3887 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-2557 (((-655 (-623 $)) $) NIL)) (-1672 (($ (-115) $) NIL) (($ (-115) (-655 $)) NIL)) (-3789 (((-112) $ (-115)) NIL) (((-112) $ (-1194)) NIL)) (-4332 (($ $) NIL)) (-3343 (((-782) $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2878 (((-112) $ $) NIL) (((-112) $ (-1194)) NIL)) (-2353 (((-429 $) $) NIL)) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2185 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-3048 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-1194) (-1 $ (-655 $))) NIL) (($ $ (-1194) (-1 $ $)) NIL) (($ $ (-655 (-115)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-115) (-1 $ (-655 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3708 (((-782) $) NIL)) (-2070 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-655 $)) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3146 (($ $) NIL) (($ $ $) NIL)) (-2389 (($ $) NIL) (($ $ (-782)) NIL)) (-1608 (((-1142 (-575) (-623 $)) $) NIL)) (-2552 (($ $) NIL (|has| $ (-1066)))) (-2615 (((-389) $) NIL) (((-227) $) NIL) (((-171 (-389)) $) NIL)) (-2883 (((-873) $) NIL) (($ (-623 $)) NIL) (($ (-418 (-575))) NIL) (($ $) NIL) (($ (-575)) NIL) (($ (-1142 (-575) (-623 $))) NIL)) (-3759 (((-782)) NIL T CONST)) (-2377 (($ $) NIL) (($ (-655 $)) NIL)) (-2151 (((-112) (-115)) NIL)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-1996 (($) 6 T CONST)) (-2009 (($) 10 T CONST)) (-3430 (($ $) NIL) (($ $ (-782)) NIL)) (-3914 (((-112) $ $) 13)) (-4038 (($ $ $) NIL)) (-4028 (($ $ $) NIL) (($ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-418 (-575))) NIL) (($ $ (-575)) NIL) (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL) (($ $ $) NIL) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL))) +(((-48) (-13 (-311) (-27) (-1055 (-575)) (-1055 (-418 (-575))) (-650 (-575)) (-1039) (-650 (-418 (-575))) (-148) (-625 (-171 (-389))) (-238) (-10 -8 (-15 -2883 ($ (-1142 (-575) (-623 $)))) (-15 -1595 ((-1142 (-575) (-623 $)) $)) (-15 -1608 ((-1142 (-575) (-623 $)) $)) (-15 -2308 ($ $)) (-15 -2255 ((-1190 $) (-1190 $) (-623 $))) (-15 -2255 ((-1190 $) (-1190 $) (-655 (-623 $)))) (-15 -2255 ($ $ (-623 $))) (-15 -2255 ($ $ (-655 (-623 $))))))) (T -48)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48)))) (-2308 (*1 *1 *1) (-5 *1 (-48))) (-2255 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-623 (-48))) (-5 *1 (-48)))) (-2255 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-655 (-623 (-48)))) (-5 *1 (-48)))) (-2255 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-48))) (-5 *1 (-48)))) (-2255 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-623 (-48)))) (-5 *1 (-48))))) +(-13 (-311) (-27) (-1055 (-575)) (-1055 (-418 (-575))) (-650 (-575)) (-1039) (-650 (-418 (-575))) (-148) (-625 (-171 (-389))) (-238) (-10 -8 (-15 -2883 ($ (-1142 (-575) (-623 $)))) (-15 -1595 ((-1142 (-575) (-623 $)) $)) (-15 -1608 ((-1142 (-575) (-623 $)) $)) (-15 -2308 ($ $)) (-15 -2255 ((-1190 $) (-1190 $) (-623 $))) (-15 -2255 ((-1190 $) (-1190 $) (-655 (-623 $)))) (-15 -2255 ($ $ (-623 $))) (-15 -2255 ($ $ (-655 (-623 $)))))) +((-2861 (((-112) $ $) NIL)) (-2512 (((-655 (-517)) $) 17)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 7)) (-1788 (((-1199) $) 18)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-49) (-13 (-1117) (-10 -8 (-15 -2512 ((-655 (-517)) $)) (-15 -1788 ((-1199) $))))) (T -49)) +((-2512 (*1 *2 *1) (-12 (-5 *2 (-655 (-517))) (-5 *1 (-49)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-49))))) +(-13 (-1117) (-10 -8 (-15 -2512 ((-655 (-517)) $)) (-15 -1788 ((-1199) $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 85)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-3373 (((-112) $) 30)) (-2449 (((-3 |#1| "failed") $) 33)) (-4399 ((|#1| $) 34)) (-4406 (($ $) 40)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4383 ((|#1| $) 31)) (-3990 (($ $) 74)) (-2288 (((-1176) $) NIL)) (-2170 (((-112) $) 43)) (-3912 (((-1137) $) NIL)) (-3659 (($ (-782)) 72)) (-2665 (($ (-655 (-575))) 73)) (-2645 (((-782) $) 44)) (-2883 (((-873) $) 91) (($ (-575)) 69) (($ |#1|) 67)) (-2012 ((|#1| $ $) 28)) (-3759 (((-782)) 71 T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 45 T CONST)) (-2009 (($) 17 T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 64)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) +(((-50 |#1| |#2|) (-13 (-631 |#1|) (-1055 |#1|) (-10 -8 (-15 -4383 (|#1| $)) (-15 -3990 ($ $)) (-15 -4406 ($ $)) (-15 -2012 (|#1| $ $)) (-15 -3659 ($ (-782))) (-15 -2665 ($ (-655 (-575)))) (-15 -2170 ((-112) $)) (-15 -3373 ((-112) $)) (-15 -2645 ((-782) $)) (-15 -2550 ($ (-1 |#1| |#1|) $)))) (-1066) (-655 (-1194))) (T -50)) +((-4383 (*1 *2 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-50 *2 *3)) (-14 *3 (-655 (-1194))))) (-3990 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1066)) (-14 *3 (-655 (-1194))))) (-4406 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1066)) (-14 *3 (-655 (-1194))))) (-2012 (*1 *2 *1 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-50 *2 *3)) (-14 *3 (-655 (-1194))))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) (-14 *4 (-655 (-1194))))) (-2665 (*1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) (-14 *4 (-655 (-1194))))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) (-14 *4 (-655 (-1194))))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) (-14 *4 (-655 (-1194))))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) (-14 *4 (-655 (-1194))))) (-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-50 *3 *4)) (-14 *4 (-655 (-1194)))))) +(-13 (-631 |#1|) (-1055 |#1|) (-10 -8 (-15 -4383 (|#1| $)) (-15 -3990 ($ $)) (-15 -4406 ($ $)) (-15 -2012 (|#1| $ $)) (-15 -3659 ($ (-782))) (-15 -2665 ($ (-655 (-575)))) (-15 -2170 ((-112) $)) (-15 -3373 ((-112) $)) (-15 -2645 ((-782) $)) (-15 -2550 ($ (-1 |#1| |#1|) $)))) +((-3373 (((-112) (-52)) 18)) (-2449 (((-3 |#1| "failed") (-52)) 20)) (-4399 ((|#1| (-52)) 21)) (-2883 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -2883 ((-52) |#1|)) (-15 -2449 ((-3 |#1| "failed") (-52))) (-15 -3373 ((-112) (-52))) (-15 -4399 (|#1| (-52)))) (-1235)) (T -51)) +((-4399 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1235)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1235)))) (-2449 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1235)))) (-2883 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1235))))) +(-10 -7 (-15 -2883 ((-52) |#1|)) (-15 -2449 ((-3 |#1| "failed") (-52))) (-15 -3373 ((-112) (-52))) (-15 -4399 (|#1| (-52)))) +((-2861 (((-112) $ $) NIL)) (-2313 (((-785) $) 8)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2423 (((-1121) $) 10)) (-2883 (((-873) $) 15)) (-4400 (((-112) $ $) NIL)) (-1647 (($ (-1121) (-785)) 16)) (-3914 (((-112) $ $) 12))) +(((-52) (-13 (-1117) (-10 -8 (-15 -1647 ($ (-1121) (-785))) (-15 -2423 ((-1121) $)) (-15 -2313 ((-785) $))))) (T -52)) +((-1647 (*1 *1 *2 *3) (-12 (-5 *2 (-1121)) (-5 *3 (-785)) (-5 *1 (-52)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-52)))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-785)) (-5 *1 (-52))))) +(-13 (-1117) (-10 -8 (-15 -1647 ($ (-1121) (-785))) (-15 -2423 ((-1121) $)) (-15 -2313 ((-785) $)))) +((-1949 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1949 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1066) (-659 |#1|) (-863 |#1|)) (T -53)) +((-1949 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-659 *5)) (-4 *5 (-1066)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-863 *5))))) +(-10 -7 (-15 -1949 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1708 ((|#3| |#3| (-655 (-1194))) 44)) (-3159 ((|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3| (-936)) 32) ((|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3159 (|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3|)) (-15 -3159 (|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3| (-936))) (-15 -1708 (|#3| |#3| (-655 (-1194))))) (-1117) (-13 (-1066) (-898 |#1|) (-625 (-904 |#1|))) (-13 (-441 |#2|) (-898 |#1|) (-625 (-904 |#1|)))) (T -54)) +((-1708 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))))) (-3159 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-655 (-1093 *5 *6 *2))) (-5 *4 (-936)) (-4 *5 (-1117)) (-4 *6 (-13 (-1066) (-898 *5) (-625 (-904 *5)))) (-4 *2 (-13 (-441 *6) (-898 *5) (-625 (-904 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3159 (*1 *2 *3 *2) (-12 (-5 *3 (-655 (-1093 *4 *5 *2))) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -3159 (|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3|)) (-15 -3159 (|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3| (-936))) (-15 -1708 (|#3| |#3| (-655 (-1194))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 14)) (-2449 (((-3 (-782) "failed") $) 34)) (-4399 (((-782) $) NIL)) (-1542 (((-112) $) 16)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) 18)) (-2883 (((-873) $) 23) (($ (-782)) 29)) (-4400 (((-112) $ $) NIL)) (-2677 (($) 11 T CONST)) (-3914 (((-112) $ $) 20))) +(((-55) (-13 (-1117) (-1055 (-782)) (-10 -8 (-15 -2677 ($) -3738) (-15 -3799 ((-112) $)) (-15 -1542 ((-112) $))))) (T -55)) +((-2677 (*1 *1) (-5 *1 (-55))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1117) (-1055 (-782)) (-10 -8 (-15 -2677 ($) -3738) (-15 -3799 ((-112) $)) (-15 -1542 ((-112) $)))) +((-1845 (((-112) $ (-782)) 27)) (-3918 (($ $ (-575) |#3|) 66)) (-4188 (($ $ (-575) |#4|) 70)) (-1565 ((|#3| $ (-575)) 79)) (-4001 (((-655 |#2|) $) 47)) (-3896 (((-112) $ (-782)) 31)) (-2625 (((-112) |#2| $) 74)) (-2847 (($ (-1 |#2| |#2|) $) 55)) (-2550 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4026 (((-112) $ (-782)) 29)) (-3954 (($ $ |#2|) 52)) (-3207 (((-112) (-1 (-112) |#2|) $) 21)) (-2070 ((|#2| $ (-575) (-575)) NIL) ((|#2| $ (-575) (-575) |#2|) 35)) (-3925 (((-782) (-1 (-112) |#2|) $) 41) (((-782) |#2| $) 76)) (-3078 (($ $) 51)) (-1792 ((|#4| $ (-575)) 82)) (-2883 (((-873) $) 88)) (-3771 (((-112) (-1 (-112) |#2|) $) 20)) (-3914 (((-112) $ $) 73)) (-2871 (((-782) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2883 ((-873) |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2550 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4188 (|#1| |#1| (-575) |#4|)) (-15 -3918 (|#1| |#1| (-575) |#3|)) (-15 -4001 ((-655 |#2|) |#1|)) (-15 -1792 (|#4| |#1| (-575))) (-15 -1565 (|#3| |#1| (-575))) (-15 -2070 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575) (-575))) (-15 -3954 (|#1| |#1| |#2|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -2625 ((-112) |#2| |#1|)) (-15 -3925 ((-782) |#2| |#1|)) (-15 -3925 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -3207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2871 ((-782) |#1|)) (-15 -1845 ((-112) |#1| (-782))) (-15 -3896 ((-112) |#1| (-782))) (-15 -4026 ((-112) |#1| (-782))) (-15 -3078 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1235) (-383 |#2|) (-383 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -2883 ((-873) |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2550 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4188 (|#1| |#1| (-575) |#4|)) (-15 -3918 (|#1| |#1| (-575) |#3|)) (-15 -4001 ((-655 |#2|) |#1|)) (-15 -1792 (|#4| |#1| (-575))) (-15 -1565 (|#3| |#1| (-575))) (-15 -2070 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575) (-575))) (-15 -3954 (|#1| |#1| |#2|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -2625 ((-112) |#2| |#1|)) (-15 -3925 ((-782) |#2| |#1|)) (-15 -3925 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -3207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2871 ((-782) |#1|)) (-15 -1845 ((-112) |#1| (-782))) (-15 -3896 ((-112) |#1| (-782))) (-15 -4026 ((-112) |#1| (-782))) (-15 -3078 (|#1| |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) 8)) (-3054 ((|#1| $ (-575) (-575) |#1|) 45)) (-3918 (($ $ (-575) |#2|) 43)) (-4188 (($ $ (-575) |#3|) 42)) (-3011 (($) 7 T CONST)) (-1565 ((|#2| $ (-575)) 47)) (-2859 ((|#1| $ (-575) (-575) |#1|) 44)) (-2788 ((|#1| $ (-575) (-575)) 49)) (-4001 (((-655 |#1|) $) 31)) (-4243 (((-782) $) 52)) (-2309 (($ (-782) (-782) |#1|) 58)) (-4255 (((-782) $) 51)) (-3896 (((-112) $ (-782)) 9)) (-2667 (((-575) $) 56)) (-1775 (((-575) $) 54)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-1776 (((-575) $) 55)) (-3293 (((-575) $) 53)) (-2847 (($ (-1 |#1| |#1|) $) 35)) (-2550 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3954 (($ $ |#1|) 57)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ (-575) (-575)) 50) ((|#1| $ (-575) (-575) |#1|) 48)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-1792 ((|#3| $ (-575)) 46)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-57 |#1| |#2| |#3|) (-141) (-1235) (-383 |t#1|) (-383 |t#1|)) (T -57)) +((-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2309 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-782)) (-4 *3 (-1235)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-3954 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-575)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-575)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-575)))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-575)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-782)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-782)))) (-2070 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-1235)))) (-2788 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-1235)))) (-2070 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235)) (-4 *4 (-383 *2)) (-4 *5 (-383 *2)))) (-1565 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1235)) (-4 *5 (-383 *4)) (-4 *2 (-383 *4)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1235)) (-4 *5 (-383 *4)) (-4 *2 (-383 *4)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-655 *3)))) (-3054 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235)) (-4 *4 (-383 *2)) (-4 *5 (-383 *2)))) (-2859 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235)) (-4 *4 (-383 *2)) (-4 *5 (-383 *2)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-575)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-383 *4)) (-4 *5 (-383 *4)))) (-4188 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-575)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1235)) (-4 *5 (-383 *4)) (-4 *3 (-383 *4)))) (-2847 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2550 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2550 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))) +(-13 (-500 |t#1|) (-10 -8 (-6 -4461) (-6 -4460) (-15 -2309 ($ (-782) (-782) |t#1|)) (-15 -3954 ($ $ |t#1|)) (-15 -2667 ((-575) $)) (-15 -1776 ((-575) $)) (-15 -1775 ((-575) $)) (-15 -3293 ((-575) $)) (-15 -4243 ((-782) $)) (-15 -4255 ((-782) $)) (-15 -2070 (|t#1| $ (-575) (-575))) (-15 -2788 (|t#1| $ (-575) (-575))) (-15 -2070 (|t#1| $ (-575) (-575) |t#1|)) (-15 -1565 (|t#2| $ (-575))) (-15 -1792 (|t#3| $ (-575))) (-15 -4001 ((-655 |t#1|) $)) (-15 -3054 (|t#1| $ (-575) (-575) |t#1|)) (-15 -2859 (|t#1| $ (-575) (-575) |t#1|)) (-15 -3918 ($ $ (-575) |t#2|)) (-15 -4188 ($ $ (-575) |t#3|)) (-15 -2550 ($ (-1 |t#1| |t#1|) $)) (-15 -2847 ($ (-1 |t#1| |t#1|) $)) (-15 -2550 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2550 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-3715 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2308 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2550 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -3715 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2308 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2550 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1235) (-1235)) (T -58)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2308 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-58 *5 *2)))) (-3715 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1235)) (-4 *5 (-1235)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -3715 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2308 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2550 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) NIL)) (-2632 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2479 (($ (-655 |#1|)) 11) (($ (-782) |#1|) 14)) (-2309 (($ (-782) |#1|) 13)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2135 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1961 ((|#1| $) NIL (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3954 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 10)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2479 ($ (-655 |#1|))) (-15 -2479 ($ (-782) |#1|)))) (-1235)) (T -59)) +((-2479 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-59 *3)))) (-2479 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-59 *3)) (-4 *3 (-1235))))) +(-13 (-19 |#1|) (-10 -8 (-15 -2479 ($ (-655 |#1|))) (-15 -2479 ($ (-782) |#1|)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#1| $ (-575) (-575) |#1|) NIL)) (-3918 (($ $ (-575) (-59 |#1|)) NIL)) (-4188 (($ $ (-575) (-59 |#1|)) NIL)) (-3011 (($) NIL T CONST)) (-1565 (((-59 |#1|) $ (-575)) NIL)) (-2859 ((|#1| $ (-575) (-575) |#1|) NIL)) (-2788 ((|#1| $ (-575) (-575)) NIL)) (-4001 (((-655 |#1|) $) NIL)) (-4243 (((-782) $) NIL)) (-2309 (($ (-782) (-782) |#1|) NIL)) (-4255 (((-782) $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2667 (((-575) $) NIL)) (-1775 (((-575) $) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1776 (((-575) $) NIL)) (-3293 (((-575) $) NIL)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3954 (($ $ |#1|) NIL)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-575) (-575)) NIL) ((|#1| $ (-575) (-575) |#1|) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-1792 (((-59 |#1|) $ (-575)) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4461))) (-1235)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4461))) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 74) (((-3 $ "failed") (-1285 (-325 (-575)))) 63) (((-3 $ "failed") (-1285 (-967 (-389)))) 94) (((-3 $ "failed") (-1285 (-967 (-575)))) 84) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 52) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 39)) (-4399 (($ (-1285 (-325 (-389)))) 70) (($ (-1285 (-325 (-575)))) 59) (($ (-1285 (-967 (-389)))) 90) (($ (-1285 (-967 (-575)))) 80) (($ (-1285 (-418 (-967 (-389))))) 48) (($ (-1285 (-418 (-967 (-575))))) 32)) (-2248 (((-1290) $) 124)) (-2883 (((-873) $) 118) (($ (-655 (-339))) 103) (($ (-339)) 97) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 101) (($ (-1285 (-349 (-2894 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2894) (-710)))) 31))) +(((-61 |#1|) (-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2894) (-710))))))) (-1194)) (T -61)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2894 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2894) (-710)))) (-5 *1 (-61 *3)) (-14 *3 (-1194))))) +(-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2894) (-710))))))) +((-2248 (((-1290) $) 54) (((-1290)) 55)) (-2883 (((-873) $) 51))) +(((-62 |#1|) (-13 (-406) (-10 -7 (-15 -2248 ((-1290))))) (-1194)) (T -62)) +((-2248 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-62 *3)) (-14 *3 (-1194))))) +(-13 (-406) (-10 -7 (-15 -2248 ((-1290))))) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 150) (((-3 $ "failed") (-1285 (-325 (-575)))) 140) (((-3 $ "failed") (-1285 (-967 (-389)))) 170) (((-3 $ "failed") (-1285 (-967 (-575)))) 160) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 129) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 117)) (-4399 (($ (-1285 (-325 (-389)))) 146) (($ (-1285 (-325 (-575)))) 136) (($ (-1285 (-967 (-389)))) 166) (($ (-1285 (-967 (-575)))) 156) (($ (-1285 (-418 (-967 (-389))))) 125) (($ (-1285 (-418 (-967 (-575))))) 110)) (-2248 (((-1290) $) 103)) (-2883 (((-873) $) 97) (($ (-655 (-339))) 30) (($ (-339)) 35) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 33) (($ (-1285 (-349 (-2894) (-2894 (QUOTE XC)) (-710)))) 95))) +(((-63 |#1|) (-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894) (-2894 (QUOTE XC)) (-710))))))) (-1194)) (T -63)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2894) (-2894 (QUOTE XC)) (-710)))) (-5 *1 (-63 *3)) (-14 *3 (-1194))))) +(-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894) (-2894 (QUOTE XC)) (-710))))))) +((-2449 (((-3 $ "failed") (-325 (-389))) 41) (((-3 $ "failed") (-325 (-575))) 46) (((-3 $ "failed") (-967 (-389))) 50) (((-3 $ "failed") (-967 (-575))) 54) (((-3 $ "failed") (-418 (-967 (-389)))) 36) (((-3 $ "failed") (-418 (-967 (-575)))) 29)) (-4399 (($ (-325 (-389))) 39) (($ (-325 (-575))) 44) (($ (-967 (-389))) 48) (($ (-967 (-575))) 52) (($ (-418 (-967 (-389)))) 34) (($ (-418 (-967 (-575)))) 26)) (-2248 (((-1290) $) 76)) (-2883 (((-873) $) 69) (($ (-655 (-339))) 61) (($ (-339)) 66) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 64) (($ (-349 (-2894 (QUOTE X)) (-2894) (-710))) 25))) +(((-64 |#1|) (-13 (-407) (-10 -8 (-15 -2883 ($ (-349 (-2894 (QUOTE X)) (-2894) (-710)))))) (-1194)) (T -64)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-349 (-2894 (QUOTE X)) (-2894) (-710))) (-5 *1 (-64 *3)) (-14 *3 (-1194))))) +(-13 (-407) (-10 -8 (-15 -2883 ($ (-349 (-2894 (QUOTE X)) (-2894) (-710)))))) +((-2449 (((-3 $ "failed") (-700 (-325 (-389)))) 111) (((-3 $ "failed") (-700 (-325 (-575)))) 99) (((-3 $ "failed") (-700 (-967 (-389)))) 133) (((-3 $ "failed") (-700 (-967 (-575)))) 122) (((-3 $ "failed") (-700 (-418 (-967 (-389))))) 87) (((-3 $ "failed") (-700 (-418 (-967 (-575))))) 73)) (-4399 (($ (-700 (-325 (-389)))) 107) (($ (-700 (-325 (-575)))) 95) (($ (-700 (-967 (-389)))) 129) (($ (-700 (-967 (-575)))) 118) (($ (-700 (-418 (-967 (-389))))) 83) (($ (-700 (-418 (-967 (-575))))) 66)) (-2248 (((-1290) $) 141)) (-2883 (((-873) $) 135) (($ (-655 (-339))) 29) (($ (-339)) 34) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 32) (($ (-700 (-349 (-2894) (-2894 (QUOTE X) (QUOTE HESS)) (-710)))) 56))) +(((-65 |#1|) (-13 (-394) (-627 (-700 (-349 (-2894) (-2894 (QUOTE X) (QUOTE HESS)) (-710))))) (-1194)) (T -65)) +NIL +(-13 (-394) (-627 (-700 (-349 (-2894) (-2894 (QUOTE X) (QUOTE HESS)) (-710))))) +((-2449 (((-3 $ "failed") (-325 (-389))) 60) (((-3 $ "failed") (-325 (-575))) 65) (((-3 $ "failed") (-967 (-389))) 69) (((-3 $ "failed") (-967 (-575))) 73) (((-3 $ "failed") (-418 (-967 (-389)))) 55) (((-3 $ "failed") (-418 (-967 (-575)))) 48)) (-4399 (($ (-325 (-389))) 58) (($ (-325 (-575))) 63) (($ (-967 (-389))) 67) (($ (-967 (-575))) 71) (($ (-418 (-967 (-389)))) 53) (($ (-418 (-967 (-575)))) 45)) (-2248 (((-1290) $) 82)) (-2883 (((-873) $) 76) (($ (-655 (-339))) 29) (($ (-339)) 34) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 32) (($ (-349 (-2894) (-2894 (QUOTE XC)) (-710))) 40))) +(((-66 |#1|) (-13 (-407) (-10 -8 (-15 -2883 ($ (-349 (-2894) (-2894 (QUOTE XC)) (-710)))))) (-1194)) (T -66)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-349 (-2894) (-2894 (QUOTE XC)) (-710))) (-5 *1 (-66 *3)) (-14 *3 (-1194))))) +(-13 (-407) (-10 -8 (-15 -2883 ($ (-349 (-2894) (-2894 (QUOTE XC)) (-710)))))) +((-2248 (((-1290) $) 65)) (-2883 (((-873) $) 59) (($ (-700 (-710))) 51) (($ (-655 (-339))) 50) (($ (-339)) 57) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 55))) +(((-67 |#1|) (-393) (-1194)) (T -67)) +NIL +(-393) +((-2248 (((-1290) $) 66)) (-2883 (((-873) $) 60) (($ (-700 (-710))) 52) (($ (-655 (-339))) 51) (($ (-339)) 54) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 57))) +(((-68 |#1|) (-393) (-1194)) (T -68)) +NIL +(-393) +((-2248 (((-1290) $) NIL) (((-1290)) 33)) (-2883 (((-873) $) NIL))) +(((-69 |#1|) (-13 (-406) (-10 -7 (-15 -2248 ((-1290))))) (-1194)) (T -69)) +((-2248 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-69 *3)) (-14 *3 (-1194))))) +(-13 (-406) (-10 -7 (-15 -2248 ((-1290))))) +((-2248 (((-1290) $) 75)) (-2883 (((-873) $) 69) (($ (-700 (-710))) 61) (($ (-655 (-339))) 63) (($ (-339)) 66) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 60))) +(((-70 |#1|) (-393) (-1194)) (T -70)) +NIL +(-393) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 109) (((-3 $ "failed") (-1285 (-325 (-575)))) 98) (((-3 $ "failed") (-1285 (-967 (-389)))) 129) (((-3 $ "failed") (-1285 (-967 (-575)))) 119) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 87) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 74)) (-4399 (($ (-1285 (-325 (-389)))) 105) (($ (-1285 (-325 (-575)))) 94) (($ (-1285 (-967 (-389)))) 125) (($ (-1285 (-967 (-575)))) 115) (($ (-1285 (-418 (-967 (-389))))) 83) (($ (-1285 (-418 (-967 (-575))))) 67)) (-2248 (((-1290) $) 142)) (-2883 (((-873) $) 136) (($ (-655 (-339))) 131) (($ (-339)) 134) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 59) (($ (-1285 (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710)))) 60))) +(((-71 |#1|) (-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710))))))) (-1194)) (T -71)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710)))) (-5 *1 (-71 *3)) (-14 *3 (-1194))))) +(-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710))))))) +((-2248 (((-1290) $) 33) (((-1290)) 32)) (-2883 (((-873) $) 36))) +(((-72 |#1|) (-13 (-406) (-10 -7 (-15 -2248 ((-1290))))) (-1194)) (T -72)) +((-2248 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-72 *3)) (-14 *3 (-1194))))) +(-13 (-406) (-10 -7 (-15 -2248 ((-1290))))) +((-2248 (((-1290) $) 65)) (-2883 (((-873) $) 59) (($ (-700 (-710))) 51) (($ (-655 (-339))) 53) (($ (-339)) 56) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 50))) +(((-73 |#1|) (-393) (-1194)) (T -73)) +NIL +(-393) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 127) (((-3 $ "failed") (-1285 (-325 (-575)))) 117) (((-3 $ "failed") (-1285 (-967 (-389)))) 147) (((-3 $ "failed") (-1285 (-967 (-575)))) 137) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 107) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 95)) (-4399 (($ (-1285 (-325 (-389)))) 123) (($ (-1285 (-325 (-575)))) 113) (($ (-1285 (-967 (-389)))) 143) (($ (-1285 (-967 (-575)))) 133) (($ (-1285 (-418 (-967 (-389))))) 103) (($ (-1285 (-418 (-967 (-575))))) 88)) (-2248 (((-1290) $) 80)) (-2883 (((-873) $) 28) (($ (-655 (-339))) 70) (($ (-339)) 66) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 73) (($ (-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710)))) 67))) +(((-74 |#1|) (-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710))))))) (-1194)) (T -74)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710)))) (-5 *1 (-74 *3)) (-14 *3 (-1194))))) +(-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710))))))) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 132) (((-3 $ "failed") (-1285 (-325 (-575)))) 121) (((-3 $ "failed") (-1285 (-967 (-389)))) 152) (((-3 $ "failed") (-1285 (-967 (-575)))) 142) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 110) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 97)) (-4399 (($ (-1285 (-325 (-389)))) 128) (($ (-1285 (-325 (-575)))) 117) (($ (-1285 (-967 (-389)))) 148) (($ (-1285 (-967 (-575)))) 138) (($ (-1285 (-418 (-967 (-389))))) 106) (($ (-1285 (-418 (-967 (-575))))) 90)) (-2248 (((-1290) $) 82)) (-2883 (((-873) $) 74) (($ (-655 (-339))) NIL) (($ (-339)) NIL) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) NIL) (($ (-1285 (-349 (-2894 (QUOTE X) (QUOTE EPS)) (-2894 (QUOTE -2259)) (-710)))) 69))) +(((-75 |#1| |#2| |#3|) (-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE X) (QUOTE EPS)) (-2894 (QUOTE -2259)) (-710))))))) (-1194) (-1194) (-1194)) (T -75)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2894 (QUOTE X) (QUOTE EPS)) (-2894 (QUOTE -2259)) (-710)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1194)) (-14 *4 (-1194)) (-14 *5 (-1194))))) +(-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE X) (QUOTE EPS)) (-2894 (QUOTE -2259)) (-710))))))) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 138) (((-3 $ "failed") (-1285 (-325 (-575)))) 127) (((-3 $ "failed") (-1285 (-967 (-389)))) 158) (((-3 $ "failed") (-1285 (-967 (-575)))) 148) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 116) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 103)) (-4399 (($ (-1285 (-325 (-389)))) 134) (($ (-1285 (-325 (-575)))) 123) (($ (-1285 (-967 (-389)))) 154) (($ (-1285 (-967 (-575)))) 144) (($ (-1285 (-418 (-967 (-389))))) 112) (($ (-1285 (-418 (-967 (-575))))) 96)) (-2248 (((-1290) $) 88)) (-2883 (((-873) $) 80) (($ (-655 (-339))) NIL) (($ (-339)) NIL) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) NIL) (($ (-1285 (-349 (-2894 (QUOTE EPS)) (-2894 (QUOTE YA) (QUOTE YB)) (-710)))) 75))) +(((-76 |#1| |#2| |#3|) (-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE EPS)) (-2894 (QUOTE YA) (QUOTE YB)) (-710))))))) (-1194) (-1194) (-1194)) (T -76)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2894 (QUOTE EPS)) (-2894 (QUOTE YA) (QUOTE YB)) (-710)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1194)) (-14 *4 (-1194)) (-14 *5 (-1194))))) +(-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE EPS)) (-2894 (QUOTE YA) (QUOTE YB)) (-710))))))) +((-2449 (((-3 $ "failed") (-325 (-389))) 83) (((-3 $ "failed") (-325 (-575))) 88) (((-3 $ "failed") (-967 (-389))) 92) (((-3 $ "failed") (-967 (-575))) 96) (((-3 $ "failed") (-418 (-967 (-389)))) 78) (((-3 $ "failed") (-418 (-967 (-575)))) 71)) (-4399 (($ (-325 (-389))) 81) (($ (-325 (-575))) 86) (($ (-967 (-389))) 90) (($ (-967 (-575))) 94) (($ (-418 (-967 (-389)))) 76) (($ (-418 (-967 (-575)))) 68)) (-2248 (((-1290) $) 63)) (-2883 (((-873) $) 51) (($ (-655 (-339))) 47) (($ (-339)) 57) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 55) (($ (-349 (-2894) (-2894 (QUOTE X)) (-710))) 48))) +(((-77 |#1|) (-13 (-407) (-10 -8 (-15 -2883 ($ (-349 (-2894) (-2894 (QUOTE X)) (-710)))))) (-1194)) (T -77)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-349 (-2894) (-2894 (QUOTE X)) (-710))) (-5 *1 (-77 *3)) (-14 *3 (-1194))))) +(-13 (-407) (-10 -8 (-15 -2883 ($ (-349 (-2894) (-2894 (QUOTE X)) (-710)))))) +((-2449 (((-3 $ "failed") (-325 (-389))) 47) (((-3 $ "failed") (-325 (-575))) 52) (((-3 $ "failed") (-967 (-389))) 56) (((-3 $ "failed") (-967 (-575))) 60) (((-3 $ "failed") (-418 (-967 (-389)))) 42) (((-3 $ "failed") (-418 (-967 (-575)))) 35)) (-4399 (($ (-325 (-389))) 45) (($ (-325 (-575))) 50) (($ (-967 (-389))) 54) (($ (-967 (-575))) 58) (($ (-418 (-967 (-389)))) 40) (($ (-418 (-967 (-575)))) 32)) (-2248 (((-1290) $) 81)) (-2883 (((-873) $) 75) (($ (-655 (-339))) 67) (($ (-339)) 72) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 70) (($ (-349 (-2894) (-2894 (QUOTE X)) (-710))) 31))) +(((-78 |#1|) (-13 (-407) (-10 -8 (-15 -2883 ($ (-349 (-2894) (-2894 (QUOTE X)) (-710)))))) (-1194)) (T -78)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-349 (-2894) (-2894 (QUOTE X)) (-710))) (-5 *1 (-78 *3)) (-14 *3 (-1194))))) +(-13 (-407) (-10 -8 (-15 -2883 ($ (-349 (-2894) (-2894 (QUOTE X)) (-710)))))) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 90) (((-3 $ "failed") (-1285 (-325 (-575)))) 79) (((-3 $ "failed") (-1285 (-967 (-389)))) 110) (((-3 $ "failed") (-1285 (-967 (-575)))) 100) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 68) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 55)) (-4399 (($ (-1285 (-325 (-389)))) 86) (($ (-1285 (-325 (-575)))) 75) (($ (-1285 (-967 (-389)))) 106) (($ (-1285 (-967 (-575)))) 96) (($ (-1285 (-418 (-967 (-389))))) 64) (($ (-1285 (-418 (-967 (-575))))) 48)) (-2248 (((-1290) $) 126)) (-2883 (((-873) $) 120) (($ (-655 (-339))) 113) (($ (-339)) 38) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 116) (($ (-1285 (-349 (-2894) (-2894 (QUOTE XC)) (-710)))) 39))) +(((-79 |#1|) (-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894) (-2894 (QUOTE XC)) (-710))))))) (-1194)) (T -79)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2894) (-2894 (QUOTE XC)) (-710)))) (-5 *1 (-79 *3)) (-14 *3 (-1194))))) +(-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894) (-2894 (QUOTE XC)) (-710))))))) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 151) (((-3 $ "failed") (-1285 (-325 (-575)))) 141) (((-3 $ "failed") (-1285 (-967 (-389)))) 171) (((-3 $ "failed") (-1285 (-967 (-575)))) 161) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 131) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 119)) (-4399 (($ (-1285 (-325 (-389)))) 147) (($ (-1285 (-325 (-575)))) 137) (($ (-1285 (-967 (-389)))) 167) (($ (-1285 (-967 (-575)))) 157) (($ (-1285 (-418 (-967 (-389))))) 127) (($ (-1285 (-418 (-967 (-575))))) 112)) (-2248 (((-1290) $) 105)) (-2883 (((-873) $) 99) (($ (-655 (-339))) 90) (($ (-339)) 97) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 95) (($ (-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710)))) 91))) +(((-80 |#1|) (-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710))))))) (-1194)) (T -80)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710)))) (-5 *1 (-80 *3)) (-14 *3 (-1194))))) +(-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710))))))) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 79) (((-3 $ "failed") (-1285 (-325 (-575)))) 68) (((-3 $ "failed") (-1285 (-967 (-389)))) 99) (((-3 $ "failed") (-1285 (-967 (-575)))) 89) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 57) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 44)) (-4399 (($ (-1285 (-325 (-389)))) 75) (($ (-1285 (-325 (-575)))) 64) (($ (-1285 (-967 (-389)))) 95) (($ (-1285 (-967 (-575)))) 85) (($ (-1285 (-418 (-967 (-389))))) 53) (($ (-1285 (-418 (-967 (-575))))) 37)) (-2248 (((-1290) $) 125)) (-2883 (((-873) $) 119) (($ (-655 (-339))) 110) (($ (-339)) 116) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 114) (($ (-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710)))) 36))) +(((-81 |#1|) (-13 (-452) (-627 (-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710))))) (-1194)) (T -81)) +NIL +(-13 (-452) (-627 (-1285 (-349 (-2894) (-2894 (QUOTE X)) (-710))))) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 98) (((-3 $ "failed") (-1285 (-325 (-575)))) 87) (((-3 $ "failed") (-1285 (-967 (-389)))) 118) (((-3 $ "failed") (-1285 (-967 (-575)))) 108) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 76) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 63)) (-4399 (($ (-1285 (-325 (-389)))) 94) (($ (-1285 (-325 (-575)))) 83) (($ (-1285 (-967 (-389)))) 114) (($ (-1285 (-967 (-575)))) 104) (($ (-1285 (-418 (-967 (-389))))) 72) (($ (-1285 (-418 (-967 (-575))))) 56)) (-2248 (((-1290) $) 48)) (-2883 (((-873) $) 42) (($ (-655 (-339))) 32) (($ (-339)) 35) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 38) (($ (-1285 (-349 (-2894 (QUOTE X) (QUOTE -2259)) (-2894) (-710)))) 33))) +(((-82 |#1|) (-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE X) (QUOTE -2259)) (-2894) (-710))))))) (-1194)) (T -82)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2894 (QUOTE X) (QUOTE -2259)) (-2894) (-710)))) (-5 *1 (-82 *3)) (-14 *3 (-1194))))) +(-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE X) (QUOTE -2259)) (-2894) (-710))))))) +((-2449 (((-3 $ "failed") (-700 (-325 (-389)))) 118) (((-3 $ "failed") (-700 (-325 (-575)))) 107) (((-3 $ "failed") (-700 (-967 (-389)))) 140) (((-3 $ "failed") (-700 (-967 (-575)))) 129) (((-3 $ "failed") (-700 (-418 (-967 (-389))))) 96) (((-3 $ "failed") (-700 (-418 (-967 (-575))))) 83)) (-4399 (($ (-700 (-325 (-389)))) 114) (($ (-700 (-325 (-575)))) 103) (($ (-700 (-967 (-389)))) 136) (($ (-700 (-967 (-575)))) 125) (($ (-700 (-418 (-967 (-389))))) 92) (($ (-700 (-418 (-967 (-575))))) 76)) (-2248 (((-1290) $) 66)) (-2883 (((-873) $) 53) (($ (-655 (-339))) 60) (($ (-339)) 49) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 58) (($ (-700 (-349 (-2894 (QUOTE X) (QUOTE -2259)) (-2894) (-710)))) 50))) +(((-83 |#1|) (-13 (-394) (-10 -8 (-15 -2883 ($ (-700 (-349 (-2894 (QUOTE X) (QUOTE -2259)) (-2894) (-710))))))) (-1194)) (T -83)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-700 (-349 (-2894 (QUOTE X) (QUOTE -2259)) (-2894) (-710)))) (-5 *1 (-83 *3)) (-14 *3 (-1194))))) +(-13 (-394) (-10 -8 (-15 -2883 ($ (-700 (-349 (-2894 (QUOTE X) (QUOTE -2259)) (-2894) (-710))))))) +((-2449 (((-3 $ "failed") (-700 (-325 (-389)))) 113) (((-3 $ "failed") (-700 (-325 (-575)))) 101) (((-3 $ "failed") (-700 (-967 (-389)))) 135) (((-3 $ "failed") (-700 (-967 (-575)))) 124) (((-3 $ "failed") (-700 (-418 (-967 (-389))))) 89) (((-3 $ "failed") (-700 (-418 (-967 (-575))))) 75)) (-4399 (($ (-700 (-325 (-389)))) 109) (($ (-700 (-325 (-575)))) 97) (($ (-700 (-967 (-389)))) 131) (($ (-700 (-967 (-575)))) 120) (($ (-700 (-418 (-967 (-389))))) 85) (($ (-700 (-418 (-967 (-575))))) 68)) (-2248 (((-1290) $) 60)) (-2883 (((-873) $) 54) (($ (-655 (-339))) 48) (($ (-339)) 51) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 45) (($ (-700 (-349 (-2894 (QUOTE X)) (-2894) (-710)))) 46))) +(((-84 |#1|) (-13 (-394) (-10 -8 (-15 -2883 ($ (-700 (-349 (-2894 (QUOTE X)) (-2894) (-710))))))) (-1194)) (T -84)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-700 (-349 (-2894 (QUOTE X)) (-2894) (-710)))) (-5 *1 (-84 *3)) (-14 *3 (-1194))))) +(-13 (-394) (-10 -8 (-15 -2883 ($ (-700 (-349 (-2894 (QUOTE X)) (-2894) (-710))))))) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 105) (((-3 $ "failed") (-1285 (-325 (-575)))) 94) (((-3 $ "failed") (-1285 (-967 (-389)))) 125) (((-3 $ "failed") (-1285 (-967 (-575)))) 115) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 83) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 70)) (-4399 (($ (-1285 (-325 (-389)))) 101) (($ (-1285 (-325 (-575)))) 90) (($ (-1285 (-967 (-389)))) 121) (($ (-1285 (-967 (-575)))) 111) (($ (-1285 (-418 (-967 (-389))))) 79) (($ (-1285 (-418 (-967 (-575))))) 63)) (-2248 (((-1290) $) 47)) (-2883 (((-873) $) 41) (($ (-655 (-339))) 50) (($ (-339)) 37) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 53) (($ (-1285 (-349 (-2894 (QUOTE X)) (-2894) (-710)))) 38))) +(((-85 |#1|) (-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE X)) (-2894) (-710))))))) (-1194)) (T -85)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2894 (QUOTE X)) (-2894) (-710)))) (-5 *1 (-85 *3)) (-14 *3 (-1194))))) +(-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE X)) (-2894) (-710))))))) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 80) (((-3 $ "failed") (-1285 (-325 (-575)))) 69) (((-3 $ "failed") (-1285 (-967 (-389)))) 100) (((-3 $ "failed") (-1285 (-967 (-575)))) 90) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 58) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 45)) (-4399 (($ (-1285 (-325 (-389)))) 76) (($ (-1285 (-325 (-575)))) 65) (($ (-1285 (-967 (-389)))) 96) (($ (-1285 (-967 (-575)))) 86) (($ (-1285 (-418 (-967 (-389))))) 54) (($ (-1285 (-418 (-967 (-575))))) 38)) (-2248 (((-1290) $) 126)) (-2883 (((-873) $) 120) (($ (-655 (-339))) 111) (($ (-339)) 117) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 115) (($ (-1285 (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710)))) 37))) +(((-86 |#1|) (-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710))))))) (-1194)) (T -86)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710)))) (-5 *1 (-86 *3)) (-14 *3 (-1194))))) +(-13 (-452) (-10 -8 (-15 -2883 ($ (-1285 (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710))))))) +((-2449 (((-3 $ "failed") (-700 (-325 (-389)))) 117) (((-3 $ "failed") (-700 (-325 (-575)))) 105) (((-3 $ "failed") (-700 (-967 (-389)))) 139) (((-3 $ "failed") (-700 (-967 (-575)))) 128) (((-3 $ "failed") (-700 (-418 (-967 (-389))))) 93) (((-3 $ "failed") (-700 (-418 (-967 (-575))))) 79)) (-4399 (($ (-700 (-325 (-389)))) 113) (($ (-700 (-325 (-575)))) 101) (($ (-700 (-967 (-389)))) 135) (($ (-700 (-967 (-575)))) 124) (($ (-700 (-418 (-967 (-389))))) 89) (($ (-700 (-418 (-967 (-575))))) 72)) (-2248 (((-1290) $) 63)) (-2883 (((-873) $) 57) (($ (-655 (-339))) 47) (($ (-339)) 54) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 52) (($ (-700 (-349 (-2894 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2894) (-710)))) 48))) +(((-87 |#1|) (-13 (-394) (-10 -8 (-15 -2883 ($ (-700 (-349 (-2894 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2894) (-710))))))) (-1194)) (T -87)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-700 (-349 (-2894 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2894) (-710)))) (-5 *1 (-87 *3)) (-14 *3 (-1194))))) +(-13 (-394) (-10 -8 (-15 -2883 ($ (-700 (-349 (-2894 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2894) (-710))))))) +((-2248 (((-1290) $) 45)) (-2883 (((-873) $) 39) (($ (-1285 (-710))) 100) (($ (-655 (-339))) 31) (($ (-339)) 36) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 34))) +(((-88 |#1|) (-451) (-1194)) (T -88)) +NIL +(-451) +((-2449 (((-3 $ "failed") (-325 (-389))) 48) (((-3 $ "failed") (-325 (-575))) 53) (((-3 $ "failed") (-967 (-389))) 57) (((-3 $ "failed") (-967 (-575))) 61) (((-3 $ "failed") (-418 (-967 (-389)))) 43) (((-3 $ "failed") (-418 (-967 (-575)))) 36)) (-4399 (($ (-325 (-389))) 46) (($ (-325 (-575))) 51) (($ (-967 (-389))) 55) (($ (-967 (-575))) 59) (($ (-418 (-967 (-389)))) 41) (($ (-418 (-967 (-575)))) 33)) (-2248 (((-1290) $) 91)) (-2883 (((-873) $) 85) (($ (-655 (-339))) 79) (($ (-339)) 82) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 77) (($ (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710))) 32))) +(((-89 |#1|) (-13 (-407) (-10 -8 (-15 -2883 ($ (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710)))))) (-1194)) (T -89)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710))) (-5 *1 (-89 *3)) (-14 *3 (-1194))))) +(-13 (-407) (-10 -8 (-15 -2883 ($ (-349 (-2894 (QUOTE X)) (-2894 (QUOTE -2259)) (-710)))))) +((-1387 (((-1285 (-700 |#1|)) (-700 |#1|)) 61)) (-2668 (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 (-655 (-936))))) |#2| (-936)) 49)) (-3195 (((-2 (|:| |minor| (-655 (-936))) (|:| -2571 |#2|) (|:| |minors| (-655 (-655 (-936)))) (|:| |ops| (-655 |#2|))) |#2| (-936)) 72 (|has| |#1| (-373))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -2668 ((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 (-655 (-936))))) |#2| (-936))) (-15 -1387 ((-1285 (-700 |#1|)) (-700 |#1|))) (IF (|has| |#1| (-373)) (-15 -3195 ((-2 (|:| |minor| (-655 (-936))) (|:| -2571 |#2|) (|:| |minors| (-655 (-655 (-936)))) (|:| |ops| (-655 |#2|))) |#2| (-936))) |%noBranch|)) (-567) (-667 |#1|)) (T -90)) +((-3195 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *5 (-567)) (-5 *2 (-2 (|:| |minor| (-655 (-936))) (|:| -2571 *3) (|:| |minors| (-655 (-655 (-936)))) (|:| |ops| (-655 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-667 *5)))) (-1387 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-1285 (-700 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-700 *4)) (-4 *5 (-667 *4)))) (-2668 (*1 *2 *3 *4) (-12 (-4 *5 (-567)) (-5 *2 (-2 (|:| -2412 (-700 *5)) (|:| |vec| (-1285 (-655 (-936)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-667 *5))))) +(-10 -7 (-15 -2668 ((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 (-655 (-936))))) |#2| (-936))) (-15 -1387 ((-1285 (-700 |#1|)) (-700 |#1|))) (IF (|has| |#1| (-373)) (-15 -3195 ((-2 (|:| |minor| (-655 (-936))) (|:| -2571 |#2|) (|:| |minors| (-655 (-655 (-936)))) (|:| |ops| (-655 |#2|))) |#2| (-936))) |%noBranch|)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2010 ((|#1| $) 40)) (-1845 (((-112) $ (-782)) NIL)) (-3011 (($) NIL T CONST)) (-2620 ((|#1| |#1| $) 35)) (-4065 ((|#1| $) 33)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4012 ((|#1| $) NIL)) (-3862 (($ |#1| $) 36)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2454 ((|#1| $) 34)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 18)) (-1938 (($) 45)) (-3323 (((-782) $) 31)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) 17)) (-2883 (((-873) $) 30 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) NIL)) (-2064 (($ (-655 |#1|)) 42)) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 15 (|has| |#1| (-1117)))) (-2871 (((-782) $) 12 (|has| $ (-6 -4460))))) +(((-91 |#1|) (-13 (-1138 |#1|) (-10 -8 (-15 -2064 ($ (-655 |#1|))))) (-1117)) (T -91)) +((-2064 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-91 *3))))) +(-13 (-1138 |#1|) (-10 -8 (-15 -2064 ($ (-655 |#1|))))) +((-2883 (((-873) $) 13) (($ (-1199)) 9) (((-1199) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -2883 ((-1199) |#1|)) (-15 -2883 (|#1| (-1199))) (-15 -2883 ((-873) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -2883 ((-1199) |#1|)) (-15 -2883 (|#1| (-1199))) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-1199)) 17) (((-1199) $) 16)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) (((-93) (-141)) (T -93)) NIL -(-13 (-1118) (-502 (-1200))) -(((-102) . T) ((-628 #0=(-1200)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1118) . T)) -((-3874 (($ $) 10)) (-3886 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -3886 (|#1| |#1|)) (-15 -3874 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1117) (-501 (-1199))) +(((-102) . T) ((-627 #0=(-1199)) . T) ((-624 (-873)) . T) ((-624 #0#) . T) ((-501 #0#) . T) ((-1117) . T)) +((-3873 (($ $) 10)) (-3885 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -3885 (|#1| |#1|)) (-15 -3873 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -3886 (|#1| |#1|)) (-15 -3874 (|#1| |#1|))) -((-3853 (($ $) 11)) (-3829 (($ $) 10)) (-3874 (($ $) 9)) (-3886 (($ $) 8)) (-3864 (($ $) 7)) (-3840 (($ $) 6))) +(-10 -8 (-15 -3885 (|#1| |#1|)) (-15 -3873 (|#1| |#1|))) +((-3852 (($ $) 11)) (-3828 (($ $) 10)) (-3873 (($ $) 9)) (-3885 (($ $) 8)) (-3863 (($ $) 7)) (-3839 (($ $) 6))) (((-95) (-141)) (T -95)) -((-3853 (*1 *1 *1) (-4 *1 (-95))) (-3829 (*1 *1 *1) (-4 *1 (-95))) (-3874 (*1 *1 *1) (-4 *1 (-95))) (-3886 (*1 *1 *1) (-4 *1 (-95))) (-3864 (*1 *1 *1) (-4 *1 (-95))) (-3840 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3840 ($ $)) (-15 -3864 ($ $)) (-15 -3886 ($ $)) (-15 -3874 ($ $)) (-15 -3829 ($ $)) (-15 -3853 ($ $)))) -((-2862 (((-112) $ $) NIL)) (-1778 (((-1153) $) 9)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-96) (-13 (-1101) (-10 -8 (-15 -1778 ((-1153) $))))) (T -96)) -((-1778 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-96))))) -(-13 (-1101) (-10 -8 (-15 -1778 ((-1153) $)))) -((-2862 (((-112) $ $) NIL)) (-1391 (((-390) (-1177) (-390)) 46) (((-390) (-1177) (-1177) (-390)) 44)) (-1403 (((-390) (-390)) 35)) (-1599 (((-1291)) 37)) (-3733 (((-1177) $) NIL)) (-3491 (((-390) (-1177) (-1177)) 50) (((-390) (-1177)) 52)) (-3914 (((-1138) $) NIL)) (-1612 (((-390) (-1177) (-1177)) 51)) (-3480 (((-390) (-1177) (-1177)) 53) (((-390) (-1177)) 54)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-97) (-13 (-1118) (-10 -7 (-15 -3491 ((-390) (-1177) (-1177))) (-15 -3491 ((-390) (-1177))) (-15 -3480 ((-390) (-1177) (-1177))) (-15 -3480 ((-390) (-1177))) (-15 -1612 ((-390) (-1177) (-1177))) (-15 -1599 ((-1291))) (-15 -1403 ((-390) (-390))) (-15 -1391 ((-390) (-1177) (-390))) (-15 -1391 ((-390) (-1177) (-1177) (-390))) (-6 -4461)))) (T -97)) -((-3491 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3480 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-1612 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-1599 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-97)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-1391 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97)))) (-1391 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97))))) -(-13 (-1118) (-10 -7 (-15 -3491 ((-390) (-1177) (-1177))) (-15 -3491 ((-390) (-1177))) (-15 -3480 ((-390) (-1177) (-1177))) (-15 -3480 ((-390) (-1177))) (-15 -1612 ((-390) (-1177) (-1177))) (-15 -1599 ((-1291))) (-15 -1403 ((-390) (-390))) (-15 -1391 ((-390) (-1177) (-390))) (-15 -1391 ((-390) (-1177) (-1177) (-390))) (-6 -4461))) +((-3852 (*1 *1 *1) (-4 *1 (-95))) (-3828 (*1 *1 *1) (-4 *1 (-95))) (-3873 (*1 *1 *1) (-4 *1 (-95))) (-3885 (*1 *1 *1) (-4 *1 (-95))) (-3863 (*1 *1 *1) (-4 *1 (-95))) (-3839 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3839 ($ $)) (-15 -3863 ($ $)) (-15 -3885 ($ $)) (-15 -3873 ($ $)) (-15 -3828 ($ $)) (-15 -3852 ($ $)))) +((-2861 (((-112) $ $) NIL)) (-1777 (((-1152) $) 9)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 15) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-96) (-13 (-1100) (-10 -8 (-15 -1777 ((-1152) $))))) (T -96)) +((-1777 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-96))))) +(-13 (-1100) (-10 -8 (-15 -1777 ((-1152) $)))) +((-2861 (((-112) $ $) NIL)) (-2928 (((-389) (-1176) (-389)) 46) (((-389) (-1176) (-1176) (-389)) 44)) (-2636 (((-389) (-389)) 35)) (-2322 (((-1290)) 37)) (-2288 (((-1176) $) NIL)) (-2544 (((-389) (-1176) (-1176)) 50) (((-389) (-1176)) 52)) (-3912 (((-1137) $) NIL)) (-2101 (((-389) (-1176) (-1176)) 51)) (-1493 (((-389) (-1176) (-1176)) 53) (((-389) (-1176)) 54)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-97) (-13 (-1117) (-10 -7 (-15 -2544 ((-389) (-1176) (-1176))) (-15 -2544 ((-389) (-1176))) (-15 -1493 ((-389) (-1176) (-1176))) (-15 -1493 ((-389) (-1176))) (-15 -2101 ((-389) (-1176) (-1176))) (-15 -2322 ((-1290))) (-15 -2636 ((-389) (-389))) (-15 -2928 ((-389) (-1176) (-389))) (-15 -2928 ((-389) (-1176) (-1176) (-389))) (-6 -4460)))) (T -97)) +((-2544 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) (-1493 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) (-2101 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) (-2322 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-97)))) (-2636 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-97)))) (-2928 (*1 *2 *3 *2) (-12 (-5 *2 (-389)) (-5 *3 (-1176)) (-5 *1 (-97)))) (-2928 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-389)) (-5 *3 (-1176)) (-5 *1 (-97))))) +(-13 (-1117) (-10 -7 (-15 -2544 ((-389) (-1176) (-1176))) (-15 -2544 ((-389) (-1176))) (-15 -1493 ((-389) (-1176) (-1176))) (-15 -1493 ((-389) (-1176))) (-15 -2101 ((-389) (-1176) (-1176))) (-15 -2322 ((-1290))) (-15 -2636 ((-389) (-389))) (-15 -2928 ((-389) (-1176) (-389))) (-15 -2928 ((-389) (-1176) (-1176) (-389))) (-6 -4460))) NIL (((-98) (-141)) (T -98)) NIL -(-13 (-10 -7 (-6 -4461) (-6 (-4463 "*")) (-6 -4462) (-6 -4458) (-6 -4456) (-6 -4455) (-6 -4454) (-6 -4459) (-6 -4453) (-6 -4452) (-6 -4451) (-6 -4450) (-6 -4449) (-6 -4457) (-6 -4460) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4448))) -((-2862 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) NIL)) (-3851 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 16)) (-3914 (((-1138) $) NIL)) (-2071 ((|#1| $ |#1|) 13)) (-3276 (($ $ $) NIL)) (-2920 (($ $ $) NIL)) (-2884 (((-874) $) 22)) (-3722 (((-112) $ $) NIL)) (-2011 (($) 8 T CONST)) (-3915 (((-112) $ $) 10)) (-4039 (($ $ $) NIL)) (** (($ $ (-937)) 32) (($ $ (-783)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33))) -(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3851 ($ (-1 |#1| |#1|))) (-15 -3851 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3851 ($ (-1 |#1| |#1| (-576)))))) (-1067)) (T -99)) -((-3851 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-99 *3)))) (-3851 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-99 *3)))) (-3851 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1067)) (-5 *1 (-99 *3))))) -(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3851 ($ (-1 |#1| |#1|))) (-15 -3851 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3851 ($ (-1 |#1| |#1| (-576)))))) -((-3862 (((-430 |#2|) |#2| (-656 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -3862 ((-430 |#2|) |#2| |#2|)) (-15 -3862 ((-430 |#2|) |#2| (-656 |#2|)))) (-13 (-464) (-148)) (-1262 |#1|)) (T -100)) -((-3862 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-3862 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1262 *4))))) -(-10 -7 (-15 -3862 ((-430 |#2|) |#2| |#2|)) (-15 -3862 ((-430 |#2|) |#2| (-656 |#2|)))) -((-2862 (((-112) $ $) 10))) -(((-101 |#1|) (-10 -8 (-15 -2862 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2862 ((-112) |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-3915 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4460) (-6 (-4462 "*")) (-6 -4461) (-6 -4457) (-6 -4455) (-6 -4454) (-6 -4453) (-6 -4458) (-6 -4452) (-6 -4451) (-6 -4450) (-6 -4449) (-6 -4448) (-6 -4456) (-6 -4459) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4447))) +((-2861 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) NIL)) (-1836 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-575))) 24)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 16)) (-3912 (((-1137) $) NIL)) (-2070 ((|#1| $ |#1|) 13)) (-4258 (($ $ $) NIL)) (-3320 (($ $ $) NIL)) (-2883 (((-873) $) 22)) (-4400 (((-112) $ $) NIL)) (-2009 (($) 8 T CONST)) (-3914 (((-112) $ $) 10)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) 32) (($ $ (-782)) NIL) (($ $ (-575)) 18)) (* (($ $ $) 33))) +(((-99 |#1|) (-13 (-484) (-295 |#1| |#1|) (-10 -8 (-15 -1836 ($ (-1 |#1| |#1|))) (-15 -1836 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1836 ($ (-1 |#1| |#1| (-575)))))) (-1066)) (T -99)) +((-1836 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-99 *3)))) (-1836 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-99 *3)))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-575))) (-4 *3 (-1066)) (-5 *1 (-99 *3))))) +(-13 (-484) (-295 |#1| |#1|) (-10 -8 (-15 -1836 ($ (-1 |#1| |#1|))) (-15 -1836 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1836 ($ (-1 |#1| |#1| (-575)))))) +((-1584 (((-429 |#2|) |#2| (-655 |#2|)) 10) (((-429 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -1584 ((-429 |#2|) |#2| |#2|)) (-15 -1584 ((-429 |#2|) |#2| (-655 |#2|)))) (-13 (-463) (-148)) (-1261 |#1|)) (T -100)) +((-1584 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-13 (-463) (-148))) (-5 *2 (-429 *3)) (-5 *1 (-100 *5 *3)))) (-1584 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-463) (-148))) (-5 *2 (-429 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1261 *4))))) +(-10 -7 (-15 -1584 ((-429 |#2|) |#2| |#2|)) (-15 -1584 ((-429 |#2|) |#2| (-655 |#2|)))) +((-2861 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -2861 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2861 ((-112) |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-3914 (((-112) $ $) 6))) (((-102) (-141)) (T -102)) -((-2862 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3915 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -3915 ((-112) $ $)) (-15 -2862 ((-112) $ $)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4183 ((|#1| $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3434 ((|#1| $ |#1|) 24 (|has| $ (-6 -4462)))) (-3662 (($ $ $) NIL (|has| $ (-6 -4462)))) (-3674 (($ $ $) NIL (|has| $ (-6 -4462)))) (-4078 (($ $ (-656 |#1|)) 30)) (-3055 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-2436 (($ $) 12)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) NIL)) (-3452 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2533 (($ $ |#1| $) 32)) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2431 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-2409 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)) 49)) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-2419 (($ $) 11)) (-2482 (((-656 |#1|) $) NIL)) (-4306 (((-112) $) 13)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 9)) (-1458 (($) 31)) (-2071 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3473 (((-576) $ $) NIL)) (-4053 (((-112) $) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) NIL)) (-3462 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4087 (($ (-783) |#1|) 33)) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -4087 ($ (-783) |#1|)) (-15 -4078 ($ $ (-656 |#1|))) (-15 -2431 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2431 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2409 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2409 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) (-1118)) (T -103)) -((-4087 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1118)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-103 *3)))) (-2431 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1118)))) (-2431 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-103 *3)))) (-2409 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1118)) (-5 *1 (-103 *2)))) (-2409 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1118)) (-5 *1 (-103 *2))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -4087 ($ (-783) |#1|)) (-15 -4078 ($ $ (-656 |#1|))) (-15 -2431 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2431 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2409 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2409 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) -((-4129 ((|#3| |#2| |#2|) 34)) (-4328 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4463 "*"))))) (-4138 ((|#3| |#2| |#2|) 36)) (-4340 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4463 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4129 (|#3| |#2| |#2|)) (-15 -4138 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4463 "*"))) (PROGN (-15 -4328 (|#1| |#2| |#2|)) (-15 -4340 (|#1| |#2|))) |%noBranch|)) (-1067) (-1262 |#1|) (-699 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104)) -((-4340 (*1 *2 *3) (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1067)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) (-4 *4 (-699 *2 *5 *6)))) (-4328 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1067)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) (-4 *4 (-699 *2 *5 *6)))) (-4138 (*1 *2 *3 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-4129 (*1 *2 *3 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))))) -(-10 -7 (-15 -4129 (|#3| |#2| |#2|)) (-15 -4138 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4463 "*"))) (PROGN (-15 -4328 (|#1| |#2| |#2|)) (-15 -4340 (|#1| |#2|))) |%noBranch|)) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-1743 (((-656 (-1195))) 37)) (-1731 (((-2 (|:| |zeros| (-1175 (-227))) (|:| |ones| (-1175 (-227))) (|:| |singularities| (-1175 (-227)))) (-1195)) 39)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-105) (-13 (-1118) (-10 -7 (-15 -1743 ((-656 (-1195)))) (-15 -1731 ((-2 (|:| |zeros| (-1175 (-227))) (|:| |ones| (-1175 (-227))) (|:| |singularities| (-1175 (-227)))) (-1195))) (-6 -4461)))) (T -105)) -((-1743 (*1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-105)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-2 (|:| |zeros| (-1175 (-227))) (|:| |ones| (-1175 (-227))) (|:| |singularities| (-1175 (-227))))) (-5 *1 (-105))))) -(-13 (-1118) (-10 -7 (-15 -1743 ((-656 (-1195)))) (-15 -1731 ((-2 (|:| |zeros| (-1175 (-227))) (|:| |ones| (-1175 (-227))) (|:| |singularities| (-1175 (-227)))) (-1195))) (-6 -4461))) -((-3541 (($ (-656 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -3541 (|#1| (-656 |#2|)))) (-107 |#2|) (-1236)) (T -106)) -NIL -(-10 -8 (-15 -3541 (|#1| (-656 |#2|)))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) 8)) (-2473 (($) 7 T CONST)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3449 ((|#1| $) 40)) (-3807 (($ |#1| $) 41)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-3458 ((|#1| $) 42)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) 43)) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-107 |#1|) (-141) (-1236)) (T -107)) -((-3541 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-107 *3)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))) (-3807 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4462) (-15 -3541 ($ (-656 |t#1|))) (-15 -3458 (|t#1| $)) (-15 -3807 ($ |t#1| $)) (-15 -3449 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1905 (((-576) $) NIL (|has| (-576) (-317)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL (|has| (-576) (-832)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1056 (-576))))) (-4401 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1056 (-576)))) (((-576) $) NIL (|has| (-576) (-1056 (-576))))) (-2803 (($ $ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| (-576) (-557)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1370 (((-112) $) NIL (|has| (-576) (-832)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1439 (((-112) $) NIL)) (-3154 (($ $) NIL)) (-1595 (((-576) $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| (-576) (-1170)))) (-1379 (((-112) $) NIL (|has| (-576) (-832)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| (-576) (-862)))) (-2551 (($ (-1 (-576) (-576)) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| (-576) (-1170)) CONST)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-1916 (((-576) $) NIL (|has| (-576) (-557)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3049 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-2910 (((-783) $) NIL)) (-2071 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2390 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3143 (($ $) NIL)) (-1608 (((-576) $) NIL)) (-2616 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1040))) (((-227) $) NIL (|has| (-576) (-1040)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1195)) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL) (((-1022 2) $) 10)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| (-576) (-925))) (|has| (-576) (-146))))) (-1871 (((-783)) NIL T CONST)) (-1929 (((-576) $) NIL (|has| (-576) (-557)))) (-2046 (($ (-419 (-576))) 9)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-2610 (($ $) NIL (|has| (-576) (-832)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3983 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3957 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3943 (((-112) $ $) NIL (|has| (-576) (-862)))) (-4039 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-108) (-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 2)) (-10 -8 (-15 -1894 ((-419 (-576)) $)) (-15 -2046 ($ (-419 (-576))))))) (T -108)) -((-1894 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-2046 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))) -(-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 2)) (-10 -8 (-15 -1894 ((-419 (-576)) $)) (-15 -2046 ($ (-419 (-576)))))) -((-3525 (((-656 (-981)) $) 13)) (-1778 (((-518) $) 9)) (-2884 (((-874) $) 20)) (-3550 (($ (-518) (-656 (-981))) 15))) -(((-109) (-13 (-625 (-874)) (-10 -8 (-15 -1778 ((-518) $)) (-15 -3525 ((-656 (-981)) $)) (-15 -3550 ($ (-518) (-656 (-981))))))) (T -109)) -((-1778 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-656 (-981))) (-5 *1 (-109)))) (-3550 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-981))) (-5 *1 (-109))))) -(-13 (-625 (-874)) (-10 -8 (-15 -1778 ((-518) $)) (-15 -3525 ((-656 (-981)) $)) (-15 -3550 ($ (-518) (-656 (-981)))))) -((-2862 (((-112) $ $) NIL)) (-2880 (($ $) NIL)) (-1971 (($ $ $) NIL)) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1891 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2032 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3055 (((-112) $ (-1253 (-576)) (-112)) NIL (|has| $ (-6 -4462))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-3634 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-2309 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-2859 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4462)))) (-2789 (((-112) $ (-576)) NIL)) (-2634 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1118))) (((-576) (-112) $) NIL (|has| (-112) (-1118))) (((-576) (-1 (-112) (-112)) $) NIL)) (-4001 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-3239 (($ $ $) NIL)) (-3216 (($ $) NIL)) (-1466 (($ $ $) NIL)) (-2310 (($ (-783) (-112)) 10)) (-1564 (($ $ $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL)) (-4214 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1496 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL)) (-2848 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-2134 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 (((-112) $) NIL (|has| (-576) (-862)))) (-1932 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3346 (($ $ (-112)) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-3403 (((-656 (-112)) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 (($ $ (-1253 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-3240 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3926 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-2895 (($ (-656 (-112))) NIL)) (-1514 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2884 (((-874) $) NIL)) (-4226 (($ (-783) (-112)) 11)) (-3722 (((-112) $ $) NIL)) (-2492 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-3227 (($ $ $) NIL)) (-2923 (($ $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-2911 (($ $ $) NIL)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-110) (-13 (-124) (-10 -8 (-15 -4226 ($ (-783) (-112)))))) (T -110)) -((-4226 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-124) (-10 -8 (-15 -4226 ($ (-783) (-112))))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-141) (-1067) (-1067)) (T -111)) -NIL -(-13 (-660 |t#1|) (-1074 |t#2|) (-10 -7 (-6 -4456) (-6 -4455))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1069 |#2|) . T) ((-1074 |#2|) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-2880 (($ $) 10)) (-1971 (($ $ $) 15)) (-2004 (($) 7 T CONST)) (-2425 (($ $) 6)) (-2416 (((-783)) 24)) (-2080 (($) 32)) (-3239 (($ $ $) 13)) (-3216 (($ $) 9)) (-1466 (($ $ $) 16)) (-1564 (($ $ $) 17)) (-1921 (($ $ $) NIL) (($) NIL T CONST)) (-4137 (($ $ $) NIL) (($) NIL T CONST)) (-1875 (((-937) $) 30)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) 28)) (-2219 (($ $ $) 20)) (-3914 (((-1138) $) NIL)) (-3941 (($) 8 T CONST)) (-2209 (($ $ $) 21)) (-2616 (((-548) $) 34)) (-2884 (((-874) $) 36)) (-3722 (((-112) $ $) NIL)) (-3227 (($ $ $) 11)) (-2923 (($ $ $) 14)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 19)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 22)) (-2911 (($ $ $) 12))) -(((-112) (-13 (-856) (-673) (-985) (-626 (-548)) (-10 -8 (-15 -1971 ($ $ $)) (-15 -1564 ($ $ $)) (-15 -1466 ($ $ $)) (-15 -2425 ($ $))))) (T -112)) -((-1971 (*1 *1 *1 *1) (-5 *1 (-112))) (-1564 (*1 *1 *1 *1) (-5 *1 (-112))) (-1466 (*1 *1 *1 *1) (-5 *1 (-112))) (-2425 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-856) (-673) (-985) (-626 (-548)) (-10 -8 (-15 -1971 ($ $ $)) (-15 -1564 ($ $ $)) (-15 -1466 ($ $ $)) (-15 -2425 ($ $)))) -((-3239 (($ $ $) 6)) (-3216 (($ $) 8)) (-3227 (($ $ $) 7))) +((-2861 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3914 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -3914 ((-112) $ $)) (-15 -2861 ((-112) $ $)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4182 ((|#1| $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-1915 ((|#1| $ |#1|) 24 (|has| $ (-6 -4461)))) (-3030 (($ $ $) NIL (|has| $ (-6 -4461)))) (-1629 (($ $ $) NIL (|has| $ (-6 -4461)))) (-3328 (($ $ (-655 |#1|)) 30)) (-3054 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "left" $) NIL (|has| $ (-6 -4461))) (($ $ "right" $) NIL (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-2435 (($ $) 12)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) NIL)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2532 (($ $ |#1| $) 32)) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1515 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-2242 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-655 |#1|) |#1| |#1| |#1|)) 49)) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2418 (($ $) 11)) (-2482 (((-655 |#1|) $) NIL)) (-1526 (((-112) $) 13)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 9)) (-1938 (($) 31)) (-2070 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2220 (((-575) $ $) NIL)) (-1648 (((-112) $) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) NIL)) (-2781 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1736 (($ (-782) |#1|) 33)) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -1736 ($ (-782) |#1|)) (-15 -3328 ($ $ (-655 |#1|))) (-15 -1515 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1515 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2242 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2242 ($ $ |#1| (-1 (-655 |#1|) |#1| |#1| |#1|))))) (-1117)) (T -103)) +((-1736 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-103 *3)) (-4 *3 (-1117)))) (-3328 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-103 *3)))) (-1515 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1117)))) (-1515 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-103 *3)))) (-2242 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1117)) (-5 *1 (-103 *2)))) (-2242 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-655 *2) *2 *2 *2)) (-4 *2 (-1117)) (-5 *1 (-103 *2))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -1736 ($ (-782) |#1|)) (-15 -3328 ($ $ (-655 |#1|))) (-15 -1515 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1515 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2242 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2242 ($ $ |#1| (-1 (-655 |#1|) |#1| |#1| |#1|))))) +((-1906 ((|#3| |#2| |#2|) 34)) (-1849 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4462 "*"))))) (-1513 ((|#3| |#2| |#2|) 36)) (-2538 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4462 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1906 (|#3| |#2| |#2|)) (-15 -1513 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4462 "*"))) (PROGN (-15 -1849 (|#1| |#2| |#2|)) (-15 -2538 (|#1| |#2|))) |%noBranch|)) (-1066) (-1261 |#1|) (-698 |#1| |#4| |#5|) (-383 |#1|) (-383 |#1|)) (T -104)) +((-2538 (*1 *2 *3) (-12 (|has| *2 (-6 (-4462 "*"))) (-4 *5 (-383 *2)) (-4 *6 (-383 *2)) (-4 *2 (-1066)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1261 *2)) (-4 *4 (-698 *2 *5 *6)))) (-1849 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4462 "*"))) (-4 *5 (-383 *2)) (-4 *6 (-383 *2)) (-4 *2 (-1066)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1261 *2)) (-4 *4 (-698 *2 *5 *6)))) (-1513 (*1 *2 *3 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-698 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1261 *4)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)))) (-1906 (*1 *2 *3 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-698 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1261 *4)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4))))) +(-10 -7 (-15 -1906 (|#3| |#2| |#2|)) (-15 -1513 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4462 "*"))) (PROGN (-15 -1849 (|#1| |#2| |#2|)) (-15 -2538 (|#1| |#2|))) |%noBranch|)) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-2733 (((-655 (-1194))) 37)) (-2980 (((-2 (|:| |zeros| (-1174 (-227))) (|:| |ones| (-1174 (-227))) (|:| |singularities| (-1174 (-227)))) (-1194)) 39)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-105) (-13 (-1117) (-10 -7 (-15 -2733 ((-655 (-1194)))) (-15 -2980 ((-2 (|:| |zeros| (-1174 (-227))) (|:| |ones| (-1174 (-227))) (|:| |singularities| (-1174 (-227)))) (-1194))) (-6 -4460)))) (T -105)) +((-2733 (*1 *2) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-105)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-2 (|:| |zeros| (-1174 (-227))) (|:| |ones| (-1174 (-227))) (|:| |singularities| (-1174 (-227))))) (-5 *1 (-105))))) +(-13 (-1117) (-10 -7 (-15 -2733 ((-655 (-1194)))) (-15 -2980 ((-2 (|:| |zeros| (-1174 (-227))) (|:| |ones| (-1174 (-227))) (|:| |singularities| (-1174 (-227)))) (-1194))) (-6 -4460))) +((-1511 (($ (-655 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -1511 (|#1| (-655 |#2|)))) (-107 |#2|) (-1235)) (T -106)) +NIL +(-10 -8 (-15 -1511 (|#1| (-655 |#2|)))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) 8)) (-3011 (($) 7 T CONST)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4012 ((|#1| $) 40)) (-3862 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-2454 ((|#1| $) 42)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) 43)) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-107 |#1|) (-141) (-1235)) (T -107)) +((-1511 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-107 *3)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235)))) (-3862 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235)))) (-4012 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235))))) +(-13 (-500 |t#1|) (-10 -8 (-6 -4461) (-15 -1511 ($ (-655 |t#1|))) (-15 -2454 (|t#1| $)) (-15 -3862 ($ |t#1| $)) (-15 -4012 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3127 (((-575) $) NIL (|has| (-575) (-316)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL (|has| (-575) (-831)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-575) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-575) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-575) (-1055 (-575))))) (-4399 (((-575) $) NIL) (((-1194) $) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-575) (-1055 (-575)))) (((-575) $) NIL (|has| (-575) (-1055 (-575))))) (-2802 (($ $ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| (-575) (-556)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-4075 (((-112) $) NIL (|has| (-575) (-831)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-575) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-575) (-898 (-389))))) (-1542 (((-112) $) NIL)) (-4046 (($ $) NIL)) (-1595 (((-575) $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| (-575) (-1169)))) (-4087 (((-112) $) NIL (|has| (-575) (-831)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| (-575) (-861)))) (-2550 (($ (-1 (-575) (-575)) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| (-575) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) NIL (|has| (-575) (-316))) (((-418 (-575)) $) NIL)) (-2736 (((-575) $) NIL (|has| (-575) (-556)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3048 (($ $ (-655 (-575)) (-655 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-575) (-575)) NIL (|has| (-575) (-318 (-575)))) (($ $ (-303 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-303 (-575)))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-1194)) (-655 (-575))) NIL (|has| (-575) (-525 (-1194) (-575)))) (($ $ (-1194) (-575)) NIL (|has| (-575) (-525 (-1194) (-575))))) (-3708 (((-782) $) NIL)) (-2070 (($ $ (-575)) NIL (|has| (-575) (-295 (-575) (-575))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2389 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-4172 (($ $) NIL)) (-1608 (((-575) $) NIL)) (-2615 (((-904 (-575)) $) NIL (|has| (-575) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-575) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-575) (-625 (-547)))) (((-389) $) NIL (|has| (-575) (-1039))) (((-227) $) NIL (|has| (-575) (-1039)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-575) (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) 8) (($ (-575)) NIL) (($ (-1194)) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL) (((-1021 2) $) 10)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-575) (-924))) (|has| (-575) (-146))))) (-3759 (((-782)) NIL T CONST)) (-1432 (((-575) $) NIL (|has| (-575) (-556)))) (-3141 (($ (-418 (-575))) 9)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-2705 (($ $) NIL (|has| (-575) (-831)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-3981 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3956 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3943 (((-112) $ $) NIL (|has| (-575) (-861)))) (-4038 (($ $ $) NIL) (($ (-575) (-575)) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-575) $) NIL) (($ $ (-575)) NIL))) +(((-108) (-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 2)) (-10 -8 (-15 -4309 ((-418 (-575)) $)) (-15 -3141 ($ (-418 (-575))))))) (T -108)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-108)))) (-3141 (*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-108))))) +(-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 2)) (-10 -8 (-15 -4309 ((-418 (-575)) $)) (-15 -3141 ($ (-418 (-575)))))) +((-3524 (((-655 (-980)) $) 13)) (-1777 (((-517) $) 9)) (-2883 (((-873) $) 20)) (-3096 (($ (-517) (-655 (-980))) 15))) +(((-109) (-13 (-624 (-873)) (-10 -8 (-15 -1777 ((-517) $)) (-15 -3524 ((-655 (-980)) $)) (-15 -3096 ($ (-517) (-655 (-980))))))) (T -109)) +((-1777 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-109)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-655 (-980))) (-5 *1 (-109)))) (-3096 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-655 (-980))) (-5 *1 (-109))))) +(-13 (-624 (-873)) (-10 -8 (-15 -1777 ((-517) $)) (-15 -3524 ((-655 (-980)) $)) (-15 -3096 ($ (-517) (-655 (-980)))))) +((-2861 (((-112) $ $) NIL)) (-2881 (($ $) NIL)) (-1971 (($ $ $) NIL)) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2119 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2031 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3054 (((-112) $ (-1252 (-575)) (-112)) NIL (|has| $ (-6 -4461))) (((-112) $ (-575) (-112)) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-3633 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2308 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2859 (((-112) $ (-575) (-112)) NIL (|has| $ (-6 -4461)))) (-2788 (((-112) $ (-575)) NIL)) (-2632 (((-575) (-112) $ (-575)) NIL (|has| (-112) (-1117))) (((-575) (-112) $) NIL (|has| (-112) (-1117))) (((-575) (-1 (-112) (-112)) $) NIL)) (-4001 (((-655 (-112)) $) NIL (|has| $ (-6 -4460)))) (-3238 (($ $ $) NIL)) (-3215 (($ $) NIL)) (-1917 (($ $ $) NIL)) (-2309 (($ (-782) (-112)) 10)) (-2612 (($ $ $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL)) (-3794 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3955 (((-655 (-112)) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL)) (-2847 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-2135 (($ $ $ (-575)) NIL) (($ (-112) $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 (((-112) $) NIL (|has| (-575) (-861)))) (-3704 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3954 (($ $ (-112)) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-112)) (-655 (-112))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-303 (-112))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-655 (-303 (-112)))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-1691 (((-655 (-112)) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 (($ $ (-1252 (-575))) NIL) (((-112) $ (-575)) NIL) (((-112) $ (-575) (-112)) NIL)) (-3239 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3925 (((-782) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117)))) (((-782) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-112) (-625 (-547))))) (-2894 (($ (-655 (-112))) NIL)) (-1514 (($ (-655 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2883 (((-873) $) NIL)) (-2351 (($ (-782) (-112)) 11)) (-4400 (((-112) $ $) NIL)) (-3771 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3226 (($ $ $) NIL)) (-2924 (($ $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-2911 (($ $ $) NIL)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-110) (-13 (-124) (-10 -8 (-15 -2351 ($ (-782) (-112)))))) (T -110)) +((-2351 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-124) (-10 -8 (-15 -2351 ($ (-782) (-112))))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-141) (-1066) (-1066)) (T -111)) +NIL +(-13 (-659 |t#1|) (-1073 |t#2|) (-10 -7 (-6 -4455) (-6 -4454))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-1068 |#2|) . T) ((-1073 |#2|) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-2881 (($ $) 10)) (-1971 (($ $ $) 15)) (-2002 (($) 7 T CONST)) (-2424 (($ $) 6)) (-2415 (((-782)) 24)) (-2079 (($) 32)) (-3238 (($ $ $) 13)) (-3215 (($ $) 9)) (-1917 (($ $ $) 16)) (-2612 (($ $ $) 17)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-1425 (($ $ $) NIL) (($) NIL T CONST)) (-4084 (((-936) $) 30)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) 28)) (-2920 (($ $ $) 20)) (-3912 (((-1137) $) NIL)) (-3939 (($) 8 T CONST)) (-3083 (($ $ $) 21)) (-2615 (((-547) $) 34)) (-2883 (((-873) $) 36)) (-4400 (((-112) $ $) NIL)) (-3226 (($ $ $) 11)) (-2924 (($ $ $) 14)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 19)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 22)) (-2911 (($ $ $) 12))) +(((-112) (-13 (-855) (-672) (-984) (-625 (-547)) (-10 -8 (-15 -1971 ($ $ $)) (-15 -2612 ($ $ $)) (-15 -1917 ($ $ $)) (-15 -2424 ($ $))))) (T -112)) +((-1971 (*1 *1 *1 *1) (-5 *1 (-112))) (-2612 (*1 *1 *1 *1) (-5 *1 (-112))) (-1917 (*1 *1 *1 *1) (-5 *1 (-112))) (-2424 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-855) (-672) (-984) (-625 (-547)) (-10 -8 (-15 -1971 ($ $ $)) (-15 -2612 ($ $ $)) (-15 -1917 ($ $ $)) (-15 -2424 ($ $)))) +((-3238 (($ $ $) 6)) (-3215 (($ $) 8)) (-3226 (($ $ $) 7))) (((-113) (-141)) (T -113)) -((-3216 (*1 *1 *1) (-4 *1 (-113))) (-3227 (*1 *1 *1 *1) (-4 *1 (-113))) (-3239 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-1236) (-10 -8 (-15 -3216 ($ $)) (-15 -3227 ($ $ $)) (-15 -3239 ($ $ $)))) -(((-1236) . T)) -((-2003 (((-3 (-1 |#1| (-656 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-656 |#1|))) 11) (((-3 |#1| "failed") (-115) (-656 |#1|)) 25)) (-2784 (((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-656 (-1 |#1| (-656 |#1|)))) 30)) (-2796 (((-115) |#1|) 63)) (-3574 (((-3 |#1| "failed") (-115)) 58))) -(((-114 |#1|) (-10 -7 (-15 -2003 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -2003 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -2003 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2003 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -2784 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2784 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2784 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2796 ((-115) |#1|)) (-15 -3574 ((-3 |#1| "failed") (-115)))) (-1118)) (T -114)) -((-3574 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1118)))) (-2796 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1118)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1118)))) (-2784 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1118)) (-5 *1 (-114 *4)))) (-2784 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1118)) (-5 *1 (-114 *4)))) (-2003 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1118)))) (-2003 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1118)) (-5 *1 (-114 *4)))) (-2003 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1118)) (-5 *1 (-114 *4)))) (-2003 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1118))))) -(-10 -7 (-15 -2003 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -2003 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -2003 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2003 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -2784 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2784 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2784 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2796 ((-115) |#1|)) (-15 -3574 ((-3 |#1| "failed") (-115)))) -((-2862 (((-112) $ $) NIL)) (-2092 (((-783) $) 91) (($ $ (-783)) 37)) (-2520 (((-112) $) 41)) (-3172 (($ $ (-1177) (-786)) 58) (($ $ (-518) (-786)) 33)) (-3151 (($ $ (-45 (-1177) (-786))) 16)) (-2094 (((-3 (-786) "failed") $ (-1177)) 27) (((-703 (-786)) $ (-518)) 32)) (-3525 (((-45 (-1177) (-786)) $) 15)) (-2573 (($ (-1195)) 20) (($ (-1195) (-783)) 23) (($ (-1195) (-55)) 24)) (-2534 (((-112) $) 39)) (-2062 (((-112) $) 43)) (-1778 (((-1195) $) 8)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3657 (((-112) $ (-1195)) 11)) (-2546 (($ $ (-1 (-548) (-656 (-548)))) 64) (((-3 (-1 (-548) (-656 (-548))) "failed") $) 71)) (-3914 (((-1138) $) NIL)) (-2574 (((-112) $ (-518)) 36)) (-2050 (($ $ (-1 (-112) $ $)) 45)) (-2483 (((-3 (-1 (-874) (-656 (-874))) "failed") $) 69) (($ $ (-1 (-874) (-656 (-874)))) 51) (($ $ (-1 (-874) (-874))) 53)) (-3184 (($ $ (-1177)) 55) (($ $ (-518)) 56)) (-3079 (($ $) 77)) (-2593 (($ $ (-1 (-112) $ $)) 46)) (-2884 (((-874) $) 60)) (-3722 (((-112) $ $) NIL)) (-2608 (($ $ (-518)) 34)) (-2040 (((-55) $) 72)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 89)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 103))) -(((-115) (-13 (-862) (-847 (-1195)) (-10 -8 (-15 -3525 ((-45 (-1177) (-786)) $)) (-15 -3079 ($ $)) (-15 -2573 ($ (-1195))) (-15 -2573 ($ (-1195) (-783))) (-15 -2573 ($ (-1195) (-55))) (-15 -2534 ((-112) $)) (-15 -2520 ((-112) $)) (-15 -2062 ((-112) $)) (-15 -2092 ((-783) $)) (-15 -2092 ($ $ (-783))) (-15 -2050 ($ $ (-1 (-112) $ $))) (-15 -2593 ($ $ (-1 (-112) $ $))) (-15 -2483 ((-3 (-1 (-874) (-656 (-874))) "failed") $)) (-15 -2483 ($ $ (-1 (-874) (-656 (-874))))) (-15 -2483 ($ $ (-1 (-874) (-874)))) (-15 -2546 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2546 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -2574 ((-112) $ (-518))) (-15 -2608 ($ $ (-518))) (-15 -3184 ($ $ (-1177))) (-15 -3184 ($ $ (-518))) (-15 -2094 ((-3 (-786) "failed") $ (-1177))) (-15 -2094 ((-703 (-786)) $ (-518))) (-15 -3172 ($ $ (-1177) (-786))) (-15 -3172 ($ $ (-518) (-786))) (-15 -3151 ($ $ (-45 (-1177) (-786))))))) (T -115)) -((-3525 (*1 *2 *1) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115)))) (-3079 (*1 *1 *1) (-5 *1 (-115))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-115)))) (-2573 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *1 (-115)))) (-2573 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2092 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-2092 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-2050 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2593 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2483 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) (-2483 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) (-2483 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-874))) (-5 *1 (-115)))) (-2546 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-2546 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-2574 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2608 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-115)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-2094 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-786)) (-5 *1 (-115)))) (-2094 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) (-3172 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-786)) (-5 *1 (-115)))) (-3172 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) (-3151 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115))))) -(-13 (-862) (-847 (-1195)) (-10 -8 (-15 -3525 ((-45 (-1177) (-786)) $)) (-15 -3079 ($ $)) (-15 -2573 ($ (-1195))) (-15 -2573 ($ (-1195) (-783))) (-15 -2573 ($ (-1195) (-55))) (-15 -2534 ((-112) $)) (-15 -2520 ((-112) $)) (-15 -2062 ((-112) $)) (-15 -2092 ((-783) $)) (-15 -2092 ($ $ (-783))) (-15 -2050 ($ $ (-1 (-112) $ $))) (-15 -2593 ($ $ (-1 (-112) $ $))) (-15 -2483 ((-3 (-1 (-874) (-656 (-874))) "failed") $)) (-15 -2483 ($ $ (-1 (-874) (-656 (-874))))) (-15 -2483 ($ $ (-1 (-874) (-874)))) (-15 -2546 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2546 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -2574 ((-112) $ (-518))) (-15 -2608 ($ $ (-518))) (-15 -3184 ($ $ (-1177))) (-15 -3184 ($ $ (-518))) (-15 -2094 ((-3 (-786) "failed") $ (-1177))) (-15 -2094 ((-703 (-786)) $ (-518))) (-15 -3172 ($ $ (-1177) (-786))) (-15 -3172 ($ $ (-518) (-786))) (-15 -3151 ($ $ (-45 (-1177) (-786)))))) -((-3584 (((-576) |#2|) 41))) -(((-116 |#1| |#2|) (-10 -7 (-15 -3584 ((-576) |#2|))) (-13 (-374) (-1056 (-419 (-576)))) (-1262 |#1|)) (T -116)) -((-3584 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1056 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1262 *4))))) -(-10 -7 (-15 -3584 ((-576) |#2|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $ (-576)) NIL)) (-2922 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-1527 (($ (-1191 (-576)) (-576)) NIL)) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-1539 (($ $) NIL)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2927 (((-783) $) NIL)) (-1439 (((-112) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3517 (((-576)) NIL)) (-3509 (((-576) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2904 (($ $ (-576)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-3527 (((-1175 (-576)) $) NIL)) (-1346 (($ $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-3495 (((-576) $ (-576)) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-117 |#1|) (-881 |#1|) (-576)) (T -117)) -NIL -(-881 |#1|) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1905 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-925)))) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-925)))) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL (|has| (-117 |#1|) (-832)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-117 |#1|) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1056 (-576))))) (-4401 (((-117 |#1|) $) NIL) (((-1195) $) NIL (|has| (-117 |#1|) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1056 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1056 (-576))))) (-2514 (($ $) NIL) (($ (-576) $) NIL)) (-2803 (($ $ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-117 |#1|))) (|:| |vec| (-1286 (-117 |#1|)))) (-701 $) (-1286 $)) NIL) (((-701 (-117 |#1|)) (-701 $)) NIL) (((-701 (-117 |#1|)) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| (-117 |#1|) (-557)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1370 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-117 |#1|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-117 |#1|) (-899 (-390))))) (-1439 (((-112) $) NIL)) (-3154 (($ $) NIL)) (-1595 (((-117 |#1|) $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1170)))) (-1379 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-4137 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-2551 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| (-117 |#1|) (-1170)) CONST)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-1916 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-925)))) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3049 (($ $ (-656 (-117 |#1|)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-1195)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1195) (-117 |#1|)))) (($ $ (-1195) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1195) (-117 |#1|))))) (-2910 (((-783) $) NIL)) (-2071 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2390 (($ $ (-783)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3143 (($ $) NIL)) (-1608 (((-117 |#1|) $) NIL)) (-2616 (((-905 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1040))) (((-227) $) NIL (|has| (-117 |#1|) (-1040)))) (-3536 (((-176 (-419 (-576))) $) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1195)) NIL (|has| (-117 |#1|) (-1056 (-1195))))) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-925))) (|has| (-117 |#1|) (-146))))) (-1871 (((-783)) NIL T CONST)) (-1929 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-3495 (((-419 (-576)) $ (-576)) NIL)) (-2610 (($ $) NIL (|has| (-117 |#1|) (-832)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-783)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3983 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3957 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3943 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-4039 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) -(((-118 |#1|) (-13 (-1010 (-117 |#1|)) (-10 -8 (-15 -3495 ((-419 (-576)) $ (-576))) (-15 -3536 ((-176 (-419 (-576))) $)) (-15 -2514 ($ $)) (-15 -2514 ($ (-576) $)))) (-576)) (T -118)) -((-3495 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-2514 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))) -(-13 (-1010 (-117 |#1|)) (-10 -8 (-15 -3495 ((-419 (-576)) $ (-576))) (-15 -3536 ((-176 (-419 (-576))) $)) (-15 -2514 ($ $)) (-15 -2514 ($ (-576) $)))) -((-3055 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3484 (((-656 $) $) 31)) (-3452 (((-112) $ $) 36)) (-3743 (((-112) |#2| $) 40)) (-2482 (((-656 |#2|) $) 25)) (-4306 (((-112) $) 18)) (-2071 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4053 (((-112) $) 57)) (-2884 (((-874) $) 47)) (-4255 (((-656 $) $) 32)) (-3915 (((-112) $ $) 38)) (-2872 (((-783) $) 50))) -(((-119 |#1| |#2|) (-10 -8 (-15 -2884 ((-874) |#1|)) (-15 -3055 (|#1| |#1| "right" |#1|)) (-15 -3055 (|#1| |#1| "left" |#1|)) (-15 -2071 (|#1| |#1| "right")) (-15 -2071 (|#1| |#1| "left")) (-15 -3055 (|#2| |#1| "value" |#2|)) (-15 -3452 ((-112) |#1| |#1|)) (-15 -2482 ((-656 |#2|) |#1|)) (-15 -4053 ((-112) |#1|)) (-15 -2071 (|#2| |#1| "value")) (-15 -4306 ((-112) |#1|)) (-15 -3484 ((-656 |#1|) |#1|)) (-15 -4255 ((-656 |#1|) |#1|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -3743 ((-112) |#2| |#1|)) (-15 -2872 ((-783) |#1|))) (-120 |#2|) (-1236)) (T -119)) -NIL -(-10 -8 (-15 -2884 ((-874) |#1|)) (-15 -3055 (|#1| |#1| "right" |#1|)) (-15 -3055 (|#1| |#1| "left" |#1|)) (-15 -2071 (|#1| |#1| "right")) (-15 -2071 (|#1| |#1| "left")) (-15 -3055 (|#2| |#1| "value" |#2|)) (-15 -3452 ((-112) |#1| |#1|)) (-15 -2482 ((-656 |#2|) |#1|)) (-15 -4053 ((-112) |#1|)) (-15 -2071 (|#2| |#1| "value")) (-15 -4306 ((-112) |#1|)) (-15 -3484 ((-656 |#1|) |#1|)) (-15 -4255 ((-656 |#1|) |#1|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -3743 ((-112) |#2| |#1|)) (-15 -2872 ((-783) |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-4183 ((|#1| $) 49)) (-2970 (((-112) $ (-783)) 8)) (-3434 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3662 (($ $ $) 53 (|has| $ (-6 -4462)))) (-3674 (($ $ $) 55 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) (($ $ "left" $) 56 (|has| $ (-6 -4462))) (($ $ "right" $) 54 (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-2473 (($) 7 T CONST)) (-2436 (($ $) 58)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) 51)) (-3452 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-2419 (($ $) 60)) (-2482 (((-656 |#1|) $) 46)) (-4306 (((-112) $) 50)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3473 (((-576) $ $) 45)) (-4053 (((-112) $) 47)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) 52)) (-3462 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-120 |#1|) (-141) (-1236)) (T -120)) -((-2419 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236)))) (-2071 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-2436 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236)))) (-2071 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-3055 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-3674 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236)))) (-3055 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-3662 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236))))) -(-13 (-1028 |t#1|) (-10 -8 (-15 -2419 ($ $)) (-15 -2071 ($ $ "left")) (-15 -2436 ($ $)) (-15 -2071 ($ $ "right")) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3055 ($ $ "left" $)) (-15 -3674 ($ $ $)) (-15 -3055 ($ $ "right" $)) (-15 -3662 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-2160 (((-112) |#1|) 29)) (-1931 (((-783) (-783)) 28) (((-783)) 27)) (-1918 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-121 |#1|) (-10 -7 (-15 -1918 ((-112) |#1|)) (-15 -1918 ((-112) |#1| (-112))) (-15 -1931 ((-783))) (-15 -1931 ((-783) (-783))) (-15 -2160 ((-112) |#1|))) (-1262 (-576))) (T -121)) -((-2160 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-1931 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-1918 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-1918 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576)))))) -(-10 -7 (-15 -1918 ((-112) |#1|)) (-15 -1918 ((-112) |#1| (-112))) (-15 -1931 ((-783))) (-15 -1931 ((-783) (-783))) (-15 -2160 ((-112) |#1|))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4183 ((|#1| $) 18)) (-2921 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2970 (((-112) $ (-783)) NIL)) (-3434 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3662 (($ $ $) 21 (|has| $ (-6 -4462)))) (-3674 (($ $ $) 23 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-2436 (($ $) 20)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) NIL)) (-3452 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2533 (($ $ |#1| $) 27)) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-2419 (($ $) 22)) (-2482 (((-656 |#1|) $) NIL)) (-4306 (((-112) $) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2170 (($ |#1| $) 28)) (-3807 (($ |#1| $) 15)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 17)) (-1458 (($) 11)) (-2071 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3473 (((-576) $ $) NIL)) (-4053 (((-112) $) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) NIL)) (-3462 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1454 (($ (-656 |#1|)) 16)) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -1454 ($ (-656 |#1|))) (-15 -3807 ($ |#1| $)) (-15 -2170 ($ |#1| $)) (-15 -2921 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-862)) (T -122)) -((-1454 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3)))) (-3807 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-2170 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-2921 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-862))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -1454 ($ (-656 |#1|))) (-15 -3807 ($ |#1| $)) (-15 -2170 ($ |#1| $)) (-15 -2921 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2880 (($ $) 13)) (-3216 (($ $) 11)) (-1466 (($ $ $) 23)) (-1564 (($ $ $) 21)) (-2923 (($ $ $) 19)) (-2911 (($ $ $) 17))) -(((-123 |#1|) (-10 -8 (-15 -1466 (|#1| |#1| |#1|)) (-15 -1564 (|#1| |#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -2923 (|#1| |#1| |#1|)) (-15 -3216 (|#1| |#1|))) (-124)) (T -123)) -NIL -(-10 -8 (-15 -1466 (|#1| |#1| |#1|)) (-15 -1564 (|#1| |#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -2923 (|#1| |#1| |#1|)) (-15 -3216 (|#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-2880 (($ $) 103)) (-1971 (($ $ $) 28)) (-3336 (((-1291) $ (-576) (-576)) 66 (|has| $ (-6 -4462)))) (-1913 (((-112) $) 98 (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1891 (($ $) 102 (-12 (|has| (-112) (-862)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4462)))) (-2032 (($ $) 97 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2970 (((-112) $ (-783)) 37)) (-3055 (((-112) $ (-1253 (-576)) (-112)) 88 (|has| $ (-6 -4462))) (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4461)))) (-2473 (($) 38 T CONST)) (-2745 (($ $) 100 (|has| $ (-6 -4462)))) (-4379 (($ $) 90)) (-1919 (($ $) 68 (-12 (|has| (-112) (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4461))) (($ (-112) $) 69 (-12 (|has| (-112) (-1118)) (|has| $ (-6 -4461))))) (-2309 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1118)) (|has| $ (-6 -4461))))) (-2859 (((-112) $ (-576) (-112)) 53 (|has| $ (-6 -4462)))) (-2789 (((-112) $ (-576)) 55)) (-2634 (((-576) (-112) $ (-576)) 95 (|has| (-112) (-1118))) (((-576) (-112) $) 94 (|has| (-112) (-1118))) (((-576) (-1 (-112) (-112)) $) 93)) (-4001 (((-656 (-112)) $) 45 (|has| $ (-6 -4461)))) (-3239 (($ $ $) 108)) (-3216 (($ $) 106)) (-1466 (($ $ $) 29)) (-2310 (($ (-783) (-112)) 78)) (-1564 (($ $ $) 30)) (-2408 (((-112) $ (-783)) 36)) (-3356 (((-576) $) 63 (|has| (-576) (-862)))) (-1921 (($ $ $) 14)) (-4214 (($ $ $) 96 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1496 (((-656 (-112)) $) 46 (|has| $ (-6 -4461)))) (-3743 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 62 (|has| (-576) (-862)))) (-4137 (($ $ $) 15)) (-2848 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-2374 (((-112) $ (-783)) 35)) (-3733 (((-1177) $) 10)) (-2134 (($ $ $ (-576)) 87) (($ (-112) $ (-576)) 86)) (-3385 (((-656 (-576)) $) 60)) (-3394 (((-112) (-576) $) 59)) (-3914 (((-1138) $) 11)) (-1962 (((-112) $) 64 (|has| (-576) (-862)))) (-1932 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3346 (($ $ (-112)) 65 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-112)) (-656 (-112))) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-304 (-112))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-656 (-304 (-112)))) 49 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118))))) (-2983 (((-112) $ $) 31)) (-3375 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-3403 (((-656 (-112)) $) 58)) (-2809 (((-112) $) 34)) (-1458 (($) 33)) (-2071 (($ $ (-1253 (-576))) 77) (((-112) $ (-576)) 57) (((-112) $ (-576) (-112)) 56)) (-3240 (($ $ (-1253 (-576))) 85) (($ $ (-576)) 84)) (-3926 (((-783) (-112) $) 47 (-12 (|has| (-112) (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4461)))) (-1902 (($ $ $ (-576)) 99 (|has| $ (-6 -4462)))) (-3079 (($ $) 32)) (-2616 (((-548) $) 67 (|has| (-112) (-626 (-548))))) (-2895 (($ (-656 (-112))) 76)) (-1514 (($ (-656 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2492 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4461)))) (-3227 (($ $ $) 107)) (-2923 (($ $ $) 105)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-2911 (($ $ $) 104)) (-2872 (((-783) $) 39 (|has| $ (-6 -4461))))) +((-3215 (*1 *1 *1) (-4 *1 (-113))) (-3226 (*1 *1 *1 *1) (-4 *1 (-113))) (-3238 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-1235) (-10 -8 (-15 -3215 ($ $)) (-15 -3226 ($ $ $)) (-15 -3238 ($ $ $)))) +(((-1235) . T)) +((-1955 (((-3 (-1 |#1| (-655 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-655 |#1|))) 11) (((-3 |#1| "failed") (-115) (-655 |#1|)) 25)) (-3583 (((-3 (-655 (-1 |#1| (-655 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-655 (-1 |#1| (-655 |#1|)))) 30)) (-3393 (((-115) |#1|) 63)) (-2678 (((-3 |#1| "failed") (-115)) 58))) +(((-114 |#1|) (-10 -7 (-15 -1955 ((-3 |#1| "failed") (-115) (-655 |#1|))) (-15 -1955 ((-115) (-115) (-1 |#1| (-655 |#1|)))) (-15 -1955 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1955 ((-3 (-1 |#1| (-655 |#1|)) "failed") (-115))) (-15 -3583 ((-115) (-115) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3583 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3583 ((-3 (-655 (-1 |#1| (-655 |#1|))) "failed") (-115))) (-15 -3393 ((-115) |#1|)) (-15 -2678 ((-3 |#1| "failed") (-115)))) (-1117)) (T -114)) +((-2678 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1117)))) (-3393 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1117)))) (-3583 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-655 (-1 *4 (-655 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1117)))) (-3583 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1117)) (-5 *1 (-114 *4)))) (-3583 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 (-1 *4 (-655 *4)))) (-4 *4 (-1117)) (-5 *1 (-114 *4)))) (-1955 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-655 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1117)))) (-1955 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1117)) (-5 *1 (-114 *4)))) (-1955 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-655 *4))) (-4 *4 (-1117)) (-5 *1 (-114 *4)))) (-1955 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-655 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1117))))) +(-10 -7 (-15 -1955 ((-3 |#1| "failed") (-115) (-655 |#1|))) (-15 -1955 ((-115) (-115) (-1 |#1| (-655 |#1|)))) (-15 -1955 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1955 ((-3 (-1 |#1| (-655 |#1|)) "failed") (-115))) (-15 -3583 ((-115) (-115) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3583 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3583 ((-3 (-655 (-1 |#1| (-655 |#1|))) "failed") (-115))) (-15 -3393 ((-115) |#1|)) (-15 -2678 ((-3 |#1| "failed") (-115)))) +((-2861 (((-112) $ $) NIL)) (-2807 (((-782) $) 91) (($ $ (-782)) 37)) (-1517 (((-112) $) 41)) (-2157 (($ $ (-1176) (-785)) 58) (($ $ (-517) (-785)) 33)) (-3731 (($ $ (-45 (-1176) (-785))) 16)) (-1739 (((-3 (-785) "failed") $ (-1176)) 27) (((-702 (-785)) $ (-517)) 32)) (-3524 (((-45 (-1176) (-785)) $) 15)) (-2572 (($ (-1194)) 20) (($ (-1194) (-782)) 23) (($ (-1194) (-55)) 24)) (-3425 (((-112) $) 39)) (-1939 (((-112) $) 43)) (-1777 (((-1194) $) 8)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3789 (((-112) $ (-1194)) 11)) (-2545 (($ $ (-1 (-547) (-655 (-547)))) 64) (((-3 (-1 (-547) (-655 (-547))) "failed") $) 71)) (-3912 (((-1137) $) NIL)) (-3401 (((-112) $ (-517)) 36)) (-3458 (($ $ (-1 (-112) $ $)) 45)) (-2484 (((-3 (-1 (-873) (-655 (-873))) "failed") $) 69) (($ $ (-1 (-873) (-655 (-873)))) 51) (($ $ (-1 (-873) (-873))) 53)) (-2219 (($ $ (-1176)) 55) (($ $ (-517)) 56)) (-3078 (($ $) 77)) (-1395 (($ $ (-1 (-112) $ $)) 46)) (-2883 (((-873) $) 60)) (-4400 (((-112) $ $) NIL)) (-2606 (($ $ (-517)) 34)) (-3156 (((-55) $) 72)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 89)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 103))) +(((-115) (-13 (-861) (-846 (-1194)) (-10 -8 (-15 -3524 ((-45 (-1176) (-785)) $)) (-15 -3078 ($ $)) (-15 -2572 ($ (-1194))) (-15 -2572 ($ (-1194) (-782))) (-15 -2572 ($ (-1194) (-55))) (-15 -3425 ((-112) $)) (-15 -1517 ((-112) $)) (-15 -1939 ((-112) $)) (-15 -2807 ((-782) $)) (-15 -2807 ($ $ (-782))) (-15 -3458 ($ $ (-1 (-112) $ $))) (-15 -1395 ($ $ (-1 (-112) $ $))) (-15 -2484 ((-3 (-1 (-873) (-655 (-873))) "failed") $)) (-15 -2484 ($ $ (-1 (-873) (-655 (-873))))) (-15 -2484 ($ $ (-1 (-873) (-873)))) (-15 -2545 ($ $ (-1 (-547) (-655 (-547))))) (-15 -2545 ((-3 (-1 (-547) (-655 (-547))) "failed") $)) (-15 -3401 ((-112) $ (-517))) (-15 -2606 ($ $ (-517))) (-15 -2219 ($ $ (-1176))) (-15 -2219 ($ $ (-517))) (-15 -1739 ((-3 (-785) "failed") $ (-1176))) (-15 -1739 ((-702 (-785)) $ (-517))) (-15 -2157 ($ $ (-1176) (-785))) (-15 -2157 ($ $ (-517) (-785))) (-15 -3731 ($ $ (-45 (-1176) (-785))))))) (T -115)) +((-3524 (*1 *2 *1) (-12 (-5 *2 (-45 (-1176) (-785))) (-5 *1 (-115)))) (-3078 (*1 *1 *1) (-5 *1 (-115))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-115)))) (-2572 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *1 (-115)))) (-2572 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-55)) (-5 *1 (-115)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1939 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-115)))) (-2807 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-115)))) (-3458 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1395 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2484 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-873) (-655 (-873)))) (-5 *1 (-115)))) (-2484 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-873) (-655 (-873)))) (-5 *1 (-115)))) (-2484 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-873) (-873))) (-5 *1 (-115)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-547) (-655 (-547)))) (-5 *1 (-115)))) (-2545 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-547) (-655 (-547)))) (-5 *1 (-115)))) (-3401 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2606 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-115)))) (-2219 (*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-115)))) (-2219 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-115)))) (-1739 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1176)) (-5 *2 (-785)) (-5 *1 (-115)))) (-1739 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-785))) (-5 *1 (-115)))) (-2157 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-785)) (-5 *1 (-115)))) (-2157 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-785)) (-5 *1 (-115)))) (-3731 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1176) (-785))) (-5 *1 (-115))))) +(-13 (-861) (-846 (-1194)) (-10 -8 (-15 -3524 ((-45 (-1176) (-785)) $)) (-15 -3078 ($ $)) (-15 -2572 ($ (-1194))) (-15 -2572 ($ (-1194) (-782))) (-15 -2572 ($ (-1194) (-55))) (-15 -3425 ((-112) $)) (-15 -1517 ((-112) $)) (-15 -1939 ((-112) $)) (-15 -2807 ((-782) $)) (-15 -2807 ($ $ (-782))) (-15 -3458 ($ $ (-1 (-112) $ $))) (-15 -1395 ($ $ (-1 (-112) $ $))) (-15 -2484 ((-3 (-1 (-873) (-655 (-873))) "failed") $)) (-15 -2484 ($ $ (-1 (-873) (-655 (-873))))) (-15 -2484 ($ $ (-1 (-873) (-873)))) (-15 -2545 ($ $ (-1 (-547) (-655 (-547))))) (-15 -2545 ((-3 (-1 (-547) (-655 (-547))) "failed") $)) (-15 -3401 ((-112) $ (-517))) (-15 -2606 ($ $ (-517))) (-15 -2219 ($ $ (-1176))) (-15 -2219 ($ $ (-517))) (-15 -1739 ((-3 (-785) "failed") $ (-1176))) (-15 -1739 ((-702 (-785)) $ (-517))) (-15 -2157 ($ $ (-1176) (-785))) (-15 -2157 ($ $ (-517) (-785))) (-15 -3731 ($ $ (-45 (-1176) (-785)))))) +((-4320 (((-575) |#2|) 41))) +(((-116 |#1| |#2|) (-10 -7 (-15 -4320 ((-575) |#2|))) (-13 (-373) (-1055 (-418 (-575)))) (-1261 |#1|)) (T -116)) +((-4320 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-1055 (-418 *2)))) (-5 *2 (-575)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1261 *4))))) +(-10 -7 (-15 -4320 ((-575) |#2|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2473 (($ $ (-575)) NIL)) (-2279 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-2516 (($ (-1190 (-575)) (-575)) NIL)) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2189 (($ $) NIL)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-2673 (((-782) $) NIL)) (-1542 (((-112) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3486 (((-575)) NIL)) (-3788 (((-575) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4276 (($ $ (-575)) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-1874 (((-1174 (-575)) $) NIL)) (-2972 (($ $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-3494 (((-575) $ (-575)) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL))) +(((-117 |#1|) (-880 |#1|) (-575)) (T -117)) +NIL +(-880 |#1|) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3127 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-316)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-117 |#1|) (-924)))) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-117 |#1|) (-924)))) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL (|has| (-117 |#1|) (-831)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-117 |#1|) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-117 |#1|) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-117 |#1|) (-1055 (-575))))) (-4399 (((-117 |#1|) $) NIL) (((-1194) $) NIL (|has| (-117 |#1|) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-117 |#1|) (-1055 (-575)))) (((-575) $) NIL (|has| (-117 |#1|) (-1055 (-575))))) (-2140 (($ $) NIL) (($ (-575) $) NIL)) (-2802 (($ $ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| (-117 |#1|) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-117 |#1|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-117 |#1|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-117 |#1|))) (|:| |vec| (-1285 (-117 |#1|)))) (-700 $) (-1285 $)) NIL) (((-700 (-117 |#1|)) (-700 $)) NIL) (((-700 (-117 |#1|)) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| (-117 |#1|) (-556)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-4075 (((-112) $) NIL (|has| (-117 |#1|) (-831)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-117 |#1|) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-117 |#1|) (-898 (-389))))) (-1542 (((-112) $) NIL)) (-4046 (($ $) NIL)) (-1595 (((-117 |#1|) $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1169)))) (-4087 (((-112) $) NIL (|has| (-117 |#1|) (-831)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-1425 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-2550 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| (-117 |#1|) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) NIL (|has| (-117 |#1|) (-316)))) (-2736 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-556)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-117 |#1|) (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-117 |#1|) (-924)))) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3048 (($ $ (-655 (-117 |#1|)) (-655 (-117 |#1|))) NIL (|has| (-117 |#1|) (-318 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-318 (-117 |#1|)))) (($ $ (-303 (-117 |#1|))) NIL (|has| (-117 |#1|) (-318 (-117 |#1|)))) (($ $ (-655 (-303 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-318 (-117 |#1|)))) (($ $ (-655 (-1194)) (-655 (-117 |#1|))) NIL (|has| (-117 |#1|) (-525 (-1194) (-117 |#1|)))) (($ $ (-1194) (-117 |#1|)) NIL (|has| (-117 |#1|) (-525 (-1194) (-117 |#1|))))) (-3708 (((-782) $) NIL)) (-2070 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-295 (-117 |#1|) (-117 |#1|))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2389 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-782)) NIL (|has| (-117 |#1|) (-237)))) (-4172 (($ $) NIL)) (-1608 (((-117 |#1|) $) NIL)) (-2615 (((-904 (-575)) $) NIL (|has| (-117 |#1|) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-117 |#1|) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-117 |#1|) (-625 (-547)))) (((-389) $) NIL (|has| (-117 |#1|) (-1039))) (((-227) $) NIL (|has| (-117 |#1|) (-1039)))) (-4349 (((-176 (-418 (-575))) $) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-117 |#1|)) NIL) (($ (-1194)) NIL (|has| (-117 |#1|) (-1055 (-1194))))) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-924))) (|has| (-117 |#1|) (-146))))) (-3759 (((-782)) NIL T CONST)) (-1432 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-556)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-3494 (((-418 (-575)) $ (-575)) NIL)) (-2705 (($ $) NIL (|has| (-117 |#1|) (-831)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-782)) NIL (|has| (-117 |#1|) (-237)))) (-3981 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3956 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3943 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-4038 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) +(((-118 |#1|) (-13 (-1009 (-117 |#1|)) (-10 -8 (-15 -3494 ((-418 (-575)) $ (-575))) (-15 -4349 ((-176 (-418 (-575))) $)) (-15 -2140 ($ $)) (-15 -2140 ($ (-575) $)))) (-575)) (T -118)) +((-3494 (*1 *2 *1 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-575)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-176 (-418 (-575)))) (-5 *1 (-118 *3)) (-14 *3 (-575)))) (-2140 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-575)))) (-2140 (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-118 *3)) (-14 *3 *2)))) +(-13 (-1009 (-117 |#1|)) (-10 -8 (-15 -3494 ((-418 (-575)) $ (-575))) (-15 -4349 ((-176 (-418 (-575))) $)) (-15 -2140 ($ $)) (-15 -2140 ($ (-575) $)))) +((-3054 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3698 (((-655 $) $) 31)) (-3117 (((-112) $ $) 36)) (-2625 (((-112) |#2| $) 40)) (-2482 (((-655 |#2|) $) 25)) (-1526 (((-112) $) 18)) (-2070 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1648 (((-112) $) 57)) (-2883 (((-873) $) 47)) (-2348 (((-655 $) $) 32)) (-3914 (((-112) $ $) 38)) (-2871 (((-782) $) 50))) +(((-119 |#1| |#2|) (-10 -8 (-15 -2883 ((-873) |#1|)) (-15 -3054 (|#1| |#1| "right" |#1|)) (-15 -3054 (|#1| |#1| "left" |#1|)) (-15 -2070 (|#1| |#1| "right")) (-15 -2070 (|#1| |#1| "left")) (-15 -3054 (|#2| |#1| "value" |#2|)) (-15 -3117 ((-112) |#1| |#1|)) (-15 -2482 ((-655 |#2|) |#1|)) (-15 -1648 ((-112) |#1|)) (-15 -2070 (|#2| |#1| "value")) (-15 -1526 ((-112) |#1|)) (-15 -3698 ((-655 |#1|) |#1|)) (-15 -2348 ((-655 |#1|) |#1|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -2625 ((-112) |#2| |#1|)) (-15 -2871 ((-782) |#1|))) (-120 |#2|) (-1235)) (T -119)) +NIL +(-10 -8 (-15 -2883 ((-873) |#1|)) (-15 -3054 (|#1| |#1| "right" |#1|)) (-15 -3054 (|#1| |#1| "left" |#1|)) (-15 -2070 (|#1| |#1| "right")) (-15 -2070 (|#1| |#1| "left")) (-15 -3054 (|#2| |#1| "value" |#2|)) (-15 -3117 ((-112) |#1| |#1|)) (-15 -2482 ((-655 |#2|) |#1|)) (-15 -1648 ((-112) |#1|)) (-15 -2070 (|#2| |#1| "value")) (-15 -1526 ((-112) |#1|)) (-15 -3698 ((-655 |#1|) |#1|)) (-15 -2348 ((-655 |#1|) |#1|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -2625 ((-112) |#2| |#1|)) (-15 -2871 ((-782) |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4182 ((|#1| $) 49)) (-1845 (((-112) $ (-782)) 8)) (-1915 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-3030 (($ $ $) 53 (|has| $ (-6 -4461)))) (-1629 (($ $ $) 55 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) (($ $ "left" $) 56 (|has| $ (-6 -4461))) (($ $ "right" $) 54 (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3011 (($) 7 T CONST)) (-2435 (($ $) 58)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) 51)) (-3117 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2418 (($ $) 60)) (-2482 (((-655 |#1|) $) 46)) (-1526 (((-112) $) 50)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2220 (((-575) $ $) 45)) (-1648 (((-112) $) 47)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) 52)) (-2781 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-120 |#1|) (-141) (-1235)) (T -120)) +((-2418 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1235)))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1235)))) (-2435 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1235)))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1235)))) (-3054 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4461)) (-4 *1 (-120 *3)) (-4 *3 (-1235)))) (-1629 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-120 *2)) (-4 *2 (-1235)))) (-3054 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4461)) (-4 *1 (-120 *3)) (-4 *3 (-1235)))) (-3030 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-120 *2)) (-4 *2 (-1235))))) +(-13 (-1027 |t#1|) (-10 -8 (-15 -2418 ($ $)) (-15 -2070 ($ $ "left")) (-15 -2435 ($ $)) (-15 -2070 ($ $ "right")) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3054 ($ $ "left" $)) (-15 -1629 ($ $ $)) (-15 -3054 ($ $ "right" $)) (-15 -3030 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-3746 (((-112) |#1|) 29)) (-3595 (((-782) (-782)) 28) (((-782)) 27)) (-1637 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-121 |#1|) (-10 -7 (-15 -1637 ((-112) |#1|)) (-15 -1637 ((-112) |#1| (-112))) (-15 -3595 ((-782))) (-15 -3595 ((-782) (-782))) (-15 -3746 ((-112) |#1|))) (-1261 (-575))) (T -121)) +((-3746 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))) (-3595 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))) (-1637 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))) (-1637 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575)))))) +(-10 -7 (-15 -1637 ((-112) |#1|)) (-15 -1637 ((-112) |#1| (-112))) (-15 -3595 ((-782))) (-15 -3595 ((-782) (-782))) (-15 -3746 ((-112) |#1|))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4182 ((|#1| $) 18)) (-3436 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1845 (((-112) $ (-782)) NIL)) (-1915 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3030 (($ $ $) 21 (|has| $ (-6 -4461)))) (-1629 (($ $ $) 23 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "left" $) NIL (|has| $ (-6 -4461))) (($ $ "right" $) NIL (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-2435 (($ $) 20)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) NIL)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2532 (($ $ |#1| $) 27)) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2418 (($ $) 22)) (-2482 (((-655 |#1|) $) NIL)) (-1526 (((-112) $) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4282 (($ |#1| $) 28)) (-3862 (($ |#1| $) 15)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 17)) (-1938 (($) 11)) (-2070 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2220 (((-575) $ $) NIL)) (-1648 (((-112) $) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) NIL)) (-2781 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2654 (($ (-655 |#1|)) 16)) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4461) (-6 -4460) (-15 -2654 ($ (-655 |#1|))) (-15 -3862 ($ |#1| $)) (-15 -4282 ($ |#1| $)) (-15 -3436 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-861)) (T -122)) +((-2654 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3)))) (-3862 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-4282 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-3436 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-861))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4461) (-6 -4460) (-15 -2654 ($ (-655 |#1|))) (-15 -3862 ($ |#1| $)) (-15 -4282 ($ |#1| $)) (-15 -3436 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2881 (($ $) 13)) (-3215 (($ $) 11)) (-1917 (($ $ $) 23)) (-2612 (($ $ $) 21)) (-2924 (($ $ $) 19)) (-2911 (($ $ $) 17))) +(((-123 |#1|) (-10 -8 (-15 -1917 (|#1| |#1| |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -2881 (|#1| |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -3215 (|#1| |#1|))) (-124)) (T -123)) +NIL +(-10 -8 (-15 -1917 (|#1| |#1| |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -2881 (|#1| |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -3215 (|#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-2881 (($ $) 103)) (-1971 (($ $ $) 28)) (-4161 (((-1290) $ (-575) (-575)) 66 (|has| $ (-6 -4461)))) (-2762 (((-112) $) 98 (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2119 (($ $) 102 (-12 (|has| (-112) (-861)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4461)))) (-2031 (($ $) 97 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1845 (((-112) $ (-782)) 37)) (-3054 (((-112) $ (-1252 (-575)) (-112)) 88 (|has| $ (-6 -4461))) (((-112) $ (-575) (-112)) 54 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4460)))) (-3011 (($) 38 T CONST)) (-1789 (($ $) 100 (|has| $ (-6 -4461)))) (-4381 (($ $) 90)) (-1748 (($ $) 68 (-12 (|has| (-112) (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4460))) (($ (-112) $) 69 (-12 (|has| (-112) (-1117)) (|has| $ (-6 -4460))))) (-2308 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1117)) (|has| $ (-6 -4460))))) (-2859 (((-112) $ (-575) (-112)) 53 (|has| $ (-6 -4461)))) (-2788 (((-112) $ (-575)) 55)) (-2632 (((-575) (-112) $ (-575)) 95 (|has| (-112) (-1117))) (((-575) (-112) $) 94 (|has| (-112) (-1117))) (((-575) (-1 (-112) (-112)) $) 93)) (-4001 (((-655 (-112)) $) 45 (|has| $ (-6 -4460)))) (-3238 (($ $ $) 108)) (-3215 (($ $) 106)) (-1917 (($ $ $) 29)) (-2309 (($ (-782) (-112)) 78)) (-2612 (($ $ $) 30)) (-3896 (((-112) $ (-782)) 36)) (-2541 (((-575) $) 63 (|has| (-575) (-861)))) (-1920 (($ $ $) 14)) (-3794 (($ $ $) 96 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-3955 (((-655 (-112)) $) 46 (|has| $ (-6 -4460)))) (-2625 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 62 (|has| (-575) (-861)))) (-1425 (($ $ $) 15)) (-2847 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-4026 (((-112) $ (-782)) 35)) (-2288 (((-1176) $) 10)) (-2135 (($ $ $ (-575)) 87) (($ (-112) $ (-575)) 86)) (-4310 (((-655 (-575)) $) 60)) (-2969 (((-112) (-575) $) 59)) (-3912 (((-1137) $) 11)) (-1961 (((-112) $) 64 (|has| (-575) (-861)))) (-3704 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3954 (($ $ (-112)) 65 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-112)) (-655 (-112))) 52 (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-303 (-112))) 50 (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-655 (-303 (-112)))) 49 (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117))))) (-3753 (((-112) $ $) 31)) (-2767 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-1691 (((-655 (-112)) $) 58)) (-4076 (((-112) $) 34)) (-1938 (($) 33)) (-2070 (($ $ (-1252 (-575))) 77) (((-112) $ (-575)) 57) (((-112) $ (-575) (-112)) 56)) (-3239 (($ $ (-1252 (-575))) 85) (($ $ (-575)) 84)) (-3925 (((-782) (-112) $) 47 (-12 (|has| (-112) (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4460)))) (-4005 (($ $ $ (-575)) 99 (|has| $ (-6 -4461)))) (-3078 (($ $) 32)) (-2615 (((-547) $) 67 (|has| (-112) (-625 (-547))))) (-2894 (($ (-655 (-112))) 76)) (-1514 (($ (-655 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3771 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4460)))) (-3226 (($ $ $) 107)) (-2924 (($ $ $) 105)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-2911 (($ $ $) 104)) (-2871 (((-782) $) 39 (|has| $ (-6 -4460))))) (((-124) (-141)) (T -124)) -((-1564 (*1 *1 *1 *1) (-4 *1 (-124))) (-1466 (*1 *1 *1 *1) (-4 *1 (-124))) (-1971 (*1 *1 *1 *1) (-4 *1 (-124)))) -(-13 (-862) (-113) (-673) (-19 (-112)) (-10 -8 (-15 -1564 ($ $ $)) (-15 -1466 ($ $ $)) (-15 -1971 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-625 (-874)) . T) ((-152 #0=(-112)) . T) ((-626 (-548)) |has| (-112) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118))) ((-663 #0#) . T) ((-673) . T) ((-19 #0#) . T) ((-862) . T) ((-1118) . T) ((-1236) . T)) -((-2848 (($ (-1 |#2| |#2|) $) 22)) (-3079 (($ $) 16)) (-2872 (((-783) $) 25))) -(((-125 |#1| |#2|) (-10 -8 (-15 -2848 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2872 ((-783) |#1|)) (-15 -3079 (|#1| |#1|))) (-126 |#2|) (-1118)) (T -125)) -NIL -(-10 -8 (-15 -2848 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2872 ((-783) |#1|)) (-15 -3079 (|#1| |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-4183 ((|#1| $) 49)) (-2970 (((-112) $ (-783)) 8)) (-3434 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3662 (($ $ $) 53 (|has| $ (-6 -4462)))) (-3674 (($ $ $) 55 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) (($ $ "left" $) 56 (|has| $ (-6 -4462))) (($ $ "right" $) 54 (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-2473 (($) 7 T CONST)) (-2436 (($ $) 58)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) 51)) (-3452 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-2533 (($ $ |#1| $) 61)) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-2419 (($ $) 60)) (-2482 (((-656 |#1|) $) 46)) (-4306 (((-112) $) 50)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3473 (((-576) $ $) 45)) (-4053 (((-112) $) 47)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) 52)) (-3462 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-126 |#1|) (-141) (-1118)) (T -126)) -((-2533 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1118))))) -(-13 (-120 |t#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -2533 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-120 |#1|) . T) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4183 ((|#1| $) 18)) (-2970 (((-112) $ (-783)) NIL)) (-3434 ((|#1| $ |#1|) 22 (|has| $ (-6 -4462)))) (-3662 (($ $ $) 23 (|has| $ (-6 -4462)))) (-3674 (($ $ $) 21 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-2436 (($ $) 24)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) NIL)) (-3452 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2533 (($ $ |#1| $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-2419 (($ $) NIL)) (-2482 (((-656 |#1|) $) NIL)) (-4306 (((-112) $) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3807 (($ |#1| $) 15)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 17)) (-1458 (($) 11)) (-2071 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3473 (((-576) $ $) NIL)) (-4053 (((-112) $) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) 20)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) NIL)) (-3462 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1578 (($ (-656 |#1|)) 16)) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4462) (-15 -1578 ($ (-656 |#1|))) (-15 -3807 ($ |#1| $)))) (-862)) (T -127)) -((-1578 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3)))) (-3807 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4462) (-15 -1578 ($ (-656 |#1|))) (-15 -3807 ($ |#1| $)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4183 ((|#1| $) 30)) (-2970 (((-112) $ (-783)) NIL)) (-3434 ((|#1| $ |#1|) 32 (|has| $ (-6 -4462)))) (-3662 (($ $ $) 36 (|has| $ (-6 -4462)))) (-3674 (($ $ $) 34 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-2436 (($ $) 23)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) NIL)) (-3452 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2533 (($ $ |#1| $) 16)) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-2419 (($ $) 22)) (-2482 (((-656 |#1|) $) NIL)) (-4306 (((-112) $) 25)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 20)) (-1458 (($) 11)) (-2071 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3473 (((-576) $ $) NIL)) (-4053 (((-112) $) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) NIL)) (-3462 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1691 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 10 (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -1691 ($ |#1|)) (-15 -1691 ($ $ |#1| $)))) (-1118)) (T -128)) -((-1691 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1118)))) (-1691 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1118))))) -(-13 (-126 |#1|) (-10 -8 (-15 -1691 ($ |#1|)) (-15 -1691 ($ $ |#1| $)))) -((-2862 (((-112) $ $) NIL (|has| (-130) (-1118)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-862)))) (-1891 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-862))))) (-2032 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4462))) (((-130) $ (-1253 (-576)) (-130)) NIL (|has| $ (-6 -4462)))) (-1705 (((-783) $ (-783)) 34)) (-3985 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118))))) (-3634 (($ (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4461))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4461)))) (-2859 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4462)))) (-2789 (((-130) $ (-576)) 20)) (-2634 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1118))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1118)))) (-4001 (((-656 (-130)) $) NIL (|has| $ (-6 -4461)))) (-2310 (($ (-783) (-130)) 14)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) 27 (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| (-130) (-862)))) (-4214 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-862)))) (-1496 (((-656 (-130)) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118))))) (-3365 (((-576) $) 30 (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| (-130) (-862)))) (-2848 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| (-130) (-1118)))) (-2134 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| (-130) (-1118)))) (-1962 (((-130) $) NIL (|has| (-576) (-862)))) (-1932 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-3346 (($ $ (-130)) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1118)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1118)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1118)))) (($ $ (-656 (-130)) (-656 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118))))) (-3403 (((-656 (-130)) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) 12)) (-2071 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1253 (-576))) NIL)) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3926 (((-783) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461))) (((-783) (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-2895 (($ (-656 (-130))) 46)) (-1514 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-656 $)) NIL)) (-2884 (((-974 (-130)) $) 35) (((-1177) $) 43) (((-874) $) NIL (|has| (-130) (-625 (-874))))) (-2154 (((-783) $) 18)) (-2451 (($ (-783)) 8)) (-3722 (((-112) $ $) NIL (|has| (-130) (-1118)))) (-2492 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3957 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3915 (((-112) $ $) 32 (|has| (-130) (-1118)))) (-3970 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3943 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2872 (((-783) $) 15 (|has| $ (-6 -4461))))) -(((-129) (-13 (-19 (-130)) (-625 (-974 (-130))) (-625 (-1177)) (-10 -8 (-15 -2451 ($ (-783))) (-15 -2154 ((-783) $)) (-15 -1705 ((-783) $ (-783))) (-6 -4461)))) (T -129)) -((-2451 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-2154 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-1705 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(-13 (-19 (-130)) (-625 (-974 (-130))) (-625 (-1177)) (-10 -8 (-15 -2451 ($ (-783))) (-15 -2154 ((-783) $)) (-15 -1705 ((-783) $ (-783))) (-6 -4461))) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) 26)) (-2473 (($) NIL T CONST)) (-2080 (($) 35)) (-1921 (($ $ $) NIL) (($) 24 T CONST)) (-4137 (($ $ $) NIL) (($) 25 T CONST)) (-1875 (((-937) $) 33)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) 31)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-2432 (($ (-783)) 8)) (-1485 (($ $ $) 37)) (-3383 (($ $ $) 36)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) 22)) (-3957 (((-112) $ $) 20)) (-3915 (((-112) $ $) 18)) (-3970 (((-112) $ $) 21)) (-3943 (((-112) $ $) 19))) -(((-130) (-13 (-856) (-502 (-145)) (-10 -8 (-15 -2432 ($ (-783))) (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739)))) (T -130)) -((-2432 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))) (-3383 (*1 *1 *1 *1) (-5 *1 (-130))) (-1485 (*1 *1 *1 *1) (-5 *1 (-130))) (-2473 (*1 *1) (-5 *1 (-130)))) -(-13 (-856) (-502 (-145)) (-10 -8 (-15 -2432 ($ (-783))) (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739))) +((-2612 (*1 *1 *1 *1) (-4 *1 (-124))) (-1917 (*1 *1 *1 *1) (-4 *1 (-124))) (-1971 (*1 *1 *1 *1) (-4 *1 (-124)))) +(-13 (-861) (-113) (-672) (-19 (-112)) (-10 -8 (-15 -2612 ($ $ $)) (-15 -1917 ($ $ $)) (-15 -1971 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-624 (-873)) . T) ((-152 #0=(-112)) . T) ((-625 (-547)) |has| (-112) (-625 (-547))) ((-295 #1=(-575) #0#) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #1# #0#) . T) ((-318 #0#) -12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117))) ((-383 #0#) . T) ((-500 #0#) . T) ((-615 #1# #0#) . T) ((-525 #0# #0#) -12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117))) ((-662 #0#) . T) ((-672) . T) ((-19 #0#) . T) ((-861) . T) ((-1117) . T) ((-1235) . T)) +((-2847 (($ (-1 |#2| |#2|) $) 22)) (-3078 (($ $) 16)) (-2871 (((-782) $) 25))) +(((-125 |#1| |#2|) (-10 -8 (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2871 ((-782) |#1|)) (-15 -3078 (|#1| |#1|))) (-126 |#2|) (-1117)) (T -125)) +NIL +(-10 -8 (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2871 ((-782) |#1|)) (-15 -3078 (|#1| |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4182 ((|#1| $) 49)) (-1845 (((-112) $ (-782)) 8)) (-1915 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-3030 (($ $ $) 53 (|has| $ (-6 -4461)))) (-1629 (($ $ $) 55 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) (($ $ "left" $) 56 (|has| $ (-6 -4461))) (($ $ "right" $) 54 (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3011 (($) 7 T CONST)) (-2435 (($ $) 58)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) 51)) (-3117 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-2532 (($ $ |#1| $) 61)) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2418 (($ $) 60)) (-2482 (((-655 |#1|) $) 46)) (-1526 (((-112) $) 50)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2220 (((-575) $ $) 45)) (-1648 (((-112) $) 47)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) 52)) (-2781 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-126 |#1|) (-141) (-1117)) (T -126)) +((-2532 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1117))))) +(-13 (-120 |t#1|) (-10 -8 (-6 -4461) (-6 -4460) (-15 -2532 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-120 |#1|) . T) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4182 ((|#1| $) 18)) (-1845 (((-112) $ (-782)) NIL)) (-1915 ((|#1| $ |#1|) 22 (|has| $ (-6 -4461)))) (-3030 (($ $ $) 23 (|has| $ (-6 -4461)))) (-1629 (($ $ $) 21 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "left" $) NIL (|has| $ (-6 -4461))) (($ $ "right" $) NIL (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-2435 (($ $) 24)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) NIL)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2532 (($ $ |#1| $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2418 (($ $) NIL)) (-2482 (((-655 |#1|) $) NIL)) (-1526 (((-112) $) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3862 (($ |#1| $) 15)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 17)) (-1938 (($) 11)) (-2070 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2220 (((-575) $ $) NIL)) (-1648 (((-112) $) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) 20)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) NIL)) (-2781 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1340 (($ (-655 |#1|)) 16)) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4461) (-15 -1340 ($ (-655 |#1|))) (-15 -3862 ($ |#1| $)))) (-861)) (T -127)) +((-1340 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3)))) (-3862 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4461) (-15 -1340 ($ (-655 |#1|))) (-15 -3862 ($ |#1| $)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4182 ((|#1| $) 30)) (-1845 (((-112) $ (-782)) NIL)) (-1915 ((|#1| $ |#1|) 32 (|has| $ (-6 -4461)))) (-3030 (($ $ $) 36 (|has| $ (-6 -4461)))) (-1629 (($ $ $) 34 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "left" $) NIL (|has| $ (-6 -4461))) (($ $ "right" $) NIL (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-2435 (($ $) 23)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) NIL)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2532 (($ $ |#1| $) 16)) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2418 (($ $) 22)) (-2482 (((-655 |#1|) $) NIL)) (-1526 (((-112) $) 25)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 20)) (-1938 (($) 11)) (-2070 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2220 (((-575) $ $) NIL)) (-1648 (((-112) $) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) NIL)) (-2781 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2757 (($ |#1|) 18) (($ $ |#1| $) 17)) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 10 (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -2757 ($ |#1|)) (-15 -2757 ($ $ |#1| $)))) (-1117)) (T -128)) +((-2757 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1117)))) (-2757 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1117))))) +(-13 (-126 |#1|) (-10 -8 (-15 -2757 ($ |#1|)) (-15 -2757 ($ $ |#1| $)))) +((-2861 (((-112) $ $) NIL (|has| (-130) (-1117)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-861)))) (-2119 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-861))))) (-2031 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 (((-130) $ (-575) (-130)) 26 (|has| $ (-6 -4461))) (((-130) $ (-1252 (-575)) (-130)) NIL (|has| $ (-6 -4461)))) (-1498 (((-782) $ (-782)) 34)) (-3985 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117))))) (-3633 (($ (-130) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4460))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4460)))) (-2859 (((-130) $ (-575) (-130)) 25 (|has| $ (-6 -4461)))) (-2788 (((-130) $ (-575)) 20)) (-2632 (((-575) (-1 (-112) (-130)) $) NIL) (((-575) (-130) $) NIL (|has| (-130) (-1117))) (((-575) (-130) $ (-575)) NIL (|has| (-130) (-1117)))) (-4001 (((-655 (-130)) $) NIL (|has| $ (-6 -4460)))) (-2309 (($ (-782) (-130)) 14)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) 27 (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| (-130) (-861)))) (-3794 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-861)))) (-3955 (((-655 (-130)) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117))))) (-3197 (((-575) $) 30 (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| (-130) (-861)))) (-2847 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| (-130) (-1117)))) (-2135 (($ (-130) $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| (-130) (-1117)))) (-1961 (((-130) $) NIL (|has| (-575) (-861)))) (-3704 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-3954 (($ $ (-130)) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-130)))) NIL (-12 (|has| (-130) (-318 (-130))) (|has| (-130) (-1117)))) (($ $ (-303 (-130))) NIL (-12 (|has| (-130) (-318 (-130))) (|has| (-130) (-1117)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-318 (-130))) (|has| (-130) (-1117)))) (($ $ (-655 (-130)) (-655 (-130))) NIL (-12 (|has| (-130) (-318 (-130))) (|has| (-130) (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117))))) (-1691 (((-655 (-130)) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) 12)) (-2070 (((-130) $ (-575) (-130)) NIL) (((-130) $ (-575)) 23) (($ $ (-1252 (-575))) NIL)) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3925 (((-782) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4460))) (((-782) (-130) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-130) (-625 (-547))))) (-2894 (($ (-655 (-130))) 46)) (-1514 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-655 $)) NIL)) (-2883 (((-973 (-130)) $) 35) (((-1176) $) 43) (((-873) $) NIL (|has| (-130) (-624 (-873))))) (-4396 (((-782) $) 18)) (-2854 (($ (-782)) 8)) (-4400 (((-112) $ $) NIL (|has| (-130) (-1117)))) (-3771 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3956 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3914 (((-112) $ $) 32 (|has| (-130) (-1117)))) (-3970 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3943 (((-112) $ $) NIL (|has| (-130) (-861)))) (-2871 (((-782) $) 15 (|has| $ (-6 -4460))))) +(((-129) (-13 (-19 (-130)) (-624 (-973 (-130))) (-624 (-1176)) (-10 -8 (-15 -2854 ($ (-782))) (-15 -4396 ((-782) $)) (-15 -1498 ((-782) $ (-782))) (-6 -4460)))) (T -129)) +((-2854 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-129)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-129)))) (-1498 (*1 *2 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-129))))) +(-13 (-19 (-130)) (-624 (-973 (-130))) (-624 (-1176)) (-10 -8 (-15 -2854 ($ (-782))) (-15 -4396 ((-782) $)) (-15 -1498 ((-782) $ (-782))) (-6 -4460))) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) 26)) (-3011 (($) NIL T CONST)) (-2079 (($) 35)) (-1920 (($ $ $) NIL) (($) 24 T CONST)) (-1425 (($ $ $) NIL) (($) 25 T CONST)) (-4084 (((-936) $) 33)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) 31)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-2430 (($ (-782)) 8)) (-1484 (($ $ $) 37)) (-3382 (($ $ $) 36)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) 22)) (-3956 (((-112) $ $) 20)) (-3914 (((-112) $ $) 18)) (-3970 (((-112) $ $) 21)) (-3943 (((-112) $ $) 19))) +(((-130) (-13 (-855) (-501 (-145)) (-10 -8 (-15 -2430 ($ (-782))) (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738)))) (T -130)) +((-2430 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-130)))) (-3382 (*1 *1 *1 *1) (-5 *1 (-130))) (-1484 (*1 *1 *1 *1) (-5 *1 (-130))) (-3011 (*1 *1) (-5 *1 (-130)))) +(-13 (-855) (-501 (-145)) (-10 -8 (-15 -2430 ($ (-782))) (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-2862 (((-112) $ $) NIL)) (-3267 (($) 6 T CONST)) (-3655 (($) 7 T CONST)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 14)) (-3279 (($) 8 T CONST)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 10))) -(((-131) (-13 (-1118) (-10 -8 (-15 -3655 ($) -3739) (-15 -3279 ($) -3739) (-15 -3267 ($) -3739)))) (T -131)) -((-3655 (*1 *1) (-5 *1 (-131))) (-3279 (*1 *1) (-5 *1 (-131))) (-3267 (*1 *1) (-5 *1 (-131)))) -(-13 (-1118) (-10 -8 (-15 -3655 ($) -3739) (-15 -3279 ($) -3739) (-15 -3267 ($) -3739))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16))) +((-2861 (((-112) $ $) NIL)) (-2621 (($) 6 T CONST)) (-3568 (($) 7 T CONST)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 14)) (-1449 (($) 8 T CONST)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 10))) +(((-131) (-13 (-1117) (-10 -8 (-15 -3568 ($) -3738) (-15 -1449 ($) -3738) (-15 -2621 ($) -3738)))) (T -131)) +((-3568 (*1 *1) (-5 *1 (-131))) (-1449 (*1 *1) (-5 *1 (-131))) (-2621 (*1 *1) (-5 *1 (-131)))) +(-13 (-1117) (-10 -8 (-15 -3568 ($) -3738) (-15 -1449 ($) -3738) (-15 -2621 ($) -3738))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16))) (((-132) (-141)) (T -132)) -((-1459 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-23) (-10 -8 (-15 -1459 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2862 (((-112) $ $) 7)) (-1472 (((-1291) $ (-783)) 14)) (-2634 (((-783) $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) +((-2597 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-23) (-10 -8 (-15 -2597 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2861 (((-112) $ $) 7)) (-2275 (((-1290) $ (-782)) 14)) (-2632 (((-782) $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) (((-133) (-141)) (T -133)) -((-2634 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) (-1472 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1291))))) -(-13 (-1118) (-10 -8 (-15 -2634 ((-783) $)) (-15 -1472 ((-1291) $ (-783))))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-1789 (((-656 (-1153)) $) 10)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-134) (-13 (-1101) (-10 -8 (-15 -1789 ((-656 (-1153)) $))))) (T -134)) -((-1789 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-134))))) -(-13 (-1101) (-10 -8 (-15 -1789 ((-656 (-1153)) $)))) -((-2862 (((-112) $ $) 49)) (-1389 (((-112) $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-783) "failed") $) 58)) (-4401 (((-783) $) 56)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) 37)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3112 (((-112)) 59)) (-3101 (((-112) (-112)) 61)) (-2108 (((-112) $) 30)) (-3497 (((-112) $) 55)) (-2884 (((-874) $) 28) (($ (-783)) 20)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 18 T CONST)) (-2011 (($) 19 T CONST)) (-3506 (($ (-783)) 21)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) 40)) (-3915 (((-112) $ $) 32)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 35)) (-4029 (((-3 $ "failed") $ $) 42)) (-4017 (($ $ $) 38)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL) (($ $ $) 54)) (* (($ (-783) $) 48) (($ (-937) $) NIL) (($ $ $) 45))) -(((-135) (-13 (-862) (-23) (-738) (-1056 (-783)) (-10 -8 (-6 (-4463 "*")) (-15 -4029 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3506 ($ (-783))) (-15 -2108 ((-112) $)) (-15 -3497 ((-112) $)) (-15 -3112 ((-112))) (-15 -3101 ((-112) (-112)))))) (T -135)) -((-4029 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-3506 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3112 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(-13 (-862) (-23) (-738) (-1056 (-783)) (-10 -8 (-6 (-4463 "*")) (-15 -4029 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3506 ($ (-783))) (-15 -2108 ((-112) $)) (-15 -3497 ((-112) $)) (-15 -3112 ((-112))) (-15 -3101 ((-112) (-112))))) -((-2505 (((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-2551 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2505 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2551 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-783) (-174) (-174)) (T -136)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -2505 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2551 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-2862 (((-112) $ $) NIL)) (-4411 (($ (-656 |#3|)) 61)) (-2899 (($ $) 123) (($ $ (-576) (-576)) 122)) (-2473 (($) 20)) (-2449 (((-3 |#3| "failed") $) 83)) (-4401 ((|#3| $) NIL)) (-1573 (($ $ (-656 (-576))) 124)) (-2490 (((-656 |#3|) $) 56)) (-4423 (((-783) $) 66)) (-3782 (($ $ $) 117)) (-4421 (($) 65)) (-3733 (((-1177) $) NIL)) (-1558 (($) 19)) (-3914 (((-1138) $) NIL)) (-2071 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-656 (-576))) 73)) (-3813 (((-783) $) 67)) (-2865 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-2884 (((-874) $) 91) (($ |#3|) 92) (($ (-246 |#2| |#3|)) 99) (($ (-1160 |#2| |#3|)) 102) (($ (-656 |#3|)) 74) (($ (-656 $)) 80)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 93 T CONST)) (-2011 (($) 94 T CONST)) (-3915 (((-112) $ $) 104)) (-4029 (($ $) 110) (($ $ $) 108)) (-4017 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119))) -(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -2884 ($ (-246 |#2| |#3|))) (-15 -2884 ($ (-1160 |#2| |#3|))) (-15 -2884 ($ (-656 |#3|))) (-15 -2884 ($ (-656 $))) (-15 -4423 ((-783) $)) (-15 -2071 (|#3| $)) (-15 -2071 (|#3| $ (-576) (-576))) (-15 -2071 (|#3| $ (-576) (-576) (-576))) (-15 -2071 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2071 (|#3| $ (-656 (-576)))) (-15 -3782 ($ $ $)) (-15 * ($ $ $)) (-15 -2865 ($ $ (-576) $ (-576))) (-15 -2865 ($ $ (-576) (-576))) (-15 -2899 ($ $)) (-15 -2899 ($ $ (-576) (-576))) (-15 -1573 ($ $ (-656 (-576)))) (-15 -1558 ($)) (-15 -4421 ($)) (-15 -2490 ((-656 |#3|) $)) (-15 -4411 ($ (-656 |#3|))) (-15 -2473 ($)))) (-576) (-783) (-174)) (T -137)) -((-3782 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1160 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4423 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-2071 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2071 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2071 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2071 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2071 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-783)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2865 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2865 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2899 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2899 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-1573 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-1558 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-4421 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4411 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2473 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174))))) -(-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -2884 ($ (-246 |#2| |#3|))) (-15 -2884 ($ (-1160 |#2| |#3|))) (-15 -2884 ($ (-656 |#3|))) (-15 -2884 ($ (-656 $))) (-15 -4423 ((-783) $)) (-15 -2071 (|#3| $)) (-15 -2071 (|#3| $ (-576) (-576))) (-15 -2071 (|#3| $ (-576) (-576) (-576))) (-15 -2071 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2071 (|#3| $ (-656 (-576)))) (-15 -3782 ($ $ $)) (-15 * ($ $ $)) (-15 -2865 ($ $ (-576) $ (-576))) (-15 -2865 ($ $ (-576) (-576))) (-15 -2899 ($ $)) (-15 -2899 ($ $ (-576) (-576))) (-15 -1573 ($ $ (-656 (-576)))) (-15 -1558 ($)) (-15 -4421 ($)) (-15 -2490 ((-656 |#3|) $)) (-15 -4411 ($ (-656 |#3|))) (-15 -2473 ($)))) -((-2862 (((-112) $ $) NIL)) (-3892 (((-1153) $) 11)) (-3880 (((-1153) $) 9)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-138) (-13 (-1101) (-10 -8 (-15 -3880 ((-1153) $)) (-15 -3892 ((-1153) $))))) (T -138)) -((-3880 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-138)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-138))))) -(-13 (-1101) (-10 -8 (-15 -3880 ((-1153) $)) (-15 -3892 ((-1153) $)))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-1560 (((-188) $) 10)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-1789 (((-656 (-1153)) $) 13)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-139) (-13 (-1101) (-10 -8 (-15 -1560 ((-188) $)) (-15 -1789 ((-656 (-1153)) $))))) (T -139)) -((-1560 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-139))))) -(-13 (-1101) (-10 -8 (-15 -1560 ((-188) $)) (-15 -1789 ((-656 (-1153)) $)))) -((-2862 (((-112) $ $) NIL)) (-3023 (((-656 (-877)) $) NIL)) (-1778 (((-518) $) NIL)) (-3733 (((-1177) $) NIL)) (-1560 (((-188) $) NIL)) (-3657 (((-112) $ (-518)) NIL)) (-3914 (((-1138) $) NIL)) (-2261 (((-656 (-112)) $) NIL)) (-2884 (((-874) $) NIL) (((-189) $) 6)) (-3722 (((-112) $ $) NIL)) (-2040 (((-55) $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-140) (-13 (-187) (-625 (-189)))) (T -140)) -NIL -(-13 (-187) (-625 (-189))) -((-3280 (((-656 (-185 (-140))) $) 13)) (-4024 (((-656 (-185 (-140))) $) 14)) (-3309 (((-656 (-850)) $) 10)) (-3744 (((-140) $) 7)) (-2884 (((-874) $) 16))) -(((-141) (-13 (-625 (-874)) (-10 -8 (-15 -3744 ((-140) $)) (-15 -3309 ((-656 (-850)) $)) (-15 -3280 ((-656 (-185 (-140))) $)) (-15 -4024 ((-656 (-185 (-140))) $))))) (T -141)) -((-3744 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))) (-3280 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(-13 (-625 (-874)) (-10 -8 (-15 -3744 ((-140) $)) (-15 -3309 ((-656 (-850)) $)) (-15 -3280 ((-656 (-185 (-140))) $)) (-15 -4024 ((-656 (-185 (-140))) $)))) -((-2862 (((-112) $ $) NIL)) (-2949 (($) 17 T CONST)) (-1408 (($) NIL (|has| (-145) (-379)))) (-1645 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-3682 (($ $ $) NIL)) (-3672 (((-112) $ $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-2416 (((-783)) NIL (|has| (-145) (-379)))) (-1330 (($) NIL) (($ (-656 (-145))) NIL)) (-1443 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-2833 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (($ (-145) $) 60 (|has| $ (-6 -4461)))) (-3634 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-2309 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-2080 (($) NIL (|has| (-145) (-379)))) (-4001 (((-656 (-145)) $) 69 (|has| $ (-6 -4461)))) (-3712 (((-112) $ $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-1921 (((-145) $) NIL (|has| (-145) (-862)))) (-1496 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-4137 (((-145) $) NIL (|has| (-145) (-862)))) (-2848 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-145) (-145)) $) 64)) (-1684 (($) 18 T CONST)) (-1875 (((-937) $) NIL (|has| (-145) (-379)))) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-3703 (($ $ $) 30)) (-3449 (((-145) $) 61)) (-3807 (($ (-145) $) 59)) (-4318 (($ (-937)) NIL (|has| (-145) (-379)))) (-3991 (($) 16 T CONST)) (-3914 (((-1138) $) NIL)) (-1932 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3458 (((-145) $) 62)) (-2476 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) 57)) (-4003 (($) 15 T CONST)) (-3693 (($ $ $) 32) (($ $ (-145)) NIL)) (-1581 (($ (-656 (-145))) NIL) (($) NIL)) (-3926 (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118)))) (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-1177) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-656 (-145)) $) 35)) (-2895 (($ (-656 (-145))) NIL)) (-1418 (($ $) 33 (|has| (-145) (-379)))) (-2884 (((-874) $) 53)) (-4389 (($ (-1177)) 14) (($ (-656 (-145))) 50)) (-1427 (((-783) $) NIL)) (-2557 (($) 58) (($ (-656 (-145))) NIL)) (-3722 (((-112) $ $) NIL)) (-3541 (($ (-656 (-145))) NIL)) (-2492 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-4341 (($) 21 T CONST)) (-4354 (($) 20 T CONST)) (-3915 (((-112) $ $) 24)) (-2872 (((-783) $) 56 (|has| $ (-6 -4461))))) -(((-142) (-13 (-1118) (-626 (-1177)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -4389 ($ (-1177))) (-15 -4389 ($ (-656 (-145)))) (-15 -4003 ($) -3739) (-15 -3991 ($) -3739) (-15 -2949 ($) -3739) (-15 -1684 ($) -3739) (-15 -4354 ($) -3739) (-15 -4341 ($) -3739)))) (T -142)) -((-4389 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-142)))) (-4389 (*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) (-4003 (*1 *1) (-5 *1 (-142))) (-3991 (*1 *1) (-5 *1 (-142))) (-2949 (*1 *1) (-5 *1 (-142))) (-1684 (*1 *1) (-5 *1 (-142))) (-4354 (*1 *1) (-5 *1 (-142))) (-4341 (*1 *1) (-5 *1 (-142)))) -(-13 (-1118) (-626 (-1177)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -4389 ($ (-1177))) (-15 -4389 ($ (-656 (-145)))) (-15 -4003 ($) -3739) (-15 -3991 ($) -3739) (-15 -2949 ($) -3739) (-15 -1684 ($) -3739) (-15 -4354 ($) -3739) (-15 -4341 ($) -3739))) -((-2615 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2594 ((|#1| |#3|) 9)) (-2604 ((|#3| |#3|) 15))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -2594 (|#1| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2615 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1010 |#1|) (-384 |#2|)) (T -143)) -((-2615 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-2594 (*1 *2 *3) (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -2594 (|#1| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2615 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2954 (($ $ $) 8)) (-2935 (($ $) 7)) (-1658 (($ $ $) 6))) +((-2632 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-782)))) (-2275 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-782)) (-5 *2 (-1290))))) +(-13 (-1117) (-10 -8 (-15 -2632 ((-782) $)) (-15 -2275 ((-1290) $ (-782))))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 16) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-655 (-1152)) $) 10)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-134) (-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $))))) (T -134)) +((-1788 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-134))))) +(-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $)))) +((-2861 (((-112) $ $) 49)) (-3799 (((-112) $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-782) "failed") $) 58)) (-4399 (((-782) $) 56)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) 37)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3505 (((-112)) 59)) (-4022 (((-112) (-112)) 61)) (-2125 (((-112) $) 30)) (-1831 (((-112) $) 55)) (-2883 (((-873) $) 28) (($ (-782)) 20)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 18 T CONST)) (-2009 (($) 19 T CONST)) (-1525 (($ (-782)) 21)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) 40)) (-3914 (((-112) $ $) 32)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 35)) (-4028 (((-3 $ "failed") $ $) 42)) (-4016 (($ $ $) 38)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL) (($ $ $) 54)) (* (($ (-782) $) 48) (($ (-936) $) NIL) (($ $ $) 45))) +(((-135) (-13 (-861) (-23) (-737) (-1055 (-782)) (-10 -8 (-6 (-4462 "*")) (-15 -4028 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1525 ($ (-782))) (-15 -2125 ((-112) $)) (-15 -1831 ((-112) $)) (-15 -3505 ((-112))) (-15 -4022 ((-112) (-112)))))) (T -135)) +((-4028 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-135)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3505 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(-13 (-861) (-23) (-737) (-1055 (-782)) (-10 -8 (-6 (-4462 "*")) (-15 -4028 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1525 ($ (-782))) (-15 -2125 ((-112) $)) (-15 -1831 ((-112) $)) (-15 -3505 ((-112))) (-15 -4022 ((-112) (-112))))) +((-2506 (((-137 |#1| |#2| |#4|) (-655 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-2550 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2506 ((-137 |#1| |#2| |#4|) (-655 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2550 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-575) (-782) (-174) (-174)) (T -136)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-575)) (-14 *6 (-782)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-575)) (-14 *6 (-782)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -2506 ((-137 |#1| |#2| |#4|) (-655 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2550 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-2861 (((-112) $ $) NIL)) (-4198 (($ (-655 |#3|)) 61)) (-1926 (($ $) 123) (($ $ (-575) (-575)) 122)) (-3011 (($) 20)) (-2449 (((-3 |#3| "failed") $) 83)) (-4399 ((|#3| $) NIL)) (-2162 (($ $ (-655 (-575))) 124)) (-2489 (((-655 |#3|) $) 56)) (-4422 (((-782) $) 66)) (-3557 (($ $ $) 117)) (-3993 (($) 65)) (-2288 (((-1176) $) NIL)) (-3305 (($) 19)) (-3912 (((-1137) $) NIL)) (-2070 ((|#3| $ (-575)) 69) ((|#3| $) 68) ((|#3| $ (-575) (-575)) 70) ((|#3| $ (-575) (-575) (-575)) 71) ((|#3| $ (-575) (-575) (-575) (-575)) 72) ((|#3| $ (-655 (-575))) 73)) (-2645 (((-782) $) 67)) (-2146 (($ $ (-575) $ (-575)) 118) (($ $ (-575) (-575)) 120)) (-2883 (((-873) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1159 |#2| |#3|)) 102) (($ (-655 |#3|)) 74) (($ (-655 $)) 80)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 93 T CONST)) (-2009 (($) 94 T CONST)) (-3914 (((-112) $ $) 104)) (-4028 (($ $) 110) (($ $ $) 108)) (-4016 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-575)) 113) (($ (-575) $) 112) (($ $ $) 119))) +(((-137 |#1| |#2| |#3|) (-13 (-476 |#3| (-782)) (-481 (-575) (-782)) (-295 (-575) |#3|) (-10 -8 (-15 -2883 ($ (-245 |#2| |#3|))) (-15 -2883 ($ (-1159 |#2| |#3|))) (-15 -2883 ($ (-655 |#3|))) (-15 -2883 ($ (-655 $))) (-15 -4422 ((-782) $)) (-15 -2070 (|#3| $)) (-15 -2070 (|#3| $ (-575) (-575))) (-15 -2070 (|#3| $ (-575) (-575) (-575))) (-15 -2070 (|#3| $ (-575) (-575) (-575) (-575))) (-15 -2070 (|#3| $ (-655 (-575)))) (-15 -3557 ($ $ $)) (-15 * ($ $ $)) (-15 -2146 ($ $ (-575) $ (-575))) (-15 -2146 ($ $ (-575) (-575))) (-15 -1926 ($ $)) (-15 -1926 ($ $ (-575) (-575))) (-15 -2162 ($ $ (-655 (-575)))) (-15 -3305 ($)) (-15 -3993 ($)) (-15 -2489 ((-655 |#3|) $)) (-15 -4198 ($ (-655 |#3|))) (-15 -3011 ($)))) (-575) (-782) (-174)) (T -137)) +((-3557 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-782)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-1159 *4 *5)) (-14 *4 (-782)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-655 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 (-782)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 (-782)) (-4 *5 (-174)))) (-4422 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 *2) (-4 *5 (-174)))) (-2070 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-575)) (-14 *4 (-782)))) (-2070 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-782)))) (-2070 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-782)))) (-2070 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-782)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 (-655 (-575))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-575)) (-14 *5 (-782)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))) (-2146 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-782)) (-4 *5 (-174)))) (-2146 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-782)) (-4 *5 (-174)))) (-1926 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))) (-1926 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-782)) (-4 *5 (-174)))) (-2162 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 (-782)) (-4 *5 (-174)))) (-3305 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))) (-3993 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-655 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 (-782)) (-4 *5 (-174)))) (-4198 (*1 *1 *2) (-12 (-5 *2 (-655 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 (-782)))) (-3011 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174))))) +(-13 (-476 |#3| (-782)) (-481 (-575) (-782)) (-295 (-575) |#3|) (-10 -8 (-15 -2883 ($ (-245 |#2| |#3|))) (-15 -2883 ($ (-1159 |#2| |#3|))) (-15 -2883 ($ (-655 |#3|))) (-15 -2883 ($ (-655 $))) (-15 -4422 ((-782) $)) (-15 -2070 (|#3| $)) (-15 -2070 (|#3| $ (-575) (-575))) (-15 -2070 (|#3| $ (-575) (-575) (-575))) (-15 -2070 (|#3| $ (-575) (-575) (-575) (-575))) (-15 -2070 (|#3| $ (-655 (-575)))) (-15 -3557 ($ $ $)) (-15 * ($ $ $)) (-15 -2146 ($ $ (-575) $ (-575))) (-15 -2146 ($ $ (-575) (-575))) (-15 -1926 ($ $)) (-15 -1926 ($ $ (-575) (-575))) (-15 -2162 ($ $ (-655 (-575)))) (-15 -3305 ($)) (-15 -3993 ($)) (-15 -2489 ((-655 |#3|) $)) (-15 -4198 ($ (-655 |#3|))) (-15 -3011 ($)))) +((-2861 (((-112) $ $) NIL)) (-3892 (((-1152) $) 11)) (-3880 (((-1152) $) 9)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-138) (-13 (-1100) (-10 -8 (-15 -3880 ((-1152) $)) (-15 -3892 ((-1152) $))))) (T -138)) +((-3880 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-138)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-138))))) +(-13 (-1100) (-10 -8 (-15 -3880 ((-1152) $)) (-15 -3892 ((-1152) $)))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-1559 (((-188) $) 10)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 20) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-655 (-1152)) $) 13)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-139) (-13 (-1100) (-10 -8 (-15 -1559 ((-188) $)) (-15 -1788 ((-655 (-1152)) $))))) (T -139)) +((-1559 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-139))))) +(-13 (-1100) (-10 -8 (-15 -1559 ((-188) $)) (-15 -1788 ((-655 (-1152)) $)))) +((-2861 (((-112) $ $) NIL)) (-3022 (((-655 (-876)) $) NIL)) (-1777 (((-517) $) NIL)) (-2288 (((-1176) $) NIL)) (-1559 (((-188) $) NIL)) (-3789 (((-112) $ (-517)) NIL)) (-3912 (((-1137) $) NIL)) (-4147 (((-655 (-112)) $) NIL)) (-2883 (((-873) $) NIL) (((-189) $) 6)) (-4400 (((-112) $ $) NIL)) (-3156 (((-55) $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-140) (-13 (-187) (-624 (-189)))) (T -140)) +NIL +(-13 (-187) (-624 (-189))) +((-1562 (((-655 (-185 (-140))) $) 13)) (-4023 (((-655 (-185 (-140))) $) 14)) (-4281 (((-655 (-849)) $) 10)) (-3743 (((-140) $) 7)) (-2883 (((-873) $) 16))) +(((-141) (-13 (-624 (-873)) (-10 -8 (-15 -3743 ((-140) $)) (-15 -4281 ((-655 (-849)) $)) (-15 -1562 ((-655 (-185 (-140))) $)) (-15 -4023 ((-655 (-185 (-140))) $))))) (T -141)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-655 (-849))) (-5 *1 (-141)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-655 (-185 (-140)))) (-5 *1 (-141)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-655 (-185 (-140)))) (-5 *1 (-141))))) +(-13 (-624 (-873)) (-10 -8 (-15 -3743 ((-140) $)) (-15 -4281 ((-655 (-849)) $)) (-15 -1562 ((-655 (-185 (-140))) $)) (-15 -4023 ((-655 (-185 (-140))) $)))) +((-2861 (((-112) $ $) NIL)) (-4430 (($) 17 T CONST)) (-3443 (($) NIL (|has| (-145) (-378)))) (-1644 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-3404 (($ $ $) NIL)) (-2696 (((-112) $ $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-2415 (((-782)) NIL (|has| (-145) (-378)))) (-1329 (($) NIL) (($ (-655 (-145))) NIL)) (-1999 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-4404 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460))) (($ (-145) $) 60 (|has| $ (-6 -4460)))) (-3633 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2308 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2079 (($) NIL (|has| (-145) (-378)))) (-4001 (((-655 (-145)) $) 69 (|has| $ (-6 -4460)))) (-3244 (((-112) $ $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-1920 (((-145) $) NIL (|has| (-145) (-861)))) (-3955 (((-655 (-145)) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-1425 (((-145) $) NIL (|has| (-145) (-861)))) (-2847 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-145) (-145)) $) 64)) (-3506 (($) 18 T CONST)) (-4084 (((-936) $) NIL (|has| (-145) (-378)))) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-1479 (($ $ $) 30)) (-4012 (((-145) $) 61)) (-3862 (($ (-145) $) 59)) (-4317 (($ (-936)) NIL (|has| (-145) (-378)))) (-1609 (($) 16 T CONST)) (-3912 (((-1137) $) NIL)) (-3704 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2454 (((-145) $) 62)) (-3207 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-145)) (-655 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-303 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-655 (-303 (-145)))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) 57)) (-3525 (($) 15 T CONST)) (-1771 (($ $ $) 32) (($ $ (-145)) NIL)) (-3601 (($ (-655 (-145))) NIL) (($) NIL)) (-3925 (((-782) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117)))) (((-782) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-1176) $) 37) (((-547) $) NIL (|has| (-145) (-625 (-547)))) (((-655 (-145)) $) 35)) (-2894 (($ (-655 (-145))) NIL)) (-3296 (($ $) 33 (|has| (-145) (-378)))) (-2883 (((-873) $) 53)) (-2314 (($ (-1176)) 14) (($ (-655 (-145))) 50)) (-3130 (((-782) $) NIL)) (-2556 (($) 58) (($ (-655 (-145))) NIL)) (-4400 (((-112) $ $) NIL)) (-1511 (($ (-655 (-145))) NIL)) (-3771 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-2648 (($) 21 T CONST)) (-4340 (($) 20 T CONST)) (-3914 (((-112) $ $) 24)) (-2871 (((-782) $) 56 (|has| $ (-6 -4460))))) +(((-142) (-13 (-1117) (-625 (-1176)) (-436 (-145)) (-625 (-655 (-145))) (-10 -8 (-15 -2314 ($ (-1176))) (-15 -2314 ($ (-655 (-145)))) (-15 -3525 ($) -3738) (-15 -1609 ($) -3738) (-15 -4430 ($) -3738) (-15 -3506 ($) -3738) (-15 -4340 ($) -3738) (-15 -2648 ($) -3738)))) (T -142)) +((-2314 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-142)))) (-2314 (*1 *1 *2) (-12 (-5 *2 (-655 (-145))) (-5 *1 (-142)))) (-3525 (*1 *1) (-5 *1 (-142))) (-1609 (*1 *1) (-5 *1 (-142))) (-4430 (*1 *1) (-5 *1 (-142))) (-3506 (*1 *1) (-5 *1 (-142))) (-4340 (*1 *1) (-5 *1 (-142))) (-2648 (*1 *1) (-5 *1 (-142)))) +(-13 (-1117) (-625 (-1176)) (-436 (-145)) (-625 (-655 (-145))) (-10 -8 (-15 -2314 ($ (-1176))) (-15 -2314 ($ (-655 (-145)))) (-15 -3525 ($) -3738) (-15 -1609 ($) -3738) (-15 -4430 ($) -3738) (-15 -3506 ($) -3738) (-15 -4340 ($) -3738) (-15 -2648 ($) -3738))) +((-1958 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1516 ((|#1| |#3|) 9)) (-3369 ((|#3| |#3|) 15))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -1516 (|#1| |#3|)) (-15 -3369 (|#3| |#3|)) (-15 -1958 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-567) (-1009 |#1|) (-383 |#2|)) (T -143)) +((-1958 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-383 *5)))) (-3369 (*1 *2 *2) (-12 (-4 *3 (-567)) (-4 *4 (-1009 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-383 *4)))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-383 *4))))) +(-10 -7 (-15 -1516 (|#1| |#3|)) (-15 -3369 (|#3| |#3|)) (-15 -1958 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3747 (($ $ $) 8)) (-2217 (($ $) 7)) (-3820 (($ $ $) 6))) (((-144) (-141)) (T -144)) -((-2954 (*1 *1 *1 *1) (-4 *1 (-144))) (-2935 (*1 *1 *1) (-4 *1 (-144))) (-1658 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -1658 ($ $ $)) (-15 -2935 ($ $)) (-15 -2954 ($ $ $)))) -((-2862 (((-112) $ $) NIL)) (-1955 (((-112) $) 39)) (-2949 (($ $) 55)) (-2056 (($) 26 T CONST)) (-2416 (((-783)) 13)) (-2080 (($) 25)) (-4403 (($) 27 T CONST)) (-3035 (((-783) $) 21)) (-1921 (($ $ $) NIL) (($) NIL T CONST)) (-4137 (($ $ $) NIL) (($) NIL T CONST)) (-1720 (((-112) $) 41)) (-1684 (($ $) 56)) (-1875 (((-937) $) 23)) (-3733 (((-1177) $) 49)) (-4318 (($ (-937)) 20)) (-2175 (((-112) $) 37)) (-3914 (((-1138) $) NIL)) (-3021 (($) 28 T CONST)) (-2186 (((-112) $) 35)) (-2884 (((-874) $) 30)) (-1473 (($ (-783)) 19) (($ (-1177)) 54)) (-3722 (((-112) $ $) NIL)) (-4400 (((-112) $) 45)) (-1967 (((-112) $) 43)) (-3983 (((-112) $ $) 11)) (-3957 (((-112) $ $) 9)) (-3915 (((-112) $ $) 7)) (-3970 (((-112) $ $) 10)) (-3943 (((-112) $ $) 8))) -(((-145) (-13 (-856) (-10 -8 (-15 -3035 ((-783) $)) (-15 -1473 ($ (-783))) (-15 -1473 ($ (-1177))) (-15 -2056 ($) -3739) (-15 -4403 ($) -3739) (-15 -3021 ($) -3739) (-15 -2949 ($ $)) (-15 -1684 ($ $)) (-15 -2186 ((-112) $)) (-15 -2175 ((-112) $)) (-15 -1967 ((-112) $)) (-15 -1955 ((-112) $)) (-15 -1720 ((-112) $)) (-15 -4400 ((-112) $))))) (T -145)) -((-3035 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-1473 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-1473 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-145)))) (-2056 (*1 *1) (-5 *1 (-145))) (-4403 (*1 *1) (-5 *1 (-145))) (-3021 (*1 *1) (-5 *1 (-145))) (-2949 (*1 *1 *1) (-5 *1 (-145))) (-1684 (*1 *1 *1) (-5 *1 (-145))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1955 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1720 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(-13 (-856) (-10 -8 (-15 -3035 ((-783) $)) (-15 -1473 ($ (-783))) (-15 -1473 ($ (-1177))) (-15 -2056 ($) -3739) (-15 -4403 ($) -3739) (-15 -3021 ($) -3739) (-15 -2949 ($ $)) (-15 -1684 ($ $)) (-15 -2186 ((-112) $)) (-15 -2175 ((-112) $)) (-15 -1967 ((-112) $)) (-15 -1955 ((-112) $)) (-15 -1720 ((-112) $)) (-15 -4400 ((-112) $)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-576)) 33)) (-3148 (((-3 $ "failed") $) 39)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3747 (*1 *1 *1 *1) (-4 *1 (-144))) (-2217 (*1 *1 *1) (-4 *1 (-144))) (-3820 (*1 *1 *1 *1) (-4 *1 (-144)))) +(-13 (-10 -8 (-15 -3820 ($ $ $)) (-15 -2217 ($ $)) (-15 -3747 ($ $ $)))) +((-2861 (((-112) $ $) NIL)) (-4285 (((-112) $) 39)) (-4430 (($ $) 55)) (-2765 (($) 26 T CONST)) (-2415 (((-782)) 13)) (-2079 (($) 25)) (-4157 (($) 27 T CONST)) (-1821 (((-782) $) 21)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-1425 (($ $ $) NIL) (($) NIL T CONST)) (-1577 (((-112) $) 41)) (-3506 (($ $) 56)) (-4084 (((-936) $) 23)) (-2288 (((-1176) $) 49)) (-4317 (($ (-936)) 20)) (-3613 (((-112) $) 37)) (-3912 (((-1137) $) NIL)) (-3062 (($) 28 T CONST)) (-2383 (((-112) $) 35)) (-2883 (((-873) $) 30)) (-1471 (($ (-782)) 19) (($ (-1176)) 54)) (-4400 (((-112) $ $) NIL)) (-2091 (((-112) $) 45)) (-3124 (((-112) $) 43)) (-3981 (((-112) $ $) 11)) (-3956 (((-112) $ $) 9)) (-3914 (((-112) $ $) 7)) (-3970 (((-112) $ $) 10)) (-3943 (((-112) $ $) 8))) +(((-145) (-13 (-855) (-10 -8 (-15 -1821 ((-782) $)) (-15 -1471 ($ (-782))) (-15 -1471 ($ (-1176))) (-15 -2765 ($) -3738) (-15 -4157 ($) -3738) (-15 -3062 ($) -3738) (-15 -4430 ($ $)) (-15 -3506 ($ $)) (-15 -2383 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -3124 ((-112) $)) (-15 -4285 ((-112) $)) (-15 -1577 ((-112) $)) (-15 -2091 ((-112) $))))) (T -145)) +((-1821 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-145)))) (-1471 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-145)))) (-1471 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-145)))) (-2765 (*1 *1) (-5 *1 (-145))) (-4157 (*1 *1) (-5 *1 (-145))) (-3062 (*1 *1) (-5 *1 (-145))) (-4430 (*1 *1 *1) (-5 *1 (-145))) (-3506 (*1 *1 *1) (-5 *1 (-145))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(-13 (-855) (-10 -8 (-15 -1821 ((-782) $)) (-15 -1471 ($ (-782))) (-15 -1471 ($ (-1176))) (-15 -2765 ($) -3738) (-15 -4157 ($) -3738) (-15 -3062 ($) -3738) (-15 -4430 ($ $)) (-15 -3506 ($ $)) (-15 -2383 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -3124 ((-112) $)) (-15 -4285 ((-112) $)) (-15 -1577 ((-112) $)) (-15 -2091 ((-112) $)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-575)) 33)) (-1518 (((-3 $ "failed") $) 39)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) (((-146) (-141)) (T -146)) -((-3148 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1067) (-10 -8 (-15 -3148 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-1776 ((|#1| (-701 |#1|) |#1|) 19))) -(((-147 |#1|) (-10 -7 (-15 -1776 (|#1| (-701 |#1|) |#1|))) (-174)) (T -147)) -((-1776 (*1 *2 *3 *2) (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -1776 (|#1| (-701 |#1|) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-576)) 33)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-1518 (*1 *1 *1) (|partial| -4 *1 (-146)))) +(-13 (-1066) (-10 -8 (-15 -1518 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2551 ((|#1| (-700 |#1|) |#1|) 19))) +(((-147 |#1|) (-10 -7 (-15 -2551 (|#1| (-700 |#1|) |#1|))) (-174)) (T -147)) +((-2551 (*1 *2 *3 *2) (-12 (-5 *3 (-700 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) +(-10 -7 (-15 -2551 (|#1| (-700 |#1|) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-575)) 33)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) (((-148) (-141)) (T -148)) NIL -(-13 (-1067)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-1884 (((-2 (|:| -1359 (-783)) (|:| -1755 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783)) 76)) (-3062 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|) 56)) (-3047 (((-2 (|:| -1755 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1896 ((|#1| |#3| |#3|) 44)) (-3049 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-1907 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|) 53))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3047 ((-2 (|:| -1755 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3062 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -1884 ((-2 (|:| -1359 (-783)) (|:| -1755 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -1896 (|#1| |#3| |#3|)) (-15 -3049 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -1907 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) (-1240) (-1262 |#1|) (-1262 (-419 |#2|))) (T -149)) -((-1907 (*1 *2 *3 *3) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))) (-3049 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1262 *3)))) (-1896 (*1 *2 *3 *3) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1240)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-1884 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1240)) (-4 *6 (-1262 *5)) (-5 *2 (-2 (|:| -1359 (-783)) (|:| -1755 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1262 *3)))) (-3062 (*1 *2 *3) (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))) (-3047 (*1 *2 *3) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -1755 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5)))))) -(-10 -7 (-15 -3047 ((-2 (|:| -1755 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3062 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -1884 ((-2 (|:| -1359 (-783)) (|:| -1755 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -1896 (|#1| |#3| |#3|)) (-15 -3049 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -1907 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) -((-3169 (((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|)) 35))) -(((-150 |#1| |#2|) (-10 -7 (-15 -3169 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|)))) (-557) (-167 |#1|)) (T -150)) -((-3169 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -3169 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|)))) -((-3985 (($ (-1 (-112) |#2|) $) 37)) (-1919 (($ $) 44)) (-3634 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2309 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-1932 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-2476 (((-112) (-1 (-112) |#2|) $) 24)) (-3926 (((-783) (-1 (-112) |#2|) $) 18) (((-783) |#2| $) NIL)) (-2492 (((-112) (-1 (-112) |#2|) $) 21)) (-2872 (((-783) $) 12))) -(((-151 |#1| |#2|) (-10 -8 (-15 -1919 (|#1| |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3985 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3634 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1932 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3926 ((-783) |#2| |#1|)) (-15 -3926 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -2476 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2872 ((-783) |#1|))) (-152 |#2|) (-1236)) (T -151)) -NIL -(-10 -8 (-15 -1919 (|#1| |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3985 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3634 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1932 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3926 ((-783) |#2| |#1|)) (-15 -3926 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -2476 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2872 ((-783) |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) 8)) (-3985 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-1919 (($ $) 42 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461))) (($ |#1| $) 43 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 50)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-152 |#1|) (-141) (-1236)) (T -152)) -((-2895 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-152 *3)))) (-1932 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-2309 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-2309 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-3634 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3)) (-4 *3 (-1236)))) (-3985 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3)) (-4 *3 (-1236)))) (-2309 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1118)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-3634 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)) (-4 *2 (-1118)))) (-1919 (*1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)) (-4 *2 (-1118))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -2895 ($ (-656 |t#1|))) (-15 -1932 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4461)) (PROGN (-15 -2309 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2309 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3634 ($ (-1 (-112) |t#1|) $)) (-15 -3985 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1118)) (PROGN (-15 -2309 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3634 ($ |t#1| $)) (-15 -1919 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) 111)) (-1439 (((-112) $) NIL)) (-2421 (($ |#2| (-656 (-937))) 71)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2527 (($ (-937)) 57)) (-1543 (((-135)) 23)) (-2884 (((-874) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-3245 ((|#2| $ (-656 (-937))) 74)) (-1871 (((-783)) 20 T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 47 T CONST)) (-2011 (($) 51 T CONST)) (-3915 (((-112) $ $) 33)) (-4039 (($ $ |#2|) NIL)) (-4029 (($ $) 42) (($ $ $) 40)) (-4017 (($ $ $) 38)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) -(((-153 |#1| |#2| |#3|) (-13 (-1067) (-38 |#2|) (-1293 |#2|) (-10 -8 (-15 -2527 ($ (-937))) (-15 -2421 ($ |#2| (-656 (-937)))) (-15 -3245 (|#2| $ (-656 (-937)))) (-15 -1999 ((-3 $ "failed") $)))) (-937) (-374) (-1011 |#1| |#2|)) (T -153)) -((-1999 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-937)) (-4 *3 (-374)) (-14 *4 (-1011 *2 *3)))) (-2527 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1011 *3 *4)))) (-2421 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-937)) (-4 *2 (-374)) (-14 *5 (-1011 *4 *2)))) (-3245 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-937))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-937)) (-14 *5 (-1011 *4 *2))))) -(-13 (-1067) (-38 |#2|) (-1293 |#2|) (-10 -8 (-15 -2527 ($ (-937))) (-15 -2421 ($ |#2| (-656 (-937)))) (-15 -3245 (|#2| $ (-656 (-937)))) (-15 -1999 ((-3 $ "failed") $)))) -((-2829 (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-1943 (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943)) 96)) (-1957 (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227))))) 99) (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-959 (-227)))) 98) (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943)) 91))) -(((-154) (-10 -7 (-15 -1957 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943))) (-15 -1957 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576)))) (-15 -1943 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943))) (-15 -1943 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576)))) (-15 -2829 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1957 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-959 (-227))))) (-15 -1957 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227)))))))) (T -154)) -((-1957 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-959 (-227))))))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-959 (-227)))))) (-2829 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 *4)))) (|:| |xValues| (-1112 *4)) (|:| |yValues| (-1112 *4)))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-959 *4)))))) (-1943 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-943)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-943)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154)))) (-1957 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-943)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-943)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154))))) -(-10 -7 (-15 -1957 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943))) (-15 -1957 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576)))) (-15 -1943 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943))) (-15 -1943 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576)))) (-15 -2829 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1957 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-959 (-227))))) (-15 -1957 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227))))))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-1452 (((-656 (-1153)) $) 20)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 27) (($ (-1200)) NIL) (((-1200) $) NIL)) (-1789 (((-1153) $) 9)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-155) (-13 (-1101) (-10 -8 (-15 -1452 ((-656 (-1153)) $)) (-15 -1789 ((-1153) $))))) (T -155)) -((-1452 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-155)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-155))))) -(-13 (-1101) (-10 -8 (-15 -1452 ((-656 (-1153)) $)) (-15 -1789 ((-1153) $)))) -((-3378 (((-656 (-171 |#2|)) |#1| |#2|) 50))) -(((-156 |#1| |#2|) (-10 -7 (-15 -3378 ((-656 (-171 |#2|)) |#1| |#2|))) (-1262 (-171 (-576))) (-13 (-374) (-860))) (T -156)) -((-3378 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1262 (-171 (-576)))) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -3378 ((-656 (-171 |#2|)) |#1| |#2|))) -((-2862 (((-112) $ $) NIL)) (-3892 (((-1235) $) 12)) (-3880 (((-1153) $) 9)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-157) (-13 (-1101) (-10 -8 (-15 -3880 ((-1153) $)) (-15 -3892 ((-1235) $))))) (T -157)) -((-3880 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-157)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-157))))) -(-13 (-1101) (-10 -8 (-15 -3880 ((-1153) $)) (-15 -3892 ((-1235) $)))) -((-2862 (((-112) $ $) NIL)) (-2854 (($) 41)) (-2914 (($) 40)) (-2842 (((-937)) 46)) (-3733 (((-1177) $) NIL)) (-3921 (((-576) $) 44)) (-3914 (((-1138) $) NIL)) (-2903 (($) 42)) (-3907 (($ (-576)) 47)) (-2884 (((-874) $) 53)) (-2894 (($) 43)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 38)) (-4017 (($ $ $) 35)) (* (($ (-937) $) 45) (($ (-227) $) 11))) -(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-937) $)) (-15 * ($ (-227) $)) (-15 -4017 ($ $ $)) (-15 -2914 ($)) (-15 -2854 ($)) (-15 -2903 ($)) (-15 -2894 ($)) (-15 -3921 ((-576) $)) (-15 -2842 ((-937))) (-15 -3907 ($ (-576)))))) (T -158)) -((-4017 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-2914 (*1 *1) (-5 *1 (-158))) (-2854 (*1 *1) (-5 *1 (-158))) (-2903 (*1 *1) (-5 *1 (-158))) (-2894 (*1 *1) (-5 *1 (-158))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-2842 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-158)))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))) -(-13 (-25) (-10 -8 (-15 * ($ (-937) $)) (-15 * ($ (-227) $)) (-15 -4017 ($ $ $)) (-15 -2914 ($)) (-15 -2854 ($)) (-15 -2903 ($)) (-15 -2894 ($)) (-15 -3921 ((-576) $)) (-15 -2842 ((-937))) (-15 -3907 ($ (-576))))) -((-2985 ((|#2| |#2| (-1110 |#2|)) 98) ((|#2| |#2| (-1195)) 75)) (-3782 ((|#2| |#2| (-1110 |#2|)) 97) ((|#2| |#2| (-1195)) 74)) (-2954 ((|#2| |#2| |#2|) 25)) (-2573 (((-115) (-115)) 111)) (-2928 ((|#2| (-656 |#2|)) 130)) (-2897 ((|#2| (-656 |#2|)) 151)) (-2886 ((|#2| (-656 |#2|)) 138)) (-2864 ((|#2| |#2|) 136)) (-2905 ((|#2| (-656 |#2|)) 124)) (-2917 ((|#2| (-656 |#2|)) 125)) (-2874 ((|#2| (-656 |#2|)) 149)) (-2996 ((|#2| |#2| (-1195)) 63) ((|#2| |#2|) 62)) (-2935 ((|#2| |#2|) 21)) (-1658 ((|#2| |#2| |#2|) 24)) (-2362 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-159 |#1| |#2|) (-10 -7 (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1658 (|#2| |#2| |#2|)) (-15 -2954 (|#2| |#2| |#2|)) (-15 -2935 (|#2| |#2|)) (-15 -2996 (|#2| |#2|)) (-15 -2996 (|#2| |#2| (-1195))) (-15 -2985 (|#2| |#2| (-1195))) (-15 -2985 (|#2| |#2| (-1110 |#2|))) (-15 -3782 (|#2| |#2| (-1195))) (-15 -3782 (|#2| |#2| (-1110 |#2|))) (-15 -2864 (|#2| |#2|)) (-15 -2874 (|#2| (-656 |#2|))) (-15 -2886 (|#2| (-656 |#2|))) (-15 -2897 (|#2| (-656 |#2|))) (-15 -2905 (|#2| (-656 |#2|))) (-15 -2917 (|#2| (-656 |#2|))) (-15 -2928 (|#2| (-656 |#2|)))) (-568) (-442 |#1|)) (T -159)) -((-2928 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2917 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2864 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3782 (*1 *2 *2 *3) (-12 (-5 *3 (-1110 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-3782 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-2985 (*1 *2 *2 *3) (-12 (-5 *3 (-1110 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-2985 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-2996 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-2996 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2935 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2954 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1658 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2573 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1658 (|#2| |#2| |#2|)) (-15 -2954 (|#2| |#2| |#2|)) (-15 -2935 (|#2| |#2|)) (-15 -2996 (|#2| |#2|)) (-15 -2996 (|#2| |#2| (-1195))) (-15 -2985 (|#2| |#2| (-1195))) (-15 -2985 (|#2| |#2| (-1110 |#2|))) (-15 -3782 (|#2| |#2| (-1195))) (-15 -3782 (|#2| |#2| (-1110 |#2|))) (-15 -2864 (|#2| |#2|)) (-15 -2874 (|#2| (-656 |#2|))) (-15 -2886 (|#2| (-656 |#2|))) (-15 -2897 (|#2| (-656 |#2|))) (-15 -2905 (|#2| (-656 |#2|))) (-15 -2917 (|#2| (-656 |#2|))) (-15 -2928 (|#2| (-656 |#2|)))) -((-2972 ((|#1| |#1| |#1|) 64)) (-2963 ((|#1| |#1| |#1|) 61)) (-2954 ((|#1| |#1| |#1|) 55)) (-1337 ((|#1| |#1|) 42)) (-2945 ((|#1| |#1| (-656 |#1|)) 53)) (-2935 ((|#1| |#1|) 46)) (-1658 ((|#1| |#1| |#1|) 49))) -(((-160 |#1|) (-10 -7 (-15 -1658 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1|)) (-15 -2945 (|#1| |#1| (-656 |#1|))) (-15 -1337 (|#1| |#1|)) (-15 -2954 (|#1| |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2972 (|#1| |#1| |#1|))) (-557)) (T -160)) -((-2972 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2963 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2954 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1337 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2945 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-2935 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1658 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(-10 -7 (-15 -1658 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1|)) (-15 -2945 (|#1| |#1| (-656 |#1|))) (-15 -1337 (|#1| |#1|)) (-15 -2954 (|#1| |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2972 (|#1| |#1| |#1|))) -((-2985 (($ $ (-1195)) 12) (($ $ (-1110 $)) 11)) (-3782 (($ $ (-1195)) 10) (($ $ (-1110 $)) 9)) (-2954 (($ $ $) 8)) (-2996 (($ $) 14) (($ $ (-1195)) 13)) (-2935 (($ $) 7)) (-1658 (($ $ $) 6))) +(-13 (-1066)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2691 (((-2 (|:| -2398 (-782)) (|:| -1754 (-418 |#2|)) (|:| |radicand| |#2|)) (-418 |#2|) (-782)) 76)) (-2582 (((-3 (-2 (|:| |radicand| (-418 |#2|)) (|:| |deg| (-782))) "failed") |#3|) 56)) (-3762 (((-2 (|:| -1754 (-418 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1396 ((|#1| |#3| |#3|) 44)) (-3048 ((|#3| |#3| (-418 |#2|) (-418 |#2|)) 20)) (-3331 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| |deg| (-782))) |#3| |#3|) 53))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3762 ((-2 (|:| -1754 (-418 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2582 ((-3 (-2 (|:| |radicand| (-418 |#2|)) (|:| |deg| (-782))) "failed") |#3|)) (-15 -2691 ((-2 (|:| -2398 (-782)) (|:| -1754 (-418 |#2|)) (|:| |radicand| |#2|)) (-418 |#2|) (-782))) (-15 -1396 (|#1| |#3| |#3|)) (-15 -3048 (|#3| |#3| (-418 |#2|) (-418 |#2|))) (-15 -3331 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| |deg| (-782))) |#3| |#3|))) (-1239) (-1261 |#1|) (-1261 (-418 |#2|))) (T -149)) +((-3331 (*1 *2 *3 *3) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-418 *5)) (|:| |c2| (-418 *5)) (|:| |deg| (-782)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5))))) (-3048 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-418 *5)) (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1261 *3)))) (-1396 (*1 *2 *3 *3) (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1239)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1261 (-418 *4))))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *6)) (-4 *5 (-1239)) (-4 *6 (-1261 *5)) (-5 *2 (-2 (|:| -2398 (-782)) (|:| -1754 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-782)) (-4 *7 (-1261 *3)))) (-2582 (*1 *2 *3) (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| |radicand| (-418 *5)) (|:| |deg| (-782)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5))))) (-3762 (*1 *2 *3) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| -1754 (-418 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5)))))) +(-10 -7 (-15 -3762 ((-2 (|:| -1754 (-418 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2582 ((-3 (-2 (|:| |radicand| (-418 |#2|)) (|:| |deg| (-782))) "failed") |#3|)) (-15 -2691 ((-2 (|:| -2398 (-782)) (|:| -1754 (-418 |#2|)) (|:| |radicand| |#2|)) (-418 |#2|) (-782))) (-15 -1396 (|#1| |#3| |#3|)) (-15 -3048 (|#3| |#3| (-418 |#2|) (-418 |#2|))) (-15 -3331 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| |deg| (-782))) |#3| |#3|))) +((-1830 (((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|)) 35))) +(((-150 |#1| |#2|) (-10 -7 (-15 -1830 ((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|)))) (-556) (-167 |#1|)) (T -150)) +((-1830 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 *5))) (-5 *3 (-1190 *5)) (-4 *5 (-167 *4)) (-4 *4 (-556)) (-5 *1 (-150 *4 *5))))) +(-10 -7 (-15 -1830 ((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|)))) +((-3985 (($ (-1 (-112) |#2|) $) 37)) (-1748 (($ $) 44)) (-3633 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2308 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-3704 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-3207 (((-112) (-1 (-112) |#2|) $) 24)) (-3925 (((-782) (-1 (-112) |#2|) $) 18) (((-782) |#2| $) NIL)) (-3771 (((-112) (-1 (-112) |#2|) $) 21)) (-2871 (((-782) $) 12))) +(((-151 |#1| |#2|) (-10 -8 (-15 -1748 (|#1| |#1|)) (-15 -3633 (|#1| |#2| |#1|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3985 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3633 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3704 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3925 ((-782) |#2| |#1|)) (-15 -3925 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -3207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2871 ((-782) |#1|))) (-152 |#2|) (-1235)) (T -151)) +NIL +(-10 -8 (-15 -1748 (|#1| |#1|)) (-15 -3633 (|#1| |#2| |#1|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3985 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3633 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3704 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3925 ((-782) |#2| |#1|)) (-15 -3925 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -3207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2871 ((-782) |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) 8)) (-3985 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1748 (($ $) 42 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460))) (($ |#1| $) 43 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 41 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 50)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-152 |#1|) (-141) (-1235)) (T -152)) +((-2894 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-152 *3)))) (-3704 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1235)))) (-2308 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)))) (-2308 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)))) (-3633 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *3)) (-4 *3 (-1235)))) (-3985 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *3)) (-4 *3 (-1235)))) (-2308 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1117)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)))) (-3633 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)) (-4 *2 (-1117)))) (-1748 (*1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)) (-4 *2 (-1117))))) +(-13 (-500 |t#1|) (-10 -8 (-15 -2894 ($ (-655 |t#1|))) (-15 -3704 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4460)) (PROGN (-15 -2308 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2308 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3633 ($ (-1 (-112) |t#1|) $)) (-15 -3985 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1117)) (PROGN (-15 -2308 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3633 ($ |t#1| $)) (-15 -1748 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) 111)) (-1542 (((-112) $) NIL)) (-2417 (($ |#2| (-655 (-936))) 71)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2526 (($ (-936)) 57)) (-4386 (((-135)) 23)) (-2883 (((-873) $) 86) (($ (-575)) 53) (($ |#2|) 54)) (-2012 ((|#2| $ (-655 (-936))) 74)) (-3759 (((-782)) 20 T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 47 T CONST)) (-2009 (($) 51 T CONST)) (-3914 (((-112) $ $) 33)) (-4038 (($ $ |#2|) NIL)) (-4028 (($ $) 42) (($ $ $) 40)) (-4016 (($ $ $) 38)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) +(((-153 |#1| |#2| |#3|) (-13 (-1066) (-38 |#2|) (-1292 |#2|) (-10 -8 (-15 -2526 ($ (-936))) (-15 -2417 ($ |#2| (-655 (-936)))) (-15 -2012 (|#2| $ (-655 (-936)))) (-15 -1747 ((-3 $ "failed") $)))) (-936) (-373) (-1010 |#1| |#2|)) (T -153)) +((-1747 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-936)) (-4 *3 (-373)) (-14 *4 (-1010 *2 *3)))) (-2526 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-373)) (-14 *5 (-1010 *3 *4)))) (-2417 (*1 *1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-936)) (-4 *2 (-373)) (-14 *5 (-1010 *4 *2)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-655 (-936))) (-4 *2 (-373)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-936)) (-14 *5 (-1010 *4 *2))))) +(-13 (-1066) (-38 |#2|) (-1292 |#2|) (-10 -8 (-15 -2526 ($ (-936))) (-15 -2417 ($ |#2| (-655 (-936)))) (-15 -2012 (|#2| $ (-655 (-936)))) (-15 -1747 ((-3 $ "failed") $)))) +((-2088 (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-2456 (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575))) 95) (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942)) 96)) (-1375 (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227))))) 99) (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-958 (-227)))) 98) (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575))) 90) (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942)) 91))) +(((-154) (-10 -7 (-15 -1375 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942))) (-15 -1375 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575)))) (-15 -2456 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942))) (-15 -2456 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575)))) (-15 -2088 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1375 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-958 (-227))))) (-15 -1375 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227)))))))) (T -154)) +((-1375 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154)) (-5 *3 (-655 (-655 (-958 (-227))))))) (-1375 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154)) (-5 *3 (-655 (-958 (-227)))))) (-2088 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 *4)))) (|:| |xValues| (-1111 *4)) (|:| |yValues| (-1111 *4)))) (-5 *1 (-154)) (-5 *3 (-655 (-655 (-958 *4)))))) (-2456 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-942)) (-5 *4 (-418 (-575))) (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154)))) (-1375 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-942)) (-5 *4 (-418 (-575))) (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154))))) +(-10 -7 (-15 -1375 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942))) (-15 -1375 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575)))) (-15 -2456 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942))) (-15 -2456 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575)))) (-15 -2088 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1375 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-958 (-227))))) (-15 -1375 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227))))))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-1452 (((-655 (-1152)) $) 20)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 27) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 9)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-155) (-13 (-1100) (-10 -8 (-15 -1452 ((-655 (-1152)) $)) (-15 -1788 ((-1152) $))))) (T -155)) +((-1452 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-155)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-155))))) +(-13 (-1100) (-10 -8 (-15 -1452 ((-655 (-1152)) $)) (-15 -1788 ((-1152) $)))) +((-1805 (((-655 (-171 |#2|)) |#1| |#2|) 50))) +(((-156 |#1| |#2|) (-10 -7 (-15 -1805 ((-655 (-171 |#2|)) |#1| |#2|))) (-1261 (-171 (-575))) (-13 (-373) (-859))) (T -156)) +((-1805 (*1 *2 *3 *4) (-12 (-5 *2 (-655 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1261 (-171 (-575)))) (-4 *4 (-13 (-373) (-859)))))) +(-10 -7 (-15 -1805 ((-655 (-171 |#2|)) |#1| |#2|))) +((-2861 (((-112) $ $) NIL)) (-3892 (((-1234) $) 12)) (-3880 (((-1152) $) 9)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 19) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-157) (-13 (-1100) (-10 -8 (-15 -3880 ((-1152) $)) (-15 -3892 ((-1234) $))))) (T -157)) +((-3880 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-157)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-157))))) +(-13 (-1100) (-10 -8 (-15 -3880 ((-1152) $)) (-15 -3892 ((-1234) $)))) +((-2861 (((-112) $ $) NIL)) (-2477 (($) 41)) (-3979 (($) 40)) (-3844 (((-936)) 46)) (-2288 (((-1176) $) NIL)) (-3636 (((-575) $) 44)) (-3912 (((-1137) $) NIL)) (-4171 (($) 42)) (-1952 (($ (-575)) 47)) (-2883 (((-873) $) 53)) (-2710 (($) 43)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 38)) (-4016 (($ $ $) 35)) (* (($ (-936) $) 45) (($ (-227) $) 11))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-936) $)) (-15 * ($ (-227) $)) (-15 -4016 ($ $ $)) (-15 -3979 ($)) (-15 -2477 ($)) (-15 -4171 ($)) (-15 -2710 ($)) (-15 -3636 ((-575) $)) (-15 -3844 ((-936))) (-15 -1952 ($ (-575)))))) (T -158)) +((-4016 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-3979 (*1 *1) (-5 *1 (-158))) (-2477 (*1 *1) (-5 *1 (-158))) (-4171 (*1 *1) (-5 *1 (-158))) (-2710 (*1 *1) (-5 *1 (-158))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-158)))) (-3844 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-158)))) (-1952 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-936) $)) (-15 * ($ (-227) $)) (-15 -4016 ($ $ $)) (-15 -3979 ($)) (-15 -2477 ($)) (-15 -4171 ($)) (-15 -2710 ($)) (-15 -3636 ((-575) $)) (-15 -3844 ((-936))) (-15 -1952 ($ (-575))))) +((-3994 ((|#2| |#2| (-1109 |#2|)) 98) ((|#2| |#2| (-1194)) 75)) (-3557 ((|#2| |#2| (-1109 |#2|)) 97) ((|#2| |#2| (-1194)) 74)) (-3747 ((|#2| |#2| |#2|) 25)) (-2572 (((-115) (-115)) 111)) (-2759 ((|#2| (-655 |#2|)) 130)) (-1664 ((|#2| (-655 |#2|)) 151)) (-3150 ((|#2| (-655 |#2|)) 138)) (-2047 ((|#2| |#2|) 136)) (-4377 ((|#2| (-655 |#2|)) 124)) (-2985 ((|#2| (-655 |#2|)) 125)) (-1390 ((|#2| (-655 |#2|)) 149)) (-2652 ((|#2| |#2| (-1194)) 63) ((|#2| |#2|) 62)) (-2217 ((|#2| |#2|) 21)) (-3820 ((|#2| |#2| |#2|) 24)) (-2151 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-159 |#1| |#2|) (-10 -7 (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3820 (|#2| |#2| |#2|)) (-15 -3747 (|#2| |#2| |#2|)) (-15 -2217 (|#2| |#2|)) (-15 -2652 (|#2| |#2|)) (-15 -2652 (|#2| |#2| (-1194))) (-15 -3994 (|#2| |#2| (-1194))) (-15 -3994 (|#2| |#2| (-1109 |#2|))) (-15 -3557 (|#2| |#2| (-1194))) (-15 -3557 (|#2| |#2| (-1109 |#2|))) (-15 -2047 (|#2| |#2|)) (-15 -1390 (|#2| (-655 |#2|))) (-15 -3150 (|#2| (-655 |#2|))) (-15 -1664 (|#2| (-655 |#2|))) (-15 -4377 (|#2| (-655 |#2|))) (-15 -2985 (|#2| (-655 |#2|))) (-15 -2759 (|#2| (-655 |#2|)))) (-567) (-441 |#1|)) (T -159)) +((-2759 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-2047 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (-3557 (*1 *2 *2 *3) (-12 (-5 *3 (-1109 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)))) (-3557 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)) (-4 *2 (-441 *4)))) (-3994 (*1 *2 *2 *3) (-12 (-5 *3 (-1109 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)))) (-3994 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)) (-4 *2 (-441 *4)))) (-2652 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)) (-4 *2 (-441 *4)))) (-2652 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (-2217 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (-3747 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (-3820 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (-2572 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-159 *3 *4)) (-4 *4 (-441 *3)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-441 *4))))) +(-10 -7 (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3820 (|#2| |#2| |#2|)) (-15 -3747 (|#2| |#2| |#2|)) (-15 -2217 (|#2| |#2|)) (-15 -2652 (|#2| |#2|)) (-15 -2652 (|#2| |#2| (-1194))) (-15 -3994 (|#2| |#2| (-1194))) (-15 -3994 (|#2| |#2| (-1109 |#2|))) (-15 -3557 (|#2| |#2| (-1194))) (-15 -3557 (|#2| |#2| (-1109 |#2|))) (-15 -2047 (|#2| |#2|)) (-15 -1390 (|#2| (-655 |#2|))) (-15 -3150 (|#2| (-655 |#2|))) (-15 -1664 (|#2| (-655 |#2|))) (-15 -4377 (|#2| (-655 |#2|))) (-15 -2985 (|#2| (-655 |#2|))) (-15 -2759 (|#2| (-655 |#2|)))) +((-2108 ((|#1| |#1| |#1|) 64)) (-2310 ((|#1| |#1| |#1|) 61)) (-3747 ((|#1| |#1| |#1|) 55)) (-4319 ((|#1| |#1|) 42)) (-2155 ((|#1| |#1| (-655 |#1|)) 53)) (-2217 ((|#1| |#1|) 46)) (-3820 ((|#1| |#1| |#1|) 49))) +(((-160 |#1|) (-10 -7 (-15 -3820 (|#1| |#1| |#1|)) (-15 -2217 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-655 |#1|))) (-15 -4319 (|#1| |#1|)) (-15 -3747 (|#1| |#1| |#1|)) (-15 -2310 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#1|))) (-556)) (T -160)) +((-2108 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) (-2310 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) (-3747 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) (-4319 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) (-2155 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-556)) (-5 *1 (-160 *2)))) (-2217 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) (-3820 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556))))) +(-10 -7 (-15 -3820 (|#1| |#1| |#1|)) (-15 -2217 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-655 |#1|))) (-15 -4319 (|#1| |#1|)) (-15 -3747 (|#1| |#1| |#1|)) (-15 -2310 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#1|))) +((-3994 (($ $ (-1194)) 12) (($ $ (-1109 $)) 11)) (-3557 (($ $ (-1194)) 10) (($ $ (-1109 $)) 9)) (-3747 (($ $ $) 8)) (-2652 (($ $) 14) (($ $ (-1194)) 13)) (-2217 (($ $) 7)) (-3820 (($ $ $) 6))) (((-161) (-141)) (T -161)) -((-2996 (*1 *1 *1) (-4 *1 (-161))) (-2996 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) (-2985 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) (-2985 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-161)))) (-3782 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-161))))) -(-13 (-144) (-10 -8 (-15 -2996 ($ $)) (-15 -2996 ($ $ (-1195))) (-15 -2985 ($ $ (-1195))) (-15 -2985 ($ $ (-1110 $))) (-15 -3782 ($ $ (-1195))) (-15 -3782 ($ $ (-1110 $))))) +((-2652 (*1 *1 *1) (-4 *1 (-161))) (-2652 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194)))) (-3994 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194)))) (-3994 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-161)))) (-3557 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194)))) (-3557 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-161))))) +(-13 (-144) (-10 -8 (-15 -2652 ($ $)) (-15 -2652 ($ $ (-1194))) (-15 -3994 ($ $ (-1194))) (-15 -3994 ($ $ (-1109 $))) (-15 -3557 ($ $ (-1194))) (-15 -3557 ($ $ (-1109 $))))) (((-144) . T)) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-1789 (((-656 (-1153)) $) 10)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-162) (-13 (-1101) (-10 -8 (-15 -1789 ((-656 (-1153)) $))))) (T -162)) -((-1789 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-162))))) -(-13 (-1101) (-10 -8 (-15 -1789 ((-656 (-1153)) $)))) -((-2862 (((-112) $ $) NIL)) (-3005 (($ (-576)) 14) (($ $ $) 15)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 18)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 9))) -(((-163) (-13 (-1118) (-10 -8 (-15 -3005 ($ (-576))) (-15 -3005 ($ $ $))))) (T -163)) -((-3005 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-3005 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1118) (-10 -8 (-15 -3005 ($ (-576))) (-15 -3005 ($ $ $)))) -((-2573 (((-115) (-1195)) 102))) -(((-164) (-10 -7 (-15 -2573 ((-115) (-1195))))) (T -164)) -((-2573 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-115)) (-5 *1 (-164))))) -(-10 -7 (-15 -2573 ((-115) (-1195)))) -((-3613 ((|#3| |#3|) 19))) -(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3613 (|#3| |#3|))) (-1067) (-1262 |#1|) (-1262 |#2|)) (T -165)) -((-3613 (*1 *2 *2) (-12 (-4 *3 (-1067)) (-4 *4 (-1262 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1262 *4))))) -(-10 -7 (-15 -3613 (|#3| |#3|))) -((-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 223)) (-1448 ((|#2| $) 102)) (-3924 (($ $) 256)) (-3787 (($ $) 250)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 47)) (-3898 (($ $) 254)) (-3762 (($ $) 248)) (-2449 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-4401 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-2803 (($ $ $) 229)) (-2613 (((-701 (-576)) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 160) (((-701 |#2|) (-701 $)) 154) (((-701 |#2|) (-1286 $)) NIL)) (-2309 (($ (-1191 |#2|)) 125) (((-3 $ "failed") (-419 (-1191 |#2|))) NIL)) (-1999 (((-3 $ "failed") $) 214)) (-3424 (((-3 (-419 (-576)) "failed") $) 204)) (-3413 (((-112) $) 199)) (-3404 (((-419 (-576)) $) 202)) (-4423 (((-937)) 96)) (-2814 (($ $ $) 231)) (-3015 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1632 (($) 245)) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 193) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 198)) (-1941 ((|#2| $) 100)) (-1922 (((-1191 |#2|) $) 127)) (-2551 (($ (-1 |#2| |#2|) $) 108)) (-3464 (($ $) 247)) (-2297 (((-1191 |#2|) $) 126)) (-4333 (($ $) 207)) (-3029 (($) 103)) (-3181 (((-430 (-1191 $)) (-1191 $)) 95)) (-3192 (((-430 (-1191 $)) (-1191 $)) 64)) (-2852 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-2666 (($ $) 246)) (-2910 (((-783) $) 226)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 236)) (-2790 ((|#2| (-1286 $)) NIL) ((|#2|) 98)) (-2390 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-1360 (((-1191 |#2|)) 120)) (-3910 (($ $) 255)) (-3775 (($ $) 249)) (-3629 (((-1286 |#2|) $ (-1286 $)) 136) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $) 116) (((-701 |#2|) (-1286 $)) NIL)) (-2616 (((-1286 |#2|) $) NIL) (($ (-1286 |#2|)) NIL) (((-1191 |#2|) $) NIL) (($ (-1191 |#2|)) NIL) (((-905 (-576)) $) 184) (((-905 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-3276 (($ $) 104)) (-2884 (((-874) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-1776 (((-1191 |#2|) $) 32)) (-1871 (((-783)) 106)) (-3722 (((-112) $ $) 13)) (-1570 (($ $) 259)) (-3853 (($ $) 253)) (-1545 (($ $) 257)) (-3829 (($ $) 251)) (-3433 ((|#2| $) 242)) (-1555 (($ $) 258)) (-3840 (($ $) 252)) (-2610 (($ $) 162)) (-3915 (((-112) $ $) 110)) (-4029 (($ $) 112) (($ $ $) NIL)) (-4017 (($ $ $) 111)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-166 |#1| |#2|) (-10 -8 (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4253 ((-2 (|:| -4246 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2910 ((-783) |#1|)) (-15 -4350 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -2803 (|#1| |#1| |#1|)) (-15 -4333 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2616 ((-548) |#1|)) (-15 -2616 ((-171 (-227)) |#1|)) (-15 -2616 ((-171 (-390)) |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -1555 (|#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -3464 (|#1| |#1|)) (-15 -2666 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1632 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3192 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3181 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3169 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3424 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3404 ((-419 (-576)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -3015 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3433 (|#2| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3276 (|#1| |#1|)) (-15 -3029 (|#1|)) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -1606 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1606 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2309 ((-3 |#1| "failed") (-419 (-1191 |#2|)))) (-15 -2297 ((-1191 |#2|) |#1|)) (-15 -2616 (|#1| (-1191 |#2|))) (-15 -2309 (|#1| (-1191 |#2|))) (-15 -1360 ((-1191 |#2|))) (-15 -2613 ((-701 |#2|) (-1286 |#1|))) (-15 -2613 ((-701 |#2|) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2616 ((-1191 |#2|) |#1|)) (-15 -2790 (|#2|)) (-15 -2616 (|#1| (-1286 |#2|))) (-15 -2616 ((-1286 |#2|) |#1|)) (-15 -3629 ((-701 |#2|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1|)) (-15 -1922 ((-1191 |#2|) |#1|)) (-15 -1776 ((-1191 |#2|) |#1|)) (-15 -2790 (|#2| (-1286 |#1|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1941 (|#2| |#1|)) (-15 -1448 (|#2| |#1|)) (-15 -4423 ((-937))) (-15 -2884 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1871 ((-783))) (-15 -2884 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -1999 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -3722 ((-112) |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) -((-1871 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4423 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-937)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-2790 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-1360 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1191 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) -(-10 -8 (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4253 ((-2 (|:| -4246 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2910 ((-783) |#1|)) (-15 -4350 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -2803 (|#1| |#1| |#1|)) (-15 -4333 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2616 ((-548) |#1|)) (-15 -2616 ((-171 (-227)) |#1|)) (-15 -2616 ((-171 (-390)) |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -1555 (|#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -3464 (|#1| |#1|)) (-15 -2666 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1632 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3192 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3181 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3169 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3424 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3404 ((-419 (-576)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -3015 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3433 (|#2| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3276 (|#1| |#1|)) (-15 -3029 (|#1|)) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -1606 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1606 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2309 ((-3 |#1| "failed") (-419 (-1191 |#2|)))) (-15 -2297 ((-1191 |#2|) |#1|)) (-15 -2616 (|#1| (-1191 |#2|))) (-15 -2309 (|#1| (-1191 |#2|))) (-15 -1360 ((-1191 |#2|))) (-15 -2613 ((-701 |#2|) (-1286 |#1|))) (-15 -2613 ((-701 |#2|) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2616 ((-1191 |#2|) |#1|)) (-15 -2790 (|#2|)) (-15 -2616 (|#1| (-1286 |#2|))) (-15 -2616 ((-1286 |#2|) |#1|)) (-15 -3629 ((-701 |#2|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1|)) (-15 -1922 ((-1191 |#2|) |#1|)) (-15 -1776 ((-1191 |#2|) |#1|)) (-15 -2790 (|#2| (-1286 |#1|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1941 (|#2| |#1|)) (-15 -1448 (|#2| |#1|)) (-15 -4423 ((-937))) (-15 -2884 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1871 ((-783))) (-15 -2884 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -1999 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -3722 ((-112) |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 104 (-3766 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-4241 (($ $) 105 (-3766 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-4221 (((-112) $) 107 (-3766 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-4355 (((-701 |#1|) (-1286 $)) 53) (((-701 |#1|)) 68)) (-1448 ((|#1| $) 59)) (-3924 (($ $) 233 (|has| |#1| (-1221)))) (-3787 (($ $) 216 (|has| |#1| (-1221)))) (-2575 (((-1208 (-937) (-783)) (-576)) 157 (|has| |#1| (-360)))) (-1459 (((-3 $ "failed") $ $) 20)) (-3203 (((-430 (-1191 $)) (-1191 $)) 247 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-2944 (($ $) 124 (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-3986 (((-430 $) $) 125 (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-2474 (($ $) 246 (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221))))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-2922 (((-112) $ $) 115 (|has| |#1| (-317)))) (-2416 (((-783)) 98 (|has| |#1| (-379)))) (-3898 (($ $) 232 (|has| |#1| (-1221)))) (-3762 (($ $) 217 (|has| |#1| (-1221)))) (-1522 (($ $) 231 (|has| |#1| (-1221)))) (-3808 (($ $) 218 (|has| |#1| (-1221)))) (-2473 (($) 18 T CONST)) (-2449 (((-3 (-576) "failed") $) 182 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 180 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 177)) (-4401 (((-576) $) 181 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 179 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 178)) (-1339 (($ (-1286 |#1|) (-1286 $)) 55) (($ (-1286 |#1|)) 71)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| |#1| (-360)))) (-2803 (($ $ $) 119 (|has| |#1| (-317)))) (-4342 (((-701 |#1|) $ (-1286 $)) 60) (((-701 |#1|) $) 66)) (-2613 (((-701 (-576)) (-1286 $)) 176 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 175 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 174 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 173) (((-701 |#1|) (-701 $)) 172) (((-701 |#1|) (-1286 $)) 171)) (-2309 (($ (-1191 |#1|)) 168) (((-3 $ "failed") (-419 (-1191 |#1|))) 165 (|has| |#1| (-374)))) (-1999 (((-3 $ "failed") $) 37)) (-2488 ((|#1| $) 258)) (-3424 (((-3 (-419 (-576)) "failed") $) 251 (|has| |#1| (-557)))) (-3413 (((-112) $) 253 (|has| |#1| (-557)))) (-3404 (((-419 (-576)) $) 252 (|has| |#1| (-557)))) (-4423 (((-937)) 61)) (-2080 (($) 101 (|has| |#1| (-379)))) (-2814 (($ $ $) 118 (|has| |#1| (-317)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 113 (|has| |#1| (-317)))) (-2013 (($) 159 (|has| |#1| (-360)))) (-2635 (((-112) $) 160 (|has| |#1| (-360)))) (-4188 (($ $ (-783)) 151 (|has| |#1| (-360))) (($ $) 150 (|has| |#1| (-360)))) (-2463 (((-112) $) 126 (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-3015 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 254 (-12 (|has| |#1| (-1078)) (|has| |#1| (-1221))))) (-1632 (($) 243 (|has| |#1| (-1221)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 266 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 265 (|has| |#1| (-899 (-390))))) (-2927 (((-937) $) 162 (|has| |#1| (-360))) (((-845 (-937)) $) 148 (|has| |#1| (-360)))) (-1439 (((-112) $) 35)) (-3298 (($ $ (-576)) 245 (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221))))) (-1941 ((|#1| $) 58)) (-1831 (((-3 $ "failed") $) 152 (|has| |#1| (-360)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 122 (|has| |#1| (-317)))) (-1922 (((-1191 |#1|) $) 51 (|has| |#1| (-374)))) (-2551 (($ (-1 |#1| |#1|) $) 267)) (-1875 (((-937) $) 100 (|has| |#1| (-379)))) (-3464 (($ $) 240 (|has| |#1| (-1221)))) (-2297 (((-1191 |#1|) $) 166)) (-3888 (($ (-656 $)) 111 (-3766 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (($ $ $) 110 (-3766 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-3733 (((-1177) $) 10)) (-4333 (($ $) 127 (|has| |#1| (-374)))) (-3475 (($) 153 (|has| |#1| (-360)) CONST)) (-4318 (($ (-937)) 99 (|has| |#1| (-379)))) (-3029 (($) 262)) (-1972 ((|#1| $) 259)) (-3914 (((-1138) $) 11)) (-3660 (($) 170)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 112 (-3766 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-3928 (($ (-656 $)) 109 (-3766 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (($ $ $) 108 (-3766 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) 156 (|has| |#1| (-360)))) (-3181 (((-430 (-1191 $)) (-1191 $)) 249 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-3192 (((-430 (-1191 $)) (-1191 $)) 248 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-2354 (((-430 $) $) 123 (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 120 (|has| |#1| (-317)))) (-2852 (((-3 $ "failed") $ |#1|) 257 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 103 (-3766 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 114 (|has| |#1| (-317)))) (-2666 (($ $) 241 (|has| |#1| (-1221)))) (-3049 (($ $ (-656 |#1|) (-656 |#1|)) 273 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 272 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 271 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 270 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 269 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 268 (|has| |#1| (-526 (-1195) |#1|)))) (-2910 (((-783) $) 116 (|has| |#1| (-317)))) (-2071 (($ $ |#1|) 274 (|has| |#1| (-296 |#1| |#1|)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 117 (|has| |#1| (-317)))) (-2790 ((|#1| (-1286 $)) 54) ((|#1|) 67)) (-4197 (((-783) $) 161 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 149 (|has| |#1| (-360)))) (-2390 (($ $ (-1 |#1| |#1|) (-783)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-1195)) 136 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 138 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 139 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 140 (|has| |#1| (-914 (-1195)))) (($ $) 144 (-3766 (-3227 (|has| |#1| (-374)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-3227 (|has| |#1| (-239)) (|has| |#1| (-374))))) (($ $ (-783)) 146 (-3766 (-3227 (|has| |#1| (-374)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-3227 (|has| |#1| (-239)) (|has| |#1| (-374)))))) (-1430 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) 164 (|has| |#1| (-374)))) (-1360 (((-1191 |#1|)) 169)) (-1532 (($ $) 230 (|has| |#1| (-1221)))) (-3818 (($ $) 219 (|has| |#1| (-1221)))) (-2560 (($) 158 (|has| |#1| (-360)))) (-3938 (($ $) 229 (|has| |#1| (-1221)))) (-3798 (($ $) 220 (|has| |#1| (-1221)))) (-3910 (($ $) 228 (|has| |#1| (-1221)))) (-3775 (($ $) 221 (|has| |#1| (-1221)))) (-3629 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56) (((-1286 |#1|) $) 73) (((-701 |#1|) (-1286 $)) 72)) (-2616 (((-1286 |#1|) $) 70) (($ (-1286 |#1|)) 69) (((-1191 |#1|) $) 183) (($ (-1191 |#1|)) 167) (((-905 (-576)) $) 264 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 263 (|has| |#1| (-626 (-905 (-390))))) (((-171 (-390)) $) 215 (|has| |#1| (-1040))) (((-171 (-227)) $) 214 (|has| |#1| (-1040))) (((-548) $) 213 (|has| |#1| (-626 (-548))))) (-3276 (($ $) 261)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 155 (-3766 (-3227 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))) (|has| |#1| (-360))))) (-3503 (($ |#1| |#1|) 260)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 97 (-3766 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) 102 (-3766 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-3148 (($ $) 154 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-3766 (-3227 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))) (|has| |#1| (-146))))) (-1776 (((-1191 |#1|) $) 52)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1898 (((-1286 $)) 74)) (-1570 (($ $) 239 (|has| |#1| (-1221)))) (-3853 (($ $) 227 (|has| |#1| (-1221)))) (-4232 (((-112) $ $) 106 (-3766 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-1545 (($ $) 238 (|has| |#1| (-1221)))) (-3829 (($ $) 226 (|has| |#1| (-1221)))) (-1594 (($ $) 237 (|has| |#1| (-1221)))) (-3874 (($ $) 225 (|has| |#1| (-1221)))) (-3433 ((|#1| $) 255 (|has| |#1| (-1221)))) (-2915 (($ $) 236 (|has| |#1| (-1221)))) (-3886 (($ $) 224 (|has| |#1| (-1221)))) (-1584 (($ $) 235 (|has| |#1| (-1221)))) (-3864 (($ $) 223 (|has| |#1| (-1221)))) (-1555 (($ $) 234 (|has| |#1| (-1221)))) (-3840 (($ $) 222 (|has| |#1| (-1221)))) (-2610 (($ $) 256 (|has| |#1| (-1078)))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-1 |#1| |#1|) (-783)) 135) (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1195)) 137 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 141 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 142 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 143 (|has| |#1| (-914 (-1195)))) (($ $) 145 (-3766 (-3227 (|has| |#1| (-374)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-3227 (|has| |#1| (-239)) (|has| |#1| (-374))))) (($ $ (-783)) 147 (-3766 (-3227 (|has| |#1| (-374)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-3227 (|has| |#1| (-239)) (|has| |#1| (-374)))))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ $) 131 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-419 (-576))) 244 (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221)))) (($ $ $) 242 (|has| |#1| (-1221))) (($ $ (-576)) 128 (|has| |#1| (-374)))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 130 (|has| |#1| (-374))) (($ $ (-419 (-576))) 129 (|has| |#1| (-374))))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 16) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-655 (-1152)) $) 10)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-162) (-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $))))) (T -162)) +((-1788 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-162))))) +(-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $)))) +((-2861 (((-112) $ $) NIL)) (-1930 (($ (-575)) 14) (($ $ $) 15)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 18)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 9))) +(((-163) (-13 (-1117) (-10 -8 (-15 -1930 ($ (-575))) (-15 -1930 ($ $ $))))) (T -163)) +((-1930 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-163)))) (-1930 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1117) (-10 -8 (-15 -1930 ($ (-575))) (-15 -1930 ($ $ $)))) +((-2572 (((-115) (-1194)) 102))) +(((-164) (-10 -7 (-15 -2572 ((-115) (-1194))))) (T -164)) +((-2572 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-115)) (-5 *1 (-164))))) +(-10 -7 (-15 -2572 ((-115) (-1194)))) +((-1973 ((|#3| |#3|) 19))) +(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -1973 (|#3| |#3|))) (-1066) (-1261 |#1|) (-1261 |#2|)) (T -165)) +((-1973 (*1 *2 *2) (-12 (-4 *3 (-1066)) (-4 *4 (-1261 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1261 *4))))) +(-10 -7 (-15 -1973 (|#3| |#3|))) +((-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 223)) (-1447 ((|#2| $) 102)) (-3923 (($ $) 256)) (-3786 (($ $) 250)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 47)) (-3897 (($ $) 254)) (-3761 (($ $) 248)) (-2449 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-4399 (((-575) $) NIL) (((-418 (-575)) $) NIL) ((|#2| $) 144)) (-2802 (($ $ $) 229)) (-1749 (((-700 (-575)) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 160) (((-700 |#2|) (-700 $)) 154) (((-700 |#2|) (-1285 $)) NIL)) (-2308 (($ (-1190 |#2|)) 125) (((-3 $ "failed") (-418 (-1190 |#2|))) NIL)) (-1747 (((-3 $ "failed") $) 214)) (-2446 (((-3 (-418 (-575)) "failed") $) 204)) (-3405 (((-112) $) 199)) (-3100 (((-418 (-575)) $) 202)) (-4422 (((-936)) 96)) (-2813 (($ $ $) 231)) (-3713 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1631 (($) 245)) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 193) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 198)) (-2255 ((|#2| $) 100)) (-1943 (((-1190 |#2|) $) 127)) (-2550 (($ (-1 |#2| |#2|) $) 108)) (-3463 (($ $) 247)) (-2295 (((-1190 |#2|) $) 126)) (-4332 (($ $) 207)) (-2468 (($) 103)) (-1641 (((-429 (-1190 $)) (-1190 $)) 95)) (-1665 (((-429 (-1190 $)) (-1190 $)) 64)) (-2851 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-2665 (($ $) 246)) (-3708 (((-782) $) 226)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 236)) (-4060 ((|#2| (-1285 $)) NIL) ((|#2|) 98)) (-2389 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL) (($ $ (-782)) NIL) (($ $) NIL)) (-2552 (((-1190 |#2|)) 120)) (-3909 (($ $) 255)) (-3774 (($ $) 249)) (-3962 (((-1285 |#2|) $ (-1285 $)) 136) (((-700 |#2|) (-1285 $) (-1285 $)) NIL) (((-1285 |#2|) $) 116) (((-700 |#2|) (-1285 $)) NIL)) (-2615 (((-1285 |#2|) $) NIL) (($ (-1285 |#2|)) NIL) (((-1190 |#2|) $) NIL) (($ (-1190 |#2|)) NIL) (((-904 (-575)) $) 184) (((-904 (-389)) $) 188) (((-171 (-389)) $) 172) (((-171 (-227)) $) 167) (((-547) $) 180)) (-4258 (($ $) 104)) (-2883 (((-873) $) 143) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-418 (-575))) NIL) (($ $) NIL)) (-2551 (((-1190 |#2|) $) 32)) (-3759 (((-782)) 106)) (-4400 (((-112) $ $) 13)) (-1568 (($ $) 259)) (-3852 (($ $) 253)) (-1544 (($ $) 257)) (-3828 (($ $) 251)) (-1803 ((|#2| $) 242)) (-1554 (($ $) 258)) (-3839 (($ $) 252)) (-2705 (($ $) 162)) (-3914 (((-112) $ $) 110)) (-4028 (($ $) 112) (($ $ $) NIL)) (-4016 (($ $ $) 111)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-418 (-575))) 276) (($ $ $) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL))) +(((-166 |#1| |#2|) (-10 -8 (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2883 (|#1| |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3370 ((-2 (|:| -3800 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3708 ((-782) |#1|)) (-15 -2196 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2802 (|#1| |#1| |#1|)) (-15 -4332 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2615 ((-547) |#1|)) (-15 -2615 ((-171 (-227)) |#1|)) (-15 -2615 ((-171 (-389)) |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1631 (|#1|)) (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -1665 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1641 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1830 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -2446 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -3100 ((-418 (-575)) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -3713 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1803 (|#2| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4258 (|#1| |#1|)) (-15 -2468 (|#1|)) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -1704 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -1704 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2308 ((-3 |#1| "failed") (-418 (-1190 |#2|)))) (-15 -2295 ((-1190 |#2|) |#1|)) (-15 -2615 (|#1| (-1190 |#2|))) (-15 -2308 (|#1| (-1190 |#2|))) (-15 -2552 ((-1190 |#2|))) (-15 -1749 ((-700 |#2|) (-1285 |#1|))) (-15 -1749 ((-700 |#2|) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2615 ((-1190 |#2|) |#1|)) (-15 -4060 (|#2|)) (-15 -2615 (|#1| (-1285 |#2|))) (-15 -2615 ((-1285 |#2|) |#1|)) (-15 -3962 ((-700 |#2|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1|)) (-15 -1943 ((-1190 |#2|) |#1|)) (-15 -2551 ((-1190 |#2|) |#1|)) (-15 -4060 (|#2| (-1285 |#1|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -2255 (|#2| |#1|)) (-15 -1447 (|#2| |#1|)) (-15 -4422 ((-936))) (-15 -2883 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3759 ((-782))) (-15 -2883 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 -1747 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4016 (|#1| |#1| |#1|)) (-15 -4400 ((-112) |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) +((-3759 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4422 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-936)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4060 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-2552 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1190 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) +(-10 -8 (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2883 (|#1| |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3370 ((-2 (|:| -3800 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3708 ((-782) |#1|)) (-15 -2196 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2802 (|#1| |#1| |#1|)) (-15 -4332 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2615 ((-547) |#1|)) (-15 -2615 ((-171 (-227)) |#1|)) (-15 -2615 ((-171 (-389)) |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1631 (|#1|)) (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -1665 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1641 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1830 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -2446 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -3100 ((-418 (-575)) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -3713 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1803 (|#2| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4258 (|#1| |#1|)) (-15 -2468 (|#1|)) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -1704 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -1704 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2308 ((-3 |#1| "failed") (-418 (-1190 |#2|)))) (-15 -2295 ((-1190 |#2|) |#1|)) (-15 -2615 (|#1| (-1190 |#2|))) (-15 -2308 (|#1| (-1190 |#2|))) (-15 -2552 ((-1190 |#2|))) (-15 -1749 ((-700 |#2|) (-1285 |#1|))) (-15 -1749 ((-700 |#2|) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2615 ((-1190 |#2|) |#1|)) (-15 -4060 (|#2|)) (-15 -2615 (|#1| (-1285 |#2|))) (-15 -2615 ((-1285 |#2|) |#1|)) (-15 -3962 ((-700 |#2|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1|)) (-15 -1943 ((-1190 |#2|) |#1|)) (-15 -2551 ((-1190 |#2|) |#1|)) (-15 -4060 (|#2| (-1285 |#1|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -2255 (|#2| |#1|)) (-15 -1447 (|#2| |#1|)) (-15 -4422 ((-936))) (-15 -2883 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3759 ((-782))) (-15 -2883 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 -1747 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4016 (|#1| |#1| |#1|)) (-15 -4400 ((-112) |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 105 (-3765 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-1540 (($ $) 106 (-3765 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-3286 (((-112) $) 108 (-3765 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-1389 (((-700 |#1|) (-1285 $)) 53) (((-700 |#1|)) 68)) (-1447 ((|#1| $) 59)) (-3923 (($ $) 234 (|has| |#1| (-1220)))) (-3786 (($ $) 217 (|has| |#1| (-1220)))) (-2243 (((-1207 (-936) (-782)) (-575)) 158 (|has| |#1| (-359)))) (-2597 (((-3 $ "failed") $ $) 20)) (-3535 (((-429 (-1190 $)) (-1190 $)) 248 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-2058 (($ $) 125 (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-2330 (((-429 $) $) 126 (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-2473 (($ $) 247 (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220))))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 251 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-2279 (((-112) $ $) 116 (|has| |#1| (-316)))) (-2415 (((-782)) 99 (|has| |#1| (-378)))) (-3897 (($ $) 233 (|has| |#1| (-1220)))) (-3761 (($ $) 218 (|has| |#1| (-1220)))) (-1521 (($ $) 232 (|has| |#1| (-1220)))) (-3807 (($ $) 219 (|has| |#1| (-1220)))) (-3011 (($) 18 T CONST)) (-2449 (((-3 (-575) "failed") $) 183 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 181 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 178)) (-4399 (((-575) $) 182 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 180 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 179)) (-1385 (($ (-1285 |#1|) (-1285 $)) 55) (($ (-1285 |#1|)) 71)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-359)))) (-2802 (($ $ $) 120 (|has| |#1| (-316)))) (-2746 (((-700 |#1|) $ (-1285 $)) 60) (((-700 |#1|) $) 66)) (-1749 (((-700 (-575)) (-1285 $)) 177 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 176 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 175 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 174) (((-700 |#1|) (-700 $)) 173) (((-700 |#1|) (-1285 $)) 172)) (-2308 (($ (-1190 |#1|)) 169) (((-3 $ "failed") (-418 (-1190 |#1|))) 166 (|has| |#1| (-373)))) (-1747 (((-3 $ "failed") $) 37)) (-2487 ((|#1| $) 259)) (-2446 (((-3 (-418 (-575)) "failed") $) 252 (|has| |#1| (-556)))) (-3405 (((-112) $) 254 (|has| |#1| (-556)))) (-3100 (((-418 (-575)) $) 253 (|has| |#1| (-556)))) (-4422 (((-936)) 61)) (-2079 (($) 102 (|has| |#1| (-378)))) (-2813 (($ $ $) 119 (|has| |#1| (-316)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 114 (|has| |#1| (-316)))) (-1360 (($) 160 (|has| |#1| (-359)))) (-1980 (((-112) $) 161 (|has| |#1| (-359)))) (-4374 (($ $ (-782)) 152 (|has| |#1| (-359))) (($ $) 151 (|has| |#1| (-359)))) (-1336 (((-112) $) 127 (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-3713 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 255 (-12 (|has| |#1| (-1077)) (|has| |#1| (-1220))))) (-1631 (($) 244 (|has| |#1| (-1220)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 267 (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 266 (|has| |#1| (-898 (-389))))) (-2673 (((-936) $) 163 (|has| |#1| (-359))) (((-844 (-936)) $) 149 (|has| |#1| (-359)))) (-1542 (((-112) $) 35)) (-2931 (($ $ (-575)) 246 (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220))))) (-2255 ((|#1| $) 58)) (-2607 (((-3 $ "failed") $) 153 (|has| |#1| (-359)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 123 (|has| |#1| (-316)))) (-1943 (((-1190 |#1|) $) 51 (|has| |#1| (-373)))) (-2550 (($ (-1 |#1| |#1|) $) 268)) (-4084 (((-936) $) 101 (|has| |#1| (-378)))) (-3463 (($ $) 241 (|has| |#1| (-1220)))) (-2295 (((-1190 |#1|) $) 167)) (-3887 (($ (-655 $)) 112 (-3765 (|has| |#1| (-316)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (($ $ $) 111 (-3765 (|has| |#1| (-316)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-2288 (((-1176) $) 10)) (-4332 (($ $) 128 (|has| |#1| (-373)))) (-3474 (($) 154 (|has| |#1| (-359)) CONST)) (-4317 (($ (-936)) 100 (|has| |#1| (-378)))) (-2468 (($) 263)) (-1972 ((|#1| $) 260)) (-3912 (((-1137) $) 11)) (-3659 (($) 171)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 113 (-3765 (|has| |#1| (-316)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-3926 (($ (-655 $)) 110 (-3765 (|has| |#1| (-316)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (($ $ $) 109 (-3765 (|has| |#1| (-316)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) 157 (|has| |#1| (-359)))) (-1641 (((-429 (-1190 $)) (-1190 $)) 250 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-1665 (((-429 (-1190 $)) (-1190 $)) 249 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-2353 (((-429 $) $) 124 (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-316))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 121 (|has| |#1| (-316)))) (-2851 (((-3 $ "failed") $ |#1|) 258 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 104 (-3765 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 115 (|has| |#1| (-316)))) (-2665 (($ $) 242 (|has| |#1| (-1220)))) (-3048 (($ $ (-655 |#1|) (-655 |#1|)) 274 (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) 273 (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) 272 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) 271 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 270 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) 269 (|has| |#1| (-525 (-1194) |#1|)))) (-3708 (((-782) $) 117 (|has| |#1| (-316)))) (-2070 (($ $ |#1|) 275 (|has| |#1| (-295 |#1| |#1|)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 118 (|has| |#1| (-316)))) (-4060 ((|#1| (-1285 $)) 54) ((|#1|) 67)) (-3905 (((-782) $) 162 (|has| |#1| (-359))) (((-3 (-782) "failed") $ $) 150 (|has| |#1| (-359)))) (-2389 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-782)) 135) (($ $ (-655 (-1194)) (-655 (-782))) 141 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) 140 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) 139 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) 137 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-782)) 147 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-237))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3226 (|has| |#1| (-237)) (|has| |#1| (-373))))) (($ $) 145 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-237))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3226 (|has| |#1| (-237)) (|has| |#1| (-373)))))) (-3792 (((-700 |#1|) (-1285 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-373)))) (-2552 (((-1190 |#1|)) 170)) (-1530 (($ $) 231 (|has| |#1| (-1220)))) (-3817 (($ $) 220 (|has| |#1| (-1220)))) (-3500 (($) 159 (|has| |#1| (-359)))) (-3937 (($ $) 230 (|has| |#1| (-1220)))) (-3797 (($ $) 221 (|has| |#1| (-1220)))) (-3909 (($ $) 229 (|has| |#1| (-1220)))) (-3774 (($ $) 222 (|has| |#1| (-1220)))) (-3962 (((-1285 |#1|) $ (-1285 $)) 57) (((-700 |#1|) (-1285 $) (-1285 $)) 56) (((-1285 |#1|) $) 73) (((-700 |#1|) (-1285 $)) 72)) (-2615 (((-1285 |#1|) $) 70) (($ (-1285 |#1|)) 69) (((-1190 |#1|) $) 184) (($ (-1190 |#1|)) 168) (((-904 (-575)) $) 265 (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) 264 (|has| |#1| (-625 (-904 (-389))))) (((-171 (-389)) $) 216 (|has| |#1| (-1039))) (((-171 (-227)) $) 215 (|has| |#1| (-1039))) (((-547) $) 214 (|has| |#1| (-625 (-547))))) (-4258 (($ $) 262)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 156 (-3765 (-3226 (|has| $ (-146)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))) (|has| |#1| (-359))))) (-3502 (($ |#1| |#1|) 261)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44) (($ (-418 (-575))) 98 (-3765 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) 103 (-3765 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-1518 (($ $) 155 (|has| |#1| (-359))) (((-3 $ "failed") $) 50 (-3765 (-3226 (|has| $ (-146)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))) (|has| |#1| (-146))))) (-2551 (((-1190 |#1|) $) 52)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1624 (((-1285 $)) 74)) (-1568 (($ $) 240 (|has| |#1| (-1220)))) (-3852 (($ $) 228 (|has| |#1| (-1220)))) (-1780 (((-112) $ $) 107 (-3765 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-1544 (($ $) 239 (|has| |#1| (-1220)))) (-3828 (($ $) 227 (|has| |#1| (-1220)))) (-1592 (($ $) 238 (|has| |#1| (-1220)))) (-3873 (($ $) 226 (|has| |#1| (-1220)))) (-1803 ((|#1| $) 256 (|has| |#1| (-1220)))) (-2914 (($ $) 237 (|has| |#1| (-1220)))) (-3885 (($ $) 225 (|has| |#1| (-1220)))) (-1583 (($ $) 236 (|has| |#1| (-1220)))) (-3863 (($ $) 224 (|has| |#1| (-1220)))) (-1554 (($ $) 235 (|has| |#1| (-1220)))) (-3839 (($ $) 223 (|has| |#1| (-1220)))) (-2705 (($ $) 257 (|has| |#1| (-1077)))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-782)) 133) (($ $ (-655 (-1194)) (-655 (-782))) 144 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) 143 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) 142 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) 138 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-782)) 148 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-237))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3226 (|has| |#1| (-237)) (|has| |#1| (-373))))) (($ $) 146 (-3765 (-3226 (|has| |#1| (-373)) (|has| |#1| (-237))) (-3226 (|has| |#1| (-373)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3226 (|has| |#1| (-237)) (|has| |#1| (-373)))))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ $) 132 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-418 (-575))) 245 (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220)))) (($ $ $) 243 (|has| |#1| (-1220))) (($ $ (-575)) 129 (|has| |#1| (-373)))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-418 (-575)) $) 131 (|has| |#1| (-373))) (($ $ (-418 (-575))) 130 (|has| |#1| (-373))))) (((-167 |#1|) (-141) (-174)) (T -167)) -((-1941 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3029 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3276 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3503 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2610 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1078)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1221)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1078)) (-4 *3 (-1221)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3424 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-736 |t#1| (-1191 |t#1|)) (-423 |t#1|) (-233 |t#1|) (-349 |t#1|) (-412 |t#1|) (-897 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -3503) (-15 -3029 ($)) (-15 -3276 ($ $)) (-15 -3503 ($ |t#1| |t#1|)) (-15 -1972 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -1941 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -2852 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4460)) (-6 -4460) |%noBranch|) (IF (|has| |t#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1040)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1078)) (-15 -2610 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1221)) (PROGN (-6 (-1221)) (-15 -3433 (|t#1| $)) (IF (|has| |t#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |t#1| (-1078)) (-15 -3015 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3413 ((-112) $)) (-15 -3404 ((-419 (-576)) $)) (-15 -3424 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-925)) (IF (|has| |t#1| (-317)) (-6 (-925)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1221)) ((-95) |has| |#1| (-1221)) ((-102) . T) ((-111 #0# #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3766 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-874)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1040)) ((-626 (-171 (-390))) |has| |#1| (-1040)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-626 #1=(-1191 |#1|)) . T) ((-235 $) -3766 (|has| |#1| (-360)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -3766 (|has| |#1| (-360)) (|has| |#1| (-239))) ((-238) -3766 (|has| |#1| (-360)) (|has| |#1| (-239))) ((-249) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1221)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -3766 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -3766 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -3766 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -3766 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1221)) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -3766 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-658 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-736 |#1| #1#) . T) ((-738) . T) ((-909 $ #3=(-1195)) |has| |#1| (-914 (-1195))) ((-914 #3#) |has| |#1| (-914 (-1195))) ((-916 #3#) |has| |#1| (-914 (-1195))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-925) -12 (|has| |#1| (-317)) (|has| |#1| (-925))) ((-936) -3766 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1020) -12 (|has| |#1| (-1020)) (|has| |#1| (-1221))) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1074 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1074 |#1|) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| |#1| (-360)) ((-1221) |has| |#1| (-1221)) ((-1224) |has| |#1| (-1221)) ((-1236) . T) ((-1240) -3766 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) -((-2354 (((-430 |#2|) |#2|) 67))) -(((-168 |#1| |#2|) (-10 -7 (-15 -2354 ((-430 |#2|) |#2|))) (-317) (-1262 (-171 |#1|))) (T -168)) -((-2354 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) -(-10 -7 (-15 -2354 ((-430 |#2|) |#2|))) -((-3482 (((-1153) (-1153) (-301)) 8)) (-3041 (((-656 (-703 (-290))) (-1177)) 81)) (-3056 (((-703 (-290)) (-1153)) 76))) -(((-169) (-13 (-1236) (-10 -7 (-15 -3482 ((-1153) (-1153) (-301))) (-15 -3056 ((-703 (-290)) (-1153))) (-15 -3041 ((-656 (-703 (-290))) (-1177)))))) (T -169)) -((-3482 (*1 *2 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-301)) (-5 *1 (-169)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) -(-13 (-1236) (-10 -7 (-15 -3482 ((-1153) (-1153) (-301))) (-15 -3056 ((-703 (-290)) (-1153))) (-15 -3041 ((-656 (-703 (-290))) (-1177))))) -((-2551 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) -(((-170 |#1| |#2|) (-10 -7 (-15 -2551 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) -(-10 -7 (-15 -2551 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 34)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-4241 (($ $) NIL (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-4221 (((-112) $) NIL (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-4355 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) NIL)) (-1448 ((|#1| $) NIL)) (-3924 (($ $) NIL (|has| |#1| (-1221)))) (-3787 (($ $) NIL (|has| |#1| (-1221)))) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-2944 (($ $) NIL (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-3986 (((-430 $) $) NIL (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-2474 (($ $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221))))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-317)))) (-2416 (((-783)) NIL (|has| |#1| (-379)))) (-3898 (($ $) NIL (|has| |#1| (-1221)))) (-3762 (($ $) NIL (|has| |#1| (-1221)))) (-1522 (($ $) NIL (|has| |#1| (-1221)))) (-3808 (($ $) NIL (|has| |#1| (-1221)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-1339 (($ (-1286 |#1|) (-1286 $)) NIL) (($ (-1286 |#1|)) NIL)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-2803 (($ $ $) NIL (|has| |#1| (-317)))) (-4342 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2309 (($ (-1191 |#1|)) NIL) (((-3 $ "failed") (-419 (-1191 |#1|))) NIL (|has| |#1| (-374)))) (-1999 (((-3 $ "failed") $) NIL)) (-2488 ((|#1| $) 13)) (-3424 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3413 (((-112) $) NIL (|has| |#1| (-557)))) (-3404 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-4423 (((-937)) NIL)) (-2080 (($) NIL (|has| |#1| (-379)))) (-2814 (($ $ $) NIL (|has| |#1| (-317)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-317)))) (-2013 (($) NIL (|has| |#1| (-360)))) (-2635 (((-112) $) NIL (|has| |#1| (-360)))) (-4188 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-2463 (((-112) $) NIL (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-3015 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1078)) (|has| |#1| (-1221))))) (-1632 (($) NIL (|has| |#1| (-1221)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#1| (-899 (-390))))) (-2927 (((-937) $) NIL (|has| |#1| (-360))) (((-845 (-937)) $) NIL (|has| |#1| (-360)))) (-1439 (((-112) $) 36)) (-3298 (($ $ (-576)) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221))))) (-1941 ((|#1| $) 47)) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-1922 (((-1191 |#1|) $) NIL (|has| |#1| (-374)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-1875 (((-937) $) NIL (|has| |#1| (-379)))) (-3464 (($ $) NIL (|has| |#1| (-1221)))) (-2297 (((-1191 |#1|) $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL (|has| |#1| (-374)))) (-3475 (($) NIL (|has| |#1| (-360)) CONST)) (-4318 (($ (-937)) NIL (|has| |#1| (-379)))) (-3029 (($) NIL)) (-1972 ((|#1| $) 15)) (-3914 (((-1138) $) NIL)) (-3660 (($) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-317)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| |#1| (-360)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-2354 (((-430 $) $) NIL (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-317)))) (-2852 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-2666 (($ $) NIL (|has| |#1| (-1221)))) (-3049 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-2910 (((-783) $) NIL (|has| |#1| (-317)))) (-2071 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-317)))) (-2790 ((|#1| (-1286 $)) NIL) ((|#1|) NIL)) (-4197 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2390 (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-783)) NIL (|has| |#1| (-239)))) (-1430 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-1360 (((-1191 |#1|)) NIL)) (-1532 (($ $) NIL (|has| |#1| (-1221)))) (-3818 (($ $) NIL (|has| |#1| (-1221)))) (-2560 (($) NIL (|has| |#1| (-360)))) (-3938 (($ $) NIL (|has| |#1| (-1221)))) (-3798 (($ $) NIL (|has| |#1| (-1221)))) (-3910 (($ $) NIL (|has| |#1| (-1221)))) (-3775 (($ $) NIL (|has| |#1| (-1221)))) (-3629 (((-1286 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) (-1286 $) (-1286 $)) NIL) (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2616 (((-1286 |#1|) $) NIL) (($ (-1286 |#1|)) NIL) (((-1191 |#1|) $) NIL) (($ (-1191 |#1|)) NIL) (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1040))) (((-171 (-227)) $) NIL (|has| |#1| (-1040))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3276 (($ $) 46)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-360))))) (-3503 (($ |#1| |#1|) 38)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-3148 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1776 (((-1191 |#1|) $) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL)) (-1570 (($ $) NIL (|has| |#1| (-1221)))) (-3853 (($ $) NIL (|has| |#1| (-1221)))) (-4232 (((-112) $ $) NIL (-3766 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-1545 (($ $) NIL (|has| |#1| (-1221)))) (-3829 (($ $) NIL (|has| |#1| (-1221)))) (-1594 (($ $) NIL (|has| |#1| (-1221)))) (-3874 (($ $) NIL (|has| |#1| (-1221)))) (-3433 ((|#1| $) NIL (|has| |#1| (-1221)))) (-2915 (($ $) NIL (|has| |#1| (-1221)))) (-3886 (($ $) NIL (|has| |#1| (-1221)))) (-1584 (($ $) NIL (|has| |#1| (-1221)))) (-3864 (($ $) NIL (|has| |#1| (-1221)))) (-1555 (($ $) NIL (|has| |#1| (-1221)))) (-3840 (($ $) NIL (|has| |#1| (-1221)))) (-2610 (($ $) NIL (|has| |#1| (-1078)))) (-1996 (($) 28 T CONST)) (-2011 (($) 30 T CONST)) (-1813 (((-1177) $) 23 (|has| |#1| (-840))) (((-1177) $ (-112)) 25 (|has| |#1| (-840))) (((-1291) (-834) $) 26 (|has| |#1| (-840))) (((-1291) (-834) $ (-112)) 27 (|has| |#1| (-840)))) (-3431 (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-783)) NIL (|has| |#1| (-239)))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 40)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221)))) (($ $ $) NIL (|has| |#1| (-1221))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) -(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-174)) (T -171)) -NIL -(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) -((-2616 (((-905 |#1|) |#3|) 22))) -(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -2616 ((-905 |#1|) |#3|))) (-1118) (-13 (-626 (-905 |#1|)) (-174)) (-167 |#2|)) (T -172)) -((-2616 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-905 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1118)) (-4 *3 (-167 *5))))) -(-10 -7 (-15 -2616 ((-905 |#1|) |#3|))) -((-2862 (((-112) $ $) NIL)) (-3080 (((-112) $) 9)) (-3068 (((-112) $ (-112)) 11)) (-2310 (($) 13)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3079 (($ $) 14)) (-2884 (((-874) $) 18)) (-3498 (((-112) $) 8)) (-2459 (((-112) $ (-112)) 10)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-173) (-13 (-1118) (-10 -8 (-15 -2310 ($)) (-15 -3498 ((-112) $)) (-15 -3080 ((-112) $)) (-15 -2459 ((-112) $ (-112))) (-15 -3068 ((-112) $ (-112))) (-15 -3079 ($ $))))) (T -173)) -((-2310 (*1 *1) (-5 *1 (-173))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2459 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3068 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3079 (*1 *1 *1) (-5 *1 (-173)))) -(-13 (-1118) (-10 -8 (-15 -2310 ($)) (-15 -3498 ((-112) $)) (-15 -3080 ((-112) $)) (-15 -2459 ((-112) $ (-112))) (-15 -3068 ((-112) $ (-112))) (-15 -3079 ($ $)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-576)) 33)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2255 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2468 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4258 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3502 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2851 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) (-2705 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1077)))) (-1803 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1220)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1077)) (-4 *3 (-1220)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575))))) (-2446 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575)))))) +(-13 (-735 |t#1| (-1190 |t#1|)) (-422 |t#1|) (-232 |t#1|) (-348 |t#1|) (-411 |t#1|) (-896 |t#1|) (-387 |t#1|) (-174) (-10 -8 (-6 -3502) (-15 -2468 ($)) (-15 -4258 ($ $)) (-15 -3502 ($ |t#1| |t#1|)) (-15 -1972 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -2255 (|t#1| $)) (IF (|has| |t#1| (-567)) (PROGN (-6 (-567)) (-15 -2851 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-316)) (-6 (-316)) |%noBranch|) (IF (|has| |t#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |t#1| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |t#1| (-373)) (-6 (-373)) |%noBranch|) (IF (|has| |t#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-6 (-625 (-171 (-227)))) (-6 (-625 (-171 (-389))))) |%noBranch|) (IF (|has| |t#1| (-1077)) (-15 -2705 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1220)) (PROGN (-6 (-1220)) (-15 -1803 (|t#1| $)) (IF (|has| |t#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |t#1| (-1077)) (-15 -3713 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3405 ((-112) $)) (-15 -3100 ((-418 (-575)) $)) (-15 -2446 ((-3 (-418 (-575)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-924)) (IF (|has| |t#1| (-316)) (-6 (-924)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-38 |#1|) . T) ((-38 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-35) |has| |#1| (-1220)) ((-95) |has| |#1| (-1220)) ((-102) . T) ((-111 #0# #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3765 (|has| |#1| (-359)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-627 #0#) -3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-359)) (|has| |#1| (-373))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-624 (-873)) . T) ((-174) . T) ((-625 (-171 (-227))) |has| |#1| (-1039)) ((-625 (-171 (-389))) |has| |#1| (-1039)) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-625 (-904 (-389))) |has| |#1| (-625 (-904 (-389)))) ((-625 (-904 (-575))) |has| |#1| (-625 (-904 (-575)))) ((-625 #1=(-1190 |#1|)) . T) ((-234 $) -3765 (|has| |#1| (-359)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -3765 (|has| |#1| (-359)) (|has| |#1| (-238))) ((-237) -3765 (|has| |#1| (-359)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-271 |#1|) . T) ((-248) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-293) |has| |#1| (-1220)) ((-295 |#1| $) |has| |#1| (-295 |#1| |#1|)) ((-299) -3765 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-316) -3765 (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-318 |#1|) |has| |#1| (-318 |#1|)) ((-373) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-413) |has| |#1| (-359)) ((-378) -3765 (|has| |#1| (-378)) (|has| |#1| (-359))) ((-359) |has| |#1| (-359)) ((-380 |#1| #1#) . T) ((-420 |#1| #1#) . T) ((-348 |#1|) . T) ((-387 |#1|) . T) ((-411 |#1|) . T) ((-422 |#1|) . T) ((-463) -3765 (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-504) |has| |#1| (-1220)) ((-525 (-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((-525 |#1| |#1|) |has| |#1| (-318 |#1|)) ((-567) -3765 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-657 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-659 #2=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-651 |#1|) . T) ((-651 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-650 #2#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-728 |#1|) . T) ((-728 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-735 |#1| #1#) . T) ((-737) . T) ((-908 $ #3=(-1194)) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-915 #3#) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-898 (-389)) |has| |#1| (-898 (-389))) ((-898 (-575)) |has| |#1| (-898 (-575))) ((-896 |#1|) . T) ((-924) -12 (|has| |#1| (-316)) (|has| |#1| (-924))) ((-935) -3765 (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-1019) -12 (|has| |#1| (-1019)) (|has| |#1| (-1220))) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1073 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| |#1| (-359)) ((-1220) |has| |#1| (-1220)) ((-1223) |has| |#1| (-1220)) ((-1235) . T) ((-1239) -3765 (|has| |#1| (-359)) (|has| |#1| (-373)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) +((-2353 (((-429 |#2|) |#2|) 67))) +(((-168 |#1| |#2|) (-10 -7 (-15 -2353 ((-429 |#2|) |#2|))) (-316) (-1261 (-171 |#1|))) (T -168)) +((-2353 (*1 *2 *3) (-12 (-4 *4 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1261 (-171 *4)))))) +(-10 -7 (-15 -2353 ((-429 |#2|) |#2|))) +((-3481 (((-1152) (-1152) (-300)) 8)) (-4401 (((-655 (-702 (-289))) (-1176)) 81)) (-3233 (((-702 (-289)) (-1152)) 76))) +(((-169) (-13 (-1235) (-10 -7 (-15 -3481 ((-1152) (-1152) (-300))) (-15 -3233 ((-702 (-289)) (-1152))) (-15 -4401 ((-655 (-702 (-289))) (-1176)))))) (T -169)) +((-3481 (*1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-300)) (-5 *1 (-169)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-702 (-289))) (-5 *1 (-169)))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-702 (-289)))) (-5 *1 (-169))))) +(-13 (-1235) (-10 -7 (-15 -3481 ((-1152) (-1152) (-300))) (-15 -3233 ((-702 (-289)) (-1152))) (-15 -4401 ((-655 (-702 (-289))) (-1176))))) +((-2550 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) +(((-170 |#1| |#2|) (-10 -7 (-15 -2550 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -2550 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 34)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-1540 (($ $) NIL (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-3286 (((-112) $) NIL (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-1389 (((-700 |#1|) (-1285 $)) NIL) (((-700 |#1|)) NIL)) (-1447 ((|#1| $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-1220)))) (-3786 (($ $) NIL (|has| |#1| (-1220)))) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| |#1| (-359)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-2058 (($ $) NIL (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-2330 (((-429 $) $) NIL (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-2473 (($ $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220))))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-2279 (((-112) $ $) NIL (|has| |#1| (-316)))) (-2415 (((-782)) NIL (|has| |#1| (-378)))) (-3897 (($ $) NIL (|has| |#1| (-1220)))) (-3761 (($ $) NIL (|has| |#1| (-1220)))) (-1521 (($ $) NIL (|has| |#1| (-1220)))) (-3807 (($ $) NIL (|has| |#1| (-1220)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-1385 (($ (-1285 |#1|) (-1285 $)) NIL) (($ (-1285 |#1|)) NIL)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-359)))) (-2802 (($ $ $) NIL (|has| |#1| (-316)))) (-2746 (((-700 |#1|) $ (-1285 $)) NIL) (((-700 |#1|) $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-2308 (($ (-1190 |#1|)) NIL) (((-3 $ "failed") (-418 (-1190 |#1|))) NIL (|has| |#1| (-373)))) (-1747 (((-3 $ "failed") $) NIL)) (-2487 ((|#1| $) 13)) (-2446 (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-556)))) (-3405 (((-112) $) NIL (|has| |#1| (-556)))) (-3100 (((-418 (-575)) $) NIL (|has| |#1| (-556)))) (-4422 (((-936)) NIL)) (-2079 (($) NIL (|has| |#1| (-378)))) (-2813 (($ $ $) NIL (|has| |#1| (-316)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-316)))) (-1360 (($) NIL (|has| |#1| (-359)))) (-1980 (((-112) $) NIL (|has| |#1| (-359)))) (-4374 (($ $ (-782)) NIL (|has| |#1| (-359))) (($ $) NIL (|has| |#1| (-359)))) (-1336 (((-112) $) NIL (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-3713 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1077)) (|has| |#1| (-1220))))) (-1631 (($) NIL (|has| |#1| (-1220)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| |#1| (-898 (-389))))) (-2673 (((-936) $) NIL (|has| |#1| (-359))) (((-844 (-936)) $) NIL (|has| |#1| (-359)))) (-1542 (((-112) $) 36)) (-2931 (($ $ (-575)) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220))))) (-2255 ((|#1| $) 47)) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-316)))) (-1943 (((-1190 |#1|) $) NIL (|has| |#1| (-373)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4084 (((-936) $) NIL (|has| |#1| (-378)))) (-3463 (($ $) NIL (|has| |#1| (-1220)))) (-2295 (((-1190 |#1|) $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-316))) (($ $ $) NIL (|has| |#1| (-316)))) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-3474 (($) NIL (|has| |#1| (-359)) CONST)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-2468 (($) NIL)) (-1972 ((|#1| $) 15)) (-3912 (((-1137) $) NIL)) (-3659 (($) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-316)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-316))) (($ $ $) NIL (|has| |#1| (-316)))) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| |#1| (-359)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-2353 (((-429 $) $) NIL (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-316))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-316)))) (-2851 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 48 (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-316)))) (-2665 (($ $) NIL (|has| |#1| (-1220)))) (-3048 (($ $ (-655 |#1|) (-655 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-525 (-1194) |#1|)))) (-3708 (((-782) $) NIL (|has| |#1| (-316)))) (-2070 (($ $ |#1|) NIL (|has| |#1| (-295 |#1| |#1|)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-316)))) (-4060 ((|#1| (-1285 $)) NIL) ((|#1|) NIL)) (-3905 (((-782) $) NIL (|has| |#1| (-359))) (((-3 (-782) "failed") $ $) NIL (|has| |#1| (-359)))) (-2389 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-782)) NIL (-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (|has| |#1| (-237)))) (($ $) NIL (-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (|has| |#1| (-237))))) (-3792 (((-700 |#1|) (-1285 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-373)))) (-2552 (((-1190 |#1|)) NIL)) (-1530 (($ $) NIL (|has| |#1| (-1220)))) (-3817 (($ $) NIL (|has| |#1| (-1220)))) (-3500 (($) NIL (|has| |#1| (-359)))) (-3937 (($ $) NIL (|has| |#1| (-1220)))) (-3797 (($ $) NIL (|has| |#1| (-1220)))) (-3909 (($ $) NIL (|has| |#1| (-1220)))) (-3774 (($ $) NIL (|has| |#1| (-1220)))) (-3962 (((-1285 |#1|) $ (-1285 $)) NIL) (((-700 |#1|) (-1285 $) (-1285 $)) NIL) (((-1285 |#1|) $) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-2615 (((-1285 |#1|) $) NIL) (($ (-1285 |#1|)) NIL) (((-1190 |#1|) $) NIL) (($ (-1190 |#1|)) NIL) (((-904 (-575)) $) NIL (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| |#1| (-625 (-904 (-389))))) (((-171 (-389)) $) NIL (|has| |#1| (-1039))) (((-171 (-227)) $) NIL (|has| |#1| (-1039))) (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-4258 (($ $) 46)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-359))))) (-3502 (($ |#1| |#1|) 38)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) 37) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-1518 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-2551 (((-1190 |#1|) $) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL)) (-1568 (($ $) NIL (|has| |#1| (-1220)))) (-3852 (($ $) NIL (|has| |#1| (-1220)))) (-1780 (((-112) $ $) NIL (-3765 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-1544 (($ $) NIL (|has| |#1| (-1220)))) (-3828 (($ $) NIL (|has| |#1| (-1220)))) (-1592 (($ $) NIL (|has| |#1| (-1220)))) (-3873 (($ $) NIL (|has| |#1| (-1220)))) (-1803 ((|#1| $) NIL (|has| |#1| (-1220)))) (-2914 (($ $) NIL (|has| |#1| (-1220)))) (-3885 (($ $) NIL (|has| |#1| (-1220)))) (-1583 (($ $) NIL (|has| |#1| (-1220)))) (-3863 (($ $) NIL (|has| |#1| (-1220)))) (-1554 (($ $) NIL (|has| |#1| (-1220)))) (-3839 (($ $) NIL (|has| |#1| (-1220)))) (-2705 (($ $) NIL (|has| |#1| (-1077)))) (-1996 (($) 28 T CONST)) (-2009 (($) 30 T CONST)) (-4196 (((-1176) $) 23 (|has| |#1| (-839))) (((-1176) $ (-112)) 25 (|has| |#1| (-839))) (((-1290) (-833) $) 26 (|has| |#1| (-839))) (((-1290) (-833) $ (-112)) 27 (|has| |#1| (-839)))) (-3430 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-782)) NIL (-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (|has| |#1| (-237)))) (($ $) NIL (-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (|has| |#1| (-237))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 40)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-418 (-575))) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220)))) (($ $ $) NIL (|has| |#1| (-1220))) (($ $ (-575)) NIL (|has| |#1| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-418 (-575)) $) NIL (|has| |#1| (-373))) (($ $ (-418 (-575))) NIL (|has| |#1| (-373))))) +(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|))) (-174)) (T -171)) +NIL +(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|))) +((-2615 (((-904 |#1|) |#3|) 22))) +(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -2615 ((-904 |#1|) |#3|))) (-1117) (-13 (-625 (-904 |#1|)) (-174)) (-167 |#2|)) (T -172)) +((-2615 (*1 *2 *3) (-12 (-4 *5 (-13 (-625 *2) (-174))) (-5 *2 (-904 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1117)) (-4 *3 (-167 *5))))) +(-10 -7 (-15 -2615 ((-904 |#1|) |#3|))) +((-2861 (((-112) $ $) NIL)) (-2603 (((-112) $) 9)) (-4160 (((-112) $ (-112)) 11)) (-2309 (($) 13)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3078 (($ $) 14)) (-2883 (((-873) $) 18)) (-1977 (((-112) $) 8)) (-2458 (((-112) $ (-112)) 10)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-173) (-13 (-1117) (-10 -8 (-15 -2309 ($)) (-15 -1977 ((-112) $)) (-15 -2603 ((-112) $)) (-15 -2458 ((-112) $ (-112))) (-15 -4160 ((-112) $ (-112))) (-15 -3078 ($ $))))) (T -173)) +((-2309 (*1 *1) (-5 *1 (-173))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2458 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-4160 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3078 (*1 *1 *1) (-5 *1 (-173)))) +(-13 (-1117) (-10 -8 (-15 -2309 ($)) (-15 -1977 ((-112) $)) (-15 -2603 ((-112) $)) (-15 -2458 ((-112) $ (-112))) (-15 -4160 ((-112) $ (-112))) (-15 -3078 ($ $)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-575)) 33)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) (((-174) (-141)) (T -174)) NIL -(-13 (-1067) (-111 $ $) (-10 -7 (-6 (-4463 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-1561 (($ $) 6))) +(-13 (-1066) (-111 $ $) (-10 -7 (-6 (-4462 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-3504 (($ $) 6))) (((-175) (-141)) (T -175)) -((-1561 (*1 *1 *1) (-4 *1 (-175)))) -(-13 (-10 -8 (-15 -1561 ($ $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1905 ((|#1| $) 81)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-2803 (($ $ $) NIL)) (-3136 (($ $) 21)) (-3178 (($ |#1| (-1175 |#1|)) 50)) (-1999 (((-3 $ "failed") $) 123)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-3146 (((-1175 |#1|) $) 88)) (-3167 (((-1175 |#1|) $) 85)) (-3157 (((-1175 |#1|) $) 86)) (-1439 (((-112) $) NIL)) (-3103 (((-1175 |#1|) $) 94)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3888 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2354 (((-430 $) $) NIL)) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL)) (-2904 (($ $ (-576)) 97)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-3091 (((-1175 |#1|) $) 95)) (-3114 (((-1175 (-419 |#1|)) $) 14)) (-3536 (($ (-419 |#1|)) 17) (($ |#1| (-1175 |#1|) (-1175 |#1|)) 40)) (-1346 (($ $) 99)) (-2884 (((-874) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-1871 (((-783)) 69 T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-3124 (((-1175 (-419 |#1|)) $) 20)) (-1996 (($) 27 T CONST)) (-2011 (($) 30 T CONST)) (-3915 (((-112) $ $) 37)) (-4039 (($ $ $) 121)) (-4029 (($ $) 112) (($ $ $) 109)) (-4017 (($ $ $) 107)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -3536 ($ (-419 |#1|))) (-15 -3536 ($ |#1| (-1175 |#1|) (-1175 |#1|))) (-15 -3178 ($ |#1| (-1175 |#1|))) (-15 -3167 ((-1175 |#1|) $)) (-15 -3157 ((-1175 |#1|) $)) (-15 -3146 ((-1175 |#1|) $)) (-15 -1905 (|#1| $)) (-15 -3136 ($ $)) (-15 -3124 ((-1175 (-419 |#1|)) $)) (-15 -3114 ((-1175 (-419 |#1|)) $)) (-15 -3103 ((-1175 |#1|) $)) (-15 -3091 ((-1175 |#1|) $)) (-15 -2904 ($ $ (-576))) (-15 -1346 ($ $)))) (-317)) (T -176)) -((-3536 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-3536 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-3178 (*1 *1 *2 *3) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1905 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-3136 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2904 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1346 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) -(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -3536 ($ (-419 |#1|))) (-15 -3536 ($ |#1| (-1175 |#1|) (-1175 |#1|))) (-15 -3178 ($ |#1| (-1175 |#1|))) (-15 -3167 ((-1175 |#1|) $)) (-15 -3157 ((-1175 |#1|) $)) (-15 -3146 ((-1175 |#1|) $)) (-15 -1905 (|#1| $)) (-15 -3136 ($ $)) (-15 -3124 ((-1175 (-419 |#1|)) $)) (-15 -3114 ((-1175 (-419 |#1|)) $)) (-15 -3103 ((-1175 |#1|) $)) (-15 -3091 ((-1175 |#1|) $)) (-15 -2904 ($ $ (-576))) (-15 -1346 ($ $)))) -((-3190 (($ (-109) $) 15)) (-3603 (((-703 (-109)) (-518) $) 14)) (-2884 (((-874) $) 18)) (-3200 (((-656 (-109)) $) 8))) -(((-177) (-13 (-625 (-874)) (-10 -8 (-15 -3200 ((-656 (-109)) $)) (-15 -3190 ($ (-109) $)) (-15 -3603 ((-703 (-109)) (-518) $))))) (T -177)) -((-3200 (*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))) (-3190 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-3603 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177))))) -(-13 (-625 (-874)) (-10 -8 (-15 -3200 ((-656 (-109)) $)) (-15 -3190 ($ (-109) $)) (-15 -3603 ((-703 (-109)) (-518) $)))) -((-3339 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 38)) (-3246 (((-959 |#1|) (-959 |#1|)) 22)) (-3300 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 34)) (-3222 (((-959 |#1|) (-959 |#1|)) 20)) (-3281 (((-959 |#1|) (-959 |#1|)) 28)) (-3268 (((-959 |#1|) (-959 |#1|)) 27)) (-3256 (((-959 |#1|) (-959 |#1|)) 26)) (-3310 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 35)) (-3290 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 33)) (-3450 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 32)) (-3234 (((-959 |#1|) (-959 |#1|)) 21)) (-3349 (((-1 (-959 |#1|) (-959 |#1|)) |#1| |#1|) 41)) (-3211 (((-959 |#1|) (-959 |#1|)) 8)) (-3329 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 37)) (-3319 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 36))) -(((-178 |#1|) (-10 -7 (-15 -3211 ((-959 |#1|) (-959 |#1|))) (-15 -3222 ((-959 |#1|) (-959 |#1|))) (-15 -3234 ((-959 |#1|) (-959 |#1|))) (-15 -3246 ((-959 |#1|) (-959 |#1|))) (-15 -3256 ((-959 |#1|) (-959 |#1|))) (-15 -3268 ((-959 |#1|) (-959 |#1|))) (-15 -3281 ((-959 |#1|) (-959 |#1|))) (-15 -3450 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3290 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3300 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3310 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3319 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3329 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3339 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3349 ((-1 (-959 |#1|) (-959 |#1|)) |#1| |#1|))) (-13 (-374) (-1221) (-1020))) (T -178)) -((-3349 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-3339 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-3329 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-3319 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-3310 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-3300 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-3290 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-3450 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-3256 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-3246 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-3234 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-3222 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -3211 ((-959 |#1|) (-959 |#1|))) (-15 -3222 ((-959 |#1|) (-959 |#1|))) (-15 -3234 ((-959 |#1|) (-959 |#1|))) (-15 -3246 ((-959 |#1|) (-959 |#1|))) (-15 -3256 ((-959 |#1|) (-959 |#1|))) (-15 -3268 ((-959 |#1|) (-959 |#1|))) (-15 -3281 ((-959 |#1|) (-959 |#1|))) (-15 -3450 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3290 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3300 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3310 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3319 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3329 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3339 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3349 ((-1 (-959 |#1|) (-959 |#1|)) |#1| |#1|))) -((-1776 ((|#2| |#3|) 28))) -(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -1776 (|#2| |#3|))) (-174) (-1262 |#1|) (-736 |#1| |#2|)) (T -179)) -((-1776 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1262 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-736 *4 *2))))) -(-10 -7 (-15 -1776 (|#2| |#3|))) -((-1606 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 44 (|has| (-968 |#2|) (-899 |#1|))))) -(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-968 |#2|) (-899 |#1|)) (-15 -1606 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) |%noBranch|)) (-1118) (-13 (-899 |#1|) (-174)) (-167 |#2|)) (T -180)) -((-1606 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-4 *3 (-167 *6)) (-4 (-968 *6) (-899 *5)) (-4 *6 (-13 (-899 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) -(-10 -7 (IF (|has| (-968 |#2|) (-899 |#1|)) (-15 -1606 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) |%noBranch|)) -((-3368 (((-656 |#1|) (-656 |#1|) |#1|) 41)) (-3359 (((-656 |#1|) |#1| (-656 |#1|)) 20)) (-4430 (((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|)) 36) ((|#1| (-656 |#1|) (-656 |#1|)) 32))) -(((-181 |#1|) (-10 -7 (-15 -3359 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -4430 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -4430 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -3368 ((-656 |#1|) (-656 |#1|) |#1|))) (-317)) (T -181)) -((-3368 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-4430 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-4430 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-3359 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(-10 -7 (-15 -3359 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -4430 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -4430 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -3368 ((-656 |#1|) (-656 |#1|) |#1|))) -((-2862 (((-112) $ $) NIL)) (-2940 (((-1235) $) 13)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3830 (((-1153) $) 10)) (-2884 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-182) (-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $)) (-15 -2940 ((-1235) $))))) (T -182)) -((-3830 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-182)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-182))))) -(-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $)) (-15 -2940 ((-1235) $)))) -((-2206 (((-2 (|:| |start| |#2|) (|:| -4319 (-430 |#2|))) |#2|) 66)) (-2198 ((|#1| |#1|) 58)) (-2188 (((-171 |#1|) |#2|) 93)) (-2177 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-3415 ((|#2| |#2|) 91)) (-3406 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-1941 ((|#1| |#2|) 117)) (-3397 ((|#2| |#2|) 130)) (-2354 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-3388 (((-656 (-2 (|:| -4319 (-656 |#2|)) (|:| -3085 |#1|))) |#2| |#2|) 151) (((-656 (-2 (|:| -4319 (-656 |#2|)) (|:| -3085 |#1|))) |#2| |#2| (-112)) 81)) (-3378 (((-656 (-171 |#1|)) |#2| |#1|) 42) (((-656 (-171 |#1|)) |#2|) 43))) -(((-183 |#1| |#2|) (-10 -7 (-15 -3378 ((-656 (-171 |#1|)) |#2|)) (-15 -3378 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -3388 ((-656 (-2 (|:| -4319 (-656 |#2|)) (|:| -3085 |#1|))) |#2| |#2| (-112))) (-15 -3388 ((-656 (-2 (|:| -4319 (-656 |#2|)) (|:| -3085 |#1|))) |#2| |#2|)) (-15 -2354 ((-430 |#2|) |#2| |#1| (-112))) (-15 -2354 ((-430 |#2|) |#2| |#1|)) (-15 -2354 ((-430 |#2|) |#2|)) (-15 -3397 (|#2| |#2|)) (-15 -1941 (|#1| |#2|)) (-15 -3406 ((-430 |#2|) |#2| |#1| (-112))) (-15 -3406 ((-430 |#2|) |#2| |#1|)) (-15 -3415 (|#2| |#2|)) (-15 -2177 (|#1| |#2| |#1|)) (-15 -2177 (|#1| |#2|)) (-15 -2188 ((-171 |#1|) |#2|)) (-15 -2198 (|#1| |#1|)) (-15 -2206 ((-2 (|:| |start| |#2|) (|:| -4319 (-430 |#2|))) |#2|))) (-13 (-374) (-860)) (-1262 (-171 |#1|))) (T -183)) -((-2206 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-2 (|:| |start| *3) (|:| -4319 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-2198 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-2188 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1262 *2)))) (-2177 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-2177 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-3415 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1262 (-171 *3))))) (-3406 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1941 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-3397 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1262 (-171 *3))))) (-2354 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-2354 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-2354 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-3388 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -4319 (-656 *3)) (|:| -3085 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-3388 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -4319 (-656 *3)) (|:| -3085 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1262 (-171 *5))))) (-3378 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-3378 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) -(-10 -7 (-15 -3378 ((-656 (-171 |#1|)) |#2|)) (-15 -3378 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -3388 ((-656 (-2 (|:| -4319 (-656 |#2|)) (|:| -3085 |#1|))) |#2| |#2| (-112))) (-15 -3388 ((-656 (-2 (|:| -4319 (-656 |#2|)) (|:| -3085 |#1|))) |#2| |#2|)) (-15 -2354 ((-430 |#2|) |#2| |#1| (-112))) (-15 -2354 ((-430 |#2|) |#2| |#1|)) (-15 -2354 ((-430 |#2|) |#2|)) (-15 -3397 (|#2| |#2|)) (-15 -1941 (|#1| |#2|)) (-15 -3406 ((-430 |#2|) |#2| |#1| (-112))) (-15 -3406 ((-430 |#2|) |#2| |#1|)) (-15 -3415 (|#2| |#2|)) (-15 -2177 (|#1| |#2| |#1|)) (-15 -2177 (|#1| |#2|)) (-15 -2188 ((-171 |#1|) |#2|)) (-15 -2198 (|#1| |#1|)) (-15 -2206 ((-2 (|:| |start| |#2|) (|:| -4319 (-430 |#2|))) |#2|))) -((-2217 (((-3 |#2| "failed") |#2|) 16)) (-2227 (((-783) |#2|) 18)) (-2238 ((|#2| |#2| |#2|) 20))) -(((-184 |#1| |#2|) (-10 -7 (-15 -2217 ((-3 |#2| "failed") |#2|)) (-15 -2227 ((-783) |#2|)) (-15 -2238 (|#2| |#2| |#2|))) (-1236) (-686 |#1|)) (T -184)) -((-2238 (*1 *2 *2 *2) (-12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))) (-2227 (*1 *2 *3) (-12 (-4 *4 (-1236)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) (-4 *3 (-686 *4)))) (-2217 (*1 *2 *2) (|partial| -12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) -(-10 -7 (-15 -2217 ((-3 |#2| "failed") |#2|)) (-15 -2227 ((-783) |#2|)) (-15 -2238 (|#2| |#2| |#2|))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3744 ((|#1| $) 7)) (-2884 (((-874) $) 14)) (-3722 (((-112) $ $) NIL)) (-4224 (((-656 (-1200)) $) 10)) (-3915 (((-112) $ $) 12))) -(((-185 |#1|) (-13 (-1118) (-10 -8 (-15 -3744 (|#1| $)) (-15 -4224 ((-656 (-1200)) $)))) (-187)) (T -185)) -((-3744 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(-13 (-1118) (-10 -8 (-15 -3744 (|#1| $)) (-15 -4224 ((-656 (-1200)) $)))) -((-3023 (((-656 (-877)) $) 16)) (-1560 (((-188) $) 8)) (-2261 (((-656 (-112)) $) 13)) (-2040 (((-55) $) 10))) -(((-186 |#1|) (-10 -8 (-15 -3023 ((-656 (-877)) |#1|)) (-15 -2261 ((-656 (-112)) |#1|)) (-15 -1560 ((-188) |#1|)) (-15 -2040 ((-55) |#1|))) (-187)) (T -186)) -NIL -(-10 -8 (-15 -3023 ((-656 (-877)) |#1|)) (-15 -2261 ((-656 (-112)) |#1|)) (-15 -1560 ((-188) |#1|)) (-15 -2040 ((-55) |#1|))) -((-2862 (((-112) $ $) 7)) (-3023 (((-656 (-877)) $) 19)) (-1778 (((-518) $) 16)) (-3733 (((-1177) $) 10)) (-1560 (((-188) $) 21)) (-3657 (((-112) $ (-518)) 14)) (-3914 (((-1138) $) 11)) (-2261 (((-656 (-112)) $) 20)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2040 (((-55) $) 15)) (-3915 (((-112) $ $) 6))) +((-3504 (*1 *1 *1) (-4 *1 (-175)))) +(-13 (-10 -8 (-15 -3504 ($ $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3127 ((|#1| $) 81)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-2802 (($ $ $) NIL)) (-2858 (($ $) 21)) (-1435 (($ |#1| (-1174 |#1|)) 50)) (-1747 (((-3 $ "failed") $) 123)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-1321 (((-1174 |#1|) $) 88)) (-2907 (((-1174 |#1|) $) 85)) (-3138 (((-1174 |#1|) $) 86)) (-1542 (((-112) $) NIL)) (-3107 (((-1174 |#1|) $) 94)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3887 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2353 (((-429 $) $) NIL)) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL)) (-4276 (($ $ (-575)) 97)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-4249 (((-1174 |#1|) $) 95)) (-3020 (((-1174 (-418 |#1|)) $) 14)) (-4349 (($ (-418 |#1|)) 17) (($ |#1| (-1174 |#1|) (-1174 |#1|)) 40)) (-2972 (($ $) 99)) (-2883 (((-873) $) 139) (($ (-575)) 53) (($ |#1|) 54) (($ (-418 |#1|)) 38) (($ (-418 (-575))) NIL) (($ $) NIL)) (-3759 (((-782)) 69 T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-3228 (((-1174 (-418 |#1|)) $) 20)) (-1996 (($) 27 T CONST)) (-2009 (($) 30 T CONST)) (-3914 (((-112) $ $) 37)) (-4038 (($ $ $) 121)) (-4028 (($ $) 112) (($ $ $) 109)) (-4016 (($ $ $) 107)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-418 |#1|) $) 117) (($ $ (-418 |#1|)) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL))) +(((-176 |#1|) (-13 (-38 |#1|) (-38 (-418 |#1|)) (-373) (-10 -8 (-15 -4349 ($ (-418 |#1|))) (-15 -4349 ($ |#1| (-1174 |#1|) (-1174 |#1|))) (-15 -1435 ($ |#1| (-1174 |#1|))) (-15 -2907 ((-1174 |#1|) $)) (-15 -3138 ((-1174 |#1|) $)) (-15 -1321 ((-1174 |#1|) $)) (-15 -3127 (|#1| $)) (-15 -2858 ($ $)) (-15 -3228 ((-1174 (-418 |#1|)) $)) (-15 -3020 ((-1174 (-418 |#1|)) $)) (-15 -3107 ((-1174 |#1|) $)) (-15 -4249 ((-1174 |#1|) $)) (-15 -4276 ($ $ (-575))) (-15 -2972 ($ $)))) (-316)) (T -176)) +((-4349 (*1 *1 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-316)) (-5 *1 (-176 *3)))) (-4349 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-316)) (-5 *1 (-176 *2)))) (-1435 (*1 *1 *2 *3) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-316)) (-5 *1 (-176 *2)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-3127 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316)))) (-2858 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1174 (-418 *3))) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-1174 (-418 *3))) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-4249 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-4276 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-2972 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316))))) +(-13 (-38 |#1|) (-38 (-418 |#1|)) (-373) (-10 -8 (-15 -4349 ($ (-418 |#1|))) (-15 -4349 ($ |#1| (-1174 |#1|) (-1174 |#1|))) (-15 -1435 ($ |#1| (-1174 |#1|))) (-15 -2907 ((-1174 |#1|) $)) (-15 -3138 ((-1174 |#1|) $)) (-15 -1321 ((-1174 |#1|) $)) (-15 -3127 (|#1| $)) (-15 -2858 ($ $)) (-15 -3228 ((-1174 (-418 |#1|)) $)) (-15 -3020 ((-1174 (-418 |#1|)) $)) (-15 -3107 ((-1174 |#1|) $)) (-15 -4249 ((-1174 |#1|) $)) (-15 -4276 ($ $ (-575))) (-15 -2972 ($ $)))) +((-2731 (($ (-109) $) 15)) (-2338 (((-702 (-109)) (-517) $) 14)) (-2883 (((-873) $) 18)) (-1347 (((-655 (-109)) $) 8))) +(((-177) (-13 (-624 (-873)) (-10 -8 (-15 -1347 ((-655 (-109)) $)) (-15 -2731 ($ (-109) $)) (-15 -2338 ((-702 (-109)) (-517) $))))) (T -177)) +((-1347 (*1 *2 *1) (-12 (-5 *2 (-655 (-109))) (-5 *1 (-177)))) (-2731 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2338 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-109))) (-5 *1 (-177))))) +(-13 (-624 (-873)) (-10 -8 (-15 -1347 ((-655 (-109)) $)) (-15 -2731 ($ (-109) $)) (-15 -2338 ((-702 (-109)) (-517) $)))) +((-1328 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 38)) (-2112 (((-958 |#1|) (-958 |#1|)) 22)) (-1829 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 34)) (-1817 (((-958 |#1|) (-958 |#1|)) 20)) (-3609 (((-958 |#1|) (-958 |#1|)) 28)) (-2744 (((-958 |#1|) (-958 |#1|)) 27)) (-3804 (((-958 |#1|) (-958 |#1|)) 26)) (-4407 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 35)) (-3390 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 33)) (-4106 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 32)) (-1555 (((-958 |#1|) (-958 |#1|)) 21)) (-3080 (((-1 (-958 |#1|) (-958 |#1|)) |#1| |#1|) 41)) (-3210 (((-958 |#1|) (-958 |#1|)) 8)) (-2773 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 37)) (-3009 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 36))) +(((-178 |#1|) (-10 -7 (-15 -3210 ((-958 |#1|) (-958 |#1|))) (-15 -1817 ((-958 |#1|) (-958 |#1|))) (-15 -1555 ((-958 |#1|) (-958 |#1|))) (-15 -2112 ((-958 |#1|) (-958 |#1|))) (-15 -3804 ((-958 |#1|) (-958 |#1|))) (-15 -2744 ((-958 |#1|) (-958 |#1|))) (-15 -3609 ((-958 |#1|) (-958 |#1|))) (-15 -4106 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3390 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -1829 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -4407 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3009 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -2773 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -1328 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3080 ((-1 (-958 |#1|) (-958 |#1|)) |#1| |#1|))) (-13 (-373) (-1220) (-1019))) (T -178)) +((-3080 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-1328 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-2773 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-3009 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-4407 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-1829 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-3390 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-4106 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-3609 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-2112 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -3210 ((-958 |#1|) (-958 |#1|))) (-15 -1817 ((-958 |#1|) (-958 |#1|))) (-15 -1555 ((-958 |#1|) (-958 |#1|))) (-15 -2112 ((-958 |#1|) (-958 |#1|))) (-15 -3804 ((-958 |#1|) (-958 |#1|))) (-15 -2744 ((-958 |#1|) (-958 |#1|))) (-15 -3609 ((-958 |#1|) (-958 |#1|))) (-15 -4106 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3390 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -1829 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -4407 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3009 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -2773 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -1328 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3080 ((-1 (-958 |#1|) (-958 |#1|)) |#1| |#1|))) +((-2551 ((|#2| |#3|) 28))) +(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2551 (|#2| |#3|))) (-174) (-1261 |#1|) (-735 |#1| |#2|)) (T -179)) +((-2551 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1261 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-735 *4 *2))))) +(-10 -7 (-15 -2551 (|#2| |#3|))) +((-1704 (((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)) 44 (|has| (-967 |#2|) (-898 |#1|))))) +(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-967 |#2|) (-898 |#1|)) (-15 -1704 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))) |%noBranch|)) (-1117) (-13 (-898 |#1|) (-174)) (-167 |#2|)) (T -180)) +((-1704 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-4 *3 (-167 *6)) (-4 (-967 *6) (-898 *5)) (-4 *6 (-13 (-898 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) +(-10 -7 (IF (|has| (-967 |#2|) (-898 |#1|)) (-15 -1704 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))) |%noBranch|)) +((-3434 (((-655 |#1|) (-655 |#1|) |#1|) 41)) (-2855 (((-655 |#1|) |#1| (-655 |#1|)) 20)) (-2326 (((-655 |#1|) (-655 (-655 |#1|)) (-655 |#1|)) 36) ((|#1| (-655 |#1|) (-655 |#1|)) 32))) +(((-181 |#1|) (-10 -7 (-15 -2855 ((-655 |#1|) |#1| (-655 |#1|))) (-15 -2326 (|#1| (-655 |#1|) (-655 |#1|))) (-15 -2326 ((-655 |#1|) (-655 (-655 |#1|)) (-655 |#1|))) (-15 -3434 ((-655 |#1|) (-655 |#1|) |#1|))) (-316)) (T -181)) +((-3434 (*1 *2 *2 *3) (-12 (-5 *2 (-655 *3)) (-4 *3 (-316)) (-5 *1 (-181 *3)))) (-2326 (*1 *2 *3 *2) (-12 (-5 *3 (-655 (-655 *4))) (-5 *2 (-655 *4)) (-4 *4 (-316)) (-5 *1 (-181 *4)))) (-2326 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *2)) (-5 *1 (-181 *2)) (-4 *2 (-316)))) (-2855 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-316)) (-5 *1 (-181 *3))))) +(-10 -7 (-15 -2855 ((-655 |#1|) |#1| (-655 |#1|))) (-15 -2326 (|#1| (-655 |#1|) (-655 |#1|))) (-15 -2326 ((-655 |#1|) (-655 (-655 |#1|)) (-655 |#1|))) (-15 -3434 ((-655 |#1|) (-655 |#1|) |#1|))) +((-2861 (((-112) $ $) NIL)) (-2939 (((-1234) $) 13)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3829 (((-1152) $) 10)) (-2883 (((-873) $) 20) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-182) (-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $)) (-15 -2939 ((-1234) $))))) (T -182)) +((-3829 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-182)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-182))))) +(-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $)) (-15 -2939 ((-1234) $)))) +((-4053 (((-2 (|:| |start| |#2|) (|:| -3378 (-429 |#2|))) |#2|) 66)) (-4378 ((|#1| |#1|) 58)) (-2637 (((-171 |#1|) |#2|) 93)) (-3814 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-2334 ((|#2| |#2|) 91)) (-1966 (((-429 |#2|) |#2| |#1|) 118) (((-429 |#2|) |#2| |#1| (-112)) 88)) (-2255 ((|#1| |#2|) 117)) (-3276 ((|#2| |#2|) 130)) (-2353 (((-429 |#2|) |#2|) 153) (((-429 |#2|) |#2| |#1|) 33) (((-429 |#2|) |#2| |#1| (-112)) 152)) (-1509 (((-655 (-2 (|:| -3378 (-655 |#2|)) (|:| -3084 |#1|))) |#2| |#2|) 151) (((-655 (-2 (|:| -3378 (-655 |#2|)) (|:| -3084 |#1|))) |#2| |#2| (-112)) 81)) (-1805 (((-655 (-171 |#1|)) |#2| |#1|) 42) (((-655 (-171 |#1|)) |#2|) 43))) +(((-183 |#1| |#2|) (-10 -7 (-15 -1805 ((-655 (-171 |#1|)) |#2|)) (-15 -1805 ((-655 (-171 |#1|)) |#2| |#1|)) (-15 -1509 ((-655 (-2 (|:| -3378 (-655 |#2|)) (|:| -3084 |#1|))) |#2| |#2| (-112))) (-15 -1509 ((-655 (-2 (|:| -3378 (-655 |#2|)) (|:| -3084 |#1|))) |#2| |#2|)) (-15 -2353 ((-429 |#2|) |#2| |#1| (-112))) (-15 -2353 ((-429 |#2|) |#2| |#1|)) (-15 -2353 ((-429 |#2|) |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -2255 (|#1| |#2|)) (-15 -1966 ((-429 |#2|) |#2| |#1| (-112))) (-15 -1966 ((-429 |#2|) |#2| |#1|)) (-15 -2334 (|#2| |#2|)) (-15 -3814 (|#1| |#2| |#1|)) (-15 -3814 (|#1| |#2|)) (-15 -2637 ((-171 |#1|) |#2|)) (-15 -4378 (|#1| |#1|)) (-15 -4053 ((-2 (|:| |start| |#2|) (|:| -3378 (-429 |#2|))) |#2|))) (-13 (-373) (-859)) (-1261 (-171 |#1|))) (T -183)) +((-4053 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-2 (|:| |start| *3) (|:| -3378 (-429 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-4378 (*1 *2 *2) (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1261 (-171 *2))))) (-2637 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-373) (-859))) (-4 *3 (-1261 *2)))) (-3814 (*1 *2 *3) (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1261 (-171 *2))))) (-3814 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1261 (-171 *2))))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-859))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1261 (-171 *3))))) (-1966 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-1966 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-2255 (*1 *2 *3) (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1261 (-171 *2))))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-859))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1261 (-171 *3))))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-2353 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-2353 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-1509 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-655 (-2 (|:| -3378 (-655 *3)) (|:| -3084 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-1509 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-373) (-859))) (-5 *2 (-655 (-2 (|:| -3378 (-655 *3)) (|:| -3084 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1261 (-171 *5))))) (-1805 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-655 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-1805 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-655 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4)))))) +(-10 -7 (-15 -1805 ((-655 (-171 |#1|)) |#2|)) (-15 -1805 ((-655 (-171 |#1|)) |#2| |#1|)) (-15 -1509 ((-655 (-2 (|:| -3378 (-655 |#2|)) (|:| -3084 |#1|))) |#2| |#2| (-112))) (-15 -1509 ((-655 (-2 (|:| -3378 (-655 |#2|)) (|:| -3084 |#1|))) |#2| |#2|)) (-15 -2353 ((-429 |#2|) |#2| |#1| (-112))) (-15 -2353 ((-429 |#2|) |#2| |#1|)) (-15 -2353 ((-429 |#2|) |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -2255 (|#1| |#2|)) (-15 -1966 ((-429 |#2|) |#2| |#1| (-112))) (-15 -1966 ((-429 |#2|) |#2| |#1|)) (-15 -2334 (|#2| |#2|)) (-15 -3814 (|#1| |#2| |#1|)) (-15 -3814 (|#1| |#2|)) (-15 -2637 ((-171 |#1|) |#2|)) (-15 -4378 (|#1| |#1|)) (-15 -4053 ((-2 (|:| |start| |#2|) (|:| -3378 (-429 |#2|))) |#2|))) +((-2718 (((-3 |#2| "failed") |#2|) 16)) (-2111 (((-782) |#2|) 18)) (-3881 ((|#2| |#2| |#2|) 20))) +(((-184 |#1| |#2|) (-10 -7 (-15 -2718 ((-3 |#2| "failed") |#2|)) (-15 -2111 ((-782) |#2|)) (-15 -3881 (|#2| |#2| |#2|))) (-1235) (-685 |#1|)) (T -184)) +((-3881 (*1 *2 *2 *2) (-12 (-4 *3 (-1235)) (-5 *1 (-184 *3 *2)) (-4 *2 (-685 *3)))) (-2111 (*1 *2 *3) (-12 (-4 *4 (-1235)) (-5 *2 (-782)) (-5 *1 (-184 *4 *3)) (-4 *3 (-685 *4)))) (-2718 (*1 *2 *2) (|partial| -12 (-4 *3 (-1235)) (-5 *1 (-184 *3 *2)) (-4 *2 (-685 *3))))) +(-10 -7 (-15 -2718 ((-3 |#2| "failed") |#2|)) (-15 -2111 ((-782) |#2|)) (-15 -3881 (|#2| |#2| |#2|))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3743 ((|#1| $) 7)) (-2883 (((-873) $) 14)) (-4400 (((-112) $ $) NIL)) (-4223 (((-655 (-1199)) $) 10)) (-3914 (((-112) $ $) 12))) +(((-185 |#1|) (-13 (-1117) (-10 -8 (-15 -3743 (|#1| $)) (-15 -4223 ((-655 (-1199)) $)))) (-187)) (T -185)) +((-3743 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1117) (-10 -8 (-15 -3743 (|#1| $)) (-15 -4223 ((-655 (-1199)) $)))) +((-3022 (((-655 (-876)) $) 16)) (-1559 (((-188) $) 8)) (-4147 (((-655 (-112)) $) 13)) (-3156 (((-55) $) 10))) +(((-186 |#1|) (-10 -8 (-15 -3022 ((-655 (-876)) |#1|)) (-15 -4147 ((-655 (-112)) |#1|)) (-15 -1559 ((-188) |#1|)) (-15 -3156 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -3022 ((-655 (-876)) |#1|)) (-15 -4147 ((-655 (-112)) |#1|)) (-15 -1559 ((-188) |#1|)) (-15 -3156 ((-55) |#1|))) +((-2861 (((-112) $ $) 7)) (-3022 (((-655 (-876)) $) 19)) (-1777 (((-517) $) 16)) (-2288 (((-1176) $) 10)) (-1559 (((-188) $) 21)) (-3789 (((-112) $ (-517)) 14)) (-3912 (((-1137) $) 11)) (-4147 (((-655 (-112)) $) 20)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3156 (((-55) $) 15)) (-3914 (((-112) $ $) 6))) (((-187) (-141)) (T -187)) -((-1560 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-877)))))) -(-13 (-847 (-518)) (-10 -8 (-15 -1560 ((-188) $)) (-15 -2261 ((-656 (-112)) $)) (-15 -3023 ((-656 (-877)) $)))) -(((-102) . T) ((-625 (-874)) . T) ((-847 (-518)) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-8 (($) 7 T CONST)) (-2884 (((-874) $) 12)) (-9 (($) 6 T CONST)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 10))) -(((-188) (-13 (-1118) (-10 -8 (-15 -9 ($) -3739) (-15 -8 ($) -3739) (-15 -7 ($) -3739)))) (T -188)) +((-1559 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-655 (-112))))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-655 (-876)))))) +(-13 (-846 (-517)) (-10 -8 (-15 -1559 ((-188) $)) (-15 -4147 ((-655 (-112)) $)) (-15 -3022 ((-655 (-876)) $)))) +(((-102) . T) ((-624 (-873)) . T) ((-846 (-517)) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-8 (($) 7 T CONST)) (-2883 (((-873) $) 12)) (-9 (($) 6 T CONST)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 10))) +(((-188) (-13 (-1117) (-10 -8 (-15 -9 ($) -3738) (-15 -8 ($) -3738) (-15 -7 ($) -3738)))) (T -188)) ((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) -(-13 (-1118) (-10 -8 (-15 -9 ($) -3739) (-15 -8 ($) -3739) (-15 -7 ($) -3739))) -((-2862 (((-112) $ $) NIL)) (-3023 (((-656 (-877)) $) NIL)) (-1778 (((-518) $) 8)) (-3733 (((-1177) $) NIL)) (-1560 (((-188) $) 10)) (-3657 (((-112) $ (-518)) NIL)) (-3914 (((-1138) $) NIL)) (-2249 (((-703 $) (-518)) 17)) (-2261 (((-656 (-112)) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-2040 (((-55) $) 12)) (-3915 (((-112) $ $) NIL))) -(((-189) (-13 (-187) (-10 -8 (-15 -2249 ((-703 $) (-518)))))) (T -189)) -((-2249 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) -(-13 (-187) (-10 -8 (-15 -2249 ((-703 $) (-518))))) -((-4079 ((|#2| |#2|) 28)) (-4088 (((-112) |#2|) 19)) (-2488 (((-326 |#1|) |#2|) 12)) (-1972 (((-326 |#1|) |#2|) 14)) (-4062 ((|#2| |#2| (-1195)) 69) ((|#2| |#2|) 70)) (-4097 (((-171 (-326 |#1|)) |#2|) 10)) (-4070 ((|#2| |#2| (-1195)) 66) ((|#2| |#2|) 60))) -(((-190 |#1| |#2|) (-10 -7 (-15 -4062 (|#2| |#2|)) (-15 -4062 (|#2| |#2| (-1195))) (-15 -4070 (|#2| |#2|)) (-15 -4070 (|#2| |#2| (-1195))) (-15 -2488 ((-326 |#1|) |#2|)) (-15 -1972 ((-326 |#1|) |#2|)) (-15 -4088 ((-112) |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4097 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1056 (-576))) (-13 (-27) (-1221) (-442 (-171 |#1|)))) (T -190)) -((-4097 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-1972 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-2488 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-4070 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) (-4062 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-4062 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3))))))) -(-10 -7 (-15 -4062 (|#2| |#2|)) (-15 -4062 (|#2| |#2| (-1195))) (-15 -4070 (|#2| |#2|)) (-15 -4070 (|#2| |#2| (-1195))) (-15 -2488 ((-326 |#1|) |#2|)) (-15 -1972 ((-326 |#1|) |#2|)) (-15 -4088 ((-112) |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4097 ((-171 (-326 |#1|)) |#2|))) -((-2271 (((-1286 (-701 (-968 |#1|))) (-1286 (-701 |#1|))) 26)) (-2884 (((-1286 (-701 (-419 (-968 |#1|)))) (-1286 (-701 |#1|))) 37))) -(((-191 |#1|) (-10 -7 (-15 -2271 ((-1286 (-701 (-968 |#1|))) (-1286 (-701 |#1|)))) (-15 -2884 ((-1286 (-701 (-419 (-968 |#1|)))) (-1286 (-701 |#1|))))) (-174)) (T -191)) -((-2884 (*1 *2 *3) (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1286 (-701 (-419 (-968 *4))))) (-5 *1 (-191 *4)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1286 (-701 (-968 *4)))) (-5 *1 (-191 *4))))) -(-10 -7 (-15 -2271 ((-1286 (-701 (-968 |#1|))) (-1286 (-701 |#1|)))) (-15 -2884 ((-1286 (-701 (-419 (-968 |#1|)))) (-1286 (-701 |#1|))))) -((-2355 (((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576)))) 93)) (-2375 (((-1197 (-419 (-576))) (-656 (-576)) (-656 (-576))) 107)) (-2279 (((-1197 (-419 (-576))) (-937)) 54)) (-2270 (((-1197 (-419 (-576))) (-937)) 79)) (-3049 (((-419 (-576)) (-1197 (-419 (-576)))) 89)) (-2289 (((-1197 (-419 (-576))) (-937)) 37)) (-2323 (((-1197 (-419 (-576))) (-937)) 66)) (-2315 (((-1197 (-419 (-576))) (-937)) 61)) (-2345 (((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576)))) 87)) (-1346 (((-1197 (-419 (-576))) (-937)) 29)) (-2335 (((-419 (-576)) (-1197 (-419 (-576))) (-1197 (-419 (-576)))) 91)) (-2302 (((-1197 (-419 (-576))) (-937)) 35)) (-2365 (((-1197 (-419 (-576))) (-656 (-937))) 100))) -(((-192) (-10 -7 (-15 -1346 ((-1197 (-419 (-576))) (-937))) (-15 -2279 ((-1197 (-419 (-576))) (-937))) (-15 -2289 ((-1197 (-419 (-576))) (-937))) (-15 -2302 ((-1197 (-419 (-576))) (-937))) (-15 -2315 ((-1197 (-419 (-576))) (-937))) (-15 -2323 ((-1197 (-419 (-576))) (-937))) (-15 -2270 ((-1197 (-419 (-576))) (-937))) (-15 -2335 ((-419 (-576)) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -2345 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -3049 ((-419 (-576)) (-1197 (-419 (-576))))) (-15 -2355 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -2365 ((-1197 (-419 (-576))) (-656 (-937)))) (-15 -2375 ((-1197 (-419 (-576))) (-656 (-576)) (-656 (-576)))))) (T -192)) -((-2375 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2355 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-2345 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2335 (*1 *2 *3 *3) (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) -(-10 -7 (-15 -1346 ((-1197 (-419 (-576))) (-937))) (-15 -2279 ((-1197 (-419 (-576))) (-937))) (-15 -2289 ((-1197 (-419 (-576))) (-937))) (-15 -2302 ((-1197 (-419 (-576))) (-937))) (-15 -2315 ((-1197 (-419 (-576))) (-937))) (-15 -2323 ((-1197 (-419 (-576))) (-937))) (-15 -2270 ((-1197 (-419 (-576))) (-937))) (-15 -2335 ((-419 (-576)) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -2345 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -3049 ((-419 (-576)) (-1197 (-419 (-576))))) (-15 -2355 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -2365 ((-1197 (-419 (-576))) (-656 (-937)))) (-15 -2375 ((-1197 (-419 (-576))) (-656 (-576)) (-656 (-576))))) -((-2399 (((-430 (-1191 (-576))) (-576)) 38)) (-2387 (((-656 (-1191 (-576))) (-576)) 33)) (-1663 (((-1191 (-576)) (-576)) 28))) -(((-193) (-10 -7 (-15 -2387 ((-656 (-1191 (-576))) (-576))) (-15 -1663 ((-1191 (-576)) (-576))) (-15 -2399 ((-430 (-1191 (-576))) (-576))))) (T -193)) -((-2399 (*1 *2 *3) (-12 (-5 *2 (-430 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-1663 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-2387 (*1 *2 *3) (-12 (-5 *2 (-656 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(-10 -7 (-15 -2387 ((-656 (-1191 (-576))) (-576))) (-15 -1663 ((-1191 (-576)) (-576))) (-15 -2399 ((-430 (-1191 (-576))) (-576)))) -((-3705 (((-1175 (-227)) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-3948 (((-656 (-1177)) (-1175 (-227))) NIL)) (-2410 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3684 (((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227)))) NIL)) (-3933 (((-656 (-1177)) (-656 (-227))) NIL)) (-3962 (((-227) (-1112 (-855 (-227)))) 31)) (-3975 (((-227) (-1112 (-855 (-227)))) 32)) (-2440 (((-390) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-2426 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3905 (((-1177) (-227)) NIL)) (-4308 (((-1177) (-656 (-1177))) 27)) (-2452 (((-1053) (-1195) (-1195) (-1053)) 13))) -(((-194) (-10 -7 (-15 -2410 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2426 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3962 ((-227) (-1112 (-855 (-227))))) (-15 -3975 ((-227) (-1112 (-855 (-227))))) (-15 -2440 ((-390) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3684 ((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227))))) (-15 -3705 ((-1175 (-227)) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3905 ((-1177) (-227))) (-15 -3933 ((-656 (-1177)) (-656 (-227)))) (-15 -3948 ((-656 (-1177)) (-1175 (-227)))) (-15 -4308 ((-1177) (-656 (-1177)))) (-15 -2452 ((-1053) (-1195) (-1195) (-1053))))) (T -194)) -((-2452 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-1195)) (-5 *1 (-194)))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-194)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-194)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-194)))) (-3684 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195)) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) -(-10 -7 (-15 -2410 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2426 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3962 ((-227) (-1112 (-855 (-227))))) (-15 -3975 ((-227) (-1112 (-855 (-227))))) (-15 -2440 ((-390) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3684 ((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227))))) (-15 -3705 ((-1175 (-227)) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3905 ((-1177) (-227))) (-15 -3933 ((-656 (-1177)) (-656 (-227)))) (-15 -3948 ((-656 (-1177)) (-1175 (-227)))) (-15 -4308 ((-1177) (-656 (-1177)))) (-15 -2452 ((-1053) (-1195) (-1195) (-1053)))) -((-2862 (((-112) $ $) NIL)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 61) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-195) (-799)) (T -195)) -NIL -(-799) -((-2862 (((-112) $ $) NIL)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 66) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-196) (-799)) (T -196)) -NIL -(-799) -((-2862 (((-112) $ $) NIL)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 81) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-197) (-799)) (T -197)) -NIL -(-799) -((-2862 (((-112) $ $) NIL)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 63) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-198) (-799)) (T -198)) -NIL -(-799) -((-2862 (((-112) $ $) NIL)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 75) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-199) (-799)) (T -199)) -NIL -(-799) -((-2862 (((-112) $ $) NIL)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 93) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-200) (-799)) (T -200)) -NIL -(-799) -((-2862 (((-112) $ $) NIL)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 90) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-201) (-799)) (T -201)) -NIL -(-799) -((-2862 (((-112) $ $) NIL)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 77) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-202) (-799)) (T -202)) -NIL -(-799) -((-2862 (((-112) $ $) NIL)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 76)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-203) (-799)) (T -203)) -NIL -(-799) -((-2862 (((-112) $ $) NIL)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 77)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-204) (-799)) (T -204)) -NIL -(-799) -((-2862 (((-112) $ $) NIL)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 105) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-205) (-799)) (T -205)) -NIL -(-799) -((-2464 (((-3 (-2 (|:| -1577 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2491 (((-576) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-2475 (((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) -(((-206) (-10 -7 (-15 -2464 ((-3 (-2 (|:| -1577 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2475 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2491 ((-576) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) -((-2491 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-2475 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-206)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1577 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(-10 -7 (-15 -2464 ((-3 (-2 (|:| -1577 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2475 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2491 ((-576) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-2552 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-2540 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-2528 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227)))) 112)) (-2515 (((-390) (-701 (-326 (-227)))) 140)) (-2224 (((-701 (-326 (-227))) (-1286 (-326 (-227))) (-656 (-1195))) 136)) (-2595 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-2566 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3049 (((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1195)) (-1286 (-326 (-227)))) 125)) (-2503 (((-390) (-390) (-656 (-390))) 133) (((-390) (-390) (-390)) 128)) (-2582 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) -(((-207) (-10 -7 (-15 -2503 ((-390) (-390) (-390))) (-15 -2503 ((-390) (-390) (-656 (-390)))) (-15 -2515 ((-390) (-701 (-326 (-227))))) (-15 -2224 ((-701 (-326 (-227))) (-1286 (-326 (-227))) (-656 (-1195)))) (-15 -3049 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1195)) (-1286 (-326 (-227))))) (-15 -2528 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -2540 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2552 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2566 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2582 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2595 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) -((-2595 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2540 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-3049 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1195))) (-5 *4 (-1286 (-326 (-227)))) (-5 *1 (-207)))) (-2224 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195))) (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2503 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2503 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))) -(-10 -7 (-15 -2503 ((-390) (-390) (-390))) (-15 -2503 ((-390) (-390) (-656 (-390)))) (-15 -2515 ((-390) (-701 (-326 (-227))))) (-15 -2224 ((-701 (-326 (-227))) (-1286 (-326 (-227))) (-656 (-1195)))) (-15 -3049 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1195)) (-1286 (-326 (-227))))) (-15 -2528 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -2540 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2552 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2566 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2582 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2595 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-2862 (((-112) $ $) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-2220 (((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-3915 (((-112) $ $) NIL))) -(((-208) (-812)) (T -208)) -NIL -(-812) -((-2862 (((-112) $ $) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-2220 (((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-3915 (((-112) $ $) NIL))) -(((-209) (-812)) (T -209)) -NIL -(-812) -((-2862 (((-112) $ $) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-2220 (((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-3915 (((-112) $ $) NIL))) -(((-210) (-812)) (T -210)) -NIL -(-812) -((-2862 (((-112) $ $) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-2220 (((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-3915 (((-112) $ $) NIL))) -(((-211) (-812)) (T -211)) -NIL -(-812) -((-3489 (((-656 (-1195)) (-1195) (-783)) 26)) (-2605 (((-326 (-227)) (-326 (-227))) 35)) (-2629 (((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 87)) (-2617 (((-112) (-227) (-227) (-656 (-326 (-227)))) 47))) -(((-212) (-10 -7 (-15 -3489 ((-656 (-1195)) (-1195) (-783))) (-15 -2605 ((-326 (-227)) (-326 (-227)))) (-15 -2617 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -2629 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))))) (T -212)) -((-2629 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2617 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-3489 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1195))) (-5 *1 (-212)) (-5 *3 (-1195))))) -(-10 -7 (-15 -3489 ((-656 (-1195)) (-1195) (-783))) (-15 -2605 ((-326 (-227)) (-326 (-227)))) (-15 -2617 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -2629 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))))) -((-2862 (((-112) $ $) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 28)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-4005 (((-1053) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 70)) (-3915 (((-112) $ $) NIL))) -(((-213) (-910)) (T -213)) -NIL -(-910) -((-2862 (((-112) $ $) NIL)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 24)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-4005 (((-1053) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) NIL)) (-3915 (((-112) $ $) NIL))) -(((-214) (-910)) (T -214)) -NIL -(-910) -((-2862 (((-112) $ $) NIL)) (-2798 ((|#2| $ (-783) |#2|) 11)) (-2789 ((|#2| $ (-783)) 10)) (-2310 (($) 8)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 23)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 13))) -(((-215 |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -2310 ($)) (-15 -2789 (|#2| $ (-783))) (-15 -2798 (|#2| $ (-783) |#2|)))) (-937) (-1118)) (T -215)) -((-2310 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1118)))) (-2789 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-1118)) (-5 *1 (-215 *4 *2)) (-14 *4 (-937)))) (-2798 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-937)) (-4 *2 (-1118))))) -(-13 (-1118) (-10 -8 (-15 -2310 ($)) (-15 -2789 (|#2| $ (-783))) (-15 -2798 (|#2| $ (-783) |#2|)))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2673 (((-1291) $) 37) (((-1291) $ (-937) (-937)) 41)) (-2071 (($ $ (-1007)) 19) (((-251 (-1177)) $ (-1195)) 15)) (-2483 (((-1291) $) 35)) (-2884 (((-874) $) 32) (($ (-656 |#1|)) 8)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $ $) 27)) (-4017 (($ $ $) 22))) -(((-216 |#1|) (-13 (-1118) (-628 (-656 |#1|)) (-10 -8 (-15 -2071 ($ $ (-1007))) (-15 -2071 ((-251 (-1177)) $ (-1195))) (-15 -4017 ($ $ $)) (-15 -4029 ($ $ $)) (-15 -2483 ((-1291) $)) (-15 -2673 ((-1291) $)) (-15 -2673 ((-1291) $ (-937) (-937))))) (-13 (-862) (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 ((-1291) $)) (-15 -2673 ((-1291) $))))) (T -216)) -((-2071 (*1 *1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 ((-1291) $)) (-15 -2673 ((-1291) $))))))) (-2071 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-251 (-1177))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2071 ((-1177) $ *3)) (-15 -2483 ((-1291) $)) (-15 -2673 ((-1291) $))))))) (-4017 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 ((-1291) $)) (-15 -2673 ((-1291) $))))))) (-4029 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 ((-1291) $)) (-15 -2673 ((-1291) $))))))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 (*2 $)) (-15 -2673 (*2 $))))))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 (*2 $)) (-15 -2673 (*2 $))))))) (-2673 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 (*2 $)) (-15 -2673 (*2 $)))))))) -(-13 (-1118) (-628 (-656 |#1|)) (-10 -8 (-15 -2071 ($ $ (-1007))) (-15 -2071 ((-251 (-1177)) $ (-1195))) (-15 -4017 ($ $ $)) (-15 -4029 ($ $ $)) (-15 -2483 ((-1291) $)) (-15 -2673 ((-1291) $)) (-15 -2673 ((-1291) $ (-937) (-937))))) -((-2640 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2640 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217)) -((-2640 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1262 (-419 *2))) (-4 *2 (-1262 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6))))) -(-10 -7 (-15 -2640 (|#2| |#4| (-1 |#2| |#2|)))) -((-2684 ((|#2| |#2| (-783) |#2|) 55)) (-2672 ((|#2| |#2| (-783) |#2|) 51)) (-4173 (((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -4356 |#2|)))) 79)) (-2660 (((-656 (-2 (|:| |deg| (-783)) (|:| -4356 |#2|))) |#2|) 73)) (-2695 (((-112) |#2|) 71)) (-2539 (((-430 |#2|) |#2|) 91)) (-2354 (((-430 |#2|) |#2|) 90)) (-4180 ((|#2| |#2| (-783) |#2|) 49)) (-2650 (((-2 (|:| |cont| |#1|) (|:| -4319 (-656 (-2 (|:| |irr| |#2|) (|:| -4435 (-576)))))) |#2| (-112)) 85))) -(((-218 |#1| |#2|) (-10 -7 (-15 -2354 ((-430 |#2|) |#2|)) (-15 -2539 ((-430 |#2|) |#2|)) (-15 -2650 ((-2 (|:| |cont| |#1|) (|:| -4319 (-656 (-2 (|:| |irr| |#2|) (|:| -4435 (-576)))))) |#2| (-112))) (-15 -2660 ((-656 (-2 (|:| |deg| (-783)) (|:| -4356 |#2|))) |#2|)) (-15 -4173 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -4356 |#2|))))) (-15 -4180 (|#2| |#2| (-783) |#2|)) (-15 -2672 (|#2| |#2| (-783) |#2|)) (-15 -2684 (|#2| |#2| (-783) |#2|)) (-15 -2695 ((-112) |#2|))) (-360) (-1262 |#1|)) (T -218)) -((-2695 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4)))) (-2684 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1262 *4)))) (-2672 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1262 *4)))) (-4180 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1262 *4)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -4356 *5)))) (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) (-5 *1 (-218 *4 *5)))) (-2660 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4356 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4319 (-656 (-2 (|:| |irr| *3) (|:| -4435 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1262 *5)))) (-2539 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4)))) (-2354 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4))))) -(-10 -7 (-15 -2354 ((-430 |#2|) |#2|)) (-15 -2539 ((-430 |#2|) |#2|)) (-15 -2650 ((-2 (|:| |cont| |#1|) (|:| -4319 (-656 (-2 (|:| |irr| |#2|) (|:| -4435 (-576)))))) |#2| (-112))) (-15 -2660 ((-656 (-2 (|:| |deg| (-783)) (|:| -4356 |#2|))) |#2|)) (-15 -4173 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -4356 |#2|))))) (-15 -4180 (|#2| |#2| (-783) |#2|)) (-15 -2672 (|#2| |#2| (-783) |#2|)) (-15 -2684 (|#2| |#2| (-783) |#2|)) (-15 -2695 ((-112) |#2|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1905 (((-576) $) NIL (|has| (-576) (-317)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL (|has| (-576) (-832)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1056 (-576))))) (-4401 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1056 (-576)))) (((-576) $) NIL (|has| (-576) (-1056 (-576))))) (-2803 (($ $ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| (-576) (-557)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1370 (((-112) $) NIL (|has| (-576) (-832)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1439 (((-112) $) NIL)) (-3154 (($ $) NIL)) (-1595 (((-576) $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| (-576) (-1170)))) (-1379 (((-112) $) NIL (|has| (-576) (-832)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| (-576) (-862)))) (-2551 (($ (-1 (-576) (-576)) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| (-576) (-1170)) CONST)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-1916 (((-576) $) NIL (|has| (-576) (-557)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3049 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-2910 (((-783) $) NIL)) (-2071 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2390 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3143 (($ $) NIL)) (-1608 (((-576) $) NIL)) (-2705 (($ (-419 (-576))) 9)) (-2616 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1040))) (((-227) $) NIL (|has| (-576) (-1040)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1195)) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL) (((-1022 10) $) 10)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| (-576) (-925))) (|has| (-576) (-146))))) (-1871 (((-783)) NIL T CONST)) (-1929 (((-576) $) NIL (|has| (-576) (-557)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-2610 (($ $) NIL (|has| (-576) (-832)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3983 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3957 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3943 (((-112) $ $) NIL (|has| (-576) (-862)))) (-4039 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-219) (-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 10)) (-10 -8 (-15 -1894 ((-419 (-576)) $)) (-15 -2705 ($ (-419 (-576))))))) (T -219)) -((-1894 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) -(-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 10)) (-10 -8 (-15 -1894 ((-419 (-576)) $)) (-15 -2705 ($ (-419 (-576)))))) -((-2862 (((-112) $ $) NIL)) (-1382 (((-1136) $) 13)) (-3733 (((-1177) $) NIL)) (-4427 (((-495) $) 10)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 23) (($ (-1200)) NIL) (((-1200) $) NIL)) (-1789 (((-1153) $) 15)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-220) (-13 (-1101) (-10 -8 (-15 -4427 ((-495) $)) (-15 -1382 ((-1136) $)) (-15 -1789 ((-1153) $))))) (T -220)) -((-4427 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-220)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-220))))) -(-13 (-1101) (-10 -8 (-15 -4427 ((-495) $)) (-15 -1382 ((-1136) $)) (-15 -1789 ((-1153) $)))) -((-1956 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|)) (-1177)) 29) (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|))) 25)) (-2716 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1195) (-855 |#2|) (-855 |#2|) (-112)) 17))) -(((-221 |#1| |#2|) (-10 -7 (-15 -1956 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|)))) (-15 -1956 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|)) (-1177))) (-15 -2716 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1195) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-975) (-29 |#1|))) (T -221)) -((-2716 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1195)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-4 *3 (-13 (-1221) (-975) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))) (-1956 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1110 (-855 *3))) (-5 *5 (-1177)) (-4 *3 (-13 (-1221) (-975) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-855 *3))) (-4 *3 (-13 (-1221) (-975) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) -(-10 -7 (-15 -1956 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|)))) (-15 -1956 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|)) (-1177))) (-15 -2716 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1195) (-855 |#2|) (-855 |#2|) (-112)))) -((-1956 (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|)))) (-1177)) 49) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|))))) 46) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|))) (-1177)) 50) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|)))) 22))) -(((-222 |#1|) (-10 -7 (-15 -1956 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|))))) (-15 -1956 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|))) (-1177))) (-15 -1956 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|)))))) (-15 -1956 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|)))) (-1177)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (T -222)) -((-1956 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1110 (-855 (-419 (-968 *6))))) (-5 *5 (-1177)) (-5 *3 (-419 (-968 *6))) (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-855 (-419 (-968 *5))))) (-5 *3 (-419 (-968 *5))) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-1956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-968 *6))) (-5 *4 (-1110 (-855 (-326 *6)))) (-5 *5 (-1177)) (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1110 (-855 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) -(-10 -7 (-15 -1956 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|))))) (-15 -1956 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|))) (-1177))) (-15 -1956 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|)))))) (-15 -1956 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|)))) (-1177)))) -((-2309 (((-2 (|:| -1808 (-1191 |#1|)) (|:| |deg| (-937))) (-1191 |#1|)) 26)) (-3945 (((-656 (-326 |#2|)) (-326 |#2|) (-937)) 51))) -(((-223 |#1| |#2|) (-10 -7 (-15 -2309 ((-2 (|:| -1808 (-1191 |#1|)) (|:| |deg| (-937))) (-1191 |#1|))) (-15 -3945 ((-656 (-326 |#2|)) (-326 |#2|) (-937)))) (-1067) (-568)) (T -223)) -((-3945 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1067)))) (-2309 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-2 (|:| -1808 (-1191 *4)) (|:| |deg| (-937)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1191 *4)) (-4 *5 (-568))))) -(-10 -7 (-15 -2309 ((-2 (|:| -1808 (-1191 |#1|)) (|:| |deg| (-937))) (-1191 |#1|))) (-15 -3945 ((-656 (-326 |#2|)) (-326 |#2|) (-937)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1807 ((|#1| $) NIL)) (-2012 ((|#1| $) 30)) (-2970 (((-112) $ (-783)) NIL)) (-2473 (($) NIL T CONST)) (-3197 (($ $) NIL)) (-2745 (($ $) 39)) (-3295 ((|#1| |#1| $) NIL)) (-3285 ((|#1| $) NIL)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-1840 (((-783) $) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3449 ((|#1| $) NIL)) (-1784 ((|#1| |#1| $) 35)) (-1773 ((|#1| |#1| $) 37)) (-3807 (($ |#1| $) NIL)) (-3343 (((-783) $) 33)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3187 ((|#1| $) NIL)) (-1762 ((|#1| $) 31)) (-1749 ((|#1| $) 29)) (-3458 ((|#1| $) NIL)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3219 ((|#1| |#1| $) NIL)) (-2809 (((-112) $) 9)) (-1458 (($) NIL)) (-3208 ((|#1| $) NIL)) (-1817 (($) NIL) (($ (-656 |#1|)) 16)) (-3324 (((-783) $) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1795 ((|#1| $) 13)) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) NIL)) (-3175 ((|#1| $) NIL)) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -1817 ($ (-656 |#1|))))) (-1118)) (T -224)) -((-1817 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-224 *3))))) -(-13 (-261 |#1|) (-10 -8 (-15 -1817 ($ (-656 |#1|))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2737 (($ (-326 |#1|)) 24)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-3982 (((-112) $) NIL)) (-2449 (((-3 (-326 |#1|) "failed") $) NIL)) (-4401 (((-326 |#1|) $) NIL)) (-4407 (($ $) 32)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) NIL)) (-2551 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-4383 (((-326 |#1|) $) NIL)) (-2759 (($ $) 31)) (-3733 (((-1177) $) NIL)) (-2748 (((-112) $) NIL)) (-3914 (((-1138) $) NIL)) (-3660 (($ (-783)) NIL)) (-2727 (($ $) 33)) (-3813 (((-576) $) NIL)) (-2884 (((-874) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-3245 (((-326 |#1|) $ $) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 26 T CONST)) (-2011 (($) NIL T CONST)) (-3915 (((-112) $ $) 29)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 20)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19))) -(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1056 (-326 |#1|)) (-10 -8 (-15 -4383 ((-326 |#1|) $)) (-15 -2759 ($ $)) (-15 -4407 ($ $)) (-15 -3245 ((-326 |#1|) $ $)) (-15 -3660 ($ (-783))) (-15 -2748 ((-112) $)) (-15 -3982 ((-112) $)) (-15 -3813 ((-576) $)) (-15 -2551 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2737 ($ (-326 |#1|))) (-15 -2727 ($ $)))) (-13 (-1067) (-862)) (-656 (-1195))) (T -225)) -((-4383 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-2759 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862))) (-14 *3 (-656 (-1195))))) (-4407 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862))) (-14 *3 (-656 (-1195))))) (-3245 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-2748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1067) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195))))) (-2737 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1067) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195))))) (-2727 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862))) (-14 *3 (-656 (-1195)))))) -(-13 (-632 (-326 |#1|)) (-1056 (-326 |#1|)) (-10 -8 (-15 -4383 ((-326 |#1|) $)) (-15 -2759 ($ $)) (-15 -4407 ($ $)) (-15 -3245 ((-326 |#1|) $ $)) (-15 -3660 ($ (-783))) (-15 -2748 ((-112) $)) (-15 -3982 ((-112) $)) (-15 -3813 ((-576) $)) (-15 -2551 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2737 ($ (-326 |#1|))) (-15 -2727 ($ $)))) -((-2769 (((-112) (-1177)) 26)) (-2779 (((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112)) 35)) (-2791 (((-3 (-112) "failed") (-1191 |#2|) (-855 |#2|) (-855 |#2|) (-112)) 84) (((-3 (-112) "failed") (-968 |#1|) (-1195) (-855 |#2|) (-855 |#2|) (-112)) 85))) -(((-226 |#1| |#2|) (-10 -7 (-15 -2769 ((-112) (-1177))) (-15 -2779 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -2791 ((-3 (-112) "failed") (-968 |#1|) (-1195) (-855 |#2|) (-855 |#2|) (-112))) (-15 -2791 ((-3 (-112) "failed") (-1191 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-29 |#1|))) (T -226)) -((-2791 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1191 *6)) (-5 *4 (-855 *6)) (-4 *6 (-13 (-1221) (-29 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-226 *5 *6)))) (-2791 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-968 *6)) (-5 *4 (-1195)) (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-4 *7 (-13 (-1221) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-2779 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1221) (-29 *6))) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-226 *6 *4)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1221) (-29 *4)))))) -(-10 -7 (-15 -2769 ((-112) (-1177))) (-15 -2779 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -2791 ((-3 (-112) "failed") (-968 |#1|) (-1195) (-855 |#2|) (-855 |#2|) (-112))) (-15 -2791 ((-3 (-112) "failed") (-1191 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 98)) (-1905 (((-576) $) 35)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-2916 (($ $) NIL)) (-3924 (($ $) 87)) (-3787 (($ $) 75)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2474 (($ $) 66)) (-2922 (((-112) $ $) NIL)) (-3898 (($ $) 85)) (-3762 (($ $) 73)) (-3966 (((-576) $) 128)) (-1522 (($ $) 90)) (-3808 (($ $) 77)) (-2473 (($) NIL T CONST)) (-1882 (($ $) NIL)) (-2449 (((-3 (-576) "failed") $) 127) (((-3 (-419 (-576)) "failed") $) 124)) (-4401 (((-576) $) 125) (((-419 (-576)) $) 122)) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) 103)) (-2051 (((-419 (-576)) $ (-783)) 117) (((-419 (-576)) $ (-783) (-783)) 116)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1501 (((-937)) 29) (((-937) (-937)) NIL (|has| $ (-6 -4452)))) (-1370 (((-112) $) NIL)) (-1632 (($) 46)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-2927 (((-576) $) 42)) (-1439 (((-112) $) 99)) (-3298 (($ $ (-576)) NIL)) (-1941 (($ $) NIL)) (-1379 (((-112) $) 97)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) 63) (($) 38 (-12 (-3216 (|has| $ (-6 -4444))) (-3216 (|has| $ (-6 -4452)))))) (-4137 (($ $ $) 62) (($) 37 (-12 (-3216 (|has| $ (-6 -4444))) (-3216 (|has| $ (-6 -4452)))))) (-3665 (((-576) $) 27)) (-2039 (($ $) 33)) (-3373 (($ $) 67)) (-3464 (($ $) 72)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-4216 (((-937) (-576)) NIL (|has| $ (-6 -4452)))) (-3914 (((-1138) $) 101)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) NIL)) (-1916 (($ $) NIL)) (-1540 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-937)) 110)) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1359 (((-576) $) 28)) (-2027 (($) 45)) (-2666 (($ $) 71)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-3527 (((-937)) NIL) (((-937) (-937)) NIL (|has| $ (-6 -4452)))) (-2390 (($ $) 104) (($ $ (-783)) NIL)) (-4207 (((-937) (-576)) NIL (|has| $ (-6 -4452)))) (-1532 (($ $) 88)) (-3818 (($ $) 78)) (-3938 (($ $) 89)) (-3798 (($ $) 76)) (-3910 (($ $) 86)) (-3775 (($ $) 74)) (-2616 (((-390) $) 113) (((-227) $) 14) (((-905 (-390)) $) NIL) (((-548) $) 52)) (-2884 (((-874) $) 49) (($ (-576)) 70) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 70) (($ (-419 (-576))) NIL)) (-1871 (((-783)) NIL T CONST)) (-1929 (($ $) NIL)) (-4226 (((-937)) 36) (((-937) (-937)) NIL (|has| $ (-6 -4452)))) (-3722 (((-112) $ $) NIL)) (-1549 (((-937)) 25)) (-1570 (($ $) 93)) (-3853 (($ $) 81) (($ $ $) 120)) (-4232 (((-112) $ $) NIL)) (-1545 (($ $) 91)) (-3829 (($ $) 79)) (-1594 (($ $) 96)) (-3874 (($ $) 84)) (-2915 (($ $) 94)) (-3886 (($ $) 82)) (-1584 (($ $) 95)) (-3864 (($ $) 83)) (-1555 (($ $) 92)) (-3840 (($ $) 80)) (-2610 (($ $) 119)) (-1996 (($) 23 T CONST)) (-2011 (($) 43 T CONST)) (-1813 (((-1177) $) 18) (((-1177) $ (-112)) 20) (((-1291) (-834) $) 21) (((-1291) (-834) $ (-112)) 22)) (-2654 (($ $) 107)) (-3431 (($ $) NIL) (($ $ (-783)) NIL)) (-2621 (($ $ $) 109)) (-3983 (((-112) $ $) 56)) (-3957 (((-112) $ $) 54)) (-3915 (((-112) $ $) 64)) (-3970 (((-112) $ $) 55)) (-3943 (((-112) $ $) 53)) (-4039 (($ $ $) 44) (($ $ (-576)) 65)) (-4029 (($ $) 57) (($ $ $) 59)) (-4017 (($ $ $) 58)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 152) (($ $ $) 69)) (* (($ (-937) $) 34) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-227) (-13 (-416) (-239) (-840) (-1221) (-626 (-548)) (-10 -8 (-15 -4039 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2027 ($)) (-15 -2039 ($ $)) (-15 -3373 ($ $)) (-15 -3853 ($ $ $)) (-15 -2654 ($ $)) (-15 -2621 ($ $ $)) (-15 -2051 ((-419 (-576)) $ (-783))) (-15 -2051 ((-419 (-576)) $ (-783) (-783)))))) (T -227)) -((** (*1 *1 *1 *1) (-5 *1 (-227))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-2027 (*1 *1) (-5 *1 (-227))) (-2039 (*1 *1 *1) (-5 *1 (-227))) (-3373 (*1 *1 *1) (-5 *1 (-227))) (-3853 (*1 *1 *1 *1) (-5 *1 (-227))) (-2654 (*1 *1 *1) (-5 *1 (-227))) (-2621 (*1 *1 *1 *1) (-5 *1 (-227))) (-2051 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-2051 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))) -(-13 (-416) (-239) (-840) (-1221) (-626 (-548)) (-10 -8 (-15 -4039 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2027 ($)) (-15 -2039 ($ $)) (-15 -3373 ($ $)) (-15 -3853 ($ $ $)) (-15 -2654 ($ $)) (-15 -2621 ($ $ $)) (-15 -2051 ((-419 (-576)) $ (-783))) (-15 -2051 ((-419 (-576)) $ (-783) (-783))))) -((-2644 (((-171 (-227)) (-783) (-171 (-227))) 11) (((-227) (-783) (-227)) 12)) (-2805 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-1521 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-2633 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-2676 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-2699 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-2665 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2688 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-2720 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-2709 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-2654 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-2621 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) -(((-228) (-10 -7 (-15 -2654 ((-227) (-227))) (-15 -2654 ((-171 (-227)) (-171 (-227)))) (-15 -2621 ((-227) (-227) (-227))) (-15 -2621 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2805 ((-227) (-227))) (-15 -2805 ((-171 (-227)) (-171 (-227)))) (-15 -2633 ((-227) (-227))) (-15 -2633 ((-171 (-227)) (-171 (-227)))) (-15 -2644 ((-227) (-783) (-227))) (-15 -2644 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -2665 ((-227) (-227) (-227))) (-15 -2665 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2676 ((-227) (-227) (-227))) (-15 -2676 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2688 ((-227) (-227) (-227))) (-15 -2688 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2699 ((-227) (-227) (-227))) (-15 -2699 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2709 ((-171 (-227)) (-171 (-227)))) (-15 -2709 ((-227) (-227))) (-15 -2720 ((-227) (-227))) (-15 -2720 ((-171 (-227)) (-171 (-227)))) (-15 -1521 ((-227) (-227) (-227))) (-15 -1521 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) -((-1521 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1521 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2720 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2720 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2709 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2709 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2699 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2699 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2688 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2688 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2676 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2676 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2665 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2665 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2644 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) (-2644 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) (-2633 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2633 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2621 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2621 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) -(-10 -7 (-15 -2654 ((-227) (-227))) (-15 -2654 ((-171 (-227)) (-171 (-227)))) (-15 -2621 ((-227) (-227) (-227))) (-15 -2621 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2805 ((-227) (-227))) (-15 -2805 ((-171 (-227)) (-171 (-227)))) (-15 -2633 ((-227) (-227))) (-15 -2633 ((-171 (-227)) (-171 (-227)))) (-15 -2644 ((-227) (-783) (-227))) (-15 -2644 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -2665 ((-227) (-227) (-227))) (-15 -2665 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2676 ((-227) (-227) (-227))) (-15 -2676 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2688 ((-227) (-227) (-227))) (-15 -2688 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2699 ((-227) (-227) (-227))) (-15 -2699 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2709 ((-171 (-227)) (-171 (-227)))) (-15 -2709 ((-227) (-227))) (-15 -2720 ((-227) (-227))) (-15 -2720 ((-171 (-227)) (-171 (-227)))) (-15 -1521 ((-227) (-227) (-227))) (-15 -1521 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2881 (($ (-783) (-783)) NIL)) (-1991 (($ $ $) NIL)) (-2899 (($ (-1286 |#1|)) NIL) (($ $) NIL)) (-3534 (($ |#1| |#1| |#1|) 33)) (-1825 (((-112) $) NIL)) (-1979 (($ $ (-576) (-576)) NIL)) (-1965 (($ $ (-576) (-576)) NIL)) (-1953 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2018 (($ $) NIL)) (-1847 (((-112) $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-1940 (($ $ (-576) (-576) $) NIL)) (-3055 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-1552 (($ $ (-576) (-1286 |#1|)) NIL)) (-3501 (($ $ (-576) (-1286 |#1|)) NIL)) (-2205 (($ |#1| |#1| |#1|) 32)) (-3353 (($ (-783) |#1|) NIL)) (-2473 (($) NIL T CONST)) (-1735 (($ $) NIL (|has| |#1| (-317)))) (-1759 (((-1286 |#1|) $ (-576)) NIL)) (-1531 (($ |#1|) 31)) (-1544 (($ |#1|) 30)) (-1554 (($ |#1|) 29)) (-4423 (((-783) $) NIL (|has| |#1| (-568)))) (-2859 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2789 ((|#1| $ (-576) (-576)) NIL)) (-4001 (((-656 |#1|) $) NIL)) (-1724 (((-783) $) NIL (|has| |#1| (-568)))) (-1714 (((-656 (-1286 |#1|)) $) NIL (|has| |#1| (-568)))) (-4244 (((-783) $) NIL)) (-2310 (($ (-783) (-783) |#1|) NIL)) (-4256 (((-783) $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3304 ((|#1| $) NIL (|has| |#1| (-6 (-4463 "*"))))) (-1805 (((-576) $) NIL)) (-1782 (((-576) $) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1793 (((-576) $) NIL)) (-1771 (((-576) $) NIL)) (-4317 (($ (-656 (-656 |#1|))) 11)) (-2848 (($ (-1 |#1| |#1|) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3667 (((-656 (-656 |#1|)) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3633 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-1567 (($) 12)) (-2005 (($ $ $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3346 (($ $ |#1|) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-3344 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-1835 (((-112) $) NIL)) (-3314 ((|#1| $) NIL (|has| |#1| (-6 (-4463 "*"))))) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-1747 (((-1286 |#1|) $ (-576)) NIL)) (-2884 (($ (-1286 |#1|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-1815 (((-112) $) NIL)) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1286 |#1|) $ (-1286 |#1|)) 15) (((-1286 |#1|) (-1286 |#1|) $) NIL) (((-959 |#1|) $ (-959 |#1|)) 21)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-229 |#1|) (-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 * ((-959 |#1|) $ (-959 |#1|))) (-15 -1567 ($)) (-15 -1554 ($ |#1|)) (-15 -1544 ($ |#1|)) (-15 -1531 ($ |#1|)) (-15 -2205 ($ |#1| |#1| |#1|)) (-15 -3534 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1221))) (T -229)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221))) (-5 *1 (-229 *3)))) (-1567 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-1554 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-1544 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-1531 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-2205 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-3534 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))) -(-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 * ((-959 |#1|) $ (-959 |#1|))) (-15 -1567 ($)) (-15 -1554 ($ |#1|)) (-15 -1544 ($ |#1|)) (-15 -1531 ($ |#1|)) (-15 -2205 ($ |#1| |#1| |#1|)) (-15 -3534 ($ |#1| |#1| |#1|)))) -((-1443 (($ (-1 (-112) |#2|) $) 16)) (-2833 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-1581 (($) NIL) (($ (-656 |#2|)) 11)) (-3915 (((-112) $ $) 26))) -(((-230 |#1| |#2|) (-10 -8 (-15 -1443 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2833 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2833 (|#1| |#2| |#1|)) (-15 -1581 (|#1| (-656 |#2|))) (-15 -1581 (|#1|)) (-15 -3915 ((-112) |#1| |#1|))) (-231 |#2|) (-1118)) (T -230)) -NIL -(-10 -8 (-15 -1443 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2833 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2833 (|#1| |#2| |#1|)) (-15 -1581 (|#1| (-656 |#2|))) (-15 -1581 (|#1|)) (-15 -3915 ((-112) |#1| |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) 8)) (-1443 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-1919 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2833 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3634 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3449 ((|#1| $) 40)) (-3807 (($ |#1| $) 41)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3458 ((|#1| $) 42)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-1581 (($) 50) (($ (-656 |#1|)) 49)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 51)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) 43)) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-231 |#1|) (-141) (-1118)) (T -231)) -NIL -(-13 (-241 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-241 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-2390 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-1195)) 19) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) 16) (($ $ (-783)) NIL)) (-3431 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL))) -(((-232 |#1| |#2|) (-10 -8 (-15 -3431 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1| (-783))) (-15 -3431 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -3431 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3431 (|#1| |#1| (-1195) (-783))) (-15 -3431 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -3431 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -3431 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3431 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1067)) (T -232)) -NIL -(-10 -8 (-15 -3431 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1| (-783))) (-15 -3431 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -3431 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3431 (|#1| |#1| (-1195) (-783))) (-15 -3431 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -3431 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -3431 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3431 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2390 (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1 |#1| |#1|) (-783)) 57) (($ $ (-1195)) 54 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 52 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 51 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 50 (|has| |#1| (-914 (-1195)))) (($ $) 46 (|has| |#1| (-239))) (($ $ (-783)) 44 (|has| |#1| (-239)))) (-2884 (((-874) $) 12) (($ (-576)) 33)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-783)) 55) (($ $ (-1195)) 53 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 49 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 48 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 47 (|has| |#1| (-914 (-1195)))) (($ $) 45 (|has| |#1| (-239))) (($ $ (-783)) 43 (|has| |#1| (-239)))) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-233 |#1|) (-141) (-1067)) (T -233)) -((-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1067)))) (-2390 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-233 *4)) (-4 *4 (-1067)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1067)))) (-3431 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-233 *4)) (-4 *4 (-1067))))) -(-13 (-1067) (-10 -8 (-15 -2390 ($ $ (-1 |t#1| |t#1|))) (-15 -2390 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -3431 ($ $ (-1 |t#1| |t#1|))) (-15 -3431 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-914 (-1195))) (-6 (-914 (-1195))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-235 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-909 $ #0=(-1195)) |has| |#1| (-914 (-1195))) ((-914 #0#) |has| |#1| (-914 (-1195))) ((-916 #0#) |has| |#1| (-914 (-1195))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) -3766 (|has| |#1| (-914 (-1195))) (|has| |#1| (-239)))) -((-3431 ((|#2| $) 9))) -(((-234 |#1| |#2|) (-10 -8 (-15 -3431 (|#2| |#1|))) (-235 |#2|) (-1236)) (T -234)) -NIL -(-10 -8 (-15 -3431 (|#2| |#1|))) -((-2390 ((|#1| $) 7)) (-3431 ((|#1| $) 6))) -(((-235 |#1|) (-141) (-1236)) (T -235)) -((-2390 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1236)))) (-3431 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1236))))) -(-13 (-1236) (-10 -8 (-15 -2390 (|t#1| $)) (-15 -3431 (|t#1| $)))) -(((-1236) . T)) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2390 (($ $ (-783)) 36) (($ $) 34)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3431 (($ $ (-783)) 37) (($ $) 35)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-236 |#1|) (-141) (-174)) (T -236)) -NIL -(-13 (-729 |t#1|) (-238)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-235 $) . T) ((-238) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T) ((-1236) . T)) -((-2390 (($ $) NIL) (($ $ (-783)) 9)) (-3431 (($ $) NIL) (($ $ (-783)) 11))) -(((-237 |#1|) (-10 -8 (-15 -3431 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1| (-783))) (-15 -3431 (|#1| |#1|)) (-15 -2390 (|#1| |#1|))) (-238)) (T -237)) -NIL -(-10 -8 (-15 -3431 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1| (-783))) (-15 -3431 (|#1| |#1|)) (-15 -2390 (|#1| |#1|))) -((-2390 (($ $) 7) (($ $ (-783)) 10)) (-3431 (($ $) 6) (($ $ (-783)) 9))) +(-13 (-1117) (-10 -8 (-15 -9 ($) -3738) (-15 -8 ($) -3738) (-15 -7 ($) -3738))) +((-2861 (((-112) $ $) NIL)) (-3022 (((-655 (-876)) $) NIL)) (-1777 (((-517) $) 8)) (-2288 (((-1176) $) NIL)) (-1559 (((-188) $) 10)) (-3789 (((-112) $ (-517)) NIL)) (-3912 (((-1137) $) NIL)) (-2294 (((-702 $) (-517)) 17)) (-4147 (((-655 (-112)) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3156 (((-55) $) 12)) (-3914 (((-112) $ $) NIL))) +(((-189) (-13 (-187) (-10 -8 (-15 -2294 ((-702 $) (-517)))))) (T -189)) +((-2294 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-189))) (-5 *1 (-189))))) +(-13 (-187) (-10 -8 (-15 -2294 ((-702 $) (-517))))) +((-3414 ((|#2| |#2|) 28)) (-1837 (((-112) |#2|) 19)) (-2487 (((-325 |#1|) |#2|) 12)) (-1972 (((-325 |#1|) |#2|) 14)) (-4264 ((|#2| |#2| (-1194)) 69) ((|#2| |#2|) 70)) (-1928 (((-171 (-325 |#1|)) |#2|) 10)) (-3496 ((|#2| |#2| (-1194)) 66) ((|#2| |#2|) 60))) +(((-190 |#1| |#2|) (-10 -7 (-15 -4264 (|#2| |#2|)) (-15 -4264 (|#2| |#2| (-1194))) (-15 -3496 (|#2| |#2|)) (-15 -3496 (|#2| |#2| (-1194))) (-15 -2487 ((-325 |#1|) |#2|)) (-15 -1972 ((-325 |#1|) |#2|)) (-15 -1837 ((-112) |#2|)) (-15 -3414 (|#2| |#2|)) (-15 -1928 ((-171 (-325 |#1|)) |#2|))) (-13 (-567) (-1055 (-575))) (-13 (-27) (-1220) (-441 (-171 |#1|)))) (T -190)) +((-1928 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-171 (-325 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-3414 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3)))))) (-1837 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-1972 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-325 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-2487 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-325 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-3496 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3)))))) (-4264 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-4264 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3))))))) +(-10 -7 (-15 -4264 (|#2| |#2|)) (-15 -4264 (|#2| |#2| (-1194))) (-15 -3496 (|#2| |#2|)) (-15 -3496 (|#2| |#2| (-1194))) (-15 -2487 ((-325 |#1|) |#2|)) (-15 -1972 ((-325 |#1|) |#2|)) (-15 -1837 ((-112) |#2|)) (-15 -3414 (|#2| |#2|)) (-15 -1928 ((-171 (-325 |#1|)) |#2|))) +((-4062 (((-1285 (-700 (-967 |#1|))) (-1285 (-700 |#1|))) 26)) (-2883 (((-1285 (-700 (-418 (-967 |#1|)))) (-1285 (-700 |#1|))) 37))) +(((-191 |#1|) (-10 -7 (-15 -4062 ((-1285 (-700 (-967 |#1|))) (-1285 (-700 |#1|)))) (-15 -2883 ((-1285 (-700 (-418 (-967 |#1|)))) (-1285 (-700 |#1|))))) (-174)) (T -191)) +((-2883 (*1 *2 *3) (-12 (-5 *3 (-1285 (-700 *4))) (-4 *4 (-174)) (-5 *2 (-1285 (-700 (-418 (-967 *4))))) (-5 *1 (-191 *4)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-1285 (-700 *4))) (-4 *4 (-174)) (-5 *2 (-1285 (-700 (-967 *4)))) (-5 *1 (-191 *4))))) +(-10 -7 (-15 -4062 ((-1285 (-700 (-967 |#1|))) (-1285 (-700 |#1|)))) (-15 -2883 ((-1285 (-700 (-418 (-967 |#1|)))) (-1285 (-700 |#1|))))) +((-2745 (((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575)))) 93)) (-4097 (((-1196 (-418 (-575))) (-655 (-575)) (-655 (-575))) 107)) (-2528 (((-1196 (-418 (-575))) (-936)) 54)) (-3968 (((-1196 (-418 (-575))) (-936)) 79)) (-3048 (((-418 (-575)) (-1196 (-418 (-575)))) 89)) (-3288 (((-1196 (-418 (-575))) (-936)) 37)) (-3175 (((-1196 (-418 (-575))) (-936)) 66)) (-1519 (((-1196 (-418 (-575))) (-936)) 61)) (-2425 (((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575)))) 87)) (-2972 (((-1196 (-418 (-575))) (-936)) 29)) (-2174 (((-418 (-575)) (-1196 (-418 (-575))) (-1196 (-418 (-575)))) 91)) (-2983 (((-1196 (-418 (-575))) (-936)) 35)) (-4308 (((-1196 (-418 (-575))) (-655 (-936))) 100))) +(((-192) (-10 -7 (-15 -2972 ((-1196 (-418 (-575))) (-936))) (-15 -2528 ((-1196 (-418 (-575))) (-936))) (-15 -3288 ((-1196 (-418 (-575))) (-936))) (-15 -2983 ((-1196 (-418 (-575))) (-936))) (-15 -1519 ((-1196 (-418 (-575))) (-936))) (-15 -3175 ((-1196 (-418 (-575))) (-936))) (-15 -3968 ((-1196 (-418 (-575))) (-936))) (-15 -2174 ((-418 (-575)) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -2425 ((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -3048 ((-418 (-575)) (-1196 (-418 (-575))))) (-15 -2745 ((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -4308 ((-1196 (-418 (-575))) (-655 (-936)))) (-15 -4097 ((-1196 (-418 (-575))) (-655 (-575)) (-655 (-575)))))) (T -192)) +((-4097 (*1 *2 *3 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-2745 (*1 *2 *2 *2) (-12 (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-1196 (-418 (-575)))) (-5 *2 (-418 (-575))) (-5 *1 (-192)))) (-2425 (*1 *2 *2 *2) (-12 (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-2174 (*1 *2 *3 *3) (-12 (-5 *3 (-1196 (-418 (-575)))) (-5 *2 (-418 (-575))) (-5 *1 (-192)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192))))) +(-10 -7 (-15 -2972 ((-1196 (-418 (-575))) (-936))) (-15 -2528 ((-1196 (-418 (-575))) (-936))) (-15 -3288 ((-1196 (-418 (-575))) (-936))) (-15 -2983 ((-1196 (-418 (-575))) (-936))) (-15 -1519 ((-1196 (-418 (-575))) (-936))) (-15 -3175 ((-1196 (-418 (-575))) (-936))) (-15 -3968 ((-1196 (-418 (-575))) (-936))) (-15 -2174 ((-418 (-575)) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -2425 ((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -3048 ((-418 (-575)) (-1196 (-418 (-575))))) (-15 -2745 ((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -4308 ((-1196 (-418 (-575))) (-655 (-936)))) (-15 -4097 ((-1196 (-418 (-575))) (-655 (-575)) (-655 (-575))))) +((-4275 (((-429 (-1190 (-575))) (-575)) 38)) (-2663 (((-655 (-1190 (-575))) (-575)) 33)) (-3069 (((-1190 (-575)) (-575)) 28))) +(((-193) (-10 -7 (-15 -2663 ((-655 (-1190 (-575))) (-575))) (-15 -3069 ((-1190 (-575)) (-575))) (-15 -4275 ((-429 (-1190 (-575))) (-575))))) (T -193)) +((-4275 (*1 *2 *3) (-12 (-5 *2 (-429 (-1190 (-575)))) (-5 *1 (-193)) (-5 *3 (-575)))) (-3069 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-193)) (-5 *3 (-575)))) (-2663 (*1 *2 *3) (-12 (-5 *2 (-655 (-1190 (-575)))) (-5 *1 (-193)) (-5 *3 (-575))))) +(-10 -7 (-15 -2663 ((-655 (-1190 (-575))) (-575))) (-15 -3069 ((-1190 (-575)) (-575))) (-15 -4275 ((-429 (-1190 (-575))) (-575)))) +((-1690 (((-1174 (-227)) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-2937 (((-655 (-1176)) (-1174 (-227))) NIL)) (-2339 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3561 (((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227)))) NIL)) (-3200 (((-655 (-1176)) (-655 (-227))) NIL)) (-2403 (((-227) (-1111 (-854 (-227)))) 31)) (-3919 (((-227) (-1111 (-854 (-227)))) 32)) (-2945 (((-389) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-4113 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-1688 (((-1176) (-227)) NIL)) (-3699 (((-1176) (-655 (-1176))) 27)) (-1661 (((-1052) (-1194) (-1194) (-1052)) 13))) +(((-194) (-10 -7 (-15 -2339 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4113 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2403 ((-227) (-1111 (-854 (-227))))) (-15 -3919 ((-227) (-1111 (-854 (-227))))) (-15 -2945 ((-389) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3561 ((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227))))) (-15 -1690 ((-1174 (-227)) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1688 ((-1176) (-227))) (-15 -3200 ((-655 (-1176)) (-655 (-227)))) (-15 -2937 ((-655 (-1176)) (-1174 (-227)))) (-15 -3699 ((-1176) (-655 (-1176)))) (-15 -1661 ((-1052) (-1194) (-1194) (-1052))))) (T -194)) +((-1661 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1052)) (-5 *3 (-1194)) (-5 *1 (-194)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-194)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-194)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-194)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-194)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-194)))) (-3561 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-227))) (-5 *4 (-1194)) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-194)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-389)) (-5 *1 (-194)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-4113 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-2339 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) +(-10 -7 (-15 -2339 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4113 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2403 ((-227) (-1111 (-854 (-227))))) (-15 -3919 ((-227) (-1111 (-854 (-227))))) (-15 -2945 ((-389) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3561 ((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227))))) (-15 -1690 ((-1174 (-227)) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1688 ((-1176) (-227))) (-15 -3200 ((-655 (-1176)) (-655 (-227)))) (-15 -2937 ((-655 (-1176)) (-1174 (-227)))) (-15 -3699 ((-1176) (-655 (-1176)))) (-15 -1661 ((-1052) (-1194) (-1194) (-1052)))) +((-2861 (((-112) $ $) NIL)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 61) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-195) (-798)) (T -195)) +NIL +(-798) +((-2861 (((-112) $ $) NIL)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 66) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-196) (-798)) (T -196)) +NIL +(-798) +((-2861 (((-112) $ $) NIL)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 81) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-197) (-798)) (T -197)) +NIL +(-798) +((-2861 (((-112) $ $) NIL)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 63) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-198) (-798)) (T -198)) +NIL +(-798) +((-2861 (((-112) $ $) NIL)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 75) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-199) (-798)) (T -199)) +NIL +(-798) +((-2861 (((-112) $ $) NIL)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 93) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-200) (-798)) (T -200)) +NIL +(-798) +((-2861 (((-112) $ $) NIL)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 90) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-201) (-798)) (T -201)) +NIL +(-798) +((-2861 (((-112) $ $) NIL)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 77) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-202) (-798)) (T -202)) +NIL +(-798) +((-2861 (((-112) $ $) NIL)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 76)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-203) (-798)) (T -203)) +NIL +(-798) +((-2861 (((-112) $ $) NIL)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 77)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-204) (-798)) (T -204)) +NIL +(-798) +((-2861 (((-112) $ $) NIL)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 105) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-205) (-798)) (T -205)) +NIL +(-798) +((-1413 (((-3 (-2 (|:| -1576 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3661 (((-575) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-3109 (((-3 (-655 (-227)) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) +(((-206) (-10 -7 (-15 -1413 ((-3 (-2 (|:| -1576 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3109 ((-3 (-655 (-227)) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3661 ((-575) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) +((-3661 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-575)) (-5 *1 (-206)))) (-3109 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-206)))) (-1413 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1576 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(-10 -7 (-15 -1413 ((-3 (-2 (|:| -1576 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3109 ((-3 (-655 (-227)) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3661 ((-575) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-4126 (((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-2876 (((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-4105 (((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-700 (-325 (-227)))) 112)) (-2234 (((-389) (-700 (-325 (-227)))) 140)) (-1816 (((-700 (-325 (-227))) (-1285 (-325 (-227))) (-655 (-1194))) 136)) (-3578 (((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-2868 (((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3048 (((-700 (-325 (-227))) (-700 (-325 (-227))) (-655 (-1194)) (-1285 (-325 (-227)))) 125)) (-2319 (((-389) (-389) (-655 (-389))) 133) (((-389) (-389) (-389)) 128)) (-1574 (((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) +(((-207) (-10 -7 (-15 -2319 ((-389) (-389) (-389))) (-15 -2319 ((-389) (-389) (-655 (-389)))) (-15 -2234 ((-389) (-700 (-325 (-227))))) (-15 -1816 ((-700 (-325 (-227))) (-1285 (-325 (-227))) (-655 (-1194)))) (-15 -3048 ((-700 (-325 (-227))) (-700 (-325 (-227))) (-655 (-1194)) (-1285 (-325 (-227))))) (-15 -4105 ((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-700 (-325 (-227))))) (-15 -2876 ((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4126 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2868 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1574 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3578 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) +((-3578 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-389)) (-5 *1 (-207)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-389)) (-5 *1 (-207)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-389)) (-5 *1 (-207)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-389)) (-5 *1 (-207)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389)))) (-5 *1 (-207)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-700 (-325 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389)))) (-5 *1 (-207)))) (-3048 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-700 (-325 (-227)))) (-5 *3 (-655 (-1194))) (-5 *4 (-1285 (-325 (-227)))) (-5 *1 (-207)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *4 (-655 (-1194))) (-5 *2 (-700 (-325 (-227)))) (-5 *1 (-207)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-700 (-325 (-227)))) (-5 *2 (-389)) (-5 *1 (-207)))) (-2319 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-389))) (-5 *2 (-389)) (-5 *1 (-207)))) (-2319 (*1 *2 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-207))))) +(-10 -7 (-15 -2319 ((-389) (-389) (-389))) (-15 -2319 ((-389) (-389) (-655 (-389)))) (-15 -2234 ((-389) (-700 (-325 (-227))))) (-15 -1816 ((-700 (-325 (-227))) (-1285 (-325 (-227))) (-655 (-1194)))) (-15 -3048 ((-700 (-325 (-227))) (-700 (-325 (-227))) (-655 (-1194)) (-1285 (-325 (-227))))) (-15 -4105 ((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-700 (-325 (-227))))) (-15 -2876 ((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4126 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2868 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1574 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3578 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-2861 (((-112) $ $) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-1729 (((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-3914 (((-112) $ $) NIL))) +(((-208) (-811)) (T -208)) +NIL +(-811) +((-2861 (((-112) $ $) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-1729 (((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-3914 (((-112) $ $) NIL))) +(((-209) (-811)) (T -209)) +NIL +(-811) +((-2861 (((-112) $ $) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-1729 (((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-3914 (((-112) $ $) NIL))) +(((-210) (-811)) (T -210)) +NIL +(-811) +((-2861 (((-112) $ $) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-1729 (((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-3914 (((-112) $ $) NIL))) +(((-211) (-811)) (T -211)) +NIL +(-811) +((-3489 (((-655 (-1194)) (-1194) (-782)) 26)) (-3475 (((-325 (-227)) (-325 (-227))) 35)) (-2725 (((-112) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 87)) (-2067 (((-112) (-227) (-227) (-655 (-325 (-227)))) 47))) +(((-212) (-10 -7 (-15 -3489 ((-655 (-1194)) (-1194) (-782))) (-15 -3475 ((-325 (-227)) (-325 (-227)))) (-15 -2067 ((-112) (-227) (-227) (-655 (-325 (-227))))) (-15 -2725 ((-112) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))))))) (T -212)) +((-2725 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2067 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-655 (-325 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-325 (-227))) (-5 *1 (-212)))) (-3489 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-5 *2 (-655 (-1194))) (-5 *1 (-212)) (-5 *3 (-1194))))) +(-10 -7 (-15 -3489 ((-655 (-1194)) (-1194) (-782))) (-15 -3475 ((-325 (-227)) (-325 (-227)))) (-15 -2067 ((-112) (-227) (-227) (-655 (-325 (-227))))) (-15 -2725 ((-112) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))))) +((-2861 (((-112) $ $) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 28)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3750 (((-1052) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 70)) (-3914 (((-112) $ $) NIL))) +(((-213) (-909)) (T -213)) +NIL +(-909) +((-2861 (((-112) $ $) NIL)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 24)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3750 (((-1052) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) NIL)) (-3914 (((-112) $ $) NIL))) +(((-214) (-909)) (T -214)) +NIL +(-909) +((-2861 (((-112) $ $) NIL)) (-2795 ((|#2| $ (-782) |#2|) 11)) (-2788 ((|#2| $ (-782)) 10)) (-2309 (($) 8)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 23)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 13))) +(((-215 |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -2309 ($)) (-15 -2788 (|#2| $ (-782))) (-15 -2795 (|#2| $ (-782) |#2|)))) (-936) (-1117)) (T -215)) +((-2309 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1117)))) (-2788 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *2 (-1117)) (-5 *1 (-215 *4 *2)) (-14 *4 (-936)))) (-2795 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-215 *4 *2)) (-14 *4 (-936)) (-4 *2 (-1117))))) +(-13 (-1117) (-10 -8 (-15 -2309 ($)) (-15 -2788 (|#2| $ (-782))) (-15 -2795 (|#2| $ (-782) |#2|)))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2514 (((-1290) $) 37) (((-1290) $ (-936) (-936)) 41)) (-2070 (($ $ (-1006)) 19) (((-250 (-1176)) $ (-1194)) 15)) (-2484 (((-1290) $) 35)) (-2883 (((-873) $) 32) (($ (-655 |#1|)) 8)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $ $) 27)) (-4016 (($ $ $) 22))) +(((-216 |#1|) (-13 (-1117) (-627 (-655 |#1|)) (-10 -8 (-15 -2070 ($ $ (-1006))) (-15 -2070 ((-250 (-1176)) $ (-1194))) (-15 -4016 ($ $ $)) (-15 -4028 ($ $ $)) (-15 -2484 ((-1290) $)) (-15 -2514 ((-1290) $)) (-15 -2514 ((-1290) $ (-936) (-936))))) (-13 (-861) (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 ((-1290) $)) (-15 -2514 ((-1290) $))))) (T -216)) +((-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-1006)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 ((-1290) $)) (-15 -2514 ((-1290) $))))))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-250 (-1176))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2070 ((-1176) $ *3)) (-15 -2484 ((-1290) $)) (-15 -2514 ((-1290) $))))))) (-4016 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 ((-1290) $)) (-15 -2514 ((-1290) $))))))) (-4028 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 ((-1290) $)) (-15 -2514 ((-1290) $))))))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 (*2 $)) (-15 -2514 (*2 $))))))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 (*2 $)) (-15 -2514 (*2 $))))))) (-2514 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 (*2 $)) (-15 -2514 (*2 $)))))))) +(-13 (-1117) (-627 (-655 |#1|)) (-10 -8 (-15 -2070 ($ $ (-1006))) (-15 -2070 ((-250 (-1176)) $ (-1194))) (-15 -4016 ($ $ $)) (-15 -4028 ($ $ $)) (-15 -2484 ((-1290) $)) (-15 -2514 ((-1290) $)) (-15 -2514 ((-1290) $ (-936) (-936))))) +((-4352 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4352 (|#2| |#4| (-1 |#2| |#2|)))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -217)) +((-4352 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-373)) (-4 *6 (-1261 (-418 *2))) (-4 *2 (-1261 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-352 *5 *2 *6))))) +(-10 -7 (-15 -4352 (|#2| |#4| (-1 |#2| |#2|)))) +((-2783 ((|#2| |#2| (-782) |#2|) 55)) (-2364 ((|#2| |#2| (-782) |#2|) 51)) (-2355 (((-655 |#2|) (-655 (-2 (|:| |deg| (-782)) (|:| -1489 |#2|)))) 79)) (-4388 (((-655 (-2 (|:| |deg| (-782)) (|:| -1489 |#2|))) |#2|) 73)) (-4368 (((-112) |#2|) 71)) (-2794 (((-429 |#2|) |#2|) 91)) (-2353 (((-429 |#2|) |#2|) 90)) (-1897 ((|#2| |#2| (-782) |#2|) 49)) (-3132 (((-2 (|:| |cont| |#1|) (|:| -3378 (-655 (-2 (|:| |irr| |#2|) (|:| -2856 (-575)))))) |#2| (-112)) 85))) +(((-218 |#1| |#2|) (-10 -7 (-15 -2353 ((-429 |#2|) |#2|)) (-15 -2794 ((-429 |#2|) |#2|)) (-15 -3132 ((-2 (|:| |cont| |#1|) (|:| -3378 (-655 (-2 (|:| |irr| |#2|) (|:| -2856 (-575)))))) |#2| (-112))) (-15 -4388 ((-655 (-2 (|:| |deg| (-782)) (|:| -1489 |#2|))) |#2|)) (-15 -2355 ((-655 |#2|) (-655 (-2 (|:| |deg| (-782)) (|:| -1489 |#2|))))) (-15 -1897 (|#2| |#2| (-782) |#2|)) (-15 -2364 (|#2| |#2| (-782) |#2|)) (-15 -2783 (|#2| |#2| (-782) |#2|)) (-15 -4368 ((-112) |#2|))) (-359) (-1261 |#1|)) (T -218)) +((-4368 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1261 *4)))) (-2783 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1261 *4)))) (-2364 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1261 *4)))) (-1897 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1261 *4)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| |deg| (-782)) (|:| -1489 *5)))) (-4 *5 (-1261 *4)) (-4 *4 (-359)) (-5 *2 (-655 *5)) (-5 *1 (-218 *4 *5)))) (-4388 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-655 (-2 (|:| |deg| (-782)) (|:| -1489 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1261 *4)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3378 (-655 (-2 (|:| |irr| *3) (|:| -2856 (-575))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1261 *5)))) (-2794 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-429 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1261 *4)))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-429 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1261 *4))))) +(-10 -7 (-15 -2353 ((-429 |#2|) |#2|)) (-15 -2794 ((-429 |#2|) |#2|)) (-15 -3132 ((-2 (|:| |cont| |#1|) (|:| -3378 (-655 (-2 (|:| |irr| |#2|) (|:| -2856 (-575)))))) |#2| (-112))) (-15 -4388 ((-655 (-2 (|:| |deg| (-782)) (|:| -1489 |#2|))) |#2|)) (-15 -2355 ((-655 |#2|) (-655 (-2 (|:| |deg| (-782)) (|:| -1489 |#2|))))) (-15 -1897 (|#2| |#2| (-782) |#2|)) (-15 -2364 (|#2| |#2| (-782) |#2|)) (-15 -2783 (|#2| |#2| (-782) |#2|)) (-15 -4368 ((-112) |#2|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3127 (((-575) $) NIL (|has| (-575) (-316)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL (|has| (-575) (-831)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-575) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-575) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-575) (-1055 (-575))))) (-4399 (((-575) $) NIL) (((-1194) $) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-575) (-1055 (-575)))) (((-575) $) NIL (|has| (-575) (-1055 (-575))))) (-2802 (($ $ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| (-575) (-556)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-4075 (((-112) $) NIL (|has| (-575) (-831)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-575) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-575) (-898 (-389))))) (-1542 (((-112) $) NIL)) (-4046 (($ $) NIL)) (-1595 (((-575) $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| (-575) (-1169)))) (-4087 (((-112) $) NIL (|has| (-575) (-831)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| (-575) (-861)))) (-2550 (($ (-1 (-575) (-575)) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| (-575) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) NIL (|has| (-575) (-316))) (((-418 (-575)) $) NIL)) (-2736 (((-575) $) NIL (|has| (-575) (-556)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3048 (($ $ (-655 (-575)) (-655 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-575) (-575)) NIL (|has| (-575) (-318 (-575)))) (($ $ (-303 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-303 (-575)))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-1194)) (-655 (-575))) NIL (|has| (-575) (-525 (-1194) (-575)))) (($ $ (-1194) (-575)) NIL (|has| (-575) (-525 (-1194) (-575))))) (-3708 (((-782) $) NIL)) (-2070 (($ $ (-575)) NIL (|has| (-575) (-295 (-575) (-575))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2389 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-4172 (($ $) NIL)) (-1608 (((-575) $) NIL)) (-4141 (($ (-418 (-575))) 9)) (-2615 (((-904 (-575)) $) NIL (|has| (-575) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-575) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-575) (-625 (-547)))) (((-389) $) NIL (|has| (-575) (-1039))) (((-227) $) NIL (|has| (-575) (-1039)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-575) (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) 8) (($ (-575)) NIL) (($ (-1194)) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL) (((-1021 10) $) 10)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-575) (-924))) (|has| (-575) (-146))))) (-3759 (((-782)) NIL T CONST)) (-1432 (((-575) $) NIL (|has| (-575) (-556)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-2705 (($ $) NIL (|has| (-575) (-831)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-3981 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3956 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3943 (((-112) $ $) NIL (|has| (-575) (-861)))) (-4038 (($ $ $) NIL) (($ (-575) (-575)) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-575) $) NIL) (($ $ (-575)) NIL))) +(((-219) (-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 10)) (-10 -8 (-15 -4309 ((-418 (-575)) $)) (-15 -4141 ($ (-418 (-575))))))) (T -219)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-219)))) (-4141 (*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-219))))) +(-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 10)) (-10 -8 (-15 -4309 ((-418 (-575)) $)) (-15 -4141 ($ (-418 (-575)))))) +((-2861 (((-112) $ $) NIL)) (-1381 (((-1135) $) 13)) (-2288 (((-1176) $) NIL)) (-3283 (((-494) $) 10)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 23) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 15)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-220) (-13 (-1100) (-10 -8 (-15 -3283 ((-494) $)) (-15 -1381 ((-1135) $)) (-15 -1788 ((-1152) $))))) (T -220)) +((-3283 (*1 *2 *1) (-12 (-5 *2 (-494)) (-5 *1 (-220)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-220)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-220))))) +(-13 (-1100) (-10 -8 (-15 -3283 ((-494) $)) (-15 -1381 ((-1135) $)) (-15 -1788 ((-1152) $)))) +((-4413 (((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|)) (-1176)) 29) (((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|))) 25)) (-2719 (((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1194) (-854 |#2|) (-854 |#2|) (-112)) 17))) +(((-221 |#1| |#2|) (-10 -7 (-15 -4413 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|)))) (-15 -4413 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|)) (-1176))) (-15 -2719 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1194) (-854 |#2|) (-854 |#2|) (-112)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-974) (-29 |#1|))) (T -221)) +((-2719 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1194)) (-5 *6 (-112)) (-4 *7 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-4 *3 (-13 (-1220) (-974) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-854 *3)))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1109 (-854 *3))) (-5 *5 (-1176)) (-4 *3 (-13 (-1220) (-974) (-29 *6))) (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-854 *3))) (-4 *3 (-13 (-1220) (-974) (-29 *5))) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) +(-10 -7 (-15 -4413 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|)))) (-15 -4413 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|)) (-1176))) (-15 -2719 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1194) (-854 |#2|) (-854 |#2|) (-112)))) +((-4413 (((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|)))) (-1176)) 49) (((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|))))) 46) (((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|))) (-1176)) 50) (((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|)))) 22))) +(((-222 |#1|) (-10 -7 (-15 -4413 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|))))) (-15 -4413 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|))) (-1176))) (-15 -4413 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|)))))) (-15 -4413 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|)))) (-1176)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (T -222)) +((-4413 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1109 (-854 (-418 (-967 *6))))) (-5 *5 (-1176)) (-5 *3 (-418 (-967 *6))) (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 (-325 *6))) (|:| |f2| (-655 (-854 (-325 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-854 (-418 (-967 *5))))) (-5 *3 (-418 (-967 *5))) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 (-325 *5))) (|:| |f2| (-655 (-854 (-325 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-418 (-967 *6))) (-5 *4 (-1109 (-854 (-325 *6)))) (-5 *5 (-1176)) (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 (-325 *6))) (|:| |f2| (-655 (-854 (-325 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1109 (-854 (-325 *5)))) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 (-325 *5))) (|:| |f2| (-655 (-854 (-325 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) +(-10 -7 (-15 -4413 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|))))) (-15 -4413 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|))) (-1176))) (-15 -4413 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|)))))) (-15 -4413 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|)))) (-1176)))) +((-2308 (((-2 (|:| -1699 (-1190 |#1|)) (|:| |deg| (-936))) (-1190 |#1|)) 26)) (-3945 (((-655 (-325 |#2|)) (-325 |#2|) (-936)) 51))) +(((-223 |#1| |#2|) (-10 -7 (-15 -2308 ((-2 (|:| -1699 (-1190 |#1|)) (|:| |deg| (-936))) (-1190 |#1|))) (-15 -3945 ((-655 (-325 |#2|)) (-325 |#2|) (-936)))) (-1066) (-567)) (T -223)) +((-3945 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *6 (-567)) (-5 *2 (-655 (-325 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-325 *6)) (-4 *5 (-1066)))) (-2308 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-2 (|:| -1699 (-1190 *4)) (|:| |deg| (-936)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1190 *4)) (-4 *5 (-567))))) +(-10 -7 (-15 -2308 ((-2 (|:| -1699 (-1190 |#1|)) (|:| |deg| (-936))) (-1190 |#1|))) (-15 -3945 ((-655 (-325 |#2|)) (-325 |#2|) (-936)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1596 ((|#1| $) NIL)) (-2010 ((|#1| $) 30)) (-1845 (((-112) $ (-782)) NIL)) (-3011 (($) NIL T CONST)) (-4162 (($ $) NIL)) (-1789 (($ $) 39)) (-2620 ((|#1| |#1| $) NIL)) (-4065 ((|#1| $) NIL)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-1839 (((-782) $) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4012 ((|#1| $) NIL)) (-1997 ((|#1| |#1| $) 35)) (-3488 ((|#1| |#1| $) 37)) (-3862 (($ |#1| $) NIL)) (-3343 (((-782) $) 33)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2392 ((|#1| $) NIL)) (-3691 ((|#1| $) 31)) (-2004 ((|#1| $) 29)) (-2454 ((|#1| $) NIL)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2818 ((|#1| |#1| $) NIL)) (-4076 (((-112) $) 9)) (-1938 (($) NIL)) (-2906 ((|#1| $) NIL)) (-1505 (($) NIL) (($ (-655 |#1|)) 16)) (-3323 (((-782) $) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-1959 ((|#1| $) 13)) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) NIL)) (-4315 ((|#1| $) NIL)) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-224 |#1|) (-13 (-260 |#1|) (-10 -8 (-15 -1505 ($ (-655 |#1|))))) (-1117)) (T -224)) +((-1505 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-224 *3))))) +(-13 (-260 |#1|) (-10 -8 (-15 -1505 ($ (-655 |#1|))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-4032 (($ (-325 |#1|)) 24)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-3373 (((-112) $) NIL)) (-2449 (((-3 (-325 |#1|) "failed") $) NIL)) (-4399 (((-325 |#1|) $) NIL)) (-4406 (($ $) 32)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) NIL)) (-2550 (($ (-1 (-325 |#1|) (-325 |#1|)) $) NIL)) (-4383 (((-325 |#1|) $) NIL)) (-3990 (($ $) 31)) (-2288 (((-1176) $) NIL)) (-2170 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3659 (($ (-782)) NIL)) (-4338 (($ $) 33)) (-2645 (((-575) $) NIL)) (-2883 (((-873) $) 65) (($ (-575)) NIL) (($ (-325 |#1|)) NIL)) (-2012 (((-325 |#1|) $ $) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 26 T CONST)) (-2009 (($) NIL T CONST)) (-3914 (((-112) $ $) 29)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 20)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 25) (($ (-325 |#1|) $) 19))) +(((-225 |#1| |#2|) (-13 (-631 (-325 |#1|)) (-1055 (-325 |#1|)) (-10 -8 (-15 -4383 ((-325 |#1|) $)) (-15 -3990 ($ $)) (-15 -4406 ($ $)) (-15 -2012 ((-325 |#1|) $ $)) (-15 -3659 ($ (-782))) (-15 -2170 ((-112) $)) (-15 -3373 ((-112) $)) (-15 -2645 ((-575) $)) (-15 -2550 ($ (-1 (-325 |#1|) (-325 |#1|)) $)) (-15 -4032 ($ (-325 |#1|))) (-15 -4338 ($ $)))) (-13 (-1066) (-861)) (-655 (-1194))) (T -225)) +((-4383 (*1 *2 *1) (-12 (-5 *2 (-325 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-3990 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861))) (-14 *3 (-655 (-1194))))) (-4406 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861))) (-14 *3 (-655 (-1194))))) (-2012 (*1 *2 *1 *1) (-12 (-5 *2 (-325 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-325 *3) (-325 *3))) (-4 *3 (-13 (-1066) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-655 (-1194))))) (-4032 (*1 *1 *2) (-12 (-5 *2 (-325 *3)) (-4 *3 (-13 (-1066) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-655 (-1194))))) (-4338 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861))) (-14 *3 (-655 (-1194)))))) +(-13 (-631 (-325 |#1|)) (-1055 (-325 |#1|)) (-10 -8 (-15 -4383 ((-325 |#1|) $)) (-15 -3990 ($ $)) (-15 -4406 ($ $)) (-15 -2012 ((-325 |#1|) $ $)) (-15 -3659 ($ (-782))) (-15 -2170 ((-112) $)) (-15 -3373 ((-112) $)) (-15 -2645 ((-575) $)) (-15 -2550 ($ (-1 (-325 |#1|) (-325 |#1|)) $)) (-15 -4032 ($ (-325 |#1|))) (-15 -4338 ($ $)))) +((-2716 (((-112) (-1176)) 26)) (-4313 (((-3 (-854 |#2|) "failed") (-623 |#2|) |#2| (-854 |#2|) (-854 |#2|) (-112)) 35)) (-4119 (((-3 (-112) "failed") (-1190 |#2|) (-854 |#2|) (-854 |#2|) (-112)) 84) (((-3 (-112) "failed") (-967 |#1|) (-1194) (-854 |#2|) (-854 |#2|) (-112)) 85))) +(((-226 |#1| |#2|) (-10 -7 (-15 -2716 ((-112) (-1176))) (-15 -4313 ((-3 (-854 |#2|) "failed") (-623 |#2|) |#2| (-854 |#2|) (-854 |#2|) (-112))) (-15 -4119 ((-3 (-112) "failed") (-967 |#1|) (-1194) (-854 |#2|) (-854 |#2|) (-112))) (-15 -4119 ((-3 (-112) "failed") (-1190 |#2|) (-854 |#2|) (-854 |#2|) (-112)))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-29 |#1|))) (T -226)) +((-4119 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1190 *6)) (-5 *4 (-854 *6)) (-4 *6 (-13 (-1220) (-29 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-226 *5 *6)))) (-4119 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-967 *6)) (-5 *4 (-1194)) (-5 *5 (-854 *7)) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-4 *7 (-13 (-1220) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-4313 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-854 *4)) (-5 *3 (-623 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1220) (-29 *6))) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-226 *6 *4)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1220) (-29 *4)))))) +(-10 -7 (-15 -2716 ((-112) (-1176))) (-15 -4313 ((-3 (-854 |#2|) "failed") (-623 |#2|) |#2| (-854 |#2|) (-854 |#2|) (-112))) (-15 -4119 ((-3 (-112) "failed") (-967 |#1|) (-1194) (-854 |#2|) (-854 |#2|) (-112))) (-15 -4119 ((-3 (-112) "failed") (-1190 |#2|) (-854 |#2|) (-854 |#2|) (-112)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 98)) (-3127 (((-575) $) 35)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4080 (($ $) NIL)) (-3923 (($ $) 87)) (-3786 (($ $) 75)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2473 (($ $) 66)) (-2279 (((-112) $ $) NIL)) (-3897 (($ $) 85)) (-3761 (($ $) 73)) (-4428 (((-575) $) 128)) (-1521 (($ $) 90)) (-3807 (($ $) 77)) (-3011 (($) NIL T CONST)) (-2447 (($ $) NIL)) (-2449 (((-3 (-575) "failed") $) 127) (((-3 (-418 (-575)) "failed") $) 124)) (-4399 (((-575) $) 125) (((-418 (-575)) $) 122)) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) 103)) (-2311 (((-418 (-575)) $ (-782)) 117) (((-418 (-575)) $ (-782) (-782)) 116)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-1499 (((-936)) 29) (((-936) (-936)) NIL (|has| $ (-6 -4451)))) (-4075 (((-112) $) NIL)) (-1631 (($) 46)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL)) (-2673 (((-575) $) 42)) (-1542 (((-112) $) 99)) (-2931 (($ $ (-575)) NIL)) (-2255 (($ $) NIL)) (-4087 (((-112) $) 97)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) 63) (($) 38 (-12 (-3215 (|has| $ (-6 -4443))) (-3215 (|has| $ (-6 -4451)))))) (-1425 (($ $ $) 62) (($) 37 (-12 (-3215 (|has| $ (-6 -4443))) (-3215 (|has| $ (-6 -4451)))))) (-3662 (((-575) $) 27)) (-3056 (($ $) 33)) (-3372 (($ $) 67)) (-3463 (($ $) 72)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3906 (((-936) (-575)) NIL (|has| $ (-6 -4451)))) (-3912 (((-1137) $) 101)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) NIL)) (-2736 (($ $) NIL)) (-1539 (($ (-575) (-575)) NIL) (($ (-575) (-575) (-936)) 110)) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2398 (((-575) $) 28)) (-4077 (($) 45)) (-2665 (($ $) 71)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-1874 (((-936)) NIL) (((-936) (-936)) NIL (|has| $ (-6 -4451)))) (-2389 (($ $) 104) (($ $ (-782)) NIL)) (-3450 (((-936) (-575)) NIL (|has| $ (-6 -4451)))) (-1530 (($ $) 88)) (-3817 (($ $) 78)) (-3937 (($ $) 89)) (-3797 (($ $) 76)) (-3909 (($ $) 86)) (-3774 (($ $) 74)) (-2615 (((-389) $) 113) (((-227) $) 14) (((-904 (-389)) $) NIL) (((-547) $) 52)) (-2883 (((-873) $) 49) (($ (-575)) 70) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-575)) 70) (($ (-418 (-575))) NIL)) (-3759 (((-782)) NIL T CONST)) (-1432 (($ $) NIL)) (-2351 (((-936)) 36) (((-936) (-936)) NIL (|has| $ (-6 -4451)))) (-4400 (((-112) $ $) NIL)) (-1548 (((-936)) 25)) (-1568 (($ $) 93)) (-3852 (($ $) 81) (($ $ $) 120)) (-1780 (((-112) $ $) NIL)) (-1544 (($ $) 91)) (-3828 (($ $) 79)) (-1592 (($ $) 96)) (-3873 (($ $) 84)) (-2914 (($ $) 94)) (-3885 (($ $) 82)) (-1583 (($ $) 95)) (-3863 (($ $) 83)) (-1554 (($ $) 92)) (-3839 (($ $) 80)) (-2705 (($ $) 119)) (-1996 (($) 23 T CONST)) (-2009 (($) 43 T CONST)) (-4196 (((-1176) $) 18) (((-1176) $ (-112)) 20) (((-1290) (-833) $) 21) (((-1290) (-833) $ (-112)) 22)) (-4138 (($ $) 107)) (-3430 (($ $) NIL) (($ $ (-782)) NIL)) (-3413 (($ $ $) 109)) (-3981 (((-112) $ $) 56)) (-3956 (((-112) $ $) 54)) (-3914 (((-112) $ $) 64)) (-3970 (((-112) $ $) 55)) (-3943 (((-112) $ $) 53)) (-4038 (($ $ $) 44) (($ $ (-575)) 65)) (-4028 (($ $) 57) (($ $ $) 59)) (-4016 (($ $ $) 58)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 68) (($ $ (-418 (-575))) 152) (($ $ $) 69)) (* (($ (-936) $) 34) (($ (-782) $) NIL) (($ (-575) $) 61) (($ $ $) 60) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL))) +(((-227) (-13 (-415) (-238) (-839) (-1220) (-625 (-547)) (-10 -8 (-15 -4038 ($ $ (-575))) (-15 ** ($ $ $)) (-15 -4077 ($)) (-15 -3056 ($ $)) (-15 -3372 ($ $)) (-15 -3852 ($ $ $)) (-15 -4138 ($ $)) (-15 -3413 ($ $ $)) (-15 -2311 ((-418 (-575)) $ (-782))) (-15 -2311 ((-418 (-575)) $ (-782) (-782)))))) (T -227)) +((** (*1 *1 *1 *1) (-5 *1 (-227))) (-4038 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-227)))) (-4077 (*1 *1) (-5 *1 (-227))) (-3056 (*1 *1 *1) (-5 *1 (-227))) (-3372 (*1 *1 *1) (-5 *1 (-227))) (-3852 (*1 *1 *1 *1) (-5 *1 (-227))) (-4138 (*1 *1 *1) (-5 *1 (-227))) (-3413 (*1 *1 *1 *1) (-5 *1 (-227))) (-2311 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-227)))) (-2311 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-227))))) +(-13 (-415) (-238) (-839) (-1220) (-625 (-547)) (-10 -8 (-15 -4038 ($ $ (-575))) (-15 ** ($ $ $)) (-15 -4077 ($)) (-15 -3056 ($ $)) (-15 -3372 ($ $)) (-15 -3852 ($ $ $)) (-15 -4138 ($ $)) (-15 -3413 ($ $ $)) (-15 -2311 ((-418 (-575)) $ (-782))) (-15 -2311 ((-418 (-575)) $ (-782) (-782))))) +((-1703 (((-171 (-227)) (-782) (-171 (-227))) 11) (((-227) (-782) (-227)) 12)) (-3621 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-4385 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-1860 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-1553 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-3581 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-3091 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-1870 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-1854 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-3371 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-4138 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-3413 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) +(((-228) (-10 -7 (-15 -4138 ((-227) (-227))) (-15 -4138 ((-171 (-227)) (-171 (-227)))) (-15 -3413 ((-227) (-227) (-227))) (-15 -3413 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3621 ((-227) (-227))) (-15 -3621 ((-171 (-227)) (-171 (-227)))) (-15 -1860 ((-227) (-227))) (-15 -1860 ((-171 (-227)) (-171 (-227)))) (-15 -1703 ((-227) (-782) (-227))) (-15 -1703 ((-171 (-227)) (-782) (-171 (-227)))) (-15 -3091 ((-227) (-227) (-227))) (-15 -3091 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1553 ((-227) (-227) (-227))) (-15 -1553 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1870 ((-227) (-227) (-227))) (-15 -1870 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3581 ((-227) (-227) (-227))) (-15 -3581 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3371 ((-171 (-227)) (-171 (-227)))) (-15 -3371 ((-227) (-227))) (-15 -1854 ((-227) (-227))) (-15 -1854 ((-171 (-227)) (-171 (-227)))) (-15 -4385 ((-227) (-227) (-227))) (-15 -4385 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) +((-4385 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4385 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3371 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3371 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3581 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3581 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1870 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1870 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1553 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1553 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3091 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3091 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1703 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-782)) (-5 *1 (-228)))) (-1703 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-782)) (-5 *1 (-228)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3413 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3413 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4138 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4138 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) +(-10 -7 (-15 -4138 ((-227) (-227))) (-15 -4138 ((-171 (-227)) (-171 (-227)))) (-15 -3413 ((-227) (-227) (-227))) (-15 -3413 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3621 ((-227) (-227))) (-15 -3621 ((-171 (-227)) (-171 (-227)))) (-15 -1860 ((-227) (-227))) (-15 -1860 ((-171 (-227)) (-171 (-227)))) (-15 -1703 ((-227) (-782) (-227))) (-15 -1703 ((-171 (-227)) (-782) (-171 (-227)))) (-15 -3091 ((-227) (-227) (-227))) (-15 -3091 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1553 ((-227) (-227) (-227))) (-15 -1553 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1870 ((-227) (-227) (-227))) (-15 -1870 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3581 ((-227) (-227) (-227))) (-15 -3581 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3371 ((-171 (-227)) (-171 (-227)))) (-15 -3371 ((-227) (-227))) (-15 -1854 ((-227) (-227))) (-15 -1854 ((-171 (-227)) (-171 (-227)))) (-15 -4385 ((-227) (-227) (-227))) (-15 -4385 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2880 (($ (-782) (-782)) NIL)) (-3544 (($ $ $) NIL)) (-1926 (($ (-1285 |#1|)) NIL) (($ $) NIL)) (-3533 (($ |#1| |#1| |#1|) 33)) (-3158 (((-112) $) NIL)) (-3922 (($ $ (-575) (-575)) NIL)) (-2905 (($ $ (-575) (-575)) NIL)) (-4104 (($ $ (-575) (-575) (-575) (-575)) NIL)) (-3823 (($ $) NIL)) (-1503 (((-112) $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3383 (($ $ (-575) (-575) $) NIL)) (-3054 ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575)) $) NIL)) (-3918 (($ $ (-575) (-1285 |#1|)) NIL)) (-4188 (($ $ (-575) (-1285 |#1|)) NIL)) (-3957 (($ |#1| |#1| |#1|) 32)) (-2271 (($ (-782) |#1|) NIL)) (-3011 (($) NIL T CONST)) (-3356 (($ $) NIL (|has| |#1| (-316)))) (-1565 (((-1285 |#1|) $ (-575)) NIL)) (-1662 (($ |#1|) 31)) (-1344 (($ |#1|) 30)) (-2941 (($ |#1|) 29)) (-4422 (((-782) $) NIL (|has| |#1| (-567)))) (-2859 ((|#1| $ (-575) (-575) |#1|) NIL)) (-2788 ((|#1| $ (-575) (-575)) NIL)) (-4001 (((-655 |#1|) $) NIL)) (-1911 (((-782) $) NIL (|has| |#1| (-567)))) (-3264 (((-655 (-1285 |#1|)) $) NIL (|has| |#1| (-567)))) (-4243 (((-782) $) NIL)) (-2309 (($ (-782) (-782) |#1|) NIL)) (-4255 (((-782) $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-1907 ((|#1| $) NIL (|has| |#1| (-6 (-4462 "*"))))) (-2667 (((-575) $) NIL)) (-1775 (((-575) $) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1776 (((-575) $) NIL)) (-3293 (((-575) $) NIL)) (-4316 (($ (-655 (-655 |#1|))) 11)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3487 (((-655 (-655 |#1|)) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3205 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-1673 (($) 12)) (-2054 (($ $ $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3954 (($ $ |#1|) NIL)) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-575) (-575)) NIL) ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575))) NIL)) (-3740 (($ (-655 |#1|)) NIL) (($ (-655 $)) NIL)) (-1763 (((-112) $) NIL)) (-3674 ((|#1| $) NIL (|has| |#1| (-6 (-4462 "*"))))) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-1792 (((-1285 |#1|) $ (-575)) NIL)) (-2883 (($ (-1285 |#1|)) NIL) (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-4412 (((-112) $) NIL)) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $ $) NIL) (($ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-575) $) NIL) (((-1285 |#1|) $ (-1285 |#1|)) 15) (((-1285 |#1|) (-1285 |#1|) $) NIL) (((-958 |#1|) $ (-958 |#1|)) 21)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-229 |#1|) (-13 (-698 |#1| (-1285 |#1|) (-1285 |#1|)) (-10 -8 (-15 * ((-958 |#1|) $ (-958 |#1|))) (-15 -1673 ($)) (-15 -2941 ($ |#1|)) (-15 -1344 ($ |#1|)) (-15 -1662 ($ |#1|)) (-15 -3957 ($ |#1| |#1| |#1|)) (-15 -3533 ($ |#1| |#1| |#1|)))) (-13 (-373) (-1220))) (T -229)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220))) (-5 *1 (-229 *3)))) (-1673 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) (-2941 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) (-1344 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) (-1662 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) (-3957 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) (-3533 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220)))))) +(-13 (-698 |#1| (-1285 |#1|) (-1285 |#1|)) (-10 -8 (-15 * ((-958 |#1|) $ (-958 |#1|))) (-15 -1673 ($)) (-15 -2941 ($ |#1|)) (-15 -1344 ($ |#1|)) (-15 -1662 ($ |#1|)) (-15 -3957 ($ |#1| |#1| |#1|)) (-15 -3533 ($ |#1| |#1| |#1|)))) +((-1999 (($ (-1 (-112) |#2|) $) 16)) (-4404 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-3601 (($) NIL) (($ (-655 |#2|)) 11)) (-3914 (((-112) $ $) 26))) +(((-230 |#1| |#2|) (-10 -8 (-15 -1999 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4404 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4404 (|#1| |#2| |#1|)) (-15 -3601 (|#1| (-655 |#2|))) (-15 -3601 (|#1|)) (-15 -3914 ((-112) |#1| |#1|))) (-231 |#2|) (-1117)) (T -230)) +NIL +(-10 -8 (-15 -1999 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4404 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4404 (|#1| |#2| |#1|)) (-15 -3601 (|#1| (-655 |#2|))) (-15 -3601 (|#1|)) (-15 -3914 ((-112) |#1| |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) 8)) (-1999 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1748 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4404 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3633 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4012 ((|#1| $) 40)) (-3862 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2454 ((|#1| $) 42)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3601 (($) 50) (($ (-655 |#1|)) 49)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 51)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) 43)) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-231 |#1|) (-141) (-1117)) (T -231)) +NIL +(-13 (-240 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-240 |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2389 (($ $ (-1 |#1| |#1|) (-782)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1194)) 55 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 53 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 52 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 51 (|has| |#1| (-915 (-1194)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-782)) 45 (|has| |#1| (-237)))) (-2883 (((-873) $) 12) (($ (-575)) 33)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1 |#1| |#1|) (-782)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1194)) 54 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 50 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 49 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 48 (|has| |#1| (-915 (-1194)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-782)) 44 (|has| |#1| (-237)))) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-232 |#1|) (-141) (-1066)) (T -232)) +NIL +(-13 (-1066) (-271 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-913 (-1194))) (-6 (-913 (-1194))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-234 $) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-271 |#1|) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-908 $ #0=(-1194)) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-915 #0#) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T)) +((-3430 ((|#2| $) 9))) +(((-233 |#1| |#2|) (-10 -8 (-15 -3430 (|#2| |#1|))) (-234 |#2|) (-1235)) (T -233)) +NIL +(-10 -8 (-15 -3430 (|#2| |#1|))) +((-2389 ((|#1| $) 7)) (-3430 ((|#1| $) 6))) +(((-234 |#1|) (-141) (-1235)) (T -234)) +((-2389 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1235)))) (-3430 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1235))))) +(-13 (-1235) (-10 -8 (-15 -2389 (|t#1| $)) (-15 -3430 (|t#1| $)))) +(((-1235) . T)) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2389 (($ $ (-782)) 36) (($ $) 34)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3430 (($ $ (-782)) 37) (($ $) 35)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-235 |#1|) (-141) (-174)) (T -235)) +NIL +(-13 (-728 |t#1|) (-237)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-234 $) . T) ((-237) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T) ((-1235) . T)) +((-2389 (($ $) NIL) (($ $ (-782)) 9)) (-3430 (($ $) NIL) (($ $ (-782)) 11))) +(((-236 |#1|) (-10 -8 (-15 -3430 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-782))) (-15 -3430 (|#1| |#1|)) (-15 -2389 (|#1| |#1|))) (-237)) (T -236)) +NIL +(-10 -8 (-15 -3430 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-782))) (-15 -3430 (|#1| |#1|)) (-15 -2389 (|#1| |#1|))) +((-2389 (($ $) 7) (($ $ (-782)) 10)) (-3430 (($ $) 6) (($ $ (-782)) 9))) +(((-237) (-141)) (T -237)) +((-2389 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-782)))) (-3430 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-782))))) +(-13 (-234 $) (-10 -8 (-15 -2389 ($ $ (-782))) (-15 -3430 ($ $ (-782))))) +(((-234 $) . T) ((-1235) . T)) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2389 (($ $ (-782)) 42) (($ $) 40)) (-2883 (((-873) $) 12) (($ (-575)) 33)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-782)) 43) (($ $) 41)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) (((-238) (-141)) (T -238)) -((-2390 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-783)))) (-3431 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-783))))) -(-13 (-235 $) (-10 -8 (-15 -2390 ($ $ (-783))) (-15 -3431 ($ $ (-783))))) -(((-235 $) . T) ((-1236) . T)) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2390 (($ $ (-783)) 42) (($ $) 40)) (-2884 (((-874) $) 12) (($ (-576)) 33)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-783)) 43) (($ $) 41)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-239) (-141)) (T -239)) -NIL -(-13 (-1067) (-238)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-235 $) . T) ((-238) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T)) -((-1581 (($) 12) (($ (-656 |#2|)) NIL)) (-3079 (($ $) 14)) (-2895 (($ (-656 |#2|)) 10)) (-2884 (((-874) $) 21))) -(((-240 |#1| |#2|) (-10 -8 (-15 -2884 ((-874) |#1|)) (-15 -1581 (|#1| (-656 |#2|))) (-15 -1581 (|#1|)) (-15 -2895 (|#1| (-656 |#2|))) (-15 -3079 (|#1| |#1|))) (-241 |#2|) (-1118)) (T -240)) -NIL -(-10 -8 (-15 -2884 ((-874) |#1|)) (-15 -1581 (|#1| (-656 |#2|))) (-15 -1581 (|#1|)) (-15 -2895 (|#1| (-656 |#2|))) (-15 -3079 (|#1| |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) 8)) (-1443 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-1919 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2833 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3634 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3449 ((|#1| $) 40)) (-3807 (($ |#1| $) 41)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3458 ((|#1| $) 42)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-1581 (($) 50) (($ (-656 |#1|)) 49)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 51)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) 43)) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-241 |#1|) (-141) (-1118)) (T -241)) -((-1581 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1118)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-241 *3)))) (-2833 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-241 *2)) (-4 *2 (-1118)))) (-2833 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-241 *3)) (-4 *3 (-1118)))) (-1443 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-241 *3)) (-4 *3 (-1118))))) -(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -1581 ($)) (-15 -1581 ($ (-656 |t#1|))) (IF (|has| $ (-6 -4461)) (PROGN (-15 -2833 ($ |t#1| $)) (-15 -2833 ($ (-1 (-112) |t#1|) $)) (-15 -1443 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-1593 (((-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783))))) (-304 (-968 (-576)))) 42))) -(((-242) (-10 -7 (-15 -1593 ((-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783))))) (-304 (-968 (-576))))))) (T -242)) -((-1593 (*1 *2 *3) (-12 (-5 *3 (-304 (-968 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783)))))) (-5 *1 (-242))))) -(-10 -7 (-15 -1593 ((-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783))))) (-304 (-968 (-576)))))) -((-2416 (((-783)) 56)) (-2613 (((-2 (|:| -2869 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) 53) (((-701 |#3|) (-701 $)) 44) (((-701 |#3|) (-1286 $)) NIL) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1543 (((-135)) 62)) (-2390 (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2884 (((-1286 |#3|) $) NIL) (($ |#3|) NIL) (((-874) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-1871 (((-783)) 15)) (-4039 (($ $ |#3|) 59))) -(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|)) (-15 -1871 ((-783))) (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2884 (|#1| |#3|)) (-15 -2390 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2390 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2613 ((-701 |#3|) (-1286 |#1|))) (-15 -2613 ((-701 |#3|) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -2416 ((-783))) (-15 -4039 (|#1| |#1| |#3|)) (-15 -1543 ((-135))) (-15 -2884 ((-1286 |#3|) |#1|))) (-244 |#2| |#3|) (-783) (-1236)) (T -243)) -((-1543 (*1 *2) (-12 (-14 *4 (-783)) (-4 *5 (-1236)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-2416 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-1871 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))) -(-10 -8 (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|)) (-15 -1871 ((-783))) (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2884 (|#1| |#3|)) (-15 -2390 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2390 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2613 ((-701 |#3|) (-1286 |#1|))) (-15 -2613 ((-701 |#3|) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -2416 ((-783))) (-15 -4039 (|#1| |#1| |#3|)) (-15 -1543 ((-135))) (-15 -2884 ((-1286 |#3|) |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#2| (-1118)))) (-1389 (((-112) $) 75 (-3766 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-3533 (($ (-937)) 126 (|has| |#2| (-1067)))) (-3336 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-2158 (($ $ $) 122 (|has| |#2| (-805)))) (-1459 (((-3 $ "failed") $ $) 77 (|has| |#2| (-132)))) (-2970 (((-112) $ (-783)) 8)) (-2416 (((-783)) 112 (|has| |#2| (-379)))) (-3055 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4462)))) (-2473 (($) 7 T CONST)) (-2449 (((-3 (-576) "failed") $) 70 (-3227 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-3 (-419 (-576)) "failed") $) 67 (-3227 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (((-3 |#2| "failed") $) 64 (|has| |#2| (-1118)))) (-4401 (((-576) $) 69 (-3227 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-419 (-576)) $) 66 (-3227 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) ((|#2| $) 65 (|has| |#2| (-1118)))) (-2613 (((-701 (-576)) (-1286 $)) 111 (-3227 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-701 (-576)) (-701 $)) 110 (-3227 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 109 (-3227 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 108 (|has| |#2| (-1067))) (((-701 |#2|) (-701 $)) 107 (|has| |#2| (-1067))) (((-701 |#2|) (-1286 $)) 106 (|has| |#2| (-1067)))) (-1999 (((-3 $ "failed") $) 85 (|has| |#2| (-1067)))) (-2080 (($) 115 (|has| |#2| (-379)))) (-2859 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4462)))) (-2789 ((|#2| $ (-576)) 52)) (-4001 (((-656 |#2|) $) 31 (|has| $ (-6 -4461)))) (-1439 (((-112) $) 87 (|has| |#2| (-1067)))) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 44 (|has| (-576) (-862)))) (-1921 (($ $ $) 121 (|has| |#2| (-862)))) (-1496 (((-656 |#2|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 45 (|has| (-576) (-862)))) (-4137 (($ $ $) 120 (|has| |#2| (-862)))) (-2848 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#2| |#2|) $) 36)) (-1875 (((-937) $) 114 (|has| |#2| (-379)))) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#2| (-1118)))) (-3385 (((-656 (-576)) $) 47)) (-3394 (((-112) (-576) $) 48)) (-4318 (($ (-937)) 113 (|has| |#2| (-379)))) (-3914 (((-1138) $) 21 (|has| |#2| (-1118)))) (-1962 ((|#2| $) 43 (|has| (-576) (-862)))) (-3346 (($ $ |#2|) 42 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) 49)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-2165 ((|#2| $ $) 125 (|has| |#2| (-1067)))) (-1982 (($ (-1286 |#2|)) 127)) (-1543 (((-135)) 124 (|has| |#2| (-374)))) (-2390 (($ $ (-783)) 104 (-3227 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) 102 (-3227 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) 98 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) 97 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) 96 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) 94 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) 91 (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) 90 (|has| |#2| (-1067)))) (-3926 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4461))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2884 (((-1286 |#2|) $) 128) (($ (-576)) 71 (-3766 (-3227 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067)))) (($ (-419 (-576))) 68 (-3227 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (($ |#2|) 63 (|has| |#2| (-1118))) (((-874) $) 18 (|has| |#2| (-625 (-874))))) (-1871 (((-783)) 89 (|has| |#2| (-1067)) CONST)) (-3722 (((-112) $ $) 23 (|has| |#2| (-1118)))) (-2492 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4461)))) (-1996 (($) 74 (-3766 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2011 (($) 88 (|has| |#2| (-1067)) CONST)) (-3431 (($ $ (-783)) 105 (-3227 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) 103 (-3227 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) 100 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) 99 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) 95 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) 93 (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1067)))) (-3983 (((-112) $ $) 118 (|has| |#2| (-862)))) (-3957 (((-112) $ $) 117 (|has| |#2| (-862)))) (-3915 (((-112) $ $) 20 (|has| |#2| (-1118)))) (-3970 (((-112) $ $) 119 (|has| |#2| (-862)))) (-3943 (((-112) $ $) 116 (|has| |#2| (-862)))) (-4039 (($ $ |#2|) 123 (|has| |#2| (-374)))) (-4029 (($ $ $) 80 (|has| |#2| (-21))) (($ $) 79 (|has| |#2| (-21)))) (-4017 (($ $ $) 72 (|has| |#2| (-25)))) (** (($ $ (-783)) 86 (|has| |#2| (-1067))) (($ $ (-937)) 83 (|has| |#2| (-1067)))) (* (($ $ $) 84 (|has| |#2| (-1067))) (($ $ |#2|) 82 (|has| |#2| (-738))) (($ |#2| $) 81 (|has| |#2| (-738))) (($ (-576) $) 78 (|has| |#2| (-21))) (($ (-783) $) 76 (|has| |#2| (-23))) (($ (-937) $) 73 (|has| |#2| (-25)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-244 |#1| |#2|) (-141) (-783) (-1236)) (T -244)) -((-1982 (*1 *1 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1236)) (-4 *1 (-244 *3 *4)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1067)) (-4 *4 (-1236)))) (-2165 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1236)) (-4 *2 (-1067))))) -(-13 (-616 (-576) |t#2|) (-625 (-1286 |t#2|)) (-10 -8 (-6 -4461) (-15 -1982 ($ (-1286 |t#2|))) (IF (|has| |t#2| (-1118)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1067)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-388 |t#2|)) (-15 -3533 ($ (-937))) (-15 -2165 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-652 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |t#2| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1293 |t#2|)) |%noBranch|))) -(((-21) -3766 (|has| |#2| (-1067)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -3766 (|has| |#2| (-1067)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3766 (|has| |#2| (-1067)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -3766 (|has| |#2| (-1118)) (|has| |#2| (-1067)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -3766 (|has| |#2| (-1067)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -3766 (|has| |#2| (-1067)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118))) ((-628 (-576)) -3766 (|has| |#2| (-1067)) (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) ((-628 |#2|) |has| |#2| (-1118)) ((-625 (-874)) -3766 (|has| |#2| (-1118)) (|has| |#2| (-1067)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-874))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1286 |#2|)) . T) ((-235 $) -12 (|has| |#2| (-239)) (|has| |#2| (-1067))) ((-233 |#2|) |has| |#2| (-1067)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1067))) ((-238) -12 (|has| |#2| (-239)) (|has| |#2| (-1067))) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1067)) ((-423 |#2|) |has| |#2| (-1118)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-658 (-576)) -3766 (|has| |#2| (-1067)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-658 |#2|) -3766 (|has| |#2| (-1067)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-658 $) |has| |#2| (-1067)) ((-660 #2=(-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067))) ((-660 |#2|) -3766 (|has| |#2| (-1067)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-660 $) |has| |#2| (-1067)) ((-652 |#2|) -3766 (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-651 #2#) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067))) ((-651 |#2|) |has| |#2| (-1067)) ((-729 |#2|) -3766 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-738) |has| |#2| (-1067)) ((-804) |has| |#2| (-805)) ((-805) |has| |#2| (-805)) ((-806) |has| |#2| (-805)) ((-807) |has| |#2| (-805)) ((-862) -3766 (|has| |#2| (-862)) (|has| |#2| (-805))) ((-909 $ #3=(-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))) ((-914 #3#) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))) ((-916 #3#) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))) ((-1056 #0#) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118))) ((-1056 (-576)) -12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) ((-1056 |#2|) |has| |#2| (-1118)) ((-1069 |#2|) -3766 (|has| |#2| (-1067)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1074 |#2|) -3766 (|has| |#2| (-1067)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1067) |has| |#2| (-1067)) ((-1076) |has| |#2| (-1067)) ((-1130) |has| |#2| (-1067)) ((-1118) -3766 (|has| |#2| (-1118)) (|has| |#2| (-1067)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1236) . T) ((-1293 |#2|) |has| |#2| (-374))) -((-2176 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21)) (-2309 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23)) (-2551 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18))) -(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -2176 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2309 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2551 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-783) (-1236) (-1236)) (T -245)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-2309 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1236)) (-4 *2 (-1236)) (-5 *1 (-245 *5 *6 *2)))) (-2176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-783)) (-4 *7 (-1236)) (-4 *5 (-1236)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5))))) -(-10 -7 (-15 -2176 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2309 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2551 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) -((-2862 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-1389 (((-112) $) NIL (-3766 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-3533 (($ (-937)) 62 (|has| |#2| (-1067)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2158 (($ $ $) 68 (|has| |#2| (-805)))) (-1459 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-2970 (((-112) $ (-783)) NIL)) (-2416 (((-783)) NIL (|has| |#2| (-379)))) (-3055 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1118)))) (-4401 (((-576) $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) ((|#2| $) 28 (|has| |#2| (-1118)))) (-2613 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-1286 $)) NIL (|has| |#2| (-1067)))) (-1999 (((-3 $ "failed") $) 58 (|has| |#2| (-1067)))) (-2080 (($) NIL (|has| |#2| (-379)))) (-2859 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#2| $ (-576)) 56)) (-4001 (((-656 |#2|) $) 14 (|has| $ (-6 -4461)))) (-1439 (((-112) $) NIL (|has| |#2| (-1067)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) 19 (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#2| (-862)))) (-1496 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#2| (-862)))) (-2848 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-1875 (((-937) $) NIL (|has| |#2| (-379)))) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#2| (-1118)))) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-4318 (($ (-937)) NIL (|has| |#2| (-379)))) (-3914 (((-1138) $) NIL (|has| |#2| (-1118)))) (-1962 ((|#2| $) NIL (|has| (-576) (-862)))) (-3346 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-2165 ((|#2| $ $) NIL (|has| |#2| (-1067)))) (-1982 (($ (-1286 |#2|)) 17)) (-1543 (((-135)) NIL (|has| |#2| (-374)))) (-2390 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3926 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-1286 |#2|) $) 9) (($ (-576)) NIL (-3766 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (($ |#2|) 12 (|has| |#2| (-1118))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-1871 (((-783)) NIL (|has| |#2| (-1067)) CONST)) (-3722 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-2492 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1996 (($) 36 (-3766 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2011 (($) 40 (|has| |#2| (-1067)) CONST)) (-3431 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3983 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3915 (((-112) $ $) 27 (|has| |#2| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3943 (((-112) $ $) 66 (|has| |#2| (-862)))) (-4039 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4029 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4017 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1067))) (($ $ (-937)) NIL (|has| |#2| (-1067)))) (* (($ $ $) 46 (|has| |#2| (-1067))) (($ $ |#2|) 44 (|has| |#2| (-738))) (($ |#2| $) 45 (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-937) $) NIL (|has| |#2| (-25)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-246 |#1| |#2|) (-244 |#1| |#2|) (-783) (-1236)) (T -246)) -NIL -(-244 |#1| |#2|) -((-1628 (((-576) (-656 (-1177))) 36) (((-576) (-1177)) 29)) (-3589 (((-1291) (-656 (-1177))) 40) (((-1291) (-1177)) 39)) (-1602 (((-1177)) 16)) (-1613 (((-1177) (-576) (-1177)) 23)) (-1752 (((-656 (-1177)) (-656 (-1177)) (-576) (-1177)) 37) (((-1177) (-1177) (-576) (-1177)) 35)) (-3022 (((-656 (-1177)) (-656 (-1177))) 15) (((-656 (-1177)) (-1177)) 11))) -(((-247) (-10 -7 (-15 -3022 ((-656 (-1177)) (-1177))) (-15 -3022 ((-656 (-1177)) (-656 (-1177)))) (-15 -1602 ((-1177))) (-15 -1613 ((-1177) (-576) (-1177))) (-15 -1752 ((-1177) (-1177) (-576) (-1177))) (-15 -1752 ((-656 (-1177)) (-656 (-1177)) (-576) (-1177))) (-15 -3589 ((-1291) (-1177))) (-15 -3589 ((-1291) (-656 (-1177)))) (-15 -1628 ((-576) (-1177))) (-15 -1628 ((-576) (-656 (-1177)))))) (T -247)) -((-1628 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-576)) (-5 *1 (-247)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-247)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1291)) (-5 *1 (-247)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-247)))) (-1752 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 (-1177))) (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *1 (-247)))) (-1752 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-247)))) (-1613 (*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-247)))) (-1602 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-247)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-247)))) (-3022 (*1 *2 *3) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-247)) (-5 *3 (-1177))))) -(-10 -7 (-15 -3022 ((-656 (-1177)) (-1177))) (-15 -3022 ((-656 (-1177)) (-656 (-1177)))) (-15 -1602 ((-1177))) (-15 -1613 ((-1177) (-576) (-1177))) (-15 -1752 ((-1177) (-1177) (-576) (-1177))) (-15 -1752 ((-656 (-1177)) (-656 (-1177)) (-576) (-1177))) (-15 -3589 ((-1291) (-1177))) (-15 -3589 ((-1291) (-656 (-1177)))) (-15 -1628 ((-576) (-1177))) (-15 -1628 ((-576) (-656 (-1177))))) -((** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 20)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) NIL))) -(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) (-249)) (T -248)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 47)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 48)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49))) -(((-249) (-141)) (T -249)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-576)))) (-4333 (*1 *1 *1) (-4 *1 (-249)))) -(-13 (-300) (-38 (-419 (-576))) (-10 -8 (-15 ** ($ $ (-576))) (-15 -4333 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-300) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-729 #0#) . T) ((-738) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-4183 ((|#1| $) 49)) (-3463 (($ $) 58)) (-2970 (((-112) $ (-783)) 8)) (-3434 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-1650 (($ $ $) 54 (|has| $ (-6 -4462)))) (-1638 (($ $ $) 53 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-2473 (($) 7 T CONST)) (-1674 (($ $) 57)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) 51)) (-3452 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-2086 (($ $) 56)) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-2482 (((-656 |#1|) $) 46)) (-4306 (((-112) $) 50)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3654 ((|#1| $) 60)) (-4427 (($ $) 59)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ "value") 48)) (-3473 (((-576) $ $) 45)) (-4053 (((-112) $) 47)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-1806 (($ $ $) 55 (|has| $ (-6 -4462)))) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) 52)) (-3462 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-250 |#1|) (-141) (-1236)) (T -250)) -((-3654 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-4427 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-3463 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-1674 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-2086 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-1806 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-1650 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-1638 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236))))) -(-13 (-1028 |t#1|) (-10 -8 (-15 -3654 (|t#1| $)) (-15 -4427 ($ $)) (-15 -3463 ($ $)) (-15 -1674 ($ $)) (-15 -2086 ($ $)) (IF (|has| $ (-6 -4462)) (PROGN (-15 -1806 ($ $ $)) (-15 -1650 ($ $ $)) (-15 -1638 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4183 ((|#1| $) NIL)) (-2990 ((|#1| $) NIL)) (-3463 (($ $) NIL)) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1748 (($ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1891 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2032 (($ $) 10 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3434 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1772 (($ $ $) NIL (|has| $ (-6 -4462)))) (-1761 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1783 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "rest" $) NIL (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-1443 (($ (-1 (-112) |#1|) $) NIL)) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2978 ((|#1| $) NIL)) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1976 (($ $) NIL) (($ $ (-783)) NIL)) (-2257 (($ $) NIL (|has| |#1| (-1118)))) (-1919 (($ $) 7 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2833 (($ |#1| $) NIL (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) NIL)) (-3634 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2859 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) NIL)) (-1811 (((-112) $) NIL)) (-2634 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118))) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) (-1 (-112) |#1|) $) NIL)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) NIL)) (-3452 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2310 (($ (-783) |#1|) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-2230 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4214 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1685 (($ |#1|) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-2482 (((-656 |#1|) $) NIL)) (-4306 (((-112) $) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3654 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-3807 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2134 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1962 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3346 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-1821 (((-112) $) NIL)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-783) $ "count") 16)) (-3473 (((-576) $ $) NIL)) (-1455 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3240 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-1464 (($ (-656 |#1|)) 22)) (-4053 (((-112) $) NIL)) (-1816 (($ $) NIL)) (-1794 (($ $) NIL (|has| $ (-6 -4462)))) (-1826 (((-783) $) NIL)) (-1836 (($ $) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) NIL)) (-1806 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1514 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-2884 (($ (-656 |#1|)) 17) (((-656 |#1|) $) 18) (((-874) $) 21 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) NIL)) (-3462 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2872 (((-783) $) 14 (|has| $ (-6 -4461))))) -(((-251 |#1|) (-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -1464 ($ (-656 |#1|))) (-15 -2071 ($ $ "unique")) (-15 -2071 ($ $ "sort")) (-15 -2071 ((-783) $ "count")))) (-862)) (T -251)) -((-1464 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-251 *3)))) (-2071 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-862)))) (-2071 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-862)))) (-2071 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-251 *4)) (-4 *4 (-862))))) -(-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -1464 ($ (-656 |#1|))) (-15 -2071 ($ $ "unique")) (-15 -2071 ($ $ "sort")) (-15 -2071 ((-783) $ "count")))) -((-1660 (((-3 (-783) "failed") |#1| |#1| (-783)) 40))) -(((-252 |#1|) (-10 -7 (-15 -1660 ((-3 (-783) "failed") |#1| |#1| (-783)))) (-13 (-738) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -252)) -((-1660 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-783)) (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-252 *3))))) -(-10 -7 (-15 -1660 ((-3 (-783) "failed") |#1| |#1| (-783)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 (-876 |#1|)) $) NIL)) (-3467 (((-1191 $) $ (-876 |#1|)) NIL) (((-1191 |#2|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4241 (($ $) NIL (|has| |#2| (-568)))) (-4221 (((-112) $) NIL (|has| |#2| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2944 (($ $) NIL (|has| |#2| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4401 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-876 |#1|) $) NIL)) (-2778 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2376 (($ $ (-656 (-576))) NIL)) (-4407 (($ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#2| (-925)))) (-3098 (($ $ |#2| (-246 (-2872 |#1|) (-783)) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-2437 (($ (-1191 |#2|) (-876 |#1|)) NIL) (($ (-1191 $) (-876 |#1|)) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#2| (-246 (-2872 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-876 |#1|)) NIL)) (-1864 (((-246 (-2872 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-3109 (($ (-1 (-246 (-2872 |#1|) (-783)) (-246 (-2872 |#1|) (-783))) $) NIL)) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-2788 (((-3 (-876 |#1|) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3733 (((-1177) $) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -1359 (-783))) "failed") $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) NIL)) (-4359 ((|#2| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#2| (-925)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-2790 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2390 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3813 (((-246 (-2872 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1841 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ (-419 (-576))) NIL (-3766 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1993 (((-656 |#2|) $) NIL)) (-3245 ((|#2| $ (-246 (-2872 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#2| (-568)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-253 |#1| |#2|) (-13 (-965 |#2| (-246 (-2872 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -2376 ($ $ (-656 (-576)))))) (-656 (-1195)) (-1067)) (T -253)) -((-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-656 (-1195))) (-4 *4 (-1067))))) -(-13 (-965 |#2| (-246 (-2872 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -2376 ($ $ (-656 (-576)))))) -((-2862 (((-112) $ $) NIL)) (-2580 (((-1291) $) 17)) (-1680 (((-185 (-255)) $) 11)) (-1670 (($ (-185 (-255))) 12)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3744 (((-255) $) 7)) (-2884 (((-874) $) 9)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 15))) -(((-254) (-13 (-1118) (-10 -8 (-15 -3744 ((-255) $)) (-15 -1680 ((-185 (-255)) $)) (-15 -1670 ($ (-185 (-255)))) (-15 -2580 ((-1291) $))))) (T -254)) -((-3744 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1670 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-254))))) -(-13 (-1118) (-10 -8 (-15 -3744 ((-255) $)) (-15 -1680 ((-185 (-255)) $)) (-15 -1670 ($ (-185 (-255)))) (-15 -2580 ((-1291) $)))) -((-2862 (((-112) $ $) NIL)) (-3023 (((-656 (-877)) $) NIL)) (-1778 (((-518) $) NIL)) (-3733 (((-1177) $) NIL)) (-1560 (((-188) $) NIL)) (-3657 (((-112) $ (-518)) NIL)) (-3914 (((-1138) $) NIL)) (-1693 (((-343) $) 7)) (-2261 (((-656 (-112)) $) NIL)) (-2884 (((-874) $) NIL) (((-189) $) 8)) (-3722 (((-112) $ $) NIL)) (-2040 (((-55) $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -1693 ((-343) $))))) (T -255)) -((-1693 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(-13 (-187) (-625 (-189)) (-10 -8 (-15 -1693 ((-343) $)))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2071 (((-1200) $ (-783)) 13)) (-2884 (((-874) $) 20)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 16)) (-2872 (((-783) $) 9))) -(((-256) (-13 (-1118) (-296 (-783) (-1200)) (-10 -8 (-15 -2872 ((-783) $))))) (T -256)) -((-2872 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256))))) -(-13 (-1118) (-296 (-783) (-1200)) (-10 -8 (-15 -2872 ((-783) $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-3533 (($ (-937)) NIL (|has| |#4| (-1067)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2158 (($ $ $) NIL (|has| |#4| (-805)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-2416 (((-783)) NIL (|has| |#4| (-379)))) (-3055 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1118))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1056 (-576))) (|has| |#4| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1056 (-419 (-576)))) (|has| |#4| (-1118))))) (-4401 ((|#4| $) NIL (|has| |#4| (-1118))) (((-576) $) NIL (-12 (|has| |#4| (-1056 (-576))) (|has| |#4| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1056 (-419 (-576)))) (|has| |#4| (-1118))))) (-2613 (((-2 (|:| -2869 (-701 |#4|)) (|:| |vec| (-1286 |#4|))) (-701 $) (-1286 $)) NIL (|has| |#4| (-1067))) (((-701 |#4|) (-701 $)) NIL (|has| |#4| (-1067))) (((-701 |#4|) (-1286 $)) NIL (|has| |#4| (-1067))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1067)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1067))))) (-1999 (((-3 $ "failed") $) NIL (|has| |#4| (-1067)))) (-2080 (($) NIL (|has| |#4| (-379)))) (-2859 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#4| $ (-576)) NIL)) (-4001 (((-656 |#4|) $) NIL (|has| $ (-6 -4461)))) (-1439 (((-112) $) NIL (|has| |#4| (-1067)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#4| (-862)))) (-1496 (((-656 |#4|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#4| (-862)))) (-2848 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) NIL)) (-1875 (((-937) $) NIL (|has| |#4| (-379)))) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-4318 (($ (-937)) NIL (|has| |#4| (-379)))) (-3914 (((-1138) $) NIL)) (-1962 ((|#4| $) NIL (|has| (-576) (-862)))) (-3346 (($ $ |#4|) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3403 (((-656 |#4|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-2165 ((|#4| $ $) NIL (|has| |#4| (-1067)))) (-1982 (($ (-1286 |#4|)) NIL)) (-1543 (((-135)) NIL (|has| |#4| (-374)))) (-2390 (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1067))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1067))) (($ $ (-1195)) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1067)))) (($ $ (-783)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1067))))) (-3926 (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-1286 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1118))) (((-874) $) NIL) (($ (-576)) NIL (-3766 (-12 (|has| |#4| (-1056 (-576))) (|has| |#4| (-1118))) (|has| |#4| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1056 (-419 (-576)))) (|has| |#4| (-1118))))) (-1871 (((-783)) NIL (|has| |#4| (-1067)) CONST)) (-3722 (((-112) $ $) NIL)) (-2492 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL (|has| |#4| (-1067)) CONST)) (-3431 (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1067))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1067))) (($ $ (-1195)) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1067)))) (($ $ (-783)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1067))))) (-3983 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#4| (-862)))) (-4039 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-4029 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#4| (-1067))) (($ $ (-937)) NIL (|has| |#4| (-1067)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-738))) (($ |#4| $) NIL (|has| |#4| (-738))) (($ $ $) NIL (|has| |#4| (-1067)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-257 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-660 |#2|) (-660 |#3|)) (-937) (-1067) (-1141 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-660 |#2|)) (T -257)) -NIL -(-13 (-244 |#1| |#4|) (-660 |#2|) (-660 |#3|)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-3533 (($ (-937)) NIL (|has| |#3| (-1067)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2158 (($ $ $) NIL (|has| |#3| (-805)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-2416 (((-783)) NIL (|has| |#3| (-379)))) (-3055 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1118))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118))))) (-4401 ((|#3| $) NIL (|has| |#3| (-1118))) (((-576) $) NIL (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118))))) (-2613 (((-2 (|:| -2869 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) NIL (|has| |#3| (-1067))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1067))) (((-701 |#3|) (-1286 $)) NIL (|has| |#3| (-1067))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067))))) (-1999 (((-3 $ "failed") $) NIL (|has| |#3| (-1067)))) (-2080 (($) NIL (|has| |#3| (-379)))) (-2859 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#3| $ (-576)) NIL)) (-4001 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-1439 (((-112) $) NIL (|has| |#3| (-1067)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#3| (-862)))) (-1496 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#3| (-862)))) (-2848 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#3| |#3|) $) NIL)) (-1875 (((-937) $) NIL (|has| |#3| (-379)))) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-4318 (($ (-937)) NIL (|has| |#3| (-379)))) (-3914 (((-1138) $) NIL)) (-1962 ((|#3| $) NIL (|has| (-576) (-862)))) (-3346 (($ $ |#3|) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-3403 (((-656 |#3|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-2165 ((|#3| $ $) NIL (|has| |#3| (-1067)))) (-1982 (($ (-1286 |#3|)) NIL)) (-1543 (((-135)) NIL (|has| |#3| (-374)))) (-2390 (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1067))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1067))) (($ $ (-1195)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $ (-783)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067))))) (-3926 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-1286 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1118))) (((-874) $) NIL) (($ (-576)) NIL (-3766 (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (|has| |#3| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118))))) (-1871 (((-783)) NIL (|has| |#3| (-1067)) CONST)) (-3722 (((-112) $ $) NIL)) (-2492 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL (|has| |#3| (-1067)) CONST)) (-3431 (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1067))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1067))) (($ $ (-1195)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $ (-783)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067))))) (-3983 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#3| (-862)))) (-4039 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4029 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#3| (-1067))) (($ $ (-937)) NIL (|has| |#3| (-1067)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ $ $) NIL (|has| |#3| (-1067)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-258 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-660 |#2|)) (-783) (-1067) (-660 |#2|)) (T -258)) -NIL -(-13 (-244 |#1| |#3|) (-660 |#2|)) -((-1726 (((-656 (-783)) $) 56) (((-656 (-783)) $ |#3|) 59)) (-2092 (((-783) $) 58) (((-783) $ |#3|) 61)) (-1706 (($ $) 76)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2927 (((-783) $ |#3|) 43) (((-783) $) 38)) (-2102 (((-1 $ (-783)) |#3|) 15) (((-1 $ (-783)) $) 88)) (-2148 ((|#4| $) 69)) (-1715 (((-112) $) 67)) (-2817 (($ $) 75)) (-3049 (($ $ (-656 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-656 |#3|) (-656 |#2|)) 97)) (-2390 (($ $ (-656 |#4|) (-656 (-783))) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-783)) NIL) (($ $) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1737 (((-656 |#3|) $) 86)) (-3813 ((|#5| $) NIL) (((-783) $ |#4|) NIL) (((-656 (-783)) $ (-656 |#4|)) NIL) (((-783) $ |#3|) 49)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2884 (|#1| |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -3049 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3049 (|#1| |#1| |#3| |#2|)) (-15 -3049 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#3| |#1|)) (-15 -2102 ((-1 |#1| (-783)) |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -2817 (|#1| |#1|)) (-15 -2148 (|#4| |#1|)) (-15 -1715 ((-112) |#1|)) (-15 -2092 ((-783) |#1| |#3|)) (-15 -1726 ((-656 (-783)) |#1| |#3|)) (-15 -2092 ((-783) |#1|)) (-15 -1726 ((-656 (-783)) |#1|)) (-15 -3813 ((-783) |#1| |#3|)) (-15 -2927 ((-783) |#1|)) (-15 -2927 ((-783) |#1| |#3|)) (-15 -1737 ((-656 |#3|) |#1|)) (-15 -2102 ((-1 |#1| (-783)) |#3|)) (-15 -2884 (|#1| |#3|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -3813 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -3813 ((-783) |#1| |#4|)) (-15 -2884 (|#1| |#4|)) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -3049 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#4| |#1|)) (-15 -3049 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3049 (|#1| |#1| |#4| |#2|)) (-15 -3049 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| (-304 |#1|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3813 (|#5| |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2390 (|#1| |#1| |#4|)) (-15 -2390 (|#1| |#1| (-656 |#4|))) (-15 -2390 (|#1| |#1| |#4| (-783))) (-15 -2390 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1067) (-862) (-275 |#3|) (-805)) (T -259)) -NIL -(-10 -8 (-15 -2884 (|#1| |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -3049 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3049 (|#1| |#1| |#3| |#2|)) (-15 -3049 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#3| |#1|)) (-15 -2102 ((-1 |#1| (-783)) |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -2817 (|#1| |#1|)) (-15 -2148 (|#4| |#1|)) (-15 -1715 ((-112) |#1|)) (-15 -2092 ((-783) |#1| |#3|)) (-15 -1726 ((-656 (-783)) |#1| |#3|)) (-15 -2092 ((-783) |#1|)) (-15 -1726 ((-656 (-783)) |#1|)) (-15 -3813 ((-783) |#1| |#3|)) (-15 -2927 ((-783) |#1|)) (-15 -2927 ((-783) |#1| |#3|)) (-15 -1737 ((-656 |#3|) |#1|)) (-15 -2102 ((-1 |#1| (-783)) |#3|)) (-15 -2884 (|#1| |#3|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -3813 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -3813 ((-783) |#1| |#4|)) (-15 -2884 (|#1| |#4|)) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -3049 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#4| |#1|)) (-15 -3049 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3049 (|#1| |#1| |#4| |#2|)) (-15 -3049 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| (-304 |#1|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3813 (|#5| |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2390 (|#1| |#1| |#4|)) (-15 -2390 (|#1| |#1| (-656 |#4|))) (-15 -2390 (|#1| |#1| |#4| (-783))) (-15 -2390 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1726 (((-656 (-783)) $) 221) (((-656 (-783)) $ |#2|) 219)) (-2092 (((-783) $) 220) (((-783) $ |#2|) 218)) (-1607 (((-656 |#3|) $) 113)) (-3467 (((-1191 $) $ |#3|) 128) (((-1191 |#1|) $) 127)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4241 (($ $) 91 (|has| |#1| (-568)))) (-4221 (((-112) $) 93 (|has| |#1| (-568)))) (-1853 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-1459 (((-3 $ "failed") $ $) 20)) (-3203 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-925)))) (-2944 (($ $) 101 (|has| |#1| (-464)))) (-3986 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-925)))) (-1706 (($ $) 214)) (-2473 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1056 (-576)))) (((-3 |#3| "failed") $) 141) (((-3 |#2| "failed") $) 228)) (-4401 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1056 (-576)))) ((|#3| $) 142) ((|#2| $) 229)) (-2778 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-4407 (($ $) 159)) (-2613 (((-701 (-576)) (-1286 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1286 $)) 134)) (-1999 (((-3 $ "failed") $) 37)) (-2192 (($ $) 181 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-4394 (((-656 $) $) 112)) (-2463 (((-112) $) 99 (|has| |#1| (-925)))) (-3098 (($ $ |#1| |#4| $) 177)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2927 (((-783) $ |#2|) 224) (((-783) $) 223)) (-1439 (((-112) $) 35)) (-1518 (((-783) $) 174)) (-2437 (($ (-1191 |#1|) |#3|) 120) (($ (-1191 $) |#3|) 119)) (-1876 (((-656 $) $) 129)) (-3734 (((-112) $) 157)) (-2421 (($ |#1| |#4|) 158) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ |#3|) 123)) (-1864 ((|#4| $) 175) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3109 (($ (-1 |#4| |#4|) $) 176)) (-2551 (($ (-1 |#1| |#1|) $) 156)) (-2102 (((-1 $ (-783)) |#2|) 226) (((-1 $ (-783)) $) 213 (|has| |#1| (-239)))) (-2788 (((-3 |#3| "failed") $) 126)) (-4371 (($ $) 154)) (-4383 ((|#1| $) 153)) (-2148 ((|#3| $) 216)) (-3888 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3733 (((-1177) $) 10)) (-1715 (((-112) $) 217)) (-1899 (((-3 (-656 $) "failed") $) 117)) (-1887 (((-3 (-656 $) "failed") $) 118)) (-1910 (((-3 (-2 (|:| |var| |#3|) (|:| -1359 (-783))) "failed") $) 116)) (-2817 (($ $) 215)) (-3914 (((-1138) $) 11)) (-4346 (((-112) $) 171)) (-4359 ((|#1| $) 172)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-3928 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-925)))) (-2354 (((-430 $) $) 102 (|has| |#1| (-925)))) (-2852 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3049 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-656 |#3|) (-656 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-656 |#3|) (-656 $)) 143) (($ $ |#2| $) 212 (|has| |#1| (-239))) (($ $ (-656 |#2|) (-656 $)) 211 (|has| |#1| (-239))) (($ $ |#2| |#1|) 210 (|has| |#1| (-239))) (($ $ (-656 |#2|) (-656 |#1|)) 209 (|has| |#1| (-239)))) (-2790 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2390 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-783)) 244 (|has| |#1| (-239))) (($ $) 242 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 238 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 237 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 236 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 234 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 231) (($ $ (-1 |#1| |#1|)) 230)) (-1737 (((-656 |#2|) $) 225)) (-3813 ((|#4| $) 155) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132) (((-783) $ |#2|) 222)) (-2616 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1841 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 107 (-3227 (|has| $ (-146)) (|has| |#1| (-925))))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ |#2|) 227) (($ (-419 (-576))) 81 (-3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-1993 (((-656 |#1|) $) 173)) (-3245 ((|#1| $ |#4|) 160) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3148 (((-3 $ "failed") $) 82 (-3766 (-3227 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) 32 T CONST)) (-3086 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 92 (|has| |#1| (-568)))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-783)) 245 (|has| |#1| (-239))) (($ $) 243 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 241 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 240 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 239 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 235 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 233) (($ $ (-1 |#1| |#1|)) 232)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151))) -(((-260 |#1| |#2| |#3| |#4|) (-141) (-1067) (-862) (-275 |t#2|) (-805)) (T -260)) -((-2102 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))) (-2927 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3813 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1726 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2092 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-805)) (-4 *2 (-275 *4)))) (-2817 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1067)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-1706 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1067)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-2102 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6))))) -(-13 (-965 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1056 |t#2|) (-10 -8 (-15 -2102 ((-1 $ (-783)) |t#2|)) (-15 -1737 ((-656 |t#2|) $)) (-15 -2927 ((-783) $ |t#2|)) (-15 -2927 ((-783) $)) (-15 -3813 ((-783) $ |t#2|)) (-15 -1726 ((-656 (-783)) $)) (-15 -2092 ((-783) $)) (-15 -1726 ((-656 (-783)) $ |t#2|)) (-15 -2092 ((-783) $ |t#2|)) (-15 -1715 ((-112) $)) (-15 -2148 (|t#3| $)) (-15 -2817 ($ $)) (-15 -1706 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -2102 ((-1 $ (-783)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-300) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3766 (|has| |#1| (-925)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-239)) ((-526 |#2| $) |has| |#1| (-239)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ #2=(-1195)) |has| |#1| (-914 (-1195))) ((-909 $ |#3|) . T) ((-914 #2#) |has| |#1| (-914 (-1195))) ((-914 |#3|) . T) ((-916 #2#) |has| |#1| (-914 (-1195))) ((-916 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-965 |#1| |#4| |#3|) . T) ((-925) |has| |#1| (-925)) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1056 |#2|) . T) ((-1056 |#3|) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T) ((-1240) |has| |#1| (-925))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-1807 ((|#1| $) 55)) (-2012 ((|#1| $) 45)) (-2970 (((-112) $ (-783)) 8)) (-2473 (($) 7 T CONST)) (-3197 (($ $) 61)) (-2745 (($ $) 49)) (-3295 ((|#1| |#1| $) 47)) (-3285 ((|#1| $) 46)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-1840 (((-783) $) 62)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3449 ((|#1| $) 40)) (-1784 ((|#1| |#1| $) 53)) (-1773 ((|#1| |#1| $) 52)) (-3807 (($ |#1| $) 41)) (-3343 (((-783) $) 56)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-3187 ((|#1| $) 63)) (-1762 ((|#1| $) 51)) (-1749 ((|#1| $) 50)) (-3458 ((|#1| $) 42)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-3219 ((|#1| |#1| $) 59)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-3208 ((|#1| $) 60)) (-1817 (($) 58) (($ (-656 |#1|)) 57)) (-3324 (((-783) $) 44)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1795 ((|#1| $) 54)) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) 43)) (-3175 ((|#1| $) 64)) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-261 |#1|) (-141) (-1236)) (T -261)) -((-1817 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-1817 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-261 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-1784 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-1773 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-2745 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) -(-13 (-1139 |t#1|) (-1013 |t#1|) (-10 -8 (-15 -1817 ($)) (-15 -1817 ($ (-656 |t#1|))) (-15 -3343 ((-783) $)) (-15 -1807 (|t#1| $)) (-15 -1795 (|t#1| $)) (-15 -1784 (|t#1| |t#1| $)) (-15 -1773 (|t#1| |t#1| $)) (-15 -1762 (|t#1| $)) (-15 -1749 (|t#1| $)) (-15 -2745 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1013 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1139 |#1|) . T) ((-1236) . T)) -((-1827 (((-1 (-959 (-227)) (-227) (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1742 (((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390))) 173) (((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 171) (((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390))) 176) (((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 172) (((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390))) 164) (((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 163) (((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390))) 145) (((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270))) 143) (((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390))) 144) (((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270))) 141)) (-1699 (((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390))) 175) (((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 174) (((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390))) 178) (((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 177) (((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390))) 166) (((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 165) (((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390))) 151) (((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270))) 150) (((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390))) 149) (((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270))) 148) (((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390))) 113) (((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270))) 112) (((-1287) (-1 (-227) (-227)) (-1112 (-390))) 107) (((-1287) (-1 (-227) (-227)) (-1112 (-390)) (-656 (-270))) 105))) -(((-262) (-10 -7 (-15 -1699 ((-1287) (-1 (-227) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1287) (-1 (-227) (-227)) (-1112 (-390)))) (-15 -1699 ((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1699 ((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1699 ((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390)))) (-15 -1742 ((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1742 ((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390)))) (-15 -1699 ((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1742 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1699 ((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1742 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1699 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)))) (-15 -1742 ((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)))) (-15 -1827 ((-1 (-959 (-227)) (-227) (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) -((-1827 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-959 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1742 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1742 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1742 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1742 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1742 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1742 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *2 (-1287)) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1287)) (-5 *1 (-262)))) (-1699 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262))))) -(-10 -7 (-15 -1699 ((-1287) (-1 (-227) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1287) (-1 (-227) (-227)) (-1112 (-390)))) (-15 -1699 ((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1699 ((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1699 ((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390)))) (-15 -1742 ((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1742 ((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390)))) (-15 -1699 ((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1742 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1699 ((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1742 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1699 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)))) (-15 -1742 ((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)))) (-15 -1827 ((-1 (-959 (-227)) (-227) (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-1699 (((-1287) (-304 |#2|) (-1195) (-1195) (-656 (-270))) 101))) -(((-263 |#1| |#2|) (-10 -7 (-15 -1699 ((-1287) (-304 |#2|) (-1195) (-1195) (-656 (-270))))) (-13 (-568) (-862) (-1056 (-576))) (-442 |#1|)) (T -263)) -((-1699 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-1195)) (-5 *5 (-656 (-270))) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1056 (-576)))) (-5 *2 (-1287)) (-5 *1 (-263 *6 *7))))) -(-10 -7 (-15 -1699 ((-1287) (-304 |#2|) (-1195) (-1195) (-656 (-270))))) -((-1862 (((-576) (-576)) 71)) (-1873 (((-576) (-576)) 72)) (-1885 (((-227) (-227)) 73)) (-1849 (((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227))) 70)) (-1837 (((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227)) (-112)) 68))) -(((-264) (-10 -7 (-15 -1837 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227)) (-112))) (-15 -1849 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227)))) (-15 -1862 ((-576) (-576))) (-15 -1873 ((-576) (-576))) (-15 -1885 ((-227) (-227))))) (T -264)) -((-1885 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-1873 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-1849 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1112 (-227))) (-5 *2 (-1288)) (-5 *1 (-264)))) (-1837 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1112 (-227))) (-5 *5 (-112)) (-5 *2 (-1288)) (-5 *1 (-264))))) -(-10 -7 (-15 -1837 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227)) (-112))) (-15 -1849 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227)))) (-15 -1862 ((-576) (-576))) (-15 -1873 ((-576) (-576))) (-15 -1885 ((-227) (-227)))) -((-2884 (((-1110 (-390)) (-1110 (-326 |#1|))) 16))) -(((-265 |#1|) (-10 -7 (-15 -2884 ((-1110 (-390)) (-1110 (-326 |#1|))))) (-13 (-862) (-568) (-626 (-390)))) (T -265)) -((-2884 (*1 *2 *3) (-12 (-5 *3 (-1110 (-326 *4))) (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1110 (-390))) (-5 *1 (-265 *4))))) -(-10 -7 (-15 -2884 ((-1110 (-390)) (-1110 (-326 |#1|))))) -((-1742 (((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390))) 75) (((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270))) 74) (((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390))) 65) (((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270))) 64) (((-1151 (-227)) (-892 |#1|) (-1110 (-390))) 56) (((-1151 (-227)) (-892 |#1|) (-1110 (-390)) (-656 (-270))) 55)) (-1699 (((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390))) 78) (((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270))) 77) (((-1288) |#1| (-1110 (-390)) (-1110 (-390))) 68) (((-1288) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270))) 67) (((-1288) (-892 |#1|) (-1110 (-390))) 60) (((-1288) (-892 |#1|) (-1110 (-390)) (-656 (-270))) 59) (((-1287) (-890 |#1|) (-1110 (-390))) 47) (((-1287) (-890 |#1|) (-1110 (-390)) (-656 (-270))) 46) (((-1287) |#1| (-1110 (-390))) 38) (((-1287) |#1| (-1110 (-390)) (-656 (-270))) 36))) -(((-266 |#1|) (-10 -7 (-15 -1699 ((-1287) |#1| (-1110 (-390)) (-656 (-270)))) (-15 -1699 ((-1287) |#1| (-1110 (-390)))) (-15 -1699 ((-1287) (-890 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1699 ((-1287) (-890 |#1|) (-1110 (-390)))) (-15 -1699 ((-1288) (-892 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-892 |#1|) (-1110 (-390)))) (-15 -1742 ((-1151 (-227)) (-892 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-892 |#1|) (-1110 (-390)))) (-15 -1699 ((-1288) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) |#1| (-1110 (-390)) (-1110 (-390)))) (-15 -1742 ((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390)))) (-15 -1699 ((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390)))) (-15 -1742 ((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390))))) (-13 (-626 (-548)) (-1118))) (T -266)) -((-1742 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1110 (-390))) (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *5)))) (-1742 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *6)))) (-1699 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1110 (-390))) (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) (-5 *1 (-266 *5)))) (-1699 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) (-5 *1 (-266 *6)))) (-1742 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) (-1742 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) (-1699 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) (-1699 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1110 (-390))) (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *5)))) (-1742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *6)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1110 (-390))) (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) (-5 *1 (-266 *5)))) (-1699 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) (-5 *1 (-266 *6)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1110 (-390))) (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1287)) (-5 *1 (-266 *5)))) (-1699 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1287)) (-5 *1 (-266 *6)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1287)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) (-1699 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118)))))) -(-10 -7 (-15 -1699 ((-1287) |#1| (-1110 (-390)) (-656 (-270)))) (-15 -1699 ((-1287) |#1| (-1110 (-390)))) (-15 -1699 ((-1287) (-890 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1699 ((-1287) (-890 |#1|) (-1110 (-390)))) (-15 -1699 ((-1288) (-892 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-892 |#1|) (-1110 (-390)))) (-15 -1742 ((-1151 (-227)) (-892 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-892 |#1|) (-1110 (-390)))) (-15 -1699 ((-1288) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) |#1| (-1110 (-390)) (-1110 (-390)))) (-15 -1742 ((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390)))) (-15 -1699 ((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1699 ((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390)))) (-15 -1742 ((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1742 ((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390))))) -((-1699 (((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))) 23) (((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227))) 24) (((-1287) (-656 (-959 (-227))) (-656 (-270))) 16) (((-1287) (-656 (-959 (-227)))) 17) (((-1287) (-656 (-227)) (-656 (-227)) (-656 (-270))) 20) (((-1287) (-656 (-227)) (-656 (-227))) 21))) -(((-267) (-10 -7 (-15 -1699 ((-1287) (-656 (-227)) (-656 (-227)))) (-15 -1699 ((-1287) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1699 ((-1287) (-656 (-959 (-227))))) (-15 -1699 ((-1287) (-656 (-959 (-227))) (-656 (-270)))) (-15 -1699 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1699 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270)))))) (T -267)) -((-1699 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1699 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *4 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-267)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *2 (-1287)) (-5 *1 (-267)))) (-1699 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-267)))) (-1699 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287)) (-5 *1 (-267))))) -(-10 -7 (-15 -1699 ((-1287) (-656 (-227)) (-656 (-227)))) (-15 -1699 ((-1287) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1699 ((-1287) (-656 (-959 (-227))))) (-15 -1699 ((-1287) (-656 (-959 (-227))) (-656 (-270)))) (-15 -1699 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1699 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))))) -((-4384 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-2045 (((-937) (-656 (-270)) (-937)) 52)) (-2034 (((-937) (-656 (-270)) (-937)) 51)) (-2497 (((-656 (-390)) (-656 (-270)) (-656 (-390))) 68)) (-2081 (((-390) (-656 (-270)) (-390)) 57)) (-2068 (((-937) (-656 (-270)) (-937)) 53)) (-1994 (((-112) (-656 (-270)) (-112)) 27)) (-2489 (((-1177) (-656 (-270)) (-1177)) 19)) (-1983 (((-1177) (-656 (-270)) (-1177)) 26)) (-2056 (((-1151 (-227)) (-656 (-270))) 46)) (-2280 (((-656 (-1112 (-390))) (-656 (-270)) (-656 (-1112 (-390)))) 40)) (-2009 (((-886) (-656 (-270)) (-886)) 32)) (-2021 (((-886) (-656 (-270)) (-886)) 33)) (-2471 (((-1 (-959 (-227)) (-959 (-227))) (-656 (-270)) (-1 (-959 (-227)) (-959 (-227)))) 63)) (-1969 (((-112) (-656 (-270)) (-112)) 14)) (-3476 (((-112) (-656 (-270)) (-112)) 13))) -(((-268) (-10 -7 (-15 -3476 ((-112) (-656 (-270)) (-112))) (-15 -1969 ((-112) (-656 (-270)) (-112))) (-15 -4384 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2489 ((-1177) (-656 (-270)) (-1177))) (-15 -1983 ((-1177) (-656 (-270)) (-1177))) (-15 -1994 ((-112) (-656 (-270)) (-112))) (-15 -2009 ((-886) (-656 (-270)) (-886))) (-15 -2021 ((-886) (-656 (-270)) (-886))) (-15 -2280 ((-656 (-1112 (-390))) (-656 (-270)) (-656 (-1112 (-390))))) (-15 -2034 ((-937) (-656 (-270)) (-937))) (-15 -2045 ((-937) (-656 (-270)) (-937))) (-15 -2056 ((-1151 (-227)) (-656 (-270)))) (-15 -2068 ((-937) (-656 (-270)) (-937))) (-15 -2081 ((-390) (-656 (-270)) (-390))) (-15 -2471 ((-1 (-959 (-227)) (-959 (-227))) (-656 (-270)) (-1 (-959 (-227)) (-959 (-227))))) (-15 -2497 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))) (T -268)) -((-2497 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2471 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2081 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2068 (*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-268)))) (-2045 (*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2034 (*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2280 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2021 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2009 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1994 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1983 (*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2489 (*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4384 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1969 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3476 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(-10 -7 (-15 -3476 ((-112) (-656 (-270)) (-112))) (-15 -1969 ((-112) (-656 (-270)) (-112))) (-15 -4384 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2489 ((-1177) (-656 (-270)) (-1177))) (-15 -1983 ((-1177) (-656 (-270)) (-1177))) (-15 -1994 ((-112) (-656 (-270)) (-112))) (-15 -2009 ((-886) (-656 (-270)) (-886))) (-15 -2021 ((-886) (-656 (-270)) (-886))) (-15 -2280 ((-656 (-1112 (-390))) (-656 (-270)) (-656 (-1112 (-390))))) (-15 -2034 ((-937) (-656 (-270)) (-937))) (-15 -2045 ((-937) (-656 (-270)) (-937))) (-15 -2056 ((-1151 (-227)) (-656 (-270)))) (-15 -2068 ((-937) (-656 (-270)) (-937))) (-15 -2081 ((-390) (-656 (-270)) (-390))) (-15 -2471 ((-1 (-959 (-227)) (-959 (-227))) (-656 (-270)) (-1 (-959 (-227)) (-959 (-227))))) (-15 -2497 ((-656 (-390)) (-656 (-270)) (-656 (-390))))) -((-1850 (((-3 |#1| "failed") (-656 (-270)) (-1195)) 17))) -(((-269 |#1|) (-10 -7 (-15 -1850 ((-3 |#1| "failed") (-656 (-270)) (-1195)))) (-1236)) (T -269)) -((-1850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *1 (-269 *2)) (-4 *2 (-1236))))) -(-10 -7 (-15 -1850 ((-3 |#1| "failed") (-656 (-270)) (-1195)))) -((-2862 (((-112) $ $) NIL)) (-4384 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-2045 (($ (-937)) 81)) (-2034 (($ (-937)) 80)) (-4246 (($ (-656 (-390))) 87)) (-2081 (($ (-390)) 66)) (-2068 (($ (-937)) 82)) (-1994 (($ (-112)) 33)) (-2489 (($ (-1177)) 28)) (-1983 (($ (-1177)) 29)) (-2056 (($ (-1151 (-227))) 76)) (-2280 (($ (-656 (-1112 (-390)))) 72)) (-1908 (($ (-656 (-1112 (-390)))) 68) (($ (-656 (-1112 (-419 (-576))))) 71)) (-1944 (($ (-390)) 38) (($ (-886)) 42)) (-1897 (((-112) (-656 $) (-1195)) 100)) (-1850 (((-3 (-52) "failed") (-656 $) (-1195)) 102)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1933 (($ (-390)) 43) (($ (-886)) 44)) (-3629 (($ (-1 (-959 (-227)) (-959 (-227)))) 65)) (-2471 (($ (-1 (-959 (-227)) (-959 (-227)))) 83)) (-1920 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2884 (((-874) $) 93)) (-1957 (($ (-112)) 34) (($ (-656 (-1112 (-390)))) 60)) (-3722 (((-112) $ $) NIL)) (-3476 (($ (-112)) 35)) (-3915 (((-112) $ $) 97))) -(((-270) (-13 (-1118) (-10 -8 (-15 -3476 ($ (-112))) (-15 -1957 ($ (-112))) (-15 -4384 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2489 ($ (-1177))) (-15 -1983 ($ (-1177))) (-15 -1994 ($ (-112))) (-15 -1957 ($ (-656 (-1112 (-390))))) (-15 -3629 ($ (-1 (-959 (-227)) (-959 (-227))))) (-15 -1944 ($ (-390))) (-15 -1944 ($ (-886))) (-15 -1933 ($ (-390))) (-15 -1933 ($ (-886))) (-15 -1920 ($ (-1 (-227) (-227)))) (-15 -1920 ($ (-1 (-227) (-227) (-227)))) (-15 -1920 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2081 ($ (-390))) (-15 -1908 ($ (-656 (-1112 (-390))))) (-15 -1908 ($ (-656 (-1112 (-419 (-576)))))) (-15 -2280 ($ (-656 (-1112 (-390))))) (-15 -2056 ($ (-1151 (-227)))) (-15 -2034 ($ (-937))) (-15 -2045 ($ (-937))) (-15 -2068 ($ (-937))) (-15 -2471 ($ (-1 (-959 (-227)) (-959 (-227))))) (-15 -4246 ($ (-656 (-390)))) (-15 -1850 ((-3 (-52) "failed") (-656 $) (-1195))) (-15 -1897 ((-112) (-656 $) (-1195)))))) (T -270)) -((-3476 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-4384 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270)))) (-1983 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270)))) (-1994 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270)))) (-3629 (*1 *1 *2) (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *1 (-270)))) (-1944 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-1944 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-1933 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-1933 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-1920 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-1920 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-1920 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-2081 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-419 (-576))))) (-5 *1 (-270)))) (-2280 (*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270)))) (-2056 (*1 *1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-270)))) (-2034 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) (-2471 (*1 *1 *2) (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *1 (-270)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) (-1850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-52)) (-5 *1 (-270)))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-112)) (-5 *1 (-270))))) -(-13 (-1118) (-10 -8 (-15 -3476 ($ (-112))) (-15 -1957 ($ (-112))) (-15 -4384 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2489 ($ (-1177))) (-15 -1983 ($ (-1177))) (-15 -1994 ($ (-112))) (-15 -1957 ($ (-656 (-1112 (-390))))) (-15 -3629 ($ (-1 (-959 (-227)) (-959 (-227))))) (-15 -1944 ($ (-390))) (-15 -1944 ($ (-886))) (-15 -1933 ($ (-390))) (-15 -1933 ($ (-886))) (-15 -1920 ($ (-1 (-227) (-227)))) (-15 -1920 ($ (-1 (-227) (-227) (-227)))) (-15 -1920 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2081 ($ (-390))) (-15 -1908 ($ (-656 (-1112 (-390))))) (-15 -1908 ($ (-656 (-1112 (-419 (-576)))))) (-15 -2280 ($ (-656 (-1112 (-390))))) (-15 -2056 ($ (-1151 (-227)))) (-15 -2034 ($ (-937))) (-15 -2045 ($ (-937))) (-15 -2068 ($ (-937))) (-15 -2471 ($ (-1 (-959 (-227)) (-959 (-227))))) (-15 -4246 ($ (-656 (-390)))) (-15 -1850 ((-3 (-52) "failed") (-656 $) (-1195))) (-15 -1897 ((-112) (-656 $) (-1195))))) -((-2390 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) 19) (($ $ (-783)) NIL) (($ $) 16)) (-3431 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-783)) NIL) (($ $) NIL))) -(((-271 |#1| |#2|) (-10 -8 (-15 -2390 (|#1| |#1|)) (-15 -3431 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -3431 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -3431 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3431 (|#1| |#1| (-656 (-1195)))) (-15 -3431 (|#1| |#1| (-1195) (-783))) (-15 -3431 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3431 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3431 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1236)) (T -271)) -NIL -(-10 -8 (-15 -2390 (|#1| |#1|)) (-15 -3431 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -3431 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -3431 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3431 (|#1| |#1| (-656 (-1195)))) (-15 -3431 (|#1| |#1| (-1195) (-783))) (-15 -3431 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3431 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3431 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|)))) -((-2390 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-783)) 22) (($ $ (-656 (-1195)) (-656 (-783))) 16 (|has| |#1| (-916 (-1195)))) (($ $ (-1195) (-783)) 15 (|has| |#1| (-916 (-1195)))) (($ $ (-656 (-1195))) 14 (|has| |#1| (-916 (-1195)))) (($ $ (-1195)) 12 (|has| |#1| (-916 (-1195)))) (($ $ (-783)) 10 (|has| |#1| (-238))) (($ $) 8 (|has| |#1| (-238)))) (-3431 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-783)) 20) (($ $ (-656 (-1195)) (-656 (-783))) 19 (|has| |#1| (-916 (-1195)))) (($ $ (-1195) (-783)) 18 (|has| |#1| (-916 (-1195)))) (($ $ (-656 (-1195))) 17 (|has| |#1| (-916 (-1195)))) (($ $ (-1195)) 13 (|has| |#1| (-916 (-1195)))) (($ $ (-783)) 11 (|has| |#1| (-238))) (($ $) 9 (|has| |#1| (-238))))) -(((-272 |#1|) (-141) (-1236)) (T -272)) -((-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236)))) (-2390 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1236)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236)))) (-3431 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1236))))) -(-13 (-1236) (-10 -8 (-15 -2390 ($ $ (-1 |t#1| |t#1|))) (-15 -2390 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -3431 ($ $ (-1 |t#1| |t#1|))) (-15 -3431 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-916 (-1195))) (-6 (-916 (-1195))) |%noBranch|))) -(((-235 $) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-909 $ #0=(-1195)) |has| |#1| (-916 (-1195))) ((-916 #0#) |has| |#1| (-916 (-1195))) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1726 (((-656 (-783)) $) NIL) (((-656 (-783)) $ |#2|) NIL)) (-2092 (((-783) $) NIL) (((-783) $ |#2|) NIL)) (-1607 (((-656 |#3|) $) NIL)) (-3467 (((-1191 $) $ |#3|) NIL) (((-1191 |#1|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 |#3|)) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2944 (($ $) NIL (|has| |#1| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-1706 (($ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1143 |#1| |#2|) "failed") $) 23)) (-4401 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1143 |#1| |#2|) $) NIL)) (-2778 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-4407 (($ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#1| (-925)))) (-3098 (($ $ |#1| (-543 |#3|) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))))) (-2927 (((-783) $ |#2|) NIL) (((-783) $) 10)) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-2437 (($ (-1191 |#1|) |#3|) NIL) (($ (-1191 $) |#3|) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ |#3|) NIL)) (-1864 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL)) (-3109 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2102 (((-1 $ (-783)) |#2|) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-239)))) (-2788 (((-3 |#3| "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2148 ((|#3| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3733 (((-1177) $) NIL)) (-1715 (((-112) $) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| |#3|) (|:| -1359 (-783))) "failed") $) NIL)) (-2817 (($ $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) NIL)) (-4359 ((|#1| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-925)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-656 |#3|) (-656 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-239))) (($ $ (-656 |#2|) (-656 $)) NIL (|has| |#1| (-239))) (($ $ |#2| |#1|) NIL (|has| |#1| (-239))) (($ $ (-656 |#2|) (-656 |#1|)) NIL (|has| |#1| (-239)))) (-2790 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2390 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1737 (((-656 |#2|) $) NIL)) (-3813 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL) (((-783) $ |#2|) NIL)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-1841 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1143 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-273 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1056 (-1143 |#1| |#2|))) (-1067) (-862) (-275 |#2|)) (T -273)) -NIL -(-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1056 (-1143 |#1| |#2|))) -((-2092 (((-783) $) 37)) (-2449 (((-3 |#2| "failed") $) 22)) (-4401 ((|#2| $) 33)) (-2390 (($ $ (-783)) 18) (($ $) 14)) (-2884 (((-874) $) 32) (($ |#2|) 11)) (-3915 (((-112) $ $) 26)) (-3943 (((-112) $ $) 36))) -(((-274 |#1| |#2|) (-10 -8 (-15 -2092 ((-783) |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) (-275 |#2|) (-862)) (T -274)) -NIL -(-10 -8 (-15 -2092 ((-783) |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-2092 (((-783) $) 22)) (-1441 ((|#1| $) 23)) (-2449 (((-3 |#1| "failed") $) 27)) (-4401 ((|#1| $) 28)) (-2927 (((-783) $) 24)) (-1921 (($ $ $) 14)) (-4137 (($ $ $) 15)) (-2102 (($ |#1| (-783)) 25)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2390 (($ $ (-783)) 31) (($ $) 29)) (-2884 (((-874) $) 12) (($ |#1|) 26)) (-3722 (((-112) $ $) 9)) (-3431 (($ $ (-783)) 32) (($ $) 30)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19))) -(((-275 |#1|) (-141) (-862)) (T -275)) -((-2884 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-2102 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783))))) -(-13 (-862) (-238) (-1056 |t#1|) (-10 -8 (-15 -2102 ($ |t#1| (-783))) (-15 -2927 ((-783) $)) (-15 -1441 (|t#1| $)) (-15 -2092 ((-783) $)) (-15 -2884 ($ |t#1|)))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-235 $) . T) ((-238) . T) ((-862) . T) ((-1056 |#1|) . T) ((-1118) . T) ((-1236) . T)) -((-1607 (((-656 (-1195)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) 53)) (-3489 (((-656 (-1195)) (-326 (-227)) (-783)) 94)) (-2132 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-2143 (((-326 (-227)) (-326 (-227))) 79)) (-2122 (((-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 38)) (-2155 (((-112) (-656 (-326 (-227)))) 104)) (-4100 (((-112) (-326 (-227))) 36)) (-4119 (((-656 (-1177)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))))) 132)) (-4094 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 108)) (-4084 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 106)) (-4075 (((-701 (-227)) (-656 (-326 (-227))) (-783)) 120)) (-3606 (((-112) (-326 (-227))) 31) (((-112) (-656 (-326 (-227)))) 105)) (-2112 (((-656 (-227)) (-656 (-855 (-227))) (-227)) 15)) (-3804 (((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) 126)) (-4110 (((-1053) (-1195) (-1053)) 46))) -(((-276) (-10 -7 (-15 -2112 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -2122 ((-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2132 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -2143 ((-326 (-227)) (-326 (-227)))) (-15 -2155 ((-112) (-656 (-326 (-227))))) (-15 -3606 ((-112) (-656 (-326 (-227))))) (-15 -3606 ((-112) (-326 (-227)))) (-15 -4075 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -4084 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -4094 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -4100 ((-112) (-326 (-227)))) (-15 -1607 ((-656 (-1195)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))) (-15 -3489 ((-656 (-1195)) (-326 (-227)) (-783))) (-15 -4110 ((-1053) (-1195) (-1053))) (-15 -3804 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))) (-15 -4119 ((-656 (-1177)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))))))) (T -276)) -((-4119 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))))) (-5 *2 (-656 (-1177))) (-5 *1 (-276)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-4110 (*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-1195)) (-5 *1 (-276)))) (-3489 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1195))) (-5 *1 (-276)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) (-5 *2 (-656 (-1195))) (-5 *1 (-276)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-4094 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-4075 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-276)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2143 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2132 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-276)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) (-5 *1 (-276))))) -(-10 -7 (-15 -2112 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -2122 ((-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2132 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -2143 ((-326 (-227)) (-326 (-227)))) (-15 -2155 ((-112) (-656 (-326 (-227))))) (-15 -3606 ((-112) (-656 (-326 (-227))))) (-15 -3606 ((-112) (-326 (-227)))) (-15 -4075 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -4084 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -4094 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -4100 ((-112) (-326 (-227)))) (-15 -1607 ((-656 (-1195)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))) (-15 -3489 ((-656 (-1195)) (-326 (-227)) (-783))) (-15 -4110 ((-1053) (-1195) (-1053))) (-15 -3804 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))) (-15 -4119 ((-656 (-1177)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))))))) -((-2862 (((-112) $ $) NIL)) (-2064 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 56)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-277) (-851)) (T -277)) -NIL -(-851) -((-2862 (((-112) $ $) NIL)) (-2064 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) 72) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 63)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 41) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) 43)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-278) (-851)) (T -278)) -NIL -(-851) -((-2862 (((-112) $ $) NIL)) (-2064 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) 90) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 85)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 52) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) 65)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-279) (-851)) (T -279)) -NIL -(-851) -((-2862 (((-112) $ $) NIL)) (-2064 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 73)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 45) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-280) (-851)) (T -280)) -NIL -(-851) -((-2862 (((-112) $ $) NIL)) (-2064 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 65)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 31) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-281) (-851)) (T -281)) -NIL -(-851) -((-2862 (((-112) $ $) NIL)) (-2064 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 90)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 33) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-282) (-851)) (T -282)) -NIL -(-851) -((-2862 (((-112) $ $) NIL)) (-2064 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 87)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-283) (-851)) (T -283)) -NIL -(-851) -((-2862 (((-112) $ $) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-4135 (((-656 (-576)) $) 29)) (-3813 (((-783) $) 27)) (-2884 (((-874) $) 33) (($ (-656 (-576))) 23)) (-3722 (((-112) $ $) NIL)) (-4127 (($ (-783)) 30)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 9)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 17))) -(((-284) (-13 (-862) (-10 -8 (-15 -2884 ($ (-656 (-576)))) (-15 -3813 ((-783) $)) (-15 -4135 ((-656 (-576)) $)) (-15 -4127 ($ (-783)))))) (T -284)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) -(-13 (-862) (-10 -8 (-15 -2884 ($ (-656 (-576)))) (-15 -3813 ((-783) $)) (-15 -4135 ((-656 (-576)) $)) (-15 -4127 ($ (-783))))) -((-3924 ((|#2| |#2|) 77)) (-3787 ((|#2| |#2|) 65)) (-4429 (((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3898 ((|#2| |#2|) 75)) (-3762 ((|#2| |#2|) 63)) (-1522 ((|#2| |#2|) 79)) (-3808 ((|#2| |#2|) 67)) (-1632 ((|#2|) 46)) (-2573 (((-115) (-115)) 100)) (-3464 ((|#2| |#2|) 61)) (-4438 (((-112) |#2|) 147)) (-4313 ((|#2| |#2|) 195)) (-4192 ((|#2| |#2|) 171)) (-4152 ((|#2|) 59)) (-4144 ((|#2|) 58)) (-4292 ((|#2| |#2|) 191)) (-4175 ((|#2| |#2|) 167)) (-4336 ((|#2| |#2|) 199)) (-4211 ((|#2| |#2|) 175)) (-4166 ((|#2| |#2|) 163)) (-4158 ((|#2| |#2|) 165)) (-4348 ((|#2| |#2|) 201)) (-4220 ((|#2| |#2|) 177)) (-4324 ((|#2| |#2|) 197)) (-4201 ((|#2| |#2|) 173)) (-4303 ((|#2| |#2|) 193)) (-4184 ((|#2| |#2|) 169)) (-4385 ((|#2| |#2|) 207)) (-4252 ((|#2| |#2|) 183)) (-4361 ((|#2| |#2|) 203)) (-4231 ((|#2| |#2|) 179)) (-4408 ((|#2| |#2|) 211)) (-4273 ((|#2| |#2|) 187)) (-4418 ((|#2| |#2|) 213)) (-4282 ((|#2| |#2|) 189)) (-4396 ((|#2| |#2|) 209)) (-4263 ((|#2| |#2|) 185)) (-4373 ((|#2| |#2|) 205)) (-4240 ((|#2| |#2|) 181)) (-2666 ((|#2| |#2|) 62)) (-1532 ((|#2| |#2|) 80)) (-3818 ((|#2| |#2|) 68)) (-3938 ((|#2| |#2|) 78)) (-3798 ((|#2| |#2|) 66)) (-3910 ((|#2| |#2|) 76)) (-3775 ((|#2| |#2|) 64)) (-2362 (((-112) (-115)) 98)) (-1570 ((|#2| |#2|) 83)) (-3853 ((|#2| |#2|) 71)) (-1545 ((|#2| |#2|) 81)) (-3829 ((|#2| |#2|) 69)) (-1594 ((|#2| |#2|) 85)) (-3874 ((|#2| |#2|) 73)) (-2915 ((|#2| |#2|) 86)) (-3886 ((|#2| |#2|) 74)) (-1584 ((|#2| |#2|) 84)) (-3864 ((|#2| |#2|) 72)) (-1555 ((|#2| |#2|) 82)) (-3840 ((|#2| |#2|) 70))) -(((-285 |#1| |#2|) (-10 -7 (-15 -2666 (|#2| |#2|)) (-15 -3464 (|#2| |#2|)) (-15 -3762 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3787 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3864 (|#2| |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -3886 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -2915 (|#2| |#2|)) (-15 -1632 (|#2|)) (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 -4144 (|#2|)) (-15 -4152 (|#2|)) (-15 -4158 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4184 (|#2| |#2|)) (-15 -4192 (|#2| |#2|)) (-15 -4201 (|#2| |#2|)) (-15 -4211 (|#2| |#2|)) (-15 -4220 (|#2| |#2|)) (-15 -4231 (|#2| |#2|)) (-15 -4240 (|#2| |#2|)) (-15 -4252 (|#2| |#2|)) (-15 -4263 (|#2| |#2|)) (-15 -4273 (|#2| |#2|)) (-15 -4282 (|#2| |#2|)) (-15 -4292 (|#2| |#2|)) (-15 -4303 (|#2| |#2|)) (-15 -4313 (|#2| |#2|)) (-15 -4324 (|#2| |#2|)) (-15 -4336 (|#2| |#2|)) (-15 -4348 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -4385 (|#2| |#2|)) (-15 -4396 (|#2| |#2|)) (-15 -4408 (|#2| |#2|)) (-15 -4418 (|#2| |#2|)) (-15 -4429 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4438 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1020))) (T -285)) -((-4438 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1020))))) (-4429 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1020))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-4418 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4408 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4396 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4385 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4373 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4361 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4348 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4336 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4324 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4313 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4303 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4292 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4282 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4273 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4263 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4252 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4240 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4231 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4220 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4211 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4201 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4192 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4184 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4158 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4152 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-4144 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-2573 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1020))))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1020))))) (-1632 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-2915 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3818 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3762 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3464 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2666 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020)))))) -(-10 -7 (-15 -2666 (|#2| |#2|)) (-15 -3464 (|#2| |#2|)) (-15 -3762 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3787 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3864 (|#2| |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -3886 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -2915 (|#2| |#2|)) (-15 -1632 (|#2|)) (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 -4144 (|#2|)) (-15 -4152 (|#2|)) (-15 -4158 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4184 (|#2| |#2|)) (-15 -4192 (|#2| |#2|)) (-15 -4201 (|#2| |#2|)) (-15 -4211 (|#2| |#2|)) (-15 -4220 (|#2| |#2|)) (-15 -4231 (|#2| |#2|)) (-15 -4240 (|#2| |#2|)) (-15 -4252 (|#2| |#2|)) (-15 -4263 (|#2| |#2|)) (-15 -4273 (|#2| |#2|)) (-15 -4282 (|#2| |#2|)) (-15 -4292 (|#2| |#2|)) (-15 -4303 (|#2| |#2|)) (-15 -4313 (|#2| |#2|)) (-15 -4324 (|#2| |#2|)) (-15 -4336 (|#2| |#2|)) (-15 -4348 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -4385 (|#2| |#2|)) (-15 -4396 (|#2| |#2|)) (-15 -4408 (|#2| |#2|)) (-15 -4418 (|#2| |#2|)) (-15 -4429 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4438 ((-112) |#2|))) -((-1344 (((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1195)) 151)) (-1362 ((|#2| (-419 (-576)) |#2|) 49)) (-1353 ((|#2| |#2| (-624 |#2|)) 144)) (-1325 (((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1195)) 143)) (-1335 ((|#2| |#2| (-1195)) 20) ((|#2| |#2|) 23)) (-1709 ((|#2| |#2| (-1195)) 157) ((|#2| |#2|) 155))) -(((-286 |#1| |#2|) (-10 -7 (-15 -1709 (|#2| |#2|)) (-15 -1709 (|#2| |#2| (-1195))) (-15 -1325 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1195))) (-15 -1335 (|#2| |#2|)) (-15 -1335 (|#2| |#2| (-1195))) (-15 -1344 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1195))) (-15 -1353 (|#2| |#2| (-624 |#2|))) (-15 -1362 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -286)) -((-1362 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-1353 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)))) (-1344 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1195)) (-4 *2 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *5 *2)))) (-1335 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-1335 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-1325 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) (|:| |vals| (-656 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-1709 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-1709 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))) -(-10 -7 (-15 -1709 (|#2| |#2|)) (-15 -1709 (|#2| |#2| (-1195))) (-15 -1325 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1195))) (-15 -1335 (|#2| |#2|)) (-15 -1335 (|#2| |#2| (-1195))) (-15 -1344 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1195))) (-15 -1353 (|#2| |#2| (-624 |#2|))) (-15 -1362 (|#2| (-419 (-576)) |#2|))) -((-4121 (((-3 |#3| "failed") |#3|) 120)) (-3924 ((|#3| |#3|) 142)) (-4011 (((-3 |#3| "failed") |#3|) 89)) (-3787 ((|#3| |#3|) 132)) (-4102 (((-3 |#3| "failed") |#3|) 65)) (-3898 ((|#3| |#3|) 140)) (-3989 (((-3 |#3| "failed") |#3|) 53)) (-3762 ((|#3| |#3|) 130)) (-2952 (((-3 |#3| "failed") |#3|) 122)) (-1522 ((|#3| |#3|) 144)) (-4032 (((-3 |#3| "failed") |#3|) 91)) (-3808 ((|#3| |#3|) 134)) (-3950 (((-3 |#3| "failed") |#3| (-783)) 41)) (-3977 (((-3 |#3| "failed") |#3|) 81)) (-3464 ((|#3| |#3|) 129)) (-3964 (((-3 |#3| "failed") |#3|) 51)) (-2666 ((|#3| |#3|) 128)) (-2961 (((-3 |#3| "failed") |#3|) 123)) (-1532 ((|#3| |#3|) 145)) (-4042 (((-3 |#3| "failed") |#3|) 92)) (-3818 ((|#3| |#3|) 135)) (-2943 (((-3 |#3| "failed") |#3|) 121)) (-3938 ((|#3| |#3|) 143)) (-4021 (((-3 |#3| "failed") |#3|) 90)) (-3798 ((|#3| |#3|) 133)) (-4112 (((-3 |#3| "failed") |#3|) 67)) (-3910 ((|#3| |#3|) 141)) (-4000 (((-3 |#3| "failed") |#3|) 55)) (-3775 ((|#3| |#3|) 131)) (-2993 (((-3 |#3| "failed") |#3|) 73)) (-1570 ((|#3| |#3|) 148)) (-4069 (((-3 |#3| "failed") |#3|) 114)) (-3853 ((|#3| |#3|) 152)) (-2969 (((-3 |#3| "failed") |#3|) 69)) (-1545 ((|#3| |#3|) 146)) (-4052 (((-3 |#3| "failed") |#3|) 57)) (-3829 ((|#3| |#3|) 136)) (-3012 (((-3 |#3| "failed") |#3|) 77)) (-1594 ((|#3| |#3|) 150)) (-4086 (((-3 |#3| "failed") |#3|) 61)) (-3874 ((|#3| |#3|) 138)) (-3026 (((-3 |#3| "failed") |#3|) 79)) (-2915 ((|#3| |#3|) 151)) (-4096 (((-3 |#3| "failed") |#3|) 63)) (-3886 ((|#3| |#3|) 139)) (-3003 (((-3 |#3| "failed") |#3|) 75)) (-1584 ((|#3| |#3|) 149)) (-4077 (((-3 |#3| "failed") |#3|) 117)) (-3864 ((|#3| |#3|) 153)) (-2982 (((-3 |#3| "failed") |#3|) 71)) (-1555 ((|#3| |#3|) 147)) (-4061 (((-3 |#3| "failed") |#3|) 59)) (-3840 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374))))) -(((-287 |#1| |#2| |#3|) (-13 (-1001 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2666 (|#3| |#3|)) (-15 -3464 (|#3| |#3|)) (-15 -3762 (|#3| |#3|)) (-15 -3775 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3818 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -3874 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -1522 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1545 (|#3| |#3|)) (-15 -1555 (|#3| |#3|)) (-15 -1570 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1594 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)))) (-38 (-419 (-576))) (-1277 |#1|) (-1248 |#1| |#2|)) (T -287)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1277 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1248 *4 *5)))) (-2666 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3464 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3762 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3818 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2915 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))) -(-13 (-1001 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2666 (|#3| |#3|)) (-15 -3464 (|#3| |#3|)) (-15 -3762 (|#3| |#3|)) (-15 -3775 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3818 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -3874 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -1522 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1545 (|#3| |#3|)) (-15 -1555 (|#3| |#3|)) (-15 -1570 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1594 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)))) -((-4121 (((-3 |#3| "failed") |#3|) 70)) (-3924 ((|#3| |#3|) 137)) (-4011 (((-3 |#3| "failed") |#3|) 54)) (-3787 ((|#3| |#3|) 125)) (-4102 (((-3 |#3| "failed") |#3|) 66)) (-3898 ((|#3| |#3|) 135)) (-3989 (((-3 |#3| "failed") |#3|) 50)) (-3762 ((|#3| |#3|) 123)) (-2952 (((-3 |#3| "failed") |#3|) 74)) (-1522 ((|#3| |#3|) 139)) (-4032 (((-3 |#3| "failed") |#3|) 58)) (-3808 ((|#3| |#3|) 127)) (-3950 (((-3 |#3| "failed") |#3| (-783)) 38)) (-3977 (((-3 |#3| "failed") |#3|) 48)) (-3464 ((|#3| |#3|) 111)) (-3964 (((-3 |#3| "failed") |#3|) 46)) (-2666 ((|#3| |#3|) 122)) (-2961 (((-3 |#3| "failed") |#3|) 76)) (-1532 ((|#3| |#3|) 140)) (-4042 (((-3 |#3| "failed") |#3|) 60)) (-3818 ((|#3| |#3|) 128)) (-2943 (((-3 |#3| "failed") |#3|) 72)) (-3938 ((|#3| |#3|) 138)) (-4021 (((-3 |#3| "failed") |#3|) 56)) (-3798 ((|#3| |#3|) 126)) (-4112 (((-3 |#3| "failed") |#3|) 68)) (-3910 ((|#3| |#3|) 136)) (-4000 (((-3 |#3| "failed") |#3|) 52)) (-3775 ((|#3| |#3|) 124)) (-2993 (((-3 |#3| "failed") |#3|) 78)) (-1570 ((|#3| |#3|) 143)) (-4069 (((-3 |#3| "failed") |#3|) 62)) (-3853 ((|#3| |#3|) 131)) (-2969 (((-3 |#3| "failed") |#3|) 112)) (-1545 ((|#3| |#3|) 141)) (-4052 (((-3 |#3| "failed") |#3|) 100)) (-3829 ((|#3| |#3|) 129)) (-3012 (((-3 |#3| "failed") |#3|) 116)) (-1594 ((|#3| |#3|) 145)) (-4086 (((-3 |#3| "failed") |#3|) 107)) (-3874 ((|#3| |#3|) 133)) (-3026 (((-3 |#3| "failed") |#3|) 117)) (-2915 ((|#3| |#3|) 146)) (-4096 (((-3 |#3| "failed") |#3|) 109)) (-3886 ((|#3| |#3|) 134)) (-3003 (((-3 |#3| "failed") |#3|) 80)) (-1584 ((|#3| |#3|) 144)) (-4077 (((-3 |#3| "failed") |#3|) 64)) (-3864 ((|#3| |#3|) 132)) (-2982 (((-3 |#3| "failed") |#3|) 113)) (-1555 ((|#3| |#3|) 142)) (-4061 (((-3 |#3| "failed") |#3|) 103)) (-3840 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374))))) -(((-288 |#1| |#2| |#3| |#4|) (-13 (-1001 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2666 (|#3| |#3|)) (-15 -3464 (|#3| |#3|)) (-15 -3762 (|#3| |#3|)) (-15 -3775 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3818 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -3874 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -1522 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1545 (|#3| |#3|)) (-15 -1555 (|#3| |#3|)) (-15 -1570 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1594 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)))) (-38 (-419 (-576))) (-1246 |#1|) (-1269 |#1| |#2|) (-1001 |#2|)) (T -288)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1246 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1269 *4 *5)) (-4 *6 (-1001 *5)))) (-2666 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3464 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3762 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3818 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2915 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))) -(-13 (-1001 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2666 (|#3| |#3|)) (-15 -3464 (|#3| |#3|)) (-15 -3762 (|#3| |#3|)) (-15 -3775 (|#3| |#3|)) (-15 -3787 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3818 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -3874 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -1522 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1545 (|#3| |#3|)) (-15 -1555 (|#3| |#3|)) (-15 -1570 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1594 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)))) -((-1392 (((-112) $) 20)) (-2797 (((-1200) $) 7)) (-1494 (((-3 (-518) "failed") $) 14)) (-1484 (((-3 (-656 $) "failed") $) NIL)) (-1381 (((-3 (-518) "failed") $) 21)) (-1404 (((-3 (-1122) "failed") $) 18)) (-3847 (((-112) $) 16)) (-2884 (((-874) $) NIL)) (-1372 (((-112) $) 9))) -(((-289) (-13 (-625 (-874)) (-10 -8 (-15 -2797 ((-1200) $)) (-15 -3847 ((-112) $)) (-15 -1404 ((-3 (-1122) "failed") $)) (-15 -1392 ((-112) $)) (-15 -1381 ((-3 (-518) "failed") $)) (-15 -1372 ((-112) $)) (-15 -1494 ((-3 (-518) "failed") $)) (-15 -1484 ((-3 (-656 $) "failed") $))))) (T -289)) -((-2797 (*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-289)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-1404 (*1 *2 *1) (|partial| -12 (-5 *2 (-1122)) (-5 *1 (-289)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-1381 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-1494 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-1484 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289))))) -(-13 (-625 (-874)) (-10 -8 (-15 -2797 ((-1200) $)) (-15 -3847 ((-112) $)) (-15 -1404 ((-3 (-1122) "failed") $)) (-15 -1392 ((-112) $)) (-15 -1381 ((-3 (-518) "failed") $)) (-15 -1372 ((-112) $)) (-15 -1494 ((-3 (-518) "failed") $)) (-15 -1484 ((-3 (-656 $) "failed") $)))) -((-1796 (((-609) $) 10)) (-1423 (((-597) $) 8)) (-1413 (((-301) $) 12)) (-1433 (($ (-597) (-609) (-301)) NIL)) (-2884 (((-874) $) 19))) -(((-290) (-13 (-625 (-874)) (-10 -8 (-15 -1433 ($ (-597) (-609) (-301))) (-15 -1423 ((-597) $)) (-15 -1796 ((-609) $)) (-15 -1413 ((-301) $))))) (T -290)) -((-1433 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(-13 (-625 (-874)) (-10 -8 (-15 -1433 ($ (-597) (-609) (-301))) (-15 -1423 ((-597) $)) (-15 -1796 ((-609) $)) (-15 -1413 ((-301) $)))) -((-3985 (($ (-1 (-112) |#2|) $) 24)) (-1919 (($ $) 38)) (-2833 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3634 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2230 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2134 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-3240 (($ $ (-576)) 11) (($ $ (-1253 (-576))) 14)) (-1806 (($ $ |#2|) 32) (($ $ $) NIL)) (-1514 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-656 $)) NIL))) -(((-291 |#1| |#2|) (-10 -8 (-15 -2230 (|#1| |#1| |#1|)) (-15 -2833 (|#1| |#2| |#1|)) (-15 -2230 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2833 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1806 (|#1| |#1| |#1|)) (-15 -1806 (|#1| |#1| |#2|)) (-15 -2134 (|#1| |#1| |#1| (-576))) (-15 -2134 (|#1| |#2| |#1| (-576))) (-15 -3240 (|#1| |#1| (-1253 (-576)))) (-15 -3240 (|#1| |#1| (-576))) (-15 -1514 (|#1| (-656 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -3634 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3985 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -1919 (|#1| |#1|))) (-292 |#2|) (-1236)) (T -291)) -NIL -(-10 -8 (-15 -2230 (|#1| |#1| |#1|)) (-15 -2833 (|#1| |#2| |#1|)) (-15 -2230 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2833 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1806 (|#1| |#1| |#1|)) (-15 -1806 (|#1| |#1| |#2|)) (-15 -2134 (|#1| |#1| |#1| (-576))) (-15 -2134 (|#1| |#2| |#1| (-576))) (-15 -3240 (|#1| |#1| (-1253 (-576)))) (-15 -3240 (|#1| |#1| (-576))) (-15 -1514 (|#1| (-656 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -3634 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3985 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3634 (|#1| |#2| |#1|)) (-15 -1919 (|#1| |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3336 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) 8)) (-3055 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-1443 (($ (-1 (-112) |#1|) $) 88)) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-2257 (($ $) 86 (|has| |#1| (-1118)))) (-1919 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2833 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1118)))) (-3634 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) 52)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2310 (($ (-783) |#1|) 70)) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 44 (|has| (-576) (-862)))) (-2230 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 45 (|has| (-576) (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3807 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-2134 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3385 (((-656 (-576)) $) 47)) (-3394 (((-112) (-576) $) 48)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1962 ((|#1| $) 43 (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3346 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) 49)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-1455 (($ $ (-576)) 94) (($ $ (-1253 (-576))) 93)) (-3240 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 72)) (-1806 (($ $ |#1|) 96) (($ $ $) 95)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-292 |#1|) (-141) (-1236)) (T -292)) -((-1806 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)))) (-1806 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)))) (-1455 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-1455 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-2833 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-3807 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1236)))) (-3807 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-2230 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-1443 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-2833 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1118)))) (-2257 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1118)))) (-2230 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-862))))) -(-13 (-663 |t#1|) (-10 -8 (-6 -4462) (-15 -1806 ($ $ |t#1|)) (-15 -1806 ($ $ $)) (-15 -1455 ($ $ (-576))) (-15 -1455 ($ $ (-1253 (-576)))) (-15 -2833 ($ (-1 (-112) |t#1|) $)) (-15 -3807 ($ |t#1| $ (-576))) (-15 -3807 ($ $ $ (-576))) (-15 -2230 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1443 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1118)) (PROGN (-15 -2833 ($ |t#1| $)) (-15 -2257 ($ $))) |%noBranch|) (IF (|has| |t#1| (-862)) (-15 -2230 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) +NIL +(-13 (-1066) (-237)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-234 $) . T) ((-237) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T)) +((-3601 (($) 12) (($ (-655 |#2|)) NIL)) (-3078 (($ $) 14)) (-2894 (($ (-655 |#2|)) 10)) (-2883 (((-873) $) 21))) +(((-239 |#1| |#2|) (-10 -8 (-15 -2883 ((-873) |#1|)) (-15 -3601 (|#1| (-655 |#2|))) (-15 -3601 (|#1|)) (-15 -2894 (|#1| (-655 |#2|))) (-15 -3078 (|#1| |#1|))) (-240 |#2|) (-1117)) (T -239)) +NIL +(-10 -8 (-15 -2883 ((-873) |#1|)) (-15 -3601 (|#1| (-655 |#2|))) (-15 -3601 (|#1|)) (-15 -2894 (|#1| (-655 |#2|))) (-15 -3078 (|#1| |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) 8)) (-1999 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1748 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4404 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3633 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4012 ((|#1| $) 40)) (-3862 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2454 ((|#1| $) 42)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3601 (($) 50) (($ (-655 |#1|)) 49)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 51)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) 43)) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-240 |#1|) (-141) (-1117)) (T -240)) +((-3601 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1117)))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-240 *3)))) (-4404 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-240 *2)) (-4 *2 (-1117)))) (-4404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-240 *3)) (-4 *3 (-1117)))) (-1999 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-240 *3)) (-4 *3 (-1117))))) +(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -3601 ($)) (-15 -3601 ($ (-655 |t#1|))) (IF (|has| $ (-6 -4460)) (PROGN (-15 -4404 ($ |t#1| $)) (-15 -4404 ($ (-1 (-112) |t#1|) $)) (-15 -1999 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-3485 (((-2 (|:| |varOrder| (-655 (-1194))) (|:| |inhom| (-3 (-655 (-1285 (-782))) "failed")) (|:| |hom| (-655 (-1285 (-782))))) (-303 (-967 (-575)))) 42))) +(((-241) (-10 -7 (-15 -3485 ((-2 (|:| |varOrder| (-655 (-1194))) (|:| |inhom| (-3 (-655 (-1285 (-782))) "failed")) (|:| |hom| (-655 (-1285 (-782))))) (-303 (-967 (-575))))))) (T -241)) +((-3485 (*1 *2 *3) (-12 (-5 *3 (-303 (-967 (-575)))) (-5 *2 (-2 (|:| |varOrder| (-655 (-1194))) (|:| |inhom| (-3 (-655 (-1285 (-782))) "failed")) (|:| |hom| (-655 (-1285 (-782)))))) (-5 *1 (-241))))) +(-10 -7 (-15 -3485 ((-2 (|:| |varOrder| (-655 (-1194))) (|:| |inhom| (-3 (-655 (-1285 (-782))) "failed")) (|:| |hom| (-655 (-1285 (-782))))) (-303 (-967 (-575)))))) +((-2415 (((-782)) 56)) (-1749 (((-2 (|:| -2412 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 $) (-1285 $)) 53) (((-700 |#3|) (-700 $)) 44) (((-700 |#3|) (-1285 $)) NIL) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-4386 (((-135)) 62)) (-2389 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL) (($ $ (-782)) NIL) (($ $) NIL)) (-2883 (((-1285 |#3|) $) NIL) (($ |#3|) NIL) (((-873) $) NIL) (($ (-575)) 12) (($ (-418 (-575))) NIL)) (-3759 (((-782)) 15)) (-4038 (($ $ |#3|) 59))) +(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 (|#1| (-575))) (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2883 ((-873) |#1|)) (-15 -3759 ((-782))) (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2883 (|#1| |#3|)) (-15 -2389 (|#1| |#1| (-1 |#3| |#3|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1749 ((-700 |#3|) (-1285 |#1|))) (-15 -1749 ((-700 |#3|) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 |#1|) (-1285 |#1|))) (-15 -2415 ((-782))) (-15 -4038 (|#1| |#1| |#3|)) (-15 -4386 ((-135))) (-15 -2883 ((-1285 |#3|) |#1|))) (-243 |#2| |#3|) (-782) (-1235)) (T -242)) +((-4386 (*1 *2) (-12 (-14 *4 (-782)) (-4 *5 (-1235)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2415 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1235)) (-5 *2 (-782)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-3759 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1235)) (-5 *2 (-782)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) +(-10 -8 (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 (|#1| (-575))) (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2883 ((-873) |#1|)) (-15 -3759 ((-782))) (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2883 (|#1| |#3|)) (-15 -2389 (|#1| |#1| (-1 |#3| |#3|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1749 ((-700 |#3|) (-1285 |#1|))) (-15 -1749 ((-700 |#3|) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 |#1|) (-1285 |#1|))) (-15 -2415 ((-782))) (-15 -4038 (|#1| |#1| |#3|)) (-15 -4386 ((-135))) (-15 -2883 ((-1285 |#3|) |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#2| (-1117)))) (-3799 (((-112) $) 76 (-3765 (|has| |#2| (-23)) (|has| |#2| (-737))))) (-4176 (($ (-936)) 127 (|has| |#2| (-1066)))) (-4161 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-3605 (($ $ $) 123 (|has| |#2| (-804)))) (-2597 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-1845 (((-112) $ (-782)) 8)) (-2415 (((-782)) 113 (|has| |#2| (-378)))) (-3054 ((|#2| $ (-575) |#2|) 53 (|has| $ (-6 -4461)))) (-3011 (($) 7 T CONST)) (-2449 (((-3 (-575) "failed") $) 71 (-3226 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-3 (-418 (-575)) "failed") $) 68 (-3226 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1117)))) (-4399 (((-575) $) 70 (-3226 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-418 (-575)) $) 67 (-3226 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) ((|#2| $) 66 (|has| |#2| (-1117)))) (-1749 (((-700 (-575)) (-1285 $)) 112 (-3226 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-700 (-575)) (-700 $)) 111 (-3226 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 110 (-3226 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 109 (|has| |#2| (-1066))) (((-700 |#2|) (-700 $)) 108 (|has| |#2| (-1066))) (((-700 |#2|) (-1285 $)) 107 (|has| |#2| (-1066)))) (-1747 (((-3 $ "failed") $) 86 (|has| |#2| (-1066)))) (-2079 (($) 116 (|has| |#2| (-378)))) (-2859 ((|#2| $ (-575) |#2|) 54 (|has| $ (-6 -4461)))) (-2788 ((|#2| $ (-575)) 52)) (-4001 (((-655 |#2|) $) 31 (|has| $ (-6 -4460)))) (-1542 (((-112) $) 88 (|has| |#2| (-1066)))) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 44 (|has| (-575) (-861)))) (-1920 (($ $ $) 122 (|has| |#2| (-861)))) (-3955 (((-655 |#2|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 45 (|has| (-575) (-861)))) (-1425 (($ $ $) 121 (|has| |#2| (-861)))) (-2847 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#2| |#2|) $) 36)) (-4084 (((-936) $) 115 (|has| |#2| (-378)))) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#2| (-1117)))) (-4310 (((-655 (-575)) $) 47)) (-2969 (((-112) (-575) $) 48)) (-4317 (($ (-936)) 114 (|has| |#2| (-378)))) (-3912 (((-1137) $) 21 (|has| |#2| (-1117)))) (-1961 ((|#2| $) 43 (|has| (-575) (-861)))) (-3954 (($ $ |#2|) 42 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#2|))) 27 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) 26 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) 24 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) 49)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#2| $ (-575) |#2|) 51) ((|#2| $ (-575)) 50)) (-1886 ((|#2| $ $) 126 (|has| |#2| (-1066)))) (-1981 (($ (-1285 |#2|)) 128)) (-4386 (((-135)) 125 (|has| |#2| (-373)))) (-2389 (($ $ (-782)) 105 (-3226 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) 103 (-3226 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) 99 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) 98 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) 97 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) 95 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) 93 (|has| |#2| (-1066)))) (-3925 (((-782) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4460))) (((-782) |#2| $) 29 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2883 (((-1285 |#2|) $) 129) (($ (-575)) 72 (-3765 (-3226 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066)))) (($ (-418 (-575))) 69 (-3226 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (($ |#2|) 64 (|has| |#2| (-1117))) (((-873) $) 18 (|has| |#2| (-624 (-873))))) (-3759 (((-782)) 90 (|has| |#2| (-1066)) CONST)) (-4400 (((-112) $ $) 23 (|has| |#2| (-1117)))) (-3771 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4460)))) (-1996 (($) 75 (-3765 (|has| |#2| (-23)) (|has| |#2| (-737))) CONST)) (-2009 (($) 89 (|has| |#2| (-1066)) CONST)) (-3430 (($ $ (-782)) 106 (-3226 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) 104 (-3226 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) 102 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) 101 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) 100 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) 96 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) 91 (|has| |#2| (-1066)))) (-3981 (((-112) $ $) 119 (|has| |#2| (-861)))) (-3956 (((-112) $ $) 118 (|has| |#2| (-861)))) (-3914 (((-112) $ $) 20 (|has| |#2| (-1117)))) (-3970 (((-112) $ $) 120 (|has| |#2| (-861)))) (-3943 (((-112) $ $) 117 (|has| |#2| (-861)))) (-4038 (($ $ |#2|) 124 (|has| |#2| (-373)))) (-4028 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-4016 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-782)) 87 (|has| |#2| (-1066))) (($ $ (-936)) 84 (|has| |#2| (-1066)))) (* (($ $ $) 85 (|has| |#2| (-1066))) (($ $ |#2|) 83 (|has| |#2| (-737))) (($ |#2| $) 82 (|has| |#2| (-737))) (($ (-575) $) 79 (|has| |#2| (-21))) (($ (-782) $) 77 (|has| |#2| (-23))) (($ (-936) $) 74 (|has| |#2| (-25)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-243 |#1| |#2|) (-141) (-782) (-1235)) (T -243)) +((-1981 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1235)) (-4 *1 (-243 *3 *4)))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1066)) (-4 *4 (-1235)))) (-1886 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1235)) (-4 *2 (-1066))))) +(-13 (-615 (-575) |t#2|) (-624 (-1285 |t#2|)) (-10 -8 (-6 -4460) (-15 -1981 ($ (-1285 |t#2|))) (IF (|has| |t#2| (-1117)) (-6 (-422 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1066)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-387 |t#2|)) (-15 -4176 ($ (-936))) (-15 -1886 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-737)) (-6 (-651 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-378)) (-6 (-378)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-728 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |t#2| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#2| (-804)) (-6 (-804)) |%noBranch|) (IF (|has| |t#2| (-373)) (-6 (-1292 |t#2|)) |%noBranch|))) +(((-21) -3765 (|has| |#2| (-1066)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -3765 (|has| |#2| (-1066)) (|has| |#2| (-804)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3765 (|has| |#2| (-1066)) (|has| |#2| (-804)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -3765 (|has| |#2| (-1117)) (|has| |#2| (-1066)) (|has| |#2| (-861)) (|has| |#2| (-804)) (|has| |#2| (-737)) (|has| |#2| (-378)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -3765 (|has| |#2| (-1066)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-132) -3765 (|has| |#2| (-1066)) (|has| |#2| (-804)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-627 #0=(-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117))) ((-627 (-575)) -3765 (|has| |#2| (-1066)) (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) ((-627 |#2|) |has| |#2| (-1117)) ((-624 (-873)) -3765 (|has| |#2| (-1117)) (|has| |#2| (-1066)) (|has| |#2| (-861)) (|has| |#2| (-804)) (|has| |#2| (-737)) (|has| |#2| (-378)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-624 (-873))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-624 (-1285 |#2|)) . T) ((-234 $) -3765 (-12 (|has| |#2| (-237)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1066)))) ((-232 |#2|) |has| |#2| (-1066)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1066))) ((-237) -3765 (-12 (|has| |#2| (-237)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1066)))) ((-271 |#2|) |has| |#2| (-1066)) ((-295 #1=(-575) |#2|) . T) ((-297 #1# |#2|) . T) ((-318 |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-378) |has| |#2| (-378)) ((-387 |#2|) |has| |#2| (-1066)) ((-422 |#2|) |has| |#2| (-1117)) ((-500 |#2|) . T) ((-615 #1# |#2|) . T) ((-525 |#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-657 (-575)) -3765 (|has| |#2| (-1066)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-657 |#2|) -3765 (|has| |#2| (-1066)) (|has| |#2| (-737)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-657 $) |has| |#2| (-1066)) ((-659 #2=(-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066))) ((-659 |#2|) -3765 (|has| |#2| (-1066)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-659 $) |has| |#2| (-1066)) ((-651 |#2|) -3765 (|has| |#2| (-737)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-650 #2#) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066))) ((-650 |#2|) |has| |#2| (-1066)) ((-728 |#2|) -3765 (|has| |#2| (-373)) (|has| |#2| (-174))) ((-737) |has| |#2| (-1066)) ((-803) |has| |#2| (-804)) ((-804) |has| |#2| (-804)) ((-805) |has| |#2| (-804)) ((-806) |has| |#2| (-804)) ((-861) -3765 (|has| |#2| (-861)) (|has| |#2| (-804))) ((-908 $ #3=(-1194)) -3765 (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066)))) ((-913 (-1194)) -12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) ((-915 #3#) -3765 (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066)))) ((-1055 #0#) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117))) ((-1055 (-575)) -12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) ((-1055 |#2|) |has| |#2| (-1117)) ((-1068 |#2|) -3765 (|has| |#2| (-1066)) (|has| |#2| (-737)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-1073 |#2|) -3765 (|has| |#2| (-1066)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-1066) |has| |#2| (-1066)) ((-1075) |has| |#2| (-1066)) ((-1129) |has| |#2| (-1066)) ((-1117) -3765 (|has| |#2| (-1117)) (|has| |#2| (-1066)) (|has| |#2| (-861)) (|has| |#2| (-804)) (|has| |#2| (-737)) (|has| |#2| (-378)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1235) . T) ((-1292 |#2|) |has| |#2| (-373))) +((-3715 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-2308 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-2550 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) +(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -3715 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2308 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2550 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-782) (-1235) (-1235)) (T -244)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-782)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-2308 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-782)) (-4 *6 (-1235)) (-4 *2 (-1235)) (-5 *1 (-244 *5 *6 *2)))) (-3715 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-782)) (-4 *7 (-1235)) (-4 *5 (-1235)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) +(-10 -7 (-15 -3715 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2308 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2550 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) +((-2861 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-3799 (((-112) $) NIL (-3765 (|has| |#2| (-23)) (|has| |#2| (-737))))) (-4176 (($ (-936)) 62 (|has| |#2| (-1066)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3605 (($ $ $) 68 (|has| |#2| (-804)))) (-2597 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-1845 (((-112) $ (-782)) NIL)) (-2415 (((-782)) NIL (|has| |#2| (-378)))) (-3054 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1117)))) (-4399 (((-575) $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) ((|#2| $) 28 (|has| |#2| (-1117)))) (-1749 (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-700 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-1285 $)) NIL (|has| |#2| (-1066)))) (-1747 (((-3 $ "failed") $) 58 (|has| |#2| (-1066)))) (-2079 (($) NIL (|has| |#2| (-378)))) (-2859 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#2| $ (-575)) 56)) (-4001 (((-655 |#2|) $) 14 (|has| $ (-6 -4460)))) (-1542 (((-112) $) NIL (|has| |#2| (-1066)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) 19 (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#2| (-861)))) (-3955 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#2| (-861)))) (-2847 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-4084 (((-936) $) NIL (|has| |#2| (-378)))) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#2| (-1117)))) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#2| (-378)))) (-3912 (((-1137) $) NIL (|has| |#2| (-1117)))) (-1961 ((|#2| $) NIL (|has| (-575) (-861)))) (-3954 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#2| $ (-575) |#2|) NIL) ((|#2| $ (-575)) 20)) (-1886 ((|#2| $ $) NIL (|has| |#2| (-1066)))) (-1981 (($ (-1285 |#2|)) 17)) (-4386 (((-135)) NIL (|has| |#2| (-373)))) (-2389 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3925 (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-1285 |#2|) $) 9) (($ (-575)) NIL (-3765 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (($ |#2|) 12 (|has| |#2| (-1117))) (((-873) $) NIL (|has| |#2| (-624 (-873))))) (-3759 (((-782)) NIL (|has| |#2| (-1066)) CONST)) (-4400 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-3771 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-1996 (($) 36 (-3765 (|has| |#2| (-23)) (|has| |#2| (-737))) CONST)) (-2009 (($) 40 (|has| |#2| (-1066)) CONST)) (-3430 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3981 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3914 (((-112) $ $) 27 (|has| |#2| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3943 (((-112) $ $) 66 (|has| |#2| (-861)))) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4028 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4016 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-782)) NIL (|has| |#2| (-1066))) (($ $ (-936)) NIL (|has| |#2| (-1066)))) (* (($ $ $) 46 (|has| |#2| (-1066))) (($ $ |#2|) 44 (|has| |#2| (-737))) (($ |#2| $) 45 (|has| |#2| (-737))) (($ (-575) $) NIL (|has| |#2| (-21))) (($ (-782) $) NIL (|has| |#2| (-23))) (($ (-936) $) NIL (|has| |#2| (-25)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-245 |#1| |#2|) (-243 |#1| |#2|) (-782) (-1235)) (T -245)) +NIL +(-243 |#1| |#2|) +((-3000 (((-575) (-655 (-1176))) 36) (((-575) (-1176)) 29)) (-3588 (((-1290) (-655 (-1176))) 40) (((-1290) (-1176)) 39)) (-2649 (((-1176)) 16)) (-4099 (((-1176) (-575) (-1176)) 23)) (-1751 (((-655 (-1176)) (-655 (-1176)) (-575) (-1176)) 37) (((-1176) (-1176) (-575) (-1176)) 35)) (-3021 (((-655 (-1176)) (-655 (-1176))) 15) (((-655 (-1176)) (-1176)) 11))) +(((-246) (-10 -7 (-15 -3021 ((-655 (-1176)) (-1176))) (-15 -3021 ((-655 (-1176)) (-655 (-1176)))) (-15 -2649 ((-1176))) (-15 -4099 ((-1176) (-575) (-1176))) (-15 -1751 ((-1176) (-1176) (-575) (-1176))) (-15 -1751 ((-655 (-1176)) (-655 (-1176)) (-575) (-1176))) (-15 -3588 ((-1290) (-1176))) (-15 -3588 ((-1290) (-655 (-1176)))) (-15 -3000 ((-575) (-1176))) (-15 -3000 ((-575) (-655 (-1176)))))) (T -246)) +((-3000 (*1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-575)) (-5 *1 (-246)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-575)) (-5 *1 (-246)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1290)) (-5 *1 (-246)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-246)))) (-1751 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-655 (-1176))) (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *1 (-246)))) (-1751 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-246)))) (-4099 (*1 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-246)))) (-2649 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-246)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-246)))) (-3021 (*1 *2 *3) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-246)) (-5 *3 (-1176))))) +(-10 -7 (-15 -3021 ((-655 (-1176)) (-1176))) (-15 -3021 ((-655 (-1176)) (-655 (-1176)))) (-15 -2649 ((-1176))) (-15 -4099 ((-1176) (-575) (-1176))) (-15 -1751 ((-1176) (-1176) (-575) (-1176))) (-15 -1751 ((-655 (-1176)) (-655 (-1176)) (-575) (-1176))) (-15 -3588 ((-1290) (-1176))) (-15 -3588 ((-1290) (-655 (-1176)))) (-15 -3000 ((-575) (-1176))) (-15 -3000 ((-575) (-655 (-1176))))) +((** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 20)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ (-418 (-575)) $) 27) (($ $ (-418 (-575))) NIL))) +(((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-575))) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) (-248)) (T -247)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-575))) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 47)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 51)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 48)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ (-418 (-575)) $) 50) (($ $ (-418 (-575))) 49))) +(((-248) (-141)) (T -248)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-575)))) (-4332 (*1 *1 *1) (-4 *1 (-248)))) +(-13 (-299) (-38 (-418 (-575))) (-10 -8 (-15 ** ($ $ (-575))) (-15 -4332 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-299) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-728 #0#) . T) ((-737) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4182 ((|#1| $) 49)) (-3462 (($ $) 58)) (-1845 (((-112) $ (-782)) 8)) (-1915 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-4234 (($ $ $) 54 (|has| $ (-6 -4461)))) (-2519 (($ $ $) 53 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3011 (($) 7 T CONST)) (-1676 (($ $) 57)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) 51)) (-3117 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-2085 (($ $) 56)) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2482 (((-655 |#1|) $) 46)) (-1526 (((-112) $) 50)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3653 ((|#1| $) 60)) (-3283 (($ $) 59)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ "value") 48)) (-2220 (((-575) $ $) 45)) (-1648 (((-112) $) 47)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2774 (($ $ $) 55 (|has| $ (-6 -4461)))) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) 52)) (-2781 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-249 |#1|) (-141) (-1235)) (T -249)) +((-3653 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-3283 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-3462 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-1676 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-2085 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-2774 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-4234 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-2519 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235))))) +(-13 (-1027 |t#1|) (-10 -8 (-15 -3653 (|t#1| $)) (-15 -3283 ($ $)) (-15 -3462 ($ $)) (-15 -1676 ($ $)) (-15 -2085 ($ $)) (IF (|has| $ (-6 -4461)) (PROGN (-15 -2774 ($ $ $)) (-15 -4234 ($ $ $)) (-15 -2519 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4182 ((|#1| $) NIL)) (-2989 ((|#1| $) NIL)) (-3462 (($ $) NIL)) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1893 (($ $ (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2119 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2031 (($ $) 10 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-1915 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3391 (($ $ $) NIL (|has| $ (-6 -4461)))) (-3602 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-1876 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "rest" $) NIL (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-1999 (($ (-1 (-112) |#1|) $) NIL)) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2977 ((|#1| $) NIL)) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1975 (($ $) NIL) (($ $ (-782)) NIL)) (-1878 (($ $) NIL (|has| |#1| (-1117)))) (-1748 (($ $) 7 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4404 (($ |#1| $) NIL (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) NIL)) (-3633 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2859 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) NIL)) (-2087 (((-112) $) NIL)) (-2632 (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117))) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) (-1 (-112) |#1|) $) NIL)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) NIL)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2309 (($ (-782) |#1|) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-4174 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3794 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1684 (($ |#1|) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2482 (((-655 |#1|) $) NIL)) (-1526 (((-112) $) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3653 ((|#1| $) NIL) (($ $ (-782)) NIL)) (-3862 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-2135 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1961 ((|#1| $) NIL) (($ $ (-782)) NIL)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3954 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-3888 (((-112) $) NIL)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1252 (-575))) NIL) ((|#1| $ (-575)) NIL) ((|#1| $ (-575) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-782) $ "count") 16)) (-2220 (((-575) $ $) NIL)) (-2797 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3239 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-1463 (($ (-655 |#1|)) 22)) (-1648 (((-112) $) NIL)) (-1397 (($ $) NIL)) (-1877 (($ $) NIL (|has| $ (-6 -4461)))) (-3269 (((-782) $) NIL)) (-1863 (($ $) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) NIL)) (-2774 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1514 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-655 $)) NIL) (($ $ |#1|) NIL)) (-2883 (($ (-655 |#1|)) 17) (((-655 |#1|) $) 18) (((-873) $) 21 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) NIL)) (-2781 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2871 (((-782) $) 14 (|has| $ (-6 -4460))))) +(((-250 |#1|) (-13 (-677 |#1|) (-501 (-655 |#1|)) (-10 -8 (-15 -1463 ($ (-655 |#1|))) (-15 -2070 ($ $ "unique")) (-15 -2070 ($ $ "sort")) (-15 -2070 ((-782) $ "count")))) (-861)) (T -250)) +((-1463 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3)))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-782)) (-5 *1 (-250 *4)) (-4 *4 (-861))))) +(-13 (-677 |#1|) (-501 (-655 |#1|)) (-10 -8 (-15 -1463 ($ (-655 |#1|))) (-15 -2070 ($ $ "unique")) (-15 -2070 ($ $ "sort")) (-15 -2070 ((-782) $ "count")))) +((-4054 (((-3 (-782) "failed") |#1| |#1| (-782)) 40))) +(((-251 |#1|) (-10 -7 (-15 -4054 ((-3 (-782) "failed") |#1| |#1| (-782)))) (-13 (-737) (-378) (-10 -7 (-15 ** (|#1| |#1| (-575)))))) (T -251)) +((-4054 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-782)) (-4 *3 (-13 (-737) (-378) (-10 -7 (-15 ** (*3 *3 (-575)))))) (-5 *1 (-251 *3))))) +(-10 -7 (-15 -4054 ((-3 (-782) "failed") |#1| |#1| (-782)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 (-875 |#1|)) $) NIL)) (-3466 (((-1190 $) $ (-875 |#1|)) NIL) (((-1190 |#2|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-567)))) (-1540 (($ $) NIL (|has| |#2| (-567)))) (-3286 (((-112) $) NIL (|has| |#2| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 (-875 |#1|))) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2058 (($ $) NIL (|has| |#2| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#2| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-875 |#1|) "failed") $) NIL)) (-4399 ((|#2| $) NIL) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-875 |#1|) $) NIL)) (-4232 (($ $ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-2998 (($ $ (-655 (-575))) NIL)) (-4406 (($ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#2| (-924)))) (-3703 (($ $ |#2| (-245 (-2871 |#1|) (-782)) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-2433 (($ (-1190 |#2|) (-875 |#1|)) NIL) (($ (-1190 $) (-875 |#1|)) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#2| (-245 (-2871 |#1|) (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-875 |#1|)) NIL)) (-4337 (((-245 (-2871 |#1|) (-782)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-2520 (($ (-1 (-245 (-2871 |#1|) (-782)) (-245 (-2871 |#1|) (-782))) $) NIL)) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-3976 (((-3 (-875 |#1|) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-2288 (((-1176) $) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| (-875 |#1|)) (|:| -2398 (-782))) "failed") $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) NIL)) (-4353 ((|#2| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#2| (-924)))) (-2851 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-567)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-875 |#1|) |#2|) NIL) (($ $ (-655 (-875 |#1|)) (-655 |#2|)) NIL) (($ $ (-875 |#1|) $) NIL) (($ $ (-655 (-875 |#1|)) (-655 $)) NIL)) (-4060 (($ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-2389 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-2645 (((-245 (-2871 |#1|) (-782)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-875 |#1|) (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-2178 ((|#2| $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-875 |#1|)) NIL) (($ (-418 (-575))) NIL (-3765 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#2| (-567)))) (-2501 (((-655 |#2|) $) NIL)) (-2012 ((|#2| $ (-245 (-2871 |#1|) (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#2| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#2| (-567)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#2| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#2| (-38 (-418 (-575))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-252 |#1| |#2|) (-13 (-964 |#2| (-245 (-2871 |#1|) (-782)) (-875 |#1|)) (-10 -8 (-15 -2998 ($ $ (-655 (-575)))))) (-655 (-1194)) (-1066)) (T -252)) +((-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-252 *3 *4)) (-14 *3 (-655 (-1194))) (-4 *4 (-1066))))) +(-13 (-964 |#2| (-245 (-2871 |#1|) (-782)) (-875 |#1|)) (-10 -8 (-15 -2998 ($ $ (-655 (-575)))))) +((-2861 (((-112) $ $) NIL)) (-2573 (((-1290) $) 17)) (-3187 (((-185 (-254)) $) 11)) (-3677 (($ (-185 (-254))) 12)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3743 (((-254) $) 7)) (-2883 (((-873) $) 9)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 15))) +(((-253) (-13 (-1117) (-10 -8 (-15 -3743 ((-254) $)) (-15 -3187 ((-185 (-254)) $)) (-15 -3677 ($ (-185 (-254)))) (-15 -2573 ((-1290) $))))) (T -253)) +((-3743 (*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-253)))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253)))) (-3677 (*1 *1 *2) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-253))))) +(-13 (-1117) (-10 -8 (-15 -3743 ((-254) $)) (-15 -3187 ((-185 (-254)) $)) (-15 -3677 ($ (-185 (-254)))) (-15 -2573 ((-1290) $)))) +((-2861 (((-112) $ $) NIL)) (-3022 (((-655 (-876)) $) NIL)) (-1777 (((-517) $) NIL)) (-2288 (((-1176) $) NIL)) (-1559 (((-188) $) NIL)) (-3789 (((-112) $ (-517)) NIL)) (-3912 (((-1137) $) NIL)) (-2970 (((-342) $) 7)) (-4147 (((-655 (-112)) $) NIL)) (-2883 (((-873) $) NIL) (((-189) $) 8)) (-4400 (((-112) $ $) NIL)) (-3156 (((-55) $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-254) (-13 (-187) (-624 (-189)) (-10 -8 (-15 -2970 ((-342) $))))) (T -254)) +((-2970 (*1 *2 *1) (-12 (-5 *2 (-342)) (-5 *1 (-254))))) +(-13 (-187) (-624 (-189)) (-10 -8 (-15 -2970 ((-342) $)))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2070 (((-1199) $ (-782)) 13)) (-2883 (((-873) $) 20)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 16)) (-2871 (((-782) $) 9))) +(((-255) (-13 (-1117) (-295 (-782) (-1199)) (-10 -8 (-15 -2871 ((-782) $))))) (T -255)) +((-2871 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-255))))) +(-13 (-1117) (-295 (-782) (-1199)) (-10 -8 (-15 -2871 ((-782) $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-4176 (($ (-936)) NIL (|has| |#4| (-1066)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3605 (($ $ $) NIL (|has| |#4| (-804)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-2415 (((-782)) NIL (|has| |#4| (-378)))) (-3054 ((|#4| $ (-575) |#4|) NIL (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1117))) (((-3 (-575) "failed") $) NIL (-12 (|has| |#4| (-1055 (-575))) (|has| |#4| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#4| (-1055 (-418 (-575)))) (|has| |#4| (-1117))))) (-4399 ((|#4| $) NIL (|has| |#4| (-1117))) (((-575) $) NIL (-12 (|has| |#4| (-1055 (-575))) (|has| |#4| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#4| (-1055 (-418 (-575)))) (|has| |#4| (-1117))))) (-1749 (((-2 (|:| -2412 (-700 |#4|)) (|:| |vec| (-1285 |#4|))) (-700 $) (-1285 $)) NIL (|has| |#4| (-1066))) (((-700 |#4|) (-700 $)) NIL (|has| |#4| (-1066))) (((-700 |#4|) (-1285 $)) NIL (|has| |#4| (-1066))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#4| (-650 (-575))) (|has| |#4| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#4| (-650 (-575))) (|has| |#4| (-1066)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#4| (-650 (-575))) (|has| |#4| (-1066))))) (-1747 (((-3 $ "failed") $) NIL (|has| |#4| (-1066)))) (-2079 (($) NIL (|has| |#4| (-378)))) (-2859 ((|#4| $ (-575) |#4|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#4| $ (-575)) NIL)) (-4001 (((-655 |#4|) $) NIL (|has| $ (-6 -4460)))) (-1542 (((-112) $) NIL (|has| |#4| (-1066)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#4| (-861)))) (-3955 (((-655 |#4|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#4| (-861)))) (-2847 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) NIL)) (-4084 (((-936) $) NIL (|has| |#4| (-378)))) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#4| (-378)))) (-3912 (((-1137) $) NIL)) (-1961 ((|#4| $) NIL (|has| (-575) (-861)))) (-3954 (($ $ |#4|) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-1691 (((-655 |#4|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#4| $ (-575) |#4|) NIL) ((|#4| $ (-575)) 12)) (-1886 ((|#4| $ $) NIL (|has| |#4| (-1066)))) (-1981 (($ (-1285 |#4|)) NIL)) (-4386 (((-135)) NIL (|has| |#4| (-373)))) (-2389 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1066))) (($ $ (-1 |#4| |#4|) (-782)) NIL (|has| |#4| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-782)) NIL (-3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066))))) (($ $) NIL (-3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066)))))) (-3925 (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460))) (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-1285 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1117))) (((-873) $) NIL) (($ (-575)) NIL (-3765 (-12 (|has| |#4| (-1055 (-575))) (|has| |#4| (-1117))) (|has| |#4| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#4| (-1055 (-418 (-575)))) (|has| |#4| (-1117))))) (-3759 (((-782)) NIL (|has| |#4| (-1066)) CONST)) (-4400 (((-112) $ $) NIL)) (-3771 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL (|has| |#4| (-1066)) CONST)) (-3430 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1066))) (($ $ (-1 |#4| |#4|) (-782)) NIL (|has| |#4| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-782)) NIL (-3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066))))) (($ $) NIL (-3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066)))))) (-3981 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#4| (-861)))) (-4038 (($ $ |#4|) NIL (|has| |#4| (-373)))) (-4028 (($ $ $) NIL) (($ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-782)) NIL (|has| |#4| (-1066))) (($ $ (-936)) NIL (|has| |#4| (-1066)))) (* (($ |#2| $) 14) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-737))) (($ |#4| $) NIL (|has| |#4| (-737))) (($ $ $) NIL (|has| |#4| (-1066)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-256 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-659 |#2|) (-659 |#3|)) (-936) (-1066) (-1140 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-659 |#2|)) (T -256)) +NIL +(-13 (-243 |#1| |#4|) (-659 |#2|) (-659 |#3|)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-4176 (($ (-936)) NIL (|has| |#3| (-1066)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3605 (($ $ $) NIL (|has| |#3| (-804)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-2415 (((-782)) NIL (|has| |#3| (-378)))) (-3054 ((|#3| $ (-575) |#3|) NIL (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1117))) (((-3 (-575) "failed") $) NIL (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117))))) (-4399 ((|#3| $) NIL (|has| |#3| (-1117))) (((-575) $) NIL (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117))))) (-1749 (((-2 (|:| -2412 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 $) (-1285 $)) NIL (|has| |#3| (-1066))) (((-700 |#3|) (-700 $)) NIL (|has| |#3| (-1066))) (((-700 |#3|) (-1285 $)) NIL (|has| |#3| (-1066))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066))))) (-1747 (((-3 $ "failed") $) NIL (|has| |#3| (-1066)))) (-2079 (($) NIL (|has| |#3| (-378)))) (-2859 ((|#3| $ (-575) |#3|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#3| $ (-575)) NIL)) (-4001 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-1542 (((-112) $) NIL (|has| |#3| (-1066)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#3| (-861)))) (-3955 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#3| (-861)))) (-2847 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#3| |#3|) $) NIL)) (-4084 (((-936) $) NIL (|has| |#3| (-378)))) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#3| (-378)))) (-3912 (((-1137) $) NIL)) (-1961 ((|#3| $) NIL (|has| (-575) (-861)))) (-3954 (($ $ |#3|) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#3|))) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-303 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-655 |#3|) (-655 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-1691 (((-655 |#3|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#3| $ (-575) |#3|) NIL) ((|#3| $ (-575)) 11)) (-1886 ((|#3| $ $) NIL (|has| |#3| (-1066)))) (-1981 (($ (-1285 |#3|)) NIL)) (-4386 (((-135)) NIL (|has| |#3| (-373)))) (-2389 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1066))) (($ $ (-1 |#3| |#3|) (-782)) NIL (|has| |#3| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-782)) NIL (-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066))))) (($ $) NIL (-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))))) (-3925 (((-782) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460))) (((-782) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-1285 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1117))) (((-873) $) NIL) (($ (-575)) NIL (-3765 (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (|has| |#3| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117))))) (-3759 (((-782)) NIL (|has| |#3| (-1066)) CONST)) (-4400 (((-112) $ $) NIL)) (-3771 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL (|has| |#3| (-1066)) CONST)) (-3430 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1066))) (($ $ (-1 |#3| |#3|) (-782)) NIL (|has| |#3| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-782)) NIL (-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066))))) (($ $) NIL (-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))))) (-3981 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#3| (-861)))) (-4038 (($ $ |#3|) NIL (|has| |#3| (-373)))) (-4028 (($ $ $) NIL) (($ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-782)) NIL (|has| |#3| (-1066))) (($ $ (-936)) NIL (|has| |#3| (-1066)))) (* (($ |#2| $) 13) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-737))) (($ |#3| $) NIL (|has| |#3| (-737))) (($ $ $) NIL (|has| |#3| (-1066)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-257 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-659 |#2|)) (-782) (-1066) (-659 |#2|)) (T -257)) +NIL +(-13 (-243 |#1| |#3|) (-659 |#2|)) +((-3004 (((-655 (-782)) $) 56) (((-655 (-782)) $ |#3|) 59)) (-2807 (((-782) $) 58) (((-782) $ |#3|) 61)) (-1611 (($ $) 76)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2673 (((-782) $ |#3|) 43) (((-782) $) 38)) (-4420 (((-1 $ (-782)) |#3|) 15) (((-1 $ (-782)) $) 88)) (-2147 ((|#4| $) 69)) (-2976 (((-112) $) 67)) (-2816 (($ $) 75)) (-3048 (($ $ (-655 (-303 $))) 111) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-655 |#4|) (-655 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-655 |#4|) (-655 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-655 |#3|) (-655 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-655 |#3|) (-655 |#2|)) 97)) (-2389 (($ $ (-655 |#4|) (-655 (-782))) NIL) (($ $ |#4| (-782)) NIL) (($ $ (-655 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $) NIL) (($ $ (-782)) NIL)) (-3503 (((-655 |#3|) $) 86)) (-2645 ((|#5| $) NIL) (((-782) $ |#4|) NIL) (((-655 (-782)) $ (-655 |#4|)) NIL) (((-782) $ |#3|) 49)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-418 (-575))) NIL) (($ $) NIL))) +(((-258 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2883 (|#1| |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -3048 (|#1| |#1| (-655 |#3|) (-655 |#2|))) (-15 -3048 (|#1| |#1| |#3| |#2|)) (-15 -3048 (|#1| |#1| (-655 |#3|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#3| |#1|)) (-15 -4420 ((-1 |#1| (-782)) |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -2816 (|#1| |#1|)) (-15 -2147 (|#4| |#1|)) (-15 -2976 ((-112) |#1|)) (-15 -2807 ((-782) |#1| |#3|)) (-15 -3004 ((-655 (-782)) |#1| |#3|)) (-15 -2807 ((-782) |#1|)) (-15 -3004 ((-655 (-782)) |#1|)) (-15 -2645 ((-782) |#1| |#3|)) (-15 -2673 ((-782) |#1|)) (-15 -2673 ((-782) |#1| |#3|)) (-15 -3503 ((-655 |#3|) |#1|)) (-15 -4420 ((-1 |#1| (-782)) |#3|)) (-15 -2883 (|#1| |#3|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2645 ((-655 (-782)) |#1| (-655 |#4|))) (-15 -2645 ((-782) |#1| |#4|)) (-15 -2883 (|#1| |#4|)) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -3048 (|#1| |#1| (-655 |#4|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#4| |#1|)) (-15 -3048 (|#1| |#1| (-655 |#4|) (-655 |#2|))) (-15 -3048 (|#1| |#1| |#4| |#2|)) (-15 -3048 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| (-303 |#1|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -2645 (|#5| |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2389 (|#1| |#1| |#4|)) (-15 -2389 (|#1| |#1| (-655 |#4|))) (-15 -2389 (|#1| |#1| |#4| (-782))) (-15 -2389 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) (-259 |#2| |#3| |#4| |#5|) (-1066) (-861) (-274 |#3|) (-804)) (T -258)) +NIL +(-10 -8 (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2883 (|#1| |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -3048 (|#1| |#1| (-655 |#3|) (-655 |#2|))) (-15 -3048 (|#1| |#1| |#3| |#2|)) (-15 -3048 (|#1| |#1| (-655 |#3|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#3| |#1|)) (-15 -4420 ((-1 |#1| (-782)) |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -2816 (|#1| |#1|)) (-15 -2147 (|#4| |#1|)) (-15 -2976 ((-112) |#1|)) (-15 -2807 ((-782) |#1| |#3|)) (-15 -3004 ((-655 (-782)) |#1| |#3|)) (-15 -2807 ((-782) |#1|)) (-15 -3004 ((-655 (-782)) |#1|)) (-15 -2645 ((-782) |#1| |#3|)) (-15 -2673 ((-782) |#1|)) (-15 -2673 ((-782) |#1| |#3|)) (-15 -3503 ((-655 |#3|) |#1|)) (-15 -4420 ((-1 |#1| (-782)) |#3|)) (-15 -2883 (|#1| |#3|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2645 ((-655 (-782)) |#1| (-655 |#4|))) (-15 -2645 ((-782) |#1| |#4|)) (-15 -2883 (|#1| |#4|)) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -3048 (|#1| |#1| (-655 |#4|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#4| |#1|)) (-15 -3048 (|#1| |#1| (-655 |#4|) (-655 |#2|))) (-15 -3048 (|#1| |#1| |#4| |#2|)) (-15 -3048 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| (-303 |#1|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -2645 (|#5| |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2389 (|#1| |#1| |#4|)) (-15 -2389 (|#1| |#1| (-655 |#4|))) (-15 -2389 (|#1| |#1| |#4| (-782))) (-15 -2389 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3004 (((-655 (-782)) $) 234) (((-655 (-782)) $ |#2|) 232)) (-2807 (((-782) $) 233) (((-782) $ |#2|) 231)) (-1606 (((-655 |#3|) $) 113)) (-3466 (((-1190 $) $ |#3|) 128) (((-1190 |#1|) $) 127)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 90 (|has| |#1| (-567)))) (-1540 (($ $) 91 (|has| |#1| (-567)))) (-3286 (((-112) $) 93 (|has| |#1| (-567)))) (-3805 (((-782) $) 115) (((-782) $ (-655 |#3|)) 114)) (-2597 (((-3 $ "failed") $ $) 20)) (-3535 (((-429 (-1190 $)) (-1190 $)) 103 (|has| |#1| (-924)))) (-2058 (($ $) 101 (|has| |#1| (-463)))) (-2330 (((-429 $) $) 100 (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 106 (|has| |#1| (-924)))) (-1611 (($ $) 227)) (-3011 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 169) (((-3 (-418 (-575)) "failed") $) 166 (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) 164 (|has| |#1| (-1055 (-575)))) (((-3 |#3| "failed") $) 141) (((-3 |#2| "failed") $) 241)) (-4399 ((|#1| $) 168) (((-418 (-575)) $) 167 (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) 165 (|has| |#1| (-1055 (-575)))) ((|#3| $) 142) ((|#2| $) 242)) (-4232 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-4406 (($ $) 159)) (-1749 (((-700 (-575)) (-1285 $)) 139 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 138 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 137 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 136) (((-700 |#1|) (-700 $)) 135) (((-700 |#1|) (-1285 $)) 134)) (-1747 (((-3 $ "failed") $) 37)) (-1824 (($ $) 181 (|has| |#1| (-463))) (($ $ |#3|) 108 (|has| |#1| (-463)))) (-4394 (((-655 $) $) 112)) (-1336 (((-112) $) 99 (|has| |#1| (-924)))) (-3703 (($ $ |#1| |#4| $) 177)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 87 (-12 (|has| |#3| (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 86 (-12 (|has| |#3| (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-2673 (((-782) $ |#2|) 237) (((-782) $) 236)) (-1542 (((-112) $) 35)) (-2218 (((-782) $) 174)) (-2433 (($ (-1190 |#1|) |#3|) 120) (($ (-1190 $) |#3|) 119)) (-3010 (((-655 $) $) 129)) (-2376 (((-112) $) 157)) (-2417 (($ |#1| |#4|) 158) (($ $ |#3| (-782)) 122) (($ $ (-655 |#3|) (-655 (-782))) 121)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ |#3|) 123)) (-4337 ((|#4| $) 175) (((-782) $ |#3|) 125) (((-655 (-782)) $ (-655 |#3|)) 124)) (-2520 (($ (-1 |#4| |#4|) $) 176)) (-2550 (($ (-1 |#1| |#1|) $) 156)) (-4420 (((-1 $ (-782)) |#2|) 239) (((-1 $ (-782)) $) 226 (|has| |#1| (-238)))) (-3976 (((-3 |#3| "failed") $) 126)) (-4371 (($ $) 154)) (-4383 ((|#1| $) 153)) (-2147 ((|#3| $) 229)) (-3887 (($ (-655 $)) 97 (|has| |#1| (-463))) (($ $ $) 96 (|has| |#1| (-463)))) (-2288 (((-1176) $) 10)) (-2976 (((-112) $) 230)) (-3658 (((-3 (-655 $) "failed") $) 117)) (-1734 (((-3 (-655 $) "failed") $) 118)) (-2455 (((-3 (-2 (|:| |var| |#3|) (|:| -2398 (-782))) "failed") $) 116)) (-2816 (($ $) 228)) (-3912 (((-1137) $) 11)) (-4345 (((-112) $) 171)) (-4353 ((|#1| $) 172)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 98 (|has| |#1| (-463)))) (-3926 (($ (-655 $)) 95 (|has| |#1| (-463))) (($ $ $) 94 (|has| |#1| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) 105 (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) 104 (|has| |#1| (-924)))) (-2353 (((-429 $) $) 102 (|has| |#1| (-924)))) (-2851 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-567)))) (-3048 (($ $ (-655 (-303 $))) 150) (($ $ (-303 $)) 149) (($ $ $ $) 148) (($ $ (-655 $) (-655 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-655 |#3|) (-655 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-655 |#3|) (-655 $)) 143) (($ $ |#2| $) 225 (|has| |#1| (-238))) (($ $ (-655 |#2|) (-655 $)) 224 (|has| |#1| (-238))) (($ $ |#2| |#1|) 223 (|has| |#1| (-238))) (($ $ (-655 |#2|) (-655 |#1|)) 222 (|has| |#1| (-238)))) (-4060 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2389 (($ $ (-655 |#3|) (-655 (-782))) 44) (($ $ |#3| (-782)) 43) (($ $ (-655 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-782)) 245) (($ $) 221 (|has| |#1| (-237))) (($ $ (-782)) 219 (|has| |#1| (-237))) (($ $ (-1194)) 217 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 215 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 214 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 213 (|has| |#1| (-915 (-1194))))) (-3503 (((-655 |#2|) $) 238)) (-2645 ((|#4| $) 155) (((-782) $ |#3|) 133) (((-655 (-782)) $ (-655 |#3|)) 132) (((-782) $ |#2|) 235)) (-2615 (((-904 (-389)) $) 85 (-12 (|has| |#3| (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) 84 (-12 (|has| |#3| (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) 83 (-12 (|has| |#3| (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-2178 ((|#1| $) 180 (|has| |#1| (-463))) (($ $ |#3|) 109 (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 107 (-3226 (|has| $ (-146)) (|has| |#1| (-924))))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ |#2|) 240) (($ (-418 (-575))) 81 (-3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575)))))) (($ $) 88 (|has| |#1| (-567)))) (-2501 (((-655 |#1|) $) 173)) (-2012 ((|#1| $ |#4|) 160) (($ $ |#3| (-782)) 131) (($ $ (-655 |#3|) (-655 (-782))) 130)) (-1518 (((-3 $ "failed") $) 82 (-3765 (-3226 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) 32 T CONST)) (-1835 (($ $ $ (-782)) 178 (|has| |#1| (-174)))) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 92 (|has| |#1| (-567)))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-655 |#3|) (-655 (-782))) 47) (($ $ |#3| (-782)) 46) (($ $ (-655 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 244) (($ $ (-1 |#1| |#1|) (-782)) 243) (($ $) 220 (|has| |#1| (-237))) (($ $ (-782)) 218 (|has| |#1| (-237))) (($ $ (-1194)) 216 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 212 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 211 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 210 (|has| |#1| (-915 (-1194))))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 161 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 163 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 162 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 152) (($ $ |#1|) 151))) +(((-259 |#1| |#2| |#3| |#4|) (-141) (-1066) (-861) (-274 |t#2|) (-804)) (T -259)) +((-4420 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-1 *1 (-782))) (-4 *1 (-259 *4 *3 *5 *6)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-655 *4)))) (-2673 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-782)))) (-2645 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-655 (-782))))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-782)))) (-3004 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-655 (-782))))) (-2807 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-112)))) (-2147 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-804)) (-4 *2 (-274 *4)))) (-2816 (*1 *1 *1) (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1066)) (-4 *3 (-861)) (-4 *4 (-274 *3)) (-4 *5 (-804)))) (-1611 (*1 *1 *1) (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1066)) (-4 *3 (-861)) (-4 *4 (-274 *3)) (-4 *5 (-804)))) (-4420 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-1 *1 (-782))) (-4 *1 (-259 *3 *4 *5 *6))))) +(-13 (-964 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1055 |t#2|) (-10 -8 (-15 -4420 ((-1 $ (-782)) |t#2|)) (-15 -3503 ((-655 |t#2|) $)) (-15 -2673 ((-782) $ |t#2|)) (-15 -2673 ((-782) $)) (-15 -2645 ((-782) $ |t#2|)) (-15 -3004 ((-655 (-782)) $)) (-15 -2807 ((-782) $)) (-15 -3004 ((-655 (-782)) $ |t#2|)) (-15 -2807 ((-782) $ |t#2|)) (-15 -2976 ((-112) $)) (-15 -2147 (|t#3| $)) (-15 -2816 ($ $)) (-15 -1611 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-525 |t#2| |t#1|)) (-6 (-525 |t#2| $)) (-6 (-318 $)) (-15 -4420 ((-1 $ (-782)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 |#2|) . T) ((-627 |#3|) . T) ((-627 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-625 (-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#3| (-625 (-547)))) ((-625 (-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#3| (-625 (-904 (-389))))) ((-625 (-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#3| (-625 (-904 (-575))))) ((-234 $) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-271 |#1|) . T) ((-299) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-318 $) . T) ((-335 |#1| |#4|) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-463) -3765 (|has| |#1| (-924)) (|has| |#1| (-463))) ((-525 |#2| |#1|) |has| |#1| (-238)) ((-525 |#2| $) |has| |#1| (-238)) ((-525 |#3| |#1|) . T) ((-525 |#3| $) . T) ((-525 $ $) . T) ((-567) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 #1=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-650 #1#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-737) . T) ((-908 $ #2=(-1194)) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-908 $ |#3|) . T) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-913 |#3|) . T) ((-915 #2#) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-915 |#3|) . T) ((-898 (-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#3| (-898 (-389)))) ((-898 (-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#3| (-898 (-575)))) ((-964 |#1| |#4| |#3|) . T) ((-924) |has| |#1| (-924)) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1055 |#2|) . T) ((-1055 |#3|) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T) ((-1239) |has| |#1| (-924))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-1596 ((|#1| $) 55)) (-2010 ((|#1| $) 45)) (-1845 (((-112) $ (-782)) 8)) (-3011 (($) 7 T CONST)) (-4162 (($ $) 61)) (-1789 (($ $) 49)) (-2620 ((|#1| |#1| $) 47)) (-4065 ((|#1| $) 46)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-1839 (((-782) $) 62)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4012 ((|#1| $) 40)) (-1997 ((|#1| |#1| $) 53)) (-3488 ((|#1| |#1| $) 52)) (-3862 (($ |#1| $) 41)) (-3343 (((-782) $) 56)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-2392 ((|#1| $) 63)) (-3691 ((|#1| $) 51)) (-2004 ((|#1| $) 50)) (-2454 ((|#1| $) 42)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-2818 ((|#1| |#1| $) 59)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2906 ((|#1| $) 60)) (-1505 (($) 58) (($ (-655 |#1|)) 57)) (-3323 (((-782) $) 44)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-1959 ((|#1| $) 54)) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) 43)) (-4315 ((|#1| $) 64)) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-260 |#1|) (-141) (-1235)) (T -260)) +((-1505 (*1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-260 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-1997 (*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-3488 (*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-1789 (*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235))))) +(-13 (-1138 |t#1|) (-1012 |t#1|) (-10 -8 (-15 -1505 ($)) (-15 -1505 ($ (-655 |t#1|))) (-15 -3343 ((-782) $)) (-15 -1596 (|t#1| $)) (-15 -1959 (|t#1| $)) (-15 -1997 (|t#1| |t#1| $)) (-15 -3488 (|t#1| |t#1| $)) (-15 -3691 (|t#1| $)) (-15 -2004 (|t#1| $)) (-15 -1789 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1012 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1138 |#1|) . T) ((-1235) . T)) +((-3368 (((-1 (-958 (-227)) (-227) (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1741 (((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389))) 173) (((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 171) (((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389))) 176) (((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 172) (((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389))) 164) (((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 163) (((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389))) 145) (((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269))) 143) (((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389))) 144) (((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269))) 141)) (-1698 (((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389))) 175) (((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 174) (((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389))) 178) (((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 177) (((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389))) 166) (((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 165) (((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389))) 151) (((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269))) 150) (((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389))) 149) (((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269))) 148) (((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389))) 113) (((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269))) 112) (((-1286) (-1 (-227) (-227)) (-1111 (-389))) 107) (((-1286) (-1 (-227) (-227)) (-1111 (-389)) (-655 (-269))) 105))) +(((-261) (-10 -7 (-15 -1698 ((-1286) (-1 (-227) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-1 (-227) (-227)) (-1111 (-389)))) (-15 -1698 ((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1698 ((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1698 ((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)))) (-15 -3368 ((-1 (-958 (-227)) (-227) (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -261)) +((-3368 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-958 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *2 (-1286)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1286)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-261))))) +(-10 -7 (-15 -1698 ((-1286) (-1 (-227) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-1 (-227) (-227)) (-1111 (-389)))) (-15 -1698 ((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1698 ((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1698 ((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)))) (-15 -3368 ((-1 (-958 (-227)) (-227) (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-1698 (((-1286) (-303 |#2|) (-1194) (-1194) (-655 (-269))) 101))) +(((-262 |#1| |#2|) (-10 -7 (-15 -1698 ((-1286) (-303 |#2|) (-1194) (-1194) (-655 (-269))))) (-13 (-567) (-861) (-1055 (-575))) (-441 |#1|)) (T -262)) +((-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-303 *7)) (-5 *4 (-1194)) (-5 *5 (-655 (-269))) (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-861) (-1055 (-575)))) (-5 *2 (-1286)) (-5 *1 (-262 *6 *7))))) +(-10 -7 (-15 -1698 ((-1286) (-303 |#2|) (-1194) (-1194) (-655 (-269))))) +((-4135 (((-575) (-575)) 71)) (-3987 (((-575) (-575)) 72)) (-2787 (((-227) (-227)) 73)) (-3622 (((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227))) 70)) (-1968 (((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227)) (-112)) 68))) +(((-263) (-10 -7 (-15 -1968 ((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227)) (-112))) (-15 -3622 ((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227)))) (-15 -4135 ((-575) (-575))) (-15 -3987 ((-575) (-575))) (-15 -2787 ((-227) (-227))))) (T -263)) +((-2787 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-263)))) (-3987 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-263)))) (-4135 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-263)))) (-3622 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1111 (-227))) (-5 *2 (-1287)) (-5 *1 (-263)))) (-1968 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1111 (-227))) (-5 *5 (-112)) (-5 *2 (-1287)) (-5 *1 (-263))))) +(-10 -7 (-15 -1968 ((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227)) (-112))) (-15 -3622 ((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227)))) (-15 -4135 ((-575) (-575))) (-15 -3987 ((-575) (-575))) (-15 -2787 ((-227) (-227)))) +((-2883 (((-1109 (-389)) (-1109 (-325 |#1|))) 16))) +(((-264 |#1|) (-10 -7 (-15 -2883 ((-1109 (-389)) (-1109 (-325 |#1|))))) (-13 (-861) (-567) (-625 (-389)))) (T -264)) +((-2883 (*1 *2 *3) (-12 (-5 *3 (-1109 (-325 *4))) (-4 *4 (-13 (-861) (-567) (-625 (-389)))) (-5 *2 (-1109 (-389))) (-5 *1 (-264 *4))))) +(-10 -7 (-15 -2883 ((-1109 (-389)) (-1109 (-325 |#1|))))) +((-1741 (((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389))) 75) (((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269))) 74) (((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389))) 65) (((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269))) 64) (((-1150 (-227)) (-891 |#1|) (-1109 (-389))) 56) (((-1150 (-227)) (-891 |#1|) (-1109 (-389)) (-655 (-269))) 55)) (-1698 (((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389))) 78) (((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269))) 77) (((-1287) |#1| (-1109 (-389)) (-1109 (-389))) 68) (((-1287) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269))) 67) (((-1287) (-891 |#1|) (-1109 (-389))) 60) (((-1287) (-891 |#1|) (-1109 (-389)) (-655 (-269))) 59) (((-1286) (-889 |#1|) (-1109 (-389))) 47) (((-1286) (-889 |#1|) (-1109 (-389)) (-655 (-269))) 46) (((-1286) |#1| (-1109 (-389))) 38) (((-1286) |#1| (-1109 (-389)) (-655 (-269))) 36))) +(((-265 |#1|) (-10 -7 (-15 -1698 ((-1286) |#1| (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) |#1| (-1109 (-389)))) (-15 -1698 ((-1286) (-889 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-889 |#1|) (-1109 (-389)))) (-15 -1698 ((-1287) (-891 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-891 |#1|) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) (-891 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-891 |#1|) (-1109 (-389)))) (-15 -1698 ((-1287) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) |#1| (-1109 (-389)) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389)))) (-15 -1698 ((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389))))) (-13 (-625 (-547)) (-1117))) (T -265)) +((-1741 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1109 (-389))) (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *5)))) (-1741 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *6)))) (-1698 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1109 (-389))) (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) (-5 *1 (-265 *5)))) (-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) (-5 *1 (-265 *6)))) (-1741 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) (-1741 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) (-1698 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1287)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) (-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) (-1741 (*1 *2 *3 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-1109 (-389))) (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *5)))) (-1741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *6)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-1109 (-389))) (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) (-5 *1 (-265 *5)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) (-5 *1 (-265 *6)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-889 *5)) (-5 *4 (-1109 (-389))) (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1286)) (-5 *1 (-265 *5)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1286)) (-5 *1 (-265 *6)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1286)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117)))))) +(-10 -7 (-15 -1698 ((-1286) |#1| (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) |#1| (-1109 (-389)))) (-15 -1698 ((-1286) (-889 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-889 |#1|) (-1109 (-389)))) (-15 -1698 ((-1287) (-891 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-891 |#1|) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) (-891 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-891 |#1|) (-1109 (-389)))) (-15 -1698 ((-1287) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) |#1| (-1109 (-389)) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389)))) (-15 -1698 ((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389))))) +((-1698 (((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227)) (-655 (-269))) 23) (((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227))) 24) (((-1286) (-655 (-958 (-227))) (-655 (-269))) 16) (((-1286) (-655 (-958 (-227)))) 17) (((-1286) (-655 (-227)) (-655 (-227)) (-655 (-269))) 20) (((-1286) (-655 (-227)) (-655 (-227))) 21))) +(((-266) (-10 -7 (-15 -1698 ((-1286) (-655 (-227)) (-655 (-227)))) (-15 -1698 ((-1286) (-655 (-227)) (-655 (-227)) (-655 (-269)))) (-15 -1698 ((-1286) (-655 (-958 (-227))))) (-15 -1698 ((-1286) (-655 (-958 (-227))) (-655 (-269)))) (-15 -1698 ((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227)))) (-15 -1698 ((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227)) (-655 (-269)))))) (T -266)) +((-1698 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-655 (-227))) (-5 *4 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-266)))) (-1698 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1287)) (-5 *1 (-266)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *4 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-266)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *2 (-1286)) (-5 *1 (-266)))) (-1698 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-655 (-227))) (-5 *4 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-266)))) (-1698 (*1 *2 *3 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1286)) (-5 *1 (-266))))) +(-10 -7 (-15 -1698 ((-1286) (-655 (-227)) (-655 (-227)))) (-15 -1698 ((-1286) (-655 (-227)) (-655 (-227)) (-655 (-269)))) (-15 -1698 ((-1286) (-655 (-958 (-227))))) (-15 -1698 ((-1286) (-655 (-958 (-227))) (-655 (-269)))) (-15 -1698 ((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227)))) (-15 -1698 ((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227)) (-655 (-269))))) +((-3102 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-655 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-2278 (((-936) (-655 (-269)) (-936)) 52)) (-4411 (((-936) (-655 (-269)) (-936)) 51)) (-2496 (((-655 (-389)) (-655 (-269)) (-655 (-389))) 68)) (-3032 (((-389) (-655 (-269)) (-389)) 57)) (-1331 (((-936) (-655 (-269)) (-936)) 53)) (-2614 (((-112) (-655 (-269)) (-112)) 27)) (-2488 (((-1176) (-655 (-269)) (-1176)) 19)) (-4168 (((-1176) (-655 (-269)) (-1176)) 26)) (-2765 (((-1150 (-227)) (-655 (-269))) 46)) (-2650 (((-655 (-1111 (-389))) (-655 (-269)) (-655 (-1111 (-389)))) 40)) (-4260 (((-885) (-655 (-269)) (-885)) 32)) (-3003 (((-885) (-655 (-269)) (-885)) 33)) (-4010 (((-1 (-958 (-227)) (-958 (-227))) (-655 (-269)) (-1 (-958 (-227)) (-958 (-227)))) 63)) (-3338 (((-112) (-655 (-269)) (-112)) 14)) (-4295 (((-112) (-655 (-269)) (-112)) 13))) +(((-267) (-10 -7 (-15 -4295 ((-112) (-655 (-269)) (-112))) (-15 -3338 ((-112) (-655 (-269)) (-112))) (-15 -3102 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-655 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2488 ((-1176) (-655 (-269)) (-1176))) (-15 -4168 ((-1176) (-655 (-269)) (-1176))) (-15 -2614 ((-112) (-655 (-269)) (-112))) (-15 -4260 ((-885) (-655 (-269)) (-885))) (-15 -3003 ((-885) (-655 (-269)) (-885))) (-15 -2650 ((-655 (-1111 (-389))) (-655 (-269)) (-655 (-1111 (-389))))) (-15 -4411 ((-936) (-655 (-269)) (-936))) (-15 -2278 ((-936) (-655 (-269)) (-936))) (-15 -2765 ((-1150 (-227)) (-655 (-269)))) (-15 -1331 ((-936) (-655 (-269)) (-936))) (-15 -3032 ((-389) (-655 (-269)) (-389))) (-15 -4010 ((-1 (-958 (-227)) (-958 (-227))) (-655 (-269)) (-1 (-958 (-227)) (-958 (-227))))) (-15 -2496 ((-655 (-389)) (-655 (-269)) (-655 (-389)))))) (T -267)) +((-2496 (*1 *2 *3 *2) (-12 (-5 *2 (-655 (-389))) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-4010 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-3032 (*1 *2 *3 *2) (-12 (-5 *2 (-389)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-1331 (*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-267)))) (-2278 (*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-4411 (*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-2650 (*1 *2 *3 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-3003 (*1 *2 *3 *2) (-12 (-5 *2 (-885)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-4260 (*1 *2 *3 *2) (-12 (-5 *2 (-885)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-2614 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-4168 (*1 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-2488 (*1 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-3102 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-3338 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-4295 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))) +(-10 -7 (-15 -4295 ((-112) (-655 (-269)) (-112))) (-15 -3338 ((-112) (-655 (-269)) (-112))) (-15 -3102 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-655 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2488 ((-1176) (-655 (-269)) (-1176))) (-15 -4168 ((-1176) (-655 (-269)) (-1176))) (-15 -2614 ((-112) (-655 (-269)) (-112))) (-15 -4260 ((-885) (-655 (-269)) (-885))) (-15 -3003 ((-885) (-655 (-269)) (-885))) (-15 -2650 ((-655 (-1111 (-389))) (-655 (-269)) (-655 (-1111 (-389))))) (-15 -4411 ((-936) (-655 (-269)) (-936))) (-15 -2278 ((-936) (-655 (-269)) (-936))) (-15 -2765 ((-1150 (-227)) (-655 (-269)))) (-15 -1331 ((-936) (-655 (-269)) (-936))) (-15 -3032 ((-389) (-655 (-269)) (-389))) (-15 -4010 ((-1 (-958 (-227)) (-958 (-227))) (-655 (-269)) (-1 (-958 (-227)) (-958 (-227))))) (-15 -2496 ((-655 (-389)) (-655 (-269)) (-655 (-389))))) +((-1850 (((-3 |#1| "failed") (-655 (-269)) (-1194)) 17))) +(((-268 |#1|) (-10 -7 (-15 -1850 ((-3 |#1| "failed") (-655 (-269)) (-1194)))) (-1235)) (T -268)) +((-1850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-655 (-269))) (-5 *4 (-1194)) (-5 *1 (-268 *2)) (-4 *2 (-1235))))) +(-10 -7 (-15 -1850 ((-3 |#1| "failed") (-655 (-269)) (-1194)))) +((-2861 (((-112) $ $) NIL)) (-3102 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-2278 (($ (-936)) 81)) (-4411 (($ (-936)) 80)) (-3800 (($ (-655 (-389))) 87)) (-3032 (($ (-389)) 66)) (-1331 (($ (-936)) 82)) (-2614 (($ (-112)) 33)) (-2488 (($ (-1176)) 28)) (-4168 (($ (-1176)) 29)) (-2765 (($ (-1150 (-227))) 76)) (-2650 (($ (-655 (-1111 (-389)))) 72)) (-3437 (($ (-655 (-1111 (-389)))) 68) (($ (-655 (-1111 (-418 (-575))))) 71)) (-2599 (($ (-389)) 38) (($ (-885)) 42)) (-1496 (((-112) (-655 $) (-1194)) 100)) (-1850 (((-3 (-52) "failed") (-655 $) (-1194)) 102)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3813 (($ (-389)) 43) (($ (-885)) 44)) (-3962 (($ (-1 (-958 (-227)) (-958 (-227)))) 65)) (-4010 (($ (-1 (-958 (-227)) (-958 (-227)))) 83)) (-1861 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2883 (((-873) $) 93)) (-1375 (($ (-112)) 34) (($ (-655 (-1111 (-389)))) 60)) (-4400 (((-112) $ $) NIL)) (-4295 (($ (-112)) 35)) (-3914 (((-112) $ $) 97))) +(((-269) (-13 (-1117) (-10 -8 (-15 -4295 ($ (-112))) (-15 -1375 ($ (-112))) (-15 -3102 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2488 ($ (-1176))) (-15 -4168 ($ (-1176))) (-15 -2614 ($ (-112))) (-15 -1375 ($ (-655 (-1111 (-389))))) (-15 -3962 ($ (-1 (-958 (-227)) (-958 (-227))))) (-15 -2599 ($ (-389))) (-15 -2599 ($ (-885))) (-15 -3813 ($ (-389))) (-15 -3813 ($ (-885))) (-15 -1861 ($ (-1 (-227) (-227)))) (-15 -1861 ($ (-1 (-227) (-227) (-227)))) (-15 -1861 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3032 ($ (-389))) (-15 -3437 ($ (-655 (-1111 (-389))))) (-15 -3437 ($ (-655 (-1111 (-418 (-575)))))) (-15 -2650 ($ (-655 (-1111 (-389))))) (-15 -2765 ($ (-1150 (-227)))) (-15 -4411 ($ (-936))) (-15 -2278 ($ (-936))) (-15 -1331 ($ (-936))) (-15 -4010 ($ (-1 (-958 (-227)) (-958 (-227))))) (-15 -3800 ($ (-655 (-389)))) (-15 -1850 ((-3 (-52) "failed") (-655 $) (-1194))) (-15 -1496 ((-112) (-655 $) (-1194)))))) (T -269)) +((-4295 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-1375 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-3102 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-269)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-269)))) (-4168 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-269)))) (-2614 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-1375 (*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *1 (-269)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-269)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-269)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-269)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-269)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-269)))) (-3032 (*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269)))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269)))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-418 (-575))))) (-5 *1 (-269)))) (-2650 (*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269)))) (-2765 (*1 *1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-269)))) (-4411 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269)))) (-2278 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269)))) (-4010 (*1 *1 *2) (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *1 (-269)))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-269)))) (-1850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-655 (-269))) (-5 *4 (-1194)) (-5 *2 (-52)) (-5 *1 (-269)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-269))) (-5 *4 (-1194)) (-5 *2 (-112)) (-5 *1 (-269))))) +(-13 (-1117) (-10 -8 (-15 -4295 ($ (-112))) (-15 -1375 ($ (-112))) (-15 -3102 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2488 ($ (-1176))) (-15 -4168 ($ (-1176))) (-15 -2614 ($ (-112))) (-15 -1375 ($ (-655 (-1111 (-389))))) (-15 -3962 ($ (-1 (-958 (-227)) (-958 (-227))))) (-15 -2599 ($ (-389))) (-15 -2599 ($ (-885))) (-15 -3813 ($ (-389))) (-15 -3813 ($ (-885))) (-15 -1861 ($ (-1 (-227) (-227)))) (-15 -1861 ($ (-1 (-227) (-227) (-227)))) (-15 -1861 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3032 ($ (-389))) (-15 -3437 ($ (-655 (-1111 (-389))))) (-15 -3437 ($ (-655 (-1111 (-418 (-575)))))) (-15 -2650 ($ (-655 (-1111 (-389))))) (-15 -2765 ($ (-1150 (-227)))) (-15 -4411 ($ (-936))) (-15 -2278 ($ (-936))) (-15 -1331 ($ (-936))) (-15 -4010 ($ (-1 (-958 (-227)) (-958 (-227))))) (-15 -3800 ($ (-655 (-389)))) (-15 -1850 ((-3 (-52) "failed") (-655 $) (-1194))) (-15 -1496 ((-112) (-655 $) (-1194))))) +((-2389 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-782)) 11) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) 19) (($ $ (-782)) NIL) (($ $) 16)) (-3430 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-782)) 14) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL) (($ $ (-782)) NIL) (($ $) NIL))) +(((-270 |#1| |#2|) (-10 -8 (-15 -2389 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -3430 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -3430 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -3430 (|#1| |#1| (-655 (-1194)))) (-15 -3430 (|#1| |#1| (-1194) (-782))) (-15 -3430 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|)))) (-271 |#2|) (-1235)) (T -270)) +NIL +(-10 -8 (-15 -2389 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -3430 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -3430 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -3430 (|#1| |#1| (-655 (-1194)))) (-15 -3430 (|#1| |#1| (-1194) (-782))) (-15 -3430 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -3430 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|)))) +((-2389 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-782)) 22) (($ $ (-655 (-1194)) (-655 (-782))) 16 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 15 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 14 (|has| |#1| (-915 (-1194)))) (($ $ (-1194)) 12 (|has| |#1| (-915 (-1194)))) (($ $ (-782)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-3430 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-782)) 20) (($ $ (-655 (-1194)) (-655 (-782))) 19 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 18 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 17 (|has| |#1| (-915 (-1194)))) (($ $ (-1194)) 13 (|has| |#1| (-915 (-1194)))) (($ $ (-782)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237))))) +(((-271 |#1|) (-141) (-1235)) (T -271)) +((-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-271 *3)) (-4 *3 (-1235)))) (-2389 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *1 (-271 *4)) (-4 *4 (-1235)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-271 *3)) (-4 *3 (-1235)))) (-3430 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *1 (-271 *4)) (-4 *4 (-1235))))) +(-13 (-1235) (-10 -8 (-15 -2389 ($ $ (-1 |t#1| |t#1|))) (-15 -2389 ($ $ (-1 |t#1| |t#1|) (-782))) (-15 -3430 ($ $ (-1 |t#1| |t#1|))) (-15 -3430 ($ $ (-1 |t#1| |t#1|) (-782))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-915 (-1194))) (-6 (-915 (-1194))) |%noBranch|))) +(((-234 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-908 $ #0=(-1194)) |has| |#1| (-915 (-1194))) ((-915 #0#) |has| |#1| (-915 (-1194))) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3004 (((-655 (-782)) $) NIL) (((-655 (-782)) $ |#2|) NIL)) (-2807 (((-782) $) NIL) (((-782) $ |#2|) NIL)) (-1606 (((-655 |#3|) $) NIL)) (-3466 (((-1190 $) $ |#3|) NIL) (((-1190 |#1|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 |#3|)) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2058 (($ $) NIL (|has| |#1| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-1611 (($ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1142 |#1| |#2|) "failed") $) 23)) (-4399 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1142 |#1| |#2|) $) NIL)) (-4232 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-4406 (($ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#1| (-463))) (($ $ |#3|) NIL (|has| |#1| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#1| (-924)))) (-3703 (($ $ |#1| (-542 |#3|) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| |#1| (-898 (-389))) (|has| |#3| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| |#1| (-898 (-575))) (|has| |#3| (-898 (-575)))))) (-2673 (((-782) $ |#2|) NIL) (((-782) $) 10)) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-2433 (($ (-1190 |#1|) |#3|) NIL) (($ (-1190 $) |#3|) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-542 |#3|)) NIL) (($ $ |#3| (-782)) NIL) (($ $ (-655 |#3|) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ |#3|) NIL)) (-4337 (((-542 |#3|) $) NIL) (((-782) $ |#3|) NIL) (((-655 (-782)) $ (-655 |#3|)) NIL)) (-2520 (($ (-1 (-542 |#3|) (-542 |#3|)) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4420 (((-1 $ (-782)) |#2|) NIL) (((-1 $ (-782)) $) NIL (|has| |#1| (-238)))) (-3976 (((-3 |#3| "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2147 ((|#3| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-2288 (((-1176) $) NIL)) (-2976 (((-112) $) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| |#3|) (|:| -2398 (-782))) "failed") $) NIL)) (-2816 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-655 |#3|) (-655 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-655 |#3|) (-655 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-655 |#2|) (-655 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-655 |#2|) (-655 |#1|)) NIL (|has| |#1| (-238)))) (-4060 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2389 (($ $ (-655 |#3|) (-655 (-782))) NIL) (($ $ |#3| (-782)) NIL) (($ $ (-655 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-3503 (((-655 |#2|) $) NIL)) (-2645 (((-542 |#3|) $) NIL) (((-782) $ |#3|) NIL) (((-655 (-782)) $ (-655 |#3|)) NIL) (((-782) $ |#2|) NIL)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#3| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#3| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| |#1| (-625 (-547))) (|has| |#3| (-625 (-547)))))) (-2178 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ |#3|) NIL (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1142 |#1| |#2|)) 32) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-542 |#3|)) NIL) (($ $ |#3| (-782)) NIL) (($ $ (-655 |#3|) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-655 |#3|) (-655 (-782))) NIL) (($ $ |#3| (-782)) NIL) (($ $ (-655 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-272 |#1| |#2| |#3|) (-13 (-259 |#1| |#2| |#3| (-542 |#3|)) (-1055 (-1142 |#1| |#2|))) (-1066) (-861) (-274 |#2|)) (T -272)) +NIL +(-13 (-259 |#1| |#2| |#3| (-542 |#3|)) (-1055 (-1142 |#1| |#2|))) +((-2807 (((-782) $) 37)) (-2449 (((-3 |#2| "failed") $) 22)) (-4399 ((|#2| $) 33)) (-2389 (($ $ (-782)) 18) (($ $) 14)) (-2883 (((-873) $) 32) (($ |#2|) 11)) (-3914 (((-112) $ $) 26)) (-3943 (((-112) $ $) 36))) +(((-273 |#1| |#2|) (-10 -8 (-15 -2807 ((-782) |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) (-274 |#2|) (-861)) (T -273)) +NIL +(-10 -8 (-15 -2807 ((-782) |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-2807 (((-782) $) 22)) (-1441 ((|#1| $) 23)) (-2449 (((-3 |#1| "failed") $) 27)) (-4399 ((|#1| $) 28)) (-2673 (((-782) $) 24)) (-1920 (($ $ $) 14)) (-1425 (($ $ $) 15)) (-4420 (($ |#1| (-782)) 25)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2389 (($ $ (-782)) 31) (($ $) 29)) (-2883 (((-873) $) 12) (($ |#1|) 26)) (-4400 (((-112) $ $) 9)) (-3430 (($ $ (-782)) 32) (($ $) 30)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19))) +(((-274 |#1|) (-141) (-861)) (T -274)) +((-2883 (*1 *1 *2) (-12 (-4 *1 (-274 *2)) (-4 *2 (-861)))) (-4420 (*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-274 *2)) (-4 *2 (-861)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-274 *3)) (-4 *3 (-861)) (-5 *2 (-782)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-861)))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-274 *3)) (-4 *3 (-861)) (-5 *2 (-782))))) +(-13 (-861) (-237) (-1055 |t#1|) (-10 -8 (-15 -4420 ($ |t#1| (-782))) (-15 -2673 ((-782) $)) (-15 -1441 (|t#1| $)) (-15 -2807 ((-782) $)) (-15 -2883 ($ |t#1|)))) +(((-102) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-234 $) . T) ((-237) . T) ((-861) . T) ((-1055 |#1|) . T) ((-1117) . T) ((-1235) . T)) +((-1606 (((-655 (-1194)) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) 53)) (-3489 (((-655 (-1194)) (-325 (-227)) (-782)) 94)) (-4070 (((-3 (-325 (-227)) "failed") (-325 (-227))) 63)) (-2779 (((-325 (-227)) (-325 (-227))) 79)) (-4155 (((-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 38)) (-1372 (((-112) (-655 (-325 (-227)))) 104)) (-2267 (((-112) (-325 (-227))) 36)) (-3517 (((-655 (-1176)) (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))))) 132)) (-1645 (((-655 (-325 (-227))) (-655 (-325 (-227)))) 108)) (-2726 (((-655 (-325 (-227))) (-655 (-325 (-227)))) 106)) (-3040 (((-700 (-227)) (-655 (-325 (-227))) (-782)) 120)) (-2664 (((-112) (-325 (-227))) 31) (((-112) (-655 (-325 (-227)))) 105)) (-2381 (((-655 (-227)) (-655 (-854 (-227))) (-227)) 15)) (-1663 (((-389) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) 126)) (-3821 (((-1052) (-1194) (-1052)) 46))) +(((-275) (-10 -7 (-15 -2381 ((-655 (-227)) (-655 (-854 (-227))) (-227))) (-15 -4155 ((-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))))) (-15 -4070 ((-3 (-325 (-227)) "failed") (-325 (-227)))) (-15 -2779 ((-325 (-227)) (-325 (-227)))) (-15 -1372 ((-112) (-655 (-325 (-227))))) (-15 -2664 ((-112) (-655 (-325 (-227))))) (-15 -2664 ((-112) (-325 (-227)))) (-15 -3040 ((-700 (-227)) (-655 (-325 (-227))) (-782))) (-15 -2726 ((-655 (-325 (-227))) (-655 (-325 (-227))))) (-15 -1645 ((-655 (-325 (-227))) (-655 (-325 (-227))))) (-15 -2267 ((-112) (-325 (-227)))) (-15 -1606 ((-655 (-1194)) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))) (-15 -3489 ((-655 (-1194)) (-325 (-227)) (-782))) (-15 -3821 ((-1052) (-1194) (-1052))) (-15 -1663 ((-389) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))) (-15 -3517 ((-655 (-1176)) (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))))))) (T -275)) +((-3517 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))))) (-5 *2 (-655 (-1176))) (-5 *1 (-275)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) (-5 *2 (-389)) (-5 *1 (-275)))) (-3821 (*1 *2 *3 *2) (-12 (-5 *2 (-1052)) (-5 *3 (-1194)) (-5 *1 (-275)))) (-3489 (*1 *2 *3 *4) (-12 (-5 *3 (-325 (-227))) (-5 *4 (-782)) (-5 *2 (-655 (-1194))) (-5 *1 (-275)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) (-5 *2 (-655 (-1194))) (-5 *1 (-275)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-112)) (-5 *1 (-275)))) (-1645 (*1 *2 *2) (-12 (-5 *2 (-655 (-325 (-227)))) (-5 *1 (-275)))) (-2726 (*1 *2 *2) (-12 (-5 *2 (-655 (-325 (-227)))) (-5 *1 (-275)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *4 (-782)) (-5 *2 (-700 (-227))) (-5 *1 (-275)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-112)) (-5 *1 (-275)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *2 (-112)) (-5 *1 (-275)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *2 (-112)) (-5 *1 (-275)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-325 (-227))) (-5 *1 (-275)))) (-4070 (*1 *2 *2) (|partial| -12 (-5 *2 (-325 (-227))) (-5 *1 (-275)))) (-4155 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (-5 *1 (-275)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-854 (-227)))) (-5 *4 (-227)) (-5 *2 (-655 *4)) (-5 *1 (-275))))) +(-10 -7 (-15 -2381 ((-655 (-227)) (-655 (-854 (-227))) (-227))) (-15 -4155 ((-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))))) (-15 -4070 ((-3 (-325 (-227)) "failed") (-325 (-227)))) (-15 -2779 ((-325 (-227)) (-325 (-227)))) (-15 -1372 ((-112) (-655 (-325 (-227))))) (-15 -2664 ((-112) (-655 (-325 (-227))))) (-15 -2664 ((-112) (-325 (-227)))) (-15 -3040 ((-700 (-227)) (-655 (-325 (-227))) (-782))) (-15 -2726 ((-655 (-325 (-227))) (-655 (-325 (-227))))) (-15 -1645 ((-655 (-325 (-227))) (-655 (-325 (-227))))) (-15 -2267 ((-112) (-325 (-227)))) (-15 -1606 ((-655 (-1194)) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))) (-15 -3489 ((-655 (-1194)) (-325 (-227)) (-782))) (-15 -3821 ((-1052) (-1194) (-1052))) (-15 -1663 ((-389) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))) (-15 -3517 ((-655 (-1176)) (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))))))) +((-2861 (((-112) $ $) NIL)) (-2184 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 56)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 32) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-276) (-850)) (T -276)) +NIL +(-850) +((-2861 (((-112) $ $) NIL)) (-2184 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) 72) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 63)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 41) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) 43)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-277) (-850)) (T -277)) +NIL +(-850) +((-2861 (((-112) $ $) NIL)) (-2184 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) 90) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 85)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 52) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) 65)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-278) (-850)) (T -278)) +NIL +(-850) +((-2861 (((-112) $ $) NIL)) (-2184 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 73)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 45) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-279) (-850)) (T -279)) +NIL +(-850) +((-2861 (((-112) $ $) NIL)) (-2184 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 65)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 31) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-280) (-850)) (T -280)) +NIL +(-850) +((-2861 (((-112) $ $) NIL)) (-2184 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 90)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 33) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-281) (-850)) (T -281)) +NIL +(-850) +((-2861 (((-112) $ $) NIL)) (-2184 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 87)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 32) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-282) (-850)) (T -282)) +NIL +(-850) +((-2861 (((-112) $ $) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4398 (((-655 (-575)) $) 29)) (-2645 (((-782) $) 27)) (-2883 (((-873) $) 33) (($ (-655 (-575))) 23)) (-4400 (((-112) $ $) NIL)) (-1809 (($ (-782)) 30)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 9)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 17))) +(((-283) (-13 (-861) (-10 -8 (-15 -2883 ($ (-655 (-575)))) (-15 -2645 ((-782) $)) (-15 -4398 ((-655 (-575)) $)) (-15 -1809 ($ (-782)))))) (T -283)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-283)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-283)))) (-4398 (*1 *2 *1) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-283)))) (-1809 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-283))))) +(-13 (-861) (-10 -8 (-15 -2883 ($ (-655 (-575)))) (-15 -2645 ((-782) $)) (-15 -4398 ((-655 (-575)) $)) (-15 -1809 ($ (-782))))) +((-3923 ((|#2| |#2|) 77)) (-3786 ((|#2| |#2|) 65)) (-3477 (((-3 |#2| "failed") |#2| (-655 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3897 ((|#2| |#2|) 75)) (-3761 ((|#2| |#2|) 63)) (-1521 ((|#2| |#2|) 79)) (-3807 ((|#2| |#2|) 67)) (-1631 ((|#2|) 46)) (-2572 (((-115) (-115)) 100)) (-3463 ((|#2| |#2|) 61)) (-1864 (((-112) |#2|) 147)) (-2946 ((|#2| |#2|) 195)) (-3573 ((|#2| |#2|) 171)) (-1855 ((|#2|) 59)) (-3989 ((|#2|) 58)) (-2644 ((|#2| |#2|) 191)) (-2640 ((|#2| |#2|) 167)) (-4373 ((|#2| |#2|) 199)) (-2577 ((|#2| |#2|) 175)) (-2963 ((|#2| |#2|) 163)) (-4402 ((|#2| |#2|) 165)) (-1992 ((|#2| |#2|) 201)) (-3171 ((|#2| |#2|) 177)) (-2717 ((|#2| |#2|) 197)) (-3119 ((|#2| |#2|) 173)) (-4328 ((|#2| |#2|) 193)) (-2207 ((|#2| |#2|) 169)) (-3199 ((|#2| |#2|) 207)) (-3270 ((|#2| |#2|) 183)) (-3857 ((|#2| |#2|) 203)) (-1666 ((|#2| |#2|) 179)) (-1990 ((|#2| |#2|) 211)) (-2587 ((|#2| |#2|) 187)) (-3680 ((|#2| |#2|) 213)) (-2891 ((|#2| |#2|) 189)) (-1659 ((|#2| |#2|) 209)) (-1810 ((|#2| |#2|) 185)) (-3575 ((|#2| |#2|) 205)) (-1429 ((|#2| |#2|) 181)) (-2665 ((|#2| |#2|) 62)) (-1530 ((|#2| |#2|) 80)) (-3817 ((|#2| |#2|) 68)) (-3937 ((|#2| |#2|) 78)) (-3797 ((|#2| |#2|) 66)) (-3909 ((|#2| |#2|) 76)) (-3774 ((|#2| |#2|) 64)) (-2151 (((-112) (-115)) 98)) (-1568 ((|#2| |#2|) 83)) (-3852 ((|#2| |#2|) 71)) (-1544 ((|#2| |#2|) 81)) (-3828 ((|#2| |#2|) 69)) (-1592 ((|#2| |#2|) 85)) (-3873 ((|#2| |#2|) 73)) (-2914 ((|#2| |#2|) 86)) (-3885 ((|#2| |#2|) 74)) (-1583 ((|#2| |#2|) 84)) (-3863 ((|#2| |#2|) 72)) (-1554 ((|#2| |#2|) 82)) (-3839 ((|#2| |#2|) 70))) +(((-284 |#1| |#2|) (-10 -7 (-15 -2665 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -3786 (|#2| |#2|)) (-15 -3797 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3817 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3923 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1568 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -2914 (|#2| |#2|)) (-15 -1631 (|#2|)) (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 -3989 (|#2|)) (-15 -1855 (|#2|)) (-15 -4402 (|#2| |#2|)) (-15 -2963 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -2207 (|#2| |#2|)) (-15 -3573 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -3171 (|#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -1429 (|#2| |#2|)) (-15 -3270 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -2587 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -4328 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -2717 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -1992 (|#2| |#2|)) (-15 -3857 (|#2| |#2|)) (-15 -3575 (|#2| |#2|)) (-15 -3199 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -3477 ((-3 |#2| "failed") |#2| (-655 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1864 ((-112) |#2|))) (-567) (-13 (-441 |#1|) (-1019))) (T -284)) +((-1864 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-441 *4) (-1019))))) (-3477 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-655 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-441 *4) (-1019))) (-4 *4 (-567)) (-5 *1 (-284 *4 *2)))) (-3680 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3199 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3575 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3857 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-4373 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2717 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-4328 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2644 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2891 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2587 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1810 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3270 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1429 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1666 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3171 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2577 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3573 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2207 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2640 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2963 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-4402 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1855 (*1 *2) (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2)) (-4 *3 (-567)))) (-3989 (*1 *2) (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2)) (-4 *3 (-567)))) (-2572 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-284 *3 *4)) (-4 *4 (-13 (-441 *3) (-1019))))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-441 *4) (-1019))))) (-1631 (*1 *2) (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2)) (-4 *3 (-567)))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1568 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3817 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3786 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019)))))) +(-10 -7 (-15 -2665 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -3786 (|#2| |#2|)) (-15 -3797 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3817 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3923 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1568 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -2914 (|#2| |#2|)) (-15 -1631 (|#2|)) (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 -3989 (|#2|)) (-15 -1855 (|#2|)) (-15 -4402 (|#2| |#2|)) (-15 -2963 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -2207 (|#2| |#2|)) (-15 -3573 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -3171 (|#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -1429 (|#2| |#2|)) (-15 -3270 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -2587 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -4328 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -2717 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -1992 (|#2| |#2|)) (-15 -3857 (|#2| |#2|)) (-15 -3575 (|#2| |#2|)) (-15 -3199 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -3477 ((-3 |#2| "failed") |#2| (-655 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1864 ((-112) |#2|))) +((-3924 (((-3 |#2| "failed") (-655 (-623 |#2|)) |#2| (-1194)) 151)) (-2655 ((|#2| (-418 (-575)) |#2|) 49)) (-2491 ((|#2| |#2| (-623 |#2|)) 144)) (-1342 (((-2 (|:| |func| |#2|) (|:| |kers| (-655 (-623 |#2|))) (|:| |vals| (-655 |#2|))) |#2| (-1194)) 143)) (-4130 ((|#2| |#2| (-1194)) 20) ((|#2| |#2|) 23)) (-3868 ((|#2| |#2| (-1194)) 157) ((|#2| |#2|) 155))) +(((-285 |#1| |#2|) (-10 -7 (-15 -3868 (|#2| |#2|)) (-15 -3868 (|#2| |#2| (-1194))) (-15 -1342 ((-2 (|:| |func| |#2|) (|:| |kers| (-655 (-623 |#2|))) (|:| |vals| (-655 |#2|))) |#2| (-1194))) (-15 -4130 (|#2| |#2|)) (-15 -4130 (|#2| |#2| (-1194))) (-15 -3924 ((-3 |#2| "failed") (-655 (-623 |#2|)) |#2| (-1194))) (-15 -2491 (|#2| |#2| (-623 |#2|))) (-15 -2655 (|#2| (-418 (-575)) |#2|))) (-13 (-567) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -285)) +((-2655 (*1 *2 *3 *2) (-12 (-5 *3 (-418 (-575))) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-2491 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *4 *2)))) (-3924 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-655 (-623 *2))) (-5 *4 (-1194)) (-4 *2 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *5 *2)))) (-4130 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) (-1342 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-655 (-623 *3))) (|:| |vals| (-655 *3)))) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-3868 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-3868 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3)))))) +(-10 -7 (-15 -3868 (|#2| |#2|)) (-15 -3868 (|#2| |#2| (-1194))) (-15 -1342 ((-2 (|:| |func| |#2|) (|:| |kers| (-655 (-623 |#2|))) (|:| |vals| (-655 |#2|))) |#2| (-1194))) (-15 -4130 (|#2| |#2|)) (-15 -4130 (|#2| |#2| (-1194))) (-15 -3924 ((-3 |#2| "failed") (-655 (-623 |#2|)) |#2| (-1194))) (-15 -2491 (|#2| |#2| (-623 |#2|))) (-15 -2655 (|#2| (-418 (-575)) |#2|))) +((-2478 (((-3 |#3| "failed") |#3|) 120)) (-3923 ((|#3| |#3|) 142)) (-3224 (((-3 |#3| "failed") |#3|) 89)) (-3786 ((|#3| |#3|) 132)) (-4331 (((-3 |#3| "failed") |#3|) 65)) (-3897 ((|#3| |#3|) 140)) (-2700 (((-3 |#3| "failed") |#3|) 53)) (-3761 ((|#3| |#3|) 130)) (-3566 (((-3 |#3| "failed") |#3|) 122)) (-1521 ((|#3| |#3|) 144)) (-3532 (((-3 |#3| "failed") |#3|) 91)) (-3807 ((|#3| |#3|) 134)) (-1853 (((-3 |#3| "failed") |#3| (-782)) 41)) (-2932 (((-3 |#3| "failed") |#3|) 81)) (-3463 ((|#3| |#3|) 129)) (-4302 (((-3 |#3| "failed") |#3|) 51)) (-2665 ((|#3| |#3|) 128)) (-3364 (((-3 |#3| "failed") |#3|) 123)) (-1530 ((|#3| |#3|) 145)) (-1929 (((-3 |#3| "failed") |#3|) 92)) (-3817 ((|#3| |#3|) 135)) (-1933 (((-3 |#3| "failed") |#3|) 121)) (-3937 ((|#3| |#3|) 143)) (-1707 (((-3 |#3| "failed") |#3|) 90)) (-3797 ((|#3| |#3|) 133)) (-4037 (((-3 |#3| "failed") |#3|) 67)) (-3909 ((|#3| |#3|) 141)) (-1367 (((-3 |#3| "failed") |#3|) 55)) (-3774 ((|#3| |#3|) 131)) (-2327 (((-3 |#3| "failed") |#3|) 73)) (-1568 ((|#3| |#3|) 148)) (-2153 (((-3 |#3| "failed") |#3|) 114)) (-3852 ((|#3| |#3|) 152)) (-1745 (((-3 |#3| "failed") |#3|) 69)) (-1544 ((|#3| |#3|) 146)) (-1529 (((-3 |#3| "failed") |#3|) 57)) (-3828 ((|#3| |#3|) 136)) (-1422 (((-3 |#3| "failed") |#3|) 77)) (-1592 ((|#3| |#3|) 150)) (-1628 (((-3 |#3| "failed") |#3|) 61)) (-3873 ((|#3| |#3|) 138)) (-3392 (((-3 |#3| "failed") |#3|) 79)) (-2914 ((|#3| |#3|) 151)) (-1823 (((-3 |#3| "failed") |#3|) 63)) (-3885 ((|#3| |#3|) 139)) (-1762 (((-3 |#3| "failed") |#3|) 75)) (-1583 ((|#3| |#3|) 149)) (-3245 (((-3 |#3| "failed") |#3|) 117)) (-3863 ((|#3| |#3|) 153)) (-3671 (((-3 |#3| "failed") |#3|) 71)) (-1554 ((|#3| |#3|) 147)) (-3198 (((-3 |#3| "failed") |#3|) 59)) (-3839 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-418 (-575))) 47 (|has| |#1| (-373))))) +(((-286 |#1| |#2| |#3|) (-13 (-1000 |#3|) (-10 -7 (IF (|has| |#1| (-373)) (-15 ** (|#3| |#3| (-418 (-575)))) |%noBranch|) (-15 -2665 (|#3| |#3|)) (-15 -3463 (|#3| |#3|)) (-15 -3761 (|#3| |#3|)) (-15 -3774 (|#3| |#3|)) (-15 -3786 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3817 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3873 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1530 (|#3| |#3|)) (-15 -1544 (|#3| |#3|)) (-15 -1554 (|#3| |#3|)) (-15 -1568 (|#3| |#3|)) (-15 -1583 (|#3| |#3|)) (-15 -1592 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) (-38 (-418 (-575))) (-1276 |#1|) (-1247 |#1| |#2|)) (T -286)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-418 (-575))) (-4 *4 (-373)) (-4 *4 (-38 *3)) (-4 *5 (-1276 *4)) (-5 *1 (-286 *4 *5 *2)) (-4 *2 (-1247 *4 *5)))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3786 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3817 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1568 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))) +(-13 (-1000 |#3|) (-10 -7 (IF (|has| |#1| (-373)) (-15 ** (|#3| |#3| (-418 (-575)))) |%noBranch|) (-15 -2665 (|#3| |#3|)) (-15 -3463 (|#3| |#3|)) (-15 -3761 (|#3| |#3|)) (-15 -3774 (|#3| |#3|)) (-15 -3786 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3817 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3873 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1530 (|#3| |#3|)) (-15 -1544 (|#3| |#3|)) (-15 -1554 (|#3| |#3|)) (-15 -1568 (|#3| |#3|)) (-15 -1583 (|#3| |#3|)) (-15 -1592 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) +((-2478 (((-3 |#3| "failed") |#3|) 70)) (-3923 ((|#3| |#3|) 137)) (-3224 (((-3 |#3| "failed") |#3|) 54)) (-3786 ((|#3| |#3|) 125)) (-4331 (((-3 |#3| "failed") |#3|) 66)) (-3897 ((|#3| |#3|) 135)) (-2700 (((-3 |#3| "failed") |#3|) 50)) (-3761 ((|#3| |#3|) 123)) (-3566 (((-3 |#3| "failed") |#3|) 74)) (-1521 ((|#3| |#3|) 139)) (-3532 (((-3 |#3| "failed") |#3|) 58)) (-3807 ((|#3| |#3|) 127)) (-1853 (((-3 |#3| "failed") |#3| (-782)) 38)) (-2932 (((-3 |#3| "failed") |#3|) 48)) (-3463 ((|#3| |#3|) 111)) (-4302 (((-3 |#3| "failed") |#3|) 46)) (-2665 ((|#3| |#3|) 122)) (-3364 (((-3 |#3| "failed") |#3|) 76)) (-1530 ((|#3| |#3|) 140)) (-1929 (((-3 |#3| "failed") |#3|) 60)) (-3817 ((|#3| |#3|) 128)) (-1933 (((-3 |#3| "failed") |#3|) 72)) (-3937 ((|#3| |#3|) 138)) (-1707 (((-3 |#3| "failed") |#3|) 56)) (-3797 ((|#3| |#3|) 126)) (-4037 (((-3 |#3| "failed") |#3|) 68)) (-3909 ((|#3| |#3|) 136)) (-1367 (((-3 |#3| "failed") |#3|) 52)) (-3774 ((|#3| |#3|) 124)) (-2327 (((-3 |#3| "failed") |#3|) 78)) (-1568 ((|#3| |#3|) 143)) (-2153 (((-3 |#3| "failed") |#3|) 62)) (-3852 ((|#3| |#3|) 131)) (-1745 (((-3 |#3| "failed") |#3|) 112)) (-1544 ((|#3| |#3|) 141)) (-1529 (((-3 |#3| "failed") |#3|) 100)) (-3828 ((|#3| |#3|) 129)) (-1422 (((-3 |#3| "failed") |#3|) 116)) (-1592 ((|#3| |#3|) 145)) (-1628 (((-3 |#3| "failed") |#3|) 107)) (-3873 ((|#3| |#3|) 133)) (-3392 (((-3 |#3| "failed") |#3|) 117)) (-2914 ((|#3| |#3|) 146)) (-1823 (((-3 |#3| "failed") |#3|) 109)) (-3885 ((|#3| |#3|) 134)) (-1762 (((-3 |#3| "failed") |#3|) 80)) (-1583 ((|#3| |#3|) 144)) (-3245 (((-3 |#3| "failed") |#3|) 64)) (-3863 ((|#3| |#3|) 132)) (-3671 (((-3 |#3| "failed") |#3|) 113)) (-1554 ((|#3| |#3|) 142)) (-3198 (((-3 |#3| "failed") |#3|) 103)) (-3839 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-418 (-575))) 44 (|has| |#1| (-373))))) +(((-287 |#1| |#2| |#3| |#4|) (-13 (-1000 |#3|) (-10 -7 (IF (|has| |#1| (-373)) (-15 ** (|#3| |#3| (-418 (-575)))) |%noBranch|) (-15 -2665 (|#3| |#3|)) (-15 -3463 (|#3| |#3|)) (-15 -3761 (|#3| |#3|)) (-15 -3774 (|#3| |#3|)) (-15 -3786 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3817 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3873 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1530 (|#3| |#3|)) (-15 -1544 (|#3| |#3|)) (-15 -1554 (|#3| |#3|)) (-15 -1568 (|#3| |#3|)) (-15 -1583 (|#3| |#3|)) (-15 -1592 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) (-38 (-418 (-575))) (-1245 |#1|) (-1268 |#1| |#2|) (-1000 |#2|)) (T -287)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-418 (-575))) (-4 *4 (-373)) (-4 *4 (-38 *3)) (-4 *5 (-1245 *4)) (-5 *1 (-287 *4 *5 *2 *6)) (-4 *2 (-1268 *4 *5)) (-4 *6 (-1000 *5)))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3786 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3817 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1568 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))) +(-13 (-1000 |#3|) (-10 -7 (IF (|has| |#1| (-373)) (-15 ** (|#3| |#3| (-418 (-575)))) |%noBranch|) (-15 -2665 (|#3| |#3|)) (-15 -3463 (|#3| |#3|)) (-15 -3761 (|#3| |#3|)) (-15 -3774 (|#3| |#3|)) (-15 -3786 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3817 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3873 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1530 (|#3| |#3|)) (-15 -1544 (|#3| |#3|)) (-15 -1554 (|#3| |#3|)) (-15 -1568 (|#3| |#3|)) (-15 -1583 (|#3| |#3|)) (-15 -1592 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)))) +((-1892 (((-112) $) 20)) (-2796 (((-1199) $) 7)) (-3709 (((-3 (-517) "failed") $) 14)) (-2027 (((-3 (-655 $) "failed") $) NIL)) (-4229 (((-3 (-517) "failed") $) 21)) (-2118 (((-3 (-1121) "failed") $) 18)) (-2728 (((-112) $) 16)) (-2883 (((-873) $) NIL)) (-3321 (((-112) $) 9))) +(((-288) (-13 (-624 (-873)) (-10 -8 (-15 -2796 ((-1199) $)) (-15 -2728 ((-112) $)) (-15 -2118 ((-3 (-1121) "failed") $)) (-15 -1892 ((-112) $)) (-15 -4229 ((-3 (-517) "failed") $)) (-15 -3321 ((-112) $)) (-15 -3709 ((-3 (-517) "failed") $)) (-15 -2027 ((-3 (-655 $) "failed") $))))) (T -288)) +((-2796 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-288)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288)))) (-2118 (*1 *2 *1) (|partial| -12 (-5 *2 (-1121)) (-5 *1 (-288)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288)))) (-4229 (*1 *2 *1) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-288)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288)))) (-3709 (*1 *2 *1) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-288)))) (-2027 (*1 *2 *1) (|partial| -12 (-5 *2 (-655 (-288))) (-5 *1 (-288))))) +(-13 (-624 (-873)) (-10 -8 (-15 -2796 ((-1199) $)) (-15 -2728 ((-112) $)) (-15 -2118 ((-3 (-1121) "failed") $)) (-15 -1892 ((-112) $)) (-15 -4229 ((-3 (-517) "failed") $)) (-15 -3321 ((-112) $)) (-15 -3709 ((-3 (-517) "failed") $)) (-15 -2027 ((-3 (-655 $) "failed") $)))) +((-1794 (((-608) $) 10)) (-2944 (((-596) $) 8)) (-2683 (((-300) $) 12)) (-2672 (($ (-596) (-608) (-300)) NIL)) (-2883 (((-873) $) 19))) +(((-289) (-13 (-624 (-873)) (-10 -8 (-15 -2672 ($ (-596) (-608) (-300))) (-15 -2944 ((-596) $)) (-15 -1794 ((-608) $)) (-15 -2683 ((-300) $))))) (T -289)) +((-2672 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-596)) (-5 *3 (-608)) (-5 *4 (-300)) (-5 *1 (-289)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-596)) (-5 *1 (-289)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-608)) (-5 *1 (-289)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-300)) (-5 *1 (-289))))) +(-13 (-624 (-873)) (-10 -8 (-15 -2672 ($ (-596) (-608) (-300))) (-15 -2944 ((-596) $)) (-15 -1794 ((-608) $)) (-15 -2683 ((-300) $)))) +((-3985 (($ (-1 (-112) |#2|) $) 24)) (-1748 (($ $) 38)) (-4404 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3633 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-4174 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2135 (($ |#2| $ (-575)) 20) (($ $ $ (-575)) 22)) (-3239 (($ $ (-575)) 11) (($ $ (-1252 (-575))) 14)) (-2774 (($ $ |#2|) 32) (($ $ $) NIL)) (-1514 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-655 $)) NIL))) +(((-290 |#1| |#2|) (-10 -8 (-15 -4174 (|#1| |#1| |#1|)) (-15 -4404 (|#1| |#2| |#1|)) (-15 -4174 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4404 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2774 (|#1| |#1| |#2|)) (-15 -2135 (|#1| |#1| |#1| (-575))) (-15 -2135 (|#1| |#2| |#1| (-575))) (-15 -3239 (|#1| |#1| (-1252 (-575)))) (-15 -3239 (|#1| |#1| (-575))) (-15 -1514 (|#1| (-655 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -3633 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3985 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3633 (|#1| |#2| |#1|)) (-15 -1748 (|#1| |#1|))) (-291 |#2|) (-1235)) (T -290)) +NIL +(-10 -8 (-15 -4174 (|#1| |#1| |#1|)) (-15 -4404 (|#1| |#2| |#1|)) (-15 -4174 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4404 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2774 (|#1| |#1| |#2|)) (-15 -2135 (|#1| |#1| |#1| (-575))) (-15 -2135 (|#1| |#2| |#1| (-575))) (-15 -3239 (|#1| |#1| (-1252 (-575)))) (-15 -3239 (|#1| |#1| (-575))) (-15 -1514 (|#1| (-655 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -3633 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3985 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3633 (|#1| |#2| |#1|)) (-15 -1748 (|#1| |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4161 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) 8)) (-3054 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-1999 (($ (-1 (-112) |#1|) $) 88)) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1878 (($ $) 86 (|has| |#1| (-1117)))) (-1748 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4404 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1117)))) (-3633 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) 52)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-2309 (($ (-782) |#1|) 70)) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 44 (|has| (-575) (-861)))) (-4174 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 45 (|has| (-575) (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3862 (($ |#1| $ (-575)) 91) (($ $ $ (-575)) 90)) (-2135 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-4310 (((-655 (-575)) $) 47)) (-2969 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1961 ((|#1| $) 43 (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3954 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) 49)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-2797 (($ $ (-575)) 94) (($ $ (-1252 (-575))) 93)) (-3239 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 81 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 72)) (-2774 (($ $ |#1|) 96) (($ $ $) 95)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-291 |#1|) (-141) (-1235)) (T -291)) +((-2774 (*1 *1 *1 *2) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)))) (-2774 (*1 *1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 (-575))) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-4404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-3862 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-291 *2)) (-4 *2 (-1235)))) (-3862 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-4174 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-1999 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-4404 (*1 *1 *2 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-1117)))) (-1878 (*1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-1117)))) (-4174 (*1 *1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-861))))) +(-13 (-662 |t#1|) (-10 -8 (-6 -4461) (-15 -2774 ($ $ |t#1|)) (-15 -2774 ($ $ $)) (-15 -2797 ($ $ (-575))) (-15 -2797 ($ $ (-1252 (-575)))) (-15 -4404 ($ (-1 (-112) |t#1|) $)) (-15 -3862 ($ |t#1| $ (-575))) (-15 -3862 ($ $ $ (-575))) (-15 -4174 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1999 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1117)) (PROGN (-15 -4404 ($ |t#1| $)) (-15 -1878 ($ $))) |%noBranch|) (IF (|has| |t#1| (-861)) (-15 -4174 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) ((** (($ $ $) 10))) -(((-293 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-294)) (T -293)) +(((-292 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-293)) (T -292)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3464 (($ $) 6)) (-2666 (($ $) 7)) (** (($ $ $) 8))) -(((-294) (-141)) (T -294)) -((** (*1 *1 *1 *1) (-4 *1 (-294))) (-2666 (*1 *1 *1) (-4 *1 (-294))) (-3464 (*1 *1 *1) (-4 *1 (-294)))) -(-13 (-10 -8 (-15 -3464 ($ $)) (-15 -2666 ($ $)) (-15 ** ($ $ $)))) -((-1481 (((-656 (-1175 |#1|)) (-1175 |#1|) |#1|) 35)) (-3073 ((|#2| |#2| |#1|) 39)) (-1467 ((|#2| |#2| |#1|) 41)) (-3334 ((|#2| |#2| |#1|) 40))) -(((-295 |#1| |#2|) (-10 -7 (-15 -3073 (|#2| |#2| |#1|)) (-15 -3334 (|#2| |#2| |#1|)) (-15 -1467 (|#2| |#2| |#1|)) (-15 -1481 ((-656 (-1175 |#1|)) (-1175 |#1|) |#1|))) (-374) (-1277 |#1|)) (T -295)) -((-1481 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1175 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1175 *4)) (-4 *5 (-1277 *4)))) (-1467 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3)))) (-3334 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3)))) (-3073 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3))))) -(-10 -7 (-15 -3073 (|#2| |#2| |#1|)) (-15 -3334 (|#2| |#2| |#1|)) (-15 -1467 (|#2| |#2| |#1|)) (-15 -1481 ((-656 (-1175 |#1|)) (-1175 |#1|) |#1|))) -((-2071 ((|#2| $ |#1|) 6))) -(((-296 |#1| |#2|) (-141) (-1236) (-1236)) (T -296)) -((-2071 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1236)) (-4 *2 (-1236))))) -(-13 (-1236) (-10 -8 (-15 -2071 (|t#2| $ |t#1|)))) -(((-1236) . T)) -((-2859 ((|#3| $ |#2| |#3|) 12)) (-2789 ((|#3| $ |#2|) 10))) -(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -2859 (|#3| |#1| |#2| |#3|)) (-15 -2789 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1118) (-1236)) (T -297)) -NIL -(-10 -8 (-15 -2859 (|#3| |#1| |#2| |#3|)) (-15 -2789 (|#3| |#1| |#2|))) -((-3055 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4462)))) (-2859 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4462)))) (-2789 ((|#2| $ |#1|) 11)) (-2071 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-298 |#1| |#2|) (-141) (-1118) (-1236)) (T -298)) -((-2071 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236)))) (-2789 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236)))) (-3055 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236)))) (-2859 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236))))) -(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -2071 (|t#2| $ |t#1| |t#2|)) (-15 -2789 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3055 (|t#2| $ |t#1| |t#2|)) (-15 -2859 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-296 |#1| |#2|) . T) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 37)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 44)) (-4241 (($ $) 41)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-2803 (($ $ $) 35)) (-2309 (($ |#2| |#3|) 18)) (-1999 (((-3 $ "failed") $) NIL)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-1439 (((-112) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3517 ((|#3| $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 19)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1369 (((-3 $ "failed") $ $) NIL)) (-2910 (((-783) $) 36)) (-2071 ((|#2| $ |#2|) 46)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 23)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-1996 (($) 31 T CONST)) (-2011 (($) 39 T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40))) -(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -3517 (|#3| $)) (-15 -2884 (|#2| $)) (-15 -2309 ($ |#2| |#3|)) (-15 -1369 ((-3 $ "failed") $ $)) (-15 -1999 ((-3 $ "failed") $)) (-15 -4333 ($ $)))) (-174) (-1262 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299)) -((-1999 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3517 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1262 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2884 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2309 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1262 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1369 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4333 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) -(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -3517 (|#3| $)) (-15 -2884 (|#2| $)) (-15 -2309 ($ |#2| |#3|)) (-15 -1369 ((-3 $ "failed") $ $)) (-15 -1999 ((-3 $ "failed") $)) (-15 -4333 ($ $)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-576)) 33)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-300) (-141)) (T -300)) -NIL -(-13 (-1067) (-111 $ $) (-10 -7 (-6 -4454))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-3512 (((-656 (-1103)) $) 10)) (-3493 (($ (-518) (-518) (-1122) $) 19)) (-3471 (($ (-518) (-656 (-981)) $) 23)) (-1500 (($) 25)) (-3502 (((-703 (-1122)) (-518) (-518) $) 18)) (-3481 (((-656 (-981)) (-518) $) 22)) (-1458 (($) 7)) (-3917 (($) 24)) (-2884 (((-874) $) 29)) (-1491 (($) 26))) -(((-301) (-13 (-625 (-874)) (-10 -8 (-15 -1458 ($)) (-15 -3512 ((-656 (-1103)) $)) (-15 -3502 ((-703 (-1122)) (-518) (-518) $)) (-15 -3493 ($ (-518) (-518) (-1122) $)) (-15 -3481 ((-656 (-981)) (-518) $)) (-15 -3471 ($ (-518) (-656 (-981)) $)) (-15 -3917 ($)) (-15 -1500 ($)) (-15 -1491 ($))))) (T -301)) -((-1458 (*1 *1) (-5 *1 (-301))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-656 (-1103))) (-5 *1 (-301)))) (-3502 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1122))) (-5 *1 (-301)))) (-3493 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-301)))) (-3481 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-656 (-981))) (-5 *1 (-301)))) (-3471 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-981))) (-5 *1 (-301)))) (-3917 (*1 *1) (-5 *1 (-301))) (-1500 (*1 *1) (-5 *1 (-301))) (-1491 (*1 *1) (-5 *1 (-301)))) -(-13 (-625 (-874)) (-10 -8 (-15 -1458 ($)) (-15 -3512 ((-656 (-1103)) $)) (-15 -3502 ((-703 (-1122)) (-518) (-518) $)) (-15 -3493 ($ (-518) (-518) (-1122) $)) (-15 -3481 ((-656 (-981)) (-518) $)) (-15 -3471 ($ (-518) (-656 (-981)) $)) (-15 -3917 ($)) (-15 -1500 ($)) (-15 -1491 ($)))) -((-3551 (((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|)))) 102)) (-3542 (((-656 (-701 (-419 (-968 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|)))))) (-701 (-419 (-968 |#1|)))) 97) (((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|))) (-783) (-783)) 41)) (-3559 (((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|)))) 99)) (-3531 (((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|)))) 75)) (-3520 (((-656 (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (-701 (-419 (-968 |#1|)))) 74)) (-1776 (((-968 |#1|) (-701 (-419 (-968 |#1|)))) 55) (((-968 |#1|) (-701 (-419 (-968 |#1|))) (-1195)) 56))) -(((-302 |#1|) (-10 -7 (-15 -1776 ((-968 |#1|) (-701 (-419 (-968 |#1|))) (-1195))) (-15 -1776 ((-968 |#1|) (-701 (-419 (-968 |#1|))))) (-15 -3520 ((-656 (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (-701 (-419 (-968 |#1|))))) (-15 -3531 ((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|))))) (-15 -3542 ((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|))) (-783) (-783))) (-15 -3542 ((-656 (-701 (-419 (-968 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|)))))) (-701 (-419 (-968 |#1|))))) (-15 -3551 ((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|))))) (-15 -3559 ((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|)))))) (-464)) (T -302)) -((-3559 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-968 *4)))))) (-3551 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4)))) (|:| |geneigvec| (-656 (-701 (-419 (-968 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-968 *4)))))) (-3542 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-968 *5)) (-1184 (-1195) (-968 *5)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-968 *5)))))) (-3542 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-968 *6)) (-1184 (-1195) (-968 *6)))) (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-968 *6)))))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-968 *5)) (-1184 (-1195) (-968 *5)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-968 *5)))))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-968 *4)))) (-4 *4 (-464)) (-5 *2 (-656 (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4))))) (-5 *1 (-302 *4)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-968 *4)))) (-5 *2 (-968 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-968 *5)))) (-5 *4 (-1195)) (-5 *2 (-968 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))) -(-10 -7 (-15 -1776 ((-968 |#1|) (-701 (-419 (-968 |#1|))) (-1195))) (-15 -1776 ((-968 |#1|) (-701 (-419 (-968 |#1|))))) (-15 -3520 ((-656 (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (-701 (-419 (-968 |#1|))))) (-15 -3531 ((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|))))) (-15 -3542 ((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|))) (-783) (-783))) (-15 -3542 ((-656 (-701 (-419 (-968 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|)))))) (-701 (-419 (-968 |#1|))))) (-15 -3551 ((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|))))) (-15 -3559 ((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|)))))) -((-2551 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14))) -(((-303 |#1| |#2|) (-10 -7 (-15 -2551 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1236) (-1236)) (T -303)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))) -(-10 -7 (-15 -2551 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1389 (((-112) $) NIL (|has| |#1| (-21)))) (-3613 (($ $) 12)) (-1459 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1474 (($ $ $) 95 (|has| |#1| (-312)))) (-2473 (($) NIL (-3766 (|has| |#1| (-21)) (|has| |#1| (-738))) CONST)) (-3596 (($ $) 51 (|has| |#1| (-21)))) (-3575 (((-3 $ "failed") $) 62 (|has| |#1| (-738)))) (-3892 ((|#1| $) 11)) (-1999 (((-3 $ "failed") $) 60 (|has| |#1| (-738)))) (-1439 (((-112) $) NIL (|has| |#1| (-738)))) (-2551 (($ (-1 |#1| |#1|) $) 14)) (-3880 ((|#1| $) 10)) (-3604 (($ $) 50 (|has| |#1| (-21)))) (-3585 (((-3 $ "failed") $) 61 (|has| |#1| (-738)))) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-4333 (($ $) 64 (-3766 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3565 (((-656 $) $) 85 (|has| |#1| (-568)))) (-3049 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-1195) |#1|) 17 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 21 (|has| |#1| (-526 (-1195) |#1|)))) (-2677 (($ |#1| |#1|) 9)) (-1543 (((-135)) 90 (|has| |#1| (-374)))) (-2390 (($ $ (-1195)) 87 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195))))) (-3276 (($ $ $) NIL (|has| |#1| (-485)))) (-2920 (($ $ $) NIL (|has| |#1| (-485)))) (-2884 (($ (-576)) NIL (|has| |#1| (-1067))) (((-112) $) 37 (|has| |#1| (-1118))) (((-874) $) 36 (|has| |#1| (-1118)))) (-1871 (((-783)) 67 (|has| |#1| (-1067)) CONST)) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1996 (($) 47 (|has| |#1| (-21)) CONST)) (-2011 (($) 57 (|has| |#1| (-738)) CONST)) (-3431 (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195))))) (-3915 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1118)))) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-3766 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-4029 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-4017 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-783)) NIL (|has| |#1| (-738))) (($ $ (-937)) NIL (|has| |#1| (-1130)))) (* (($ $ |#1|) 55 (|has| |#1| (-1130))) (($ |#1| $) 54 (|has| |#1| (-1130))) (($ $ $) 53 (|has| |#1| (-1130))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-937) $) NIL (|has| |#1| (-25))))) -(((-304 |#1|) (-13 (-1236) (-10 -8 (-15 -3915 ($ |#1| |#1|)) (-15 -2677 ($ |#1| |#1|)) (-15 -3613 ($ $)) (-15 -3880 (|#1| $)) (-15 -3892 (|#1| $)) (-15 -2551 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1195) |#1|)) (-6 (-526 (-1195) |#1|)) |%noBranch|) (IF (|has| |#1| (-1118)) (PROGN (-6 (-1118)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3049 ($ $ $)) (-15 -3049 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4017 ($ |#1| $)) (-15 -4017 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3604 ($ $)) (-15 -3596 ($ $)) (-15 -4029 ($ |#1| $)) (-15 -4029 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1130)) (PROGN (-6 (-1130)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -3585 ((-3 $ "failed") $)) (-15 -3575 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -3585 ((-3 $ "failed") $)) (-15 -3575 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3565 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-914 (-1195))) (-6 (-914 (-1195))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1293 |#1|)) (-15 -4039 ($ $ $)) (-15 -4333 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -1474 ($ $ $)) |%noBranch|))) (-1236)) (T -304)) -((-3915 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-2677 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-3613 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-3880 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-3892 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-304 *3)))) (-3049 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1118)) (-4 *2 (-1236)) (-5 *1 (-304 *2)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1118)) (-4 *3 (-1236)) (-5 *1 (-304 *3)))) (-4017 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) (-4017 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) (-3604 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-3596 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-4029 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-3585 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236)))) (-3575 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1236)))) (-1474 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1236)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1130)) (-4 *2 (-1236)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1130)) (-4 *2 (-1236)))) (-4039 (*1 *1 *1 *1) (-3766 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236))))) (-4333 (*1 *1 *1) (-3766 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236)))))) -(-13 (-1236) (-10 -8 (-15 -3915 ($ |#1| |#1|)) (-15 -2677 ($ |#1| |#1|)) (-15 -3613 ($ $)) (-15 -3880 (|#1| $)) (-15 -3892 (|#1| $)) (-15 -2551 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1195) |#1|)) (-6 (-526 (-1195) |#1|)) |%noBranch|) (IF (|has| |#1| (-1118)) (PROGN (-6 (-1118)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3049 ($ $ $)) (-15 -3049 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4017 ($ |#1| $)) (-15 -4017 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3604 ($ $)) (-15 -3596 ($ $)) (-15 -4029 ($ |#1| $)) (-15 -4029 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1130)) (PROGN (-6 (-1130)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -3585 ((-3 $ "failed") $)) (-15 -3575 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -3585 ((-3 $ "failed") $)) (-15 -3575 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3565 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-914 (-1195))) (-6 (-914 (-1195))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1293 |#1|)) (-15 -4039 ($ $ $)) (-15 -4333 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -1474 ($ $ $)) |%noBranch|))) -((-2862 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2298 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3336 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#2| $ |#1| |#2|) NIL)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1397 (((-3 |#2| "failed") |#1| $) NIL)) (-2473 (($) NIL T CONST)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2833 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3634 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#2| $ |#1|) NIL)) (-4001 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 ((|#1| $) NIL (|has| |#1| (-862)))) (-1496 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3365 ((|#1| $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2002 (((-656 |#1|) $) NIL)) (-3412 (((-112) |#1| $) NIL)) (-3449 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3807 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3385 (((-656 |#1|) $) NIL)) (-3394 (((-112) |#1| $) NIL)) (-3914 (((-1138) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1962 ((|#2| $) NIL (|has| |#1| (-862)))) (-1932 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL)) (-3346 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1581 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2884 (((-874) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3722 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-305 |#1| |#2|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1118) (-1118)) (T -305)) -NIL -(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) -((-3085 (((-322) (-1177) (-656 (-1177))) 17) (((-322) (-1177) (-1177)) 16) (((-322) (-656 (-1177))) 15) (((-322) (-1177)) 14))) -(((-306) (-10 -7 (-15 -3085 ((-322) (-1177))) (-15 -3085 ((-322) (-656 (-1177)))) (-15 -3085 ((-322) (-1177) (-1177))) (-15 -3085 ((-322) (-1177) (-656 (-1177)))))) (T -306)) -((-3085 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1177))) (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3085 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-322)) (-5 *1 (-306)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306))))) -(-10 -7 (-15 -3085 ((-322) (-1177))) (-15 -3085 ((-322) (-656 (-1177)))) (-15 -3085 ((-322) (-1177) (-1177))) (-15 -3085 ((-322) (-1177) (-656 (-1177))))) -((-2551 ((|#2| (-1 |#2| |#1|) (-1177) (-624 |#1|)) 18))) -(((-307 |#1| |#2|) (-10 -7 (-15 -2551 (|#2| (-1 |#2| |#1|) (-1177) (-624 |#1|)))) (-312) (-1236)) (T -307)) -((-2551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1177)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1236)) (-5 *1 (-307 *6 *2))))) -(-10 -7 (-15 -2551 (|#2| (-1 |#2| |#1|) (-1177) (-624 |#1|)))) -((-2551 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17))) -(((-308 |#1| |#2|) (-10 -7 (-15 -2551 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))) -(-10 -7 (-15 -2551 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) -((-2806 (((-112) (-227)) 12))) -(((-309 |#1| |#2|) (-10 -7 (-15 -2806 ((-112) (-227)))) (-227) (-227)) (T -309)) -((-2806 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2806 ((-112) (-227)))) -((-3696 (((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227)))) 118)) (-3705 (((-1175 (-227)) (-1286 (-326 (-227))) (-656 (-1195)) (-1112 (-855 (-227)))) 135) (((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227)))) 72)) (-3948 (((-656 (-1177)) (-1175 (-227))) NIL)) (-3684 (((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227)))) 69)) (-3714 (((-656 (-227)) (-968 (-419 (-576))) (-1195) (-1112 (-855 (-227)))) 59)) (-3933 (((-656 (-1177)) (-656 (-227))) NIL)) (-3962 (((-227) (-1112 (-855 (-227)))) 29)) (-3975 (((-227) (-1112 (-855 (-227)))) 30)) (-3675 (((-112) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3905 (((-1177) (-227)) NIL))) -(((-310) (-10 -7 (-15 -3962 ((-227) (-1112 (-855 (-227))))) (-15 -3975 ((-227) (-1112 (-855 (-227))))) (-15 -3675 ((-112) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3684 ((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227))))) (-15 -3696 ((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -3705 ((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -3705 ((-1175 (-227)) (-1286 (-326 (-227))) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -3714 ((-656 (-227)) (-968 (-419 (-576))) (-1195) (-1112 (-855 (-227))))) (-15 -3905 ((-1177) (-227))) (-15 -3933 ((-656 (-1177)) (-656 (-227)))) (-15 -3948 ((-656 (-1177)) (-1175 (-227)))))) (T -310)) -((-3948 (*1 *2 *3) (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-310)))) (-3714 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *4 (-1195)) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-3705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195))) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310)))) (-3705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195))) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310)))) (-3696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195))) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310)))) (-3684 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195)) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))) -(-10 -7 (-15 -3962 ((-227) (-1112 (-855 (-227))))) (-15 -3975 ((-227) (-1112 (-855 (-227))))) (-15 -3675 ((-112) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3684 ((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227))))) (-15 -3696 ((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -3705 ((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -3705 ((-1175 (-227)) (-1286 (-326 (-227))) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -3714 ((-656 (-227)) (-968 (-419 (-576))) (-1195) (-1112 (-855 (-227))))) (-15 -3905 ((-1177) (-227))) (-15 -3933 ((-656 (-1177)) (-656 (-227)))) (-15 -3948 ((-656 (-1177)) (-1175 (-227))))) -((-4271 (((-656 (-624 $)) $) 27)) (-1474 (($ $ (-304 $)) 78) (($ $ (-656 (-304 $))) 139) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2449 (((-3 (-624 $) "failed") $) 127)) (-4401 (((-624 $) $) 126)) (-4330 (($ $) 17) (($ (-656 $)) 54)) (-3640 (((-656 (-115)) $) 35)) (-2573 (((-115) (-115)) 88)) (-4064 (((-112) $) 150)) (-2551 (($ (-1 $ $) (-624 $)) 86)) (-3650 (((-3 (-624 $) "failed") $) 94)) (-1673 (($ (-115) $) 59) (($ (-115) (-656 $)) 110)) (-3657 (((-112) $ (-115)) 132) (((-112) $ (-1195)) 131)) (-3343 (((-783) $) 44)) (-3630 (((-112) $ $) 57) (((-112) $ (-1195)) 49)) (-4072 (((-112) $) 148)) (-3049 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 81) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) 67) (($ $ (-1195) (-1 $ $)) 72) (($ $ (-656 (-115)) (-656 (-1 $ $))) 80) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 82) (($ $ (-115) (-1 $ (-656 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2071 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-656 $)) 123)) (-3663 (($ $) 51) (($ $ $) 135)) (-2377 (($ $) 15) (($ (-656 $)) 53)) (-2362 (((-112) (-115)) 21))) -(((-311 |#1|) (-10 -8 (-15 -4064 ((-112) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -3049 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3049 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3049 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3049 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -3049 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -3630 ((-112) |#1| (-1195))) (-15 -3630 ((-112) |#1| |#1|)) (-15 -2551 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1673 (|#1| (-115) (-656 |#1|))) (-15 -1673 (|#1| (-115) |#1|)) (-15 -3657 ((-112) |#1| (-1195))) (-15 -3657 ((-112) |#1| (-115))) (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 -3640 ((-656 (-115)) |#1|)) (-15 -4271 ((-656 (-624 |#1|)) |#1|)) (-15 -3650 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3343 ((-783) |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -4330 (|#1| (-656 |#1|))) (-15 -4330 (|#1| |#1|)) (-15 -2377 (|#1| (-656 |#1|))) (-15 -2377 (|#1| |#1|)) (-15 -1474 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1474 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1474 (|#1| |#1| (-304 |#1|))) (-15 -2071 (|#1| (-115) (-656 |#1|))) (-15 -2071 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1|)) (-15 -3049 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| (-304 |#1|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3049 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2449 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4401 ((-624 |#1|) |#1|))) (-312)) (T -311)) -((-2573 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))) -(-10 -8 (-15 -4064 ((-112) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -3049 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3049 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3049 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3049 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -3049 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -3630 ((-112) |#1| (-1195))) (-15 -3630 ((-112) |#1| |#1|)) (-15 -2551 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1673 (|#1| (-115) (-656 |#1|))) (-15 -1673 (|#1| (-115) |#1|)) (-15 -3657 ((-112) |#1| (-1195))) (-15 -3657 ((-112) |#1| (-115))) (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 -3640 ((-656 (-115)) |#1|)) (-15 -4271 ((-656 (-624 |#1|)) |#1|)) (-15 -3650 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3343 ((-783) |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -4330 (|#1| (-656 |#1|))) (-15 -4330 (|#1| |#1|)) (-15 -2377 (|#1| (-656 |#1|))) (-15 -2377 (|#1| |#1|)) (-15 -1474 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1474 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1474 (|#1| |#1| (-304 |#1|))) (-15 -2071 (|#1| (-115) (-656 |#1|))) (-15 -2071 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1|)) (-15 -3049 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| (-304 |#1|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3049 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2449 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4401 ((-624 |#1|) |#1|))) -((-2862 (((-112) $ $) 7)) (-4271 (((-656 (-624 $)) $) 39)) (-1474 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-2449 (((-3 (-624 $) "failed") $) 64)) (-4401 (((-624 $) $) 65)) (-4330 (($ $) 46) (($ (-656 $)) 45)) (-3640 (((-656 (-115)) $) 38)) (-2573 (((-115) (-115)) 37)) (-4064 (((-112) $) 17 (|has| $ (-1056 (-576))))) (-3621 (((-1191 $) (-624 $)) 20 (|has| $ (-1067)))) (-2551 (($ (-1 $ $) (-624 $)) 31)) (-3650 (((-3 (-624 $) "failed") $) 41)) (-3733 (((-1177) $) 10)) (-2558 (((-656 (-624 $)) $) 40)) (-1673 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-3657 (((-112) $ (-115)) 35) (((-112) $ (-1195)) 34)) (-3343 (((-783) $) 42)) (-3914 (((-1138) $) 11)) (-3630 (((-112) $ $) 30) (((-112) $ (-1195)) 29)) (-4072 (((-112) $) 18 (|has| $ (-1056 (-576))))) (-3049 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1195) (-1 $ (-656 $))) 26) (($ $ (-1195) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2071 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-3663 (($ $) 44) (($ $ $) 43)) (-1360 (($ $) 19 (|has| $ (-1067)))) (-2884 (((-874) $) 12) (($ (-624 $)) 63)) (-2377 (($ $) 48) (($ (-656 $)) 47)) (-2362 (((-112) (-115)) 36)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-312) (-141)) (T -312)) -((-2071 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2071 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2071 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2071 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2071 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) (-1474 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-2377 (*1 *1 *1) (-4 *1 (-312))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-4330 (*1 *1 *1) (-4 *1 (-312))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-3663 (*1 *1 *1) (-4 *1 (-312))) (-3663 (*1 *1 *1 *1) (-4 *1 (-312))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) (-3650 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))) (-2573 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2362 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3657 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3657 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112)))) (-1673 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1673 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-2551 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-3630 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-3630 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112)))) (-3049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1067)) (-4 *1 (-312)) (-5 *2 (-1191 *1)))) (-1360 (*1 *1 *1) (-12 (-4 *1 (-1067)) (-4 *1 (-312)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1056 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-1056 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))) -(-13 (-1118) (-1056 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -2071 ($ (-115) $)) (-15 -2071 ($ (-115) $ $)) (-15 -2071 ($ (-115) $ $ $)) (-15 -2071 ($ (-115) $ $ $ $)) (-15 -2071 ($ (-115) (-656 $))) (-15 -1474 ($ $ (-304 $))) (-15 -1474 ($ $ (-656 (-304 $)))) (-15 -1474 ($ $ (-656 (-624 $)) (-656 $))) (-15 -2377 ($ $)) (-15 -2377 ($ (-656 $))) (-15 -4330 ($ $)) (-15 -4330 ($ (-656 $))) (-15 -3663 ($ $)) (-15 -3663 ($ $ $)) (-15 -3343 ((-783) $)) (-15 -3650 ((-3 (-624 $) "failed") $)) (-15 -2558 ((-656 (-624 $)) $)) (-15 -4271 ((-656 (-624 $)) $)) (-15 -3640 ((-656 (-115)) $)) (-15 -2573 ((-115) (-115))) (-15 -2362 ((-112) (-115))) (-15 -3657 ((-112) $ (-115))) (-15 -3657 ((-112) $ (-1195))) (-15 -1673 ($ (-115) $)) (-15 -1673 ($ (-115) (-656 $))) (-15 -2551 ($ (-1 $ $) (-624 $))) (-15 -3630 ((-112) $ $)) (-15 -3630 ((-112) $ (-1195))) (-15 -3049 ($ $ (-656 (-1195)) (-656 (-1 $ $)))) (-15 -3049 ($ $ (-656 (-1195)) (-656 (-1 $ (-656 $))))) (-15 -3049 ($ $ (-1195) (-1 $ (-656 $)))) (-15 -3049 ($ $ (-1195) (-1 $ $))) (-15 -3049 ($ $ (-656 (-115)) (-656 (-1 $ $)))) (-15 -3049 ($ $ (-656 (-115)) (-656 (-1 $ (-656 $))))) (-15 -3049 ($ $ (-115) (-1 $ (-656 $)))) (-15 -3049 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1067)) (PROGN (-15 -3621 ((-1191 $) (-624 $))) (-15 -1360 ($ $))) |%noBranch|) (IF (|has| $ (-1056 (-576))) (PROGN (-15 -4072 ((-112) $)) (-15 -4064 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-628 #0=(-624 $)) . T) ((-625 (-874)) . T) ((-319 $) . T) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-1056 #0#) . T) ((-1118) . T)) -((-2879 (((-656 |#1|) (-656 |#1|)) 10))) -(((-313 |#1|) (-10 -7 (-15 -2879 ((-656 |#1|) (-656 |#1|)))) (-860)) (T -313)) -((-2879 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) -(-10 -7 (-15 -2879 ((-656 |#1|) (-656 |#1|)))) -((-2551 (((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)) 17))) -(((-314 |#1| |#2|) (-10 -7 (-15 -2551 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) (-1067) (-1067)) (T -314)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6))))) -(-10 -7 (-15 -2551 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) -((-3894 (((-1286 (-326 (-390))) (-1286 (-326 (-227)))) 110)) (-3758 (((-1112 (-855 (-227))) (-1112 (-855 (-390)))) 43)) (-3948 (((-656 (-1177)) (-1175 (-227))) 92)) (-4030 (((-326 (-390)) (-968 (-227))) 53)) (-4040 (((-227) (-968 (-227))) 49)) (-3987 (((-1177) (-390)) 195)) (-3746 (((-855 (-227)) (-855 (-390))) 37)) (-3814 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1286 (-326 (-227)))) 165)) (-3998 (((-1053) (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053)))) 207) (((-1053) (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))))) 205)) (-2869 (((-701 (-227)) (-656 (-227)) (-783)) 19)) (-3870 (((-1286 (-711)) (-656 (-227))) 99)) (-3933 (((-656 (-1177)) (-656 (-227))) 79)) (-3294 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-2806 (((-112) (-227) (-1112 (-855 (-227)))) 117)) (-4019 (((-1053) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-3962 (((-227) (-1112 (-855 (-227)))) 112)) (-3975 (((-227) (-1112 (-855 (-227)))) 113)) (-4059 (((-227) (-419 (-576))) 31)) (-3919 (((-1177) (-390)) 77)) (-3726 (((-227) (-390)) 22)) (-3804 (((-390) (-1286 (-326 (-227)))) 177)) (-3735 (((-326 (-227)) (-326 (-390))) 28)) (-3783 (((-419 (-576)) (-326 (-227))) 56)) (-3825 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-3882 (((-326 (-390)) (-326 (-227))) 103)) (-3794 (((-227) (-326 (-227))) 57)) (-3848 (((-656 (-227)) (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) 68)) (-3836 (((-1112 (-855 (-227))) (-1112 (-855 (-227)))) 65)) (-3905 (((-1177) (-227)) 76)) (-3859 (((-711) (-227)) 95)) (-3771 (((-419 (-576)) (-227)) 58)) (-4050 (((-326 (-390)) (-227)) 52)) (-2616 (((-656 (-1112 (-855 (-227)))) (-656 (-1112 (-855 (-390))))) 46)) (-1514 (((-1053) (-656 (-1053))) 191) (((-1053) (-1053) (-1053)) 185)) (-4009 (((-1053) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) -(((-315) (-10 -7 (-15 -3726 ((-227) (-390))) (-15 -3735 ((-326 (-227)) (-326 (-390)))) (-15 -3746 ((-855 (-227)) (-855 (-390)))) (-15 -3758 ((-1112 (-855 (-227))) (-1112 (-855 (-390))))) (-15 -2616 ((-656 (-1112 (-855 (-227)))) (-656 (-1112 (-855 (-390)))))) (-15 -3771 ((-419 (-576)) (-227))) (-15 -3783 ((-419 (-576)) (-326 (-227)))) (-15 -3794 ((-227) (-326 (-227)))) (-15 -3294 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3804 ((-390) (-1286 (-326 (-227))))) (-15 -3814 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1286 (-326 (-227))))) (-15 -3825 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3836 ((-1112 (-855 (-227))) (-1112 (-855 (-227))))) (-15 -3848 ((-656 (-227)) (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))))) (-15 -3859 ((-711) (-227))) (-15 -3870 ((-1286 (-711)) (-656 (-227)))) (-15 -3882 ((-326 (-390)) (-326 (-227)))) (-15 -3894 ((-1286 (-326 (-390))) (-1286 (-326 (-227))))) (-15 -2806 ((-112) (-227) (-1112 (-855 (-227))))) (-15 -3905 ((-1177) (-227))) (-15 -3919 ((-1177) (-390))) (-15 -3933 ((-656 (-1177)) (-656 (-227)))) (-15 -3948 ((-656 (-1177)) (-1175 (-227)))) (-15 -3962 ((-227) (-1112 (-855 (-227))))) (-15 -3975 ((-227) (-1112 (-855 (-227))))) (-15 -1514 ((-1053) (-1053) (-1053))) (-15 -1514 ((-1053) (-656 (-1053)))) (-15 -3987 ((-1177) (-390))) (-15 -3998 ((-1053) (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))))) (-15 -3998 ((-1053) (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))))) (-15 -4009 ((-1053) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4019 ((-1053) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4030 ((-326 (-390)) (-968 (-227)))) (-15 -4040 ((-227) (-968 (-227)))) (-15 -4050 ((-326 (-390)) (-227))) (-15 -4059 ((-227) (-419 (-576)))) (-15 -2869 ((-701 (-227)) (-656 (-227)) (-783))))) (T -315)) -((-2869 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-315)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-968 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-968 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1053)) (-5 *1 (-315)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1053)) (-5 *1 (-315)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053)))) (-5 *2 (-1053)) (-5 *1 (-315)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *2 (-1053)) (-5 *1 (-315)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-656 (-1053))) (-5 *2 (-1053)) (-5 *1 (-315)))) (-1514 (*1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-315)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-315)))) (-2806 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-1286 (-326 (-390)))) (-5 *1 (-315)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1286 (-711))) (-5 *1 (-315)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-5 *2 (-656 (-227))) (-5 *1 (-315)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1112 (-855 (-227)))) (-5 *1 (-315)))) (-3825 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-3294 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-3771 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-656 (-1112 (-855 (-390))))) (-5 *2 (-656 (-1112 (-855 (-227))))) (-5 *1 (-315)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-390)))) (-5 *2 (-1112 (-855 (-227)))) (-5 *1 (-315)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) -(-10 -7 (-15 -3726 ((-227) (-390))) (-15 -3735 ((-326 (-227)) (-326 (-390)))) (-15 -3746 ((-855 (-227)) (-855 (-390)))) (-15 -3758 ((-1112 (-855 (-227))) (-1112 (-855 (-390))))) (-15 -2616 ((-656 (-1112 (-855 (-227)))) (-656 (-1112 (-855 (-390)))))) (-15 -3771 ((-419 (-576)) (-227))) (-15 -3783 ((-419 (-576)) (-326 (-227)))) (-15 -3794 ((-227) (-326 (-227)))) (-15 -3294 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3804 ((-390) (-1286 (-326 (-227))))) (-15 -3814 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1286 (-326 (-227))))) (-15 -3825 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3836 ((-1112 (-855 (-227))) (-1112 (-855 (-227))))) (-15 -3848 ((-656 (-227)) (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))))) (-15 -3859 ((-711) (-227))) (-15 -3870 ((-1286 (-711)) (-656 (-227)))) (-15 -3882 ((-326 (-390)) (-326 (-227)))) (-15 -3894 ((-1286 (-326 (-390))) (-1286 (-326 (-227))))) (-15 -2806 ((-112) (-227) (-1112 (-855 (-227))))) (-15 -3905 ((-1177) (-227))) (-15 -3919 ((-1177) (-390))) (-15 -3933 ((-656 (-1177)) (-656 (-227)))) (-15 -3948 ((-656 (-1177)) (-1175 (-227)))) (-15 -3962 ((-227) (-1112 (-855 (-227))))) (-15 -3975 ((-227) (-1112 (-855 (-227))))) (-15 -1514 ((-1053) (-1053) (-1053))) (-15 -1514 ((-1053) (-656 (-1053)))) (-15 -3987 ((-1177) (-390))) (-15 -3998 ((-1053) (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))))) (-15 -3998 ((-1053) (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))))) (-15 -4009 ((-1053) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4019 ((-1053) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4030 ((-326 (-390)) (-968 (-227)))) (-15 -4040 ((-227) (-968 (-227)))) (-15 -4050 ((-326 (-390)) (-227))) (-15 -4059 ((-227) (-419 (-576)))) (-15 -2869 ((-701 (-227)) (-656 (-227)) (-783)))) -((-2922 (((-112) $ $) 14)) (-2803 (($ $ $) 18)) (-2814 (($ $ $) 17)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 50)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 65)) (-3928 (($ $ $) 25) (($ (-656 $)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2852 (((-3 $ "failed") $ $) 21)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 53))) -(((-316 |#1|) (-10 -8 (-15 -2892 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2900 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2900 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3660 |#1|)) |#1| |#1|)) (-15 -2803 (|#1| |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -2922 ((-112) |#1| |#1|)) (-15 -2291 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2304 ((-2 (|:| -1755 (-656 |#1|)) (|:| -3660 |#1|)) (-656 |#1|))) (-15 -3928 (|#1| (-656 |#1|))) (-15 -3928 (|#1| |#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316)) -NIL -(-10 -8 (-15 -2892 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2900 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2900 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3660 |#1|)) |#1| |#1|)) (-15 -2803 (|#1| |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -2922 ((-112) |#1| |#1|)) (-15 -2291 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2304 ((-2 (|:| -1755 (-656 |#1|)) (|:| -3660 |#1|)) (-656 |#1|))) (-15 -3928 (|#1| (-656 |#1|))) (-15 -3928 (|#1| |#1| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-2922 (((-112) $ $) 65)) (-2473 (($) 18 T CONST)) (-2803 (($ $ $) 61)) (-1999 (((-3 $ "failed") $) 37)) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-1439 (((-112) $) 35)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2910 (((-783) $) 64)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-317) (-141)) (T -317)) -((-2922 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))) (-4350 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-317)))) (-2814 (*1 *1 *1 *1) (-4 *1 (-317))) (-2803 (*1 *1 *1 *1) (-4 *1 (-317))) (-2900 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3660 *1))) (-4 *1 (-317)))) (-2900 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-2892 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) -(-13 (-936) (-10 -8 (-15 -2922 ((-112) $ $)) (-15 -2910 ((-783) $)) (-15 -4350 ((-2 (|:| -2770 $) (|:| -1406 $)) $ $)) (-15 -2814 ($ $ $)) (-15 -2803 ($ $ $)) (-15 -2900 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $)) (-15 -2900 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2892 ((-3 (-656 $) "failed") (-656 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-3049 (($ $ (-656 |#2|) (-656 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-656 (-304 |#2|))) NIL))) -(((-318 |#1| |#2|) (-10 -8 (-15 -3049 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3049 (|#1| |#1| (-304 |#2|))) (-15 -3049 (|#1| |#1| |#2| |#2|)) (-15 -3049 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) (-319 |#2|) (-1118)) (T -318)) -NIL -(-10 -8 (-15 -3049 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3049 (|#1| |#1| (-304 |#2|))) (-15 -3049 (|#1| |#1| |#2| |#2|)) (-15 -3049 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) -((-3049 (($ $ (-656 |#1|) (-656 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-656 (-304 |#1|))) 10))) -(((-319 |#1|) (-141) (-1118)) (T -319)) -((-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1118)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1118))))) -(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -3049 ($ $ (-304 |t#1|))) (-15 -3049 ($ $ (-656 (-304 |t#1|)))))) -(((-526 |#1| |#1|) . T)) -((-3049 ((|#1| (-1 |#1| (-576)) (-1197 (-419 (-576)))) 26))) -(((-320 |#1|) (-10 -7 (-15 -3049 (|#1| (-1 |#1| (-576)) (-1197 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320)) -((-3049 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1197 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))) -(-10 -7 (-15 -3049 (|#1| (-1 |#1| (-576)) (-1197 (-419 (-576)))))) -((-2862 (((-112) $ $) NIL)) (-2628 (((-576) $) 12)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3830 (((-1153) $) 9)) (-2884 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-321) (-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $)) (-15 -2628 ((-576) $))))) (T -321)) -((-3830 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-321)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))) -(-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $)) (-15 -2628 ((-576) $)))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 7)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 9))) -(((-322) (-1118)) (T -322)) -NIL -(-1118) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 60)) (-1905 (((-1272 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-317)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-925)))) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-925)))) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-1272 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-576)))) (((-3 (-1271 |#2| |#3| |#4|) "failed") $) 26)) (-4401 (((-1272 |#1| |#2| |#3| |#4|) $) NIL) (((-1195) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-576)))) (((-576) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-576)))) (((-1271 |#2| |#3| |#4|) $) NIL)) (-2803 (($ $ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-1272 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1286 (-1272 |#1| |#2| |#3| |#4|)))) (-701 $) (-1286 $)) NIL) (((-701 (-1272 |#1| |#2| |#3| |#4|)) (-701 $)) NIL) (((-701 (-1272 |#1| |#2| |#3| |#4|)) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-557)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1370 (((-112) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-899 (-390))))) (-1439 (((-112) $) NIL)) (-3154 (($ $) NIL)) (-1595 (((-1272 |#1| |#2| |#3| |#4|) $) 22)) (-1831 (((-3 $ "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1170)))) (-1379 (((-112) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-4137 (($ $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-2551 (($ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) $) NIL)) (-1736 (((-3 (-855 |#2|) "failed") $) 80)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1170)) CONST)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-317)))) (-1916 (((-1272 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-557)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-925)))) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3049 (($ $ (-656 (-1272 |#1| |#2| |#3| |#4|)) (-656 (-1272 |#1| |#2| |#3| |#4|))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1272 |#1| |#2| |#3| |#4|))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-304 (-1272 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-1195)) (-656 (-1272 |#1| |#2| |#3| |#4|))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-526 (-1195) (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-1195) (-1272 |#1| |#2| |#3| |#4|)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-526 (-1195) (-1272 |#1| |#2| |#3| |#4|))))) (-2910 (((-783) $) NIL)) (-2071 (($ $ (-1272 |#1| |#2| |#3| |#4|)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-296 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2390 (($ $ (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|))) NIL)) (-3143 (($ $) NIL)) (-1608 (((-1272 |#1| |#2| |#3| |#4|) $) 19)) (-2616 (((-905 (-576)) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1040))) (((-227) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1040)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1272 |#1| |#2| |#3| |#4|) (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1272 |#1| |#2| |#3| |#4|)) 30) (($ (-1195)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-1195)))) (($ (-1271 |#2| |#3| |#4|)) 37)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| (-1272 |#1| |#2| |#3| |#4|) (-925))) (|has| (-1272 |#1| |#2| |#3| |#4|) (-146))))) (-1871 (((-783)) NIL T CONST)) (-1929 (((-1272 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-557)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-2610 (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|))) NIL)) (-3983 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-3957 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-3943 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-4039 (($ $ $) 35) (($ (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) 32)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1272 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1272 |#1| |#2| |#3| |#4|)) NIL))) -(((-323 |#1| |#2| |#3| |#4|) (-13 (-1010 (-1272 |#1| |#2| |#3| |#4|)) (-1056 (-1271 |#2| |#3| |#4|)) (-10 -8 (-15 -1736 ((-3 (-855 |#2|) "failed") $)) (-15 -2884 ($ (-1271 |#2| |#3| |#4|))))) (-13 (-1056 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1221) (-442 |#1|)) (-1195) |#2|) (T -323)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1271 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4) (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-1736 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4)))) -(-13 (-1010 (-1272 |#1| |#2| |#3| |#4|)) (-1056 (-1271 |#2| |#3| |#4|)) (-10 -8 (-15 -1736 ((-3 (-855 |#2|) "failed") $)) (-15 -2884 ($ (-1271 |#2| |#3| |#4|))))) -((-2551 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13))) -(((-324 |#1| |#2|) (-10 -7 (-15 -2551 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1118) (-1118)) (T -324)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))) -(-10 -7 (-15 -2551 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) -((-4290 (((-52) |#2| (-304 |#2|) (-783)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-783)) 35) (((-52) |#2|) 33) (((-52) (-1195)) 26)) (-1874 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1195)) 55)) (-4311 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1195)) 50)) (-4301 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1195)) 43))) -(((-325 |#1| |#2|) (-10 -7 (-15 -4290 ((-52) (-1195))) (-15 -4290 ((-52) |#2|)) (-15 -4290 ((-52) |#2| (-783))) (-15 -4290 ((-52) |#2| (-304 |#2|))) (-15 -4290 ((-52) |#2| (-304 |#2|) (-783))) (-15 -4301 ((-52) (-1195))) (-15 -4301 ((-52) |#2|)) (-15 -4301 ((-52) |#2| (-576))) (-15 -4301 ((-52) |#2| (-304 |#2|))) (-15 -4301 ((-52) |#2| (-304 |#2|) (-576))) (-15 -4311 ((-52) (-1195))) (-15 -4311 ((-52) |#2|)) (-15 -4311 ((-52) |#2| (-419 (-576)))) (-15 -4311 ((-52) |#2| (-304 |#2|))) (-15 -4311 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -1874 ((-52) (-1195))) (-15 -1874 ((-52) |#2|)) (-15 -1874 ((-52) |#2| (-419 (-576)))) (-15 -1874 ((-52) |#2| (-304 |#2|))) (-15 -1874 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -325)) -((-1874 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-1874 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) (-4311 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4311 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-4311 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-4311 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1056 *5) (-651 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1056 *4) (-651 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-4301 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) (-4290 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-4290 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-4290 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4)))))) -(-10 -7 (-15 -4290 ((-52) (-1195))) (-15 -4290 ((-52) |#2|)) (-15 -4290 ((-52) |#2| (-783))) (-15 -4290 ((-52) |#2| (-304 |#2|))) (-15 -4290 ((-52) |#2| (-304 |#2|) (-783))) (-15 -4301 ((-52) (-1195))) (-15 -4301 ((-52) |#2|)) (-15 -4301 ((-52) |#2| (-576))) (-15 -4301 ((-52) |#2| (-304 |#2|))) (-15 -4301 ((-52) |#2| (-304 |#2|) (-576))) (-15 -4311 ((-52) (-1195))) (-15 -4311 ((-52) |#2|)) (-15 -4311 ((-52) |#2| (-419 (-576)))) (-15 -4311 ((-52) |#2| (-304 |#2|))) (-15 -4311 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -1874 ((-52) (-1195))) (-15 -1874 ((-52) |#2|)) (-15 -1874 ((-52) |#2| (-419 (-576)))) (-15 -1874 ((-52) |#2| (-304 |#2|))) (-15 -1874 ((-52) |#2| (-304 |#2|) (-419 (-576))))) -((-2862 (((-112) $ $) NIL)) (-3696 (((-656 $) $ (-1195)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $) (-1195)) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $)) NIL (|has| |#1| (-568))) (((-656 $) (-968 $)) NIL (|has| |#1| (-568)))) (-4023 (($ $ (-1195)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1191 $) (-1195)) NIL (|has| |#1| (-568))) (($ (-1191 $)) NIL (|has| |#1| (-568))) (($ (-968 $)) NIL (|has| |#1| (-568)))) (-1389 (((-112) $) 27 (-3766 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))))) (-1607 (((-656 (-1195)) $) 368)) (-3467 (((-419 (-1191 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-4271 (((-656 (-624 $)) $) NIL)) (-3924 (($ $) 171 (|has| |#1| (-568)))) (-3787 (($ $) 147 (|has| |#1| (-568)))) (-2985 (($ $ (-1110 $)) 232 (|has| |#1| (-568))) (($ $ (-1195)) 228 (|has| |#1| (-568)))) (-1459 (((-3 $ "failed") $ $) NIL (-3766 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))))) (-1474 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) 386) (($ $ (-656 (-624 $)) (-656 $)) 430)) (-3203 (((-430 (-1191 $)) (-1191 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-2944 (($ $) NIL (|has| |#1| (-568)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-568)))) (-2474 (($ $) NIL (|has| |#1| (-568)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3898 (($ $) 167 (|has| |#1| (-568)))) (-3762 (($ $) 143 (|has| |#1| (-568)))) (-2933 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-1522 (($ $) 175 (|has| |#1| (-568)))) (-3808 (($ $) 151 (|has| |#1| (-568)))) (-2473 (($) NIL (-3766 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))) (|has| |#1| (-1130))) CONST)) (-4034 (((-656 $) $ (-1195)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $) (-1195)) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $)) NIL (|has| |#1| (-568))) (((-656 $) (-968 $)) NIL (|has| |#1| (-568)))) (-1342 (($ $ (-1195)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1191 $) (-1195)) 134 (|has| |#1| (-568))) (($ (-1191 $)) NIL (|has| |#1| (-568))) (($ (-968 $)) NIL (|has| |#1| (-568)))) (-2449 (((-3 (-624 $) "failed") $) 18) (((-3 (-1195) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-968 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-968 |#1|) "failed") $) NIL (|has| |#1| (-1067))) (((-3 (-419 (-576)) "failed") $) 46 (-3766 (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-4401 (((-624 $) $) 12) (((-1195) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-968 |#1|)) $) NIL (|has| |#1| (-568))) (((-968 |#1|) $) NIL (|has| |#1| (-1067))) (((-419 (-576)) $) 319 (-3766 (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-2803 (($ $ $) NIL (|has| |#1| (-568)))) (-2613 (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 125 (|has| |#1| (-1067))) (((-701 |#1|) (-701 $)) 115 (|has| |#1| (-1067))) (((-701 |#1|) (-1286 $)) NIL (|has| |#1| (-1067))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (-2309 (($ $) 96 (|has| |#1| (-568)))) (-1999 (((-3 $ "failed") $) NIL (|has| |#1| (-1130)))) (-2814 (($ $ $) NIL (|has| |#1| (-568)))) (-3782 (($ $ (-1110 $)) 236 (|has| |#1| (-568))) (($ $ (-1195)) 234 (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-568)))) (-2463 (((-112) $) NIL (|has| |#1| (-568)))) (-2644 (($ $ $) 202 (|has| |#1| (-568)))) (-1632 (($) 137 (|has| |#1| (-568)))) (-2954 (($ $ $) 222 (|has| |#1| (-568)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 392 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 399 (|has| |#1| (-899 (-390))))) (-4330 (($ $) NIL) (($ (-656 $)) NIL)) (-3640 (((-656 (-115)) $) NIL)) (-2573 (((-115) (-115)) 276)) (-1439 (((-112) $) 25 (|has| |#1| (-1130)))) (-4064 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-3154 (($ $) 72 (|has| |#1| (-1067)))) (-1595 (((-1143 |#1| (-624 $)) $) 91 (|has| |#1| (-1067)))) (-2941 (((-112) $) 62 (|has| |#1| (-568)))) (-3298 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-3621 (((-1191 $) (-624 $)) 277 (|has| $ (-1067)))) (-2551 (($ (-1 $ $) (-624 $)) 426)) (-3650 (((-3 (-624 $) "failed") $) NIL)) (-3464 (($ $) 141 (|has| |#1| (-568)))) (-2332 (($ $) 247 (|has| |#1| (-568)))) (-3888 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3733 (((-1177) $) NIL)) (-2558 (((-656 (-624 $)) $) 49)) (-1673 (($ (-115) $) NIL) (($ (-115) (-656 $)) 431)) (-1899 (((-3 (-656 $) "failed") $) NIL (|has| |#1| (-1130)))) (-1923 (((-3 (-2 (|:| |val| $) (|:| -1359 (-576))) "failed") $) NIL (|has| |#1| (-1067)))) (-1887 (((-3 (-656 $) "failed") $) 436 (|has| |#1| (-25)))) (-1357 (((-3 (-2 (|:| -1755 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-1910 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $) NIL (|has| |#1| (-1130))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1067))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $ (-1195)) NIL (|has| |#1| (-1067)))) (-3657 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) 51)) (-4333 (($ $) NIL (-3766 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-1997 (($ $ (-1195)) 251 (|has| |#1| (-568))) (($ $ (-1110 $)) 253 (|has| |#1| (-568)))) (-3343 (((-783) $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) 43)) (-4359 ((|#1| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 301 (|has| |#1| (-568)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3630 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-2996 (($ $ (-1195)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-2935 (($ $) 218 (|has| |#1| (-568)))) (-3192 (((-430 (-1191 $)) (-1191 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-2354 (((-430 $) $) NIL (|has| |#1| (-568)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-568)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-2666 (($ $) 139 (|has| |#1| (-568)))) (-4072 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-3049 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 425) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) 379) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1195)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1195)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) NIL (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) NIL (|has| |#1| (-1067))) (($ $ (-1195) (-783) (-1 $ (-656 $))) NIL (|has| |#1| (-1067))) (($ $ (-1195) (-783) (-1 $ $)) NIL (|has| |#1| (-1067)))) (-2910 (((-783) $) NIL (|has| |#1| (-568)))) (-3718 (($ $) 239 (|has| |#1| (-568)))) (-2071 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-568)))) (-3663 (($ $) NIL) (($ $ $) NIL)) (-3750 (($ $) 249 (|has| |#1| (-568)))) (-2633 (($ $) 200 (|has| |#1| (-568)))) (-2390 (($ $ (-1195)) NIL (|has| |#1| (-1067))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-1067))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-1067)))) (-3143 (($ $) 74 (|has| |#1| (-568)))) (-1608 (((-1143 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-1360 (($ $) 317 (|has| $ (-1067)))) (-1532 (($ $) 177 (|has| |#1| (-568)))) (-3818 (($ $) 153 (|has| |#1| (-568)))) (-3938 (($ $) 173 (|has| |#1| (-568)))) (-3798 (($ $) 149 (|has| |#1| (-568)))) (-3910 (($ $) 169 (|has| |#1| (-568)))) (-3775 (($ $) 145 (|has| |#1| (-568)))) (-2616 (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-3276 (($ $ $) NIL (|has| |#1| (-485)))) (-2920 (($ $ $) NIL (|has| |#1| (-485)))) (-2884 (((-874) $) 424) (($ (-624 $)) 415) (($ (-1195)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))))) (($ (-1143 |#1| (-624 $))) 95 (|has| |#1| (-1067))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-968 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-968 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-968 |#1|))) NIL (|has| |#1| (-568))) (($ (-968 |#1|)) NIL (|has| |#1| (-1067))) (($ (-576)) 34 (-3766 (|has| |#1| (-1056 (-576))) (|has| |#1| (-1067)))) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-568)) (|has| |#1| (-1056 (-419 (-576))))))) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL (|has| |#1| (-1067)) CONST)) (-2377 (($ $) NIL) (($ (-656 $)) NIL)) (-1658 (($ $ $) 220 (|has| |#1| (-568)))) (-2676 (($ $ $) 206 (|has| |#1| (-568)))) (-2699 (($ $ $) 210 (|has| |#1| (-568)))) (-2665 (($ $ $) 204 (|has| |#1| (-568)))) (-2688 (($ $ $) 208 (|has| |#1| (-568)))) (-2362 (((-112) (-115)) 10)) (-3722 (((-112) $ $) 86)) (-1570 (($ $) 183 (|has| |#1| (-568)))) (-3853 (($ $) 159 (|has| |#1| (-568)))) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1545 (($ $) 179 (|has| |#1| (-568)))) (-3829 (($ $) 155 (|has| |#1| (-568)))) (-1594 (($ $) 187 (|has| |#1| (-568)))) (-3874 (($ $) 163 (|has| |#1| (-568)))) (-1629 (($ (-1195) $) NIL) (($ (-1195) $ $) NIL) (($ (-1195) $ $ $) NIL) (($ (-1195) $ $ $ $) NIL) (($ (-1195) (-656 $)) NIL)) (-2720 (($ $) 214 (|has| |#1| (-568)))) (-2709 (($ $) 212 (|has| |#1| (-568)))) (-2915 (($ $) 189 (|has| |#1| (-568)))) (-3886 (($ $) 165 (|has| |#1| (-568)))) (-1584 (($ $) 185 (|has| |#1| (-568)))) (-3864 (($ $) 161 (|has| |#1| (-568)))) (-1555 (($ $) 181 (|has| |#1| (-568)))) (-3840 (($ $) 157 (|has| |#1| (-568)))) (-2610 (($ $) 192 (|has| |#1| (-568)))) (-1996 (($) 21 (-3766 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) CONST)) (-2384 (($ $) 243 (|has| |#1| (-568)))) (-2011 (($) 23 (|has| |#1| (-1130)) CONST)) (-2654 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-2395 (($ $) 241 (|has| |#1| (-568)))) (-3431 (($ $ (-1195)) NIL (|has| |#1| (-1067))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-1067))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-1067)))) (-2372 (($ $) 245 (|has| |#1| (-568)))) (-2621 (($ $ $) 198 (|has| |#1| (-568)))) (-3915 (((-112) $ $) 88)) (-4039 (($ (-1143 |#1| (-624 $)) (-1143 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-3766 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4029 (($ $ $) 40 (-3766 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (($ $) 29 (-3766 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))))) (-4017 (($ $ $) 38 (-3766 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-3766 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 75 (|has| |#1| (-1130))) (($ $ (-937)) 84 (|has| |#1| (-1130)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1067))) (($ $ $) 36 (|has| |#1| (-1130))) (($ (-576) $) 32 (-3766 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (($ (-783) $) NIL (-3766 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (($ (-937) $) NIL (-3766 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))))) -(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1221)) (-6 (-161)) (-6 (-641)) (-6 (-1157)) (-15 -2309 ($ $)) (-15 -2941 ((-112) $)) (-15 -2933 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -3192 ((-430 (-1191 $)) (-1191 $))) (-15 -3203 ((-430 (-1191 $)) (-1191 $)))) |%noBranch|) (IF (|has| |#1| (-1056 (-576))) (-6 (-1056 (-48))) |%noBranch|)) |%noBranch|))) (-1118)) (T -326)) -((-2309 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1118)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1118)))) (-2933 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1118)))) (-3192 (*1 *2 *3) (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1118)))) (-3203 (*1 *2 *3) (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1118))))) -(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1221)) (-6 (-161)) (-6 (-641)) (-6 (-1157)) (-15 -2309 ($ $)) (-15 -2941 ((-112) $)) (-15 -2933 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -3192 ((-430 (-1191 $)) (-1191 $))) (-15 -3203 ((-430 (-1191 $)) (-1191 $)))) |%noBranch|) (IF (|has| |#1| (-1056 (-576))) (-6 (-1056 (-48))) |%noBranch|)) |%noBranch|))) -((-2950 (((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 81) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 83) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 84) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86))) -(((-327 |#1| |#2|) (-10 -7 (-15 -2950 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -2950 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2950 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2950 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2950 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2950 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2950 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -2950 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -2950 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -2950 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327)) -((-2950 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-2950 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-2950 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-2950 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-2950 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-2950 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2950 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-2950 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2950 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2950 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6))))) -(-10 -7 (-15 -2950 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -2950 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2950 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2950 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2950 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2950 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2950 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -2950 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -2950 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -2950 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) -((-2967 (((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576) (-1177)) 67) (((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576)) 68) (((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576) (-1177)) 64) (((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-2959 (((-1 (-227) (-227)) (-227)) 66))) -(((-328) (-10 -7 (-15 -2959 ((-1 (-227) (-227)) (-227))) (-15 -2967 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576))) (-15 -2967 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576) (-1177))) (-15 -2967 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576))) (-15 -2967 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576) (-1177))))) (T -328)) -((-2967 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1112 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1177)) (-5 *2 (-1231 (-942))) (-5 *1 (-328)))) (-2967 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1112 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1231 (-942))) (-5 *1 (-328)))) (-2967 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1112 (-227))) (-5 *6 (-576)) (-5 *7 (-1177)) (-5 *2 (-1231 (-942))) (-5 *1 (-328)))) (-2967 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1112 (-227))) (-5 *6 (-576)) (-5 *2 (-1231 (-942))) (-5 *1 (-328)))) (-2959 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(-10 -7 (-15 -2959 ((-1 (-227) (-227)) (-227))) (-15 -2967 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576))) (-15 -2967 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576) (-1177))) (-15 -2967 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576))) (-15 -2967 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576) (-1177)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 26)) (-1607 (((-656 (-1100)) $) NIL)) (-1441 (((-1195) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-2916 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2934 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-3924 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL (|has| |#1| (-374)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3898 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1874 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-1522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) 36)) (-1999 (((-3 $ "failed") $) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2463 (((-112) $) NIL (|has| |#1| (-374)))) (-1355 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-1439 (((-112) $) NIL)) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2962 (($ $ (-937)) NIL) (($ $ (-419 (-576))) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-419 (-576))) NIL) (($ $ (-1100) (-419 (-576))) NIL) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-3464 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL (|has| |#1| (-374)))) (-1956 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-3766 (-12 (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221)))))) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2904 (($ $ (-419 (-576))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2979 (((-419 (-576)) $) 17)) (-2851 (($ (-1271 |#1| |#2| |#3|)) 11)) (-1359 (((-1271 |#1| |#2| |#3|) $) 12)) (-2666 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-2071 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1130)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2390 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3813 (((-419 (-576)) $) NIL)) (-1532 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) 10)) (-2884 (((-874) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3245 ((|#1| $ (-419 (-576))) 34)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-1752 ((|#1| $) NIL)) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1545 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 28)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 37)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-329 |#1| |#2| |#3|) (-13 (-1267 |#1|) (-804) (-10 -8 (-15 -2851 ($ (-1271 |#1| |#2| |#3|))) (-15 -1359 ((-1271 |#1| |#2| |#3|) $)) (-15 -2979 ((-419 (-576)) $)))) (-374) (-1195) |#1|) (T -329)) -((-2851 (*1 *1 *2) (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-1271 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195)) (-14 *5 *3))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195)) (-14 *5 *3)))) -(-13 (-1267 |#1|) (-804) (-10 -8 (-15 -2851 ($ (-1271 |#1| |#2| |#3|))) (-15 -1359 ((-1271 |#1| |#2| |#3|) $)) (-15 -2979 ((-419 (-576)) $)))) -((-3298 (((-2 (|:| -1359 (-783)) (|:| -1755 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783)) 35)) (-3464 (((-656 (-2 (|:| -1755 (-783)) (|:| |logand| |#1|))) (-430 |#1|)) 40))) -(((-330 |#1|) (-10 -7 (-15 -3298 ((-2 (|:| -1359 (-783)) (|:| -1755 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3464 ((-656 (-2 (|:| -1755 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330)) -((-3464 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-656 (-2 (|:| -1755 (-783)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-3298 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -1359 (-783)) (|:| -1755 *5) (|:| |radicand| (-656 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-783))))) -(-10 -7 (-15 -3298 ((-2 (|:| -1359 (-783)) (|:| -1755 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3464 ((-656 (-2 (|:| -1755 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) -((-1607 (((-656 |#2|) (-1191 |#4|)) 44)) (-3036 ((|#3| (-576)) 47)) (-3010 (((-1191 |#4|) (-1191 |#3|)) 30)) (-3024 (((-1191 |#4|) (-1191 |#4|) (-576)) 66)) (-3001 (((-1191 |#3|) (-1191 |#4|)) 21)) (-3813 (((-656 (-783)) (-1191 |#4|) (-656 |#2|)) 41)) (-2991 (((-1191 |#3|) (-1191 |#4|) (-656 |#2|) (-656 |#3|)) 35))) -(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2991 ((-1191 |#3|) (-1191 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -3813 ((-656 (-783)) (-1191 |#4|) (-656 |#2|))) (-15 -1607 ((-656 |#2|) (-1191 |#4|))) (-15 -3001 ((-1191 |#3|) (-1191 |#4|))) (-15 -3010 ((-1191 |#4|) (-1191 |#3|))) (-15 -3024 ((-1191 |#4|) (-1191 |#4|) (-576))) (-15 -3036 (|#3| (-576)))) (-805) (-862) (-1067) (-965 |#3| |#1| |#2|)) (T -331)) -((-3036 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1067)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-965 *2 *4 *5)))) (-3024 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 *7)) (-5 *3 (-576)) (-4 *7 (-965 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-5 *1 (-331 *4 *5 *6 *7)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-1191 *6)) (-4 *6 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-1191 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-1191 *7)) (-4 *7 (-965 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-5 *2 (-1191 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-1191 *7)) (-4 *7 (-965 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-5 *2 (-656 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *8)) (-5 *4 (-656 *6)) (-4 *6 (-862)) (-4 *8 (-965 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1067)) (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) (-2991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) (-4 *7 (-862)) (-4 *8 (-1067)) (-4 *9 (-965 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-1191 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) -(-10 -7 (-15 -2991 ((-1191 |#3|) (-1191 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -3813 ((-656 (-783)) (-1191 |#4|) (-656 |#2|))) (-15 -1607 ((-656 |#2|) (-1191 |#4|))) (-15 -3001 ((-1191 |#3|) (-1191 |#4|))) (-15 -3010 ((-1191 |#4|) (-1191 |#3|))) (-15 -3024 ((-1191 |#4|) (-1191 |#4|) (-576))) (-15 -3036 (|#3| (-576)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 19)) (-2934 (((-656 (-2 (|:| |gen| |#1|) (|:| -2666 (-576)))) $) 21)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2416 (((-783) $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-2756 ((|#1| $ (-576)) NIL)) (-3074 (((-576) $ (-576)) NIL)) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2679 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ (-1 (-576) (-576)) $) 11)) (-3733 (((-1177) $) NIL)) (-3050 (($ $ $) NIL (|has| (-576) (-804)))) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL) (($ |#1|) NIL)) (-3245 (((-576) |#1| $) NIL)) (-3722 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) 29 (|has| |#1| (-862)))) (-4029 (($ $) 12) (($ $ $) 28)) (-4017 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27))) -(((-332 |#1|) (-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|))) (-1118)) (T -332)) -NIL -(-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-2934 (((-656 (-2 (|:| |gen| |#1|) (|:| -2666 |#2|))) $) 28)) (-1459 (((-3 $ "failed") $ $) 20)) (-2416 (((-783) $) 29)) (-2473 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 33)) (-4401 ((|#1| $) 34)) (-2756 ((|#1| $ (-576)) 26)) (-3074 ((|#2| $ (-576)) 27)) (-2679 (($ (-1 |#1| |#1|) $) 23)) (-3063 (($ (-1 |#2| |#2|) $) 24)) (-3733 (((-1177) $) 10)) (-3050 (($ $ $) 22 (|has| |#2| (-804)))) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ |#1|) 32)) (-3245 ((|#2| |#1| $) 25)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4017 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ |#2| |#1|) 30))) -(((-333 |#1| |#2|) (-141) (-1118) (-132)) (T -333)) -((-4017 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-132)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132)) (-5 *2 (-783)))) (-2934 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2666 *4)))))) (-3074 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1118)) (-4 *2 (-132)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1118)))) (-3245 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-132)))) (-3063 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132)))) (-2679 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132)))) (-3050 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-132)) (-4 *3 (-804))))) -(-13 (-132) (-1056 |t#1|) (-10 -8 (-15 -4017 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2416 ((-783) $)) (-15 -2934 ((-656 (-2 (|:| |gen| |t#1|) (|:| -2666 |t#2|))) $)) (-15 -3074 (|t#2| $ (-576))) (-15 -2756 (|t#1| $ (-576))) (-15 -3245 (|t#2| |t#1| $)) (-15 -3063 ($ (-1 |t#2| |t#2|) $)) (-15 -2679 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-804)) (-15 -3050 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-1056 |#1|) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2934 (((-656 (-2 (|:| |gen| |#1|) (|:| -2666 (-783)))) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2416 (((-783) $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-2756 ((|#1| $ (-576)) NIL)) (-3074 (((-783) $ (-576)) NIL)) (-2679 (($ (-1 |#1| |#1|) $) NIL)) (-3063 (($ (-1 (-783) (-783)) $) NIL)) (-3733 (((-1177) $) NIL)) (-3050 (($ $ $) NIL (|has| (-783) (-804)))) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL) (($ |#1|) NIL)) (-3245 (((-783) |#1| $) NIL)) (-3722 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4017 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-783) |#1|) NIL))) -(((-334 |#1|) (-333 |#1| (-783)) (-1118)) (T -334)) -NIL -(-333 |#1| (-783)) -((-2192 (($ $) 72)) (-3098 (($ $ |#2| |#3| $) 14)) (-3109 (($ (-1 |#3| |#3|) $) 51)) (-4346 (((-112) $) 42)) (-4359 ((|#2| $) 44)) (-2852 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1841 ((|#2| $) 68)) (-1993 (((-656 |#2|) $) 56)) (-3086 (($ $ $ (-783)) 37)) (-4039 (($ $ |#2|) 60))) -(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -2192 (|#1| |#1|)) (-15 -1841 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3086 (|#1| |#1| |#1| (-783))) (-15 -3098 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3109 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1993 ((-656 |#2|) |#1|)) (-15 -4359 (|#2| |#1|)) (-15 -4346 ((-112) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4039 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1067) (-804)) (T -335)) -NIL -(-10 -8 (-15 -2192 (|#1| |#1|)) (-15 -1841 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3086 (|#1| |#1| |#1| (-783))) (-15 -3098 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3109 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1993 ((-656 |#2|) |#1|)) (-15 -4359 (|#2| |#1|)) (-15 -4346 ((-112) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4039 (|#1| |#1| |#2|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4241 (($ $) 64 (|has| |#1| (-568)))) (-4221 (((-112) $) 66 (|has| |#1| (-568)))) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-2449 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-4401 (((-576) $) 99 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 96)) (-4407 (($ $) 72)) (-1999 (((-3 $ "failed") $) 37)) (-2192 (($ $) 84 (|has| |#1| (-464)))) (-3098 (($ $ |#1| |#2| $) 88)) (-1439 (((-112) $) 35)) (-1518 (((-783) $) 91)) (-3734 (((-112) $) 74)) (-2421 (($ |#1| |#2|) 73)) (-1864 ((|#2| $) 90)) (-3109 (($ (-1 |#2| |#2|) $) 89)) (-2551 (($ (-1 |#1| |#1|) $) 75)) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-4346 (((-112) $) 94)) (-4359 ((|#1| $) 93)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-3813 ((|#2| $) 76)) (-1841 ((|#1| $) 85 (|has| |#1| (-464)))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-1993 (((-656 |#1|) $) 92)) (-3245 ((|#1| $ |#2|) 71)) (-3148 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-3086 (($ $ $ (-783)) 87 (|has| |#1| (-174)))) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-336 |#1| |#2|) (-141) (-1067) (-804)) (T -336)) -((-4346 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-112)))) (-4359 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-656 *3)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-783)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-3109 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)))) (-3098 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))) (-3086 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-4 *3 (-174)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)) (-4 *2 (-568)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)) (-4 *2 (-464)))) (-2192 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)) (-4 *2 (-464))))) -(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -4346 ((-112) $)) (-15 -4359 (|t#1| $)) (-15 -1993 ((-656 |t#1|) $)) (-15 -1518 ((-783) $)) (-15 -1864 (|t#2| $)) (-15 -3109 ($ (-1 |t#2| |t#2|) $)) (-15 -3098 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -3086 ($ $ $ (-783))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -2852 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -1841 (|t#1| $)) (-15 -2192 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-1604 (((-112) (-112)) NIL)) (-3055 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-1443 (($ (-1 (-112) |#1|) $) NIL)) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-2257 (($ $) NIL (|has| |#1| (-1118)))) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2833 (($ |#1| $) NIL (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) NIL)) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) NIL)) (-2634 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-1620 (($ $ (-576)) NIL)) (-1630 (((-783) $) NIL)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2310 (($ (-783) |#1|) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-2230 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3807 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2134 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1639 (($ (-656 |#1|)) NIL)) (-1962 ((|#1| $) NIL (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3346 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-1455 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) NIL)) (-1806 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1639 ($ (-656 |#1|))) (-15 -1630 ((-783) $)) (-15 -1620 ($ $ (-576))) (-15 -1604 ((-112) (-112))))) (-1236)) (T -337)) -((-1639 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-337 *3)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) (-1620 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1236))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1639 ($ (-656 |#1|))) (-15 -1630 ((-783) $)) (-15 -1620 ($ $ (-576))) (-15 -1604 ((-112) (-112))))) -((-3695 (((-112) $) 47)) (-3661 (((-783)) 23)) (-1448 ((|#2| $) 51) (($ $ (-937)) 121)) (-2416 (((-783)) 122)) (-1339 (($ (-1286 |#2|)) 20)) (-1886 (((-112) $) 134)) (-1941 ((|#2| $) 53) (($ $ (-937)) 118)) (-1922 (((-1191 |#2|) $) NIL) (((-1191 $) $ (-937)) 109)) (-3130 (((-1191 |#2|) $) 95)) (-3119 (((-1191 |#2|) $) 91) (((-3 (-1191 |#2|) "failed") $ $) 88)) (-3141 (($ $ (-1191 |#2|)) 58)) (-3673 (((-845 (-937))) 30) (((-937)) 48)) (-1543 (((-135)) 27)) (-3813 (((-845 (-937)) $) 32) (((-937) $) 137)) (-3152 (($) 128)) (-3629 (((-1286 |#2|) $) NIL) (((-701 |#2|) (-1286 $)) 42)) (-3148 (($ $) NIL) (((-3 $ "failed") $) 98)) (-3704 (((-112) $) 45))) -(((-338 |#1| |#2|) (-10 -8 (-15 -3148 ((-3 |#1| "failed") |#1|)) (-15 -2416 ((-783))) (-15 -3148 (|#1| |#1|)) (-15 -3119 ((-3 (-1191 |#2|) "failed") |#1| |#1|)) (-15 -3119 ((-1191 |#2|) |#1|)) (-15 -3130 ((-1191 |#2|) |#1|)) (-15 -3141 (|#1| |#1| (-1191 |#2|))) (-15 -1886 ((-112) |#1|)) (-15 -3152 (|#1|)) (-15 -1448 (|#1| |#1| (-937))) (-15 -1941 (|#1| |#1| (-937))) (-15 -1922 ((-1191 |#1|) |#1| (-937))) (-15 -1448 (|#2| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -3813 ((-937) |#1|)) (-15 -3673 ((-937))) (-15 -1922 ((-1191 |#2|) |#1|)) (-15 -1339 (|#1| (-1286 |#2|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1|)) (-15 -3661 ((-783))) (-15 -3673 ((-845 (-937)))) (-15 -3813 ((-845 (-937)) |#1|)) (-15 -3695 ((-112) |#1|)) (-15 -3704 ((-112) |#1|)) (-15 -1543 ((-135)))) (-339 |#2|) (-374)) (T -338)) -((-1543 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3673 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-845 (-937))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3661 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3673 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-937)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2416 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4))))) -(-10 -8 (-15 -3148 ((-3 |#1| "failed") |#1|)) (-15 -2416 ((-783))) (-15 -3148 (|#1| |#1|)) (-15 -3119 ((-3 (-1191 |#2|) "failed") |#1| |#1|)) (-15 -3119 ((-1191 |#2|) |#1|)) (-15 -3130 ((-1191 |#2|) |#1|)) (-15 -3141 (|#1| |#1| (-1191 |#2|))) (-15 -1886 ((-112) |#1|)) (-15 -3152 (|#1|)) (-15 -1448 (|#1| |#1| (-937))) (-15 -1941 (|#1| |#1| (-937))) (-15 -1922 ((-1191 |#1|) |#1| (-937))) (-15 -1448 (|#2| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -3813 ((-937) |#1|)) (-15 -3673 ((-937))) (-15 -1922 ((-1191 |#2|) |#1|)) (-15 -1339 (|#1| (-1286 |#2|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1|)) (-15 -3661 ((-783))) (-15 -3673 ((-845 (-937)))) (-15 -3813 ((-845 (-937)) |#1|)) (-15 -3695 ((-112) |#1|)) (-15 -3704 ((-112) |#1|)) (-15 -1543 ((-135)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-3695 (((-112) $) 104)) (-3661 (((-783)) 100)) (-1448 ((|#1| $) 151) (($ $ (-937)) 148 (|has| |#1| (-379)))) (-2575 (((-1208 (-937) (-783)) (-576)) 133 (|has| |#1| (-379)))) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 81)) (-3986 (((-430 $) $) 80)) (-2922 (((-112) $ $) 65)) (-2416 (((-783)) 123 (|has| |#1| (-379)))) (-2473 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 111)) (-4401 ((|#1| $) 112)) (-1339 (($ (-1286 |#1|)) 157)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-2803 (($ $ $) 61)) (-1999 (((-3 $ "failed") $) 37)) (-2080 (($) 120 (|has| |#1| (-379)))) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-2013 (($) 135 (|has| |#1| (-379)))) (-2635 (((-112) $) 136 (|has| |#1| (-379)))) (-4188 (($ $ (-783)) 97 (-3766 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2463 (((-112) $) 79)) (-2927 (((-937) $) 138 (|has| |#1| (-379))) (((-845 (-937)) $) 94 (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1439 (((-112) $) 35)) (-1909 (($) 146 (|has| |#1| (-379)))) (-1886 (((-112) $) 145 (|has| |#1| (-379)))) (-1941 ((|#1| $) 152) (($ $ (-937)) 149 (|has| |#1| (-379)))) (-1831 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1922 (((-1191 |#1|) $) 156) (((-1191 $) $ (-937)) 150 (|has| |#1| (-379)))) (-1875 (((-937) $) 121 (|has| |#1| (-379)))) (-3130 (((-1191 |#1|) $) 142 (|has| |#1| (-379)))) (-3119 (((-1191 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-3141 (($ $ (-1191 |#1|)) 143 (|has| |#1| (-379)))) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 78)) (-3475 (($) 125 (|has| |#1| (-379)) CONST)) (-4318 (($ (-937)) 122 (|has| |#1| (-379)))) (-3683 (((-112) $) 103)) (-3914 (((-1138) $) 11)) (-3660 (($) 144 (|has| |#1| (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) 132 (|has| |#1| (-379)))) (-2354 (((-430 $) $) 82)) (-3673 (((-845 (-937))) 101) (((-937)) 154)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2910 (((-783) $) 64)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-4197 (((-783) $) 137 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 95 (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1543 (((-135)) 109)) (-2390 (($ $ (-783)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-3813 (((-845 (-937)) $) 102) (((-937) $) 153)) (-1360 (((-1191 |#1|)) 155)) (-2560 (($) 134 (|has| |#1| (-379)))) (-3152 (($) 147 (|has| |#1| (-379)))) (-3629 (((-1286 |#1|) $) 159) (((-701 |#1|) (-1286 $)) 158)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 131 (|has| |#1| (-379)))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3148 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1898 (((-1286 $)) 161) (((-1286 $) (-937)) 160)) (-4232 (((-112) $ $) 45)) (-3704 (((-112) $) 105)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3649 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-3431 (($ $ (-783)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ $) 73) (($ $ |#1|) 108)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-339 |#1|) (-141) (-374)) (T -339)) -((-1898 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1286 *1)) (-4 *1 (-339 *3)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-937)) (-4 *4 (-374)) (-5 *2 (-1286 *1)) (-4 *1 (-339 *4)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1286 *3)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)))) (-1339 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3)))) (-1360 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3)))) (-3673 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-937)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-937)))) (-1941 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-937)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1191 *1)) (-4 *1 (-339 *4)))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-1448 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-3152 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-1909 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-1886 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-3660 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3141 (*1 *1 *1 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1191 *3)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1191 *3)))) (-3119 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1191 *3))))) -(-13 (-1305 |t#1|) (-1056 |t#1|) (-10 -8 (-15 -1898 ((-1286 $))) (-15 -1898 ((-1286 $) (-937))) (-15 -3629 ((-1286 |t#1|) $)) (-15 -3629 ((-701 |t#1|) (-1286 $))) (-15 -1339 ($ (-1286 |t#1|))) (-15 -1922 ((-1191 |t#1|) $)) (-15 -1360 ((-1191 |t#1|))) (-15 -3673 ((-937))) (-15 -3813 ((-937) $)) (-15 -1941 (|t#1| $)) (-15 -1448 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -1922 ((-1191 $) $ (-937))) (-15 -1941 ($ $ (-937))) (-15 -1448 ($ $ (-937))) (-15 -3152 ($)) (-15 -1909 ($)) (-15 -1886 ((-112) $)) (-15 -3660 ($)) (-15 -3141 ($ $ (-1191 |t#1|))) (-15 -3130 ((-1191 |t#1|) $)) (-15 -3119 ((-1191 |t#1|) $)) (-15 -3119 ((-3 (-1191 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3766 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-235 $) |has| |#1| (-379)) ((-239) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-249) . T) ((-300) . T) ((-317) . T) ((-1305 |#1|) . T) ((-374) . T) ((-414) -3766 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1056 |#1|) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 |#1|) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| |#1| (-379)) ((-1236) |has| |#1| (-379)) ((-1240) . T) ((-1293 |#1|) . T)) -((-2862 (((-112) $ $) NIL)) (-3262 (($ (-1194) $) 100)) (-4215 (($) 89)) (-3162 (((-1138) (-1138)) 9)) (-3057 (($) 90)) (-3217 (($) 104) (($ (-326 (-711))) 112) (($ (-326 (-713))) 108) (($ (-326 (-706))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-3251 (($ (-1194) $) 101)) (-3195 (($ (-656 (-874))) 91)) (-3185 (((-1291) $) 87)) (-1533 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3241 (($ (-1138)) 58)) (-3173 (((-1122) $) 30)) (-3274 (($ (-1110 (-968 (-576))) $) 97) (($ (-1110 (-968 (-576))) (-968 (-576)) $) 98)) (-2022 (($ (-1138)) 99)) (-1511 (($ (-1194) $) 129) (($ (-1194) $ $) 130)) (-3724 (($ (-1195) (-656 (-1195))) 88)) (-4293 (($ (-1177)) 94) (($ (-656 (-1177))) 92)) (-2884 (((-874) $) 132)) (-2559 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-968 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2809 (-112)) (|:| -4183 (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -1908 (-1110 (-968 (-576)))) (|:| |span| (-968 (-576))) (|:| -1789 $))) (|:| |labelBranch| (-1138)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -1789 $))) (|:| |commonBranch| (-2 (|:| -1778 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874)))) $) 50)) (-3228 (($ (-1177)) 202)) (-3206 (($ (-656 $)) 128)) (-3722 (((-112) $ $) NIL)) (-1340 (($ (-1195) (-1177)) 135) (($ (-1195) (-326 (-713))) 175) (($ (-1195) (-326 (-711))) 176) (($ (-1195) (-326 (-706))) 177) (($ (-1195) (-701 (-713))) 138) (($ (-1195) (-701 (-711))) 141) (($ (-1195) (-701 (-706))) 144) (($ (-1195) (-1286 (-713))) 147) (($ (-1195) (-1286 (-711))) 150) (($ (-1195) (-1286 (-706))) 153) (($ (-1195) (-701 (-326 (-713)))) 156) (($ (-1195) (-701 (-326 (-711)))) 159) (($ (-1195) (-701 (-326 (-706)))) 162) (($ (-1195) (-1286 (-326 (-713)))) 165) (($ (-1195) (-1286 (-326 (-711)))) 168) (($ (-1195) (-1286 (-326 (-706)))) 171) (($ (-1195) (-656 (-968 (-576))) (-326 (-713))) 172) (($ (-1195) (-656 (-968 (-576))) (-326 (-711))) 173) (($ (-1195) (-656 (-968 (-576))) (-326 (-706))) 174) (($ (-1195) (-326 (-576))) 199) (($ (-1195) (-326 (-390))) 200) (($ (-1195) (-326 (-171 (-390)))) 201) (($ (-1195) (-701 (-326 (-576)))) 180) (($ (-1195) (-701 (-326 (-390)))) 183) (($ (-1195) (-701 (-326 (-171 (-390))))) 186) (($ (-1195) (-1286 (-326 (-576)))) 189) (($ (-1195) (-1286 (-326 (-390)))) 192) (($ (-1195) (-1286 (-326 (-171 (-390))))) 195) (($ (-1195) (-656 (-968 (-576))) (-326 (-576))) 196) (($ (-1195) (-656 (-968 (-576))) (-326 (-390))) 197) (($ (-1195) (-656 (-968 (-576))) (-326 (-171 (-390)))) 198)) (-3915 (((-112) $ $) NIL))) -(((-340) (-13 (-1118) (-10 -8 (-15 -3274 ($ (-1110 (-968 (-576))) $)) (-15 -3274 ($ (-1110 (-968 (-576))) (-968 (-576)) $)) (-15 -3262 ($ (-1194) $)) (-15 -3251 ($ (-1194) $)) (-15 -3241 ($ (-1138))) (-15 -2022 ($ (-1138))) (-15 -4293 ($ (-1177))) (-15 -4293 ($ (-656 (-1177)))) (-15 -3228 ($ (-1177))) (-15 -3217 ($)) (-15 -3217 ($ (-326 (-711)))) (-15 -3217 ($ (-326 (-713)))) (-15 -3217 ($ (-326 (-706)))) (-15 -3217 ($ (-326 (-390)))) (-15 -3217 ($ (-326 (-576)))) (-15 -3217 ($ (-326 (-171 (-390))))) (-15 -1511 ($ (-1194) $)) (-15 -1511 ($ (-1194) $ $)) (-15 -1340 ($ (-1195) (-1177))) (-15 -1340 ($ (-1195) (-326 (-713)))) (-15 -1340 ($ (-1195) (-326 (-711)))) (-15 -1340 ($ (-1195) (-326 (-706)))) (-15 -1340 ($ (-1195) (-701 (-713)))) (-15 -1340 ($ (-1195) (-701 (-711)))) (-15 -1340 ($ (-1195) (-701 (-706)))) (-15 -1340 ($ (-1195) (-1286 (-713)))) (-15 -1340 ($ (-1195) (-1286 (-711)))) (-15 -1340 ($ (-1195) (-1286 (-706)))) (-15 -1340 ($ (-1195) (-701 (-326 (-713))))) (-15 -1340 ($ (-1195) (-701 (-326 (-711))))) (-15 -1340 ($ (-1195) (-701 (-326 (-706))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-713))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-711))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-706))))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-713)))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-711)))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-706)))) (-15 -1340 ($ (-1195) (-326 (-576)))) (-15 -1340 ($ (-1195) (-326 (-390)))) (-15 -1340 ($ (-1195) (-326 (-171 (-390))))) (-15 -1340 ($ (-1195) (-701 (-326 (-576))))) (-15 -1340 ($ (-1195) (-701 (-326 (-390))))) (-15 -1340 ($ (-1195) (-701 (-326 (-171 (-390)))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-576))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-390))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-171 (-390)))))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-576)))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-390)))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-171 (-390))))) (-15 -3206 ($ (-656 $))) (-15 -4215 ($)) (-15 -3057 ($)) (-15 -3195 ($ (-656 (-874)))) (-15 -3724 ($ (-1195) (-656 (-1195)))) (-15 -1533 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2559 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-968 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2809 (-112)) (|:| -4183 (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -1908 (-1110 (-968 (-576)))) (|:| |span| (-968 (-576))) (|:| -1789 $))) (|:| |labelBranch| (-1138)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -1789 $))) (|:| |commonBranch| (-2 (|:| -1778 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874)))) $)) (-15 -3185 ((-1291) $)) (-15 -3173 ((-1122) $)) (-15 -3162 ((-1138) (-1138)))))) (T -340)) -((-3274 (*1 *1 *2 *1) (-12 (-5 *2 (-1110 (-968 (-576)))) (-5 *1 (-340)))) (-3274 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1110 (-968 (-576)))) (-5 *3 (-968 (-576))) (-5 *1 (-340)))) (-3262 (*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-3251 (*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340)))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340)))) (-4293 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340)))) (-4293 (*1 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-340)))) (-3228 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340)))) (-3217 (*1 *1) (-5 *1 (-340))) (-3217 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) (-3217 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) (-3217 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) (-3217 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-3217 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-3217 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-1511 (*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-1511 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-713))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-711))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-706))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-713)))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-711)))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-706)))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-713))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-711))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-706))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-576)))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-390)))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-1340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3206 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))) (-4215 (*1 *1) (-5 *1 (-340))) (-3057 (*1 *1) (-5 *1 (-340))) (-3195 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-340)))) (-3724 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-340)))) (-1533 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-968 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -2809 (-112)) (|:| -4183 (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-874)))))) (|:| |blockBranch| (-656 (-340))) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -1908 (-1110 (-968 (-576)))) (|:| |span| (-968 (-576))) (|:| -1789 (-340)))) (|:| |labelBranch| (-1138)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -1789 (-340)))) (|:| |commonBranch| (-2 (|:| -1778 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874))))) (-5 *1 (-340)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-340)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-340)))) (-3162 (*1 *2 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340))))) -(-13 (-1118) (-10 -8 (-15 -3274 ($ (-1110 (-968 (-576))) $)) (-15 -3274 ($ (-1110 (-968 (-576))) (-968 (-576)) $)) (-15 -3262 ($ (-1194) $)) (-15 -3251 ($ (-1194) $)) (-15 -3241 ($ (-1138))) (-15 -2022 ($ (-1138))) (-15 -4293 ($ (-1177))) (-15 -4293 ($ (-656 (-1177)))) (-15 -3228 ($ (-1177))) (-15 -3217 ($)) (-15 -3217 ($ (-326 (-711)))) (-15 -3217 ($ (-326 (-713)))) (-15 -3217 ($ (-326 (-706)))) (-15 -3217 ($ (-326 (-390)))) (-15 -3217 ($ (-326 (-576)))) (-15 -3217 ($ (-326 (-171 (-390))))) (-15 -1511 ($ (-1194) $)) (-15 -1511 ($ (-1194) $ $)) (-15 -1340 ($ (-1195) (-1177))) (-15 -1340 ($ (-1195) (-326 (-713)))) (-15 -1340 ($ (-1195) (-326 (-711)))) (-15 -1340 ($ (-1195) (-326 (-706)))) (-15 -1340 ($ (-1195) (-701 (-713)))) (-15 -1340 ($ (-1195) (-701 (-711)))) (-15 -1340 ($ (-1195) (-701 (-706)))) (-15 -1340 ($ (-1195) (-1286 (-713)))) (-15 -1340 ($ (-1195) (-1286 (-711)))) (-15 -1340 ($ (-1195) (-1286 (-706)))) (-15 -1340 ($ (-1195) (-701 (-326 (-713))))) (-15 -1340 ($ (-1195) (-701 (-326 (-711))))) (-15 -1340 ($ (-1195) (-701 (-326 (-706))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-713))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-711))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-706))))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-713)))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-711)))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-706)))) (-15 -1340 ($ (-1195) (-326 (-576)))) (-15 -1340 ($ (-1195) (-326 (-390)))) (-15 -1340 ($ (-1195) (-326 (-171 (-390))))) (-15 -1340 ($ (-1195) (-701 (-326 (-576))))) (-15 -1340 ($ (-1195) (-701 (-326 (-390))))) (-15 -1340 ($ (-1195) (-701 (-326 (-171 (-390)))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-576))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-390))))) (-15 -1340 ($ (-1195) (-1286 (-326 (-171 (-390)))))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-576)))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-390)))) (-15 -1340 ($ (-1195) (-656 (-968 (-576))) (-326 (-171 (-390))))) (-15 -3206 ($ (-656 $))) (-15 -4215 ($)) (-15 -3057 ($)) (-15 -3195 ($ (-656 (-874)))) (-15 -3724 ($ (-1195) (-656 (-1195)))) (-15 -1533 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2559 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-968 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2809 (-112)) (|:| -4183 (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -1908 (-1110 (-968 (-576)))) (|:| |span| (-968 (-576))) (|:| -1789 $))) (|:| |labelBranch| (-1138)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -1789 $))) (|:| |commonBranch| (-2 (|:| -1778 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874)))) $)) (-15 -3185 ((-1291) $)) (-15 -3173 ((-1122) $)) (-15 -3162 ((-1138) (-1138))))) -((-2862 (((-112) $ $) NIL)) (-3286 (((-112) $) 13)) (-3762 (($ |#1|) 10)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3775 (($ |#1|) 12)) (-2884 (((-874) $) 19)) (-3722 (((-112) $ $) NIL)) (-3433 ((|#1| $) 14)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 21))) -(((-341 |#1|) (-13 (-862) (-10 -8 (-15 -3762 ($ |#1|)) (-15 -3775 ($ |#1|)) (-15 -3286 ((-112) $)) (-15 -3433 (|#1| $)))) (-862)) (T -341)) -((-3762 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-3775 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862)))) (-3433 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862))))) -(-13 (-862) (-10 -8 (-15 -3762 ($ |#1|)) (-15 -3775 ($ |#1|)) (-15 -3286 ((-112) $)) (-15 -3433 (|#1| $)))) -((-3296 (((-340) (-1195) (-968 (-576))) 23)) (-3305 (((-340) (-1195) (-968 (-576))) 27)) (-1792 (((-340) (-1195) (-1110 (-968 (-576))) (-1110 (-968 (-576)))) 26) (((-340) (-1195) (-968 (-576)) (-968 (-576))) 24)) (-3315 (((-340) (-1195) (-968 (-576))) 31))) -(((-342) (-10 -7 (-15 -3296 ((-340) (-1195) (-968 (-576)))) (-15 -1792 ((-340) (-1195) (-968 (-576)) (-968 (-576)))) (-15 -1792 ((-340) (-1195) (-1110 (-968 (-576))) (-1110 (-968 (-576))))) (-15 -3305 ((-340) (-1195) (-968 (-576)))) (-15 -3315 ((-340) (-1195) (-968 (-576)))))) (T -342)) -((-3315 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3305 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1792 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-1110 (-968 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1792 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) (-5 *1 (-342))))) -(-10 -7 (-15 -3296 ((-340) (-1195) (-968 (-576)))) (-15 -1792 ((-340) (-1195) (-968 (-576)) (-968 (-576)))) (-15 -1792 ((-340) (-1195) (-1110 (-968 (-576))) (-1110 (-968 (-576))))) (-15 -3305 ((-340) (-1195) (-968 (-576)))) (-15 -3315 ((-340) (-1195) (-968 (-576))))) -((-2862 (((-112) $ $) NIL)) (-3325 (((-518) $) 20)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3335 (((-974 (-783)) $) 18)) (-3354 (((-256) $) 7)) (-2884 (((-874) $) 26)) (-3233 (((-974 (-185 (-140))) $) 16)) (-3722 (((-112) $ $) NIL)) (-3345 (((-656 (-885 (-1200) (-783))) $) 12)) (-3915 (((-112) $ $) 22))) -(((-343) (-13 (-1118) (-10 -8 (-15 -3354 ((-256) $)) (-15 -3345 ((-656 (-885 (-1200) (-783))) $)) (-15 -3335 ((-974 (-783)) $)) (-15 -3233 ((-974 (-185 (-140))) $)) (-15 -3325 ((-518) $))))) (T -343)) -((-3354 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-1200) (-783)))) (-5 *1 (-343)))) (-3335 (*1 *2 *1) (-12 (-5 *2 (-974 (-783))) (-5 *1 (-343)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-974 (-185 (-140)))) (-5 *1 (-343)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(-13 (-1118) (-10 -8 (-15 -3354 ((-256) $)) (-15 -3345 ((-656 (-885 (-1200) (-783))) $)) (-15 -3335 ((-974 (-783)) $)) (-15 -3233 ((-974 (-185 (-140))) $)) (-15 -3325 ((-518) $)))) -((-2551 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33))) -(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2551 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1262 |#5|) (-1262 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1262 *9)) (-4 *11 (-1262 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11))))) -(-10 -7 (-15 -2551 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) -((-3384 (((-112) $) 14))) -(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3384 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1262 |#2|) (-1262 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345)) -NIL -(-10 -8 (-15 -3384 ((-112) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-2309 (($ $) 29)) (-3384 (((-112) $) 28)) (-3733 (((-1177) $) 10)) (-2728 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-3914 (((-1138) $) 11)) (-3660 (((-3 |#4| "failed") $) 27)) (-3393 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-1754 (((-2 (|:| -2058 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) -(((-346 |#1| |#2| |#3| |#4|) (-141) (-374) (-1262 |t#1|) (-1262 (-419 |t#2|)) (-353 |t#1| |t#2| |t#3|)) (T -346)) -((-2728 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-3393 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-3393 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-3393 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-3393 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1262 *2)) (-4 *5 (-1262 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -2058 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-2309 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-3660 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-3393 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2728 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -3393 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -3393 ($ |t#4|)) (-15 -3393 ($ |t#1| |t#1|)) (-15 -3393 ($ |t#1| |t#1| (-576))) (-15 -1754 ((-2 (|:| -2058 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2309 ($ $)) (-15 -3384 ((-112) $)) (-15 -3660 ((-3 |t#4| "failed") $)) (-15 -3393 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2309 (($ $) 33)) (-3384 (((-112) $) NIL)) (-3733 (((-1177) $) NIL)) (-3364 (((-1286 |#4|) $) 134)) (-2728 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-3914 (((-1138) $) NIL)) (-3660 (((-3 |#4| "failed") $) 36)) (-3374 (((-1286 |#4|) $) 126)) (-3393 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1754 (((-2 (|:| -2058 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2884 (((-874) $) 17)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 14 T CONST)) (-3915 (((-112) $ $) 20)) (-4029 (($ $) 27) (($ $ $) NIL)) (-4017 (($ $ $) 25)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 23))) -(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3374 ((-1286 |#4|) $)) (-15 -3364 ((-1286 |#4|) $)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347)) -((-3374 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-3364 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5))))) -(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3374 ((-1286 |#4|) $)) (-15 -3364 ((-1286 |#4|) $)))) -((-3049 (($ $ (-1195) |#2|) NIL) (($ $ (-656 (-1195)) (-656 |#2|)) 20) (($ $ (-656 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-2071 (($ $ |#2|) 11))) -(((-348 |#1| |#2|) (-10 -8 (-15 -2071 (|#1| |#1| |#2|)) (-15 -3049 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3049 (|#1| |#1| |#2| |#2|)) (-15 -3049 (|#1| |#1| (-304 |#2|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 |#2|))) (-15 -3049 (|#1| |#1| (-1195) |#2|))) (-349 |#2|) (-1118)) (T -348)) -NIL -(-10 -8 (-15 -2071 (|#1| |#1| |#2|)) (-15 -3049 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3049 (|#1| |#1| |#2| |#2|)) (-15 -3049 (|#1| |#1| (-304 |#2|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 |#2|))) (-15 -3049 (|#1| |#1| (-1195) |#2|))) -((-2551 (($ (-1 |#1| |#1|) $) 6)) (-3049 (($ $ (-1195) |#1|) 17 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 16 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-656 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-656 |#1|) (-656 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-2071 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|))))) -(((-349 |#1|) (-141) (-1118)) (T -349)) -((-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1118))))) -(-13 (-10 -8 (-15 -2551 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1195) |t#1|)) (-6 (-526 (-1195) |t#1|)) |%noBranch|))) -(((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-1236) |has| |#1| (-296 |#1| |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 (-1195)) $) NIL)) (-3402 (((-112)) 96) (((-112) (-112)) 97)) (-4271 (((-656 (-624 $)) $) NIL)) (-3924 (($ $) NIL)) (-3787 (($ $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-1474 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2474 (($ $) NIL)) (-3898 (($ $) NIL)) (-3762 (($ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1195)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1056 (-576)))) (((-3 $ "failed") (-419 (-968 (-576)))) 70 (|has| |#3| (-1056 (-576)))) (((-3 $ "failed") (-968 (-576))) 65 (|has| |#3| (-1056 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1056 (-390)))) (((-3 $ "failed") (-419 (-968 (-390)))) 88 (|has| |#3| (-1056 (-390)))) (((-3 $ "failed") (-968 (-390))) 83 (|has| |#3| (-1056 (-390))))) (-4401 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1195)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1056 (-576)))) (($ (-419 (-968 (-576)))) 71 (|has| |#3| (-1056 (-576)))) (($ (-968 (-576))) 67 (|has| |#3| (-1056 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1056 (-390)))) (($ (-419 (-968 (-390)))) 89 (|has| |#3| (-1056 (-390)))) (($ (-968 (-390))) 85 (|has| |#3| (-1056 (-390))))) (-1999 (((-3 $ "failed") $) NIL)) (-1632 (($) 101)) (-4330 (($ $) NIL) (($ (-656 $)) NIL)) (-3640 (((-656 (-115)) $) NIL)) (-2573 (((-115) (-115)) NIL)) (-1439 (((-112) $) NIL)) (-4064 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-3621 (((-1191 $) (-624 $)) NIL (|has| $ (-1067)))) (-2551 (($ (-1 $ $) (-624 $)) NIL)) (-3650 (((-3 (-624 $) "failed") $) NIL)) (-3373 (($ $) 99)) (-3464 (($ $) NIL)) (-3733 (((-1177) $) NIL)) (-2558 (((-656 (-624 $)) $) NIL)) (-1673 (($ (-115) $) 98) (($ (-115) (-656 $)) NIL)) (-3657 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) NIL)) (-3343 (((-783) $) NIL)) (-3914 (((-1138) $) NIL)) (-3630 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-2666 (($ $) NIL)) (-4072 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-3049 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2071 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3663 (($ $) NIL) (($ $ $) NIL)) (-2390 (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-1360 (($ $) NIL (|has| $ (-1067)))) (-3910 (($ $) NIL)) (-3775 (($ $) NIL)) (-2884 (((-874) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-1871 (((-783)) NIL T CONST)) (-2377 (($ $) NIL) (($ (-656 $)) NIL)) (-2362 (((-112) (-115)) NIL)) (-3722 (((-112) $ $) NIL)) (-3853 (($ $) NIL)) (-3829 (($ $) NIL)) (-3840 (($ $) NIL)) (-2610 (($ $) NIL)) (-1996 (($) 100 T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL))) -(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1056 |#3|) (-914 (-1195)) (-10 -8 (-15 -4401 ($ (-326 |#3|))) (-15 -2449 ((-3 $ "failed") (-326 |#3|))) (-15 -4401 ($ (-1195))) (-15 -2449 ((-3 $ "failed") (-1195))) (-15 -2884 ((-326 |#3|) $)) (IF (|has| |#3| (-1056 (-576))) (PROGN (-15 -4401 ($ (-326 (-576)))) (-15 -2449 ((-3 $ "failed") (-326 (-576)))) (-15 -4401 ($ (-419 (-968 (-576))))) (-15 -2449 ((-3 $ "failed") (-419 (-968 (-576))))) (-15 -4401 ($ (-968 (-576)))) (-15 -2449 ((-3 $ "failed") (-968 (-576))))) |%noBranch|) (IF (|has| |#3| (-1056 (-390))) (PROGN (-15 -4401 ($ (-326 (-390)))) (-15 -2449 ((-3 $ "failed") (-326 (-390)))) (-15 -4401 ($ (-419 (-968 (-390))))) (-15 -2449 ((-3 $ "failed") (-419 (-968 (-390))))) (-15 -4401 ($ (-968 (-390)))) (-15 -2449 ((-3 $ "failed") (-968 (-390))))) |%noBranch|) (-15 -2610 ($ $)) (-15 -2474 ($ $)) (-15 -2666 ($ $)) (-15 -3464 ($ $)) (-15 -3373 ($ $)) (-15 -3762 ($ $)) (-15 -3775 ($ $)) (-15 -3787 ($ $)) (-15 -3829 ($ $)) (-15 -3840 ($ $)) (-15 -3853 ($ $)) (-15 -3898 ($ $)) (-15 -3910 ($ $)) (-15 -3924 ($ $)) (-15 -1632 ($)) (-15 -1607 ((-656 (-1195)) $)) (-15 -3402 ((-112))) (-15 -3402 ((-112) (-112))))) (-656 (-1195)) (-656 (-1195)) (-399)) (T -350)) -((-4401 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-968 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-968 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-968 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-968 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2610 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2474 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2666 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3464 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3373 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3762 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3775 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3787 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3829 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3840 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3853 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3898 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3910 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3924 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-1632 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-1607 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-3402 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399))))) -(-13 (-312) (-38 |#3|) (-1056 |#3|) (-914 (-1195)) (-10 -8 (-15 -4401 ($ (-326 |#3|))) (-15 -2449 ((-3 $ "failed") (-326 |#3|))) (-15 -4401 ($ (-1195))) (-15 -2449 ((-3 $ "failed") (-1195))) (-15 -2884 ((-326 |#3|) $)) (IF (|has| |#3| (-1056 (-576))) (PROGN (-15 -4401 ($ (-326 (-576)))) (-15 -2449 ((-3 $ "failed") (-326 (-576)))) (-15 -4401 ($ (-419 (-968 (-576))))) (-15 -2449 ((-3 $ "failed") (-419 (-968 (-576))))) (-15 -4401 ($ (-968 (-576)))) (-15 -2449 ((-3 $ "failed") (-968 (-576))))) |%noBranch|) (IF (|has| |#3| (-1056 (-390))) (PROGN (-15 -4401 ($ (-326 (-390)))) (-15 -2449 ((-3 $ "failed") (-326 (-390)))) (-15 -4401 ($ (-419 (-968 (-390))))) (-15 -2449 ((-3 $ "failed") (-419 (-968 (-390))))) (-15 -4401 ($ (-968 (-390)))) (-15 -2449 ((-3 $ "failed") (-968 (-390))))) |%noBranch|) (-15 -2610 ($ $)) (-15 -2474 ($ $)) (-15 -2666 ($ $)) (-15 -3464 ($ $)) (-15 -3373 ($ $)) (-15 -3762 ($ $)) (-15 -3775 ($ $)) (-15 -3787 ($ $)) (-15 -3829 ($ $)) (-15 -3840 ($ $)) (-15 -3853 ($ $)) (-15 -3898 ($ $)) (-15 -3910 ($ $)) (-15 -3924 ($ $)) (-15 -1632 ($)) (-15 -1607 ((-656 (-1195)) $)) (-15 -3402 ((-112))) (-15 -3402 ((-112) (-112))))) -((-2551 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2551 (|#8| (-1 |#5| |#1|) |#4|))) (-1240) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1240) (-1262 |#5|) (-1262 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1240)) (-4 *8 (-1240)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *9 (-1262 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1262 (-419 *9)))))) -(-10 -7 (-15 -2551 (|#8| (-1 |#5| |#1|) |#4|))) -((-2243 (((-2 (|:| |num| (-1286 |#3|)) (|:| |den| |#3|)) $) 39)) (-1339 (($ (-1286 (-419 |#3|)) (-1286 $)) NIL) (($ (-1286 (-419 |#3|))) NIL) (($ (-1286 |#3|) |#3|) 173)) (-2295 (((-1286 $) (-1286 $)) 156)) (-3411 (((-656 (-656 |#2|))) 126)) (-2433 (((-112) |#2| |#2|) 76)) (-2192 (($ $) 148)) (-2556 (((-783)) 172)) (-2307 (((-1286 $) (-1286 $)) 218)) (-3421 (((-656 (-968 |#2|)) (-1195)) 115)) (-2340 (((-112) $) 169)) (-2329 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-3440 (((-3 |#3| "failed")) 52)) (-2457 (((-783)) 184)) (-2071 ((|#2| $ |#2| |#2|) 140)) (-3450 (((-3 |#3| "failed")) 71)) (-2390 (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-783)) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2318 (((-1286 $) (-1286 $)) 162)) (-3432 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-2445 (((-112)) 34))) -(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -3411 ((-656 (-656 |#2|)))) (-15 -3421 ((-656 (-968 |#2|)) (-1195))) (-15 -3432 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3440 ((-3 |#3| "failed"))) (-15 -3450 ((-3 |#3| "failed"))) (-15 -2071 (|#2| |#1| |#2| |#2|)) (-15 -2192 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2329 ((-112) |#1| |#3|)) (-15 -2329 ((-112) |#1| |#2|)) (-15 -1339 (|#1| (-1286 |#3|) |#3|)) (-15 -2243 ((-2 (|:| |num| (-1286 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2295 ((-1286 |#1|) (-1286 |#1|))) (-15 -2307 ((-1286 |#1|) (-1286 |#1|))) (-15 -2318 ((-1286 |#1|) (-1286 |#1|))) (-15 -2329 ((-112) |#1|)) (-15 -2340 ((-112) |#1|)) (-15 -2433 ((-112) |#2| |#2|)) (-15 -2445 ((-112))) (-15 -2457 ((-783))) (-15 -2556 ((-783))) (-15 -2390 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2390 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -1339 (|#1| (-1286 (-419 |#3|)))) (-15 -1339 (|#1| (-1286 (-419 |#3|)) (-1286 |#1|)))) (-353 |#2| |#3| |#4|) (-1240) (-1262 |#2|) (-1262 (-419 |#3|))) (T -352)) -((-2556 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-2457 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-2445 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-2433 (*1 *2 *3 *3) (-12 (-4 *3 (-1240)) (-4 *5 (-1262 *3)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-3450 (*1 *2) (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-3440 (*1 *2) (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *5 (-1240)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-656 (-968 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-3411 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))) -(-10 -8 (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -3411 ((-656 (-656 |#2|)))) (-15 -3421 ((-656 (-968 |#2|)) (-1195))) (-15 -3432 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3440 ((-3 |#3| "failed"))) (-15 -3450 ((-3 |#3| "failed"))) (-15 -2071 (|#2| |#1| |#2| |#2|)) (-15 -2192 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2329 ((-112) |#1| |#3|)) (-15 -2329 ((-112) |#1| |#2|)) (-15 -1339 (|#1| (-1286 |#3|) |#3|)) (-15 -2243 ((-2 (|:| |num| (-1286 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2295 ((-1286 |#1|) (-1286 |#1|))) (-15 -2307 ((-1286 |#1|) (-1286 |#1|))) (-15 -2318 ((-1286 |#1|) (-1286 |#1|))) (-15 -2329 ((-112) |#1|)) (-15 -2340 ((-112) |#1|)) (-15 -2433 ((-112) |#2| |#2|)) (-15 -2445 ((-112))) (-15 -2457 ((-783))) (-15 -2556 ((-783))) (-15 -2390 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2390 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -1339 (|#1| (-1286 (-419 |#3|)))) (-15 -1339 (|#1| (-1286 (-419 |#3|)) (-1286 |#1|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-2243 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 208)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 104 (|has| (-419 |#2|) (-374)))) (-4241 (($ $) 105 (|has| (-419 |#2|) (-374)))) (-4221 (((-112) $) 107 (|has| (-419 |#2|) (-374)))) (-4355 (((-701 (-419 |#2|)) (-1286 $)) 53) (((-701 (-419 |#2|))) 68)) (-1448 (((-419 |#2|) $) 59)) (-2575 (((-1208 (-937) (-783)) (-576)) 157 (|has| (-419 |#2|) (-360)))) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 124 (|has| (-419 |#2|) (-374)))) (-3986 (((-430 $) $) 125 (|has| (-419 |#2|) (-374)))) (-2922 (((-112) $ $) 115 (|has| (-419 |#2|) (-374)))) (-2416 (((-783)) 98 (|has| (-419 |#2|) (-379)))) (-2393 (((-112)) 225)) (-2382 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-2473 (($) 18 T CONST)) (-2449 (((-3 (-576) "failed") $) 182 (|has| (-419 |#2|) (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 180 (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 177)) (-4401 (((-576) $) 181 (|has| (-419 |#2|) (-1056 (-576)))) (((-419 (-576)) $) 179 (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-419 |#2|) $) 178)) (-1339 (($ (-1286 (-419 |#2|)) (-1286 $)) 55) (($ (-1286 (-419 |#2|))) 71) (($ (-1286 |#2|) |#2|) 207)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| (-419 |#2|) (-360)))) (-2803 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-4342 (((-701 (-419 |#2|)) $ (-1286 $)) 60) (((-701 (-419 |#2|)) $) 66)) (-2613 (((-701 (-576)) (-1286 $)) 176 (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) 175 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 174 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-701 $) (-1286 $)) 173) (((-701 (-419 |#2|)) (-701 $)) 172) (((-701 (-419 |#2|)) (-1286 $)) 171)) (-2295 (((-1286 $) (-1286 $)) 213)) (-2309 (($ |#3|) 168) (((-3 $ "failed") (-419 |#3|)) 165 (|has| (-419 |#2|) (-374)))) (-1999 (((-3 $ "failed") $) 37)) (-3411 (((-656 (-656 |#1|))) 194 (|has| |#1| (-379)))) (-2433 (((-112) |#1| |#1|) 229)) (-4423 (((-937)) 61)) (-2080 (($) 101 (|has| (-419 |#2|) (-379)))) (-2370 (((-112)) 222)) (-2360 (((-112) |#1|) 221) (((-112) |#2|) 220)) (-2814 (($ $ $) 118 (|has| (-419 |#2|) (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 113 (|has| (-419 |#2|) (-374)))) (-2192 (($ $) 200)) (-2013 (($) 159 (|has| (-419 |#2|) (-360)))) (-2635 (((-112) $) 160 (|has| (-419 |#2|) (-360)))) (-4188 (($ $ (-783)) 151 (|has| (-419 |#2|) (-360))) (($ $) 150 (|has| (-419 |#2|) (-360)))) (-2463 (((-112) $) 126 (|has| (-419 |#2|) (-374)))) (-2927 (((-937) $) 162 (|has| (-419 |#2|) (-360))) (((-845 (-937)) $) 148 (|has| (-419 |#2|) (-360)))) (-1439 (((-112) $) 35)) (-2556 (((-783)) 232)) (-2307 (((-1286 $) (-1286 $)) 214)) (-1941 (((-419 |#2|) $) 58)) (-3421 (((-656 (-968 |#1|)) (-1195)) 195 (|has| |#1| (-374)))) (-1831 (((-3 $ "failed") $) 152 (|has| (-419 |#2|) (-360)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 122 (|has| (-419 |#2|) (-374)))) (-1922 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-1875 (((-937) $) 100 (|has| (-419 |#2|) (-379)))) (-2297 ((|#3| $) 166)) (-3888 (($ (-656 $)) 111 (|has| (-419 |#2|) (-374))) (($ $ $) 110 (|has| (-419 |#2|) (-374)))) (-3733 (((-1177) $) 10)) (-2255 (((-701 (-419 |#2|))) 209)) (-2276 (((-701 (-419 |#2|))) 211)) (-4333 (($ $) 127 (|has| (-419 |#2|) (-374)))) (-2222 (($ (-1286 |#2|) |#2|) 205)) (-2266 (((-701 (-419 |#2|))) 210)) (-2284 (((-701 (-419 |#2|))) 212)) (-2212 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 204)) (-2233 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 206)) (-2350 (((-1286 $)) 218)) (-1627 (((-1286 $)) 219)) (-2340 (((-112) $) 217)) (-2329 (((-112) $) 216) (((-112) $ |#1|) 203) (((-112) $ |#2|) 202)) (-3475 (($) 153 (|has| (-419 |#2|) (-360)) CONST)) (-4318 (($ (-937)) 99 (|has| (-419 |#2|) (-379)))) (-3440 (((-3 |#2| "failed")) 197)) (-3914 (((-1138) $) 11)) (-2457 (((-783)) 231)) (-3660 (($) 170)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 112 (|has| (-419 |#2|) (-374)))) (-3928 (($ (-656 $)) 109 (|has| (-419 |#2|) (-374))) (($ $ $) 108 (|has| (-419 |#2|) (-374)))) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) 156 (|has| (-419 |#2|) (-360)))) (-2354 (((-430 $) $) 123 (|has| (-419 |#2|) (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 120 (|has| (-419 |#2|) (-374)))) (-2852 (((-3 $ "failed") $ $) 103 (|has| (-419 |#2|) (-374)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 114 (|has| (-419 |#2|) (-374)))) (-2910 (((-783) $) 116 (|has| (-419 |#2|) (-374)))) (-2071 ((|#1| $ |#1| |#1|) 199)) (-3450 (((-3 |#2| "failed")) 198)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 117 (|has| (-419 |#2|) (-374)))) (-2790 (((-419 |#2|) (-1286 $)) 54) (((-419 |#2|)) 67)) (-4197 (((-783) $) 161 (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) 149 (|has| (-419 |#2|) (-360)))) (-2390 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) 132 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 201) (($ $ (-1195)) 136 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-3227 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1195))) 138 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-3227 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-1195) (-783)) 139 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-3227 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1195)) (-656 (-783))) 140 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-3227 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $) 144 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-239))) (-3227 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) 146 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-239))) (-3227 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-1430 (((-701 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) 164 (|has| (-419 |#2|) (-374)))) (-1360 ((|#3|) 169)) (-2560 (($) 158 (|has| (-419 |#2|) (-360)))) (-3629 (((-1286 (-419 |#2|)) $ (-1286 $)) 57) (((-701 (-419 |#2|)) (-1286 $) (-1286 $)) 56) (((-1286 (-419 |#2|)) $) 73) (((-701 (-419 |#2|)) (-1286 $)) 72)) (-2616 (((-1286 (-419 |#2|)) $) 70) (($ (-1286 (-419 |#2|))) 69) ((|#3| $) 183) (($ |#3|) 167)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 155 (|has| (-419 |#2|) (-360)))) (-2318 (((-1286 $) (-1286 $)) 215)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 97 (-3766 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1056 (-419 (-576)))))) (($ $) 102 (|has| (-419 |#2|) (-374)))) (-3148 (($ $) 154 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-1776 ((|#3| $) 52)) (-1871 (((-783)) 32 T CONST)) (-2415 (((-112)) 228)) (-2404 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-3722 (((-112) $ $) 9)) (-1898 (((-1286 $)) 74)) (-4232 (((-112) $ $) 106 (|has| (-419 |#2|) (-374)))) (-3432 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 196)) (-2445 (((-112)) 230)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1195)) 137 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-3227 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1195))) 141 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-3227 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-1195) (-783)) 142 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-3227 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1195)) (-656 (-783))) 143 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-3227 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $) 145 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-239))) (-3227 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) 147 (-3766 (-3227 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-239))) (-3227 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ $) 131 (|has| (-419 |#2|) (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 128 (|has| (-419 |#2|) (-374)))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 130 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 129 (|has| (-419 |#2|) (-374))))) -(((-353 |#1| |#2| |#3|) (-141) (-1240) (-1262 |t#1|) (-1262 (-419 |t#2|))) (T -353)) -((-2556 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783)))) (-2457 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783)))) (-2445 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2433 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2415 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2404 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2404 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-2393 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2382 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2382 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-2370 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2360 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2360 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-1627 (*1 *2) (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)))) (-2350 (*1 *2) (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)))) (-2340 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-2284 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2276 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2266 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2255 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4))))) (-1339 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4))))) (-2222 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))) (-2329 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2329 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-2192 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))))) (-2071 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))))) (-3450 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240)) (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3)))) (-3440 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240)) (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3)))) (-3432 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1240)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-656 (-968 *4))))) (-3411 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) -(-13 (-736 (-419 |t#2|) |t#3|) (-10 -8 (-15 -2556 ((-783))) (-15 -2457 ((-783))) (-15 -2445 ((-112))) (-15 -2433 ((-112) |t#1| |t#1|)) (-15 -2415 ((-112))) (-15 -2404 ((-112) |t#1|)) (-15 -2404 ((-112) |t#2|)) (-15 -2393 ((-112))) (-15 -2382 ((-112) |t#1|)) (-15 -2382 ((-112) |t#2|)) (-15 -2370 ((-112))) (-15 -2360 ((-112) |t#1|)) (-15 -2360 ((-112) |t#2|)) (-15 -1627 ((-1286 $))) (-15 -2350 ((-1286 $))) (-15 -2340 ((-112) $)) (-15 -2329 ((-112) $)) (-15 -2318 ((-1286 $) (-1286 $))) (-15 -2307 ((-1286 $) (-1286 $))) (-15 -2295 ((-1286 $) (-1286 $))) (-15 -2284 ((-701 (-419 |t#2|)))) (-15 -2276 ((-701 (-419 |t#2|)))) (-15 -2266 ((-701 (-419 |t#2|)))) (-15 -2255 ((-701 (-419 |t#2|)))) (-15 -2243 ((-2 (|:| |num| (-1286 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1339 ($ (-1286 |t#2|) |t#2|)) (-15 -2233 ((-2 (|:| |num| (-1286 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2222 ($ (-1286 |t#2|) |t#2|)) (-15 -2212 ((-2 (|:| |num| (-701 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2329 ((-112) $ |t#1|)) (-15 -2329 ((-112) $ |t#2|)) (-15 -2390 ($ $ (-1 |t#2| |t#2|))) (-15 -2192 ($ $)) (-15 -2071 (|t#1| $ |t#1| |t#1|)) (-15 -3450 ((-3 |t#2| "failed"))) (-15 -3440 ((-3 |t#2| "failed"))) (-15 -3432 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -3421 ((-656 (-968 |t#1|)) (-1195))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -3411 ((-656 (-656 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -3766 (|has| (-419 |#2|) (-1056 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-874)) . T) ((-174) . T) ((-626 |#3|) . T) ((-235 $) -3766 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374)))) ((-233 #1#) |has| (-419 |#2|) (-374)) ((-239) -3766 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374)))) ((-238) -3766 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374)))) ((-249) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -3766 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #0#) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #1#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-660 #1#) . T) ((-660 #2=(-576)) |has| (-419 |#2|) (-651 (-576))) ((-660 $) . T) ((-652 #0#) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 $) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-651 #1#) . T) ((-651 #2#) |has| (-419 |#2|) (-651 (-576))) ((-729 #0#) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-729 #1#) . T) ((-729 $) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-736 #1# |#3|) . T) ((-738) . T) ((-909 $ #3=(-1195)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) ((-914 #3#) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) ((-916 #3#) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) ((-936) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1056 (-419 (-576))) |has| (-419 |#2|) (-1056 (-419 (-576)))) ((-1056 #1#) . T) ((-1056 (-576)) |has| (-419 |#2|) (-1056 (-576))) ((-1069 #0#) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1069 #1#) . T) ((-1069 $) . T) ((-1074 #0#) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1074 #1#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| (-419 |#2|) (-360)) ((-1236) -3766 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374)))) ((-1240) -3766 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-926 |#1|) (-379)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) NIL (|has| (-926 |#1|) (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-926 |#1|) "failed") $) NIL)) (-4401 (((-926 |#1|) $) NIL)) (-1339 (($ (-1286 (-926 |#1|))) NIL)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-926 |#1|) (-379)))) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| (-926 |#1|) (-379)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) NIL (|has| (-926 |#1|) (-379)))) (-2635 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-4188 (($ $ (-783)) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379)))) (($ $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-2463 (((-112) $) NIL)) (-2927 (((-937) $) NIL (|has| (-926 |#1|) (-379))) (((-845 (-937)) $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-1439 (((-112) $) NIL)) (-1909 (($) NIL (|has| (-926 |#1|) (-379)))) (-1886 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-1941 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-1831 (((-3 $ "failed") $) NIL (|has| (-926 |#1|) (-379)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 (-926 |#1|)) $) NIL) (((-1191 $) $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-1875 (((-937) $) NIL (|has| (-926 |#1|) (-379)))) (-3130 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379)))) (-3119 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-1191 (-926 |#1|)) "failed") $ $) NIL (|has| (-926 |#1|) (-379)))) (-3141 (($ $ (-1191 (-926 |#1|))) NIL (|has| (-926 |#1|) (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| (-926 |#1|) (-379)) CONST)) (-4318 (($ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-3683 (((-112) $) NIL)) (-3914 (((-1138) $) NIL)) (-2469 (((-974 (-1138))) NIL)) (-3660 (($) NIL (|has| (-926 |#1|) (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| (-926 |#1|) (-379)))) (-2354 (((-430 $) $) NIL)) (-3673 (((-845 (-937))) NIL) (((-937)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-783) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-1543 (((-135)) NIL)) (-2390 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-3813 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-1360 (((-1191 (-926 |#1|))) NIL)) (-2560 (($) NIL (|has| (-926 |#1|) (-379)))) (-3152 (($) NIL (|has| (-926 |#1|) (-379)))) (-3629 (((-1286 (-926 |#1|)) $) NIL) (((-701 (-926 |#1|)) (-1286 $)) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-926 |#1|) (-379)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-926 |#1|)) NIL)) (-3148 (($ $) NIL (|has| (-926 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3649 (($ $) NIL (|has| (-926 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-926 |#1|) (-379)))) (-3431 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL) (($ $ (-926 |#1|)) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-926 |#1|)) NIL) (($ (-926 |#1|) $) NIL))) -(((-354 |#1| |#2|) (-13 (-339 (-926 |#1|)) (-10 -7 (-15 -2469 ((-974 (-1138)))))) (-937) (-937)) (T -354)) -((-2469 (*1 *2) (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-354 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937))))) -(-13 (-339 (-926 |#1|)) (-10 -7 (-15 -2469 ((-974 (-1138)))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 58)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-2575 (((-1208 (-937) (-783)) (-576)) 56 (|has| |#1| (-379)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) NIL (|has| |#1| (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 142)) (-4401 ((|#1| $) 113)) (-1339 (($ (-1286 |#1|)) 130)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) 124 (|has| |#1| (-379)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) 160 (|has| |#1| (-379)))) (-2635 (((-112) $) 66 (|has| |#1| (-379)))) (-4188 (($ $ (-783)) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2463 (((-112) $) NIL)) (-2927 (((-937) $) 60 (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1439 (((-112) $) 62)) (-1909 (($) 162 (|has| |#1| (-379)))) (-1886 (((-112) $) NIL (|has| |#1| (-379)))) (-1941 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 |#1|) $) 117) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-1875 (((-937) $) 171 (|has| |#1| (-379)))) (-3130 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-3119 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3141 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 178)) (-3475 (($) NIL (|has| |#1| (-379)) CONST)) (-4318 (($ (-937)) 96 (|has| |#1| (-379)))) (-3683 (((-112) $) 147)) (-3914 (((-1138) $) NIL)) (-2469 (((-974 (-1138))) 57)) (-3660 (($) 158 (|has| |#1| (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) 119 (|has| |#1| (-379)))) (-2354 (((-430 $) $) NIL)) (-3673 (((-845 (-937))) 90) (((-937)) 91)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-783) $) 161 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 154 (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1543 (((-135)) NIL)) (-2390 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3813 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-1360 (((-1191 |#1|)) 122)) (-2560 (($) 159 (|has| |#1| (-379)))) (-3152 (($) 167 (|has| |#1| (-379)))) (-3629 (((-1286 |#1|) $) 77) (((-701 |#1|) (-1286 $)) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2884 (((-874) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-3148 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1871 (((-783)) 155 T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) 144) (((-1286 $) (-937)) 98)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) 67 T CONST)) (-2011 (($) 103 T CONST)) (-3649 (($ $) 107 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3431 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3915 (((-112) $ $) 65)) (-4039 (($ $ $) 176) (($ $ |#1|) 177)) (-4029 (($ $) 157) (($ $ $) NIL)) (-4017 (($ $ $) 86)) (** (($ $ (-937)) 180) (($ $ (-783)) 181) (($ $ (-576)) 179)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) -(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2469 ((-974 (-1138)))))) (-360) (-1191 |#1|)) (T -355)) -((-2469 (*1 *2) (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1191 *3))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2469 ((-974 (-1138)))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) NIL (|has| |#1| (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-1339 (($ (-1286 |#1|)) NIL)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| |#1| (-379)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) NIL (|has| |#1| (-379)))) (-2635 (((-112) $) NIL (|has| |#1| (-379)))) (-4188 (($ $ (-783)) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2463 (((-112) $) NIL)) (-2927 (((-937) $) NIL (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1439 (((-112) $) NIL)) (-1909 (($) NIL (|has| |#1| (-379)))) (-1886 (((-112) $) NIL (|has| |#1| (-379)))) (-1941 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 |#1|) $) NIL) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-1875 (((-937) $) NIL (|has| |#1| (-379)))) (-3130 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-3119 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3141 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| |#1| (-379)) CONST)) (-4318 (($ (-937)) NIL (|has| |#1| (-379)))) (-3683 (((-112) $) NIL)) (-3914 (((-1138) $) NIL)) (-2469 (((-974 (-1138))) NIL)) (-3660 (($) NIL (|has| |#1| (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| |#1| (-379)))) (-2354 (((-430 $) $) NIL)) (-3673 (((-845 (-937))) NIL) (((-937)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1543 (((-135)) NIL)) (-2390 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3813 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-1360 (((-1191 |#1|)) NIL)) (-2560 (($) NIL (|has| |#1| (-379)))) (-3152 (($) NIL (|has| |#1| (-379)))) (-3629 (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3148 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3649 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3431 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2469 ((-974 (-1138)))))) (-360) (-937)) (T -356)) -((-2469 (*1 *2) (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-937))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2469 ((-974 (-1138)))))) -((-2600 (((-783) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138)))))) 61)) (-2480 (((-974 (-1138)) (-1191 |#1|)) 112)) (-2496 (((-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))) (-1191 |#1|)) 103)) (-2509 (((-701 |#1|) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138)))))) 113)) (-2521 (((-3 (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))) "failed") (-937)) 13)) (-2535 (((-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138)))))) (-937)) 18))) -(((-357 |#1|) (-10 -7 (-15 -2480 ((-974 (-1138)) (-1191 |#1|))) (-15 -2496 ((-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))) (-1191 |#1|))) (-15 -2509 ((-701 |#1|) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))))) (-15 -2600 ((-783) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))))) (-15 -2521 ((-3 (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))) "failed") (-937))) (-15 -2535 ((-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138)))))) (-937)))) (-360)) (T -357)) -((-2535 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-3 (-1191 *4) (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-2521 (*1 *2 *3) (|partial| -12 (-5 *3 (-937)) (-5 *2 (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138)))))) (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138)))))) (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138)))))) (-5 *1 (-357 *4)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-974 (-1138))) (-5 *1 (-357 *4))))) -(-10 -7 (-15 -2480 ((-974 (-1138)) (-1191 |#1|))) (-15 -2496 ((-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))) (-1191 |#1|))) (-15 -2509 ((-701 |#1|) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))))) (-15 -2600 ((-783) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))))) (-15 -2521 ((-3 (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))) "failed") (-937))) (-15 -2535 ((-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138)))))) (-937)))) -((-2884 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) -(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -2884 (|#3| |#1|)) (-15 -2884 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358)) -((-2884 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-2884 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4))))) -(-10 -7 (-15 -2884 (|#3| |#1|)) (-15 -2884 (|#1| |#3|))) -((-2635 (((-112) $) 60)) (-2927 (((-845 (-937)) $) 23) (((-937) $) 64)) (-1831 (((-3 $ "failed") $) 18)) (-3475 (($) 9)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 114)) (-4197 (((-3 (-783) "failed") $ $) 92) (((-783) $) 79)) (-2390 (($ $) 8) (($ $ (-783)) NIL)) (-2560 (($) 53)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 38)) (-3148 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-359 |#1|) (-10 -8 (-15 -2927 ((-937) |#1|)) (-15 -4197 ((-783) |#1|)) (-15 -2635 ((-112) |#1|)) (-15 -2560 (|#1|)) (-15 -3159 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -3148 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -3475 (|#1|)) (-15 -1831 ((-3 |#1| "failed") |#1|)) (-15 -4197 ((-3 (-783) "failed") |#1| |#1|)) (-15 -2927 ((-845 (-937)) |#1|)) (-15 -3148 ((-3 |#1| "failed") |#1|)) (-15 -3214 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) (-360)) (T -359)) -NIL -(-10 -8 (-15 -2927 ((-937) |#1|)) (-15 -4197 ((-783) |#1|)) (-15 -2635 ((-112) |#1|)) (-15 -2560 (|#1|)) (-15 -3159 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -3148 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -3475 (|#1|)) (-15 -1831 ((-3 |#1| "failed") |#1|)) (-15 -4197 ((-3 (-783) "failed") |#1| |#1|)) (-15 -2927 ((-845 (-937)) |#1|)) (-15 -3148 ((-3 |#1| "failed") |#1|)) (-15 -3214 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-2575 (((-1208 (-937) (-783)) (-576)) 102)) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 81)) (-3986 (((-430 $) $) 80)) (-2922 (((-112) $ $) 65)) (-2416 (((-783)) 112)) (-2473 (($) 18 T CONST)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2803 (($ $ $) 61)) (-1999 (((-3 $ "failed") $) 37)) (-2080 (($) 115)) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-2013 (($) 100)) (-2635 (((-112) $) 99)) (-4188 (($ $) 87) (($ $ (-783)) 86)) (-2463 (((-112) $) 79)) (-2927 (((-845 (-937)) $) 89) (((-937) $) 97)) (-1439 (((-112) $) 35)) (-1831 (((-3 $ "failed") $) 111)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1875 (((-937) $) 114)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 78)) (-3475 (($) 110 T CONST)) (-4318 (($ (-937)) 113)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) 103)) (-2354 (((-430 $) $) 82)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2910 (((-783) $) 64)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-4197 (((-3 (-783) "failed") $ $) 88) (((-783) $) 98)) (-2390 (($ $) 109) (($ $ (-783)) 107)) (-2560 (($) 101)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 104)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3148 (((-3 $ "failed") $) 90) (($ $) 105)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $) 108) (($ $ (-783)) 106)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ $) 73)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-360) (-141)) (T -360)) -((-3148 (*1 *1 *1) (-4 *1 (-360))) (-3159 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1286 *1)))) (-2588 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))))) (-2575 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1208 (-937) (-783))))) (-2560 (*1 *1) (-4 *1 (-360))) (-2013 (*1 *1) (-4 *1 (-360))) (-2635 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-937)))) (-2545 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-414) (-379) (-1170) (-239) (-10 -8 (-15 -3148 ($ $)) (-15 -3159 ((-3 (-1286 $) "failed") (-701 $))) (-15 -2588 ((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576)))))) (-15 -2575 ((-1208 (-937) (-783)) (-576))) (-15 -2560 ($)) (-15 -2013 ($)) (-15 -2635 ((-112) $)) (-15 -4197 ((-783) $)) (-15 -2927 ((-937) $)) (-15 -2545 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) . T) ((-379) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) . T) ((-1236) . T) ((-1240) . T)) -((-1637 (((-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|) 55)) (-1627 (((-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 53))) -(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -1627 ((-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -1637 ((-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $)))) (-1262 |#1|) (-421 |#1| |#2|)) (T -361)) -((-1637 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1627 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(-10 -7 (-15 -1627 ((-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -1637 ((-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-926 |#1|) (-379)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2600 (((-783)) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) NIL (|has| (-926 |#1|) (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-926 |#1|) "failed") $) NIL)) (-4401 (((-926 |#1|) $) NIL)) (-1339 (($ (-1286 (-926 |#1|))) NIL)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-926 |#1|) (-379)))) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| (-926 |#1|) (-379)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) NIL (|has| (-926 |#1|) (-379)))) (-2635 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-4188 (($ $ (-783)) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379)))) (($ $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-2463 (((-112) $) NIL)) (-2927 (((-937) $) NIL (|has| (-926 |#1|) (-379))) (((-845 (-937)) $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-1439 (((-112) $) NIL)) (-1909 (($) NIL (|has| (-926 |#1|) (-379)))) (-1886 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-1941 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-1831 (((-3 $ "failed") $) NIL (|has| (-926 |#1|) (-379)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 (-926 |#1|)) $) NIL) (((-1191 $) $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-1875 (((-937) $) NIL (|has| (-926 |#1|) (-379)))) (-3130 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379)))) (-3119 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-1191 (-926 |#1|)) "failed") $ $) NIL (|has| (-926 |#1|) (-379)))) (-3141 (($ $ (-1191 (-926 |#1|))) NIL (|has| (-926 |#1|) (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| (-926 |#1|) (-379)) CONST)) (-4318 (($ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-3683 (((-112) $) NIL)) (-3914 (((-1138) $) NIL)) (-2622 (((-1286 (-656 (-2 (|:| -4183 (-926 |#1|)) (|:| -4318 (-1138)))))) NIL)) (-2611 (((-701 (-926 |#1|))) NIL)) (-3660 (($) NIL (|has| (-926 |#1|) (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| (-926 |#1|) (-379)))) (-2354 (((-430 $) $) NIL)) (-3673 (((-845 (-937))) NIL) (((-937)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-783) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-1543 (((-135)) NIL)) (-2390 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-3813 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-1360 (((-1191 (-926 |#1|))) NIL)) (-2560 (($) NIL (|has| (-926 |#1|) (-379)))) (-3152 (($) NIL (|has| (-926 |#1|) (-379)))) (-3629 (((-1286 (-926 |#1|)) $) NIL) (((-701 (-926 |#1|)) (-1286 $)) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-926 |#1|) (-379)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-926 |#1|)) NIL)) (-3148 (($ $) NIL (|has| (-926 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3649 (($ $) NIL (|has| (-926 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-926 |#1|) (-379)))) (-3431 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL) (($ $ (-926 |#1|)) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-926 |#1|)) NIL) (($ (-926 |#1|) $) NIL))) -(((-362 |#1| |#2|) (-13 (-339 (-926 |#1|)) (-10 -7 (-15 -2622 ((-1286 (-656 (-2 (|:| -4183 (-926 |#1|)) (|:| -4318 (-1138))))))) (-15 -2611 ((-701 (-926 |#1|)))) (-15 -2600 ((-783))))) (-937) (-937)) (T -362)) -((-2622 (*1 *2) (-12 (-5 *2 (-1286 (-656 (-2 (|:| -4183 (-926 *3)) (|:| -4318 (-1138)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-2611 (*1 *2) (-12 (-5 *2 (-701 (-926 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-2600 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937))))) -(-13 (-339 (-926 |#1|)) (-10 -7 (-15 -2622 ((-1286 (-656 (-2 (|:| -4183 (-926 |#1|)) (|:| -4318 (-1138))))))) (-15 -2611 ((-701 (-926 |#1|)))) (-15 -2600 ((-783))))) -((-2862 (((-112) $ $) 73)) (-1389 (((-112) $) 88)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 ((|#1| $) 106) (($ $ (-937)) 104 (|has| |#1| (-379)))) (-2575 (((-1208 (-937) (-783)) (-576)) 170 (|has| |#1| (-379)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2600 (((-783)) 103)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) 187 (|has| |#1| (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 127)) (-4401 ((|#1| $) 105)) (-1339 (($ (-1286 |#1|)) 71)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) 182 (|has| |#1| (-379)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) 171 (|has| |#1| (-379)))) (-2635 (((-112) $) NIL (|has| |#1| (-379)))) (-4188 (($ $ (-783)) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2463 (((-112) $) NIL)) (-2927 (((-937) $) NIL (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1439 (((-112) $) NIL)) (-1909 (($) 113 (|has| |#1| (-379)))) (-1886 (((-112) $) 200 (|has| |#1| (-379)))) (-1941 ((|#1| $) 108) (($ $ (-937)) 107 (|has| |#1| (-379)))) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 |#1|) $) 214) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-1875 (((-937) $) 148 (|has| |#1| (-379)))) (-3130 (((-1191 |#1|) $) 87 (|has| |#1| (-379)))) (-3119 (((-1191 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-3141 (($ $ (-1191 |#1|)) 83 (|has| |#1| (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 218)) (-3475 (($) NIL (|has| |#1| (-379)) CONST)) (-4318 (($ (-937)) 150 (|has| |#1| (-379)))) (-3683 (((-112) $) 123)) (-3914 (((-1138) $) NIL)) (-2622 (((-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138)))))) 97)) (-2611 (((-701 |#1|)) 101)) (-3660 (($) 110 (|has| |#1| (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) 173 (|has| |#1| (-379)))) (-2354 (((-430 $) $) NIL)) (-3673 (((-845 (-937))) NIL) (((-937)) 174)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1543 (((-135)) NIL)) (-2390 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3813 (((-845 (-937)) $) NIL) (((-937) $) 75)) (-1360 (((-1191 |#1|)) 175)) (-2560 (($) 147 (|has| |#1| (-379)))) (-3152 (($) NIL (|has| |#1| (-379)))) (-3629 (((-1286 |#1|) $) 121) (((-701 |#1|) (-1286 $)) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2884 (((-874) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-3148 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1871 (((-783)) 180 T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) 197) (((-1286 $) (-937)) 116)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) 186 T CONST)) (-2011 (($) 161 T CONST)) (-3649 (($ $) 122 (|has| |#1| (-379))) (($ $ (-783)) 114 (|has| |#1| (-379)))) (-3431 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3915 (((-112) $ $) 208)) (-4039 (($ $ $) 119) (($ $ |#1|) 120)) (-4029 (($ $) 202) (($ $ $) 206)) (-4017 (($ $ $) 204)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 153)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) -(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2622 ((-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))))) (-15 -2611 ((-701 |#1|))) (-15 -2600 ((-783))))) (-360) (-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))))) (T -363)) -((-2622 (*1 *2) (-12 (-5 *2 (-1286 (-656 (-2 (|:| -4183 *3) (|:| -4318 (-1138)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) *2)))) (-2611 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) (-1286 (-656 (-2 (|:| -4183 *3) (|:| -4318 (-1138))))))))) (-2600 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) (-1286 (-656 (-2 (|:| -4183 *3) (|:| -4318 (-1138)))))))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2622 ((-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))))) (-15 -2611 ((-701 |#1|))) (-15 -2600 ((-783))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2600 (((-783)) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) NIL (|has| |#1| (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-1339 (($ (-1286 |#1|)) NIL)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| |#1| (-379)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) NIL (|has| |#1| (-379)))) (-2635 (((-112) $) NIL (|has| |#1| (-379)))) (-4188 (($ $ (-783)) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2463 (((-112) $) NIL)) (-2927 (((-937) $) NIL (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1439 (((-112) $) NIL)) (-1909 (($) NIL (|has| |#1| (-379)))) (-1886 (((-112) $) NIL (|has| |#1| (-379)))) (-1941 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 |#1|) $) NIL) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-1875 (((-937) $) NIL (|has| |#1| (-379)))) (-3130 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-3119 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3141 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| |#1| (-379)) CONST)) (-4318 (($ (-937)) NIL (|has| |#1| (-379)))) (-3683 (((-112) $) NIL)) (-3914 (((-1138) $) NIL)) (-2622 (((-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138)))))) NIL)) (-2611 (((-701 |#1|)) NIL)) (-3660 (($) NIL (|has| |#1| (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| |#1| (-379)))) (-2354 (((-430 $) $) NIL)) (-3673 (((-845 (-937))) NIL) (((-937)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1543 (((-135)) NIL)) (-2390 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3813 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-1360 (((-1191 |#1|)) NIL)) (-2560 (($) NIL (|has| |#1| (-379)))) (-3152 (($) NIL (|has| |#1| (-379)))) (-3629 (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3148 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3649 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3431 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2622 ((-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))))) (-15 -2611 ((-701 |#1|))) (-15 -2600 ((-783))))) (-360) (-937)) (T -364)) -((-2622 (*1 *2) (-12 (-5 *2 (-1286 (-656 (-2 (|:| -4183 *3) (|:| -4318 (-1138)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-937)))) (-2611 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-937)))) (-2600 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-937))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2622 ((-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))))) (-15 -2611 ((-701 |#1|))) (-15 -2600 ((-783))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-926 |#1|) (-379)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) NIL (|has| (-926 |#1|) (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-926 |#1|) "failed") $) NIL)) (-4401 (((-926 |#1|) $) NIL)) (-1339 (($ (-1286 (-926 |#1|))) NIL)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-926 |#1|) (-379)))) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| (-926 |#1|) (-379)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) NIL (|has| (-926 |#1|) (-379)))) (-2635 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-4188 (($ $ (-783)) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379)))) (($ $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-2463 (((-112) $) NIL)) (-2927 (((-937) $) NIL (|has| (-926 |#1|) (-379))) (((-845 (-937)) $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-1439 (((-112) $) NIL)) (-1909 (($) NIL (|has| (-926 |#1|) (-379)))) (-1886 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-1941 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-1831 (((-3 $ "failed") $) NIL (|has| (-926 |#1|) (-379)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 (-926 |#1|)) $) NIL) (((-1191 $) $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-1875 (((-937) $) NIL (|has| (-926 |#1|) (-379)))) (-3130 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379)))) (-3119 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-1191 (-926 |#1|)) "failed") $ $) NIL (|has| (-926 |#1|) (-379)))) (-3141 (($ $ (-1191 (-926 |#1|))) NIL (|has| (-926 |#1|) (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| (-926 |#1|) (-379)) CONST)) (-4318 (($ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-3683 (((-112) $) NIL)) (-3914 (((-1138) $) NIL)) (-3660 (($) NIL (|has| (-926 |#1|) (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| (-926 |#1|) (-379)))) (-2354 (((-430 $) $) NIL)) (-3673 (((-845 (-937))) NIL) (((-937)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-783) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-1543 (((-135)) NIL)) (-2390 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-3813 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-1360 (((-1191 (-926 |#1|))) NIL)) (-2560 (($) NIL (|has| (-926 |#1|) (-379)))) (-3152 (($) NIL (|has| (-926 |#1|) (-379)))) (-3629 (((-1286 (-926 |#1|)) $) NIL) (((-701 (-926 |#1|)) (-1286 $)) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-926 |#1|) (-379)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-926 |#1|)) NIL)) (-3148 (($ $) NIL (|has| (-926 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3766 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3649 (($ $) NIL (|has| (-926 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-926 |#1|) (-379)))) (-3431 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL) (($ $ (-926 |#1|)) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-926 |#1|)) NIL) (($ (-926 |#1|) $) NIL))) -(((-365 |#1| |#2|) (-339 (-926 |#1|)) (-937) (-937)) (T -365)) -NIL -(-339 (-926 |#1|)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-2575 (((-1208 (-937) (-783)) (-576)) 129 (|has| |#1| (-379)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) 155 (|has| |#1| (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 103)) (-4401 ((|#1| $) 100)) (-1339 (($ (-1286 |#1|)) 95)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) 92 (|has| |#1| (-379)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) 51 (|has| |#1| (-379)))) (-2635 (((-112) $) NIL (|has| |#1| (-379)))) (-4188 (($ $ (-783)) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2463 (((-112) $) NIL)) (-2927 (((-937) $) NIL (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1439 (((-112) $) NIL)) (-1909 (($) 130 (|has| |#1| (-379)))) (-1886 (((-112) $) 84 (|has| |#1| (-379)))) (-1941 ((|#1| $) 47) (($ $ (-937)) 52 (|has| |#1| (-379)))) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 |#1|) $) 75) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-1875 (((-937) $) 107 (|has| |#1| (-379)))) (-3130 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-3119 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3141 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| |#1| (-379)) CONST)) (-4318 (($ (-937)) 105 (|has| |#1| (-379)))) (-3683 (((-112) $) 157)) (-3914 (((-1138) $) NIL)) (-3660 (($) 44 (|has| |#1| (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) 124 (|has| |#1| (-379)))) (-2354 (((-430 $) $) NIL)) (-3673 (((-845 (-937))) NIL) (((-937)) 154)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1543 (((-135)) NIL)) (-2390 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3813 (((-845 (-937)) $) NIL) (((-937) $) 67)) (-1360 (((-1191 |#1|)) 98)) (-2560 (($) 135 (|has| |#1| (-379)))) (-3152 (($) NIL (|has| |#1| (-379)))) (-3629 (((-1286 |#1|) $) 63) (((-701 |#1|) (-1286 $)) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2884 (((-874) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-3148 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1871 (((-783)) 159 T CONST)) (-3722 (((-112) $ $) 161)) (-1898 (((-1286 $)) 119) (((-1286 $) (-937)) 58)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) 121 T CONST)) (-2011 (($) 40 T CONST)) (-3649 (($ $) 78 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3431 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3915 (((-112) $ $) 117)) (-4039 (($ $ $) 109) (($ $ |#1|) 110)) (-4029 (($ $) 90) (($ $ $) 115)) (-4017 (($ $ $) 113)) (** (($ $ (-937)) NIL) (($ $ (-783)) 53) (($ $ (-576)) 138)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) -(((-366 |#1| |#2|) (-339 |#1|) (-360) (-1191 |#1|)) (T -366)) -NIL -(-339 |#1|) -((-2810 ((|#1| (-1191 |#2|)) 59))) -(((-367 |#1| |#2|) (-10 -7 (-15 -2810 (|#1| (-1191 |#2|)))) (-13 (-414) (-10 -7 (-15 -2884 (|#1| |#2|)) (-15 -1875 ((-937) |#1|)) (-15 -1898 ((-1286 |#1|) (-937))) (-15 -3649 (|#1| |#1|)))) (-360)) (T -367)) -((-2810 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -2884 (*2 *4)) (-15 -1875 ((-937) *2)) (-15 -1898 ((-1286 *2) (-937))) (-15 -3649 (*2 *2))))) (-5 *1 (-367 *2 *4))))) -(-10 -7 (-15 -2810 (|#1| (-1191 |#2|)))) -((-2799 (((-974 (-1191 |#1|)) (-1191 |#1|)) 49)) (-2080 (((-1191 |#1|) (-937) (-937)) 154) (((-1191 |#1|) (-937)) 150)) (-2635 (((-112) (-1191 |#1|)) 107)) (-2655 (((-937) (-937)) 85)) (-2667 (((-937) (-937)) 92)) (-2645 (((-937) (-937)) 83)) (-1886 (((-112) (-1191 |#1|)) 111)) (-2742 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 135)) (-2774 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 140)) (-2764 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 139)) (-2754 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 138)) (-2732 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 131)) (-2785 (((-1191 |#1|) (-1191 |#1|)) 71)) (-2689 (((-1191 |#1|) (-937)) 145)) (-2721 (((-1191 |#1|) (-937)) 148)) (-2710 (((-1191 |#1|) (-937)) 147)) (-2700 (((-1191 |#1|) (-937)) 146)) (-2678 (((-1191 |#1|) (-937)) 143))) -(((-368 |#1|) (-10 -7 (-15 -2635 ((-112) (-1191 |#1|))) (-15 -1886 ((-112) (-1191 |#1|))) (-15 -2645 ((-937) (-937))) (-15 -2655 ((-937) (-937))) (-15 -2667 ((-937) (-937))) (-15 -2678 ((-1191 |#1|) (-937))) (-15 -2689 ((-1191 |#1|) (-937))) (-15 -2700 ((-1191 |#1|) (-937))) (-15 -2710 ((-1191 |#1|) (-937))) (-15 -2721 ((-1191 |#1|) (-937))) (-15 -2732 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2742 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2754 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2764 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2774 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2080 ((-1191 |#1|) (-937))) (-15 -2080 ((-1191 |#1|) (-937) (-937))) (-15 -2785 ((-1191 |#1|) (-1191 |#1|))) (-15 -2799 ((-974 (-1191 |#1|)) (-1191 |#1|)))) (-360)) (T -368)) -((-2799 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-974 (-1191 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1191 *4)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2080 (*1 *2 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2774 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2764 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2754 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2742 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2732 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2667 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2655 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2645 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-2635 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4))))) -(-10 -7 (-15 -2635 ((-112) (-1191 |#1|))) (-15 -1886 ((-112) (-1191 |#1|))) (-15 -2645 ((-937) (-937))) (-15 -2655 ((-937) (-937))) (-15 -2667 ((-937) (-937))) (-15 -2678 ((-1191 |#1|) (-937))) (-15 -2689 ((-1191 |#1|) (-937))) (-15 -2700 ((-1191 |#1|) (-937))) (-15 -2710 ((-1191 |#1|) (-937))) (-15 -2721 ((-1191 |#1|) (-937))) (-15 -2732 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2742 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2754 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2764 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2774 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2080 ((-1191 |#1|) (-937))) (-15 -2080 ((-1191 |#1|) (-937) (-937))) (-15 -2785 ((-1191 |#1|) (-1191 |#1|))) (-15 -2799 ((-974 (-1191 |#1|)) (-1191 |#1|)))) -((-3169 (((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|) 38))) -(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -3169 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) (-360) (-1262 |#1|) (-1262 |#2|)) (T -369)) -((-3169 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))) -(-10 -7 (-15 -3169 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) NIL (|has| |#1| (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-1339 (($ (-1286 |#1|)) NIL)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| |#1| (-379)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) NIL (|has| |#1| (-379)))) (-2635 (((-112) $) NIL (|has| |#1| (-379)))) (-4188 (($ $ (-783)) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2463 (((-112) $) NIL)) (-2927 (((-937) $) NIL (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1439 (((-112) $) NIL)) (-1909 (($) NIL (|has| |#1| (-379)))) (-1886 (((-112) $) NIL (|has| |#1| (-379)))) (-1941 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 |#1|) $) NIL) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-1875 (((-937) $) NIL (|has| |#1| (-379)))) (-3130 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-3119 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-3141 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| |#1| (-379)) CONST)) (-4318 (($ (-937)) NIL (|has| |#1| (-379)))) (-3683 (((-112) $) NIL)) (-3914 (((-1138) $) NIL)) (-3660 (($) NIL (|has| |#1| (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| |#1| (-379)))) (-2354 (((-430 $) $) NIL)) (-3673 (((-845 (-937))) NIL) (((-937)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1543 (((-135)) NIL)) (-2390 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3813 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-1360 (((-1191 |#1|)) NIL)) (-2560 (($) NIL (|has| |#1| (-379)))) (-3152 (($) NIL (|has| |#1| (-379)))) (-3629 (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3148 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3649 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3431 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-370 |#1| |#2|) (-339 |#1|) (-360) (-937)) (T -370)) -NIL -(-339 |#1|) -((-2311 (((-112) (-656 (-968 |#1|))) 41)) (-2330 (((-656 (-968 |#1|)) (-656 (-968 |#1|))) 53)) (-2320 (((-3 (-656 (-968 |#1|)) "failed") (-656 (-968 |#1|))) 48))) -(((-371 |#1| |#2|) (-10 -7 (-15 -2311 ((-112) (-656 (-968 |#1|)))) (-15 -2320 ((-3 (-656 (-968 |#1|)) "failed") (-656 (-968 |#1|)))) (-15 -2330 ((-656 (-968 |#1|)) (-656 (-968 |#1|))))) (-464) (-656 (-1195))) (T -371)) -((-2330 (*1 *2 *2) (-12 (-5 *2 (-656 (-968 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1195))))) (-2320 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-968 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1195))))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1195)))))) -(-10 -7 (-15 -2311 ((-112) (-656 (-968 |#1|)))) (-15 -2320 ((-3 (-656 (-968 |#1|)) "failed") (-656 (-968 |#1|)))) (-15 -2330 ((-656 (-968 |#1|)) (-656 (-968 |#1|))))) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783) $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) 17)) (-2756 ((|#1| $ (-576)) NIL)) (-2766 (((-576) $ (-576)) NIL)) (-2679 (($ (-1 |#1| |#1|) $) 34)) (-2692 (($ (-1 (-576) (-576)) $) 26)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 28)) (-3914 (((-1138) $) NIL)) (-4319 (((-656 (-2 (|:| |gen| |#1|) (|:| -2666 (-576)))) $) 30)) (-3276 (($ $ $) NIL)) (-2920 (($ $ $) NIL)) (-2884 (((-874) $) 40) (($ |#1|) NIL)) (-3722 (((-112) $ $) NIL)) (-2011 (($) 11 T CONST)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-372 |#1|) (-13 (-485) (-1056 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2416 ((-783) $)) (-15 -2766 ((-576) $ (-576))) (-15 -2756 (|#1| $ (-576))) (-15 -2692 ($ (-1 (-576) (-576)) $)) (-15 -2679 ($ (-1 |#1| |#1|) $)) (-15 -4319 ((-656 (-2 (|:| |gen| |#1|) (|:| -2666 (-576)))) $)))) (-1118)) (T -372)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1118)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1118)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1118)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1118)))) (-2766 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1118)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1118)))) (-2692 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1118)))) (-2679 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-372 *3)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2666 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1118))))) -(-13 (-485) (-1056 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2416 ((-783) $)) (-15 -2766 ((-576) $ (-576))) (-15 -2756 (|#1| $ (-576))) (-15 -2692 ($ (-1 (-576) (-576)) $)) (-15 -2679 ($ (-1 |#1| |#1|) $)) (-15 -4319 ((-656 (-2 (|:| |gen| |#1|) (|:| -2666 (-576)))) $)))) -((-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 13)) (-4241 (($ $) 14)) (-3986 (((-430 $) $) 34)) (-2463 (((-112) $) 30)) (-4333 (($ $) 19)) (-3928 (($ $ $) 25) (($ (-656 $)) NIL)) (-2354 (((-430 $) $) 35)) (-2852 (((-3 $ "failed") $ $) 24)) (-2910 (((-783) $) 28)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 39)) (-4232 (((-112) $ $) 16)) (-4039 (($ $ $) 37))) -(((-373 |#1|) (-10 -8 (-15 -4039 (|#1| |#1| |#1|)) (-15 -4333 (|#1| |#1|)) (-15 -2463 ((-112) |#1|)) (-15 -3986 ((-430 |#1|) |#1|)) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -4350 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -2910 ((-783) |#1|)) (-15 -3928 (|#1| (-656 |#1|))) (-15 -3928 (|#1| |#1| |#1|)) (-15 -4232 ((-112) |#1| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -4253 ((-2 (|:| -4246 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373)) -NIL -(-10 -8 (-15 -4039 (|#1| |#1| |#1|)) (-15 -4333 (|#1| |#1|)) (-15 -2463 ((-112) |#1|)) (-15 -3986 ((-430 |#1|) |#1|)) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -4350 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -2910 ((-783) |#1|)) (-15 -3928 (|#1| (-656 |#1|))) (-15 -3928 (|#1| |#1| |#1|)) (-15 -4232 ((-112) |#1| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -4253 ((-2 (|:| -4246 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 81)) (-3986 (((-430 $) $) 80)) (-2922 (((-112) $ $) 65)) (-2473 (($) 18 T CONST)) (-2803 (($ $ $) 61)) (-1999 (((-3 $ "failed") $) 37)) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-2463 (((-112) $) 79)) (-1439 (((-112) $) 35)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 78)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2354 (((-430 $) $) 82)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2910 (((-783) $) 64)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ $) 73)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-374) (-141)) (T -374)) -((-4039 (*1 *1 *1 *1) (-4 *1 (-374)))) -(-13 (-317) (-1240) (-249) (-10 -8 (-15 -4039 ($ $ $)) (-6 -4459) (-6 -4453))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T)) -((-2862 (((-112) $ $) 7)) (-2823 ((|#2| $ |#2|) 14)) (-1575 (($ $ (-1177)) 19)) (-2835 ((|#2| $) 15)) (-2980 (($ |#1|) 21) (($ |#1| (-1177)) 20)) (-1778 ((|#1| $) 17)) (-3733 (((-1177) $) 10)) (-2847 (((-1177) $) 16)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-1561 (($ $) 18)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-375 |#1| |#2|) (-141) (-1118) (-1118)) (T -375)) -((-2980 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-2980 (*1 *1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1118)) (-4 *4 (-1118)))) (-1575 (*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-1561 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1118)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-5 *2 (-1177)))) (-2835 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))) (-2823 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118))))) -(-13 (-1118) (-10 -8 (-15 -2980 ($ |t#1|)) (-15 -2980 ($ |t#1| (-1177))) (-15 -1575 ($ $ (-1177))) (-15 -1561 ($ $)) (-15 -1778 (|t#1| $)) (-15 -2847 ((-1177) $)) (-15 -2835 (|t#2| $)) (-15 -2823 (|t#2| $ |t#2|)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-2823 ((|#1| $ |#1|) 31)) (-1575 (($ $ (-1177)) 23)) (-3908 (((-3 |#1| "failed") $) 30)) (-2835 ((|#1| $) 28)) (-2980 (($ (-400)) 22) (($ (-400) (-1177)) 21)) (-1778 (((-400) $) 25)) (-3733 (((-1177) $) NIL)) (-2847 (((-1177) $) 26)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 20)) (-1561 (($ $) 24)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 19))) -(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -3908 ((-3 |#1| "failed") $)))) (-1118)) (T -376)) -((-3908 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1118))))) -(-13 (-375 (-400) |#1|) (-10 -8 (-15 -3908 ((-3 |#1| "failed") $)))) -((-3620 (((-1286 (-701 |#2|)) (-1286 $)) 67)) (-4424 (((-701 |#2|) (-1286 $)) 139)) (-1856 ((|#2| $) 36)) (-4402 (((-701 |#2|) $ (-1286 $)) 142)) (-1388 (((-3 $ "failed") $) 89)) (-1832 ((|#2| $) 39)) (-1610 (((-1191 |#2|) $) 98)) (-1320 ((|#2| (-1286 $)) 122)) (-1812 (((-1191 |#2|) $) 32)) (-1744 (((-112)) 116)) (-1339 (($ (-1286 |#2|) (-1286 $)) 132)) (-1999 (((-3 $ "failed") $) 93)) (-1665 (((-112)) 111)) (-1643 (((-112)) 106)) (-1687 (((-112)) 58)) (-4433 (((-701 |#2|) (-1286 $)) 137)) (-1868 ((|#2| $) 35)) (-4413 (((-701 |#2|) $ (-1286 $)) 141)) (-1399 (((-3 $ "failed") $) 87)) (-1844 ((|#2| $) 38)) (-1623 (((-1191 |#2|) $) 97)) (-1329 ((|#2| (-1286 $)) 120)) (-1822 (((-1191 |#2|) $) 30)) (-1756 (((-112)) 115)) (-1655 (((-112)) 108)) (-1675 (((-112)) 56)) (-1700 (((-112)) 103)) (-1732 (((-112)) 117)) (-3629 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) 128)) (-1801 (((-112)) 113)) (-1635 (((-656 (-1286 |#2|))) 102)) (-1779 (((-112)) 114)) (-1790 (((-112)) 112)) (-1768 (((-112)) 51)) (-1721 (((-112)) 118))) -(((-377 |#1| |#2|) (-10 -8 (-15 -1610 ((-1191 |#2|) |#1|)) (-15 -1623 ((-1191 |#2|) |#1|)) (-15 -1635 ((-656 (-1286 |#2|)))) (-15 -1388 ((-3 |#1| "failed") |#1|)) (-15 -1399 ((-3 |#1| "failed") |#1|)) (-15 -1999 ((-3 |#1| "failed") |#1|)) (-15 -1643 ((-112))) (-15 -1655 ((-112))) (-15 -1665 ((-112))) (-15 -1675 ((-112))) (-15 -1687 ((-112))) (-15 -1700 ((-112))) (-15 -1721 ((-112))) (-15 -1732 ((-112))) (-15 -1744 ((-112))) (-15 -1756 ((-112))) (-15 -1768 ((-112))) (-15 -1779 ((-112))) (-15 -1790 ((-112))) (-15 -1801 ((-112))) (-15 -1812 ((-1191 |#2|) |#1|)) (-15 -1822 ((-1191 |#2|) |#1|)) (-15 -4424 ((-701 |#2|) (-1286 |#1|))) (-15 -4433 ((-701 |#2|) (-1286 |#1|))) (-15 -1320 (|#2| (-1286 |#1|))) (-15 -1329 (|#2| (-1286 |#1|))) (-15 -1339 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1832 (|#2| |#1|)) (-15 -1844 (|#2| |#1|)) (-15 -1856 (|#2| |#1|)) (-15 -1868 (|#2| |#1|)) (-15 -4402 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -4413 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -3620 ((-1286 (-701 |#2|)) (-1286 |#1|)))) (-378 |#2|) (-174)) (T -377)) -((-1801 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1790 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1779 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1768 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1756 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1744 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1732 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1700 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1687 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1675 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1665 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1655 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1643 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1635 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1286 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4))))) -(-10 -8 (-15 -1610 ((-1191 |#2|) |#1|)) (-15 -1623 ((-1191 |#2|) |#1|)) (-15 -1635 ((-656 (-1286 |#2|)))) (-15 -1388 ((-3 |#1| "failed") |#1|)) (-15 -1399 ((-3 |#1| "failed") |#1|)) (-15 -1999 ((-3 |#1| "failed") |#1|)) (-15 -1643 ((-112))) (-15 -1655 ((-112))) (-15 -1665 ((-112))) (-15 -1675 ((-112))) (-15 -1687 ((-112))) (-15 -1700 ((-112))) (-15 -1721 ((-112))) (-15 -1732 ((-112))) (-15 -1744 ((-112))) (-15 -1756 ((-112))) (-15 -1768 ((-112))) (-15 -1779 ((-112))) (-15 -1790 ((-112))) (-15 -1801 ((-112))) (-15 -1812 ((-1191 |#2|) |#1|)) (-15 -1822 ((-1191 |#2|) |#1|)) (-15 -4424 ((-701 |#2|) (-1286 |#1|))) (-15 -4433 ((-701 |#2|) (-1286 |#1|))) (-15 -1320 (|#2| (-1286 |#1|))) (-15 -1329 (|#2| (-1286 |#1|))) (-15 -1339 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1832 (|#2| |#1|)) (-15 -1844 (|#2| |#1|)) (-15 -1856 (|#2| |#1|)) (-15 -1868 (|#2| |#1|)) (-15 -4402 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -4413 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -3620 ((-1286 (-701 |#2|)) (-1286 |#1|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4246 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-1459 (((-3 $ "failed") $ $) 20)) (-3620 (((-1286 (-701 |#1|)) (-1286 $)) 83)) (-1879 (((-1286 $)) 86)) (-2473 (($) 18 T CONST)) (-3311 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-1588 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-4424 (((-701 |#1|) (-1286 $)) 70)) (-1856 ((|#1| $) 79)) (-4402 (((-701 |#1|) $ (-1286 $)) 81)) (-1388 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-1420 (($ $ (-937)) 31)) (-1832 ((|#1| $) 77)) (-1610 (((-1191 |#1|) $) 47 (|has| |#1| (-568)))) (-1320 ((|#1| (-1286 $)) 72)) (-1812 (((-1191 |#1|) $) 68)) (-1744 (((-112)) 62)) (-1339 (($ (-1286 |#1|) (-1286 $)) 74)) (-1999 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4423 (((-937)) 85)) (-1711 (((-112)) 59)) (-3593 (($ $ (-937)) 38)) (-1665 (((-112)) 55)) (-1643 (((-112)) 53)) (-1687 (((-112)) 57)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-1597 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-4433 (((-701 |#1|) (-1286 $)) 71)) (-1868 ((|#1| $) 80)) (-4413 (((-701 |#1|) $ (-1286 $)) 82)) (-1399 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-1410 (($ $ (-937)) 32)) (-1844 ((|#1| $) 78)) (-1623 (((-1191 |#1|) $) 48 (|has| |#1| (-568)))) (-1329 ((|#1| (-1286 $)) 73)) (-1822 (((-1191 |#1|) $) 69)) (-1756 (((-112)) 63)) (-3733 (((-1177) $) 10)) (-1655 (((-112)) 54)) (-1675 (((-112)) 56)) (-1700 (((-112)) 58)) (-3914 (((-1138) $) 11)) (-1732 (((-112)) 61)) (-3629 (((-1286 |#1|) $ (-1286 $)) 76) (((-701 |#1|) (-1286 $) (-1286 $)) 75)) (-3158 (((-656 (-968 |#1|)) (-1286 $)) 84)) (-2920 (($ $ $) 28)) (-1801 (((-112)) 67)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1635 (((-656 (-1286 |#1|))) 49 (|has| |#1| (-568)))) (-2931 (($ $ $ $) 29)) (-1779 (((-112)) 65)) (-2908 (($ $ $) 27)) (-1790 (((-112)) 66)) (-1768 (((-112)) 64)) (-1721 (((-112)) 60)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 33)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-378 |#1|) (-141) (-174)) (T -378)) -((-1879 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-378 *3)))) (-4423 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-937)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-656 (-968 *4))))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1286 (-701 *4))))) (-4413 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4402 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3629 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1286 *4)))) (-3629 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1320 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-4433 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4424 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-1822 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3)))) (-1812 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3)))) (-1801 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1790 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1779 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1768 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1756 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1744 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1732 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1721 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1711 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1700 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1687 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1675 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1665 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1655 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1643 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1999 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1399 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1388 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1635 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-656 (-1286 *3))))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1191 *3)))) (-1610 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1191 *3)))) (-3320 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1898 (-656 *1)))) (-4 *1 (-378 *3)))) (-3311 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1898 (-656 *1)))) (-4 *1 (-378 *3)))) (-1597 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-1588 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-4246 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(-13 (-756 |t#1|) (-10 -8 (-15 -1879 ((-1286 $))) (-15 -4423 ((-937))) (-15 -3158 ((-656 (-968 |t#1|)) (-1286 $))) (-15 -3620 ((-1286 (-701 |t#1|)) (-1286 $))) (-15 -4413 ((-701 |t#1|) $ (-1286 $))) (-15 -4402 ((-701 |t#1|) $ (-1286 $))) (-15 -1868 (|t#1| $)) (-15 -1856 (|t#1| $)) (-15 -1844 (|t#1| $)) (-15 -1832 (|t#1| $)) (-15 -3629 ((-1286 |t#1|) $ (-1286 $))) (-15 -3629 ((-701 |t#1|) (-1286 $) (-1286 $))) (-15 -1339 ($ (-1286 |t#1|) (-1286 $))) (-15 -1329 (|t#1| (-1286 $))) (-15 -1320 (|t#1| (-1286 $))) (-15 -4433 ((-701 |t#1|) (-1286 $))) (-15 -4424 ((-701 |t#1|) (-1286 $))) (-15 -1822 ((-1191 |t#1|) $)) (-15 -1812 ((-1191 |t#1|) $)) (-15 -1801 ((-112))) (-15 -1790 ((-112))) (-15 -1779 ((-112))) (-15 -1768 ((-112))) (-15 -1756 ((-112))) (-15 -1744 ((-112))) (-15 -1732 ((-112))) (-15 -1721 ((-112))) (-15 -1711 ((-112))) (-15 -1700 ((-112))) (-15 -1687 ((-112))) (-15 -1675 ((-112))) (-15 -1665 ((-112))) (-15 -1655 ((-112))) (-15 -1643 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -1999 ((-3 $ "failed") $)) (-15 -1399 ((-3 $ "failed") $)) (-15 -1388 ((-3 $ "failed") $)) (-15 -1635 ((-656 (-1286 |t#1|)))) (-15 -1623 ((-1191 |t#1|) $)) (-15 -1610 ((-1191 |t#1|) $)) (-15 -3320 ((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed"))) (-15 -3311 ((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed"))) (-15 -1597 ((-3 $ "failed"))) (-15 -1588 ((-3 $ "failed"))) (-15 -4246 ((-3 $ "failed"))) (-6 -4458)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T)) -((-2862 (((-112) $ $) 7)) (-2416 (((-783)) 17)) (-2080 (($) 14)) (-1875 (((-937) $) 15)) (-3733 (((-1177) $) 10)) (-4318 (($ (-937)) 16)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-379) (-141)) (T -379)) -((-2416 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) (-4318 (*1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-379)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-937)))) (-2080 (*1 *1) (-4 *1 (-379)))) -(-13 (-1118) (-10 -8 (-15 -2416 ((-783))) (-15 -4318 ($ (-937))) (-15 -1875 ((-937) $)) (-15 -2080 ($)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-4355 (((-701 |#2|) (-1286 $)) 45)) (-1339 (($ (-1286 |#2|) (-1286 $)) 39)) (-4342 (((-701 |#2|) $ (-1286 $)) 47)) (-2790 ((|#2| (-1286 $)) 13)) (-3629 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) 27))) -(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -4355 ((-701 |#2|) (-1286 |#1|))) (-15 -2790 (|#2| (-1286 |#1|))) (-15 -1339 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -4342 ((-701 |#2|) |#1| (-1286 |#1|)))) (-381 |#2| |#3|) (-174) (-1262 |#2|)) (T -380)) -NIL -(-10 -8 (-15 -4355 ((-701 |#2|) (-1286 |#1|))) (-15 -2790 (|#2| (-1286 |#1|))) (-15 -1339 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -4342 ((-701 |#2|) |#1| (-1286 |#1|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4355 (((-701 |#1|) (-1286 $)) 53)) (-1448 ((|#1| $) 59)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1339 (($ (-1286 |#1|) (-1286 $)) 55)) (-4342 (((-701 |#1|) $ (-1286 $)) 60)) (-1999 (((-3 $ "failed") $) 37)) (-4423 (((-937)) 61)) (-1439 (((-112) $) 35)) (-1941 ((|#1| $) 58)) (-1922 ((|#2| $) 51 (|has| |#1| (-374)))) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2790 ((|#1| (-1286 $)) 54)) (-3629 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3148 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1776 ((|#2| $) 52)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-381 |#1| |#2|) (-141) (-174) (-1262 |t#1|)) (T -381)) -((-4423 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-937)))) (-4342 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) (-1941 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) (-3629 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *4)))) (-3629 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1262 *4)))) (-2790 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1262 *2)) (-4 *2 (-174)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1262 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -4423 ((-937))) (-15 -4342 ((-701 |t#1|) $ (-1286 $))) (-15 -1448 (|t#1| $)) (-15 -1941 (|t#1| $)) (-15 -3629 ((-1286 |t#1|) $ (-1286 $))) (-15 -3629 ((-701 |t#1|) (-1286 $) (-1286 $))) (-15 -1339 ($ (-1286 |t#1|) (-1286 $))) (-15 -2790 (|t#1| (-1286 $))) (-15 -4355 ((-701 |t#1|) (-1286 $))) (-15 -1776 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -1922 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2176 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2309 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2551 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2551 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2309 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2176 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1236) (-384 |#1|) (-1236) (-384 |#3|)) (T -382)) -((-2176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-2309 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))) -(-10 -7 (-15 -2551 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2309 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2176 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1913 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1891 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2032 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4379 (($ $) 25)) (-2634 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-4214 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-383 |#1| |#2|) (-10 -8 (-15 -1891 (|#1| |#1|)) (-15 -1891 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1913 ((-112) |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -2634 ((-576) |#2| |#1| (-576))) (-15 -2634 ((-576) |#2| |#1|)) (-15 -2634 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1913 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2032 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4379 (|#1| |#1|)) (-15 -4214 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1236)) (T -383)) -NIL -(-10 -8 (-15 -1891 (|#1| |#1|)) (-15 -1891 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1913 ((-112) |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -2634 ((-576) |#2| |#1| (-576))) (-15 -2634 ((-576) |#2| |#1|)) (-15 -2634 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1913 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2032 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4379 (|#1| |#1|)) (-15 -4214 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3336 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) 8)) (-3055 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-2745 (($ $) 93 (|has| $ (-6 -4462)))) (-4379 (($ $) 103)) (-1919 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) 52)) (-2634 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1118)))) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2310 (($ (-783) |#1|) 70)) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 44 (|has| (-576) (-862)))) (-1921 (($ $ $) 90 (|has| |#1| (-862)))) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 45 (|has| (-576) (-862)))) (-4137 (($ $ $) 89 (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2134 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3385 (((-656 (-576)) $) 47)) (-3394 (((-112) (-576) $) 48)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1962 ((|#1| $) 43 (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3346 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) 49)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-3240 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1902 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3079 (($ $) 13)) (-2616 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 72)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3957 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-3970 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-862)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-384 |#1|) (-141) (-1236)) (T -384)) -((-4214 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-4379 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)))) (-2032 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-1913 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-2634 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236)) (-5 *2 (-576)))) (-2634 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-576)))) (-2634 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)))) (-4214 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) (-2032 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) (-1913 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-862)) (-5 *2 (-112)))) (-1902 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-2745 (*1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236)))) (-1891 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4462)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-1891 (*1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862))))) -(-13 (-663 |t#1|) (-10 -8 (-6 -4461) (-15 -4214 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4379 ($ $)) (-15 -2032 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1913 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2634 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1118)) (PROGN (-15 -2634 ((-576) |t#1| $)) (-15 -2634 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-6 (-862)) (-15 -4214 ($ $ $)) (-15 -2032 ($ $)) (-15 -1913 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4462)) (PROGN (-15 -1902 ($ $ $ (-576))) (-15 -2745 ($ $)) (-15 -1891 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-15 -1891 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1118) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-1236) . T)) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-3489 (((-656 |#1|) $) 37)) (-3803 (($ $ (-783)) 38)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-3745 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 41)) (-3725 (($ $) 39)) (-3757 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 42)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3049 (($ $ |#1| $) 36) (($ $ (-656 |#1|) (-656 $)) 35)) (-3813 (((-783) $) 43)) (-2895 (($ $ $) 34)) (-2884 (((-874) $) 12) (($ |#1|) 46) (((-1301 |#1| |#2|) $) 45) (((-1310 |#1| |#2|) $) 44)) (-1755 ((|#2| (-1310 |#1| |#2|) $) 47)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-1926 (($ (-684 |#1|)) 40)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) -(((-385 |#1| |#2|) (-141) (-862) (-174)) (T -385)) -((-1755 (*1 *2 *3 *1) (-12 (-5 *3 (-1310 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) (-4 *2 (-174)))) (-2884 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1301 *3 *4)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1310 *3 *4)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-783)))) (-3757 (*1 *2 *2 *1) (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3745 (*1 *2 *2 *1) (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-3725 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-656 *3)))) (-3049 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-862)) (-4 *5 (-174))))) -(-13 (-646 |t#2|) (-10 -8 (-15 -1755 (|t#2| (-1310 |t#1| |t#2|) $)) (-15 -2884 ($ |t#1|)) (-15 -2884 ((-1301 |t#1| |t#2|) $)) (-15 -2884 ((-1310 |t#1| |t#2|) $)) (-15 -3813 ((-783) $)) (-15 -3757 ((-1310 |t#1| |t#2|) (-1310 |t#1| |t#2|) $)) (-15 -3745 ((-1310 |t#1| |t#2|) (-1310 |t#1| |t#2|) $)) (-15 -1926 ($ (-684 |t#1|))) (-15 -3725 ($ $)) (-15 -3803 ($ $ (-783))) (-15 -3489 ((-656 |t#1|) $)) (-15 -3049 ($ $ |t#1| $)) (-15 -3049 ($ $ (-656 |t#1|) (-656 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-660 |#2|) . T) ((-646 |#2|) . T) ((-652 |#2|) . T) ((-729 |#2|) . T) ((-1069 |#2|) . T) ((-1074 |#2|) . T) ((-1118) . T)) -((-1963 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-1938 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1951 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) -(((-386 |#1| |#2|) (-10 -7 (-15 -1938 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1951 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1963 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1236) (-13 (-384 |#1|) (-10 -7 (-6 -4462)))) (T -386)) -((-1963 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))))) (-1951 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))))) (-1938 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462))))))) -(-10 -7 (-15 -1938 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1951 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1963 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-2613 (((-701 |#2|) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 22) (((-701 (-576)) (-701 $)) 14) (((-701 (-576)) (-1286 $)) NIL))) -(((-387 |#1| |#2|) (-10 -8 (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-701 |#2|) (-701 |#1|))) (-15 -2613 ((-701 |#2|) (-1286 |#1|)))) (-388 |#2|) (-1067)) (T -387)) -NIL -(-10 -8 (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-701 |#2|) (-701 |#1|))) (-15 -2613 ((-701 |#2|) (-1286 |#1|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-2613 (((-701 |#1|) (-1286 $)) 31) (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 29) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 39 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 38 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-1286 $)) 37 (|has| |#1| (-651 (-576))))) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-388 |#1|) (-141) (-1067)) (T -388)) -NIL -(-13 (-651 |t#1|) (-10 -7 (IF (|has| |t#1| (-651 (-576))) (-6 (-651 (-576))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 #0=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-651 #0#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-1118) . T)) -((-2075 (((-656 (-304 (-968 (-171 |#1|)))) (-304 (-419 (-968 (-171 (-576))))) |#1|) 51) (((-656 (-304 (-968 (-171 |#1|)))) (-419 (-968 (-171 (-576)))) |#1|) 50) (((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-304 (-419 (-968 (-171 (-576)))))) |#1|) 47) (((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-419 (-968 (-171 (-576))))) |#1|) 41)) (-2087 (((-656 (-656 (-171 |#1|))) (-656 (-419 (-968 (-171 (-576))))) (-656 (-1195)) |#1|) 30) (((-656 (-171 |#1|)) (-419 (-968 (-171 (-576)))) |#1|) 18))) -(((-389 |#1|) (-10 -7 (-15 -2075 ((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-419 (-968 (-171 (-576))))) |#1|)) (-15 -2075 ((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-304 (-419 (-968 (-171 (-576)))))) |#1|)) (-15 -2075 ((-656 (-304 (-968 (-171 |#1|)))) (-419 (-968 (-171 (-576)))) |#1|)) (-15 -2075 ((-656 (-304 (-968 (-171 |#1|)))) (-304 (-419 (-968 (-171 (-576))))) |#1|)) (-15 -2087 ((-656 (-171 |#1|)) (-419 (-968 (-171 (-576)))) |#1|)) (-15 -2087 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-968 (-171 (-576))))) (-656 (-1195)) |#1|))) (-13 (-374) (-860))) (T -389)) -((-2087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-968 (-171 (-576)))))) (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))) (-2087 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-968 (-171 (-576)))))) (-5 *2 (-656 (-304 (-968 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 (-171 (-576))))) (-5 *2 (-656 (-304 (-968 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-968 (-171 (-576))))))) (-5 *2 (-656 (-656 (-304 (-968 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 (-171 (-576)))))) (-5 *2 (-656 (-656 (-304 (-968 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -2075 ((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-419 (-968 (-171 (-576))))) |#1|)) (-15 -2075 ((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-304 (-419 (-968 (-171 (-576)))))) |#1|)) (-15 -2075 ((-656 (-304 (-968 (-171 |#1|)))) (-419 (-968 (-171 (-576)))) |#1|)) (-15 -2075 ((-656 (-304 (-968 (-171 |#1|)))) (-304 (-419 (-968 (-171 (-576))))) |#1|)) (-15 -2087 ((-656 (-171 |#1|)) (-419 (-968 (-171 (-576)))) |#1|)) (-15 -2087 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-968 (-171 (-576))))) (-656 (-1195)) |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 35)) (-1905 (((-576) $) 62)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-2916 (($ $) 136)) (-3924 (($ $) 98)) (-3787 (($ $) 90)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2474 (($ $) 47)) (-2922 (((-112) $ $) NIL)) (-3898 (($ $) 96)) (-3762 (($ $) 85)) (-3966 (((-576) $) 78)) (-3626 (($ $ (-576)) 73)) (-1522 (($ $) NIL)) (-3808 (($ $) NIL)) (-2473 (($) NIL T CONST)) (-1882 (($ $) 138)) (-2449 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-4401 (((-576) $) 229) (((-419 (-576)) $) 225)) (-2803 (($ $ $) NIL)) (-2063 (((-576) $ $) 125)) (-1999 (((-3 $ "failed") $) 141)) (-2051 (((-419 (-576)) $ (-783)) 232) (((-419 (-576)) $ (-783) (-783)) 224)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1501 (((-937)) 121) (((-937) (-937)) 122 (|has| $ (-6 -4452)))) (-1370 (((-112) $) 130)) (-1632 (($) 41)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-1977 (((-1291) (-783)) 191)) (-1989 (((-1291)) 196) (((-1291) (-783)) 197)) (-2016 (((-1291)) 198) (((-1291) (-783)) 199)) (-2000 (((-1291)) 194) (((-1291) (-783)) 195)) (-2927 (((-576) $) 68)) (-1439 (((-112) $) 40)) (-3298 (($ $ (-576)) NIL)) (-1709 (($ $) 51)) (-1941 (($ $) NIL)) (-1379 (((-112) $) 37)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) NIL) (($) NIL (-12 (-3216 (|has| $ (-6 -4444))) (-3216 (|has| $ (-6 -4452)))))) (-4137 (($ $ $) NIL) (($) NIL (-12 (-3216 (|has| $ (-6 -4444))) (-3216 (|has| $ (-6 -4452)))))) (-3665 (((-576) $) 17)) (-2039 (($) 106) (($ $) 113)) (-3373 (($) 112) (($ $) 114)) (-3464 (($ $) 101)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 143)) (-4216 (((-937) (-576)) 46 (|has| $ (-6 -4452)))) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) 60)) (-1916 (($ $) 135)) (-1540 (($ (-576) (-576)) 131) (($ (-576) (-576) (-937)) 132)) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1359 (((-576) $) 19)) (-2027 (($) 115)) (-2666 (($ $) 95)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-3527 (((-937)) 123) (((-937) (-937)) 124 (|has| $ (-6 -4452)))) (-2390 (($ $) 142) (($ $ (-783)) NIL)) (-4207 (((-937) (-576)) 50 (|has| $ (-6 -4452)))) (-1532 (($ $) NIL)) (-3818 (($ $) NIL)) (-3938 (($ $) NIL)) (-3798 (($ $) NIL)) (-3910 (($ $) 97)) (-3775 (($ $) 89)) (-2616 (((-390) $) 216) (((-227) $) 218) (((-905 (-390)) $) NIL) (((-1177) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-2884 (((-874) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-1871 (((-783)) NIL T CONST)) (-1929 (($ $) 137)) (-4226 (((-937)) 61) (((-937) (-937)) 80 (|has| $ (-6 -4452)))) (-3722 (((-112) $ $) NIL)) (-1549 (((-937)) 126)) (-1570 (($ $) 104)) (-3853 (($ $) 49) (($ $ $) 59)) (-4232 (((-112) $ $) NIL)) (-1545 (($ $) 102)) (-3829 (($ $) 39)) (-1594 (($ $) NIL)) (-3874 (($ $) NIL)) (-2915 (($ $) NIL)) (-3886 (($ $) NIL)) (-1584 (($ $) NIL)) (-3864 (($ $) NIL)) (-1555 (($ $) 103)) (-3840 (($ $) 52)) (-2610 (($ $) 58)) (-1996 (($) 36 T CONST)) (-2011 (($) 43 T CONST)) (-1813 (((-1177) $) 27) (((-1177) $ (-112)) 29) (((-1291) (-834) $) 30) (((-1291) (-834) $ (-112)) 31)) (-3431 (($ $) NIL) (($ $ (-783)) NIL)) (-3983 (((-112) $ $) 203)) (-3957 (((-112) $ $) 45)) (-3915 (((-112) $ $) 56)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 57)) (-4039 (($ $ $) 48) (($ $ (-576)) 42)) (-4029 (($ $) 38) (($ $ $) 53)) (-4017 (($ $ $) 72)) (** (($ $ (-937)) 83) (($ $ (-783)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-937) $) 79) (($ (-783) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-390) (-13 (-416) (-239) (-626 (-1177)) (-840) (-625 (-227)) (-1221) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -4039 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1709 ($ $)) (-15 -2063 ((-576) $ $)) (-15 -3626 ($ $ (-576))) (-15 -2051 ((-419 (-576)) $ (-783))) (-15 -2051 ((-419 (-576)) $ (-783) (-783))) (-15 -2039 ($)) (-15 -3373 ($)) (-15 -2027 ($)) (-15 -3853 ($ $ $)) (-15 -2039 ($ $)) (-15 -3373 ($ $)) (-15 -2016 ((-1291))) (-15 -2016 ((-1291) (-783))) (-15 -2000 ((-1291))) (-15 -2000 ((-1291) (-783))) (-15 -1989 ((-1291))) (-15 -1989 ((-1291) (-783))) (-15 -1977 ((-1291) (-783))) (-6 -4452) (-6 -4444)))) (T -390)) -((** (*1 *1 *1 *1) (-5 *1 (-390))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-1709 (*1 *1 *1) (-5 *1 (-390))) (-2063 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3626 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2051 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-2051 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-2039 (*1 *1) (-5 *1 (-390))) (-3373 (*1 *1) (-5 *1 (-390))) (-2027 (*1 *1) (-5 *1 (-390))) (-3853 (*1 *1 *1 *1) (-5 *1 (-390))) (-2039 (*1 *1 *1) (-5 *1 (-390))) (-3373 (*1 *1 *1) (-5 *1 (-390))) (-2016 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) (-2000 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) (-1989 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390))))) -(-13 (-416) (-239) (-626 (-1177)) (-840) (-625 (-227)) (-1221) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -4039 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1709 ($ $)) (-15 -2063 ((-576) $ $)) (-15 -3626 ($ $ (-576))) (-15 -2051 ((-419 (-576)) $ (-783))) (-15 -2051 ((-419 (-576)) $ (-783) (-783))) (-15 -2039 ($)) (-15 -3373 ($)) (-15 -2027 ($)) (-15 -3853 ($ $ $)) (-15 -2039 ($ $)) (-15 -3373 ($ $)) (-15 -2016 ((-1291))) (-15 -2016 ((-1291) (-783))) (-15 -2000 ((-1291))) (-15 -2000 ((-1291) (-783))) (-15 -1989 ((-1291))) (-15 -1989 ((-1291) (-783))) (-15 -1977 ((-1291) (-783))) (-6 -4452) (-6 -4444))) -((-1525 (((-656 (-304 (-968 |#1|))) (-304 (-419 (-968 (-576)))) |#1|) 46) (((-656 (-304 (-968 |#1|))) (-419 (-968 (-576))) |#1|) 45) (((-656 (-656 (-304 (-968 |#1|)))) (-656 (-304 (-419 (-968 (-576))))) |#1|) 42) (((-656 (-656 (-304 (-968 |#1|)))) (-656 (-419 (-968 (-576)))) |#1|) 36)) (-2097 (((-656 |#1|) (-419 (-968 (-576))) |#1|) 20) (((-656 (-656 |#1|)) (-656 (-419 (-968 (-576)))) (-656 (-1195)) |#1|) 30))) -(((-391 |#1|) (-10 -7 (-15 -1525 ((-656 (-656 (-304 (-968 |#1|)))) (-656 (-419 (-968 (-576)))) |#1|)) (-15 -1525 ((-656 (-656 (-304 (-968 |#1|)))) (-656 (-304 (-419 (-968 (-576))))) |#1|)) (-15 -1525 ((-656 (-304 (-968 |#1|))) (-419 (-968 (-576))) |#1|)) (-15 -1525 ((-656 (-304 (-968 |#1|))) (-304 (-419 (-968 (-576)))) |#1|)) (-15 -2097 ((-656 (-656 |#1|)) (-656 (-419 (-968 (-576)))) (-656 (-1195)) |#1|)) (-15 -2097 ((-656 |#1|) (-419 (-968 (-576))) |#1|))) (-13 (-860) (-374))) (T -391)) -((-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2097 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-968 (-576))))) (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-860) (-374))))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-968 (-576))))) (-5 *2 (-656 (-304 (-968 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 (-576)))) (-5 *2 (-656 (-304 (-968 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-968 (-576)))))) (-5 *2 (-656 (-656 (-304 (-968 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 (-576))))) (-5 *2 (-656 (-656 (-304 (-968 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374)))))) -(-10 -7 (-15 -1525 ((-656 (-656 (-304 (-968 |#1|)))) (-656 (-419 (-968 (-576)))) |#1|)) (-15 -1525 ((-656 (-656 (-304 (-968 |#1|)))) (-656 (-304 (-419 (-968 (-576))))) |#1|)) (-15 -1525 ((-656 (-304 (-968 |#1|))) (-419 (-968 (-576))) |#1|)) (-15 -1525 ((-656 (-304 (-968 |#1|))) (-304 (-419 (-968 (-576)))) |#1|)) (-15 -2097 ((-656 (-656 |#1|)) (-656 (-419 (-968 (-576)))) (-656 (-1195)) |#1|)) (-15 -2097 ((-656 |#1|) (-419 (-968 (-576))) |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) 30)) (-4401 ((|#2| $) 32)) (-4407 (($ $) NIL)) (-1518 (((-783) $) 11)) (-1876 (((-656 $) $) 23)) (-3734 (((-112) $) NIL)) (-3694 (($ |#2| |#1|) 21)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2107 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-4371 ((|#2| $) 18)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 51) (($ |#2|) 31)) (-1993 (((-656 |#1|) $) 20)) (-3245 ((|#1| $ |#2|) 55)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 33 T CONST)) (-3993 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-392 |#1| |#2|) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1067) (-862)) (T -392)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-862))))) -(-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-2449 (((-3 |#2| "failed") $) 49)) (-4401 ((|#2| $) 50)) (-4407 (($ $) 35)) (-1518 (((-783) $) 39)) (-1876 (((-656 $) $) 40)) (-3734 (((-112) $) 43)) (-3694 (($ |#2| |#1|) 44)) (-2551 (($ (-1 |#1| |#1|) $) 45)) (-2107 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-4371 ((|#2| $) 38)) (-4383 ((|#1| $) 37)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ |#2|) 48)) (-1993 (((-656 |#1|) $) 41)) (-3245 ((|#1| $ |#2|) 46)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3993 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-393 |#1| |#2|) (-141) (-1067) (-1118)) (T -393)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1118)))) (-3245 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1067)))) (-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)))) (-3694 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1118)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-656 *3)))) (-1876 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-656 *1)) (-4 *1 (-393 *3 *4)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-783)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1118)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1067)))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4407 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1118))))) -(-13 (-111 |t#1| |t#1|) (-1056 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3245 (|t#1| $ |t#2|)) (-15 -2551 ($ (-1 |t#1| |t#1|) $)) (-15 -3694 ($ |t#2| |t#1|)) (-15 -3734 ((-112) $)) (-15 -3993 ((-656 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1993 ((-656 |t#1|) $)) (-15 -1876 ((-656 $) $)) (-15 -1518 ((-783) $)) (-15 -4371 (|t#2| $)) (-15 -4383 (|t#1| $)) (-15 -2107 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4407 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1056 |#2|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T)) -((-2251 (((-1291) $) 7)) (-2884 (((-874) $) 8) (($ (-701 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 11))) +((-3463 (($ $) 6)) (-2665 (($ $) 7)) (** (($ $ $) 8))) +(((-293) (-141)) (T -293)) +((** (*1 *1 *1 *1) (-4 *1 (-293))) (-2665 (*1 *1 *1) (-4 *1 (-293))) (-3463 (*1 *1 *1) (-4 *1 (-293)))) +(-13 (-10 -8 (-15 -3463 ($ $)) (-15 -2665 ($ $)) (-15 ** ($ $ $)))) +((-1642 (((-655 (-1174 |#1|)) (-1174 |#1|) |#1|) 35)) (-3072 ((|#2| |#2| |#1|) 39)) (-2013 ((|#2| |#2| |#1|) 41)) (-3333 ((|#2| |#2| |#1|) 40))) +(((-294 |#1| |#2|) (-10 -7 (-15 -3072 (|#2| |#2| |#1|)) (-15 -3333 (|#2| |#2| |#1|)) (-15 -2013 (|#2| |#2| |#1|)) (-15 -1642 ((-655 (-1174 |#1|)) (-1174 |#1|) |#1|))) (-373) (-1276 |#1|)) (T -294)) +((-1642 (*1 *2 *3 *4) (-12 (-4 *4 (-373)) (-5 *2 (-655 (-1174 *4))) (-5 *1 (-294 *4 *5)) (-5 *3 (-1174 *4)) (-4 *5 (-1276 *4)))) (-2013 (*1 *2 *2 *3) (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3)))) (-3333 (*1 *2 *2 *3) (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3)))) (-3072 (*1 *2 *2 *3) (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3))))) +(-10 -7 (-15 -3072 (|#2| |#2| |#1|)) (-15 -3333 (|#2| |#2| |#1|)) (-15 -2013 (|#2| |#2| |#1|)) (-15 -1642 ((-655 (-1174 |#1|)) (-1174 |#1|) |#1|))) +((-2070 ((|#2| $ |#1|) 6))) +(((-295 |#1| |#2|) (-141) (-1235) (-1235)) (T -295)) +((-2070 (*1 *2 *1 *3) (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1235)) (-4 *2 (-1235))))) +(-13 (-1235) (-10 -8 (-15 -2070 (|t#2| $ |t#1|)))) +(((-1235) . T)) +((-2859 ((|#3| $ |#2| |#3|) 12)) (-2788 ((|#3| $ |#2|) 10))) +(((-296 |#1| |#2| |#3|) (-10 -8 (-15 -2859 (|#3| |#1| |#2| |#3|)) (-15 -2788 (|#3| |#1| |#2|))) (-297 |#2| |#3|) (-1117) (-1235)) (T -296)) +NIL +(-10 -8 (-15 -2859 (|#3| |#1| |#2| |#3|)) (-15 -2788 (|#3| |#1| |#2|))) +((-3054 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4461)))) (-2859 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4461)))) (-2788 ((|#2| $ |#1|) 11)) (-2070 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-297 |#1| |#2|) (-141) (-1117) (-1235)) (T -297)) +((-2070 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235)))) (-2788 (*1 *2 *1 *3) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235)))) (-3054 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235)))) (-2859 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235))))) +(-13 (-295 |t#1| |t#2|) (-10 -8 (-15 -2070 (|t#2| $ |t#1| |t#2|)) (-15 -2788 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3054 (|t#2| $ |t#1| |t#2|)) (-15 -2859 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-295 |#1| |#2|) . T) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 37)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 44)) (-1540 (($ $) 41)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2279 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-2802 (($ $ $) 35)) (-2308 (($ |#2| |#3|) 18)) (-1747 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1542 (((-112) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3486 ((|#3| $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 19)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1692 (((-3 $ "failed") $ $) NIL)) (-3708 (((-782) $) 36)) (-2070 ((|#2| $ |#2|) 46)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 23)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-1996 (($) 31 T CONST)) (-2009 (($) 39 T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 40))) +(((-298 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-316) (-295 |#2| |#2|) (-10 -8 (-15 -3486 (|#3| $)) (-15 -2883 (|#2| $)) (-15 -2308 ($ |#2| |#3|)) (-15 -1692 ((-3 $ "failed") $ $)) (-15 -1747 ((-3 $ "failed") $)) (-15 -4332 ($ $)))) (-174) (-1261 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -298)) +((-1747 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3486 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-298 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1261 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2883 (*1 *2 *1) (-12 (-4 *2 (-1261 *3)) (-5 *1 (-298 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2308 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-298 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1261 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1692 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4332 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) +(-13 (-316) (-295 |#2| |#2|) (-10 -8 (-15 -3486 (|#3| $)) (-15 -2883 (|#2| $)) (-15 -2308 ($ |#2| |#3|)) (-15 -1692 ((-3 $ "failed") $ $)) (-15 -1747 ((-3 $ "failed") $)) (-15 -4332 ($ $)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-575)) 33)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-299) (-141)) (T -299)) +NIL +(-13 (-1066) (-111 $ $) (-10 -7 (-6 -4453))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2954 (((-655 (-1102)) $) 10)) (-2784 (($ (-517) (-517) (-1121) $) 19)) (-2014 (($ (-517) (-655 (-980)) $) 23)) (-3223 (($) 25)) (-4296 (((-702 (-1121)) (-517) (-517) $) 18)) (-1594 (((-655 (-980)) (-517) $) 22)) (-1938 (($) 7)) (-3916 (($) 24)) (-2883 (((-873) $) 29)) (-1446 (($) 26))) +(((-300) (-13 (-624 (-873)) (-10 -8 (-15 -1938 ($)) (-15 -2954 ((-655 (-1102)) $)) (-15 -4296 ((-702 (-1121)) (-517) (-517) $)) (-15 -2784 ($ (-517) (-517) (-1121) $)) (-15 -1594 ((-655 (-980)) (-517) $)) (-15 -2014 ($ (-517) (-655 (-980)) $)) (-15 -3916 ($)) (-15 -3223 ($)) (-15 -1446 ($))))) (T -300)) +((-1938 (*1 *1) (-5 *1 (-300))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-655 (-1102))) (-5 *1 (-300)))) (-4296 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-1121))) (-5 *1 (-300)))) (-2784 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-517)) (-5 *3 (-1121)) (-5 *1 (-300)))) (-1594 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-655 (-980))) (-5 *1 (-300)))) (-2014 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-517)) (-5 *3 (-655 (-980))) (-5 *1 (-300)))) (-3916 (*1 *1) (-5 *1 (-300))) (-3223 (*1 *1) (-5 *1 (-300))) (-1446 (*1 *1) (-5 *1 (-300)))) +(-13 (-624 (-873)) (-10 -8 (-15 -1938 ($)) (-15 -2954 ((-655 (-1102)) $)) (-15 -4296 ((-702 (-1121)) (-517) (-517) $)) (-15 -2784 ($ (-517) (-517) (-1121) $)) (-15 -1594 ((-655 (-980)) (-517) $)) (-15 -2014 ($ (-517) (-655 (-980)) $)) (-15 -3916 ($)) (-15 -3223 ($)) (-15 -1446 ($)))) +((-3196 (((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |geneigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|)))) 102)) (-3559 (((-655 (-700 (-418 (-967 |#1|)))) (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|)))))) (-700 (-418 (-967 |#1|)))) 97) (((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|))) (-782) (-782)) 41)) (-3576 (((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|)))) 99)) (-2188 (((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|)))) 75)) (-2617 (((-655 (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (-700 (-418 (-967 |#1|)))) 74)) (-2551 (((-967 |#1|) (-700 (-418 (-967 |#1|)))) 55) (((-967 |#1|) (-700 (-418 (-967 |#1|))) (-1194)) 56))) +(((-301 |#1|) (-10 -7 (-15 -2551 ((-967 |#1|) (-700 (-418 (-967 |#1|))) (-1194))) (-15 -2551 ((-967 |#1|) (-700 (-418 (-967 |#1|))))) (-15 -2617 ((-655 (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (-700 (-418 (-967 |#1|))))) (-15 -2188 ((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|))))) (-15 -3559 ((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|))) (-782) (-782))) (-15 -3559 ((-655 (-700 (-418 (-967 |#1|)))) (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|)))))) (-700 (-418 (-967 |#1|))))) (-15 -3196 ((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |geneigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|))))) (-15 -3576 ((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|)))))) (-463)) (T -301)) +((-3576 (*1 *2 *3) (-12 (-4 *4 (-463)) (-5 *2 (-655 (-2 (|:| |eigval| (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 *4)))))))) (-5 *1 (-301 *4)) (-5 *3 (-700 (-418 (-967 *4)))))) (-3196 (*1 *2 *3) (-12 (-4 *4 (-463)) (-5 *2 (-655 (-2 (|:| |eigval| (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4)))) (|:| |geneigvec| (-655 (-700 (-418 (-967 *4)))))))) (-5 *1 (-301 *4)) (-5 *3 (-700 (-418 (-967 *4)))))) (-3559 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-418 (-967 *5)) (-1183 (-1194) (-967 *5)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 *4)))) (-4 *5 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *5))))) (-5 *1 (-301 *5)) (-5 *4 (-700 (-418 (-967 *5)))))) (-3559 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-418 (-967 *6)) (-1183 (-1194) (-967 *6)))) (-5 *5 (-782)) (-4 *6 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *6))))) (-5 *1 (-301 *6)) (-5 *4 (-700 (-418 (-967 *6)))))) (-2188 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-418 (-967 *5)) (-1183 (-1194) (-967 *5)))) (-4 *5 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *5))))) (-5 *1 (-301 *5)) (-5 *4 (-700 (-418 (-967 *5)))))) (-2617 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-967 *4)))) (-4 *4 (-463)) (-5 *2 (-655 (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4))))) (-5 *1 (-301 *4)))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-967 *4)))) (-5 *2 (-967 *4)) (-5 *1 (-301 *4)) (-4 *4 (-463)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-418 (-967 *5)))) (-5 *4 (-1194)) (-5 *2 (-967 *5)) (-5 *1 (-301 *5)) (-4 *5 (-463))))) +(-10 -7 (-15 -2551 ((-967 |#1|) (-700 (-418 (-967 |#1|))) (-1194))) (-15 -2551 ((-967 |#1|) (-700 (-418 (-967 |#1|))))) (-15 -2617 ((-655 (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (-700 (-418 (-967 |#1|))))) (-15 -2188 ((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|))))) (-15 -3559 ((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|))) (-782) (-782))) (-15 -3559 ((-655 (-700 (-418 (-967 |#1|)))) (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|)))))) (-700 (-418 (-967 |#1|))))) (-15 -3196 ((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |geneigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|))))) (-15 -3576 ((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|)))))) +((-2550 (((-303 |#2|) (-1 |#2| |#1|) (-303 |#1|)) 14))) +(((-302 |#1| |#2|) (-10 -7 (-15 -2550 ((-303 |#2|) (-1 |#2| |#1|) (-303 |#1|)))) (-1235) (-1235)) (T -302)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-303 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-303 *6)) (-5 *1 (-302 *5 *6))))) +(-10 -7 (-15 -2550 ((-303 |#2|) (-1 |#2| |#1|) (-303 |#1|)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3799 (((-112) $) NIL (|has| |#1| (-21)))) (-1973 (($ $) 12)) (-2597 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1473 (($ $ $) 95 (|has| |#1| (-311)))) (-3011 (($) NIL (-3765 (|has| |#1| (-21)) (|has| |#1| (-737))) CONST)) (-4115 (($ $) 51 (|has| |#1| (-21)))) (-2798 (((-3 $ "failed") $) 62 (|has| |#1| (-737)))) (-3892 ((|#1| $) 11)) (-1747 (((-3 $ "failed") $) 60 (|has| |#1| (-737)))) (-1542 (((-112) $) NIL (|has| |#1| (-737)))) (-2550 (($ (-1 |#1| |#1|) $) 14)) (-3880 ((|#1| $) 10)) (-2428 (($ $) 50 (|has| |#1| (-21)))) (-4434 (((-3 $ "failed") $) 61 (|has| |#1| (-737)))) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4332 (($ $) 64 (-3765 (|has| |#1| (-373)) (|has| |#1| (-484))))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2950 (((-655 $) $) 85 (|has| |#1| (-567)))) (-3048 (($ $ $) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 $)) 28 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-1194) |#1|) 17 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 21 (|has| |#1| (-525 (-1194) |#1|)))) (-2676 (($ |#1| |#1|) 9)) (-4386 (((-135)) 90 (|has| |#1| (-373)))) (-2389 (($ $ (-1194)) 87 (|has| |#1| (-913 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-913 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-913 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-913 (-1194))))) (-4258 (($ $ $) NIL (|has| |#1| (-484)))) (-3320 (($ $ $) NIL (|has| |#1| (-484)))) (-2883 (($ (-575)) NIL (|has| |#1| (-1066))) (((-112) $) 37 (|has| |#1| (-1117))) (((-873) $) 36 (|has| |#1| (-1117)))) (-3759 (((-782)) 67 (|has| |#1| (-1066)) CONST)) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1996 (($) 47 (|has| |#1| (-21)) CONST)) (-2009 (($) 57 (|has| |#1| (-737)) CONST)) (-3430 (($ $ (-1194)) NIL (|has| |#1| (-913 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-913 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-913 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-913 (-1194))))) (-3914 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1117)))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) 92 (-3765 (|has| |#1| (-373)) (|has| |#1| (-484))))) (-4028 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-4016 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-575)) NIL (|has| |#1| (-484))) (($ $ (-782)) NIL (|has| |#1| (-737))) (($ $ (-936)) NIL (|has| |#1| (-1129)))) (* (($ $ |#1|) 55 (|has| |#1| (-1129))) (($ |#1| $) 54 (|has| |#1| (-1129))) (($ $ $) 53 (|has| |#1| (-1129))) (($ (-575) $) 70 (|has| |#1| (-21))) (($ (-782) $) NIL (|has| |#1| (-21))) (($ (-936) $) NIL (|has| |#1| (-25))))) +(((-303 |#1|) (-13 (-1235) (-10 -8 (-15 -3914 ($ |#1| |#1|)) (-15 -2676 ($ |#1| |#1|)) (-15 -1973 ($ $)) (-15 -3880 (|#1| $)) (-15 -3892 (|#1| $)) (-15 -2550 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-525 (-1194) |#1|)) (-6 (-525 (-1194) |#1|)) |%noBranch|) (IF (|has| |#1| (-1117)) (PROGN (-6 (-1117)) (-6 (-624 (-112))) (IF (|has| |#1| (-318 |#1|)) (PROGN (-15 -3048 ($ $ $)) (-15 -3048 ($ $ (-655 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4016 ($ |#1| $)) (-15 -4016 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2428 ($ $)) (-15 -4115 ($ $)) (-15 -4028 ($ |#1| $)) (-15 -4028 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1129)) (PROGN (-6 (-1129)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-737)) (PROGN (-6 (-737)) (-15 -4434 ((-3 $ "failed") $)) (-15 -2798 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-6 (-484)) (-15 -4434 ((-3 $ "failed") $)) (-15 -2798 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-6 (-1066)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-728 |#1|)) |%noBranch|) (IF (|has| |#1| (-567)) (-15 -2950 ((-655 $) $)) |%noBranch|) (IF (|has| |#1| (-913 (-1194))) (-6 (-913 (-1194))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-6 (-1292 |#1|)) (-15 -4038 ($ $ $)) (-15 -4332 ($ $))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -1473 ($ $ $)) |%noBranch|))) (-1235)) (T -303)) +((-3914 (*1 *1 *2 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) (-2676 (*1 *1 *2 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) (-1973 (*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) (-3880 (*1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) (-3892 (*1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) (-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-303 *3)))) (-3048 (*1 *1 *1 *1) (-12 (-4 *2 (-318 *2)) (-4 *2 (-1117)) (-4 *2 (-1235)) (-5 *1 (-303 *2)))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-303 *3))) (-4 *3 (-318 *3)) (-4 *3 (-1117)) (-4 *3 (-1235)) (-5 *1 (-303 *3)))) (-4016 (*1 *1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-25)) (-4 *2 (-1235)))) (-4016 (*1 *1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-25)) (-4 *2 (-1235)))) (-2428 (*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))) (-4115 (*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))) (-4028 (*1 *1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))) (-4028 (*1 *1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))) (-4434 (*1 *1 *1) (|partial| -12 (-5 *1 (-303 *2)) (-4 *2 (-737)) (-4 *2 (-1235)))) (-2798 (*1 *1 *1) (|partial| -12 (-5 *1 (-303 *2)) (-4 *2 (-737)) (-4 *2 (-1235)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-655 (-303 *3))) (-5 *1 (-303 *3)) (-4 *3 (-567)) (-4 *3 (-1235)))) (-1473 (*1 *1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-311)) (-4 *2 (-1235)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1129)) (-4 *2 (-1235)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1129)) (-4 *2 (-1235)))) (-4038 (*1 *1 *1 *1) (-3765 (-12 (-5 *1 (-303 *2)) (-4 *2 (-373)) (-4 *2 (-1235))) (-12 (-5 *1 (-303 *2)) (-4 *2 (-484)) (-4 *2 (-1235))))) (-4332 (*1 *1 *1) (-3765 (-12 (-5 *1 (-303 *2)) (-4 *2 (-373)) (-4 *2 (-1235))) (-12 (-5 *1 (-303 *2)) (-4 *2 (-484)) (-4 *2 (-1235)))))) +(-13 (-1235) (-10 -8 (-15 -3914 ($ |#1| |#1|)) (-15 -2676 ($ |#1| |#1|)) (-15 -1973 ($ $)) (-15 -3880 (|#1| $)) (-15 -3892 (|#1| $)) (-15 -2550 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-525 (-1194) |#1|)) (-6 (-525 (-1194) |#1|)) |%noBranch|) (IF (|has| |#1| (-1117)) (PROGN (-6 (-1117)) (-6 (-624 (-112))) (IF (|has| |#1| (-318 |#1|)) (PROGN (-15 -3048 ($ $ $)) (-15 -3048 ($ $ (-655 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4016 ($ |#1| $)) (-15 -4016 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2428 ($ $)) (-15 -4115 ($ $)) (-15 -4028 ($ |#1| $)) (-15 -4028 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1129)) (PROGN (-6 (-1129)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-737)) (PROGN (-6 (-737)) (-15 -4434 ((-3 $ "failed") $)) (-15 -2798 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-6 (-484)) (-15 -4434 ((-3 $ "failed") $)) (-15 -2798 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-6 (-1066)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-728 |#1|)) |%noBranch|) (IF (|has| |#1| (-567)) (-15 -2950 ((-655 $) $)) |%noBranch|) (IF (|has| |#1| (-913 (-1194))) (-6 (-913 (-1194))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-6 (-1292 |#1|)) (-15 -4038 ($ $ $)) (-15 -4332 ($ $))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -1473 ($ $ $)) |%noBranch|))) +((-2861 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2297 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4161 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#2| $ |#1| |#2|) NIL)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1399 (((-3 |#2| "failed") |#1| $) NIL)) (-3011 (($) NIL T CONST)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-4404 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) NIL)) (-3633 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#2| $ |#1|) NIL)) (-4001 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 ((|#1| $) NIL (|has| |#1| (-861)))) (-3955 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3197 ((|#1| $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2001 (((-655 |#1|) $) NIL)) (-3308 (((-112) |#1| $) NIL)) (-4012 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3862 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4310 (((-655 |#1|) $) NIL)) (-2969 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1961 ((|#2| $) NIL (|has| |#1| (-861)))) (-3704 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-3954 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3601 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2883 (((-873) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-4400 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-304 |#1| |#2|) (-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) (-1117) (-1117)) (T -304)) +NIL +(-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) +((-3084 (((-321) (-1176) (-655 (-1176))) 17) (((-321) (-1176) (-1176)) 16) (((-321) (-655 (-1176))) 15) (((-321) (-1176)) 14))) +(((-305) (-10 -7 (-15 -3084 ((-321) (-1176))) (-15 -3084 ((-321) (-655 (-1176)))) (-15 -3084 ((-321) (-1176) (-1176))) (-15 -3084 ((-321) (-1176) (-655 (-1176)))))) (T -305)) +((-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-1176))) (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-305)))) (-3084 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-305)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-321)) (-5 *1 (-305)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-305))))) +(-10 -7 (-15 -3084 ((-321) (-1176))) (-15 -3084 ((-321) (-655 (-1176)))) (-15 -3084 ((-321) (-1176) (-1176))) (-15 -3084 ((-321) (-1176) (-655 (-1176))))) +((-2550 ((|#2| (-1 |#2| |#1|) (-1176) (-623 |#1|)) 18))) +(((-306 |#1| |#2|) (-10 -7 (-15 -2550 (|#2| (-1 |#2| |#1|) (-1176) (-623 |#1|)))) (-311) (-1235)) (T -306)) +((-2550 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1176)) (-5 *5 (-623 *6)) (-4 *6 (-311)) (-4 *2 (-1235)) (-5 *1 (-306 *6 *2))))) +(-10 -7 (-15 -2550 (|#2| (-1 |#2| |#1|) (-1176) (-623 |#1|)))) +((-2550 ((|#2| (-1 |#2| |#1|) (-623 |#1|)) 17))) +(((-307 |#1| |#2|) (-10 -7 (-15 -2550 (|#2| (-1 |#2| |#1|) (-623 |#1|)))) (-311) (-311)) (T -307)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-623 *5)) (-4 *5 (-311)) (-4 *2 (-311)) (-5 *1 (-307 *5 *2))))) +(-10 -7 (-15 -2550 (|#2| (-1 |#2| |#1|) (-623 |#1|)))) +((-3726 (((-112) (-227)) 12))) +(((-308 |#1| |#2|) (-10 -7 (-15 -3726 ((-112) (-227)))) (-227) (-227)) (T -308)) +((-3726 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-308 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3726 ((-112) (-227)))) +((-1967 (((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227)))) 118)) (-1690 (((-1174 (-227)) (-1285 (-325 (-227))) (-655 (-1194)) (-1111 (-854 (-227)))) 135) (((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227)))) 72)) (-2937 (((-655 (-1176)) (-1174 (-227))) NIL)) (-3561 (((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227)))) 69)) (-1612 (((-655 (-227)) (-967 (-418 (-575))) (-1194) (-1111 (-854 (-227)))) 59)) (-3200 (((-655 (-1176)) (-655 (-227))) NIL)) (-2403 (((-227) (-1111 (-854 (-227)))) 29)) (-3919 (((-227) (-1111 (-854 (-227)))) 30)) (-1737 (((-112) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-1688 (((-1176) (-227)) NIL))) +(((-309) (-10 -7 (-15 -2403 ((-227) (-1111 (-854 (-227))))) (-15 -3919 ((-227) (-1111 (-854 (-227))))) (-15 -1737 ((-112) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3561 ((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227))))) (-15 -1967 ((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -1690 ((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -1690 ((-1174 (-227)) (-1285 (-325 (-227))) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -1612 ((-655 (-227)) (-967 (-418 (-575))) (-1194) (-1111 (-854 (-227))))) (-15 -1688 ((-1176) (-227))) (-15 -3200 ((-655 (-1176)) (-655 (-227)))) (-15 -2937 ((-655 (-1176)) (-1174 (-227)))))) (T -309)) +((-2937 (*1 *2 *3) (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-309)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-309)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-309)))) (-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *4 (-1194)) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-309)))) (-1690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *4 (-655 (-1194))) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309)))) (-1690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-227))) (-5 *4 (-655 (-1194))) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309)))) (-1967 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-227))) (-5 *4 (-655 (-1194))) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309)))) (-3561 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-227))) (-5 *4 (-1194)) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-309)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-309)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-309)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-309))))) +(-10 -7 (-15 -2403 ((-227) (-1111 (-854 (-227))))) (-15 -3919 ((-227) (-1111 (-854 (-227))))) (-15 -1737 ((-112) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3561 ((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227))))) (-15 -1967 ((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -1690 ((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -1690 ((-1174 (-227)) (-1285 (-325 (-227))) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -1612 ((-655 (-227)) (-967 (-418 (-575))) (-1194) (-1111 (-854 (-227))))) (-15 -1688 ((-1176) (-227))) (-15 -3200 ((-655 (-1176)) (-655 (-227)))) (-15 -2937 ((-655 (-1176)) (-1174 (-227))))) +((-4270 (((-655 (-623 $)) $) 27)) (-1473 (($ $ (-303 $)) 78) (($ $ (-655 (-303 $))) 139) (($ $ (-655 (-623 $)) (-655 $)) NIL)) (-2449 (((-3 (-623 $) "failed") $) 127)) (-4399 (((-623 $) $) 126)) (-2092 (($ $) 17) (($ (-655 $)) 54)) (-2622 (((-655 (-115)) $) 35)) (-2572 (((-115) (-115)) 88)) (-2437 (((-112) $) 150)) (-2550 (($ (-1 $ $) (-623 $)) 86)) (-4306 (((-3 (-623 $) "failed") $) 94)) (-1672 (($ (-115) $) 59) (($ (-115) (-655 $)) 110)) (-3789 (((-112) $ (-115)) 132) (((-112) $ (-1194)) 131)) (-3343 (((-782) $) 44)) (-2878 (((-112) $ $) 57) (((-112) $ (-1194)) 49)) (-2185 (((-112) $) 148)) (-3048 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL) (($ $ (-655 (-303 $))) 137) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) 81) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-1194) (-1 $ (-655 $))) 67) (($ $ (-1194) (-1 $ $)) 72) (($ $ (-655 (-115)) (-655 (-1 $ $))) 80) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) 82) (($ $ (-115) (-1 $ (-655 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2070 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-655 $)) 123)) (-3146 (($ $) 51) (($ $ $) 135)) (-2377 (($ $) 15) (($ (-655 $)) 53)) (-2151 (((-112) (-115)) 21))) +(((-310 |#1|) (-10 -8 (-15 -2437 ((-112) |#1|)) (-15 -2185 ((-112) |#1|)) (-15 -3048 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3048 (|#1| |#1| (-115) (-1 |#1| (-655 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3048 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| |#1|)))) (-15 -3048 (|#1| |#1| (-1194) (-1 |#1| |#1|))) (-15 -3048 (|#1| |#1| (-1194) (-1 |#1| (-655 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| |#1|)))) (-15 -2878 ((-112) |#1| (-1194))) (-15 -2878 ((-112) |#1| |#1|)) (-15 -2550 (|#1| (-1 |#1| |#1|) (-623 |#1|))) (-15 -1672 (|#1| (-115) (-655 |#1|))) (-15 -1672 (|#1| (-115) |#1|)) (-15 -3789 ((-112) |#1| (-1194))) (-15 -3789 ((-112) |#1| (-115))) (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 -2622 ((-655 (-115)) |#1|)) (-15 -4270 ((-655 (-623 |#1|)) |#1|)) (-15 -4306 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -3343 ((-782) |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -2092 (|#1| (-655 |#1|))) (-15 -2092 (|#1| |#1|)) (-15 -2377 (|#1| (-655 |#1|))) (-15 -2377 (|#1| |#1|)) (-15 -1473 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -1473 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1473 (|#1| |#1| (-303 |#1|))) (-15 -2070 (|#1| (-115) (-655 |#1|))) (-15 -2070 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1|)) (-15 -3048 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| (-303 |#1|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -3048 (|#1| |#1| (-623 |#1|) |#1|)) (-15 -2449 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -4399 ((-623 |#1|) |#1|))) (-311)) (T -310)) +((-2572 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-310 *3)) (-4 *3 (-311)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-310 *4)) (-4 *4 (-311))))) +(-10 -8 (-15 -2437 ((-112) |#1|)) (-15 -2185 ((-112) |#1|)) (-15 -3048 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3048 (|#1| |#1| (-115) (-1 |#1| (-655 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3048 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| |#1|)))) (-15 -3048 (|#1| |#1| (-1194) (-1 |#1| |#1|))) (-15 -3048 (|#1| |#1| (-1194) (-1 |#1| (-655 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| |#1|)))) (-15 -2878 ((-112) |#1| (-1194))) (-15 -2878 ((-112) |#1| |#1|)) (-15 -2550 (|#1| (-1 |#1| |#1|) (-623 |#1|))) (-15 -1672 (|#1| (-115) (-655 |#1|))) (-15 -1672 (|#1| (-115) |#1|)) (-15 -3789 ((-112) |#1| (-1194))) (-15 -3789 ((-112) |#1| (-115))) (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 -2622 ((-655 (-115)) |#1|)) (-15 -4270 ((-655 (-623 |#1|)) |#1|)) (-15 -4306 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -3343 ((-782) |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3146 (|#1| |#1|)) (-15 -2092 (|#1| (-655 |#1|))) (-15 -2092 (|#1| |#1|)) (-15 -2377 (|#1| (-655 |#1|))) (-15 -2377 (|#1| |#1|)) (-15 -1473 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -1473 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1473 (|#1| |#1| (-303 |#1|))) (-15 -2070 (|#1| (-115) (-655 |#1|))) (-15 -2070 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1|)) (-15 -3048 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| (-303 |#1|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -3048 (|#1| |#1| (-623 |#1|) |#1|)) (-15 -2449 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -4399 ((-623 |#1|) |#1|))) +((-2861 (((-112) $ $) 7)) (-4270 (((-655 (-623 $)) $) 39)) (-1473 (($ $ (-303 $)) 51) (($ $ (-655 (-303 $))) 50) (($ $ (-655 (-623 $)) (-655 $)) 49)) (-2449 (((-3 (-623 $) "failed") $) 64)) (-4399 (((-623 $) $) 65)) (-2092 (($ $) 46) (($ (-655 $)) 45)) (-2622 (((-655 (-115)) $) 38)) (-2572 (((-115) (-115)) 37)) (-2437 (((-112) $) 17 (|has| $ (-1055 (-575))))) (-4347 (((-1190 $) (-623 $)) 20 (|has| $ (-1066)))) (-2550 (($ (-1 $ $) (-623 $)) 31)) (-4306 (((-3 (-623 $) "failed") $) 41)) (-2288 (((-1176) $) 10)) (-2557 (((-655 (-623 $)) $) 40)) (-1672 (($ (-115) $) 33) (($ (-115) (-655 $)) 32)) (-3789 (((-112) $ (-115)) 35) (((-112) $ (-1194)) 34)) (-3343 (((-782) $) 42)) (-3912 (((-1137) $) 11)) (-2878 (((-112) $ $) 30) (((-112) $ (-1194)) 29)) (-2185 (((-112) $) 18 (|has| $ (-1055 (-575))))) (-3048 (($ $ (-623 $) $) 62) (($ $ (-655 (-623 $)) (-655 $)) 61) (($ $ (-655 (-303 $))) 60) (($ $ (-303 $)) 59) (($ $ $ $) 58) (($ $ (-655 $) (-655 $)) 57) (($ $ (-655 (-1194)) (-655 (-1 $ $))) 28) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) 27) (($ $ (-1194) (-1 $ (-655 $))) 26) (($ $ (-1194) (-1 $ $)) 25) (($ $ (-655 (-115)) (-655 (-1 $ $))) 24) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) 23) (($ $ (-115) (-1 $ (-655 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2070 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-655 $)) 52)) (-3146 (($ $) 44) (($ $ $) 43)) (-2552 (($ $) 19 (|has| $ (-1066)))) (-2883 (((-873) $) 12) (($ (-623 $)) 63)) (-2377 (($ $) 48) (($ (-655 $)) 47)) (-2151 (((-112) (-115)) 36)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-311) (-141)) (T -311)) +((-2070 (*1 *1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-2070 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-2070 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-2070 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-2070 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 *1)) (-4 *1 (-311)))) (-1473 (*1 *1 *1 *2) (-12 (-5 *2 (-303 *1)) (-4 *1 (-311)))) (-1473 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-303 *1))) (-4 *1 (-311)))) (-1473 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-623 *1))) (-5 *3 (-655 *1)) (-4 *1 (-311)))) (-2377 (*1 *1 *1) (-4 *1 (-311))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-311)))) (-2092 (*1 *1 *1) (-4 *1 (-311))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-311)))) (-3146 (*1 *1 *1) (-4 *1 (-311))) (-3146 (*1 *1 *1 *1) (-4 *1 (-311))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-782)))) (-4306 (*1 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-311)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-655 (-623 *1))) (-4 *1 (-311)))) (-4270 (*1 *2 *1) (-12 (-5 *2 (-655 (-623 *1))) (-4 *1 (-311)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-655 (-115))))) (-2572 (*1 *2 *2) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-2151 (*1 *2 *3) (-12 (-4 *1 (-311)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3789 (*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3789 (*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-1194)) (-5 *2 (-112)))) (-1672 (*1 *1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-1672 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 *1)) (-4 *1 (-311)))) (-2550 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-623 *1)) (-4 *1 (-311)))) (-2878 (*1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-112)))) (-2878 (*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-1194)) (-5 *2 (-112)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-1 *1 *1))) (-4 *1 (-311)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-1 *1 (-655 *1)))) (-4 *1 (-311)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1 *1 (-655 *1))) (-4 *1 (-311)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1 *1 *1)) (-4 *1 (-311)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 (-1 *1 *1))) (-4 *1 (-311)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 (-1 *1 (-655 *1)))) (-4 *1 (-311)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-655 *1))) (-4 *1 (-311)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-311)))) (-4347 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1066)) (-4 *1 (-311)) (-5 *2 (-1190 *1)))) (-2552 (*1 *1 *1) (-12 (-4 *1 (-1066)) (-4 *1 (-311)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-1055 (-575))) (-4 *1 (-311)) (-5 *2 (-112)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-1055 (-575))) (-4 *1 (-311)) (-5 *2 (-112))))) +(-13 (-1117) (-1055 (-623 $)) (-525 (-623 $) $) (-318 $) (-10 -8 (-15 -2070 ($ (-115) $)) (-15 -2070 ($ (-115) $ $)) (-15 -2070 ($ (-115) $ $ $)) (-15 -2070 ($ (-115) $ $ $ $)) (-15 -2070 ($ (-115) (-655 $))) (-15 -1473 ($ $ (-303 $))) (-15 -1473 ($ $ (-655 (-303 $)))) (-15 -1473 ($ $ (-655 (-623 $)) (-655 $))) (-15 -2377 ($ $)) (-15 -2377 ($ (-655 $))) (-15 -2092 ($ $)) (-15 -2092 ($ (-655 $))) (-15 -3146 ($ $)) (-15 -3146 ($ $ $)) (-15 -3343 ((-782) $)) (-15 -4306 ((-3 (-623 $) "failed") $)) (-15 -2557 ((-655 (-623 $)) $)) (-15 -4270 ((-655 (-623 $)) $)) (-15 -2622 ((-655 (-115)) $)) (-15 -2572 ((-115) (-115))) (-15 -2151 ((-112) (-115))) (-15 -3789 ((-112) $ (-115))) (-15 -3789 ((-112) $ (-1194))) (-15 -1672 ($ (-115) $)) (-15 -1672 ($ (-115) (-655 $))) (-15 -2550 ($ (-1 $ $) (-623 $))) (-15 -2878 ((-112) $ $)) (-15 -2878 ((-112) $ (-1194))) (-15 -3048 ($ $ (-655 (-1194)) (-655 (-1 $ $)))) (-15 -3048 ($ $ (-655 (-1194)) (-655 (-1 $ (-655 $))))) (-15 -3048 ($ $ (-1194) (-1 $ (-655 $)))) (-15 -3048 ($ $ (-1194) (-1 $ $))) (-15 -3048 ($ $ (-655 (-115)) (-655 (-1 $ $)))) (-15 -3048 ($ $ (-655 (-115)) (-655 (-1 $ (-655 $))))) (-15 -3048 ($ $ (-115) (-1 $ (-655 $)))) (-15 -3048 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1066)) (PROGN (-15 -4347 ((-1190 $) (-623 $))) (-15 -2552 ($ $))) |%noBranch|) (IF (|has| $ (-1055 (-575))) (PROGN (-15 -2185 ((-112) $)) (-15 -2437 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-627 #0=(-623 $)) . T) ((-624 (-873)) . T) ((-318 $) . T) ((-525 (-623 $) $) . T) ((-525 $ $) . T) ((-1055 #0#) . T) ((-1117) . T)) +((-3904 (((-655 |#1|) (-655 |#1|)) 10))) +(((-312 |#1|) (-10 -7 (-15 -3904 ((-655 |#1|) (-655 |#1|)))) (-859)) (T -312)) +((-3904 (*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-859)) (-5 *1 (-312 *3))))) +(-10 -7 (-15 -3904 ((-655 |#1|) (-655 |#1|)))) +((-2550 (((-700 |#2|) (-1 |#2| |#1|) (-700 |#1|)) 17))) +(((-313 |#1| |#2|) (-10 -7 (-15 -2550 ((-700 |#2|) (-1 |#2| |#1|) (-700 |#1|)))) (-1066) (-1066)) (T -313)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-700 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-700 *6)) (-5 *1 (-313 *5 *6))))) +(-10 -7 (-15 -2550 ((-700 |#2|) (-1 |#2| |#1|) (-700 |#1|)))) +((-3217 (((-1285 (-325 (-389))) (-1285 (-325 (-227)))) 110)) (-4268 (((-1111 (-854 (-227))) (-1111 (-854 (-389)))) 43)) (-2937 (((-655 (-1176)) (-1174 (-227))) 92)) (-4303 (((-325 (-389)) (-967 (-227))) 53)) (-1724 (((-227) (-967 (-227))) 49)) (-2431 (((-1176) (-389)) 195)) (-2801 (((-854 (-227)) (-854 (-389))) 37)) (-2753 (((-2 (|:| |additions| (-575)) (|:| |multiplications| (-575)) (|:| |exponentiations| (-575)) (|:| |functionCalls| (-575))) (-1285 (-325 (-227)))) 165)) (-4266 (((-1052) (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052)))) 207) (((-1052) (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) 205)) (-2412 (((-700 (-227)) (-655 (-227)) (-782)) 19)) (-2959 (((-1285 (-710)) (-655 (-227))) 99)) (-3200 (((-655 (-1176)) (-655 (-227))) 79)) (-3291 (((-3 (-325 (-227)) "failed") (-325 (-227))) 128)) (-3726 (((-112) (-227) (-1111 (-854 (-227)))) 117)) (-2769 (((-1052) (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))) 224)) (-2403 (((-227) (-1111 (-854 (-227)))) 112)) (-3919 (((-227) (-1111 (-854 (-227)))) 113)) (-2993 (((-227) (-418 (-575))) 31)) (-1477 (((-1176) (-389)) 77)) (-2863 (((-227) (-389)) 22)) (-1663 (((-389) (-1285 (-325 (-227)))) 177)) (-2502 (((-325 (-227)) (-325 (-389))) 28)) (-2401 (((-418 (-575)) (-325 (-227))) 56)) (-4379 (((-325 (-418 (-575))) (-325 (-227))) 73)) (-1481 (((-325 (-389)) (-325 (-227))) 103)) (-2083 (((-227) (-325 (-227))) 57)) (-2805 (((-655 (-227)) (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) 68)) (-3014 (((-1111 (-854 (-227))) (-1111 (-854 (-227)))) 65)) (-1688 (((-1176) (-227)) 76)) (-4418 (((-710) (-227)) 95)) (-3936 (((-418 (-575)) (-227)) 58)) (-1333 (((-325 (-389)) (-227)) 52)) (-2615 (((-655 (-1111 (-854 (-227)))) (-655 (-1111 (-854 (-389))))) 46)) (-1514 (((-1052) (-655 (-1052))) 191) (((-1052) (-1052) (-1052)) 185)) (-2997 (((-1052) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) +(((-314) (-10 -7 (-15 -2863 ((-227) (-389))) (-15 -2502 ((-325 (-227)) (-325 (-389)))) (-15 -2801 ((-854 (-227)) (-854 (-389)))) (-15 -4268 ((-1111 (-854 (-227))) (-1111 (-854 (-389))))) (-15 -2615 ((-655 (-1111 (-854 (-227)))) (-655 (-1111 (-854 (-389)))))) (-15 -3936 ((-418 (-575)) (-227))) (-15 -2401 ((-418 (-575)) (-325 (-227)))) (-15 -2083 ((-227) (-325 (-227)))) (-15 -3291 ((-3 (-325 (-227)) "failed") (-325 (-227)))) (-15 -1663 ((-389) (-1285 (-325 (-227))))) (-15 -2753 ((-2 (|:| |additions| (-575)) (|:| |multiplications| (-575)) (|:| |exponentiations| (-575)) (|:| |functionCalls| (-575))) (-1285 (-325 (-227))))) (-15 -4379 ((-325 (-418 (-575))) (-325 (-227)))) (-15 -3014 ((-1111 (-854 (-227))) (-1111 (-854 (-227))))) (-15 -2805 ((-655 (-227)) (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))))) (-15 -4418 ((-710) (-227))) (-15 -2959 ((-1285 (-710)) (-655 (-227)))) (-15 -1481 ((-325 (-389)) (-325 (-227)))) (-15 -3217 ((-1285 (-325 (-389))) (-1285 (-325 (-227))))) (-15 -3726 ((-112) (-227) (-1111 (-854 (-227))))) (-15 -1688 ((-1176) (-227))) (-15 -1477 ((-1176) (-389))) (-15 -3200 ((-655 (-1176)) (-655 (-227)))) (-15 -2937 ((-655 (-1176)) (-1174 (-227)))) (-15 -2403 ((-227) (-1111 (-854 (-227))))) (-15 -3919 ((-227) (-1111 (-854 (-227))))) (-15 -1514 ((-1052) (-1052) (-1052))) (-15 -1514 ((-1052) (-655 (-1052)))) (-15 -2431 ((-1176) (-389))) (-15 -4266 ((-1052) (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))))) (-15 -4266 ((-1052) (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))))) (-15 -2997 ((-1052) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2769 ((-1052) (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))) (-15 -4303 ((-325 (-389)) (-967 (-227)))) (-15 -1724 ((-227) (-967 (-227)))) (-15 -1333 ((-325 (-389)) (-227))) (-15 -2993 ((-227) (-418 (-575)))) (-15 -2412 ((-700 (-227)) (-655 (-227)) (-782))))) (T -314)) +((-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-227))) (-5 *4 (-782)) (-5 *2 (-700 (-227))) (-5 *1 (-314)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-418 (-575))) (-5 *2 (-227)) (-5 *1 (-314)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-325 (-389))) (-5 *1 (-314)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-967 (-227))) (-5 *2 (-227)) (-5 *1 (-314)))) (-4303 (*1 *2 *3) (-12 (-5 *3 (-967 (-227))) (-5 *2 (-325 (-389))) (-5 *1 (-314)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))) (-5 *2 (-1052)) (-5 *1 (-314)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1052)) (-5 *1 (-314)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052)))) (-5 *2 (-1052)) (-5 *1 (-314)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *2 (-1052)) (-5 *1 (-314)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1176)) (-5 *1 (-314)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-655 (-1052))) (-5 *2 (-1052)) (-5 *1 (-314)))) (-1514 (*1 *2 *2 *2) (-12 (-5 *2 (-1052)) (-5 *1 (-314)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-314)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-314)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-314)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-314)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1176)) (-5 *1 (-314)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-314)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-854 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-314)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *2 (-1285 (-325 (-389)))) (-5 *1 (-314)))) (-1481 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-325 (-389))) (-5 *1 (-314)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1285 (-710))) (-5 *1 (-314)))) (-4418 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-710)) (-5 *1 (-314)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-5 *2 (-655 (-227))) (-5 *1 (-314)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1111 (-854 (-227)))) (-5 *1 (-314)))) (-4379 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-325 (-418 (-575)))) (-5 *1 (-314)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *2 (-2 (|:| |additions| (-575)) (|:| |multiplications| (-575)) (|:| |exponentiations| (-575)) (|:| |functionCalls| (-575)))) (-5 *1 (-314)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *2 (-389)) (-5 *1 (-314)))) (-3291 (*1 *2 *2) (|partial| -12 (-5 *2 (-325 (-227))) (-5 *1 (-314)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-227)) (-5 *1 (-314)))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-418 (-575))) (-5 *1 (-314)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-418 (-575))) (-5 *1 (-314)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-655 (-1111 (-854 (-389))))) (-5 *2 (-655 (-1111 (-854 (-227))))) (-5 *1 (-314)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-389)))) (-5 *2 (-1111 (-854 (-227)))) (-5 *1 (-314)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-854 (-389))) (-5 *2 (-854 (-227))) (-5 *1 (-314)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-325 (-389))) (-5 *2 (-325 (-227))) (-5 *1 (-314)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-227)) (-5 *1 (-314))))) +(-10 -7 (-15 -2863 ((-227) (-389))) (-15 -2502 ((-325 (-227)) (-325 (-389)))) (-15 -2801 ((-854 (-227)) (-854 (-389)))) (-15 -4268 ((-1111 (-854 (-227))) (-1111 (-854 (-389))))) (-15 -2615 ((-655 (-1111 (-854 (-227)))) (-655 (-1111 (-854 (-389)))))) (-15 -3936 ((-418 (-575)) (-227))) (-15 -2401 ((-418 (-575)) (-325 (-227)))) (-15 -2083 ((-227) (-325 (-227)))) (-15 -3291 ((-3 (-325 (-227)) "failed") (-325 (-227)))) (-15 -1663 ((-389) (-1285 (-325 (-227))))) (-15 -2753 ((-2 (|:| |additions| (-575)) (|:| |multiplications| (-575)) (|:| |exponentiations| (-575)) (|:| |functionCalls| (-575))) (-1285 (-325 (-227))))) (-15 -4379 ((-325 (-418 (-575))) (-325 (-227)))) (-15 -3014 ((-1111 (-854 (-227))) (-1111 (-854 (-227))))) (-15 -2805 ((-655 (-227)) (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))))) (-15 -4418 ((-710) (-227))) (-15 -2959 ((-1285 (-710)) (-655 (-227)))) (-15 -1481 ((-325 (-389)) (-325 (-227)))) (-15 -3217 ((-1285 (-325 (-389))) (-1285 (-325 (-227))))) (-15 -3726 ((-112) (-227) (-1111 (-854 (-227))))) (-15 -1688 ((-1176) (-227))) (-15 -1477 ((-1176) (-389))) (-15 -3200 ((-655 (-1176)) (-655 (-227)))) (-15 -2937 ((-655 (-1176)) (-1174 (-227)))) (-15 -2403 ((-227) (-1111 (-854 (-227))))) (-15 -3919 ((-227) (-1111 (-854 (-227))))) (-15 -1514 ((-1052) (-1052) (-1052))) (-15 -1514 ((-1052) (-655 (-1052)))) (-15 -2431 ((-1176) (-389))) (-15 -4266 ((-1052) (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))))) (-15 -4266 ((-1052) (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))))) (-15 -2997 ((-1052) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2769 ((-1052) (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))) (-15 -4303 ((-325 (-389)) (-967 (-227)))) (-15 -1724 ((-227) (-967 (-227)))) (-15 -1333 ((-325 (-389)) (-227))) (-15 -2993 ((-227) (-418 (-575)))) (-15 -2412 ((-700 (-227)) (-655 (-227)) (-782)))) +((-2279 (((-112) $ $) 14)) (-2802 (($ $ $) 18)) (-2813 (($ $ $) 17)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 50)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 65)) (-3926 (($ $ $) 25) (($ (-655 $)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2851 (((-3 $ "failed") $ $) 21)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 53))) +(((-315 |#1|) (-10 -8 (-15 -2444 ((-3 (-655 |#1|) "failed") (-655 |#1|) |#1|)) (-15 -2061 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2061 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3659 |#1|)) |#1| |#1|)) (-15 -2802 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2279 ((-112) |#1| |#1|)) (-15 -3442 ((-3 (-655 |#1|) "failed") (-655 |#1|) |#1|)) (-15 -1916 ((-2 (|:| -1754 (-655 |#1|)) (|:| -3659 |#1|)) (-655 |#1|))) (-15 -3926 (|#1| (-655 |#1|))) (-15 -3926 (|#1| |#1| |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#1|))) (-316)) (T -315)) +NIL +(-10 -8 (-15 -2444 ((-3 (-655 |#1|) "failed") (-655 |#1|) |#1|)) (-15 -2061 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2061 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3659 |#1|)) |#1| |#1|)) (-15 -2802 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2279 ((-112) |#1| |#1|)) (-15 -3442 ((-3 (-655 |#1|) "failed") (-655 |#1|) |#1|)) (-15 -1916 ((-2 (|:| -1754 (-655 |#1|)) (|:| -3659 |#1|)) (-655 |#1|))) (-15 -3926 (|#1| (-655 |#1|))) (-15 -3926 (|#1| |#1| |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-2279 (((-112) $ $) 65)) (-3011 (($) 18 T CONST)) (-2802 (($ $ $) 61)) (-1747 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-1542 (((-112) $) 35)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3708 (((-782) $) 64)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-316) (-141)) (T -316)) +((-2279 (*1 *2 *1 *1) (-12 (-4 *1 (-316)) (-5 *2 (-112)))) (-3708 (*1 *2 *1) (-12 (-4 *1 (-316)) (-5 *2 (-782)))) (-2196 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-316)))) (-2813 (*1 *1 *1 *1) (-4 *1 (-316))) (-2802 (*1 *1 *1 *1) (-4 *1 (-316))) (-2061 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3659 *1))) (-4 *1 (-316)))) (-2061 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-316)))) (-2444 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-655 *1)) (-4 *1 (-316))))) +(-13 (-935) (-10 -8 (-15 -2279 ((-112) $ $)) (-15 -3708 ((-782) $)) (-15 -2196 ((-2 (|:| -2829 $) (|:| -1635 $)) $ $)) (-15 -2813 ($ $ $)) (-15 -2802 ($ $ $)) (-15 -2061 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $)) (-15 -2061 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2444 ((-3 (-655 $) "failed") (-655 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-3048 (($ $ (-655 |#2|) (-655 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-303 |#2|)) 11) (($ $ (-655 (-303 |#2|))) NIL))) +(((-317 |#1| |#2|) (-10 -8 (-15 -3048 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -3048 (|#1| |#1| (-303 |#2|))) (-15 -3048 (|#1| |#1| |#2| |#2|)) (-15 -3048 (|#1| |#1| (-655 |#2|) (-655 |#2|)))) (-318 |#2|) (-1117)) (T -317)) +NIL +(-10 -8 (-15 -3048 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -3048 (|#1| |#1| (-303 |#2|))) (-15 -3048 (|#1| |#1| |#2| |#2|)) (-15 -3048 (|#1| |#1| (-655 |#2|) (-655 |#2|)))) +((-3048 (($ $ (-655 |#1|) (-655 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-303 |#1|)) 11) (($ $ (-655 (-303 |#1|))) 10))) +(((-318 |#1|) (-141) (-1117)) (T -318)) +((-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-303 *3)) (-4 *1 (-318 *3)) (-4 *3 (-1117)))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-303 *3))) (-4 *1 (-318 *3)) (-4 *3 (-1117))))) +(-13 (-525 |t#1| |t#1|) (-10 -8 (-15 -3048 ($ $ (-303 |t#1|))) (-15 -3048 ($ $ (-655 (-303 |t#1|)))))) +(((-525 |#1| |#1|) . T)) +((-3048 ((|#1| (-1 |#1| (-575)) (-1196 (-418 (-575)))) 26))) +(((-319 |#1|) (-10 -7 (-15 -3048 (|#1| (-1 |#1| (-575)) (-1196 (-418 (-575)))))) (-38 (-418 (-575)))) (T -319)) +((-3048 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-575))) (-5 *4 (-1196 (-418 (-575)))) (-5 *1 (-319 *2)) (-4 *2 (-38 (-418 (-575))))))) +(-10 -7 (-15 -3048 (|#1| (-1 |#1| (-575)) (-1196 (-418 (-575)))))) +((-2861 (((-112) $ $) NIL)) (-2627 (((-575) $) 12)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3829 (((-1152) $) 9)) (-2883 (((-873) $) 19) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-320) (-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $)) (-15 -2627 ((-575) $))))) (T -320)) +((-3829 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-320)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-320))))) +(-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $)) (-15 -2627 ((-575) $)))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 7)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 9))) +(((-321) (-1117)) (T -321)) +NIL +(-1117) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 60)) (-3127 (((-1271 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-316)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-924)))) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-924)))) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-831)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-1271 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-575)))) (((-3 (-1270 |#2| |#3| |#4|) "failed") $) 26)) (-4399 (((-1271 |#1| |#2| |#3| |#4|) $) NIL) (((-1194) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-575)))) (((-575) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-575)))) (((-1270 |#2| |#3| |#4|) $) NIL)) (-2802 (($ $ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-1271 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1285 (-1271 |#1| |#2| |#3| |#4|)))) (-700 $) (-1285 $)) NIL) (((-700 (-1271 |#1| |#2| |#3| |#4|)) (-700 $)) NIL) (((-700 (-1271 |#1| |#2| |#3| |#4|)) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-556)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-4075 (((-112) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-831)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-898 (-389))))) (-1542 (((-112) $) NIL)) (-4046 (($ $) NIL)) (-1595 (((-1271 |#1| |#2| |#3| |#4|) $) 22)) (-2607 (((-3 $ "failed") $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1169)))) (-4087 (((-112) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-831)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-1425 (($ $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-2550 (($ (-1 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|)) $) NIL)) (-3412 (((-3 (-854 |#2|) "failed") $) 80)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-316)))) (-2736 (((-1271 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-556)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-924)))) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3048 (($ $ (-655 (-1271 |#1| |#2| |#3| |#4|)) (-655 (-1271 |#1| |#2| |#3| |#4|))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-318 (-1271 |#1| |#2| |#3| |#4|)))) (($ $ (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-318 (-1271 |#1| |#2| |#3| |#4|)))) (($ $ (-303 (-1271 |#1| |#2| |#3| |#4|))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-318 (-1271 |#1| |#2| |#3| |#4|)))) (($ $ (-655 (-303 (-1271 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-318 (-1271 |#1| |#2| |#3| |#4|)))) (($ $ (-655 (-1194)) (-655 (-1271 |#1| |#2| |#3| |#4|))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-525 (-1194) (-1271 |#1| |#2| |#3| |#4|)))) (($ $ (-1194) (-1271 |#1| |#2| |#3| |#4|)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-525 (-1194) (-1271 |#1| |#2| |#3| |#4|))))) (-3708 (((-782) $) NIL)) (-2070 (($ $ (-1271 |#1| |#2| |#3| |#4|)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-295 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2389 (($ $ (-1 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-782)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-237)))) (-4172 (($ $) NIL)) (-1608 (((-1271 |#1| |#2| |#3| |#4|) $) 19)) (-2615 (((-904 (-575)) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-625 (-547)))) (((-389) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1039))) (((-227) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1039)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-1271 |#1| |#2| |#3| |#4|) (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-1271 |#1| |#2| |#3| |#4|)) 30) (($ (-1194)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-1194)))) (($ (-1270 |#2| |#3| |#4|)) 37)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-1271 |#1| |#2| |#3| |#4|) (-924))) (|has| (-1271 |#1| |#2| |#3| |#4|) (-146))))) (-3759 (((-782)) NIL T CONST)) (-1432 (((-1271 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-556)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-2705 (($ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-831)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-782)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-237)))) (-3981 (((-112) $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-3956 (((-112) $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-3943 (((-112) $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-4038 (($ $ $) 35) (($ (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|)) 32)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-1271 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1271 |#1| |#2| |#3| |#4|)) NIL))) +(((-322 |#1| |#2| |#3| |#4|) (-13 (-1009 (-1271 |#1| |#2| |#3| |#4|)) (-1055 (-1270 |#2| |#3| |#4|)) (-10 -8 (-15 -3412 ((-3 (-854 |#2|) "failed") $)) (-15 -2883 ($ (-1270 |#2| |#3| |#4|))))) (-13 (-1055 (-575)) (-650 (-575)) (-463)) (-13 (-27) (-1220) (-441 |#1|)) (-1194) |#2|) (T -322)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1270 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194)) (-14 *6 *4) (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) (-5 *1 (-322 *3 *4 *5 *6)))) (-3412 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) (-5 *2 (-854 *4)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194)) (-14 *6 *4)))) +(-13 (-1009 (-1271 |#1| |#2| |#3| |#4|)) (-1055 (-1270 |#2| |#3| |#4|)) (-10 -8 (-15 -3412 ((-3 (-854 |#2|) "failed") $)) (-15 -2883 ($ (-1270 |#2| |#3| |#4|))))) +((-2550 (((-325 |#2|) (-1 |#2| |#1|) (-325 |#1|)) 13))) +(((-323 |#1| |#2|) (-10 -7 (-15 -2550 ((-325 |#2|) (-1 |#2| |#1|) (-325 |#1|)))) (-1117) (-1117)) (T -323)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-325 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-325 *6)) (-5 *1 (-323 *5 *6))))) +(-10 -7 (-15 -2550 ((-325 |#2|) (-1 |#2| |#1|) (-325 |#1|)))) +((-4290 (((-52) |#2| (-303 |#2|) (-782)) 40) (((-52) |#2| (-303 |#2|)) 32) (((-52) |#2| (-782)) 35) (((-52) |#2|) 33) (((-52) (-1194)) 26)) (-1873 (((-52) |#2| (-303 |#2|) (-418 (-575))) 59) (((-52) |#2| (-303 |#2|)) 56) (((-52) |#2| (-418 (-575))) 58) (((-52) |#2|) 57) (((-52) (-1194)) 55)) (-4311 (((-52) |#2| (-303 |#2|) (-418 (-575))) 54) (((-52) |#2| (-303 |#2|)) 51) (((-52) |#2| (-418 (-575))) 53) (((-52) |#2|) 52) (((-52) (-1194)) 50)) (-4301 (((-52) |#2| (-303 |#2|) (-575)) 47) (((-52) |#2| (-303 |#2|)) 44) (((-52) |#2| (-575)) 46) (((-52) |#2|) 45) (((-52) (-1194)) 43))) +(((-324 |#1| |#2|) (-10 -7 (-15 -4290 ((-52) (-1194))) (-15 -4290 ((-52) |#2|)) (-15 -4290 ((-52) |#2| (-782))) (-15 -4290 ((-52) |#2| (-303 |#2|))) (-15 -4290 ((-52) |#2| (-303 |#2|) (-782))) (-15 -4301 ((-52) (-1194))) (-15 -4301 ((-52) |#2|)) (-15 -4301 ((-52) |#2| (-575))) (-15 -4301 ((-52) |#2| (-303 |#2|))) (-15 -4301 ((-52) |#2| (-303 |#2|) (-575))) (-15 -4311 ((-52) (-1194))) (-15 -4311 ((-52) |#2|)) (-15 -4311 ((-52) |#2| (-418 (-575)))) (-15 -4311 ((-52) |#2| (-303 |#2|))) (-15 -4311 ((-52) |#2| (-303 |#2|) (-418 (-575)))) (-15 -1873 ((-52) (-1194))) (-15 -1873 ((-52) |#2|)) (-15 -1873 ((-52) |#2| (-418 (-575)))) (-15 -1873 ((-52) |#2| (-303 |#2|))) (-15 -1873 ((-52) |#2| (-303 |#2|) (-418 (-575))))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -324)) +((-1873 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-303 *3)) (-5 *5 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-418 (-575))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-1873 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4))))) (-4311 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-303 *3)) (-5 *5 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-4311 (*1 *2 *3 *4) (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)))) (-4311 (*1 *2 *3 *4) (-12 (-5 *4 (-418 (-575))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-4311 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4))))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-1055 *5) (-650 *5))) (-5 *5 (-575)) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-4 *5 (-13 (-463) (-1055 *4) (-650 *4))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-4301 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4))))) (-4290 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-303 *3)) (-5 *5 (-782)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-4290 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-4290 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4)))))) +(-10 -7 (-15 -4290 ((-52) (-1194))) (-15 -4290 ((-52) |#2|)) (-15 -4290 ((-52) |#2| (-782))) (-15 -4290 ((-52) |#2| (-303 |#2|))) (-15 -4290 ((-52) |#2| (-303 |#2|) (-782))) (-15 -4301 ((-52) (-1194))) (-15 -4301 ((-52) |#2|)) (-15 -4301 ((-52) |#2| (-575))) (-15 -4301 ((-52) |#2| (-303 |#2|))) (-15 -4301 ((-52) |#2| (-303 |#2|) (-575))) (-15 -4311 ((-52) (-1194))) (-15 -4311 ((-52) |#2|)) (-15 -4311 ((-52) |#2| (-418 (-575)))) (-15 -4311 ((-52) |#2| (-303 |#2|))) (-15 -4311 ((-52) |#2| (-303 |#2|) (-418 (-575)))) (-15 -1873 ((-52) (-1194))) (-15 -1873 ((-52) |#2|)) (-15 -1873 ((-52) |#2| (-418 (-575)))) (-15 -1873 ((-52) |#2| (-303 |#2|))) (-15 -1873 ((-52) |#2| (-303 |#2|) (-418 (-575))))) +((-2861 (((-112) $ $) NIL)) (-1967 (((-655 $) $ (-1194)) NIL (|has| |#1| (-567))) (((-655 $) $) NIL (|has| |#1| (-567))) (((-655 $) (-1190 $) (-1194)) NIL (|has| |#1| (-567))) (((-655 $) (-1190 $)) NIL (|has| |#1| (-567))) (((-655 $) (-967 $)) NIL (|has| |#1| (-567)))) (-1895 (($ $ (-1194)) NIL (|has| |#1| (-567))) (($ $) NIL (|has| |#1| (-567))) (($ (-1190 $) (-1194)) NIL (|has| |#1| (-567))) (($ (-1190 $)) NIL (|has| |#1| (-567))) (($ (-967 $)) NIL (|has| |#1| (-567)))) (-3799 (((-112) $) 27 (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))))) (-1606 (((-655 (-1194)) $) 368)) (-3466 (((-418 (-1190 $)) $ (-623 $)) NIL (|has| |#1| (-567)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-4270 (((-655 (-623 $)) $) NIL)) (-3923 (($ $) 171 (|has| |#1| (-567)))) (-3786 (($ $) 147 (|has| |#1| (-567)))) (-3994 (($ $ (-1109 $)) 232 (|has| |#1| (-567))) (($ $ (-1194)) 228 (|has| |#1| (-567)))) (-2597 (((-3 $ "failed") $ $) NIL (-3765 (|has| |#1| (-21)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))))) (-1473 (($ $ (-303 $)) NIL) (($ $ (-655 (-303 $))) 386) (($ $ (-655 (-623 $)) (-655 $)) 430)) (-3535 (((-429 (-1190 $)) (-1190 $)) 308 (-12 (|has| |#1| (-463)) (|has| |#1| (-567))))) (-2058 (($ $) NIL (|has| |#1| (-567)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-567)))) (-2473 (($ $) NIL (|has| |#1| (-567)))) (-2279 (((-112) $ $) NIL (|has| |#1| (-567)))) (-3897 (($ $) 167 (|has| |#1| (-567)))) (-3761 (($ $) 143 (|has| |#1| (-567)))) (-2020 (($ $ (-575)) 73 (|has| |#1| (-567)))) (-1521 (($ $) 175 (|has| |#1| (-567)))) (-3807 (($ $) 151 (|has| |#1| (-567)))) (-3011 (($) NIL (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))) (|has| |#1| (-1129))) CONST)) (-2472 (((-655 $) $ (-1194)) NIL (|has| |#1| (-567))) (((-655 $) $) NIL (|has| |#1| (-567))) (((-655 $) (-1190 $) (-1194)) NIL (|has| |#1| (-567))) (((-655 $) (-1190 $)) NIL (|has| |#1| (-567))) (((-655 $) (-967 $)) NIL (|has| |#1| (-567)))) (-3700 (($ $ (-1194)) NIL (|has| |#1| (-567))) (($ $) NIL (|has| |#1| (-567))) (($ (-1190 $) (-1194)) 134 (|has| |#1| (-567))) (($ (-1190 $)) NIL (|has| |#1| (-567))) (($ (-967 $)) NIL (|has| |#1| (-567)))) (-2449 (((-3 (-623 $) "failed") $) 18) (((-3 (-1194) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-967 |#1|)) "failed") $) NIL (|has| |#1| (-567))) (((-3 (-967 |#1|) "failed") $) NIL (|has| |#1| (-1066))) (((-3 (-418 (-575)) "failed") $) 46 (-3765 (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-4399 (((-623 $) $) 12) (((-1194) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-967 |#1|)) $) NIL (|has| |#1| (-567))) (((-967 |#1|) $) NIL (|has| |#1| (-1066))) (((-418 (-575)) $) 319 (-3765 (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-2802 (($ $ $) NIL (|has| |#1| (-567)))) (-1749 (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 125 (|has| |#1| (-1066))) (((-700 |#1|) (-700 $)) 115 (|has| |#1| (-1066))) (((-700 |#1|) (-1285 $)) NIL (|has| |#1| (-1066))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (-2308 (($ $) 96 (|has| |#1| (-567)))) (-1747 (((-3 $ "failed") $) NIL (|has| |#1| (-1129)))) (-2813 (($ $ $) NIL (|has| |#1| (-567)))) (-3557 (($ $ (-1109 $)) 236 (|has| |#1| (-567))) (($ $ (-1194)) 234 (|has| |#1| (-567)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-567)))) (-1336 (((-112) $) NIL (|has| |#1| (-567)))) (-1703 (($ $ $) 202 (|has| |#1| (-567)))) (-1631 (($) 137 (|has| |#1| (-567)))) (-3747 (($ $ $) 222 (|has| |#1| (-567)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 392 (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 399 (|has| |#1| (-898 (-389))))) (-2092 (($ $) NIL) (($ (-655 $)) NIL)) (-2622 (((-655 (-115)) $) NIL)) (-2572 (((-115) (-115)) 276)) (-1542 (((-112) $) 25 (|has| |#1| (-1129)))) (-2437 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-4046 (($ $) 72 (|has| |#1| (-1066)))) (-1595 (((-1142 |#1| (-623 $)) $) 91 (|has| |#1| (-1066)))) (-1715 (((-112) $) 62 (|has| |#1| (-567)))) (-2931 (($ $ (-575)) NIL (|has| |#1| (-567)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-567)))) (-4347 (((-1190 $) (-623 $)) 277 (|has| $ (-1066)))) (-2550 (($ (-1 $ $) (-623 $)) 426)) (-4306 (((-3 (-623 $) "failed") $) NIL)) (-3463 (($ $) 141 (|has| |#1| (-567)))) (-2329 (($ $) 247 (|has| |#1| (-567)))) (-3887 (($ (-655 $)) NIL (|has| |#1| (-567))) (($ $ $) NIL (|has| |#1| (-567)))) (-2288 (((-1176) $) NIL)) (-2557 (((-655 (-623 $)) $) 49)) (-1672 (($ (-115) $) NIL) (($ (-115) (-655 $)) 431)) (-3658 (((-3 (-655 $) "failed") $) NIL (|has| |#1| (-1129)))) (-2056 (((-3 (-2 (|:| |val| $) (|:| -2398 (-575))) "failed") $) NIL (|has| |#1| (-1066)))) (-1734 (((-3 (-655 $) "failed") $) 436 (|has| |#1| (-25)))) (-2991 (((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2455 (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $) NIL (|has| |#1| (-1129))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $ (-115)) NIL (|has| |#1| (-1066))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $ (-1194)) NIL (|has| |#1| (-1066)))) (-3789 (((-112) $ (-115)) NIL) (((-112) $ (-1194)) 51)) (-4332 (($ $) NIL (-3765 (|has| |#1| (-484)) (|has| |#1| (-567))))) (-2827 (($ $ (-1194)) 251 (|has| |#1| (-567))) (($ $ (-1109 $)) 253 (|has| |#1| (-567)))) (-3343 (((-782) $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) 43)) (-4353 ((|#1| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 301 (|has| |#1| (-567)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-567))) (($ $ $) NIL (|has| |#1| (-567)))) (-2878 (((-112) $ $) NIL) (((-112) $ (-1194)) NIL)) (-2652 (($ $ (-1194)) 226 (|has| |#1| (-567))) (($ $) 224 (|has| |#1| (-567)))) (-2217 (($ $) 218 (|has| |#1| (-567)))) (-1665 (((-429 (-1190 $)) (-1190 $)) 306 (-12 (|has| |#1| (-463)) (|has| |#1| (-567))))) (-2353 (((-429 $) $) NIL (|has| |#1| (-567)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-567))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-567)))) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-567)))) (-2665 (($ $) 139 (|has| |#1| (-567)))) (-2185 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-3048 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) 425) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-1194) (-1 $ (-655 $))) NIL) (($ $ (-1194) (-1 $ $)) NIL) (($ $ (-655 (-115)) (-655 (-1 $ $))) 379) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-115) (-1 $ (-655 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-625 (-547)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-625 (-547)))) (($ $) NIL (|has| |#1| (-625 (-547)))) (($ $ (-115) $ (-1194)) 366 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-115)) (-655 $) (-1194)) 365 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ $))) NIL (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ (-655 $)))) NIL (|has| |#1| (-1066))) (($ $ (-1194) (-782) (-1 $ (-655 $))) NIL (|has| |#1| (-1066))) (($ $ (-1194) (-782) (-1 $ $)) NIL (|has| |#1| (-1066)))) (-3708 (((-782) $) NIL (|has| |#1| (-567)))) (-3717 (($ $) 239 (|has| |#1| (-567)))) (-2070 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-655 $)) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-567)))) (-3146 (($ $) NIL) (($ $ $) NIL)) (-3749 (($ $) 249 (|has| |#1| (-567)))) (-1860 (($ $) 200 (|has| |#1| (-567)))) (-2389 (($ $ (-1194)) NIL (|has| |#1| (-1066))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-1066))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-1066)))) (-4172 (($ $) 74 (|has| |#1| (-567)))) (-1608 (((-1142 |#1| (-623 $)) $) 93 (|has| |#1| (-567)))) (-2552 (($ $) 317 (|has| $ (-1066)))) (-1530 (($ $) 177 (|has| |#1| (-567)))) (-3817 (($ $) 153 (|has| |#1| (-567)))) (-3937 (($ $) 173 (|has| |#1| (-567)))) (-3797 (($ $) 149 (|has| |#1| (-567)))) (-3909 (($ $) 169 (|has| |#1| (-567)))) (-3774 (($ $) 145 (|has| |#1| (-567)))) (-2615 (((-904 (-575)) $) NIL (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| |#1| (-625 (-904 (-389))))) (($ (-429 $)) NIL (|has| |#1| (-567))) (((-547) $) 363 (|has| |#1| (-625 (-547))))) (-4258 (($ $ $) NIL (|has| |#1| (-484)))) (-3320 (($ $ $) NIL (|has| |#1| (-484)))) (-2883 (((-873) $) 424) (($ (-623 $)) 415) (($ (-1194)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-567))) (($ (-48)) 312 (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))))) (($ (-1142 |#1| (-623 $))) 95 (|has| |#1| (-1066))) (($ (-418 |#1|)) NIL (|has| |#1| (-567))) (($ (-967 (-418 |#1|))) NIL (|has| |#1| (-567))) (($ (-418 (-967 (-418 |#1|)))) NIL (|has| |#1| (-567))) (($ (-418 (-967 |#1|))) NIL (|has| |#1| (-567))) (($ (-967 |#1|)) NIL (|has| |#1| (-1066))) (($ (-575)) 34 (-3765 (|has| |#1| (-1055 (-575))) (|has| |#1| (-1066)))) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-567)) (|has| |#1| (-1055 (-418 (-575))))))) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL (|has| |#1| (-1066)) CONST)) (-2377 (($ $) NIL) (($ (-655 $)) NIL)) (-3820 (($ $ $) 220 (|has| |#1| (-567)))) (-1553 (($ $ $) 206 (|has| |#1| (-567)))) (-3581 (($ $ $) 210 (|has| |#1| (-567)))) (-3091 (($ $ $) 204 (|has| |#1| (-567)))) (-1870 (($ $ $) 208 (|has| |#1| (-567)))) (-2151 (((-112) (-115)) 10)) (-4400 (((-112) $ $) 86)) (-1568 (($ $) 183 (|has| |#1| (-567)))) (-3852 (($ $) 159 (|has| |#1| (-567)))) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) 179 (|has| |#1| (-567)))) (-3828 (($ $) 155 (|has| |#1| (-567)))) (-1592 (($ $) 187 (|has| |#1| (-567)))) (-3873 (($ $) 163 (|has| |#1| (-567)))) (-1627 (($ (-1194) $) NIL) (($ (-1194) $ $) NIL) (($ (-1194) $ $ $) NIL) (($ (-1194) $ $ $ $) NIL) (($ (-1194) (-655 $)) NIL)) (-1854 (($ $) 214 (|has| |#1| (-567)))) (-3371 (($ $) 212 (|has| |#1| (-567)))) (-2914 (($ $) 189 (|has| |#1| (-567)))) (-3885 (($ $) 165 (|has| |#1| (-567)))) (-1583 (($ $) 185 (|has| |#1| (-567)))) (-3863 (($ $) 161 (|has| |#1| (-567)))) (-1554 (($ $) 181 (|has| |#1| (-567)))) (-3839 (($ $) 157 (|has| |#1| (-567)))) (-2705 (($ $) 192 (|has| |#1| (-567)))) (-1996 (($) 21 (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) CONST)) (-2347 (($ $) 243 (|has| |#1| (-567)))) (-2009 (($) 23 (|has| |#1| (-1129)) CONST)) (-4138 (($ $) 194 (|has| |#1| (-567))) (($ $ $) 196 (|has| |#1| (-567)))) (-2131 (($ $) 241 (|has| |#1| (-567)))) (-3430 (($ $ (-1194)) NIL (|has| |#1| (-1066))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-1066))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-1066)))) (-3801 (($ $) 245 (|has| |#1| (-567)))) (-3413 (($ $ $) 198 (|has| |#1| (-567)))) (-3914 (((-112) $ $) 88)) (-4038 (($ (-1142 |#1| (-623 $)) (-1142 |#1| (-623 $))) 106 (|has| |#1| (-567))) (($ $ $) 42 (-3765 (|has| |#1| (-484)) (|has| |#1| (-567))))) (-4028 (($ $ $) 40 (-3765 (|has| |#1| (-21)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (($ $) 29 (-3765 (|has| |#1| (-21)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))))) (-4016 (($ $ $) 38 (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))))) (** (($ $ $) 64 (|has| |#1| (-567))) (($ $ (-418 (-575))) 314 (|has| |#1| (-567))) (($ $ (-575)) 80 (-3765 (|has| |#1| (-484)) (|has| |#1| (-567)))) (($ $ (-782)) 75 (|has| |#1| (-1129))) (($ $ (-936)) 84 (|has| |#1| (-1129)))) (* (($ (-418 (-575)) $) NIL (|has| |#1| (-567))) (($ $ (-418 (-575))) NIL (|has| |#1| (-567))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1066))) (($ $ $) 36 (|has| |#1| (-1129))) (($ (-575) $) 32 (-3765 (|has| |#1| (-21)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (($ (-782) $) NIL (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (($ (-936) $) NIL (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))))) +(((-325 |#1|) (-13 (-441 |#1|) (-10 -8 (IF (|has| |#1| (-567)) (PROGN (-6 (-29 |#1|)) (-6 (-1220)) (-6 (-161)) (-6 (-640)) (-6 (-1156)) (-15 -2308 ($ $)) (-15 -1715 ((-112) $)) (-15 -2020 ($ $ (-575))) (IF (|has| |#1| (-463)) (PROGN (-15 -1665 ((-429 (-1190 $)) (-1190 $))) (-15 -3535 ((-429 (-1190 $)) (-1190 $)))) |%noBranch|) (IF (|has| |#1| (-1055 (-575))) (-6 (-1055 (-48))) |%noBranch|)) |%noBranch|))) (-1117)) (T -325)) +((-2308 (*1 *1 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-567)) (-4 *2 (-1117)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-325 *3)) (-4 *3 (-567)) (-4 *3 (-1117)))) (-2020 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-325 *3)) (-4 *3 (-567)) (-4 *3 (-1117)))) (-1665 (*1 *2 *3) (-12 (-5 *2 (-429 (-1190 *1))) (-5 *1 (-325 *4)) (-5 *3 (-1190 *1)) (-4 *4 (-463)) (-4 *4 (-567)) (-4 *4 (-1117)))) (-3535 (*1 *2 *3) (-12 (-5 *2 (-429 (-1190 *1))) (-5 *1 (-325 *4)) (-5 *3 (-1190 *1)) (-4 *4 (-463)) (-4 *4 (-567)) (-4 *4 (-1117))))) +(-13 (-441 |#1|) (-10 -8 (IF (|has| |#1| (-567)) (PROGN (-6 (-29 |#1|)) (-6 (-1220)) (-6 (-161)) (-6 (-640)) (-6 (-1156)) (-15 -2308 ($ $)) (-15 -1715 ((-112) $)) (-15 -2020 ($ $ (-575))) (IF (|has| |#1| (-463)) (PROGN (-15 -1665 ((-429 (-1190 $)) (-1190 $))) (-15 -3535 ((-429 (-1190 $)) (-1190 $)))) |%noBranch|) (IF (|has| |#1| (-1055 (-575))) (-6 (-1055 (-48))) |%noBranch|)) |%noBranch|))) +((-1391 (((-52) |#2| (-115) (-303 |#2|) (-655 |#2|)) 89) (((-52) |#2| (-115) (-303 |#2|) (-303 |#2|)) 85) (((-52) |#2| (-115) (-303 |#2|) |#2|) 87) (((-52) (-303 |#2|) (-115) (-303 |#2|) |#2|) 88) (((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|))) 81) (((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 |#2|)) 83) (((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 |#2|)) 84) (((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|))) 82) (((-52) (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|)) 90) (((-52) (-303 |#2|) (-115) (-303 |#2|) (-303 |#2|)) 86))) +(((-326 |#1| |#2|) (-10 -7 (-15 -1391 ((-52) (-303 |#2|) (-115) (-303 |#2|) (-303 |#2|))) (-15 -1391 ((-52) (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|))) (-15 -1391 ((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|)))) (-15 -1391 ((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 |#2|))) (-15 -1391 ((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 |#2|))) (-15 -1391 ((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|)))) (-15 -1391 ((-52) (-303 |#2|) (-115) (-303 |#2|) |#2|)) (-15 -1391 ((-52) |#2| (-115) (-303 |#2|) |#2|)) (-15 -1391 ((-52) |#2| (-115) (-303 |#2|) (-303 |#2|))) (-15 -1391 ((-52) |#2| (-115) (-303 |#2|) (-655 |#2|)))) (-13 (-567) (-625 (-547))) (-441 |#1|)) (T -326)) +((-1391 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-5 *6 (-655 *3)) (-4 *3 (-441 *7)) (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *7 *3)))) (-1391 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-4 *3 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-1391 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-4 *3 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-1391 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-303 *5)) (-5 *4 (-115)) (-4 *5 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *5)))) (-1391 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 (-115))) (-5 *6 (-655 (-303 *8))) (-4 *8 (-441 *7)) (-5 *5 (-303 *8)) (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *7 *8)))) (-1391 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-655 *7)) (-5 *4 (-655 (-115))) (-5 *5 (-303 *7)) (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *7)))) (-1391 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-655 (-303 *8))) (-5 *4 (-655 (-115))) (-5 *5 (-303 *8)) (-5 *6 (-655 *8)) (-4 *8 (-441 *7)) (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *7 *8)))) (-1391 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-655 (-303 *7))) (-5 *4 (-655 (-115))) (-5 *5 (-303 *7)) (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *7)))) (-1391 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-303 *7)) (-5 *4 (-115)) (-5 *5 (-655 *7)) (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *7)))) (-1391 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-303 *6)) (-5 *4 (-115)) (-4 *6 (-441 *5)) (-4 *5 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *6))))) +(-10 -7 (-15 -1391 ((-52) (-303 |#2|) (-115) (-303 |#2|) (-303 |#2|))) (-15 -1391 ((-52) (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|))) (-15 -1391 ((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|)))) (-15 -1391 ((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 |#2|))) (-15 -1391 ((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 |#2|))) (-15 -1391 ((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|)))) (-15 -1391 ((-52) (-303 |#2|) (-115) (-303 |#2|) |#2|)) (-15 -1391 ((-52) |#2| (-115) (-303 |#2|) |#2|)) (-15 -1391 ((-52) |#2| (-115) (-303 |#2|) (-303 |#2|))) (-15 -1391 ((-52) |#2| (-115) (-303 |#2|) (-655 |#2|)))) +((-2809 (((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575) (-1176)) 67) (((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575)) 68) (((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575) (-1176)) 64) (((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575)) 65)) (-3120 (((-1 (-227) (-227)) (-227)) 66))) +(((-327) (-10 -7 (-15 -3120 ((-1 (-227) (-227)) (-227))) (-15 -2809 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575))) (-15 -2809 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575) (-1176))) (-15 -2809 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575))) (-15 -2809 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575) (-1176))))) (T -327)) +((-2809 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1111 (-227))) (-5 *6 (-227)) (-5 *7 (-575)) (-5 *8 (-1176)) (-5 *2 (-1230 (-941))) (-5 *1 (-327)))) (-2809 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1111 (-227))) (-5 *6 (-227)) (-5 *7 (-575)) (-5 *2 (-1230 (-941))) (-5 *1 (-327)))) (-2809 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1111 (-227))) (-5 *6 (-575)) (-5 *7 (-1176)) (-5 *2 (-1230 (-941))) (-5 *1 (-327)))) (-2809 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1111 (-227))) (-5 *6 (-575)) (-5 *2 (-1230 (-941))) (-5 *1 (-327)))) (-3120 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-327)) (-5 *3 (-227))))) +(-10 -7 (-15 -3120 ((-1 (-227) (-227)) (-227))) (-15 -2809 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575))) (-15 -2809 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575) (-1176))) (-15 -2809 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575))) (-15 -2809 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575) (-1176)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 26)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-4080 (($ $ (-418 (-575))) NIL) (($ $ (-418 (-575)) (-418 (-575))) NIL)) (-2144 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) 20)) (-3923 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL (|has| |#1| (-373)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3897 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) 36)) (-1747 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1336 (((-112) $) NIL (|has| |#1| (-373)))) (-2789 (((-112) $) NIL)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-418 (-575)) $) NIL) (((-418 (-575)) $ (-418 (-575))) 16)) (-1542 (((-112) $) NIL)) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3461 (($ $ (-936)) NIL) (($ $ (-418 (-575))) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-418 (-575))) NIL) (($ $ (-1099) (-418 (-575))) NIL) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3463 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4413 (($ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220)))))) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-4276 (($ $ (-418 (-575))) NIL)) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-1507 (((-418 (-575)) $) 17)) (-3518 (($ (-1270 |#1| |#2| |#3|)) 11)) (-2398 (((-1270 |#1| |#2| |#3|) $) 12)) (-2665 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2070 ((|#1| $ (-418 (-575))) NIL) (($ $ $) NIL (|has| (-418 (-575)) (-1129)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-2389 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-2645 (((-418 (-575)) $) NIL)) (-1530 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) 10)) (-2883 (((-873) $) 42) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-2012 ((|#1| $ (-418 (-575))) 34)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-1751 ((|#1| $) NIL)) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-418 (-575))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 28)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 37)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-328 |#1| |#2| |#3|) (-13 (-1266 |#1|) (-803) (-10 -8 (-15 -3518 ($ (-1270 |#1| |#2| |#3|))) (-15 -2398 ((-1270 |#1| |#2| |#3|) $)) (-15 -1507 ((-418 (-575)) $)))) (-373) (-1194) |#1|) (T -328)) +((-3518 (*1 *1 *2) (-12 (-5 *2 (-1270 *3 *4 *5)) (-4 *3 (-373)) (-14 *4 (-1194)) (-14 *5 *3) (-5 *1 (-328 *3 *4 *5)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-1270 *3 *4 *5)) (-5 *1 (-328 *3 *4 *5)) (-4 *3 (-373)) (-14 *4 (-1194)) (-14 *5 *3))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-328 *3 *4 *5)) (-4 *3 (-373)) (-14 *4 (-1194)) (-14 *5 *3)))) +(-13 (-1266 |#1|) (-803) (-10 -8 (-15 -3518 ($ (-1270 |#1| |#2| |#3|))) (-15 -2398 ((-1270 |#1| |#2| |#3|) $)) (-15 -1507 ((-418 (-575)) $)))) +((-2931 (((-2 (|:| -2398 (-782)) (|:| -1754 |#1|) (|:| |radicand| (-655 |#1|))) (-429 |#1|) (-782)) 35)) (-3463 (((-655 (-2 (|:| -1754 (-782)) (|:| |logand| |#1|))) (-429 |#1|)) 40))) +(((-329 |#1|) (-10 -7 (-15 -2931 ((-2 (|:| -2398 (-782)) (|:| -1754 |#1|) (|:| |radicand| (-655 |#1|))) (-429 |#1|) (-782))) (-15 -3463 ((-655 (-2 (|:| -1754 (-782)) (|:| |logand| |#1|))) (-429 |#1|)))) (-567)) (T -329)) +((-3463 (*1 *2 *3) (-12 (-5 *3 (-429 *4)) (-4 *4 (-567)) (-5 *2 (-655 (-2 (|:| -1754 (-782)) (|:| |logand| *4)))) (-5 *1 (-329 *4)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-429 *5)) (-4 *5 (-567)) (-5 *2 (-2 (|:| -2398 (-782)) (|:| -1754 *5) (|:| |radicand| (-655 *5)))) (-5 *1 (-329 *5)) (-5 *4 (-782))))) +(-10 -7 (-15 -2931 ((-2 (|:| -2398 (-782)) (|:| -1754 |#1|) (|:| |radicand| (-655 |#1|))) (-429 |#1|) (-782))) (-15 -3463 ((-655 (-2 (|:| -1754 (-782)) (|:| |logand| |#1|))) (-429 |#1|)))) +((-1606 (((-655 |#2|) (-1190 |#4|)) 44)) (-1950 ((|#3| (-575)) 47)) (-4323 (((-1190 |#4|) (-1190 |#3|)) 30)) (-3172 (((-1190 |#4|) (-1190 |#4|) (-575)) 66)) (-1520 (((-1190 |#3|) (-1190 |#4|)) 21)) (-2645 (((-655 (-782)) (-1190 |#4|) (-655 |#2|)) 41)) (-3340 (((-1190 |#3|) (-1190 |#4|) (-655 |#2|) (-655 |#3|)) 35))) +(((-330 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3340 ((-1190 |#3|) (-1190 |#4|) (-655 |#2|) (-655 |#3|))) (-15 -2645 ((-655 (-782)) (-1190 |#4|) (-655 |#2|))) (-15 -1606 ((-655 |#2|) (-1190 |#4|))) (-15 -1520 ((-1190 |#3|) (-1190 |#4|))) (-15 -4323 ((-1190 |#4|) (-1190 |#3|))) (-15 -3172 ((-1190 |#4|) (-1190 |#4|) (-575))) (-15 -1950 (|#3| (-575)))) (-804) (-861) (-1066) (-964 |#3| |#1| |#2|)) (T -330)) +((-1950 (*1 *2 *3) (-12 (-5 *3 (-575)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1066)) (-5 *1 (-330 *4 *5 *2 *6)) (-4 *6 (-964 *2 *4 *5)))) (-3172 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 *7)) (-5 *3 (-575)) (-4 *7 (-964 *6 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-5 *1 (-330 *4 *5 *6 *7)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-1190 *6)) (-4 *6 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-1190 *7)) (-5 *1 (-330 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-1190 *7)) (-4 *7 (-964 *6 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-5 *2 (-1190 *6)) (-5 *1 (-330 *4 *5 *6 *7)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-1190 *7)) (-4 *7 (-964 *6 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-5 *2 (-655 *5)) (-5 *1 (-330 *4 *5 *6 *7)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *8)) (-5 *4 (-655 *6)) (-4 *6 (-861)) (-4 *8 (-964 *7 *5 *6)) (-4 *5 (-804)) (-4 *7 (-1066)) (-5 *2 (-655 (-782))) (-5 *1 (-330 *5 *6 *7 *8)))) (-3340 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-5 *5 (-655 *8)) (-4 *7 (-861)) (-4 *8 (-1066)) (-4 *9 (-964 *8 *6 *7)) (-4 *6 (-804)) (-5 *2 (-1190 *8)) (-5 *1 (-330 *6 *7 *8 *9))))) +(-10 -7 (-15 -3340 ((-1190 |#3|) (-1190 |#4|) (-655 |#2|) (-655 |#3|))) (-15 -2645 ((-655 (-782)) (-1190 |#4|) (-655 |#2|))) (-15 -1606 ((-655 |#2|) (-1190 |#4|))) (-15 -1520 ((-1190 |#3|) (-1190 |#4|))) (-15 -4323 ((-1190 |#4|) (-1190 |#3|))) (-15 -3172 ((-1190 |#4|) (-1190 |#4|) (-575))) (-15 -1950 (|#3| (-575)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 19)) (-2144 (((-655 (-2 (|:| |gen| |#1|) (|:| -2665 (-575)))) $) 21)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2415 (((-782) $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-3643 ((|#1| $ (-575)) NIL)) (-3386 (((-575) $ (-575)) NIL)) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-1772 (($ (-1 |#1| |#1|) $) NIL)) (-3716 (($ (-1 (-575) (-575)) $) 11)) (-2288 (((-1176) $) NIL)) (-3874 (($ $ $) NIL (|has| (-575) (-803)))) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL) (($ |#1|) NIL)) (-2012 (((-575) |#1| $) NIL)) (-4400 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) 29 (|has| |#1| (-861)))) (-4028 (($ $) 12) (($ $ $) 28)) (-4016 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ (-575)) NIL) (($ (-575) |#1|) 27))) +(((-331 |#1|) (-13 (-21) (-728 (-575)) (-332 |#1| (-575)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|))) (-1117)) (T -331)) +NIL +(-13 (-21) (-728 (-575)) (-332 |#1| (-575)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2144 (((-655 (-2 (|:| |gen| |#1|) (|:| -2665 |#2|))) $) 28)) (-2597 (((-3 $ "failed") $ $) 20)) (-2415 (((-782) $) 29)) (-3011 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 33)) (-4399 ((|#1| $) 34)) (-3643 ((|#1| $ (-575)) 26)) (-3386 ((|#2| $ (-575)) 27)) (-1772 (($ (-1 |#1| |#1|) $) 23)) (-3716 (($ (-1 |#2| |#2|) $) 24)) (-2288 (((-1176) $) 10)) (-3874 (($ $ $) 22 (|has| |#2| (-803)))) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ |#1|) 32)) (-2012 ((|#2| |#1| $) 25)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4016 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ |#2| |#1|) 30))) +(((-332 |#1| |#2|) (-141) (-1117) (-132)) (T -332)) +((-4016 (*1 *1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-132)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132)) (-5 *2 (-782)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132)) (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2665 *4)))))) (-3386 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-332 *4 *2)) (-4 *4 (-1117)) (-4 *2 (-132)))) (-3643 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-332 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1117)))) (-2012 (*1 *2 *3 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-132)))) (-3716 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132)))) (-1772 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132)))) (-3874 (*1 *1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-132)) (-4 *3 (-803))))) +(-13 (-132) (-1055 |t#1|) (-10 -8 (-15 -4016 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2415 ((-782) $)) (-15 -2144 ((-655 (-2 (|:| |gen| |t#1|) (|:| -2665 |t#2|))) $)) (-15 -3386 (|t#2| $ (-575))) (-15 -3643 (|t#1| $ (-575))) (-15 -2012 (|t#2| |t#1| $)) (-15 -3716 ($ (-1 |t#2| |t#2|) $)) (-15 -1772 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-803)) (-15 -3874 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-1055 |#1|) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2144 (((-655 (-2 (|:| |gen| |#1|) (|:| -2665 (-782)))) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2415 (((-782) $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-3643 ((|#1| $ (-575)) NIL)) (-3386 (((-782) $ (-575)) NIL)) (-1772 (($ (-1 |#1| |#1|) $) NIL)) (-3716 (($ (-1 (-782) (-782)) $) NIL)) (-2288 (((-1176) $) NIL)) (-3874 (($ $ $) NIL (|has| (-782) (-803)))) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL) (($ |#1|) NIL)) (-2012 (((-782) |#1| $) NIL)) (-4400 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4016 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-782) |#1|) NIL))) +(((-333 |#1|) (-332 |#1| (-782)) (-1117)) (T -333)) +NIL +(-332 |#1| (-782)) +((-1824 (($ $) 72)) (-3703 (($ $ |#2| |#3| $) 14)) (-2520 (($ (-1 |#3| |#3|) $) 51)) (-4345 (((-112) $) 42)) (-4353 ((|#2| $) 44)) (-2851 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-2178 ((|#2| $) 68)) (-2501 (((-655 |#2|) $) 56)) (-1835 (($ $ $ (-782)) 37)) (-4038 (($ $ |#2|) 60))) +(((-334 |#1| |#2| |#3|) (-10 -8 (-15 -1824 (|#1| |#1|)) (-15 -2178 (|#2| |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1835 (|#1| |#1| |#1| (-782))) (-15 -3703 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2520 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2501 ((-655 |#2|) |#1|)) (-15 -4353 (|#2| |#1|)) (-15 -4345 ((-112) |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4038 (|#1| |#1| |#2|))) (-335 |#2| |#3|) (-1066) (-803)) (T -334)) +NIL +(-10 -8 (-15 -1824 (|#1| |#1|)) (-15 -2178 (|#2| |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1835 (|#1| |#1| |#1| (-782))) (-15 -3703 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2520 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2501 ((-655 |#2|) |#1|)) (-15 -4353 (|#2| |#1|)) (-15 -4345 ((-112) |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4038 (|#1| |#1| |#2|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-1540 (($ $) 64 (|has| |#1| (-567)))) (-3286 (((-112) $) 66 (|has| |#1| (-567)))) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2449 (((-3 (-575) "failed") $) 100 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 98 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 95)) (-4399 (((-575) $) 99 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 97 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 96)) (-4406 (($ $) 72)) (-1747 (((-3 $ "failed") $) 37)) (-1824 (($ $) 84 (|has| |#1| (-463)))) (-3703 (($ $ |#1| |#2| $) 88)) (-1542 (((-112) $) 35)) (-2218 (((-782) $) 91)) (-2376 (((-112) $) 74)) (-2417 (($ |#1| |#2|) 73)) (-4337 ((|#2| $) 90)) (-2520 (($ (-1 |#2| |#2|) $) 89)) (-2550 (($ (-1 |#1| |#1|) $) 75)) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4345 (((-112) $) 94)) (-4353 ((|#1| $) 93)) (-2851 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-567)))) (-2645 ((|#2| $) 76)) (-2178 ((|#1| $) 85 (|has| |#1| (-463)))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 61 (|has| |#1| (-567))) (($ |#1|) 59) (($ (-418 (-575))) 69 (-3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))))) (-2501 (((-655 |#1|) $) 92)) (-2012 ((|#1| $ |#2|) 71)) (-1518 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-1835 (($ $ $ (-782)) 87 (|has| |#1| (-174)))) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575))))))) +(((-335 |#1| |#2|) (-141) (-1066) (-803)) (T -335)) +((-4345 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-112)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-655 *3)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-782)))) (-4337 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-2520 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)))) (-3703 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))) (-1835 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-4 *3 (-174)))) (-2851 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)) (-4 *2 (-567)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)) (-4 *2 (-463)))) (-1824 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)) (-4 *2 (-463))))) +(-13 (-47 |t#1| |t#2|) (-422 |t#1|) (-10 -8 (-15 -4345 ((-112) $)) (-15 -4353 (|t#1| $)) (-15 -2501 ((-655 |t#1|) $)) (-15 -2218 ((-782) $)) (-15 -4337 (|t#2| $)) (-15 -2520 ($ (-1 |t#2| |t#2|) $)) (-15 -3703 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -1835 ($ $ $ (-782))) |%noBranch|) (IF (|has| |t#1| (-567)) (-15 -2851 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-463)) (PROGN (-15 -2178 (|t#1| $)) (-15 -1824 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-299) |has| |#1| (-567)) ((-422 |#1|) . T) ((-567) |has| |#1| (-567)) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-1580 (((-112) (-112)) NIL)) (-3054 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-1999 (($ (-1 (-112) |#1|) $) NIL)) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1878 (($ $) NIL (|has| |#1| (-1117)))) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4404 (($ |#1| $) NIL (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) NIL)) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) NIL)) (-2632 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-1361 (($ $ (-575)) NIL)) (-3118 (((-782) $) NIL)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2309 (($ (-782) |#1|) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-4174 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3862 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-2135 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2666 (($ (-655 |#1|)) NIL)) (-1961 ((|#1| $) NIL (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3954 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-2797 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) NIL)) (-2774 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-336 |#1|) (-13 (-19 |#1|) (-291 |#1|) (-10 -8 (-15 -2666 ($ (-655 |#1|))) (-15 -3118 ((-782) $)) (-15 -1361 ($ $ (-575))) (-15 -1580 ((-112) (-112))))) (-1235)) (T -336)) +((-2666 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-336 *3)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-336 *3)) (-4 *3 (-1235)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-336 *3)) (-4 *3 (-1235)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-336 *3)) (-4 *3 (-1235))))) +(-13 (-19 |#1|) (-291 |#1|) (-10 -8 (-15 -2666 ($ (-655 |#1|))) (-15 -3118 ((-782) $)) (-15 -1361 ($ $ (-575))) (-15 -1580 ((-112) (-112))))) +((-1871 (((-112) $) 47)) (-2936 (((-782)) 23)) (-1447 ((|#2| $) 51) (($ $ (-936)) 121)) (-2415 (((-782)) 122)) (-1385 (($ (-1285 |#2|)) 20)) (-2922 (((-112) $) 134)) (-2255 ((|#2| $) 53) (($ $ (-936)) 118)) (-1943 (((-1190 |#2|) $) NIL) (((-1190 $) $ (-936)) 109)) (-2394 (((-1190 |#2|) $) 95)) (-3255 (((-1190 |#2|) $) 91) (((-3 (-1190 |#2|) "failed") $ $) 88)) (-2065 (($ $ (-1190 |#2|)) 58)) (-2819 (((-844 (-936))) 30) (((-936)) 48)) (-4386 (((-135)) 27)) (-2645 (((-844 (-936)) $) 32) (((-936) $) 137)) (-3832 (($) 128)) (-3962 (((-1285 |#2|) $) NIL) (((-700 |#2|) (-1285 $)) 42)) (-1518 (($ $) NIL) (((-3 $ "failed") $) 98)) (-1591 (((-112) $) 45))) +(((-337 |#1| |#2|) (-10 -8 (-15 -1518 ((-3 |#1| "failed") |#1|)) (-15 -2415 ((-782))) (-15 -1518 (|#1| |#1|)) (-15 -3255 ((-3 (-1190 |#2|) "failed") |#1| |#1|)) (-15 -3255 ((-1190 |#2|) |#1|)) (-15 -2394 ((-1190 |#2|) |#1|)) (-15 -2065 (|#1| |#1| (-1190 |#2|))) (-15 -2922 ((-112) |#1|)) (-15 -3832 (|#1|)) (-15 -1447 (|#1| |#1| (-936))) (-15 -2255 (|#1| |#1| (-936))) (-15 -1943 ((-1190 |#1|) |#1| (-936))) (-15 -1447 (|#2| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -2645 ((-936) |#1|)) (-15 -2819 ((-936))) (-15 -1943 ((-1190 |#2|) |#1|)) (-15 -1385 (|#1| (-1285 |#2|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1|)) (-15 -2936 ((-782))) (-15 -2819 ((-844 (-936)))) (-15 -2645 ((-844 (-936)) |#1|)) (-15 -1871 ((-112) |#1|)) (-15 -1591 ((-112) |#1|)) (-15 -4386 ((-135)))) (-338 |#2|) (-373)) (T -337)) +((-4386 (*1 *2) (-12 (-4 *4 (-373)) (-5 *2 (-135)) (-5 *1 (-337 *3 *4)) (-4 *3 (-338 *4)))) (-2819 (*1 *2) (-12 (-4 *4 (-373)) (-5 *2 (-844 (-936))) (-5 *1 (-337 *3 *4)) (-4 *3 (-338 *4)))) (-2936 (*1 *2) (-12 (-4 *4 (-373)) (-5 *2 (-782)) (-5 *1 (-337 *3 *4)) (-4 *3 (-338 *4)))) (-2819 (*1 *2) (-12 (-4 *4 (-373)) (-5 *2 (-936)) (-5 *1 (-337 *3 *4)) (-4 *3 (-338 *4)))) (-2415 (*1 *2) (-12 (-4 *4 (-373)) (-5 *2 (-782)) (-5 *1 (-337 *3 *4)) (-4 *3 (-338 *4))))) +(-10 -8 (-15 -1518 ((-3 |#1| "failed") |#1|)) (-15 -2415 ((-782))) (-15 -1518 (|#1| |#1|)) (-15 -3255 ((-3 (-1190 |#2|) "failed") |#1| |#1|)) (-15 -3255 ((-1190 |#2|) |#1|)) (-15 -2394 ((-1190 |#2|) |#1|)) (-15 -2065 (|#1| |#1| (-1190 |#2|))) (-15 -2922 ((-112) |#1|)) (-15 -3832 (|#1|)) (-15 -1447 (|#1| |#1| (-936))) (-15 -2255 (|#1| |#1| (-936))) (-15 -1943 ((-1190 |#1|) |#1| (-936))) (-15 -1447 (|#2| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -2645 ((-936) |#1|)) (-15 -2819 ((-936))) (-15 -1943 ((-1190 |#2|) |#1|)) (-15 -1385 (|#1| (-1285 |#2|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1|)) (-15 -2936 ((-782))) (-15 -2819 ((-844 (-936)))) (-15 -2645 ((-844 (-936)) |#1|)) (-15 -1871 ((-112) |#1|)) (-15 -1591 ((-112) |#1|)) (-15 -4386 ((-135)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-1871 (((-112) $) 104)) (-2936 (((-782)) 100)) (-1447 ((|#1| $) 151) (($ $ (-936)) 148 (|has| |#1| (-378)))) (-2243 (((-1207 (-936) (-782)) (-575)) 133 (|has| |#1| (-378)))) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 81)) (-2330 (((-429 $) $) 80)) (-2279 (((-112) $ $) 65)) (-2415 (((-782)) 123 (|has| |#1| (-378)))) (-3011 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 111)) (-4399 ((|#1| $) 112)) (-1385 (($ (-1285 |#1|)) 157)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-378)))) (-2802 (($ $ $) 61)) (-1747 (((-3 $ "failed") $) 37)) (-2079 (($) 120 (|has| |#1| (-378)))) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-1360 (($) 135 (|has| |#1| (-378)))) (-1980 (((-112) $) 136 (|has| |#1| (-378)))) (-4374 (($ $ (-782)) 97 (-3765 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) 96 (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1336 (((-112) $) 79)) (-2673 (((-936) $) 138 (|has| |#1| (-378))) (((-844 (-936)) $) 94 (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1542 (((-112) $) 35)) (-3547 (($) 146 (|has| |#1| (-378)))) (-2922 (((-112) $) 145 (|has| |#1| (-378)))) (-2255 ((|#1| $) 152) (($ $ (-936)) 149 (|has| |#1| (-378)))) (-2607 (((-3 $ "failed") $) 124 (|has| |#1| (-378)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-1943 (((-1190 |#1|) $) 156) (((-1190 $) $ (-936)) 150 (|has| |#1| (-378)))) (-4084 (((-936) $) 121 (|has| |#1| (-378)))) (-2394 (((-1190 |#1|) $) 142 (|has| |#1| (-378)))) (-3255 (((-1190 |#1|) $) 141 (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) 140 (|has| |#1| (-378)))) (-2065 (($ $ (-1190 |#1|)) 143 (|has| |#1| (-378)))) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3474 (($) 125 (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) 122 (|has| |#1| (-378)))) (-3497 (((-112) $) 103)) (-3912 (((-1137) $) 11)) (-3659 (($) 144 (|has| |#1| (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) 132 (|has| |#1| (-378)))) (-2353 (((-429 $) $) 82)) (-2819 (((-844 (-936))) 101) (((-936)) 154)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3708 (((-782) $) 64)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-3905 (((-782) $) 137 (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) 95 (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4386 (((-135)) 109)) (-2389 (($ $ (-782)) 128 (|has| |#1| (-378))) (($ $) 126 (|has| |#1| (-378)))) (-2645 (((-844 (-936)) $) 102) (((-936) $) 153)) (-2552 (((-1190 |#1|)) 155)) (-3500 (($) 134 (|has| |#1| (-378)))) (-3832 (($) 147 (|has| |#1| (-378)))) (-3962 (((-1285 |#1|) $) 159) (((-700 |#1|) (-1285 $)) 158)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 131 (|has| |#1| (-378)))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ |#1|) 110)) (-1518 (($ $) 130 (|has| |#1| (-378))) (((-3 $ "failed") $) 93 (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1624 (((-1285 $)) 161) (((-1285 $) (-936)) 160)) (-1780 (((-112) $ $) 45)) (-1591 (((-112) $) 105)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-4216 (($ $) 99 (|has| |#1| (-378))) (($ $ (-782)) 98 (|has| |#1| (-378)))) (-3430 (($ $ (-782)) 129 (|has| |#1| (-378))) (($ $) 127 (|has| |#1| (-378)))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ $) 73) (($ $ |#1|) 108)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-338 |#1|) (-141) (-373)) (T -338)) +((-1624 (*1 *2) (-12 (-4 *3 (-373)) (-5 *2 (-1285 *1)) (-4 *1 (-338 *3)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-936)) (-4 *4 (-373)) (-5 *2 (-1285 *1)) (-4 *1 (-338 *4)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1285 *3)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-338 *4)) (-4 *4 (-373)) (-5 *2 (-700 *4)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-373)) (-4 *1 (-338 *3)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1190 *3)))) (-2552 (*1 *2) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1190 *3)))) (-2819 (*1 *2) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-936)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-936)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-373)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-373)))) (-1943 (*1 *2 *1 *3) (-12 (-5 *3 (-936)) (-4 *4 (-378)) (-4 *4 (-373)) (-5 *2 (-1190 *1)) (-4 *1 (-338 *4)))) (-2255 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)))) (-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)))) (-3832 (*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373)))) (-3547 (*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373)))) (-2922 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) (-5 *2 (-112)))) (-3659 (*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373)))) (-2065 (*1 *1 *1 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-378)) (-4 *1 (-338 *3)) (-4 *3 (-373)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) (-5 *2 (-1190 *3)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) (-5 *2 (-1190 *3)))) (-3255 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) (-5 *2 (-1190 *3))))) +(-13 (-1304 |t#1|) (-1055 |t#1|) (-10 -8 (-15 -1624 ((-1285 $))) (-15 -1624 ((-1285 $) (-936))) (-15 -3962 ((-1285 |t#1|) $)) (-15 -3962 ((-700 |t#1|) (-1285 $))) (-15 -1385 ($ (-1285 |t#1|))) (-15 -1943 ((-1190 |t#1|) $)) (-15 -2552 ((-1190 |t#1|))) (-15 -2819 ((-936))) (-15 -2645 ((-936) $)) (-15 -2255 (|t#1| $)) (-15 -1447 (|t#1| $)) (IF (|has| |t#1| (-378)) (PROGN (-6 (-359)) (-15 -1943 ((-1190 $) $ (-936))) (-15 -2255 ($ $ (-936))) (-15 -1447 ($ $ (-936))) (-15 -3832 ($)) (-15 -3547 ($)) (-15 -2922 ((-112) $)) (-15 -3659 ($)) (-15 -2065 ($ $ (-1190 |t#1|))) (-15 -2394 ((-1190 |t#1|) $)) (-15 -3255 ((-1190 |t#1|) $)) (-15 -3255 ((-3 (-1190 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3765 (|has| |#1| (-378)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-234 $) |has| |#1| (-378)) ((-238) |has| |#1| (-378)) ((-237) |has| |#1| (-378)) ((-248) . T) ((-299) . T) ((-316) . T) ((-1304 |#1|) . T) ((-373) . T) ((-413) -3765 (|has| |#1| (-378)) (|has| |#1| (-146))) ((-378) |has| |#1| (-378)) ((-359) |has| |#1| (-378)) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 |#1|) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1055 |#1|) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| |#1| (-378)) ((-1235) |has| |#1| (-378)) ((-1239) . T) ((-1292 |#1|) . T)) +((-2861 (((-112) $ $) NIL)) (-3315 (($ (-1193) $) 100)) (-4214 (($) 89)) (-2379 (((-1137) (-1137)) 9)) (-3055 (($) 90)) (-2540 (($) 104) (($ (-325 (-710))) 112) (($ (-325 (-712))) 108) (($ (-325 (-705))) 116) (($ (-325 (-389))) 123) (($ (-325 (-575))) 119) (($ (-325 (-171 (-389)))) 127)) (-1353 (($ (-1193) $) 101)) (-2015 (($ (-655 (-873))) 91)) (-2292 (((-1290) $) 87)) (-1532 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3947 (($ (-1137)) 58)) (-2252 (((-1121) $) 30)) (-2172 (($ (-1109 (-967 (-575))) $) 97) (($ (-1109 (-967 (-575))) (-967 (-575)) $) 98)) (-2022 (($ (-1137)) 99)) (-1510 (($ (-1193) $) 129) (($ (-1193) $ $) 130)) (-3723 (($ (-1194) (-655 (-1194))) 88)) (-4291 (($ (-1176)) 94) (($ (-655 (-1176))) 92)) (-2883 (((-873) $) 132)) (-2558 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1194)) (|:| |arrayIndex| (-655 (-967 (-575)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1400 (-873)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1194)) (|:| |rand| (-873)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1193)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4076 (-112)) (|:| -4182 (-2 (|:| |ints2Floats?| (-112)) (|:| -1400 (-873)))))) (|:| |blockBranch| (-655 $)) (|:| |commentBranch| (-655 (-1176))) (|:| |callBranch| (-1176)) (|:| |forBranch| (-2 (|:| -3437 (-1109 (-967 (-575)))) (|:| |span| (-967 (-575))) (|:| -1788 $))) (|:| |labelBranch| (-1137)) (|:| |loopBranch| (-2 (|:| |switch| (-1193)) (|:| -1788 $))) (|:| |commonBranch| (-2 (|:| -1777 (-1194)) (|:| |contents| (-655 (-1194))))) (|:| |printBranch| (-655 (-873)))) $) 50)) (-4201 (($ (-1176)) 202)) (-3840 (($ (-655 $)) 128)) (-4400 (((-112) $ $) NIL)) (-1538 (($ (-1194) (-1176)) 135) (($ (-1194) (-325 (-712))) 175) (($ (-1194) (-325 (-710))) 176) (($ (-1194) (-325 (-705))) 177) (($ (-1194) (-700 (-712))) 138) (($ (-1194) (-700 (-710))) 141) (($ (-1194) (-700 (-705))) 144) (($ (-1194) (-1285 (-712))) 147) (($ (-1194) (-1285 (-710))) 150) (($ (-1194) (-1285 (-705))) 153) (($ (-1194) (-700 (-325 (-712)))) 156) (($ (-1194) (-700 (-325 (-710)))) 159) (($ (-1194) (-700 (-325 (-705)))) 162) (($ (-1194) (-1285 (-325 (-712)))) 165) (($ (-1194) (-1285 (-325 (-710)))) 168) (($ (-1194) (-1285 (-325 (-705)))) 171) (($ (-1194) (-655 (-967 (-575))) (-325 (-712))) 172) (($ (-1194) (-655 (-967 (-575))) (-325 (-710))) 173) (($ (-1194) (-655 (-967 (-575))) (-325 (-705))) 174) (($ (-1194) (-325 (-575))) 199) (($ (-1194) (-325 (-389))) 200) (($ (-1194) (-325 (-171 (-389)))) 201) (($ (-1194) (-700 (-325 (-575)))) 180) (($ (-1194) (-700 (-325 (-389)))) 183) (($ (-1194) (-700 (-325 (-171 (-389))))) 186) (($ (-1194) (-1285 (-325 (-575)))) 189) (($ (-1194) (-1285 (-325 (-389)))) 192) (($ (-1194) (-1285 (-325 (-171 (-389))))) 195) (($ (-1194) (-655 (-967 (-575))) (-325 (-575))) 196) (($ (-1194) (-655 (-967 (-575))) (-325 (-389))) 197) (($ (-1194) (-655 (-967 (-575))) (-325 (-171 (-389)))) 198)) (-3914 (((-112) $ $) NIL))) +(((-339) (-13 (-1117) (-10 -8 (-15 -2172 ($ (-1109 (-967 (-575))) $)) (-15 -2172 ($ (-1109 (-967 (-575))) (-967 (-575)) $)) (-15 -3315 ($ (-1193) $)) (-15 -1353 ($ (-1193) $)) (-15 -3947 ($ (-1137))) (-15 -2022 ($ (-1137))) (-15 -4291 ($ (-1176))) (-15 -4291 ($ (-655 (-1176)))) (-15 -4201 ($ (-1176))) (-15 -2540 ($)) (-15 -2540 ($ (-325 (-710)))) (-15 -2540 ($ (-325 (-712)))) (-15 -2540 ($ (-325 (-705)))) (-15 -2540 ($ (-325 (-389)))) (-15 -2540 ($ (-325 (-575)))) (-15 -2540 ($ (-325 (-171 (-389))))) (-15 -1510 ($ (-1193) $)) (-15 -1510 ($ (-1193) $ $)) (-15 -1538 ($ (-1194) (-1176))) (-15 -1538 ($ (-1194) (-325 (-712)))) (-15 -1538 ($ (-1194) (-325 (-710)))) (-15 -1538 ($ (-1194) (-325 (-705)))) (-15 -1538 ($ (-1194) (-700 (-712)))) (-15 -1538 ($ (-1194) (-700 (-710)))) (-15 -1538 ($ (-1194) (-700 (-705)))) (-15 -1538 ($ (-1194) (-1285 (-712)))) (-15 -1538 ($ (-1194) (-1285 (-710)))) (-15 -1538 ($ (-1194) (-1285 (-705)))) (-15 -1538 ($ (-1194) (-700 (-325 (-712))))) (-15 -1538 ($ (-1194) (-700 (-325 (-710))))) (-15 -1538 ($ (-1194) (-700 (-325 (-705))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-712))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-710))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-705))))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-712)))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-710)))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-705)))) (-15 -1538 ($ (-1194) (-325 (-575)))) (-15 -1538 ($ (-1194) (-325 (-389)))) (-15 -1538 ($ (-1194) (-325 (-171 (-389))))) (-15 -1538 ($ (-1194) (-700 (-325 (-575))))) (-15 -1538 ($ (-1194) (-700 (-325 (-389))))) (-15 -1538 ($ (-1194) (-700 (-325 (-171 (-389)))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-575))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-389))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-171 (-389)))))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-575)))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-389)))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-171 (-389))))) (-15 -3840 ($ (-655 $))) (-15 -4214 ($)) (-15 -3055 ($)) (-15 -2015 ($ (-655 (-873)))) (-15 -3723 ($ (-1194) (-655 (-1194)))) (-15 -1532 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2558 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1194)) (|:| |arrayIndex| (-655 (-967 (-575)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1400 (-873)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1194)) (|:| |rand| (-873)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1193)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4076 (-112)) (|:| -4182 (-2 (|:| |ints2Floats?| (-112)) (|:| -1400 (-873)))))) (|:| |blockBranch| (-655 $)) (|:| |commentBranch| (-655 (-1176))) (|:| |callBranch| (-1176)) (|:| |forBranch| (-2 (|:| -3437 (-1109 (-967 (-575)))) (|:| |span| (-967 (-575))) (|:| -1788 $))) (|:| |labelBranch| (-1137)) (|:| |loopBranch| (-2 (|:| |switch| (-1193)) (|:| -1788 $))) (|:| |commonBranch| (-2 (|:| -1777 (-1194)) (|:| |contents| (-655 (-1194))))) (|:| |printBranch| (-655 (-873)))) $)) (-15 -2292 ((-1290) $)) (-15 -2252 ((-1121) $)) (-15 -2379 ((-1137) (-1137)))))) (T -339)) +((-2172 (*1 *1 *2 *1) (-12 (-5 *2 (-1109 (-967 (-575)))) (-5 *1 (-339)))) (-2172 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1109 (-967 (-575)))) (-5 *3 (-967 (-575))) (-5 *1 (-339)))) (-3315 (*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))) (-1353 (*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339)))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339)))) (-4291 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-339)))) (-4291 (*1 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-339)))) (-4201 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-339)))) (-2540 (*1 *1) (-5 *1 (-339))) (-2540 (*1 *1 *2) (-12 (-5 *2 (-325 (-710))) (-5 *1 (-339)))) (-2540 (*1 *1 *2) (-12 (-5 *2 (-325 (-712))) (-5 *1 (-339)))) (-2540 (*1 *1 *2) (-12 (-5 *2 (-325 (-705))) (-5 *1 (-339)))) (-2540 (*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-5 *1 (-339)))) (-2540 (*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-5 *1 (-339)))) (-2540 (*1 *1 *2) (-12 (-5 *2 (-325 (-171 (-389)))) (-5 *1 (-339)))) (-1510 (*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))) (-1510 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1176)) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-712))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-710))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-705))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-712))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-710))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-705))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-712))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-710))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-705))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-712)))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-710)))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-705)))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-712)))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-710)))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-705)))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-712))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-710))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-705))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-575))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-389))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-171 (-389)))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-575)))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-389)))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-171 (-389))))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-575)))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-389)))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-171 (-389))))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-575))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-389))) (-5 *1 (-339)))) (-1538 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-171 (-389)))) (-5 *1 (-339)))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-5 *1 (-339)))) (-4214 (*1 *1) (-5 *1 (-339))) (-3055 (*1 *1) (-5 *1 (-339))) (-2015 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-339)))) (-3723 (*1 *1 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1194)) (-5 *1 (-339)))) (-1532 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-339)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1194)) (|:| |arrayIndex| (-655 (-967 (-575)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1400 (-873)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1194)) (|:| |rand| (-873)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1193)) (|:| |thenClause| (-339)) (|:| |elseClause| (-339)))) (|:| |returnBranch| (-2 (|:| -4076 (-112)) (|:| -4182 (-2 (|:| |ints2Floats?| (-112)) (|:| -1400 (-873)))))) (|:| |blockBranch| (-655 (-339))) (|:| |commentBranch| (-655 (-1176))) (|:| |callBranch| (-1176)) (|:| |forBranch| (-2 (|:| -3437 (-1109 (-967 (-575)))) (|:| |span| (-967 (-575))) (|:| -1788 (-339)))) (|:| |labelBranch| (-1137)) (|:| |loopBranch| (-2 (|:| |switch| (-1193)) (|:| -1788 (-339)))) (|:| |commonBranch| (-2 (|:| -1777 (-1194)) (|:| |contents| (-655 (-1194))))) (|:| |printBranch| (-655 (-873))))) (-5 *1 (-339)))) (-2292 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-339)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-339)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339))))) +(-13 (-1117) (-10 -8 (-15 -2172 ($ (-1109 (-967 (-575))) $)) (-15 -2172 ($ (-1109 (-967 (-575))) (-967 (-575)) $)) (-15 -3315 ($ (-1193) $)) (-15 -1353 ($ (-1193) $)) (-15 -3947 ($ (-1137))) (-15 -2022 ($ (-1137))) (-15 -4291 ($ (-1176))) (-15 -4291 ($ (-655 (-1176)))) (-15 -4201 ($ (-1176))) (-15 -2540 ($)) (-15 -2540 ($ (-325 (-710)))) (-15 -2540 ($ (-325 (-712)))) (-15 -2540 ($ (-325 (-705)))) (-15 -2540 ($ (-325 (-389)))) (-15 -2540 ($ (-325 (-575)))) (-15 -2540 ($ (-325 (-171 (-389))))) (-15 -1510 ($ (-1193) $)) (-15 -1510 ($ (-1193) $ $)) (-15 -1538 ($ (-1194) (-1176))) (-15 -1538 ($ (-1194) (-325 (-712)))) (-15 -1538 ($ (-1194) (-325 (-710)))) (-15 -1538 ($ (-1194) (-325 (-705)))) (-15 -1538 ($ (-1194) (-700 (-712)))) (-15 -1538 ($ (-1194) (-700 (-710)))) (-15 -1538 ($ (-1194) (-700 (-705)))) (-15 -1538 ($ (-1194) (-1285 (-712)))) (-15 -1538 ($ (-1194) (-1285 (-710)))) (-15 -1538 ($ (-1194) (-1285 (-705)))) (-15 -1538 ($ (-1194) (-700 (-325 (-712))))) (-15 -1538 ($ (-1194) (-700 (-325 (-710))))) (-15 -1538 ($ (-1194) (-700 (-325 (-705))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-712))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-710))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-705))))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-712)))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-710)))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-705)))) (-15 -1538 ($ (-1194) (-325 (-575)))) (-15 -1538 ($ (-1194) (-325 (-389)))) (-15 -1538 ($ (-1194) (-325 (-171 (-389))))) (-15 -1538 ($ (-1194) (-700 (-325 (-575))))) (-15 -1538 ($ (-1194) (-700 (-325 (-389))))) (-15 -1538 ($ (-1194) (-700 (-325 (-171 (-389)))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-575))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-389))))) (-15 -1538 ($ (-1194) (-1285 (-325 (-171 (-389)))))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-575)))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-389)))) (-15 -1538 ($ (-1194) (-655 (-967 (-575))) (-325 (-171 (-389))))) (-15 -3840 ($ (-655 $))) (-15 -4214 ($)) (-15 -3055 ($)) (-15 -2015 ($ (-655 (-873)))) (-15 -3723 ($ (-1194) (-655 (-1194)))) (-15 -1532 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2558 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1194)) (|:| |arrayIndex| (-655 (-967 (-575)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1400 (-873)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1194)) (|:| |rand| (-873)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1193)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4076 (-112)) (|:| -4182 (-2 (|:| |ints2Floats?| (-112)) (|:| -1400 (-873)))))) (|:| |blockBranch| (-655 $)) (|:| |commentBranch| (-655 (-1176))) (|:| |callBranch| (-1176)) (|:| |forBranch| (-2 (|:| -3437 (-1109 (-967 (-575)))) (|:| |span| (-967 (-575))) (|:| -1788 $))) (|:| |labelBranch| (-1137)) (|:| |loopBranch| (-2 (|:| |switch| (-1193)) (|:| -1788 $))) (|:| |commonBranch| (-2 (|:| -1777 (-1194)) (|:| |contents| (-655 (-1194))))) (|:| |printBranch| (-655 (-873)))) $)) (-15 -2292 ((-1290) $)) (-15 -2252 ((-1121) $)) (-15 -2379 ((-1137) (-1137))))) +((-2861 (((-112) $ $) NIL)) (-4142 (((-112) $) 13)) (-3761 (($ |#1|) 10)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3774 (($ |#1|) 12)) (-2883 (((-873) $) 19)) (-4400 (((-112) $ $) NIL)) (-1803 ((|#1| $) 14)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 21))) +(((-340 |#1|) (-13 (-861) (-10 -8 (-15 -3761 ($ |#1|)) (-15 -3774 ($ |#1|)) (-15 -4142 ((-112) $)) (-15 -1803 (|#1| $)))) (-861)) (T -340)) +((-3761 (*1 *1 *2) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861)))) (-3774 (*1 *1 *2) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-340 *3)) (-4 *3 (-861)))) (-1803 (*1 *2 *1) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861))))) +(-13 (-861) (-10 -8 (-15 -3761 ($ |#1|)) (-15 -3774 ($ |#1|)) (-15 -4142 ((-112) $)) (-15 -1803 (|#1| $)))) +((-2729 (((-339) (-1194) (-967 (-575))) 23)) (-2008 (((-339) (-1194) (-967 (-575))) 27)) (-2957 (((-339) (-1194) (-1109 (-967 (-575))) (-1109 (-967 (-575)))) 26) (((-339) (-1194) (-967 (-575)) (-967 (-575))) 24)) (-3757 (((-339) (-1194) (-967 (-575))) 31))) +(((-341) (-10 -7 (-15 -2729 ((-339) (-1194) (-967 (-575)))) (-15 -2957 ((-339) (-1194) (-967 (-575)) (-967 (-575)))) (-15 -2957 ((-339) (-1194) (-1109 (-967 (-575))) (-1109 (-967 (-575))))) (-15 -2008 ((-339) (-1194) (-967 (-575)))) (-15 -3757 ((-339) (-1194) (-967 (-575)))))) (T -341)) +((-3757 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) (-5 *1 (-341)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) (-5 *1 (-341)))) (-2957 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-1109 (-967 (-575)))) (-5 *2 (-339)) (-5 *1 (-341)))) (-2957 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) (-5 *1 (-341)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) (-5 *1 (-341))))) +(-10 -7 (-15 -2729 ((-339) (-1194) (-967 (-575)))) (-15 -2957 ((-339) (-1194) (-967 (-575)) (-967 (-575)))) (-15 -2957 ((-339) (-1194) (-1109 (-967 (-575))) (-1109 (-967 (-575))))) (-15 -2008 ((-339) (-1194) (-967 (-575)))) (-15 -3757 ((-339) (-1194) (-967 (-575))))) +((-2861 (((-112) $ $) NIL)) (-2306 (((-517) $) 20)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2148 (((-973 (-782)) $) 18)) (-2386 (((-255) $) 7)) (-2883 (((-873) $) 26)) (-3232 (((-973 (-185 (-140))) $) 16)) (-4400 (((-112) $ $) NIL)) (-3830 (((-655 (-884 (-1199) (-782))) $) 12)) (-3914 (((-112) $ $) 22))) +(((-342) (-13 (-1117) (-10 -8 (-15 -2386 ((-255) $)) (-15 -3830 ((-655 (-884 (-1199) (-782))) $)) (-15 -2148 ((-973 (-782)) $)) (-15 -3232 ((-973 (-185 (-140))) $)) (-15 -2306 ((-517) $))))) (T -342)) +((-2386 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-342)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-655 (-884 (-1199) (-782)))) (-5 *1 (-342)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-973 (-782))) (-5 *1 (-342)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-973 (-185 (-140)))) (-5 *1 (-342)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-342))))) +(-13 (-1117) (-10 -8 (-15 -2386 ((-255) $)) (-15 -3830 ((-655 (-884 (-1199) (-782))) $)) (-15 -2148 ((-973 (-782)) $)) (-15 -3232 ((-973 (-185 (-140))) $)) (-15 -2306 ((-517) $)))) +((-2550 (((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)) 33))) +(((-343 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2550 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|) (-373) (-1261 |#5|) (-1261 (-418 |#6|)) (-352 |#5| |#6| |#7|)) (T -343)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-373)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7)) (-4 *9 (-373)) (-4 *10 (-1261 *9)) (-4 *11 (-1261 (-418 *10))) (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-343 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-352 *9 *10 *11))))) +(-10 -7 (-15 -2550 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) +((-2321 (((-112) $) 14))) +(((-344 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2321 ((-112) |#1|))) (-345 |#2| |#3| |#4| |#5|) (-373) (-1261 |#2|) (-1261 (-418 |#3|)) (-352 |#2| |#3| |#4|)) (T -344)) +NIL +(-10 -8 (-15 -2321 ((-112) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2308 (($ $) 29)) (-2321 (((-112) $) 28)) (-2288 (((-1176) $) 10)) (-4431 (((-424 |#2| (-418 |#2|) |#3| |#4|) $) 35)) (-3912 (((-1137) $) 11)) (-3659 (((-3 |#4| "failed") $) 27)) (-3995 (($ (-424 |#2| (-418 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-575)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-4299 (((-2 (|:| -2059 (-424 |#2| (-418 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24))) +(((-345 |#1| |#2| |#3| |#4|) (-141) (-373) (-1261 |t#1|) (-1261 (-418 |t#2|)) (-352 |t#1| |t#2| |t#3|)) (T -345)) +((-4431 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-5 *2 (-424 *4 (-418 *4) *5 *6)))) (-3995 (*1 *1 *2) (-12 (-5 *2 (-424 *4 (-418 *4) *5 *6)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-4 *3 (-373)) (-4 *1 (-345 *3 *4 *5 *6)))) (-3995 (*1 *1 *2) (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *1 (-345 *3 *4 *5 *2)) (-4 *2 (-352 *3 *4 *5)))) (-3995 (*1 *1 *2 *2) (-12 (-4 *2 (-373)) (-4 *3 (-1261 *2)) (-4 *4 (-1261 (-418 *3))) (-4 *1 (-345 *2 *3 *4 *5)) (-4 *5 (-352 *2 *3 *4)))) (-3995 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-575)) (-4 *2 (-373)) (-4 *4 (-1261 *2)) (-4 *5 (-1261 (-418 *4))) (-4 *1 (-345 *2 *4 *5 *6)) (-4 *6 (-352 *2 *4 *5)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-5 *2 (-2 (|:| -2059 (-424 *4 (-418 *4) *5 *6)) (|:| |principalPart| *6))))) (-2308 (*1 *1 *1) (-12 (-4 *1 (-345 *2 *3 *4 *5)) (-4 *2 (-373)) (-4 *3 (-1261 *2)) (-4 *4 (-1261 (-418 *3))) (-4 *5 (-352 *2 *3 *4)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-5 *2 (-112)))) (-3659 (*1 *2 *1) (|partial| -12 (-4 *1 (-345 *3 *4 *5 *2)) (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *2 (-352 *3 *4 *5)))) (-3995 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-373)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3))) (-4 *1 (-345 *4 *3 *5 *2)) (-4 *2 (-352 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -4431 ((-424 |t#2| (-418 |t#2|) |t#3| |t#4|) $)) (-15 -3995 ($ (-424 |t#2| (-418 |t#2|) |t#3| |t#4|))) (-15 -3995 ($ |t#4|)) (-15 -3995 ($ |t#1| |t#1|)) (-15 -3995 ($ |t#1| |t#1| (-575))) (-15 -4299 ((-2 (|:| -2059 (-424 |t#2| (-418 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2308 ($ $)) (-15 -2321 ((-112) $)) (-15 -3659 ((-3 |t#4| "failed") $)) (-15 -3995 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2308 (($ $) 33)) (-2321 (((-112) $) NIL)) (-2288 (((-1176) $) NIL)) (-3111 (((-1285 |#4|) $) 134)) (-4431 (((-424 |#2| (-418 |#2|) |#3| |#4|) $) 31)) (-3912 (((-1137) $) NIL)) (-3659 (((-3 |#4| "failed") $) 36)) (-2670 (((-1285 |#4|) $) 126)) (-3995 (($ (-424 |#2| (-418 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-575)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4299 (((-2 (|:| -2059 (-424 |#2| (-418 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2883 (((-873) $) 17)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 14 T CONST)) (-3914 (((-112) $ $) 20)) (-4028 (($ $) 27) (($ $ $) NIL)) (-4016 (($ $ $) 25)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 23))) +(((-346 |#1| |#2| |#3| |#4|) (-13 (-345 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2670 ((-1285 |#4|) $)) (-15 -3111 ((-1285 |#4|) $)))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -346)) +((-2670 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-1285 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-352 *3 *4 *5)))) (-3111 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-1285 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-352 *3 *4 *5))))) +(-13 (-345 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2670 ((-1285 |#4|) $)) (-15 -3111 ((-1285 |#4|) $)))) +((-3048 (($ $ (-1194) |#2|) NIL) (($ $ (-655 (-1194)) (-655 |#2|)) 20) (($ $ (-655 (-303 |#2|))) 15) (($ $ (-303 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-655 |#2|) (-655 |#2|)) NIL)) (-2070 (($ $ |#2|) 11))) +(((-347 |#1| |#2|) (-10 -8 (-15 -2070 (|#1| |#1| |#2|)) (-15 -3048 (|#1| |#1| (-655 |#2|) (-655 |#2|))) (-15 -3048 (|#1| |#1| |#2| |#2|)) (-15 -3048 (|#1| |#1| (-303 |#2|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 |#2|))) (-15 -3048 (|#1| |#1| (-1194) |#2|))) (-348 |#2|) (-1117)) (T -347)) +NIL +(-10 -8 (-15 -2070 (|#1| |#1| |#2|)) (-15 -3048 (|#1| |#1| (-655 |#2|) (-655 |#2|))) (-15 -3048 (|#1| |#1| |#2| |#2|)) (-15 -3048 (|#1| |#1| (-303 |#2|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 |#2|))) (-15 -3048 (|#1| |#1| (-1194) |#2|))) +((-2550 (($ (-1 |#1| |#1|) $) 6)) (-3048 (($ $ (-1194) |#1|) 17 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 16 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-655 (-303 |#1|))) 15 (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) 14 (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-318 |#1|))) (($ $ (-655 |#1|) (-655 |#1|)) 12 (|has| |#1| (-318 |#1|)))) (-2070 (($ $ |#1|) 11 (|has| |#1| (-295 |#1| |#1|))))) +(((-348 |#1|) (-141) (-1117)) (T -348)) +((-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1117))))) +(-13 (-10 -8 (-15 -2550 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-295 |t#1| |t#1|)) (-6 (-295 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-318 |t#1|)) (-6 (-318 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-525 (-1194) |t#1|)) (-6 (-525 (-1194) |t#1|)) |%noBranch|))) +(((-295 |#1| $) |has| |#1| (-295 |#1| |#1|)) ((-318 |#1|) |has| |#1| (-318 |#1|)) ((-525 (-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((-525 |#1| |#1|) |has| |#1| (-318 |#1|)) ((-1235) |has| |#1| (-295 |#1| |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 (-1194)) $) NIL)) (-3585 (((-112)) 96) (((-112) (-112)) 97)) (-4270 (((-655 (-623 $)) $) NIL)) (-3923 (($ $) NIL)) (-3786 (($ $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-1473 (($ $ (-303 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL)) (-2473 (($ $) NIL)) (-3897 (($ $) NIL)) (-3761 (($ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-623 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-325 |#3|)) 76) (((-3 $ "failed") (-1194)) 103) (((-3 $ "failed") (-325 (-575))) 64 (|has| |#3| (-1055 (-575)))) (((-3 $ "failed") (-418 (-967 (-575)))) 70 (|has| |#3| (-1055 (-575)))) (((-3 $ "failed") (-967 (-575))) 65 (|has| |#3| (-1055 (-575)))) (((-3 $ "failed") (-325 (-389))) 94 (|has| |#3| (-1055 (-389)))) (((-3 $ "failed") (-418 (-967 (-389)))) 88 (|has| |#3| (-1055 (-389)))) (((-3 $ "failed") (-967 (-389))) 83 (|has| |#3| (-1055 (-389))))) (-4399 (((-623 $) $) NIL) ((|#3| $) NIL) (($ (-325 |#3|)) 77) (($ (-1194)) 104) (($ (-325 (-575))) 66 (|has| |#3| (-1055 (-575)))) (($ (-418 (-967 (-575)))) 71 (|has| |#3| (-1055 (-575)))) (($ (-967 (-575))) 67 (|has| |#3| (-1055 (-575)))) (($ (-325 (-389))) 95 (|has| |#3| (-1055 (-389)))) (($ (-418 (-967 (-389)))) 89 (|has| |#3| (-1055 (-389)))) (($ (-967 (-389))) 85 (|has| |#3| (-1055 (-389))))) (-1747 (((-3 $ "failed") $) NIL)) (-1631 (($) 101)) (-2092 (($ $) NIL) (($ (-655 $)) NIL)) (-2622 (((-655 (-115)) $) NIL)) (-2572 (((-115) (-115)) NIL)) (-1542 (((-112) $) NIL)) (-2437 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-4347 (((-1190 $) (-623 $)) NIL (|has| $ (-1066)))) (-2550 (($ (-1 $ $) (-623 $)) NIL)) (-4306 (((-3 (-623 $) "failed") $) NIL)) (-3372 (($ $) 99)) (-3463 (($ $) NIL)) (-2288 (((-1176) $) NIL)) (-2557 (((-655 (-623 $)) $) NIL)) (-1672 (($ (-115) $) 98) (($ (-115) (-655 $)) NIL)) (-3789 (((-112) $ (-115)) NIL) (((-112) $ (-1194)) NIL)) (-3343 (((-782) $) NIL)) (-3912 (((-1137) $) NIL)) (-2878 (((-112) $ $) NIL) (((-112) $ (-1194)) NIL)) (-2665 (($ $) NIL)) (-2185 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-3048 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-1194) (-1 $ (-655 $))) NIL) (($ $ (-1194) (-1 $ $)) NIL) (($ $ (-655 (-115)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-115) (-1 $ (-655 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2070 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-655 $)) NIL)) (-3146 (($ $) NIL) (($ $ $) NIL)) (-2389 (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-2552 (($ $) NIL (|has| $ (-1066)))) (-3909 (($ $) NIL)) (-3774 (($ $) NIL)) (-2883 (((-873) $) NIL) (($ (-623 $)) NIL) (($ |#3|) NIL) (($ (-575)) NIL) (((-325 |#3|) $) 102)) (-3759 (((-782)) NIL T CONST)) (-2377 (($ $) NIL) (($ (-655 $)) NIL)) (-2151 (((-112) (-115)) NIL)) (-4400 (((-112) $ $) NIL)) (-3852 (($ $) NIL)) (-3828 (($ $) NIL)) (-3839 (($ $) NIL)) (-2705 (($ $) NIL)) (-1996 (($) 100 T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL) (($ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL))) +(((-349 |#1| |#2| |#3|) (-13 (-311) (-38 |#3|) (-1055 |#3|) (-913 (-1194)) (-10 -8 (-15 -4399 ($ (-325 |#3|))) (-15 -2449 ((-3 $ "failed") (-325 |#3|))) (-15 -4399 ($ (-1194))) (-15 -2449 ((-3 $ "failed") (-1194))) (-15 -2883 ((-325 |#3|) $)) (IF (|has| |#3| (-1055 (-575))) (PROGN (-15 -4399 ($ (-325 (-575)))) (-15 -2449 ((-3 $ "failed") (-325 (-575)))) (-15 -4399 ($ (-418 (-967 (-575))))) (-15 -2449 ((-3 $ "failed") (-418 (-967 (-575))))) (-15 -4399 ($ (-967 (-575)))) (-15 -2449 ((-3 $ "failed") (-967 (-575))))) |%noBranch|) (IF (|has| |#3| (-1055 (-389))) (PROGN (-15 -4399 ($ (-325 (-389)))) (-15 -2449 ((-3 $ "failed") (-325 (-389)))) (-15 -4399 ($ (-418 (-967 (-389))))) (-15 -2449 ((-3 $ "failed") (-418 (-967 (-389))))) (-15 -4399 ($ (-967 (-389)))) (-15 -2449 ((-3 $ "failed") (-967 (-389))))) |%noBranch|) (-15 -2705 ($ $)) (-15 -2473 ($ $)) (-15 -2665 ($ $)) (-15 -3463 ($ $)) (-15 -3372 ($ $)) (-15 -3761 ($ $)) (-15 -3774 ($ $)) (-15 -3786 ($ $)) (-15 -3828 ($ $)) (-15 -3839 ($ $)) (-15 -3852 ($ $)) (-15 -3897 ($ $)) (-15 -3909 ($ $)) (-15 -3923 ($ $)) (-15 -1631 ($)) (-15 -1606 ((-655 (-1194)) $)) (-15 -3585 ((-112))) (-15 -3585 ((-112) (-112))))) (-655 (-1194)) (-655 (-1194)) (-398)) (T -349)) +((-4399 (*1 *1 *2) (-12 (-5 *2 (-325 *5)) (-4 *5 (-398)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-325 *5)) (-4 *5 (-398)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 *2)) (-14 *4 (-655 *2)) (-4 *5 (-398)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 *2)) (-14 *4 (-655 *2)) (-4 *5 (-398)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-325 *5)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-575))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-575)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-418 (-967 (-575)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-967 (-575))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-575))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-389))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-389)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-418 (-967 (-389)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-967 (-389))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-389))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2705 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-2473 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-2665 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3463 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3372 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3761 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3774 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3786 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3828 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3839 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3852 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3897 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3909 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3923 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-1631 (*1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-349 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-398)))) (-3585 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398))))) +(-13 (-311) (-38 |#3|) (-1055 |#3|) (-913 (-1194)) (-10 -8 (-15 -4399 ($ (-325 |#3|))) (-15 -2449 ((-3 $ "failed") (-325 |#3|))) (-15 -4399 ($ (-1194))) (-15 -2449 ((-3 $ "failed") (-1194))) (-15 -2883 ((-325 |#3|) $)) (IF (|has| |#3| (-1055 (-575))) (PROGN (-15 -4399 ($ (-325 (-575)))) (-15 -2449 ((-3 $ "failed") (-325 (-575)))) (-15 -4399 ($ (-418 (-967 (-575))))) (-15 -2449 ((-3 $ "failed") (-418 (-967 (-575))))) (-15 -4399 ($ (-967 (-575)))) (-15 -2449 ((-3 $ "failed") (-967 (-575))))) |%noBranch|) (IF (|has| |#3| (-1055 (-389))) (PROGN (-15 -4399 ($ (-325 (-389)))) (-15 -2449 ((-3 $ "failed") (-325 (-389)))) (-15 -4399 ($ (-418 (-967 (-389))))) (-15 -2449 ((-3 $ "failed") (-418 (-967 (-389))))) (-15 -4399 ($ (-967 (-389)))) (-15 -2449 ((-3 $ "failed") (-967 (-389))))) |%noBranch|) (-15 -2705 ($ $)) (-15 -2473 ($ $)) (-15 -2665 ($ $)) (-15 -3463 ($ $)) (-15 -3372 ($ $)) (-15 -3761 ($ $)) (-15 -3774 ($ $)) (-15 -3786 ($ $)) (-15 -3828 ($ $)) (-15 -3839 ($ $)) (-15 -3852 ($ $)) (-15 -3897 ($ $)) (-15 -3909 ($ $)) (-15 -3923 ($ $)) (-15 -1631 ($)) (-15 -1606 ((-655 (-1194)) $)) (-15 -3585 ((-112))) (-15 -3585 ((-112) (-112))))) +((-2550 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-350 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2550 (|#8| (-1 |#5| |#1|) |#4|))) (-1239) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|) (-1239) (-1261 |#5|) (-1261 (-418 |#6|)) (-352 |#5| |#6| |#7|)) (T -350)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1239)) (-4 *8 (-1239)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *9 (-1261 *8)) (-4 *2 (-352 *8 *9 *10)) (-5 *1 (-350 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-352 *5 *6 *7)) (-4 *10 (-1261 (-418 *9)))))) +(-10 -7 (-15 -2550 (|#8| (-1 |#5| |#1|) |#4|))) +((-3023 (((-2 (|:| |num| (-1285 |#3|)) (|:| |den| |#3|)) $) 39)) (-1385 (($ (-1285 (-418 |#3|)) (-1285 $)) NIL) (($ (-1285 (-418 |#3|))) NIL) (($ (-1285 |#3|) |#3|) 173)) (-2438 (((-1285 $) (-1285 $)) 156)) (-3222 (((-655 (-655 |#2|))) 126)) (-3569 (((-112) |#2| |#2|) 76)) (-1824 (($ $) 148)) (-1454 (((-782)) 172)) (-2215 (((-1285 $) (-1285 $)) 218)) (-3521 (((-655 (-967 |#2|)) (-1194)) 115)) (-3234 (((-112) $) 169)) (-3183 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-4414 (((-3 |#3| "failed")) 52)) (-2198 (((-782)) 184)) (-2070 ((|#2| $ |#2| |#2|) 140)) (-4106 (((-3 |#3| "failed")) 71)) (-2389 (($ $ (-1 (-418 |#3|) (-418 |#3|))) NIL) (($ $ (-1 (-418 |#3|) (-418 |#3|)) (-782)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL) (($ $ (-782)) NIL) (($ $) NIL)) (-3768 (((-1285 $) (-1285 $)) 162)) (-1712 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-3476 (((-112)) 34))) +(((-351 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -3222 ((-655 (-655 |#2|)))) (-15 -3521 ((-655 (-967 |#2|)) (-1194))) (-15 -1712 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4414 ((-3 |#3| "failed"))) (-15 -4106 ((-3 |#3| "failed"))) (-15 -2070 (|#2| |#1| |#2| |#2|)) (-15 -1824 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3183 ((-112) |#1| |#3|)) (-15 -3183 ((-112) |#1| |#2|)) (-15 -1385 (|#1| (-1285 |#3|) |#3|)) (-15 -3023 ((-2 (|:| |num| (-1285 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2438 ((-1285 |#1|) (-1285 |#1|))) (-15 -2215 ((-1285 |#1|) (-1285 |#1|))) (-15 -3768 ((-1285 |#1|) (-1285 |#1|))) (-15 -3183 ((-112) |#1|)) (-15 -3234 ((-112) |#1|)) (-15 -3569 ((-112) |#2| |#2|)) (-15 -3476 ((-112))) (-15 -2198 ((-782))) (-15 -1454 ((-782))) (-15 -2389 (|#1| |#1| (-1 (-418 |#3|) (-418 |#3|)) (-782))) (-15 -2389 (|#1| |#1| (-1 (-418 |#3|) (-418 |#3|)))) (-15 -1385 (|#1| (-1285 (-418 |#3|)))) (-15 -1385 (|#1| (-1285 (-418 |#3|)) (-1285 |#1|)))) (-352 |#2| |#3| |#4|) (-1239) (-1261 |#2|) (-1261 (-418 |#3|))) (T -351)) +((-1454 (*1 *2) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-782)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6)))) (-2198 (*1 *2) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-782)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6)))) (-3476 (*1 *2) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6)))) (-3569 (*1 *2 *3 *3) (-12 (-4 *3 (-1239)) (-4 *5 (-1261 *3)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-112)) (-5 *1 (-351 *4 *3 *5 *6)) (-4 *4 (-352 *3 *5 *6)))) (-4106 (*1 *2) (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 (-418 *2))) (-4 *2 (-1261 *4)) (-5 *1 (-351 *3 *4 *2 *5)) (-4 *3 (-352 *4 *2 *5)))) (-4414 (*1 *2) (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 (-418 *2))) (-4 *2 (-1261 *4)) (-5 *1 (-351 *3 *4 *2 *5)) (-4 *3 (-352 *4 *2 *5)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *5 (-1239)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-5 *2 (-655 (-967 *5))) (-5 *1 (-351 *4 *5 *6 *7)) (-4 *4 (-352 *5 *6 *7)))) (-3222 (*1 *2) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-655 (-655 *4))) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6))))) +(-10 -8 (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -3222 ((-655 (-655 |#2|)))) (-15 -3521 ((-655 (-967 |#2|)) (-1194))) (-15 -1712 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4414 ((-3 |#3| "failed"))) (-15 -4106 ((-3 |#3| "failed"))) (-15 -2070 (|#2| |#1| |#2| |#2|)) (-15 -1824 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3183 ((-112) |#1| |#3|)) (-15 -3183 ((-112) |#1| |#2|)) (-15 -1385 (|#1| (-1285 |#3|) |#3|)) (-15 -3023 ((-2 (|:| |num| (-1285 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2438 ((-1285 |#1|) (-1285 |#1|))) (-15 -2215 ((-1285 |#1|) (-1285 |#1|))) (-15 -3768 ((-1285 |#1|) (-1285 |#1|))) (-15 -3183 ((-112) |#1|)) (-15 -3234 ((-112) |#1|)) (-15 -3569 ((-112) |#2| |#2|)) (-15 -3476 ((-112))) (-15 -2198 ((-782))) (-15 -1454 ((-782))) (-15 -2389 (|#1| |#1| (-1 (-418 |#3|) (-418 |#3|)) (-782))) (-15 -2389 (|#1| |#1| (-1 (-418 |#3|) (-418 |#3|)))) (-15 -1385 (|#1| (-1285 (-418 |#3|)))) (-15 -1385 (|#1| (-1285 (-418 |#3|)) (-1285 |#1|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3023 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) 209)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 105 (|has| (-418 |#2|) (-373)))) (-1540 (($ $) 106 (|has| (-418 |#2|) (-373)))) (-3286 (((-112) $) 108 (|has| (-418 |#2|) (-373)))) (-1389 (((-700 (-418 |#2|)) (-1285 $)) 53) (((-700 (-418 |#2|))) 68)) (-1447 (((-418 |#2|) $) 59)) (-2243 (((-1207 (-936) (-782)) (-575)) 158 (|has| (-418 |#2|) (-359)))) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 125 (|has| (-418 |#2|) (-373)))) (-2330 (((-429 $) $) 126 (|has| (-418 |#2|) (-373)))) (-2279 (((-112) $ $) 116 (|has| (-418 |#2|) (-373)))) (-2415 (((-782)) 99 (|has| (-418 |#2|) (-378)))) (-1883 (((-112)) 226)) (-3400 (((-112) |#1|) 225) (((-112) |#2|) 224)) (-3011 (($) 18 T CONST)) (-2449 (((-3 (-575) "failed") $) 183 (|has| (-418 |#2|) (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 181 (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-3 (-418 |#2|) "failed") $) 178)) (-4399 (((-575) $) 182 (|has| (-418 |#2|) (-1055 (-575)))) (((-418 (-575)) $) 180 (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-418 |#2|) $) 179)) (-1385 (($ (-1285 (-418 |#2|)) (-1285 $)) 55) (($ (-1285 (-418 |#2|))) 71) (($ (-1285 |#2|) |#2|) 208)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-418 |#2|) (-359)))) (-2802 (($ $ $) 120 (|has| (-418 |#2|) (-373)))) (-2746 (((-700 (-418 |#2|)) $ (-1285 $)) 60) (((-700 (-418 |#2|)) $) 66)) (-1749 (((-700 (-575)) (-1285 $)) 177 (|has| (-418 |#2|) (-650 (-575)))) (((-700 (-575)) (-700 $)) 176 (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 175 (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-418 |#2|))) (|:| |vec| (-1285 (-418 |#2|)))) (-700 $) (-1285 $)) 174) (((-700 (-418 |#2|)) (-700 $)) 173) (((-700 (-418 |#2|)) (-1285 $)) 172)) (-2438 (((-1285 $) (-1285 $)) 214)) (-2308 (($ |#3|) 169) (((-3 $ "failed") (-418 |#3|)) 166 (|has| (-418 |#2|) (-373)))) (-1747 (((-3 $ "failed") $) 37)) (-3222 (((-655 (-655 |#1|))) 195 (|has| |#1| (-378)))) (-3569 (((-112) |#1| |#1|) 230)) (-4422 (((-936)) 61)) (-2079 (($) 102 (|has| (-418 |#2|) (-378)))) (-3610 (((-112)) 223)) (-1903 (((-112) |#1|) 222) (((-112) |#2|) 221)) (-2813 (($ $ $) 119 (|has| (-418 |#2|) (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 114 (|has| (-418 |#2|) (-373)))) (-1824 (($ $) 201)) (-1360 (($) 160 (|has| (-418 |#2|) (-359)))) (-1980 (((-112) $) 161 (|has| (-418 |#2|) (-359)))) (-4374 (($ $ (-782)) 152 (|has| (-418 |#2|) (-359))) (($ $) 151 (|has| (-418 |#2|) (-359)))) (-1336 (((-112) $) 127 (|has| (-418 |#2|) (-373)))) (-2673 (((-936) $) 163 (|has| (-418 |#2|) (-359))) (((-844 (-936)) $) 149 (|has| (-418 |#2|) (-359)))) (-1542 (((-112) $) 35)) (-1454 (((-782)) 233)) (-2215 (((-1285 $) (-1285 $)) 215)) (-2255 (((-418 |#2|) $) 58)) (-3521 (((-655 (-967 |#1|)) (-1194)) 196 (|has| |#1| (-373)))) (-2607 (((-3 $ "failed") $) 153 (|has| (-418 |#2|) (-359)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 123 (|has| (-418 |#2|) (-373)))) (-1943 ((|#3| $) 51 (|has| (-418 |#2|) (-373)))) (-4084 (((-936) $) 101 (|has| (-418 |#2|) (-378)))) (-2295 ((|#3| $) 167)) (-3887 (($ (-655 $)) 112 (|has| (-418 |#2|) (-373))) (($ $ $) 111 (|has| (-418 |#2|) (-373)))) (-2288 (((-1176) $) 10)) (-1643 (((-700 (-418 |#2|))) 210)) (-3406 (((-700 (-418 |#2|))) 212)) (-4332 (($ $) 128 (|has| (-418 |#2|) (-373)))) (-1543 (($ (-1285 |#2|) |#2|) 206)) (-3507 (((-700 (-418 |#2|))) 211)) (-4061 (((-700 (-418 |#2|))) 213)) (-3399 (((-2 (|:| |num| (-700 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 205)) (-1371 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) 207)) (-2362 (((-1285 $)) 219)) (-2899 (((-1285 $)) 220)) (-3234 (((-112) $) 218)) (-3183 (((-112) $) 217) (((-112) $ |#1|) 204) (((-112) $ |#2|) 203)) (-3474 (($) 154 (|has| (-418 |#2|) (-359)) CONST)) (-4317 (($ (-936)) 100 (|has| (-418 |#2|) (-378)))) (-4414 (((-3 |#2| "failed")) 198)) (-3912 (((-1137) $) 11)) (-2198 (((-782)) 232)) (-3659 (($) 171)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 113 (|has| (-418 |#2|) (-373)))) (-3926 (($ (-655 $)) 110 (|has| (-418 |#2|) (-373))) (($ $ $) 109 (|has| (-418 |#2|) (-373)))) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) 157 (|has| (-418 |#2|) (-359)))) (-2353 (((-429 $) $) 124 (|has| (-418 |#2|) (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-418 |#2|) (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 121 (|has| (-418 |#2|) (-373)))) (-2851 (((-3 $ "failed") $ $) 104 (|has| (-418 |#2|) (-373)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 115 (|has| (-418 |#2|) (-373)))) (-3708 (((-782) $) 117 (|has| (-418 |#2|) (-373)))) (-2070 ((|#1| $ |#1| |#1|) 200)) (-4106 (((-3 |#2| "failed")) 199)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 118 (|has| (-418 |#2|) (-373)))) (-4060 (((-418 |#2|) (-1285 $)) 54) (((-418 |#2|)) 67)) (-3905 (((-782) $) 162 (|has| (-418 |#2|) (-359))) (((-3 (-782) "failed") $ $) 150 (|has| (-418 |#2|) (-359)))) (-2389 (($ $ (-1 (-418 |#2|) (-418 |#2|))) 136 (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) 135 (|has| (-418 |#2|) (-373))) (($ $ (-1 |#2| |#2|)) 202) (($ $ (-655 (-1194)) (-655 (-782))) 141 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3226 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-1194) (-782)) 140 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3226 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-655 (-1194))) 139 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3226 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-1194)) 137 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3226 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-782)) 147 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-237))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-238))) (-3226 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) 145 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-237))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-238))) (-3226 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3792 (((-700 (-418 |#2|)) (-1285 $) (-1 (-418 |#2|) (-418 |#2|))) 165 (|has| (-418 |#2|) (-373)))) (-2552 ((|#3|) 170)) (-3500 (($) 159 (|has| (-418 |#2|) (-359)))) (-3962 (((-1285 (-418 |#2|)) $ (-1285 $)) 57) (((-700 (-418 |#2|)) (-1285 $) (-1285 $)) 56) (((-1285 (-418 |#2|)) $) 73) (((-700 (-418 |#2|)) (-1285 $)) 72)) (-2615 (((-1285 (-418 |#2|)) $) 70) (($ (-1285 (-418 |#2|))) 69) ((|#3| $) 184) (($ |#3|) 168)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 156 (|has| (-418 |#2|) (-359)))) (-3768 (((-1285 $) (-1285 $)) 216)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ (-418 |#2|)) 44) (($ (-418 (-575))) 98 (-3765 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-1055 (-418 (-575)))))) (($ $) 103 (|has| (-418 |#2|) (-373)))) (-1518 (($ $) 155 (|has| (-418 |#2|) (-359))) (((-3 $ "failed") $) 50 (|has| (-418 |#2|) (-146)))) (-2551 ((|#3| $) 52)) (-3759 (((-782)) 32 T CONST)) (-1610 (((-112)) 229)) (-1607 (((-112) |#1|) 228) (((-112) |#2|) 227)) (-4400 (((-112) $ $) 9)) (-1624 (((-1285 $)) 74)) (-1780 (((-112) $ $) 107 (|has| (-418 |#2|) (-373)))) (-1712 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 197)) (-3476 (((-112)) 231)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1 (-418 |#2|) (-418 |#2|))) 134 (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) 133 (|has| (-418 |#2|) (-373))) (($ $ (-655 (-1194)) (-655 (-782))) 144 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3226 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-1194) (-782)) 143 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3226 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-655 (-1194))) 142 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3226 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-1194)) 138 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3226 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-782)) 148 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-237))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-238))) (-3226 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) 146 (-3765 (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-237))) (-3226 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-238))) (-3226 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ $) 132 (|has| (-418 |#2|) (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 129 (|has| (-418 |#2|) (-373)))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 |#2|)) 46) (($ (-418 |#2|) $) 45) (($ (-418 (-575)) $) 131 (|has| (-418 |#2|) (-373))) (($ $ (-418 (-575))) 130 (|has| (-418 |#2|) (-373))))) +(((-352 |#1| |#2| |#3|) (-141) (-1239) (-1261 |t#1|) (-1261 (-418 |t#2|))) (T -352)) +((-1454 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-782)))) (-2198 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-782)))) (-3476 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-3569 (*1 *2 *3 *3) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-1610 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-1607 (*1 *2 *3) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-1607 (*1 *2 *3) (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) (-1883 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-3400 (*1 *2 *3) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-3400 (*1 *2 *3) (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) (-3610 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-1903 (*1 *2 *3) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-1903 (*1 *2 *3) (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) (-2899 (*1 *2) (-12 (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)))) (-2362 (*1 *2) (-12 (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-3768 (*1 *2 *2) (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))) (-2215 (*1 *2 *2) (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))) (-2438 (*1 *2 *2) (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))) (-4061 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))) (-3406 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))) (-3507 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))) (-1643 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-2 (|:| |num| (-1285 *4)) (|:| |den| *4))))) (-1385 (*1 *1 *2 *3) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1261 *4)) (-4 *4 (-1239)) (-4 *1 (-352 *4 *3 *5)) (-4 *5 (-1261 (-418 *3))))) (-1371 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-2 (|:| |num| (-1285 *4)) (|:| |den| *4))))) (-1543 (*1 *1 *2 *3) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1261 *4)) (-4 *4 (-1239)) (-4 *1 (-352 *4 *3 *5)) (-4 *5 (-1261 (-418 *3))))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-352 *4 *5 *6)) (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-2 (|:| |num| (-700 *5)) (|:| |den| *5))))) (-3183 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-3183 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))) (-1824 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-1261 *2)) (-4 *4 (-1261 (-418 *3))))) (-2070 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-352 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-1261 *2)) (-4 *4 (-1261 (-418 *3))))) (-4106 (*1 *2) (|partial| -12 (-4 *1 (-352 *3 *2 *4)) (-4 *3 (-1239)) (-4 *4 (-1261 (-418 *2))) (-4 *2 (-1261 *3)))) (-4414 (*1 *2) (|partial| -12 (-4 *1 (-352 *3 *2 *4)) (-4 *3 (-1239)) (-4 *4 (-1261 (-418 *2))) (-4 *2 (-1261 *3)))) (-1712 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-1239)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-352 *4 *5 *6)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *1 (-352 *4 *5 *6)) (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-4 *4 (-373)) (-5 *2 (-655 (-967 *4))))) (-3222 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *3 (-378)) (-5 *2 (-655 (-655 *3)))))) +(-13 (-735 (-418 |t#2|) |t#3|) (-10 -8 (-15 -1454 ((-782))) (-15 -2198 ((-782))) (-15 -3476 ((-112))) (-15 -3569 ((-112) |t#1| |t#1|)) (-15 -1610 ((-112))) (-15 -1607 ((-112) |t#1|)) (-15 -1607 ((-112) |t#2|)) (-15 -1883 ((-112))) (-15 -3400 ((-112) |t#1|)) (-15 -3400 ((-112) |t#2|)) (-15 -3610 ((-112))) (-15 -1903 ((-112) |t#1|)) (-15 -1903 ((-112) |t#2|)) (-15 -2899 ((-1285 $))) (-15 -2362 ((-1285 $))) (-15 -3234 ((-112) $)) (-15 -3183 ((-112) $)) (-15 -3768 ((-1285 $) (-1285 $))) (-15 -2215 ((-1285 $) (-1285 $))) (-15 -2438 ((-1285 $) (-1285 $))) (-15 -4061 ((-700 (-418 |t#2|)))) (-15 -3406 ((-700 (-418 |t#2|)))) (-15 -3507 ((-700 (-418 |t#2|)))) (-15 -1643 ((-700 (-418 |t#2|)))) (-15 -3023 ((-2 (|:| |num| (-1285 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1385 ($ (-1285 |t#2|) |t#2|)) (-15 -1371 ((-2 (|:| |num| (-1285 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1543 ($ (-1285 |t#2|) |t#2|)) (-15 -3399 ((-2 (|:| |num| (-700 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3183 ((-112) $ |t#1|)) (-15 -3183 ((-112) $ |t#2|)) (-15 -2389 ($ $ (-1 |t#2| |t#2|))) (-15 -1824 ($ $)) (-15 -2070 (|t#1| $ |t#1| |t#1|)) (-15 -4106 ((-3 |t#2| "failed"))) (-15 -4414 ((-3 |t#2| "failed"))) (-15 -1712 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-373)) (-15 -3521 ((-655 (-967 |t#1|)) (-1194))) |%noBranch|) (IF (|has| |t#1| (-378)) (-15 -3222 ((-655 (-655 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-38 #1=(-418 |#2|)) . T) ((-38 $) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-102) . T) ((-111 #0# #0#) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-146))) ((-148) |has| (-418 |#2|) (-148)) ((-627 #0#) -3765 (|has| (-418 |#2|) (-1055 (-418 (-575)))) (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-627 #1#) . T) ((-627 (-575)) . T) ((-627 $) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-624 (-873)) . T) ((-174) . T) ((-625 |#3|) . T) ((-234 $) -3765 (|has| (-418 |#2|) (-359)) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373)))) ((-232 #1#) |has| (-418 |#2|) (-373)) ((-238) -3765 (|has| (-418 |#2|) (-359)) (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373)))) ((-237) -3765 (|has| (-418 |#2|) (-359)) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373)))) ((-271 #1#) |has| (-418 |#2|) (-373)) ((-248) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-299) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-316) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-373) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-413) |has| (-418 |#2|) (-359)) ((-378) -3765 (|has| (-418 |#2|) (-378)) (|has| (-418 |#2|) (-359))) ((-359) |has| (-418 |#2|) (-359)) ((-380 #1# |#3|) . T) ((-420 #1# |#3|) . T) ((-387 #1#) . T) ((-422 #1#) . T) ((-463) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-567) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-657 #0#) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-657 #1#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-659 #1#) . T) ((-659 #2=(-575)) |has| (-418 |#2|) (-650 (-575))) ((-659 $) . T) ((-651 #0#) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-651 #1#) . T) ((-651 $) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-650 #1#) . T) ((-650 #2#) |has| (-418 |#2|) (-650 (-575))) ((-728 #0#) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-728 #1#) . T) ((-728 $) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-735 #1# |#3|) . T) ((-737) . T) ((-908 $ #3=(-1194)) -3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194))))) ((-913 (-1194)) -12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) ((-915 #3#) -3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194))))) ((-935) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-1055 (-418 (-575))) |has| (-418 |#2|) (-1055 (-418 (-575)))) ((-1055 #1#) . T) ((-1055 (-575)) |has| (-418 |#2|) (-1055 (-575))) ((-1068 #0#) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-1068 #1#) . T) ((-1068 $) . T) ((-1073 #0#) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-1073 #1#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| (-418 |#2|) (-359)) ((-1235) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-1239) -3765 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-925 |#1|) (-378)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) NIL (|has| (-925 |#1|) (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-925 |#1|) "failed") $) NIL)) (-4399 (((-925 |#1|) $) NIL)) (-1385 (($ (-1285 (-925 |#1|))) NIL)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-925 |#1|) (-378)))) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| (-925 |#1|) (-378)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) NIL (|has| (-925 |#1|) (-378)))) (-1980 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-4374 (($ $ (-782)) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378)))) (($ $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-1336 (((-112) $) NIL)) (-2673 (((-936) $) NIL (|has| (-925 |#1|) (-378))) (((-844 (-936)) $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-1542 (((-112) $) NIL)) (-3547 (($) NIL (|has| (-925 |#1|) (-378)))) (-2922 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-2255 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2607 (((-3 $ "failed") $) NIL (|has| (-925 |#1|) (-378)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 (-925 |#1|)) $) NIL) (((-1190 $) $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-4084 (((-936) $) NIL (|has| (-925 |#1|) (-378)))) (-2394 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378)))) (-3255 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-1190 (-925 |#1|)) "failed") $ $) NIL (|has| (-925 |#1|) (-378)))) (-2065 (($ $ (-1190 (-925 |#1|))) NIL (|has| (-925 |#1|) (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| (-925 |#1|) (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-3497 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3815 (((-973 (-1137))) NIL)) (-3659 (($) NIL (|has| (-925 |#1|) (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| (-925 |#1|) (-378)))) (-2353 (((-429 $) $) NIL)) (-2819 (((-844 (-936))) NIL) (((-936)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-782) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-782) "failed") $ $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-4386 (((-135)) NIL)) (-2389 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-2645 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-2552 (((-1190 (-925 |#1|))) NIL)) (-3500 (($) NIL (|has| (-925 |#1|) (-378)))) (-3832 (($) NIL (|has| (-925 |#1|) (-378)))) (-3962 (((-1285 (-925 |#1|)) $) NIL) (((-700 (-925 |#1|)) (-1285 $)) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-925 |#1|) (-378)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-925 |#1|)) NIL)) (-1518 (($ $) NIL (|has| (-925 |#1|) (-378))) (((-3 $ "failed") $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-4216 (($ $) NIL (|has| (-925 |#1|) (-378))) (($ $ (-782)) NIL (|has| (-925 |#1|) (-378)))) (-3430 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ (-925 |#1|)) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-925 |#1|)) NIL) (($ (-925 |#1|) $) NIL))) +(((-353 |#1| |#2|) (-13 (-338 (-925 |#1|)) (-10 -7 (-15 -3815 ((-973 (-1137)))))) (-936) (-936)) (T -353)) +((-3815 (*1 *2) (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-353 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936))))) +(-13 (-338 (-925 |#1|)) (-10 -7 (-15 -3815 ((-973 (-1137)))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 58)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2243 (((-1207 (-936) (-782)) (-575)) 56 (|has| |#1| (-378)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) NIL (|has| |#1| (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 142)) (-4399 ((|#1| $) 113)) (-1385 (($ (-1285 |#1|)) 130)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-378)))) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) 124 (|has| |#1| (-378)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) 160 (|has| |#1| (-378)))) (-1980 (((-112) $) 66 (|has| |#1| (-378)))) (-4374 (($ $ (-782)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1336 (((-112) $) NIL)) (-2673 (((-936) $) 60 (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1542 (((-112) $) 62)) (-3547 (($) 162 (|has| |#1| (-378)))) (-2922 (((-112) $) NIL (|has| |#1| (-378)))) (-2255 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 |#1|) $) 117) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-4084 (((-936) $) 171 (|has| |#1| (-378)))) (-2394 (((-1190 |#1|) $) NIL (|has| |#1| (-378)))) (-3255 (((-1190 |#1|) $) NIL (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) NIL (|has| |#1| (-378)))) (-2065 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 178)) (-3474 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) 96 (|has| |#1| (-378)))) (-3497 (((-112) $) 147)) (-3912 (((-1137) $) NIL)) (-3815 (((-973 (-1137))) 57)) (-3659 (($) 158 (|has| |#1| (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) 119 (|has| |#1| (-378)))) (-2353 (((-429 $) $) NIL)) (-2819 (((-844 (-936))) 90) (((-936)) 91)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-782) $) 161 (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) 154 (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4386 (((-135)) NIL)) (-2389 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-2645 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-2552 (((-1190 |#1|)) 122)) (-3500 (($) 159 (|has| |#1| (-378)))) (-3832 (($) 167 (|has| |#1| (-378)))) (-3962 (((-1285 |#1|) $) 77) (((-700 |#1|) (-1285 $)) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2883 (((-873) $) 174) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 100)) (-1518 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3759 (((-782)) 155 T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) 144) (((-1285 $) (-936)) 98)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) 67 T CONST)) (-2009 (($) 103 T CONST)) (-4216 (($ $) 107 (|has| |#1| (-378))) (($ $ (-782)) NIL (|has| |#1| (-378)))) (-3430 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3914 (((-112) $ $) 65)) (-4038 (($ $ $) 176) (($ $ |#1|) 177)) (-4028 (($ $) 157) (($ $ $) NIL)) (-4016 (($ $ $) 86)) (** (($ $ (-936)) 180) (($ $ (-782)) 181) (($ $ (-575)) 179)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 102) (($ $ $) 101) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-354 |#1| |#2|) (-13 (-338 |#1|) (-10 -7 (-15 -3815 ((-973 (-1137)))))) (-359) (-1190 |#1|)) (T -354)) +((-3815 (*1 *2) (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-354 *3 *4)) (-4 *3 (-359)) (-14 *4 (-1190 *3))))) +(-13 (-338 |#1|) (-10 -7 (-15 -3815 ((-973 (-1137)))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| |#1| (-378)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) NIL (|has| |#1| (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-1385 (($ (-1285 |#1|)) NIL)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-378)))) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| |#1| (-378)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) NIL (|has| |#1| (-378)))) (-1980 (((-112) $) NIL (|has| |#1| (-378)))) (-4374 (($ $ (-782)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1336 (((-112) $) NIL)) (-2673 (((-936) $) NIL (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1542 (((-112) $) NIL)) (-3547 (($) NIL (|has| |#1| (-378)))) (-2922 (((-112) $) NIL (|has| |#1| (-378)))) (-2255 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 |#1|) $) NIL) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-4084 (((-936) $) NIL (|has| |#1| (-378)))) (-2394 (((-1190 |#1|) $) NIL (|has| |#1| (-378)))) (-3255 (((-1190 |#1|) $) NIL (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) NIL (|has| |#1| (-378)))) (-2065 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-3497 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3815 (((-973 (-1137))) NIL)) (-3659 (($) NIL (|has| |#1| (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| |#1| (-378)))) (-2353 (((-429 $) $) NIL)) (-2819 (((-844 (-936))) NIL) (((-936)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-782) $) NIL (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4386 (((-135)) NIL)) (-2389 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-2645 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-2552 (((-1190 |#1|)) NIL)) (-3500 (($) NIL (|has| |#1| (-378)))) (-3832 (($) NIL (|has| |#1| (-378)))) (-3962 (((-1285 |#1|) $) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) NIL)) (-1518 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-4216 (($ $) NIL (|has| |#1| (-378))) (($ $ (-782)) NIL (|has| |#1| (-378)))) (-3430 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-355 |#1| |#2|) (-13 (-338 |#1|) (-10 -7 (-15 -3815 ((-973 (-1137)))))) (-359) (-936)) (T -355)) +((-3815 (*1 *2) (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-355 *3 *4)) (-4 *3 (-359)) (-14 *4 (-936))))) +(-13 (-338 |#1|) (-10 -7 (-15 -3815 ((-973 (-1137)))))) +((-2929 (((-782) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137)))))) 61)) (-4348 (((-973 (-1137)) (-1190 |#1|)) 112)) (-3001 (((-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))) (-1190 |#1|)) 103)) (-2909 (((-700 |#1|) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137)))))) 113)) (-1613 (((-3 (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))) "failed") (-936)) 13)) (-3536 (((-3 (-1190 |#1|) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137)))))) (-936)) 18))) +(((-356 |#1|) (-10 -7 (-15 -4348 ((-973 (-1137)) (-1190 |#1|))) (-15 -3001 ((-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))) (-1190 |#1|))) (-15 -2909 ((-700 |#1|) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))))) (-15 -2929 ((-782) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))))) (-15 -1613 ((-3 (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))) "failed") (-936))) (-15 -3536 ((-3 (-1190 |#1|) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137)))))) (-936)))) (-359)) (T -356)) +((-3536 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-3 (-1190 *4) (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137))))))) (-5 *1 (-356 *4)) (-4 *4 (-359)))) (-1613 (*1 *2 *3) (|partial| -12 (-5 *3 (-936)) (-5 *2 (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137)))))) (-5 *1 (-356 *4)) (-4 *4 (-359)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137)))))) (-4 *4 (-359)) (-5 *2 (-782)) (-5 *1 (-356 *4)))) (-2909 (*1 *2 *3) (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137)))))) (-4 *4 (-359)) (-5 *2 (-700 *4)) (-5 *1 (-356 *4)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137)))))) (-5 *1 (-356 *4)))) (-4348 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-973 (-1137))) (-5 *1 (-356 *4))))) +(-10 -7 (-15 -4348 ((-973 (-1137)) (-1190 |#1|))) (-15 -3001 ((-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))) (-1190 |#1|))) (-15 -2909 ((-700 |#1|) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))))) (-15 -2929 ((-782) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))))) (-15 -1613 ((-3 (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))) "failed") (-936))) (-15 -3536 ((-3 (-1190 |#1|) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137)))))) (-936)))) +((-2883 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) +(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -2883 (|#3| |#1|)) (-15 -2883 (|#1| |#3|))) (-338 |#2|) (-359) (-338 |#2|)) (T -357)) +((-2883 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *2 (-338 *4)) (-5 *1 (-357 *2 *4 *3)) (-4 *3 (-338 *4)))) (-2883 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *2 (-338 *4)) (-5 *1 (-357 *3 *4 *2)) (-4 *3 (-338 *4))))) +(-10 -7 (-15 -2883 (|#3| |#1|)) (-15 -2883 (|#1| |#3|))) +((-1980 (((-112) $) 60)) (-2673 (((-844 (-936)) $) 23) (((-936) $) 64)) (-2607 (((-3 $ "failed") $) 18)) (-3474 (($) 9)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 114)) (-3905 (((-3 (-782) "failed") $ $) 92) (((-782) $) 79)) (-2389 (($ $) 8) (($ $ (-782)) NIL)) (-3500 (($) 53)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 38)) (-1518 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-358 |#1|) (-10 -8 (-15 -2673 ((-936) |#1|)) (-15 -3905 ((-782) |#1|)) (-15 -1980 ((-112) |#1|)) (-15 -3500 (|#1|)) (-15 -3352 ((-3 (-1285 |#1|) "failed") (-700 |#1|))) (-15 -1518 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -3474 (|#1|)) (-15 -2607 ((-3 |#1| "failed") |#1|)) (-15 -3905 ((-3 (-782) "failed") |#1| |#1|)) (-15 -2673 ((-844 (-936)) |#1|)) (-15 -1518 ((-3 |#1| "failed") |#1|)) (-15 -2290 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|)))) (-359)) (T -358)) +NIL +(-10 -8 (-15 -2673 ((-936) |#1|)) (-15 -3905 ((-782) |#1|)) (-15 -1980 ((-112) |#1|)) (-15 -3500 (|#1|)) (-15 -3352 ((-3 (-1285 |#1|) "failed") (-700 |#1|))) (-15 -1518 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -3474 (|#1|)) (-15 -2607 ((-3 |#1| "failed") |#1|)) (-15 -3905 ((-3 (-782) "failed") |#1| |#1|)) (-15 -2673 ((-844 (-936)) |#1|)) (-15 -1518 ((-3 |#1| "failed") |#1|)) (-15 -2290 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2243 (((-1207 (-936) (-782)) (-575)) 102)) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 81)) (-2330 (((-429 $) $) 80)) (-2279 (((-112) $ $) 65)) (-2415 (((-782)) 112)) (-3011 (($) 18 T CONST)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2802 (($ $ $) 61)) (-1747 (((-3 $ "failed") $) 37)) (-2079 (($) 115)) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-1360 (($) 100)) (-1980 (((-112) $) 99)) (-4374 (($ $) 87) (($ $ (-782)) 86)) (-1336 (((-112) $) 79)) (-2673 (((-844 (-936)) $) 89) (((-936) $) 97)) (-1542 (((-112) $) 35)) (-2607 (((-3 $ "failed") $) 111)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-4084 (((-936) $) 114)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3474 (($) 110 T CONST)) (-4317 (($ (-936)) 113)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) 103)) (-2353 (((-429 $) $) 82)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3708 (((-782) $) 64)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-3905 (((-3 (-782) "failed") $ $) 88) (((-782) $) 98)) (-2389 (($ $) 109) (($ $ (-782)) 107)) (-3500 (($) 101)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 104)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74)) (-1518 (((-3 $ "failed") $) 90) (($ $) 105)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $) 108) (($ $ (-782)) 106)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ $) 73)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75))) +(((-359) (-141)) (T -359)) +((-1518 (*1 *1 *1) (-4 *1 (-359))) (-3352 (*1 *2 *3) (|partial| -12 (-5 *3 (-700 *1)) (-4 *1 (-359)) (-5 *2 (-1285 *1)))) (-4122 (*1 *2) (-12 (-4 *1 (-359)) (-5 *2 (-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))))) (-2243 (*1 *2 *3) (-12 (-4 *1 (-359)) (-5 *3 (-575)) (-5 *2 (-1207 (-936) (-782))))) (-3500 (*1 *1) (-4 *1 (-359))) (-1360 (*1 *1) (-4 *1 (-359))) (-1980 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-112)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-782)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-936)))) (-2068 (*1 *2) (-12 (-4 *1 (-359)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-413) (-378) (-1169) (-238) (-10 -8 (-15 -1518 ($ $)) (-15 -3352 ((-3 (-1285 $) "failed") (-700 $))) (-15 -4122 ((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575)))))) (-15 -2243 ((-1207 (-936) (-782)) (-575))) (-15 -3500 ($)) (-15 -1360 ($)) (-15 -1980 ((-112) $)) (-15 -3905 ((-782) $)) (-15 -2673 ((-936) $)) (-15 -2068 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-413) . T) ((-378) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) . T) ((-1235) . T) ((-1239) . T)) +((-2393 (((-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) |#1|) 55)) (-2899 (((-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|)))) 53))) +(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -2899 ((-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))))) (-15 -2393 ((-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) |#1|))) (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $)))) (-1261 |#1|) (-420 |#1| |#2|)) (T -360)) +((-2393 (*1 *2 *3) (-12 (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *2 (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-5 *1 (-360 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-2899 (*1 *2) (-12 (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *2 (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-5 *1 (-360 *3 *4 *5)) (-4 *5 (-420 *3 *4))))) +(-10 -7 (-15 -2899 ((-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))))) (-15 -2393 ((-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-925 |#1|) (-378)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2929 (((-782)) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) NIL (|has| (-925 |#1|) (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-925 |#1|) "failed") $) NIL)) (-4399 (((-925 |#1|) $) NIL)) (-1385 (($ (-1285 (-925 |#1|))) NIL)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-925 |#1|) (-378)))) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| (-925 |#1|) (-378)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) NIL (|has| (-925 |#1|) (-378)))) (-1980 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-4374 (($ $ (-782)) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378)))) (($ $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-1336 (((-112) $) NIL)) (-2673 (((-936) $) NIL (|has| (-925 |#1|) (-378))) (((-844 (-936)) $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-1542 (((-112) $) NIL)) (-3547 (($) NIL (|has| (-925 |#1|) (-378)))) (-2922 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-2255 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2607 (((-3 $ "failed") $) NIL (|has| (-925 |#1|) (-378)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 (-925 |#1|)) $) NIL) (((-1190 $) $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-4084 (((-936) $) NIL (|has| (-925 |#1|) (-378)))) (-2394 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378)))) (-3255 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-1190 (-925 |#1|)) "failed") $ $) NIL (|has| (-925 |#1|) (-378)))) (-2065 (($ $ (-1190 (-925 |#1|))) NIL (|has| (-925 |#1|) (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| (-925 |#1|) (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-3497 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3484 (((-1285 (-655 (-2 (|:| -4182 (-925 |#1|)) (|:| -4317 (-1137)))))) NIL)) (-2806 (((-700 (-925 |#1|))) NIL)) (-3659 (($) NIL (|has| (-925 |#1|) (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| (-925 |#1|) (-378)))) (-2353 (((-429 $) $) NIL)) (-2819 (((-844 (-936))) NIL) (((-936)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-782) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-782) "failed") $ $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-4386 (((-135)) NIL)) (-2389 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-2645 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-2552 (((-1190 (-925 |#1|))) NIL)) (-3500 (($) NIL (|has| (-925 |#1|) (-378)))) (-3832 (($) NIL (|has| (-925 |#1|) (-378)))) (-3962 (((-1285 (-925 |#1|)) $) NIL) (((-700 (-925 |#1|)) (-1285 $)) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-925 |#1|) (-378)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-925 |#1|)) NIL)) (-1518 (($ $) NIL (|has| (-925 |#1|) (-378))) (((-3 $ "failed") $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-4216 (($ $) NIL (|has| (-925 |#1|) (-378))) (($ $ (-782)) NIL (|has| (-925 |#1|) (-378)))) (-3430 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ (-925 |#1|)) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-925 |#1|)) NIL) (($ (-925 |#1|) $) NIL))) +(((-361 |#1| |#2|) (-13 (-338 (-925 |#1|)) (-10 -7 (-15 -3484 ((-1285 (-655 (-2 (|:| -4182 (-925 |#1|)) (|:| -4317 (-1137))))))) (-15 -2806 ((-700 (-925 |#1|)))) (-15 -2929 ((-782))))) (-936) (-936)) (T -361)) +((-3484 (*1 *2) (-12 (-5 *2 (-1285 (-655 (-2 (|:| -4182 (-925 *3)) (|:| -4317 (-1137)))))) (-5 *1 (-361 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-2806 (*1 *2) (-12 (-5 *2 (-700 (-925 *3))) (-5 *1 (-361 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-2929 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-361 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936))))) +(-13 (-338 (-925 |#1|)) (-10 -7 (-15 -3484 ((-1285 (-655 (-2 (|:| -4182 (-925 |#1|)) (|:| -4317 (-1137))))))) (-15 -2806 ((-700 (-925 |#1|)))) (-15 -2929 ((-782))))) +((-2861 (((-112) $ $) 73)) (-3799 (((-112) $) 88)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 ((|#1| $) 106) (($ $ (-936)) 104 (|has| |#1| (-378)))) (-2243 (((-1207 (-936) (-782)) (-575)) 170 (|has| |#1| (-378)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2929 (((-782)) 103)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) 187 (|has| |#1| (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 127)) (-4399 ((|#1| $) 105)) (-1385 (($ (-1285 |#1|)) 71)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-378)))) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) 182 (|has| |#1| (-378)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) 171 (|has| |#1| (-378)))) (-1980 (((-112) $) NIL (|has| |#1| (-378)))) (-4374 (($ $ (-782)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1336 (((-112) $) NIL)) (-2673 (((-936) $) NIL (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1542 (((-112) $) NIL)) (-3547 (($) 113 (|has| |#1| (-378)))) (-2922 (((-112) $) 200 (|has| |#1| (-378)))) (-2255 ((|#1| $) 108) (($ $ (-936)) 107 (|has| |#1| (-378)))) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 |#1|) $) 214) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-4084 (((-936) $) 148 (|has| |#1| (-378)))) (-2394 (((-1190 |#1|) $) 87 (|has| |#1| (-378)))) (-3255 (((-1190 |#1|) $) 84 (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) 96 (|has| |#1| (-378)))) (-2065 (($ $ (-1190 |#1|)) 83 (|has| |#1| (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 218)) (-3474 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) 150 (|has| |#1| (-378)))) (-3497 (((-112) $) 123)) (-3912 (((-1137) $) NIL)) (-3484 (((-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137)))))) 97)) (-2806 (((-700 |#1|)) 101)) (-3659 (($) 110 (|has| |#1| (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) 173 (|has| |#1| (-378)))) (-2353 (((-429 $) $) NIL)) (-2819 (((-844 (-936))) NIL) (((-936)) 174)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-782) $) NIL (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4386 (((-135)) NIL)) (-2389 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-2645 (((-844 (-936)) $) NIL) (((-936) $) 75)) (-2552 (((-1190 |#1|)) 175)) (-3500 (($) 147 (|has| |#1| (-378)))) (-3832 (($) NIL (|has| |#1| (-378)))) (-3962 (((-1285 |#1|) $) 121) (((-700 |#1|) (-1285 $)) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2883 (((-873) $) 140) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 70)) (-1518 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3759 (((-782)) 180 T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) 197) (((-1285 $) (-936)) 116)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) 186 T CONST)) (-2009 (($) 161 T CONST)) (-4216 (($ $) 122 (|has| |#1| (-378))) (($ $ (-782)) 114 (|has| |#1| (-378)))) (-3430 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3914 (((-112) $ $) 208)) (-4038 (($ $ $) 119) (($ $ |#1|) 120)) (-4028 (($ $) 202) (($ $ $) 206)) (-4016 (($ $ $) 204)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 153)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 211) (($ $ $) 164) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) +(((-362 |#1| |#2|) (-13 (-338 |#1|) (-10 -7 (-15 -3484 ((-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))))) (-15 -2806 ((-700 |#1|))) (-15 -2929 ((-782))))) (-359) (-3 (-1190 |#1|) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))))) (T -362)) +((-3484 (*1 *2) (-12 (-5 *2 (-1285 (-655 (-2 (|:| -4182 *3) (|:| -4317 (-1137)))))) (-5 *1 (-362 *3 *4)) (-4 *3 (-359)) (-14 *4 (-3 (-1190 *3) *2)))) (-2806 (*1 *2) (-12 (-5 *2 (-700 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-359)) (-14 *4 (-3 (-1190 *3) (-1285 (-655 (-2 (|:| -4182 *3) (|:| -4317 (-1137))))))))) (-2929 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-362 *3 *4)) (-4 *3 (-359)) (-14 *4 (-3 (-1190 *3) (-1285 (-655 (-2 (|:| -4182 *3) (|:| -4317 (-1137)))))))))) +(-13 (-338 |#1|) (-10 -7 (-15 -3484 ((-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))))) (-15 -2806 ((-700 |#1|))) (-15 -2929 ((-782))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| |#1| (-378)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2929 (((-782)) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) NIL (|has| |#1| (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-1385 (($ (-1285 |#1|)) NIL)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-378)))) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| |#1| (-378)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) NIL (|has| |#1| (-378)))) (-1980 (((-112) $) NIL (|has| |#1| (-378)))) (-4374 (($ $ (-782)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1336 (((-112) $) NIL)) (-2673 (((-936) $) NIL (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1542 (((-112) $) NIL)) (-3547 (($) NIL (|has| |#1| (-378)))) (-2922 (((-112) $) NIL (|has| |#1| (-378)))) (-2255 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 |#1|) $) NIL) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-4084 (((-936) $) NIL (|has| |#1| (-378)))) (-2394 (((-1190 |#1|) $) NIL (|has| |#1| (-378)))) (-3255 (((-1190 |#1|) $) NIL (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) NIL (|has| |#1| (-378)))) (-2065 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-3497 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3484 (((-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137)))))) NIL)) (-2806 (((-700 |#1|)) NIL)) (-3659 (($) NIL (|has| |#1| (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| |#1| (-378)))) (-2353 (((-429 $) $) NIL)) (-2819 (((-844 (-936))) NIL) (((-936)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-782) $) NIL (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4386 (((-135)) NIL)) (-2389 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-2645 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-2552 (((-1190 |#1|)) NIL)) (-3500 (($) NIL (|has| |#1| (-378)))) (-3832 (($) NIL (|has| |#1| (-378)))) (-3962 (((-1285 |#1|) $) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) NIL)) (-1518 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-4216 (($ $) NIL (|has| |#1| (-378))) (($ $ (-782)) NIL (|has| |#1| (-378)))) (-3430 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-363 |#1| |#2|) (-13 (-338 |#1|) (-10 -7 (-15 -3484 ((-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))))) (-15 -2806 ((-700 |#1|))) (-15 -2929 ((-782))))) (-359) (-936)) (T -363)) +((-3484 (*1 *2) (-12 (-5 *2 (-1285 (-655 (-2 (|:| -4182 *3) (|:| -4317 (-1137)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-359)) (-14 *4 (-936)))) (-2806 (*1 *2) (-12 (-5 *2 (-700 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-359)) (-14 *4 (-936)))) (-2929 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-363 *3 *4)) (-4 *3 (-359)) (-14 *4 (-936))))) +(-13 (-338 |#1|) (-10 -7 (-15 -3484 ((-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))))) (-15 -2806 ((-700 |#1|))) (-15 -2929 ((-782))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-925 |#1|) (-378)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) NIL (|has| (-925 |#1|) (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-925 |#1|) "failed") $) NIL)) (-4399 (((-925 |#1|) $) NIL)) (-1385 (($ (-1285 (-925 |#1|))) NIL)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-925 |#1|) (-378)))) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| (-925 |#1|) (-378)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) NIL (|has| (-925 |#1|) (-378)))) (-1980 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-4374 (($ $ (-782)) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378)))) (($ $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-1336 (((-112) $) NIL)) (-2673 (((-936) $) NIL (|has| (-925 |#1|) (-378))) (((-844 (-936)) $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-1542 (((-112) $) NIL)) (-3547 (($) NIL (|has| (-925 |#1|) (-378)))) (-2922 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-2255 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2607 (((-3 $ "failed") $) NIL (|has| (-925 |#1|) (-378)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 (-925 |#1|)) $) NIL) (((-1190 $) $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-4084 (((-936) $) NIL (|has| (-925 |#1|) (-378)))) (-2394 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378)))) (-3255 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-1190 (-925 |#1|)) "failed") $ $) NIL (|has| (-925 |#1|) (-378)))) (-2065 (($ $ (-1190 (-925 |#1|))) NIL (|has| (-925 |#1|) (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| (-925 |#1|) (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-3497 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3659 (($) NIL (|has| (-925 |#1|) (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| (-925 |#1|) (-378)))) (-2353 (((-429 $) $) NIL)) (-2819 (((-844 (-936))) NIL) (((-936)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-782) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-782) "failed") $ $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-4386 (((-135)) NIL)) (-2389 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-2645 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-2552 (((-1190 (-925 |#1|))) NIL)) (-3500 (($) NIL (|has| (-925 |#1|) (-378)))) (-3832 (($) NIL (|has| (-925 |#1|) (-378)))) (-3962 (((-1285 (-925 |#1|)) $) NIL) (((-700 (-925 |#1|)) (-1285 $)) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-925 |#1|) (-378)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-925 |#1|)) NIL)) (-1518 (($ $) NIL (|has| (-925 |#1|) (-378))) (((-3 $ "failed") $) NIL (-3765 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-4216 (($ $) NIL (|has| (-925 |#1|) (-378))) (($ $ (-782)) NIL (|has| (-925 |#1|) (-378)))) (-3430 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ (-925 |#1|)) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-925 |#1|)) NIL) (($ (-925 |#1|) $) NIL))) +(((-364 |#1| |#2|) (-338 (-925 |#1|)) (-936) (-936)) (T -364)) +NIL +(-338 (-925 |#1|)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2243 (((-1207 (-936) (-782)) (-575)) 129 (|has| |#1| (-378)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) 155 (|has| |#1| (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 103)) (-4399 ((|#1| $) 100)) (-1385 (($ (-1285 |#1|)) 95)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-378)))) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) 92 (|has| |#1| (-378)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) 51 (|has| |#1| (-378)))) (-1980 (((-112) $) NIL (|has| |#1| (-378)))) (-4374 (($ $ (-782)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1336 (((-112) $) NIL)) (-2673 (((-936) $) NIL (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1542 (((-112) $) NIL)) (-3547 (($) 130 (|has| |#1| (-378)))) (-2922 (((-112) $) 84 (|has| |#1| (-378)))) (-2255 ((|#1| $) 47) (($ $ (-936)) 52 (|has| |#1| (-378)))) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 |#1|) $) 75) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-4084 (((-936) $) 107 (|has| |#1| (-378)))) (-2394 (((-1190 |#1|) $) NIL (|has| |#1| (-378)))) (-3255 (((-1190 |#1|) $) NIL (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) NIL (|has| |#1| (-378)))) (-2065 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) 105 (|has| |#1| (-378)))) (-3497 (((-112) $) 157)) (-3912 (((-1137) $) NIL)) (-3659 (($) 44 (|has| |#1| (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) 124 (|has| |#1| (-378)))) (-2353 (((-429 $) $) NIL)) (-2819 (((-844 (-936))) NIL) (((-936)) 154)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-782) $) NIL (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4386 (((-135)) NIL)) (-2389 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-2645 (((-844 (-936)) $) NIL) (((-936) $) 67)) (-2552 (((-1190 |#1|)) 98)) (-3500 (($) 135 (|has| |#1| (-378)))) (-3832 (($) NIL (|has| |#1| (-378)))) (-3962 (((-1285 |#1|) $) 63) (((-700 |#1|) (-1285 $)) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2883 (((-873) $) 153) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 97)) (-1518 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3759 (((-782)) 159 T CONST)) (-4400 (((-112) $ $) 161)) (-1624 (((-1285 $)) 119) (((-1285 $) (-936)) 58)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) 121 T CONST)) (-2009 (($) 40 T CONST)) (-4216 (($ $) 78 (|has| |#1| (-378))) (($ $ (-782)) NIL (|has| |#1| (-378)))) (-3430 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3914 (((-112) $ $) 117)) (-4038 (($ $ $) 109) (($ $ |#1|) 110)) (-4028 (($ $) 90) (($ $ $) 115)) (-4016 (($ $ $) 113)) (** (($ $ (-936)) NIL) (($ $ (-782)) 53) (($ $ (-575)) 138)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 88) (($ $ $) 65) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) +(((-365 |#1| |#2|) (-338 |#1|) (-359) (-1190 |#1|)) (T -365)) +NIL +(-338 |#1|) +((-2981 ((|#1| (-1190 |#2|)) 59))) +(((-366 |#1| |#2|) (-10 -7 (-15 -2981 (|#1| (-1190 |#2|)))) (-13 (-413) (-10 -7 (-15 -2883 (|#1| |#2|)) (-15 -4084 ((-936) |#1|)) (-15 -1624 ((-1285 |#1|) (-936))) (-15 -4216 (|#1| |#1|)))) (-359)) (T -366)) +((-2981 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-4 *2 (-13 (-413) (-10 -7 (-15 -2883 (*2 *4)) (-15 -4084 ((-936) *2)) (-15 -1624 ((-1285 *2) (-936))) (-15 -4216 (*2 *2))))) (-5 *1 (-366 *2 *4))))) +(-10 -7 (-15 -2981 (|#1| (-1190 |#2|)))) +((-3482 (((-973 (-1190 |#1|)) (-1190 |#1|)) 49)) (-2079 (((-1190 |#1|) (-936) (-936)) 154) (((-1190 |#1|) (-936)) 150)) (-1980 (((-112) (-1190 |#1|)) 107)) (-3549 (((-936) (-936)) 85)) (-3177 (((-936) (-936)) 92)) (-3724 (((-936) (-936)) 83)) (-2922 (((-112) (-1190 |#1|)) 111)) (-1575 (((-3 (-1190 |#1|) "failed") (-1190 |#1|)) 135)) (-1942 (((-3 (-1190 |#1|) "failed") (-1190 |#1|)) 140)) (-3319 (((-3 (-1190 |#1|) "failed") (-1190 |#1|)) 139)) (-1485 (((-3 (-1190 |#1|) "failed") (-1190 |#1|)) 138)) (-3606 (((-3 (-1190 |#1|) "failed") (-1190 |#1|)) 131)) (-3685 (((-1190 |#1|) (-1190 |#1|)) 71)) (-1964 (((-1190 |#1|) (-936)) 145)) (-1960 (((-1190 |#1|) (-936)) 148)) (-3455 (((-1190 |#1|) (-936)) 147)) (-3657 (((-1190 |#1|) (-936)) 146)) (-1669 (((-1190 |#1|) (-936)) 143))) +(((-367 |#1|) (-10 -7 (-15 -1980 ((-112) (-1190 |#1|))) (-15 -2922 ((-112) (-1190 |#1|))) (-15 -3724 ((-936) (-936))) (-15 -3549 ((-936) (-936))) (-15 -3177 ((-936) (-936))) (-15 -1669 ((-1190 |#1|) (-936))) (-15 -1964 ((-1190 |#1|) (-936))) (-15 -3657 ((-1190 |#1|) (-936))) (-15 -3455 ((-1190 |#1|) (-936))) (-15 -1960 ((-1190 |#1|) (-936))) (-15 -3606 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -1575 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -1485 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -3319 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -1942 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -2079 ((-1190 |#1|) (-936))) (-15 -2079 ((-1190 |#1|) (-936) (-936))) (-15 -3685 ((-1190 |#1|) (-1190 |#1|))) (-15 -3482 ((-973 (-1190 |#1|)) (-1190 |#1|)))) (-359)) (T -367)) +((-3482 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-973 (-1190 *4))) (-5 *1 (-367 *4)) (-5 *3 (-1190 *4)))) (-3685 (*1 *2 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-2079 (*1 *2 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-1942 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-3319 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-1485 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-1575 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-3606 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-3657 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-3177 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359)))) (-3724 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359)))) (-2922 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-112)) (-5 *1 (-367 *4)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-112)) (-5 *1 (-367 *4))))) +(-10 -7 (-15 -1980 ((-112) (-1190 |#1|))) (-15 -2922 ((-112) (-1190 |#1|))) (-15 -3724 ((-936) (-936))) (-15 -3549 ((-936) (-936))) (-15 -3177 ((-936) (-936))) (-15 -1669 ((-1190 |#1|) (-936))) (-15 -1964 ((-1190 |#1|) (-936))) (-15 -3657 ((-1190 |#1|) (-936))) (-15 -3455 ((-1190 |#1|) (-936))) (-15 -1960 ((-1190 |#1|) (-936))) (-15 -3606 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -1575 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -1485 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -3319 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -1942 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -2079 ((-1190 |#1|) (-936))) (-15 -2079 ((-1190 |#1|) (-936) (-936))) (-15 -3685 ((-1190 |#1|) (-1190 |#1|))) (-15 -3482 ((-973 (-1190 |#1|)) (-1190 |#1|)))) +((-1830 (((-3 (-655 |#3|) "failed") (-655 |#3|) |#3|) 38))) +(((-368 |#1| |#2| |#3|) (-10 -7 (-15 -1830 ((-3 (-655 |#3|) "failed") (-655 |#3|) |#3|))) (-359) (-1261 |#1|) (-1261 |#2|)) (T -368)) +((-1830 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-359)) (-5 *1 (-368 *4 *5 *3))))) +(-10 -7 (-15 -1830 ((-3 (-655 |#3|) "failed") (-655 |#3|) |#3|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| |#1| (-378)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) NIL (|has| |#1| (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-1385 (($ (-1285 |#1|)) NIL)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-378)))) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| |#1| (-378)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) NIL (|has| |#1| (-378)))) (-1980 (((-112) $) NIL (|has| |#1| (-378)))) (-4374 (($ $ (-782)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1336 (((-112) $) NIL)) (-2673 (((-936) $) NIL (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1542 (((-112) $) NIL)) (-3547 (($) NIL (|has| |#1| (-378)))) (-2922 (((-112) $) NIL (|has| |#1| (-378)))) (-2255 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 |#1|) $) NIL) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-4084 (((-936) $) NIL (|has| |#1| (-378)))) (-2394 (((-1190 |#1|) $) NIL (|has| |#1| (-378)))) (-3255 (((-1190 |#1|) $) NIL (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) NIL (|has| |#1| (-378)))) (-2065 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-3497 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3659 (($) NIL (|has| |#1| (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| |#1| (-378)))) (-2353 (((-429 $) $) NIL)) (-2819 (((-844 (-936))) NIL) (((-936)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-782) $) NIL (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4386 (((-135)) NIL)) (-2389 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-2645 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-2552 (((-1190 |#1|)) NIL)) (-3500 (($) NIL (|has| |#1| (-378)))) (-3832 (($) NIL (|has| |#1| (-378)))) (-3962 (((-1285 |#1|) $) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) NIL)) (-1518 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-4216 (($ $) NIL (|has| |#1| (-378))) (($ $ (-782)) NIL (|has| |#1| (-378)))) (-3430 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-369 |#1| |#2|) (-338 |#1|) (-359) (-936)) (T -369)) +NIL +(-338 |#1|) +((-4322 (((-112) (-655 (-967 |#1|))) 41)) (-1919 (((-655 (-967 |#1|)) (-655 (-967 |#1|))) 53)) (-4007 (((-3 (-655 (-967 |#1|)) "failed") (-655 (-967 |#1|))) 48))) +(((-370 |#1| |#2|) (-10 -7 (-15 -4322 ((-112) (-655 (-967 |#1|)))) (-15 -4007 ((-3 (-655 (-967 |#1|)) "failed") (-655 (-967 |#1|)))) (-15 -1919 ((-655 (-967 |#1|)) (-655 (-967 |#1|))))) (-463) (-655 (-1194))) (T -370)) +((-1919 (*1 *2 *2) (-12 (-5 *2 (-655 (-967 *3))) (-4 *3 (-463)) (-5 *1 (-370 *3 *4)) (-14 *4 (-655 (-1194))))) (-4007 (*1 *2 *2) (|partial| -12 (-5 *2 (-655 (-967 *3))) (-4 *3 (-463)) (-5 *1 (-370 *3 *4)) (-14 *4 (-655 (-1194))))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-463)) (-5 *2 (-112)) (-5 *1 (-370 *4 *5)) (-14 *5 (-655 (-1194)))))) +(-10 -7 (-15 -4322 ((-112) (-655 (-967 |#1|)))) (-15 -4007 ((-3 (-655 (-967 |#1|)) "failed") (-655 (-967 |#1|)))) (-15 -1919 ((-655 (-967 |#1|)) (-655 (-967 |#1|))))) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782) $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) 17)) (-3643 ((|#1| $ (-575)) NIL)) (-2302 (((-575) $ (-575)) NIL)) (-1772 (($ (-1 |#1| |#1|) $) 34)) (-2195 (($ (-1 (-575) (-575)) $) 26)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 28)) (-3912 (((-1137) $) NIL)) (-3378 (((-655 (-2 (|:| |gen| |#1|) (|:| -2665 (-575)))) $) 30)) (-4258 (($ $ $) NIL)) (-3320 (($ $ $) NIL)) (-2883 (((-873) $) 40) (($ |#1|) NIL)) (-4400 (((-112) $ $) NIL)) (-2009 (($) 11 T CONST)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL) (($ |#1| (-575)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-371 |#1|) (-13 (-484) (-1055 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-575))) (-15 -2415 ((-782) $)) (-15 -2302 ((-575) $ (-575))) (-15 -3643 (|#1| $ (-575))) (-15 -2195 ($ (-1 (-575) (-575)) $)) (-15 -1772 ($ (-1 |#1| |#1|) $)) (-15 -3378 ((-655 (-2 (|:| |gen| |#1|) (|:| -2665 (-575)))) $)))) (-1117)) (T -371)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1117)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1117)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-371 *2)) (-4 *2 (-1117)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-371 *3)) (-4 *3 (-1117)))) (-2302 (*1 *2 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-371 *3)) (-4 *3 (-1117)))) (-3643 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-371 *2)) (-4 *2 (-1117)))) (-2195 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-575) (-575))) (-5 *1 (-371 *3)) (-4 *3 (-1117)))) (-1772 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-371 *3)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2665 (-575))))) (-5 *1 (-371 *3)) (-4 *3 (-1117))))) +(-13 (-484) (-1055 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-575))) (-15 -2415 ((-782) $)) (-15 -2302 ((-575) $ (-575))) (-15 -3643 (|#1| $ (-575))) (-15 -2195 ($ (-1 (-575) (-575)) $)) (-15 -1772 ($ (-1 |#1| |#1|) $)) (-15 -3378 ((-655 (-2 (|:| |gen| |#1|) (|:| -2665 (-575)))) $)))) +((-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 13)) (-1540 (($ $) 14)) (-2330 (((-429 $) $) 34)) (-1336 (((-112) $) 30)) (-4332 (($ $) 19)) (-3926 (($ $ $) 25) (($ (-655 $)) NIL)) (-2353 (((-429 $) $) 35)) (-2851 (((-3 $ "failed") $ $) 24)) (-3708 (((-782) $) 28)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 39)) (-1780 (((-112) $ $) 16)) (-4038 (($ $ $) 37))) +(((-372 |#1|) (-10 -8 (-15 -4038 (|#1| |#1| |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -1336 ((-112) |#1|)) (-15 -2330 ((-429 |#1|) |#1|)) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2196 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -3708 ((-782) |#1|)) (-15 -3926 (|#1| (-655 |#1|))) (-15 -3926 (|#1| |#1| |#1|)) (-15 -1780 ((-112) |#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -3370 ((-2 (|:| -3800 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#1|))) (-373)) (T -372)) +NIL +(-10 -8 (-15 -4038 (|#1| |#1| |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -1336 ((-112) |#1|)) (-15 -2330 ((-429 |#1|) |#1|)) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2196 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -3708 ((-782) |#1|)) (-15 -3926 (|#1| (-655 |#1|))) (-15 -3926 (|#1| |#1| |#1|)) (-15 -1780 ((-112) |#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -3370 ((-2 (|:| -3800 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 81)) (-2330 (((-429 $) $) 80)) (-2279 (((-112) $ $) 65)) (-3011 (($) 18 T CONST)) (-2802 (($ $ $) 61)) (-1747 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-1336 (((-112) $) 79)) (-1542 (((-112) $) 35)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2353 (((-429 $) $) 82)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3708 (((-782) $) 64)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ $) 73)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75))) +(((-373) (-141)) (T -373)) +((-4038 (*1 *1 *1 *1) (-4 *1 (-373)))) +(-13 (-316) (-1239) (-248) (-10 -8 (-15 -4038 ($ $ $)) (-6 -4458) (-6 -4452))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T)) +((-2861 (((-112) $ $) 7)) (-2766 ((|#2| $ |#2|) 14)) (-4248 (($ $ (-1176)) 19)) (-1368 ((|#2| $) 15)) (-2978 (($ |#1|) 21) (($ |#1| (-1176)) 20)) (-1777 ((|#1| $) 17)) (-2288 (((-1176) $) 10)) (-3212 (((-1176) $) 16)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-3504 (($ $) 18)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-374 |#1| |#2|) (-141) (-1117) (-1117)) (T -374)) +((-2978 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-2978 (*1 *1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *1 (-374 *2 *4)) (-4 *2 (-1117)) (-4 *4 (-1117)))) (-4248 (*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-374 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1117)))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-5 *2 (-1176)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))) (-2766 (*1 *2 *1 *2) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117))))) +(-13 (-1117) (-10 -8 (-15 -2978 ($ |t#1|)) (-15 -2978 ($ |t#1| (-1176))) (-15 -4248 ($ $ (-1176))) (-15 -3504 ($ $)) (-15 -1777 (|t#1| $)) (-15 -3212 ((-1176) $)) (-15 -1368 (|t#2| $)) (-15 -2766 (|t#2| $ |t#2|)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-2766 ((|#1| $ |#1|) 31)) (-4248 (($ $ (-1176)) 23)) (-2099 (((-3 |#1| "failed") $) 30)) (-1368 ((|#1| $) 28)) (-2978 (($ (-399)) 22) (($ (-399) (-1176)) 21)) (-1777 (((-399) $) 25)) (-2288 (((-1176) $) NIL)) (-3212 (((-1176) $) 26)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 20)) (-3504 (($ $) 24)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 19))) +(((-375 |#1|) (-13 (-374 (-399) |#1|) (-10 -8 (-15 -2099 ((-3 |#1| "failed") $)))) (-1117)) (T -375)) +((-2099 (*1 *2 *1) (|partial| -12 (-5 *1 (-375 *2)) (-4 *2 (-1117))))) +(-13 (-374 (-399) |#1|) (-10 -8 (-15 -2099 ((-3 |#1| "failed") $)))) +((-4239 (((-1285 (-700 |#2|)) (-1285 $)) 67)) (-2974 (((-700 |#2|) (-1285 $)) 139)) (-1726 ((|#2| $) 36)) (-4093 (((-700 |#2|) $ (-1285 $)) 142)) (-3512 (((-3 $ "failed") $) 89)) (-2737 ((|#2| $) 39)) (-1884 (((-1190 |#2|) $) 98)) (-2263 ((|#2| (-1285 $)) 122)) (-4103 (((-1190 |#2|) $) 32)) (-2810 (((-112)) 116)) (-1385 (($ (-1285 |#2|) (-1285 $)) 132)) (-1747 (((-3 $ "failed") $) 93)) (-3289 (((-112)) 111)) (-1742 (((-112)) 106)) (-3577 (((-112)) 58)) (-2653 (((-700 |#2|) (-1285 $)) 137)) (-1502 ((|#2| $) 35)) (-4391 (((-700 |#2|) $ (-1285 $)) 141)) (-3456 (((-3 $ "failed") $) 87)) (-4336 ((|#2| $) 38)) (-3649 (((-1190 |#2|) $) 97)) (-1634 ((|#2| (-1285 $)) 120)) (-4013 (((-1190 |#2|) $) 30)) (-4403 (((-112)) 115)) (-1536 (((-112)) 108)) (-3978 (((-112)) 56)) (-2204 (((-112)) 103)) (-3074 (((-112)) 117)) (-3962 (((-1285 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) (-1285 $) (-1285 $)) 128)) (-2328 (((-112)) 113)) (-3431 (((-655 (-1285 |#2|))) 102)) (-2761 (((-112)) 114)) (-4363 (((-112)) 112)) (-2987 (((-112)) 51)) (-1472 (((-112)) 118))) +(((-376 |#1| |#2|) (-10 -8 (-15 -1884 ((-1190 |#2|) |#1|)) (-15 -3649 ((-1190 |#2|) |#1|)) (-15 -3431 ((-655 (-1285 |#2|)))) (-15 -3512 ((-3 |#1| "failed") |#1|)) (-15 -3456 ((-3 |#1| "failed") |#1|)) (-15 -1747 ((-3 |#1| "failed") |#1|)) (-15 -1742 ((-112))) (-15 -1536 ((-112))) (-15 -3289 ((-112))) (-15 -3978 ((-112))) (-15 -3577 ((-112))) (-15 -2204 ((-112))) (-15 -1472 ((-112))) (-15 -3074 ((-112))) (-15 -2810 ((-112))) (-15 -4403 ((-112))) (-15 -2987 ((-112))) (-15 -2761 ((-112))) (-15 -4363 ((-112))) (-15 -2328 ((-112))) (-15 -4103 ((-1190 |#2|) |#1|)) (-15 -4013 ((-1190 |#2|) |#1|)) (-15 -2974 ((-700 |#2|) (-1285 |#1|))) (-15 -2653 ((-700 |#2|) (-1285 |#1|))) (-15 -2263 (|#2| (-1285 |#1|))) (-15 -1634 (|#2| (-1285 |#1|))) (-15 -1385 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -2737 (|#2| |#1|)) (-15 -4336 (|#2| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1502 (|#2| |#1|)) (-15 -4093 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -4391 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -4239 ((-1285 (-700 |#2|)) (-1285 |#1|)))) (-377 |#2|) (-174)) (T -376)) +((-2328 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-4363 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-2761 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-2987 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-4403 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-2810 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3074 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-1472 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-2204 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3577 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3978 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3289 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-1536 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-1742 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3431 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-655 (-1285 *4))) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4))))) +(-10 -8 (-15 -1884 ((-1190 |#2|) |#1|)) (-15 -3649 ((-1190 |#2|) |#1|)) (-15 -3431 ((-655 (-1285 |#2|)))) (-15 -3512 ((-3 |#1| "failed") |#1|)) (-15 -3456 ((-3 |#1| "failed") |#1|)) (-15 -1747 ((-3 |#1| "failed") |#1|)) (-15 -1742 ((-112))) (-15 -1536 ((-112))) (-15 -3289 ((-112))) (-15 -3978 ((-112))) (-15 -3577 ((-112))) (-15 -2204 ((-112))) (-15 -1472 ((-112))) (-15 -3074 ((-112))) (-15 -2810 ((-112))) (-15 -4403 ((-112))) (-15 -2987 ((-112))) (-15 -2761 ((-112))) (-15 -4363 ((-112))) (-15 -2328 ((-112))) (-15 -4103 ((-1190 |#2|) |#1|)) (-15 -4013 ((-1190 |#2|) |#1|)) (-15 -2974 ((-700 |#2|) (-1285 |#1|))) (-15 -2653 ((-700 |#2|) (-1285 |#1|))) (-15 -2263 (|#2| (-1285 |#1|))) (-15 -1634 (|#2| (-1285 |#1|))) (-15 -1385 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -2737 (|#2| |#1|)) (-15 -4336 (|#2| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1502 (|#2| |#1|)) (-15 -4093 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -4391 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -4239 ((-1285 (-700 |#2|)) (-1285 |#1|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3800 (((-3 $ "failed")) 42 (|has| |#1| (-567)))) (-2597 (((-3 $ "failed") $ $) 20)) (-4239 (((-1285 (-700 |#1|)) (-1285 $)) 83)) (-3355 (((-1285 $)) 86)) (-3011 (($) 18 T CONST)) (-1380 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) 45 (|has| |#1| (-567)))) (-4132 (((-3 $ "failed")) 43 (|has| |#1| (-567)))) (-2974 (((-700 |#1|) (-1285 $)) 70)) (-1726 ((|#1| $) 79)) (-4093 (((-700 |#1|) $ (-1285 $)) 81)) (-3512 (((-3 $ "failed") $) 50 (|has| |#1| (-567)))) (-2661 (($ $ (-936)) 31)) (-2737 ((|#1| $) 77)) (-1884 (((-1190 |#1|) $) 47 (|has| |#1| (-567)))) (-2263 ((|#1| (-1285 $)) 72)) (-4103 (((-1190 |#1|) $) 68)) (-2810 (((-112)) 62)) (-1385 (($ (-1285 |#1|) (-1285 $)) 74)) (-1747 (((-3 $ "failed") $) 52 (|has| |#1| (-567)))) (-4422 (((-936)) 85)) (-4369 (((-112)) 59)) (-3889 (($ $ (-936)) 38)) (-3289 (((-112)) 55)) (-1742 (((-112)) 53)) (-3577 (((-112)) 57)) (-3129 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) 46 (|has| |#1| (-567)))) (-3387 (((-3 $ "failed")) 44 (|has| |#1| (-567)))) (-2653 (((-700 |#1|) (-1285 $)) 71)) (-1502 ((|#1| $) 80)) (-4391 (((-700 |#1|) $ (-1285 $)) 82)) (-3456 (((-3 $ "failed") $) 51 (|has| |#1| (-567)))) (-1898 (($ $ (-936)) 32)) (-4336 ((|#1| $) 78)) (-3649 (((-1190 |#1|) $) 48 (|has| |#1| (-567)))) (-1634 ((|#1| (-1285 $)) 73)) (-4013 (((-1190 |#1|) $) 69)) (-4403 (((-112)) 63)) (-2288 (((-1176) $) 10)) (-1536 (((-112)) 54)) (-3978 (((-112)) 56)) (-2204 (((-112)) 58)) (-3912 (((-1137) $) 11)) (-3074 (((-112)) 61)) (-3962 (((-1285 |#1|) $ (-1285 $)) 76) (((-700 |#1|) (-1285 $) (-1285 $)) 75)) (-3235 (((-655 (-967 |#1|)) (-1285 $)) 84)) (-3320 (($ $ $) 28)) (-2328 (((-112)) 67)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3431 (((-655 (-1285 |#1|))) 49 (|has| |#1| (-567)))) (-1785 (($ $ $ $) 29)) (-2761 (((-112)) 65)) (-3534 (($ $ $) 27)) (-4363 (((-112)) 66)) (-2987 (((-112)) 64)) (-1472 (((-112)) 60)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 33)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-377 |#1|) (-141) (-174)) (T -377)) +((-3355 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1285 *1)) (-4 *1 (-377 *3)))) (-4422 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-936)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-655 (-967 *4))))) (-4239 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-1285 (-700 *4))))) (-4391 (*1 *2 *1 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-4093 (*1 *2 *1 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-1502 (*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-4336 (*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-3962 (*1 *2 *1 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-1285 *4)))) (-3962 (*1 *2 *3 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-1385 (*1 *1 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1285 *1)) (-4 *4 (-174)) (-4 *1 (-377 *4)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-4013 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-1190 *3)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-1190 *3)))) (-2328 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4363 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2761 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2987 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4403 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2810 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3074 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1472 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4369 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2204 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3577 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3978 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3289 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1536 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1742 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1747 (*1 *1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) (-3456 (*1 *1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) (-3512 (*1 *1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) (-3431 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567)) (-5 *2 (-655 (-1285 *3))))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567)) (-5 *2 (-1190 *3)))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567)) (-5 *2 (-1190 *3)))) (-3129 (*1 *2) (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1624 (-655 *1)))) (-4 *1 (-377 *3)))) (-1380 (*1 *2) (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1624 (-655 *1)))) (-4 *1 (-377 *3)))) (-3387 (*1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174)))) (-4132 (*1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174)))) (-3800 (*1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174))))) +(-13 (-755 |t#1|) (-10 -8 (-15 -3355 ((-1285 $))) (-15 -4422 ((-936))) (-15 -3235 ((-655 (-967 |t#1|)) (-1285 $))) (-15 -4239 ((-1285 (-700 |t#1|)) (-1285 $))) (-15 -4391 ((-700 |t#1|) $ (-1285 $))) (-15 -4093 ((-700 |t#1|) $ (-1285 $))) (-15 -1502 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -4336 (|t#1| $)) (-15 -2737 (|t#1| $)) (-15 -3962 ((-1285 |t#1|) $ (-1285 $))) (-15 -3962 ((-700 |t#1|) (-1285 $) (-1285 $))) (-15 -1385 ($ (-1285 |t#1|) (-1285 $))) (-15 -1634 (|t#1| (-1285 $))) (-15 -2263 (|t#1| (-1285 $))) (-15 -2653 ((-700 |t#1|) (-1285 $))) (-15 -2974 ((-700 |t#1|) (-1285 $))) (-15 -4013 ((-1190 |t#1|) $)) (-15 -4103 ((-1190 |t#1|) $)) (-15 -2328 ((-112))) (-15 -4363 ((-112))) (-15 -2761 ((-112))) (-15 -2987 ((-112))) (-15 -4403 ((-112))) (-15 -2810 ((-112))) (-15 -3074 ((-112))) (-15 -1472 ((-112))) (-15 -4369 ((-112))) (-15 -2204 ((-112))) (-15 -3577 ((-112))) (-15 -3978 ((-112))) (-15 -3289 ((-112))) (-15 -1536 ((-112))) (-15 -1742 ((-112))) (IF (|has| |t#1| (-567)) (PROGN (-15 -1747 ((-3 $ "failed") $)) (-15 -3456 ((-3 $ "failed") $)) (-15 -3512 ((-3 $ "failed") $)) (-15 -3431 ((-655 (-1285 |t#1|)))) (-15 -3649 ((-1190 |t#1|) $)) (-15 -1884 ((-1190 |t#1|) $)) (-15 -3129 ((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed"))) (-15 -1380 ((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed"))) (-15 -3387 ((-3 $ "failed"))) (-15 -4132 ((-3 $ "failed"))) (-15 -3800 ((-3 $ "failed"))) (-6 -4457)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-731) . T) ((-755 |#1|) . T) ((-772) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T)) +((-2861 (((-112) $ $) 7)) (-2415 (((-782)) 17)) (-2079 (($) 14)) (-4084 (((-936) $) 15)) (-2288 (((-1176) $) 10)) (-4317 (($ (-936)) 16)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-378) (-141)) (T -378)) +((-2415 (*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-782)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-378)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-936)))) (-2079 (*1 *1) (-4 *1 (-378)))) +(-13 (-1117) (-10 -8 (-15 -2415 ((-782))) (-15 -4317 ($ (-936))) (-15 -4084 ((-936) $)) (-15 -2079 ($)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-1389 (((-700 |#2|) (-1285 $)) 45)) (-1385 (($ (-1285 |#2|) (-1285 $)) 39)) (-2746 (((-700 |#2|) $ (-1285 $)) 47)) (-4060 ((|#2| (-1285 $)) 13)) (-3962 (((-1285 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) (-1285 $) (-1285 $)) 27))) +(((-379 |#1| |#2| |#3|) (-10 -8 (-15 -1389 ((-700 |#2|) (-1285 |#1|))) (-15 -4060 (|#2| (-1285 |#1|))) (-15 -1385 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -2746 ((-700 |#2|) |#1| (-1285 |#1|)))) (-380 |#2| |#3|) (-174) (-1261 |#2|)) (T -379)) +NIL +(-10 -8 (-15 -1389 ((-700 |#2|) (-1285 |#1|))) (-15 -4060 (|#2| (-1285 |#1|))) (-15 -1385 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -2746 ((-700 |#2|) |#1| (-1285 |#1|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1389 (((-700 |#1|) (-1285 $)) 53)) (-1447 ((|#1| $) 59)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1385 (($ (-1285 |#1|) (-1285 $)) 55)) (-2746 (((-700 |#1|) $ (-1285 $)) 60)) (-1747 (((-3 $ "failed") $) 37)) (-4422 (((-936)) 61)) (-1542 (((-112) $) 35)) (-2255 ((|#1| $) 58)) (-1943 ((|#2| $) 51 (|has| |#1| (-373)))) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4060 ((|#1| (-1285 $)) 54)) (-3962 (((-1285 |#1|) $ (-1285 $)) 57) (((-700 |#1|) (-1285 $) (-1285 $)) 56)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44)) (-1518 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2551 ((|#2| $) 52)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-380 |#1| |#2|) (-141) (-174) (-1261 |t#1|)) (T -380)) +((-4422 (*1 *2) (-12 (-4 *1 (-380 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-936)))) (-2746 (*1 *2 *1 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-380 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-380 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174)))) (-3962 (*1 *2 *1 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-1285 *4)))) (-3962 (*1 *2 *3 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) (-1385 (*1 *1 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1285 *1)) (-4 *4 (-174)) (-4 *1 (-380 *4 *5)) (-4 *5 (-1261 *4)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *2 *4)) (-4 *4 (-1261 *2)) (-4 *2 (-174)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-380 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-380 *3 *2)) (-4 *3 (-174)) (-4 *3 (-373)) (-4 *2 (-1261 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -4422 ((-936))) (-15 -2746 ((-700 |t#1|) $ (-1285 $))) (-15 -1447 (|t#1| $)) (-15 -2255 (|t#1| $)) (-15 -3962 ((-1285 |t#1|) $ (-1285 $))) (-15 -3962 ((-700 |t#1|) (-1285 $) (-1285 $))) (-15 -1385 ($ (-1285 |t#1|) (-1285 $))) (-15 -4060 (|t#1| (-1285 $))) (-15 -1389 ((-700 |t#1|) (-1285 $))) (-15 -2551 (|t#2| $)) (IF (|has| |t#1| (-373)) (-15 -1943 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-737) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-3715 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2308 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2550 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-381 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2308 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3715 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1235) (-383 |#1|) (-1235) (-383 |#3|)) (T -381)) +((-3715 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1235)) (-4 *5 (-1235)) (-4 *2 (-383 *5)) (-5 *1 (-381 *6 *4 *5 *2)) (-4 *4 (-383 *6)))) (-2308 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-381 *5 *4 *2 *6)) (-4 *4 (-383 *5)) (-4 *6 (-383 *2)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-4 *2 (-383 *6)) (-5 *1 (-381 *5 *4 *6 *2)) (-4 *4 (-383 *5))))) +(-10 -7 (-15 -2550 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2308 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3715 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2762 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2119 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2031 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4381 (($ $) 25)) (-2632 (((-575) (-1 (-112) |#2|) $) NIL) (((-575) |#2| $) 11) (((-575) |#2| $ (-575)) NIL)) (-3794 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-382 |#1| |#2|) (-10 -8 (-15 -2119 (|#1| |#1|)) (-15 -2119 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2762 ((-112) |#1|)) (-15 -2031 (|#1| |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -2632 ((-575) |#2| |#1| (-575))) (-15 -2632 ((-575) |#2| |#1|)) (-15 -2632 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -2762 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2031 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3794 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-383 |#2|) (-1235)) (T -382)) +NIL +(-10 -8 (-15 -2119 (|#1| |#1|)) (-15 -2119 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2762 ((-112) |#1|)) (-15 -2031 (|#1| |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -2632 ((-575) |#2| |#1| (-575))) (-15 -2632 ((-575) |#2| |#1|)) (-15 -2632 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -2762 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2031 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3794 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4161 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4461))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) 8)) (-3054 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1789 (($ $) 93 (|has| $ (-6 -4461)))) (-4381 (($ $) 103)) (-1748 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) 52)) (-2632 (((-575) (-1 (-112) |#1|) $) 100) (((-575) |#1| $) 99 (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) 98 (|has| |#1| (-1117)))) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-2309 (($ (-782) |#1|) 70)) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 44 (|has| (-575) (-861)))) (-1920 (($ $ $) 90 (|has| |#1| (-861)))) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 45 (|has| (-575) (-861)))) (-1425 (($ $ $) 89 (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-2135 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-4310 (((-655 (-575)) $) 47)) (-2969 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1961 ((|#1| $) 43 (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3954 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) 49)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-3239 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4005 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3078 (($ $) 13)) (-2615 (((-547) $) 81 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 72)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3956 (((-112) $ $) 86 (|has| |#1| (-861)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-3970 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-861)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-383 |#1|) (-141) (-1235)) (T -383)) +((-3794 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-383 *3)) (-4 *3 (-1235)))) (-4381 (*1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235)))) (-2031 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-383 *3)) (-4 *3 (-1235)))) (-2762 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-383 *4)) (-4 *4 (-1235)) (-5 *2 (-112)))) (-2632 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-383 *4)) (-4 *4 (-1235)) (-5 *2 (-575)))) (-2632 (*1 *2 *3 *1) (-12 (-4 *1 (-383 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-575)))) (-2632 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-383 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235)) (-4 *2 (-861)))) (-2031 (*1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235)) (-4 *2 (-861)))) (-2762 (*1 *2 *1) (-12 (-4 *1 (-383 *3)) (-4 *3 (-1235)) (-4 *3 (-861)) (-5 *2 (-112)))) (-4005 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-575)) (|has| *1 (-6 -4461)) (-4 *1 (-383 *3)) (-4 *3 (-1235)))) (-1789 (*1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-383 *2)) (-4 *2 (-1235)))) (-2119 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4461)) (-4 *1 (-383 *3)) (-4 *3 (-1235)))) (-2119 (*1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-383 *2)) (-4 *2 (-1235)) (-4 *2 (-861))))) +(-13 (-662 |t#1|) (-10 -8 (-6 -4460) (-15 -3794 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4381 ($ $)) (-15 -2031 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2762 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2632 ((-575) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1117)) (PROGN (-15 -2632 ((-575) |t#1| $)) (-15 -2632 ((-575) |t#1| $ (-575)))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-6 (-861)) (-15 -3794 ($ $ $)) (-15 -2031 ($ $)) (-15 -2762 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4461)) (PROGN (-15 -4005 ($ $ $ (-575))) (-15 -1789 ($ $)) (-15 -2119 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-15 -2119 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-861) |has| |#1| (-861)) ((-1117) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-1235) . T)) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3489 (((-655 |#1|) $) 37)) (-1573 (($ $ (-782)) 38)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2724 (((-1309 |#1| |#2|) (-1309 |#1| |#2|) $) 41)) (-3061 (($ $) 39)) (-4190 (((-1309 |#1| |#2|) (-1309 |#1| |#2|) $) 42)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3048 (($ $ |#1| $) 36) (($ $ (-655 |#1|) (-655 $)) 35)) (-2645 (((-782) $) 43)) (-2894 (($ $ $) 34)) (-2883 (((-873) $) 12) (($ |#1|) 46) (((-1300 |#1| |#2|) $) 45) (((-1309 |#1| |#2|) $) 44)) (-1754 ((|#2| (-1309 |#1| |#2|) $) 47)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-4210 (($ (-683 |#1|)) 40)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#2|) 33 (|has| |#2| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +(((-384 |#1| |#2|) (-141) (-861) (-174)) (T -384)) +((-1754 (*1 *2 *3 *1) (-12 (-5 *3 (-1309 *4 *2)) (-4 *1 (-384 *4 *2)) (-4 *4 (-861)) (-4 *2 (-174)))) (-2883 (*1 *1 *2) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1300 *3 *4)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1309 *3 *4)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-782)))) (-4190 (*1 *2 *2 *1) (-12 (-5 *2 (-1309 *3 *4)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-2724 (*1 *2 *2 *1) (-12 (-5 *2 (-1309 *3 *4)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-4210 (*1 *1 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-4 *1 (-384 *3 *4)) (-4 *4 (-174)))) (-3061 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-1573 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-655 *3)))) (-3048 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 *1)) (-4 *1 (-384 *4 *5)) (-4 *4 (-861)) (-4 *5 (-174))))) +(-13 (-645 |t#2|) (-10 -8 (-15 -1754 (|t#2| (-1309 |t#1| |t#2|) $)) (-15 -2883 ($ |t#1|)) (-15 -2883 ((-1300 |t#1| |t#2|) $)) (-15 -2883 ((-1309 |t#1| |t#2|) $)) (-15 -2645 ((-782) $)) (-15 -4190 ((-1309 |t#1| |t#2|) (-1309 |t#1| |t#2|) $)) (-15 -2724 ((-1309 |t#1| |t#2|) (-1309 |t#1| |t#2|) $)) (-15 -4210 ($ (-683 |t#1|))) (-15 -3061 ($ $)) (-15 -1573 ($ $ (-782))) (-15 -3489 ((-655 |t#1|) $)) (-15 -3048 ($ $ |t#1| $)) (-15 -3048 ($ $ (-655 |t#1|) (-655 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#2|) . T) ((-659 |#2|) . T) ((-645 |#2|) . T) ((-651 |#2|) . T) ((-728 |#2|) . T) ((-1068 |#2|) . T) ((-1073 |#2|) . T) ((-1117) . T)) +((-3886 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3184 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1962 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) +(((-385 |#1| |#2|) (-10 -7 (-15 -3184 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1962 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3886 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1235) (-13 (-383 |#1|) (-10 -7 (-6 -4461)))) (T -385)) +((-3886 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2)) (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461)))))) (-1962 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2)) (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461)))))) (-3184 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2)) (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461))))))) +(-10 -7 (-15 -3184 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1962 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3886 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-1749 (((-700 |#2|) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 22) (((-700 (-575)) (-700 $)) 14) (((-700 (-575)) (-1285 $)) NIL))) +(((-386 |#1| |#2|) (-10 -8 (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-700 |#2|) (-700 |#1|))) (-15 -1749 ((-700 |#2|) (-1285 |#1|)))) (-387 |#2|) (-1066)) (T -386)) +NIL +(-10 -8 (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-700 |#2|) (-700 |#1|))) (-15 -1749 ((-700 |#2|) (-1285 |#1|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1749 (((-700 |#1|) (-1285 $)) 31) (((-700 |#1|) (-700 $)) 30) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 29) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 39 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 38 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-1285 $)) 37 (|has| |#1| (-650 (-575))))) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27))) +(((-387 |#1|) (-141) (-1066)) (T -387)) +NIL +(-13 (-650 |t#1|) (-10 -7 (IF (|has| |t#1| (-650 (-575))) (-6 (-650 (-575))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 #0=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-650 #0#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-1117) . T)) +((-3741 (((-655 (-303 (-967 (-171 |#1|)))) (-303 (-418 (-967 (-171 (-575))))) |#1|) 51) (((-655 (-303 (-967 (-171 |#1|)))) (-418 (-967 (-171 (-575)))) |#1|) 50) (((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-303 (-418 (-967 (-171 (-575)))))) |#1|) 47) (((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-418 (-967 (-171 (-575))))) |#1|) 41)) (-3527 (((-655 (-655 (-171 |#1|))) (-655 (-418 (-967 (-171 (-575))))) (-655 (-1194)) |#1|) 30) (((-655 (-171 |#1|)) (-418 (-967 (-171 (-575)))) |#1|) 18))) +(((-388 |#1|) (-10 -7 (-15 -3741 ((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-418 (-967 (-171 (-575))))) |#1|)) (-15 -3741 ((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-303 (-418 (-967 (-171 (-575)))))) |#1|)) (-15 -3741 ((-655 (-303 (-967 (-171 |#1|)))) (-418 (-967 (-171 (-575)))) |#1|)) (-15 -3741 ((-655 (-303 (-967 (-171 |#1|)))) (-303 (-418 (-967 (-171 (-575))))) |#1|)) (-15 -3527 ((-655 (-171 |#1|)) (-418 (-967 (-171 (-575)))) |#1|)) (-15 -3527 ((-655 (-655 (-171 |#1|))) (-655 (-418 (-967 (-171 (-575))))) (-655 (-1194)) |#1|))) (-13 (-373) (-859))) (T -388)) +((-3527 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-418 (-967 (-171 (-575)))))) (-5 *4 (-655 (-1194))) (-5 *2 (-655 (-655 (-171 *5)))) (-5 *1 (-388 *5)) (-4 *5 (-13 (-373) (-859))))) (-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 (-171 (-575))))) (-5 *2 (-655 (-171 *4))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859))))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-303 (-418 (-967 (-171 (-575)))))) (-5 *2 (-655 (-303 (-967 (-171 *4))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859))))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 (-171 (-575))))) (-5 *2 (-655 (-303 (-967 (-171 *4))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859))))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-303 (-418 (-967 (-171 (-575))))))) (-5 *2 (-655 (-655 (-303 (-967 (-171 *4)))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859))))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 (-171 (-575)))))) (-5 *2 (-655 (-655 (-303 (-967 (-171 *4)))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859)))))) +(-10 -7 (-15 -3741 ((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-418 (-967 (-171 (-575))))) |#1|)) (-15 -3741 ((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-303 (-418 (-967 (-171 (-575)))))) |#1|)) (-15 -3741 ((-655 (-303 (-967 (-171 |#1|)))) (-418 (-967 (-171 (-575)))) |#1|)) (-15 -3741 ((-655 (-303 (-967 (-171 |#1|)))) (-303 (-418 (-967 (-171 (-575))))) |#1|)) (-15 -3527 ((-655 (-171 |#1|)) (-418 (-967 (-171 (-575)))) |#1|)) (-15 -3527 ((-655 (-655 (-171 |#1|))) (-655 (-418 (-967 (-171 (-575))))) (-655 (-1194)) |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 35)) (-3127 (((-575) $) 62)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4080 (($ $) 136)) (-3923 (($ $) 98)) (-3786 (($ $) 90)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2473 (($ $) 47)) (-2279 (((-112) $ $) NIL)) (-3897 (($ $) 96)) (-3761 (($ $) 85)) (-4428 (((-575) $) 78)) (-3624 (($ $ (-575)) 73)) (-1521 (($ $) NIL)) (-3807 (($ $) NIL)) (-3011 (($) NIL T CONST)) (-2447 (($ $) 138)) (-2449 (((-3 (-575) "failed") $) 231) (((-3 (-418 (-575)) "failed") $) 227)) (-4399 (((-575) $) 229) (((-418 (-575)) $) 225)) (-2802 (($ $ $) NIL)) (-2076 (((-575) $ $) 125)) (-1747 (((-3 $ "failed") $) 141)) (-2311 (((-418 (-575)) $ (-782)) 232) (((-418 (-575)) $ (-782) (-782)) 224)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-1499 (((-936)) 121) (((-936) (-936)) 122 (|has| $ (-6 -4451)))) (-4075 (((-112) $) 130)) (-1631 (($) 41)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL)) (-3728 (((-1290) (-782)) 191)) (-3395 (((-1290)) 196) (((-1290) (-782)) 197)) (-1678 (((-1290)) 198) (((-1290) (-782)) 199)) (-1847 (((-1290)) 194) (((-1290) (-782)) 195)) (-2673 (((-575) $) 68)) (-1542 (((-112) $) 40)) (-2931 (($ $ (-575)) NIL)) (-3868 (($ $) 51)) (-2255 (($ $) NIL)) (-4087 (((-112) $) 37)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) NIL) (($) NIL (-12 (-3215 (|has| $ (-6 -4443))) (-3215 (|has| $ (-6 -4451)))))) (-1425 (($ $ $) NIL) (($) NIL (-12 (-3215 (|has| $ (-6 -4443))) (-3215 (|has| $ (-6 -4451)))))) (-3662 (((-575) $) 17)) (-3056 (($) 106) (($ $) 113)) (-3372 (($) 112) (($ $) 114)) (-3463 (($ $) 101)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 143)) (-3906 (((-936) (-575)) 46 (|has| $ (-6 -4451)))) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) 60)) (-2736 (($ $) 135)) (-1539 (($ (-575) (-575)) 131) (($ (-575) (-575) (-936)) 132)) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2398 (((-575) $) 19)) (-4077 (($) 115)) (-2665 (($ $) 95)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-1874 (((-936)) 123) (((-936) (-936)) 124 (|has| $ (-6 -4451)))) (-2389 (($ $) 142) (($ $ (-782)) NIL)) (-3450 (((-936) (-575)) 50 (|has| $ (-6 -4451)))) (-1530 (($ $) NIL)) (-3817 (($ $) NIL)) (-3937 (($ $) NIL)) (-3797 (($ $) NIL)) (-3909 (($ $) 97)) (-3774 (($ $) 89)) (-2615 (((-389) $) 216) (((-227) $) 218) (((-904 (-389)) $) NIL) (((-1176) $) 202) (((-547) $) 214) (($ (-227)) 223)) (-2883 (((-873) $) 206) (($ (-575)) 228) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-575)) 228) (($ (-418 (-575))) NIL) (((-227) $) 219)) (-3759 (((-782)) NIL T CONST)) (-1432 (($ $) 137)) (-2351 (((-936)) 61) (((-936) (-936)) 80 (|has| $ (-6 -4451)))) (-4400 (((-112) $ $) NIL)) (-1548 (((-936)) 126)) (-1568 (($ $) 104)) (-3852 (($ $) 49) (($ $ $) 59)) (-1780 (((-112) $ $) NIL)) (-1544 (($ $) 102)) (-3828 (($ $) 39)) (-1592 (($ $) NIL)) (-3873 (($ $) NIL)) (-2914 (($ $) NIL)) (-3885 (($ $) NIL)) (-1583 (($ $) NIL)) (-3863 (($ $) NIL)) (-1554 (($ $) 103)) (-3839 (($ $) 52)) (-2705 (($ $) 58)) (-1996 (($) 36 T CONST)) (-2009 (($) 43 T CONST)) (-4196 (((-1176) $) 27) (((-1176) $ (-112)) 29) (((-1290) (-833) $) 30) (((-1290) (-833) $ (-112)) 31)) (-3430 (($ $) NIL) (($ $ (-782)) NIL)) (-3981 (((-112) $ $) 203)) (-3956 (((-112) $ $) 45)) (-3914 (((-112) $ $) 56)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 57)) (-4038 (($ $ $) 48) (($ $ (-575)) 42)) (-4028 (($ $) 38) (($ $ $) 53)) (-4016 (($ $ $) 72)) (** (($ $ (-936)) 83) (($ $ (-782)) NIL) (($ $ (-575)) 107) (($ $ (-418 (-575))) 154) (($ $ $) 145)) (* (($ (-936) $) 79) (($ (-782) $) NIL) (($ (-575) $) 84) (($ $ $) 71) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL))) +(((-389) (-13 (-415) (-238) (-625 (-1176)) (-839) (-624 (-227)) (-1220) (-625 (-547)) (-629 (-227)) (-10 -8 (-15 -4038 ($ $ (-575))) (-15 ** ($ $ $)) (-15 -3868 ($ $)) (-15 -2076 ((-575) $ $)) (-15 -3624 ($ $ (-575))) (-15 -2311 ((-418 (-575)) $ (-782))) (-15 -2311 ((-418 (-575)) $ (-782) (-782))) (-15 -3056 ($)) (-15 -3372 ($)) (-15 -4077 ($)) (-15 -3852 ($ $ $)) (-15 -3056 ($ $)) (-15 -3372 ($ $)) (-15 -1678 ((-1290))) (-15 -1678 ((-1290) (-782))) (-15 -1847 ((-1290))) (-15 -1847 ((-1290) (-782))) (-15 -3395 ((-1290))) (-15 -3395 ((-1290) (-782))) (-15 -3728 ((-1290) (-782))) (-6 -4451) (-6 -4443)))) (T -389)) +((** (*1 *1 *1 *1) (-5 *1 (-389))) (-4038 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-389)))) (-3868 (*1 *1 *1) (-5 *1 (-389))) (-2076 (*1 *2 *1 *1) (-12 (-5 *2 (-575)) (-5 *1 (-389)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-389)))) (-2311 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-389)))) (-2311 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-389)))) (-3056 (*1 *1) (-5 *1 (-389))) (-3372 (*1 *1) (-5 *1 (-389))) (-4077 (*1 *1) (-5 *1 (-389))) (-3852 (*1 *1 *1 *1) (-5 *1 (-389))) (-3056 (*1 *1 *1) (-5 *1 (-389))) (-3372 (*1 *1 *1) (-5 *1 (-389))) (-1678 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389)))) (-1847 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389)))) (-3395 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389))))) +(-13 (-415) (-238) (-625 (-1176)) (-839) (-624 (-227)) (-1220) (-625 (-547)) (-629 (-227)) (-10 -8 (-15 -4038 ($ $ (-575))) (-15 ** ($ $ $)) (-15 -3868 ($ $)) (-15 -2076 ((-575) $ $)) (-15 -3624 ($ $ (-575))) (-15 -2311 ((-418 (-575)) $ (-782))) (-15 -2311 ((-418 (-575)) $ (-782) (-782))) (-15 -3056 ($)) (-15 -3372 ($)) (-15 -4077 ($)) (-15 -3852 ($ $ $)) (-15 -3056 ($ $)) (-15 -3372 ($ $)) (-15 -1678 ((-1290))) (-15 -1678 ((-1290) (-782))) (-15 -1847 ((-1290))) (-15 -1847 ((-1290) (-782))) (-15 -3395 ((-1290))) (-15 -3395 ((-1290) (-782))) (-15 -3728 ((-1290) (-782))) (-6 -4451) (-6 -4443))) +((-1546 (((-655 (-303 (-967 |#1|))) (-303 (-418 (-967 (-575)))) |#1|) 46) (((-655 (-303 (-967 |#1|))) (-418 (-967 (-575))) |#1|) 45) (((-655 (-655 (-303 (-967 |#1|)))) (-655 (-303 (-418 (-967 (-575))))) |#1|) 42) (((-655 (-655 (-303 (-967 |#1|)))) (-655 (-418 (-967 (-575)))) |#1|) 36)) (-2048 (((-655 |#1|) (-418 (-967 (-575))) |#1|) 20) (((-655 (-655 |#1|)) (-655 (-418 (-967 (-575)))) (-655 (-1194)) |#1|) 30))) +(((-390 |#1|) (-10 -7 (-15 -1546 ((-655 (-655 (-303 (-967 |#1|)))) (-655 (-418 (-967 (-575)))) |#1|)) (-15 -1546 ((-655 (-655 (-303 (-967 |#1|)))) (-655 (-303 (-418 (-967 (-575))))) |#1|)) (-15 -1546 ((-655 (-303 (-967 |#1|))) (-418 (-967 (-575))) |#1|)) (-15 -1546 ((-655 (-303 (-967 |#1|))) (-303 (-418 (-967 (-575)))) |#1|)) (-15 -2048 ((-655 (-655 |#1|)) (-655 (-418 (-967 (-575)))) (-655 (-1194)) |#1|)) (-15 -2048 ((-655 |#1|) (-418 (-967 (-575))) |#1|))) (-13 (-859) (-373))) (T -390)) +((-2048 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 (-575)))) (-5 *2 (-655 *4)) (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373))))) (-2048 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-418 (-967 (-575))))) (-5 *4 (-655 (-1194))) (-5 *2 (-655 (-655 *5))) (-5 *1 (-390 *5)) (-4 *5 (-13 (-859) (-373))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-303 (-418 (-967 (-575))))) (-5 *2 (-655 (-303 (-967 *4)))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 (-575)))) (-5 *2 (-655 (-303 (-967 *4)))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-303 (-418 (-967 (-575)))))) (-5 *2 (-655 (-655 (-303 (-967 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 (-575))))) (-5 *2 (-655 (-655 (-303 (-967 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373)))))) +(-10 -7 (-15 -1546 ((-655 (-655 (-303 (-967 |#1|)))) (-655 (-418 (-967 (-575)))) |#1|)) (-15 -1546 ((-655 (-655 (-303 (-967 |#1|)))) (-655 (-303 (-418 (-967 (-575))))) |#1|)) (-15 -1546 ((-655 (-303 (-967 |#1|))) (-418 (-967 (-575))) |#1|)) (-15 -1546 ((-655 (-303 (-967 |#1|))) (-303 (-418 (-967 (-575)))) |#1|)) (-15 -2048 ((-655 (-655 |#1|)) (-655 (-418 (-967 (-575)))) (-655 (-1194)) |#1|)) (-15 -2048 ((-655 |#1|) (-418 (-967 (-575))) |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) 30)) (-4399 ((|#2| $) 32)) (-4406 (($ $) NIL)) (-2218 (((-782) $) 11)) (-3010 (((-655 $) $) 23)) (-2376 (((-112) $) NIL)) (-3693 (($ |#2| |#1|) 21)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-4371 ((|#2| $) 18)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 51) (($ |#2|) 31)) (-2501 (((-655 |#1|) $) 20)) (-2012 ((|#1| $ |#2|) 55)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 33 T CONST)) (-1913 (((-655 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-391 |#1| |#2|) (-13 (-392 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1066) (-861)) (T -391)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-391 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-861))))) +(-13 (-392 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2449 (((-3 |#2| "failed") $) 49)) (-4399 ((|#2| $) 50)) (-4406 (($ $) 35)) (-2218 (((-782) $) 39)) (-3010 (((-655 $) $) 40)) (-2376 (((-112) $) 43)) (-3693 (($ |#2| |#1|) 44)) (-2550 (($ (-1 |#1| |#1|) $) 45)) (-2024 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-4371 ((|#2| $) 38)) (-4383 ((|#1| $) 37)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ |#2|) 48)) (-2501 (((-655 |#1|) $) 41)) (-2012 ((|#1| $ |#2|) 46)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-1913 (((-655 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-392 |#1| |#2|) (-141) (-1066) (-1117)) (T -392)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-392 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1117)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-392 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1066)))) (-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)))) (-3693 (*1 *1 *2 *3) (-12 (-4 *1 (-392 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1117)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-112)))) (-1913 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-655 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-655 *3)))) (-3010 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-655 *1)) (-4 *1 (-392 *3 *4)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-782)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1117)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-392 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1066)))) (-2024 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4406 (*1 *1 *1) (-12 (-4 *1 (-392 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1117))))) +(-13 (-111 |t#1| |t#1|) (-1055 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2012 (|t#1| $ |t#2|)) (-15 -2550 ($ (-1 |t#1| |t#1|) $)) (-15 -3693 ($ |t#2| |t#1|)) (-15 -2376 ((-112) $)) (-15 -1913 ((-655 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2501 ((-655 |t#1|) $)) (-15 -3010 ((-655 $) $)) (-15 -2218 ((-782) $)) (-15 -4371 (|t#2| $)) (-15 -4383 (|t#1| $)) (-15 -2024 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4406 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-728 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 |#2|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) |has| |#1| (-174)) ((-728 |#1|) |has| |#1| (-174)) ((-1055 |#2|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T)) +((-2248 (((-1290) $) 7)) (-2883 (((-873) $) 8) (($ (-700 (-710))) 14) (($ (-655 (-339))) 13) (($ (-339)) 12) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 11))) +(((-393) (-141)) (T -393)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-700 (-710))) (-4 *1 (-393)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-393)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-393)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) (-4 *1 (-393))))) +(-13 (-406) (-10 -8 (-15 -2883 ($ (-700 (-710)))) (-15 -2883 ($ (-655 (-339)))) (-15 -2883 ($ (-339))) (-15 -2883 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339)))))))) +(((-624 (-873)) . T) ((-406) . T) ((-1235) . T)) +((-2449 (((-3 $ "failed") (-700 (-325 (-389)))) 21) (((-3 $ "failed") (-700 (-325 (-575)))) 19) (((-3 $ "failed") (-700 (-967 (-389)))) 17) (((-3 $ "failed") (-700 (-967 (-575)))) 15) (((-3 $ "failed") (-700 (-418 (-967 (-389))))) 13) (((-3 $ "failed") (-700 (-418 (-967 (-575))))) 11)) (-4399 (($ (-700 (-325 (-389)))) 22) (($ (-700 (-325 (-575)))) 20) (($ (-700 (-967 (-389)))) 18) (($ (-700 (-967 (-575)))) 16) (($ (-700 (-418 (-967 (-389))))) 14) (($ (-700 (-418 (-967 (-575))))) 12)) (-2248 (((-1290) $) 7)) (-2883 (((-873) $) 8) (($ (-655 (-339))) 25) (($ (-339)) 24) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 23))) (((-394) (-141)) (T -394)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) (-4 *1 (-394))))) -(-13 (-407) (-10 -8 (-15 -2884 ($ (-701 (-711)))) (-15 -2884 ($ (-656 (-340)))) (-15 -2884 ($ (-340))) (-15 -2884 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340)))))))) -(((-625 (-874)) . T) ((-407) . T) ((-1236) . T)) -((-2449 (((-3 $ "failed") (-701 (-326 (-390)))) 21) (((-3 $ "failed") (-701 (-326 (-576)))) 19) (((-3 $ "failed") (-701 (-968 (-390)))) 17) (((-3 $ "failed") (-701 (-968 (-576)))) 15) (((-3 $ "failed") (-701 (-419 (-968 (-390))))) 13) (((-3 $ "failed") (-701 (-419 (-968 (-576))))) 11)) (-4401 (($ (-701 (-326 (-390)))) 22) (($ (-701 (-326 (-576)))) 20) (($ (-701 (-968 (-390)))) 18) (($ (-701 (-968 (-576)))) 16) (($ (-701 (-419 (-968 (-390))))) 14) (($ (-701 (-419 (-968 (-576))))) 12)) (-2251 (((-1291) $) 7)) (-2884 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 23))) -(((-395) (-141)) (T -395)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) (-4 *1 (-395)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-701 (-968 (-390)))) (-4 *1 (-395)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-968 (-390)))) (-4 *1 (-395)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-701 (-968 (-576)))) (-4 *1 (-395)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-968 (-576)))) (-4 *1 (-395)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-968 (-390))))) (-4 *1 (-395)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-968 (-390))))) (-4 *1 (-395)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-968 (-576))))) (-4 *1 (-395)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-968 (-576))))) (-4 *1 (-395))))) -(-13 (-407) (-10 -8 (-15 -2884 ($ (-656 (-340)))) (-15 -2884 ($ (-340))) (-15 -2884 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340)))))) (-15 -4401 ($ (-701 (-326 (-390))))) (-15 -2449 ((-3 $ "failed") (-701 (-326 (-390))))) (-15 -4401 ($ (-701 (-326 (-576))))) (-15 -2449 ((-3 $ "failed") (-701 (-326 (-576))))) (-15 -4401 ($ (-701 (-968 (-390))))) (-15 -2449 ((-3 $ "failed") (-701 (-968 (-390))))) (-15 -4401 ($ (-701 (-968 (-576))))) (-15 -2449 ((-3 $ "failed") (-701 (-968 (-576))))) (-15 -4401 ($ (-701 (-419 (-968 (-390)))))) (-15 -2449 ((-3 $ "failed") (-701 (-419 (-968 (-390)))))) (-15 -4401 ($ (-701 (-419 (-968 (-576)))))) (-15 -2449 ((-3 $ "failed") (-701 (-419 (-968 (-576)))))))) -(((-625 (-874)) . T) ((-407) . T) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-4407 (($ $) NIL)) (-2421 (($ |#1| |#2|) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2887 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 33)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 12 T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-396 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) (-1067) (-862)) (T -396)) -NIL -(-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) -((-2862 (((-112) $ $) 7)) (-2416 (((-783) $) 34)) (-2473 (($) 19 T CONST)) (-3745 (((-3 $ "failed") $ $) 37)) (-2449 (((-3 |#1| "failed") $) 45)) (-4401 ((|#1| $) 46)) (-1999 (((-3 $ "failed") $) 16)) (-2117 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-1439 (((-112) $) 18)) (-2756 ((|#1| $ (-576)) 31)) (-2766 (((-783) $ (-576)) 32)) (-1921 (($ $ $) 28 (|has| |#1| (-862)))) (-4137 (($ $ $) 27 (|has| |#1| (-862)))) (-2679 (($ (-1 |#1| |#1|) $) 29)) (-2692 (($ (-1 (-783) (-783)) $) 30)) (-3757 (((-3 $ "failed") $ $) 38)) (-3733 (((-1177) $) 10)) (-2127 (($ $ $) 39)) (-2138 (($ $ $) 40)) (-3914 (((-1138) $) 11)) (-4319 (((-656 (-2 (|:| |gen| |#1|) (|:| -2666 (-783)))) $) 33)) (-4350 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2884 (((-874) $) 12) (($ |#1|) 44)) (-3722 (((-112) $ $) 9)) (-2011 (($) 20 T CONST)) (-3983 (((-112) $ $) 25 (|has| |#1| (-862)))) (-3957 (((-112) $ $) 24 (|has| |#1| (-862)))) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 26 (|has| |#1| (-862)))) (-3943 (((-112) $ $) 23 (|has| |#1| (-862)))) (** (($ $ (-937)) 14) (($ $ (-783)) 17) (($ |#1| (-783)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) -(((-397 |#1|) (-141) (-1118)) (T -397)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-2138 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-2127 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-3757 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-3745 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-4350 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1118)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2117 (*1 *2 *1 *1) (-12 (-4 *3 (-1118)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1118)) (-5 *2 (-783)))) (-4319 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1118)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2666 (-783))))))) (-2766 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1118)) (-5 *2 (-783)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-2692 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1118)))) (-2679 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1118))))) -(-13 (-738) (-1056 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-783))) (-15 -2138 ($ $ $)) (-15 -2127 ($ $ $)) (-15 -3757 ((-3 $ "failed") $ $)) (-15 -3745 ((-3 $ "failed") $ $)) (-15 -4350 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2117 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2416 ((-783) $)) (-15 -4319 ((-656 (-2 (|:| |gen| |t#1|) (|:| -2666 (-783)))) $)) (-15 -2766 ((-783) $ (-576))) (-15 -2756 (|t#1| $ (-576))) (-15 -2692 ($ (-1 (-783) (-783)) $)) (-15 -2679 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-1056 |#1|) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783) $) 74)) (-2473 (($) NIL T CONST)) (-3745 (((-3 $ "failed") $ $) 77)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2117 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-1439 (((-112) $) 17)) (-2756 ((|#1| $ (-576)) NIL)) (-2766 (((-783) $ (-576)) NIL)) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2679 (($ (-1 |#1| |#1|) $) 40)) (-2692 (($ (-1 (-783) (-783)) $) 37)) (-3757 (((-3 $ "failed") $ $) 60)) (-3733 (((-1177) $) NIL)) (-2127 (($ $ $) 28)) (-2138 (($ $ $) 26)) (-3914 (((-1138) $) NIL)) (-4319 (((-656 (-2 (|:| |gen| |#1|) (|:| -2666 (-783)))) $) 34)) (-4350 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2884 (((-874) $) 24) (($ |#1|) NIL)) (-3722 (((-112) $ $) NIL)) (-2011 (($) 11 T CONST)) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) 84 (|has| |#1| (-862)))) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-398 |#1|) (-397 |#1|) (-1118)) (T -398)) -NIL -(-397 |#1|) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-2449 (((-3 (-576) "failed") $) 53)) (-4401 (((-576) $) 54)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-1921 (($ $ $) 60)) (-4137 (($ $ $) 59)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2852 (((-3 $ "failed") $ $) 48)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 52)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3983 (((-112) $ $) 57)) (-3957 (((-112) $ $) 56)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 58)) (-3943 (((-112) $ $) 55)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-399) (-141)) (T -399)) -NIL -(-13 (-568) (-862) (-1056 (-576))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-862) . T) ((-1056 (-576)) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-2149 (((-112) $) 25)) (-2161 (((-112) $) 22)) (-2310 (($ (-1177) (-1177) (-1177)) 26)) (-1778 (((-1177) $) 16)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-4187 (($ (-1177) (-1177) (-1177)) 14)) (-2182 (((-1177) $) 17)) (-2171 (((-112) $) 18)) (-4365 (((-1177) $) 15)) (-2884 (((-874) $) 12) (($ (-1177)) 13) (((-1177) $) 9)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 7))) -(((-400) (-401)) (T -400)) -NIL -(-401) -((-2862 (((-112) $ $) 7)) (-2149 (((-112) $) 17)) (-2161 (((-112) $) 18)) (-2310 (($ (-1177) (-1177) (-1177)) 16)) (-1778 (((-1177) $) 21)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-4187 (($ (-1177) (-1177) (-1177)) 23)) (-2182 (((-1177) $) 20)) (-2171 (((-112) $) 19)) (-4365 (((-1177) $) 22)) (-2884 (((-874) $) 12) (($ (-1177)) 25) (((-1177) $) 24)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-401) (-141)) (T -401)) -((-4187 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401)))) (-4365 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2161 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2310 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401))))) -(-13 (-1118) (-502 (-1177)) (-10 -8 (-15 -4187 ($ (-1177) (-1177) (-1177))) (-15 -4365 ((-1177) $)) (-15 -1778 ((-1177) $)) (-15 -2182 ((-1177) $)) (-15 -2171 ((-112) $)) (-15 -2161 ((-112) $)) (-15 -2149 ((-112) $)) (-15 -2310 ($ (-1177) (-1177) (-1177))))) -(((-102) . T) ((-628 #0=(-1177)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2193 (((-874) $) 63)) (-2473 (($) NIL T CONST)) (-1420 (($ $ (-937)) NIL)) (-3593 (($ $ (-937)) NIL)) (-1410 (($ $ (-937)) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3660 (($ (-783)) 38)) (-1543 (((-783)) 18)) (-4104 (((-874) $) 65)) (-2920 (($ $ $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-2931 (($ $ $ $) NIL)) (-2908 (($ $ $) NIL)) (-1996 (($) 24 T CONST)) (-3915 (((-112) $ $) 41)) (-4029 (($ $) 48) (($ $ $) 50)) (-4017 (($ $ $) 51)) (** (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-402 |#1| |#2| |#3|) (-13 (-756 |#3|) (-10 -8 (-15 -1543 ((-783))) (-15 -4104 ((-874) $)) (-15 -2193 ((-874) $)) (-15 -3660 ($ (-783))))) (-783) (-783) (-174)) (T -402)) -((-1543 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) -(-13 (-756 |#3|) (-10 -8 (-15 -1543 ((-783))) (-15 -4104 ((-874) $)) (-15 -2193 ((-874) $)) (-15 -3660 ($ (-783))))) -((-4131 (((-1177)) 12)) (-4123 (((-1165 (-1177))) 30)) (-2228 (((-1291) (-1177)) 27) (((-1291) (-400)) 26)) (-2239 (((-1291)) 28)) (-4114 (((-1165 (-1177))) 29))) -(((-403) (-10 -7 (-15 -4114 ((-1165 (-1177)))) (-15 -4123 ((-1165 (-1177)))) (-15 -2239 ((-1291))) (-15 -2228 ((-1291) (-400))) (-15 -2228 ((-1291) (-1177))) (-15 -4131 ((-1177))))) (T -403)) -((-4131 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-403)))) (-2228 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-403)))) (-2228 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-403)))) (-2239 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-403)))) (-4123 (*1 *2) (-12 (-5 *2 (-1165 (-1177))) (-5 *1 (-403)))) (-4114 (*1 *2) (-12 (-5 *2 (-1165 (-1177))) (-5 *1 (-403))))) -(-10 -7 (-15 -4114 ((-1165 (-1177)))) (-15 -4123 ((-1165 (-1177)))) (-15 -2239 ((-1291))) (-15 -2228 ((-1291) (-400))) (-15 -2228 ((-1291) (-1177))) (-15 -4131 ((-1177)))) -((-2927 (((-783) (-347 |#1| |#2| |#3| |#4|)) 16))) -(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2927 ((-783) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404)) -((-2927 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7))))) -(-10 -7 (-15 -2927 ((-783) (-347 |#1| |#2| |#3| |#4|)))) -((-2884 (((-406) |#1|) 11))) -(((-405 |#1|) (-10 -7 (-15 -2884 ((-406) |#1|))) (-1118)) (T -405)) -((-2884 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1118))))) -(-10 -7 (-15 -2884 ((-406) |#1|))) -((-2862 (((-112) $ $) NIL)) (-3839 (((-656 (-1177)) $ (-656 (-1177))) 42)) (-4140 (((-656 (-1177)) $ (-656 (-1177))) 43)) (-3863 (((-656 (-1177)) $ (-656 (-1177))) 44)) (-3873 (((-656 (-1177)) $) 39)) (-2310 (($) 30)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-4205 (((-656 (-1177)) $) 40)) (-3885 (((-656 (-1177)) $) 41)) (-2483 (((-1291) $ (-576)) 37) (((-1291) $) 38)) (-2616 (($ (-874) (-576)) 35)) (-2884 (((-874) $) 49) (($ (-874)) 32)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-406) (-13 (-1118) (-628 (-874)) (-10 -8 (-15 -2616 ($ (-874) (-576))) (-15 -2483 ((-1291) $ (-576))) (-15 -2483 ((-1291) $)) (-15 -3885 ((-656 (-1177)) $)) (-15 -4205 ((-656 (-1177)) $)) (-15 -2310 ($)) (-15 -3873 ((-656 (-1177)) $)) (-15 -3863 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -4140 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3839 ((-656 (-1177)) $ (-656 (-1177))))))) (T -406)) -((-2616 (*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-406)))) (-2483 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-406)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-406)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-2310 (*1 *1) (-5 *1 (-406))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-3863 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-4140 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-3839 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406))))) -(-13 (-1118) (-628 (-874)) (-10 -8 (-15 -2616 ($ (-874) (-576))) (-15 -2483 ((-1291) $ (-576))) (-15 -2483 ((-1291) $)) (-15 -3885 ((-656 (-1177)) $)) (-15 -4205 ((-656 (-1177)) $)) (-15 -2310 ($)) (-15 -3873 ((-656 (-1177)) $)) (-15 -3863 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -4140 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3839 ((-656 (-1177)) $ (-656 (-1177)))))) -((-2251 (((-1291) $) 7)) (-2884 (((-874) $) 8))) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-394)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-394)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) (-4 *1 (-394)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-700 (-325 (-389)))) (-4 *1 (-394)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-325 (-389)))) (-4 *1 (-394)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-700 (-325 (-575)))) (-4 *1 (-394)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-325 (-575)))) (-4 *1 (-394)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-700 (-967 (-389)))) (-4 *1 (-394)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-967 (-389)))) (-4 *1 (-394)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-700 (-967 (-575)))) (-4 *1 (-394)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-967 (-575)))) (-4 *1 (-394)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-700 (-418 (-967 (-389))))) (-4 *1 (-394)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-418 (-967 (-389))))) (-4 *1 (-394)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-700 (-418 (-967 (-575))))) (-4 *1 (-394)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-418 (-967 (-575))))) (-4 *1 (-394))))) +(-13 (-406) (-10 -8 (-15 -2883 ($ (-655 (-339)))) (-15 -2883 ($ (-339))) (-15 -2883 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339)))))) (-15 -4399 ($ (-700 (-325 (-389))))) (-15 -2449 ((-3 $ "failed") (-700 (-325 (-389))))) (-15 -4399 ($ (-700 (-325 (-575))))) (-15 -2449 ((-3 $ "failed") (-700 (-325 (-575))))) (-15 -4399 ($ (-700 (-967 (-389))))) (-15 -2449 ((-3 $ "failed") (-700 (-967 (-389))))) (-15 -4399 ($ (-700 (-967 (-575))))) (-15 -2449 ((-3 $ "failed") (-700 (-967 (-575))))) (-15 -4399 ($ (-700 (-418 (-967 (-389)))))) (-15 -2449 ((-3 $ "failed") (-700 (-418 (-967 (-389)))))) (-15 -4399 ($ (-700 (-418 (-967 (-575)))))) (-15 -2449 ((-3 $ "failed") (-700 (-418 (-967 (-575)))))))) +(((-624 (-873)) . T) ((-406) . T) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-2417 (($ |#1| |#2|) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3261 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 33)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 12 T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-395 |#1| |#2|) (-13 (-111 |#1| |#1|) (-520 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-728 |#1|)) |%noBranch|))) (-1066) (-861)) (T -395)) +NIL +(-13 (-111 |#1| |#1|) (-520 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-728 |#1|)) |%noBranch|))) +((-2861 (((-112) $ $) 7)) (-2415 (((-782) $) 34)) (-3011 (($) 19 T CONST)) (-2724 (((-3 $ "failed") $ $) 37)) (-2449 (((-3 |#1| "failed") $) 45)) (-4399 ((|#1| $) 46)) (-1747 (((-3 $ "failed") $) 16)) (-1654 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-1542 (((-112) $) 18)) (-3643 ((|#1| $ (-575)) 31)) (-2302 (((-782) $ (-575)) 32)) (-1920 (($ $ $) 28 (|has| |#1| (-861)))) (-1425 (($ $ $) 27 (|has| |#1| (-861)))) (-1772 (($ (-1 |#1| |#1|) $) 29)) (-2195 (($ (-1 (-782) (-782)) $) 30)) (-4190 (((-3 $ "failed") $ $) 38)) (-2288 (((-1176) $) 10)) (-3526 (($ $ $) 39)) (-3415 (($ $ $) 40)) (-3912 (((-1137) $) 11)) (-3378 (((-655 (-2 (|:| |gen| |#1|) (|:| -2665 (-782)))) $) 33)) (-2196 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2883 (((-873) $) 12) (($ |#1|) 44)) (-4400 (((-112) $ $) 9)) (-2009 (($) 20 T CONST)) (-3981 (((-112) $ $) 25 (|has| |#1| (-861)))) (-3956 (((-112) $ $) 24 (|has| |#1| (-861)))) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 26 (|has| |#1| (-861)))) (-3943 (((-112) $ $) 23 (|has| |#1| (-861)))) (** (($ $ (-936)) 14) (($ $ (-782)) 17) (($ |#1| (-782)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) +(((-396 |#1|) (-141) (-1117)) (T -396)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-3415 (*1 *1 *1 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-3526 (*1 *1 *1 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-4190 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-2724 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-2196 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1117)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-396 *3)))) (-1654 (*1 *2 *1 *1) (-12 (-4 *3 (-1117)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-396 *3)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-396 *3)) (-4 *3 (-1117)) (-5 *2 (-782)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-396 *3)) (-4 *3 (-1117)) (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2665 (-782))))))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-396 *4)) (-4 *4 (-1117)) (-5 *2 (-782)))) (-3643 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-2195 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-782) (-782))) (-4 *1 (-396 *3)) (-4 *3 (-1117)))) (-1772 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-396 *3)) (-4 *3 (-1117))))) +(-13 (-737) (-1055 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-782))) (-15 -3415 ($ $ $)) (-15 -3526 ($ $ $)) (-15 -4190 ((-3 $ "failed") $ $)) (-15 -2724 ((-3 $ "failed") $ $)) (-15 -2196 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1654 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2415 ((-782) $)) (-15 -3378 ((-655 (-2 (|:| |gen| |t#1|) (|:| -2665 (-782)))) $)) (-15 -2302 ((-782) $ (-575))) (-15 -3643 (|t#1| $ (-575))) (-15 -2195 ($ (-1 (-782) (-782)) $)) (-15 -1772 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|))) +(((-102) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-737) . T) ((-861) |has| |#1| (-861)) ((-1055 |#1|) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782) $) 74)) (-3011 (($) NIL T CONST)) (-2724 (((-3 $ "failed") $ $) 77)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1654 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-1542 (((-112) $) 17)) (-3643 ((|#1| $ (-575)) NIL)) (-2302 (((-782) $ (-575)) NIL)) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-1772 (($ (-1 |#1| |#1|) $) 40)) (-2195 (($ (-1 (-782) (-782)) $) 37)) (-4190 (((-3 $ "failed") $ $) 60)) (-2288 (((-1176) $) NIL)) (-3526 (($ $ $) 28)) (-3415 (($ $ $) 26)) (-3912 (((-1137) $) NIL)) (-3378 (((-655 (-2 (|:| |gen| |#1|) (|:| -2665 (-782)))) $) 34)) (-2196 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2883 (((-873) $) 24) (($ |#1|) NIL)) (-4400 (((-112) $ $) NIL)) (-2009 (($) 11 T CONST)) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) 84 (|has| |#1| (-861)))) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ |#1| (-782)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-397 |#1|) (-396 |#1|) (-1117)) (T -397)) +NIL +(-396 |#1|) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2449 (((-3 (-575) "failed") $) 53)) (-4399 (((-575) $) 54)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-1920 (($ $ $) 60)) (-1425 (($ $ $) 59)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2851 (((-3 $ "failed") $ $) 48)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-575)) 52)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3981 (((-112) $ $) 57)) (-3956 (((-112) $ $) 56)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 58)) (-3943 (((-112) $ $) 55)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-398) (-141)) (T -398)) +NIL +(-13 (-567) (-861) (-1055 (-575))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-861) . T) ((-1055 (-575)) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-2023 (((-112) $) 25)) (-3848 (((-112) $) 22)) (-2309 (($ (-1176) (-1176) (-1176)) 26)) (-1777 (((-1176) $) 16)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4186 (($ (-1176) (-1176) (-1176)) 14)) (-3206 (((-1176) $) 17)) (-4397 (((-112) $) 18)) (-4364 (((-1176) $) 15)) (-2883 (((-873) $) 12) (($ (-1176)) 13) (((-1176) $) 9)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 7))) +(((-399) (-400)) (T -399)) +NIL +(-400) +((-2861 (((-112) $ $) 7)) (-2023 (((-112) $) 17)) (-3848 (((-112) $) 18)) (-2309 (($ (-1176) (-1176) (-1176)) 16)) (-1777 (((-1176) $) 21)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4186 (($ (-1176) (-1176) (-1176)) 23)) (-3206 (((-1176) $) 20)) (-4397 (((-112) $) 19)) (-4364 (((-1176) $) 22)) (-2883 (((-873) $) 12) (($ (-1176)) 25) (((-1176) $) 24)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-400) (-141)) (T -400)) +((-4186 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-400)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176)))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176)))) (-4397 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112)))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112)))) (-2309 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-400))))) +(-13 (-1117) (-501 (-1176)) (-10 -8 (-15 -4186 ($ (-1176) (-1176) (-1176))) (-15 -4364 ((-1176) $)) (-15 -1777 ((-1176) $)) (-15 -3206 ((-1176) $)) (-15 -4397 ((-112) $)) (-15 -3848 ((-112) $)) (-15 -2023 ((-112) $)) (-15 -2309 ($ (-1176) (-1176) (-1176))))) +(((-102) . T) ((-627 #0=(-1176)) . T) ((-624 (-873)) . T) ((-624 #0#) . T) ((-501 #0#) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-1927 (((-873) $) 63)) (-3011 (($) NIL T CONST)) (-2661 (($ $ (-936)) NIL)) (-3889 (($ $ (-936)) NIL)) (-1898 (($ $ (-936)) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3659 (($ (-782)) 38)) (-4386 (((-782)) 18)) (-1398 (((-873) $) 65)) (-3320 (($ $ $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-1785 (($ $ $ $) NIL)) (-3534 (($ $ $) NIL)) (-1996 (($) 24 T CONST)) (-3914 (((-112) $ $) 41)) (-4028 (($ $) 48) (($ $ $) 50)) (-4016 (($ $ $) 51)) (** (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-401 |#1| |#2| |#3|) (-13 (-755 |#3|) (-10 -8 (-15 -4386 ((-782))) (-15 -1398 ((-873) $)) (-15 -1927 ((-873) $)) (-15 -3659 ($ (-782))))) (-782) (-782) (-174)) (T -401)) +((-4386 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 (-782)) (-14 *4 (-782)) (-4 *5 (-174)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 (-782)) (-14 *4 (-782)) (-4 *5 (-174)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) +(-13 (-755 |#3|) (-10 -8 (-15 -4386 ((-782))) (-15 -1398 ((-873) $)) (-15 -1927 ((-873) $)) (-15 -3659 ($ (-782))))) +((-2145 (((-1176)) 12)) (-2697 (((-1164 (-1176))) 30)) (-2227 (((-1290) (-1176)) 27) (((-1290) (-399)) 26)) (-2238 (((-1290)) 28)) (-3018 (((-1164 (-1176))) 29))) +(((-402) (-10 -7 (-15 -3018 ((-1164 (-1176)))) (-15 -2697 ((-1164 (-1176)))) (-15 -2238 ((-1290))) (-15 -2227 ((-1290) (-399))) (-15 -2227 ((-1290) (-1176))) (-15 -2145 ((-1176))))) (T -402)) +((-2145 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-402)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-402)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-399)) (-5 *2 (-1290)) (-5 *1 (-402)))) (-2238 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-402)))) (-2697 (*1 *2) (-12 (-5 *2 (-1164 (-1176))) (-5 *1 (-402)))) (-3018 (*1 *2) (-12 (-5 *2 (-1164 (-1176))) (-5 *1 (-402))))) +(-10 -7 (-15 -3018 ((-1164 (-1176)))) (-15 -2697 ((-1164 (-1176)))) (-15 -2238 ((-1290))) (-15 -2227 ((-1290) (-399))) (-15 -2227 ((-1290) (-1176))) (-15 -2145 ((-1176)))) +((-2673 (((-782) (-346 |#1| |#2| |#3| |#4|)) 16))) +(((-403 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2673 ((-782) (-346 |#1| |#2| |#3| |#4|)))) (-13 (-378) (-373)) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -403)) +((-2673 (*1 *2 *3) (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-378) (-373))) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-4 *7 (-352 *4 *5 *6)) (-5 *2 (-782)) (-5 *1 (-403 *4 *5 *6 *7))))) +(-10 -7 (-15 -2673 ((-782) (-346 |#1| |#2| |#3| |#4|)))) +((-2883 (((-405) |#1|) 11))) +(((-404 |#1|) (-10 -7 (-15 -2883 ((-405) |#1|))) (-1117)) (T -404)) +((-2883 (*1 *2 *3) (-12 (-5 *2 (-405)) (-5 *1 (-404 *3)) (-4 *3 (-1117))))) +(-10 -7 (-15 -2883 ((-405) |#1|))) +((-2861 (((-112) $ $) NIL)) (-3360 (((-655 (-1176)) $ (-655 (-1176))) 42)) (-3642 (((-655 (-1176)) $ (-655 (-1176))) 43)) (-3614 (((-655 (-1176)) $ (-655 (-1176))) 44)) (-3263 (((-655 (-1176)) $) 39)) (-2309 (($) 30)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4204 (((-655 (-1176)) $) 40)) (-3736 (((-655 (-1176)) $) 41)) (-2484 (((-1290) $ (-575)) 37) (((-1290) $) 38)) (-2615 (($ (-873) (-575)) 35)) (-2883 (((-873) $) 49) (($ (-873)) 32)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-405) (-13 (-1117) (-627 (-873)) (-10 -8 (-15 -2615 ($ (-873) (-575))) (-15 -2484 ((-1290) $ (-575))) (-15 -2484 ((-1290) $)) (-15 -3736 ((-655 (-1176)) $)) (-15 -4204 ((-655 (-1176)) $)) (-15 -2309 ($)) (-15 -3263 ((-655 (-1176)) $)) (-15 -3614 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3642 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3360 ((-655 (-1176)) $ (-655 (-1176))))))) (T -405)) +((-2615 (*1 *1 *2 *3) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-405)))) (-2484 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-405)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-405)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) (-2309 (*1 *1) (-5 *1 (-405))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) (-3614 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) (-3642 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) (-3360 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405))))) +(-13 (-1117) (-627 (-873)) (-10 -8 (-15 -2615 ($ (-873) (-575))) (-15 -2484 ((-1290) $ (-575))) (-15 -2484 ((-1290) $)) (-15 -3736 ((-655 (-1176)) $)) (-15 -4204 ((-655 (-1176)) $)) (-15 -2309 ($)) (-15 -3263 ((-655 (-1176)) $)) (-15 -3614 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3642 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3360 ((-655 (-1176)) $ (-655 (-1176)))))) +((-2248 (((-1290) $) 7)) (-2883 (((-873) $) 8))) +(((-406) (-141)) (T -406)) +((-2248 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-1290))))) +(-13 (-1235) (-624 (-873)) (-10 -8 (-15 -2248 ((-1290) $)))) +(((-624 (-873)) . T) ((-1235) . T)) +((-2449 (((-3 $ "failed") (-325 (-389))) 21) (((-3 $ "failed") (-325 (-575))) 19) (((-3 $ "failed") (-967 (-389))) 17) (((-3 $ "failed") (-967 (-575))) 15) (((-3 $ "failed") (-418 (-967 (-389)))) 13) (((-3 $ "failed") (-418 (-967 (-575)))) 11)) (-4399 (($ (-325 (-389))) 22) (($ (-325 (-575))) 20) (($ (-967 (-389))) 18) (($ (-967 (-575))) 16) (($ (-418 (-967 (-389)))) 14) (($ (-418 (-967 (-575)))) 12)) (-2248 (((-1290) $) 7)) (-2883 (((-873) $) 8) (($ (-655 (-339))) 25) (($ (-339)) 24) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 23))) (((-407) (-141)) (T -407)) -((-2251 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1291))))) -(-13 (-1236) (-625 (-874)) (-10 -8 (-15 -2251 ((-1291) $)))) -(((-625 (-874)) . T) ((-1236) . T)) -((-2449 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-968 (-390))) 17) (((-3 $ "failed") (-968 (-576))) 15) (((-3 $ "failed") (-419 (-968 (-390)))) 13) (((-3 $ "failed") (-419 (-968 (-576)))) 11)) (-4401 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-968 (-390))) 18) (($ (-968 (-576))) 16) (($ (-419 (-968 (-390)))) 14) (($ (-419 (-968 (-576)))) 12)) (-2251 (((-1291) $) 7)) (-2884 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 23))) -(((-408) (-141)) (T -408)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) (-4 *1 (-408)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-968 (-390))) (-4 *1 (-408)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-390))) (-4 *1 (-408)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-968 (-576))) (-4 *1 (-408)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-576))) (-4 *1 (-408)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-390)))) (-4 *1 (-408)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-968 (-390)))) (-4 *1 (-408)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-576)))) (-4 *1 (-408)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-968 (-576)))) (-4 *1 (-408))))) -(-13 (-407) (-10 -8 (-15 -2884 ($ (-656 (-340)))) (-15 -2884 ($ (-340))) (-15 -2884 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340)))))) (-15 -4401 ($ (-326 (-390)))) (-15 -2449 ((-3 $ "failed") (-326 (-390)))) (-15 -4401 ($ (-326 (-576)))) (-15 -2449 ((-3 $ "failed") (-326 (-576)))) (-15 -4401 ($ (-968 (-390)))) (-15 -2449 ((-3 $ "failed") (-968 (-390)))) (-15 -4401 ($ (-968 (-576)))) (-15 -2449 ((-3 $ "failed") (-968 (-576)))) (-15 -4401 ($ (-419 (-968 (-390))))) (-15 -2449 ((-3 $ "failed") (-419 (-968 (-390))))) (-15 -4401 ($ (-419 (-968 (-576))))) (-15 -2449 ((-3 $ "failed") (-419 (-968 (-576))))))) -(((-625 (-874)) . T) ((-407) . T) ((-1236) . T)) -((-4156 (((-656 (-1177)) (-656 (-1177))) 9)) (-2251 (((-1291) (-400)) 26)) (-4148 (((-1122) (-1195) (-656 (-1195)) (-1198) (-656 (-1195))) 59) (((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)) (-1195)) 34) (((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195))) 33))) -(((-409) (-10 -7 (-15 -4148 ((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)))) (-15 -4148 ((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)) (-1195))) (-15 -4148 ((-1122) (-1195) (-656 (-1195)) (-1198) (-656 (-1195)))) (-15 -2251 ((-1291) (-400))) (-15 -4156 ((-656 (-1177)) (-656 (-1177)))))) (T -409)) -((-4156 (*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-409)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-409)))) (-4148 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-656 (-1195))) (-5 *5 (-1198)) (-5 *3 (-1195)) (-5 *2 (-1122)) (-5 *1 (-409)))) (-4148 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195))))) (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1122)) (-5 *1 (-409)))) (-4148 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195))))) (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1122)) (-5 *1 (-409))))) -(-10 -7 (-15 -4148 ((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)))) (-15 -4148 ((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)) (-1195))) (-15 -4148 ((-1122) (-1195) (-656 (-1195)) (-1198) (-656 (-1195)))) (-15 -2251 ((-1291) (-400))) (-15 -4156 ((-656 (-1177)) (-656 (-1177))))) -((-2251 (((-1291) $) 35)) (-2884 (((-874) $) 97) (($ (-340)) 99) (($ (-656 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 96) (($ (-326 (-713))) 52) (($ (-326 (-711))) 72) (($ (-326 (-706))) 85) (($ (-304 (-326 (-713)))) 67) (($ (-304 (-326 (-711)))) 80) (($ (-304 (-326 (-706)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138))) -(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -2884 ($ (-340))) (-15 -2884 ($ (-656 (-340)))) (-15 -2884 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340)))))) (-15 -2884 ($ (-326 (-713)))) (-15 -2884 ($ (-326 (-711)))) (-15 -2884 ($ (-326 (-706)))) (-15 -2884 ($ (-304 (-326 (-713))))) (-15 -2884 ($ (-304 (-326 (-711))))) (-15 -2884 ($ (-304 (-326 (-706))))) (-15 -2884 ($ (-326 (-576)))) (-15 -2884 ($ (-326 (-390)))) (-15 -2884 ($ (-326 (-171 (-390))))) (-15 -2884 ($ (-304 (-326 (-576))))) (-15 -2884 ($ (-304 (-326 (-390))))) (-15 -2884 ($ (-304 (-326 (-171 (-390)))))))) (-1195) (-3 (|:| |fst| (-446)) (|:| -2008 "void")) (-656 (-1195)) (-1199)) (T -410)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))) -(-13 (-407) (-10 -8 (-15 -2884 ($ (-340))) (-15 -2884 ($ (-656 (-340)))) (-15 -2884 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340)))))) (-15 -2884 ($ (-326 (-713)))) (-15 -2884 ($ (-326 (-711)))) (-15 -2884 ($ (-326 (-706)))) (-15 -2884 ($ (-304 (-326 (-713))))) (-15 -2884 ($ (-304 (-326 (-711))))) (-15 -2884 ($ (-304 (-326 (-706))))) (-15 -2884 ($ (-326 (-576)))) (-15 -2884 ($ (-326 (-390)))) (-15 -2884 ($ (-326 (-171 (-390))))) (-15 -2884 ($ (-304 (-326 (-576))))) (-15 -2884 ($ (-304 (-326 (-390))))) (-15 -2884 ($ (-304 (-326 (-171 (-390)))))))) -((-2862 (((-112) $ $) NIL)) (-4171 ((|#2| $) 38)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-4179 (($ (-419 |#2|)) 93)) (-4162 (((-656 (-2 (|:| -1359 (-783)) (|:| -1752 |#2|) (|:| |num| |#2|))) $) 39)) (-2390 (($ $) 34) (($ $ (-783)) 36)) (-2616 (((-419 |#2|) $) 49)) (-2895 (($ (-656 (-2 (|:| -1359 (-783)) (|:| -1752 |#2|) (|:| |num| |#2|)))) 33)) (-2884 (((-874) $) 131)) (-3722 (((-112) $ $) NIL)) (-3431 (($ $) 35) (($ $ (-783)) 37)) (-3915 (((-112) $ $) NIL)) (-4017 (($ |#2| $) 41))) -(((-411 |#1| |#2|) (-13 (-1118) (-626 (-419 |#2|)) (-10 -8 (-15 -4017 ($ |#2| $)) (-15 -4179 ($ (-419 |#2|))) (-15 -4171 (|#2| $)) (-15 -4162 ((-656 (-2 (|:| -1359 (-783)) (|:| -1752 |#2|) (|:| |num| |#2|))) $)) (-15 -2895 ($ (-656 (-2 (|:| -1359 (-783)) (|:| -1752 |#2|) (|:| |num| |#2|))))) (-15 -2390 ($ $)) (-15 -3431 ($ $)) (-15 -2390 ($ $ (-783))) (-15 -3431 ($ $ (-783))))) (-13 (-374) (-148)) (-1262 |#1|)) (T -411)) -((-4017 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1262 *3)))) (-4179 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-4171 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-4162 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-656 (-2 (|:| -1359 (-783)) (|:| -1752 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3)))) (-2895 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -1359 (-783)) (|:| -1752 *4) (|:| |num| *4)))) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-2390 (*1 *1 *1) (-12 (-4 *2 (-13 (-374) (-148))) (-5 *1 (-411 *2 *3)) (-4 *3 (-1262 *2)))) (-3431 (*1 *1 *1) (-12 (-4 *2 (-13 (-374) (-148))) (-5 *1 (-411 *2 *3)) (-4 *3 (-1262 *2)))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3))))) -(-13 (-1118) (-626 (-419 |#2|)) (-10 -8 (-15 -4017 ($ |#2| $)) (-15 -4179 ($ (-419 |#2|))) (-15 -4171 (|#2| $)) (-15 -4162 ((-656 (-2 (|:| -1359 (-783)) (|:| -1752 |#2|) (|:| |num| |#2|))) $)) (-15 -2895 ($ (-656 (-2 (|:| -1359 (-783)) (|:| -1752 |#2|) (|:| |num| |#2|))))) (-15 -2390 ($ $)) (-15 -3431 ($ $)) (-15 -2390 ($ $ (-783))) (-15 -3431 ($ $ (-783))))) -((-2862 (((-112) $ $) 9 (-3766 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 16 (|has| |#1| (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 15 (|has| |#1| (-899 (-576))))) (-3733 (((-1177) $) 13 (-3766 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-3914 (((-1138) $) 12 (-3766 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-2884 (((-874) $) 11 (-3766 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-3722 (((-112) $ $) 14 (-3766 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-3915 (((-112) $ $) 10 (-3766 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390))))))) -(((-412 |#1|) (-141) (-1236)) (T -412)) -NIL -(-13 (-1236) (-10 -7 (IF (|has| |t#1| (-899 (-576))) (-6 (-899 (-576))) |%noBranch|) (IF (|has| |t#1| (-899 (-390))) (-6 (-899 (-390))) |%noBranch|))) -(((-102) -3766 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-625 (-874)) -3766 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-1118) -3766 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-1236) . T)) -((-4188 (($ $) 10) (($ $ (-783)) 12))) -(((-413 |#1|) (-10 -8 (-15 -4188 (|#1| |#1| (-783))) (-15 -4188 (|#1| |#1|))) (-414)) (T -413)) -NIL -(-10 -8 (-15 -4188 (|#1| |#1| (-783))) (-15 -4188 (|#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 81)) (-3986 (((-430 $) $) 80)) (-2922 (((-112) $ $) 65)) (-2473 (($) 18 T CONST)) (-2803 (($ $ $) 61)) (-1999 (((-3 $ "failed") $) 37)) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-4188 (($ $) 87) (($ $ (-783)) 86)) (-2463 (((-112) $) 79)) (-2927 (((-845 (-937)) $) 89)) (-1439 (((-112) $) 35)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 78)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2354 (((-430 $) $) 82)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2910 (((-783) $) 64)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-4197 (((-3 (-783) "failed") $ $) 88)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3148 (((-3 $ "failed") $) 90)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ $) 73)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-414) (-141)) (T -414)) -((-2927 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-937))))) (-4197 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))) (-4188 (*1 *1 *1) (-4 *1 (-414))) (-4188 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783))))) -(-13 (-374) (-146) (-10 -8 (-15 -2927 ((-845 (-937)) $)) (-15 -4197 ((-3 (-783) "failed") $ $)) (-15 -4188 ($ $)) (-15 -4188 ($ $ (-783))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T)) -((-1540 (($ (-576) (-576)) 11) (($ (-576) (-576) (-937)) NIL)) (-3527 (((-937)) 19) (((-937) (-937)) NIL))) -(((-415 |#1|) (-10 -8 (-15 -3527 ((-937) (-937))) (-15 -3527 ((-937))) (-15 -1540 (|#1| (-576) (-576) (-937))) (-15 -1540 (|#1| (-576) (-576)))) (-416)) (T -415)) -((-3527 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-3527 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) -(-10 -8 (-15 -3527 ((-937) (-937))) (-15 -3527 ((-937))) (-15 -1540 (|#1| (-576) (-576) (-937))) (-15 -1540 (|#1| (-576) (-576)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1905 (((-576) $) 97)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-2916 (($ $) 95)) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 81)) (-3986 (((-430 $) $) 80)) (-2474 (($ $) 105)) (-2922 (((-112) $ $) 65)) (-3966 (((-576) $) 122)) (-2473 (($) 18 T CONST)) (-1882 (($ $) 94)) (-2449 (((-3 (-576) "failed") $) 110) (((-3 (-419 (-576)) "failed") $) 107)) (-4401 (((-576) $) 111) (((-419 (-576)) $) 108)) (-2803 (($ $ $) 61)) (-1999 (((-3 $ "failed") $) 37)) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-2463 (((-112) $) 79)) (-1501 (((-937)) 138) (((-937) (-937)) 135 (|has| $ (-6 -4452)))) (-1370 (((-112) $) 120)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 101)) (-2927 (((-576) $) 144)) (-1439 (((-112) $) 35)) (-3298 (($ $ (-576)) 104)) (-1941 (($ $) 100)) (-1379 (((-112) $) 121)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1921 (($ $ $) 119) (($) 132 (-12 (-3216 (|has| $ (-6 -4452))) (-3216 (|has| $ (-6 -4444)))))) (-4137 (($ $ $) 118) (($) 131 (-12 (-3216 (|has| $ (-6 -4452))) (-3216 (|has| $ (-6 -4444)))))) (-3665 (((-576) $) 141)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 78)) (-4216 (((-937) (-576)) 134 (|has| $ (-6 -4452)))) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-1894 (($ $) 96)) (-1916 (($ $) 98)) (-1540 (($ (-576) (-576)) 146) (($ (-576) (-576) (-937)) 145)) (-2354 (((-430 $) $) 82)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1359 (((-576) $) 142)) (-2910 (((-783) $) 64)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-3527 (((-937)) 139) (((-937) (-937)) 136 (|has| $ (-6 -4452)))) (-4207 (((-937) (-576)) 133 (|has| $ (-6 -4452)))) (-2616 (((-390) $) 113) (((-227) $) 112) (((-905 (-390)) $) 102)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 109) (($ (-419 (-576))) 106)) (-1871 (((-783)) 32 T CONST)) (-1929 (($ $) 99)) (-4226 (((-937)) 140) (((-937) (-937)) 137 (|has| $ (-6 -4452)))) (-3722 (((-112) $ $) 9)) (-1549 (((-937)) 143)) (-4232 (((-112) $ $) 45)) (-2610 (($ $) 123)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3983 (((-112) $ $) 116)) (-3957 (((-112) $ $) 115)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 117)) (-3943 (((-112) $ $) 114)) (-4039 (($ $ $) 73)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 103)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-416) (-141)) (T -416)) -((-1540 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-1540 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-937)) (-4 *1 (-416)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1549 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-4226 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-3527 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-1501 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-4226 (*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) (-3527 (*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416)) (-5 *2 (-937)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416)) (-5 *2 (-937)))) (-1921 (*1 *1) (-12 (-4 *1 (-416)) (-3216 (|has| *1 (-6 -4452))) (-3216 (|has| *1 (-6 -4444))))) (-4137 (*1 *1) (-12 (-4 *1 (-416)) (-3216 (|has| *1 (-6 -4452))) (-3216 (|has| *1 (-6 -4444)))))) -(-13 (-1078) (-10 -8 (-6 -3495) (-15 -1540 ($ (-576) (-576))) (-15 -1540 ($ (-576) (-576) (-937))) (-15 -2927 ((-576) $)) (-15 -1549 ((-937))) (-15 -1359 ((-576) $)) (-15 -3665 ((-576) $)) (-15 -4226 ((-937))) (-15 -3527 ((-937))) (-15 -1501 ((-937))) (IF (|has| $ (-6 -4452)) (PROGN (-15 -4226 ((-937) (-937))) (-15 -3527 ((-937) (-937))) (-15 -1501 ((-937) (-937))) (-15 -4216 ((-937) (-576))) (-15 -4207 ((-937) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4444)) |%noBranch| (IF (|has| $ (-6 -4452)) |%noBranch| (PROGN (-15 -1921 ($)) (-15 -4137 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-905 (-390))) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-899 (-390)) . T) ((-936) . T) ((-1020) . T) ((-1040) . T) ((-1078) . T) ((-1056 (-419 (-576))) . T) ((-1056 (-576)) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T)) -((-2551 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20))) -(((-417 |#1| |#2|) (-10 -7 (-15 -2551 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))) -(-10 -7 (-15 -2551 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) -((-2551 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13))) -(((-418 |#1| |#2|) (-10 -7 (-15 -2551 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))) -(-10 -7 (-15 -2551 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 13)) (-1905 ((|#1| $) 21 (|has| |#1| (-317)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL (|has| |#1| (-832)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 17) (((-3 (-1195) "failed") $) NIL (|has| |#1| (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576))))) (-4401 ((|#1| $) 15) (((-1195) $) NIL (|has| |#1| (-1056 (-1195)))) (((-419 (-576)) $) 69 (|has| |#1| (-1056 (-576)))) (((-576) $) NIL (|has| |#1| (-1056 (-576))))) (-2803 (($ $ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) 51)) (-2080 (($) NIL (|has| |#1| (-557)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1370 (((-112) $) NIL (|has| |#1| (-832)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#1| (-899 (-390))))) (-1439 (((-112) $) 57)) (-3154 (($ $) NIL)) (-1595 ((|#1| $) 73)) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-1170)))) (-1379 (((-112) $) NIL (|has| |#1| (-832)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| |#1| (-1170)) CONST)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 100)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) NIL (|has| |#1| (-317)))) (-1916 ((|#1| $) 28 (|has| |#1| (-557)))) (-3181 (((-430 (-1191 $)) (-1191 $)) 145 (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) 138 (|has| |#1| (-925)))) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3049 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-2910 (((-783) $) NIL)) (-2071 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2390 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3143 (($ $) NIL)) (-1608 ((|#1| $) 75)) (-2616 (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1040))) (((-227) $) NIL (|has| |#1| (-1040)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1195)) NIL (|has| |#1| (-1056 (-1195))))) (-3148 (((-3 $ "failed") $) 102 (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) 103 T CONST)) (-1929 ((|#1| $) 26 (|has| |#1| (-557)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-2610 (($ $) NIL (|has| |#1| (-832)))) (-1996 (($) 22 T CONST)) (-2011 (($) 8 T CONST)) (-1813 (((-1177) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1177) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1291) (-834) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1291) (-834) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-840))))) (-3431 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) 66)) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) 24 (|has| |#1| (-862)))) (-4039 (($ $ $) 133) (($ |#1| |#1|) 53)) (-4029 (($ $) 25) (($ $ $) 56)) (-4017 (($ $ $) 54)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 132)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-419 |#1|) (-13 (-1010 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4448)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4459)) (-6 -4448) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419)) -NIL -(-13 (-1010 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4448)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4459)) (-6 -4448) |%noBranch|) |%noBranch|) |%noBranch|))) -((-4355 (((-701 |#2|) (-1286 $)) NIL) (((-701 |#2|)) 18)) (-1339 (($ (-1286 |#2|) (-1286 $)) NIL) (($ (-1286 |#2|)) 24)) (-4342 (((-701 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) $) 40)) (-1922 ((|#3| $) 69)) (-2790 ((|#2| (-1286 $)) NIL) ((|#2|) 20)) (-3629 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $) 22) (((-701 |#2|) (-1286 $)) 38)) (-2616 (((-1286 |#2|) $) 11) (($ (-1286 |#2|)) 13)) (-1776 ((|#3| $) 55))) -(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -4342 ((-701 |#2|) |#1|)) (-15 -2790 (|#2|)) (-15 -4355 ((-701 |#2|))) (-15 -2616 (|#1| (-1286 |#2|))) (-15 -2616 ((-1286 |#2|) |#1|)) (-15 -1339 (|#1| (-1286 |#2|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1|)) (-15 -1922 (|#3| |#1|)) (-15 -1776 (|#3| |#1|)) (-15 -4355 ((-701 |#2|) (-1286 |#1|))) (-15 -2790 (|#2| (-1286 |#1|))) (-15 -1339 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -4342 ((-701 |#2|) |#1| (-1286 |#1|)))) (-421 |#2| |#3|) (-174) (-1262 |#2|)) (T -420)) -((-4355 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-2790 (*1 *2) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4))))) -(-10 -8 (-15 -4342 ((-701 |#2|) |#1|)) (-15 -2790 (|#2|)) (-15 -4355 ((-701 |#2|))) (-15 -2616 (|#1| (-1286 |#2|))) (-15 -2616 ((-1286 |#2|) |#1|)) (-15 -1339 (|#1| (-1286 |#2|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1|)) (-15 -1922 (|#3| |#1|)) (-15 -1776 (|#3| |#1|)) (-15 -4355 ((-701 |#2|) (-1286 |#1|))) (-15 -2790 (|#2| (-1286 |#1|))) (-15 -1339 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -4342 ((-701 |#2|) |#1| (-1286 |#1|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4355 (((-701 |#1|) (-1286 $)) 53) (((-701 |#1|)) 68)) (-1448 ((|#1| $) 59)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1339 (($ (-1286 |#1|) (-1286 $)) 55) (($ (-1286 |#1|)) 71)) (-4342 (((-701 |#1|) $ (-1286 $)) 60) (((-701 |#1|) $) 66)) (-1999 (((-3 $ "failed") $) 37)) (-4423 (((-937)) 61)) (-1439 (((-112) $) 35)) (-1941 ((|#1| $) 58)) (-1922 ((|#2| $) 51 (|has| |#1| (-374)))) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2790 ((|#1| (-1286 $)) 54) ((|#1|) 67)) (-3629 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56) (((-1286 |#1|) $) 73) (((-701 |#1|) (-1286 $)) 72)) (-2616 (((-1286 |#1|) $) 70) (($ (-1286 |#1|)) 69)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3148 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1776 ((|#2| $) 52)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1898 (((-1286 $)) 74)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-421 |#1| |#2|) (-141) (-174) (-1262 |t#1|)) (T -421)) -((-1898 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *1)) (-4 *1 (-421 *3 *4)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *3)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-1339 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1262 *3)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *3)))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1262 *3)))) (-4355 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-701 *3)))) (-2790 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) (-4342 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-701 *3))))) -(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -1898 ((-1286 $))) (-15 -3629 ((-1286 |t#1|) $)) (-15 -3629 ((-701 |t#1|) (-1286 $))) (-15 -1339 ($ (-1286 |t#1|))) (-15 -2616 ((-1286 |t#1|) $)) (-15 -2616 ($ (-1286 |t#1|))) (-15 -4355 ((-701 |t#1|))) (-15 -2790 (|t#1|)) (-15 -4342 ((-701 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-381 |#1| |#2|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-4401 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-2884 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11))) -(((-422 |#1| |#2|) (-10 -8 (-15 -2884 (|#1| (-576))) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#1| |#2|))) (-423 |#2|) (-1236)) (T -422)) -NIL -(-10 -8 (-15 -2884 (|#1| (-576))) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#1| |#2|))) -((-2449 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1056 (-576))))) (-4401 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1056 (-576))))) (-2884 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1056 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1056 (-576)))))) -(((-423 |#1|) (-141) (-1236)) (T -423)) -NIL -(-13 (-1056 |t#1|) (-10 -7 (IF (|has| |t#1| (-1056 (-576))) (-6 (-1056 (-576))) |%noBranch|) (IF (|has| |t#1| (-1056 (-419 (-576)))) (-6 (-1056 (-419 (-576)))) |%noBranch|))) -(((-628 #0=(-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-628 #1=(-576)) |has| |#1| (-1056 (-576))) ((-628 |#1|) . T) ((-1056 #0#) |has| |#1| (-1056 (-419 (-576)))) ((-1056 #1#) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T)) -((-2551 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35))) -(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2551 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1010 |#1|) (-1262 |#2|) (-13 (-421 |#2| |#3|) (-1056 |#2|)) (-317) (-1010 |#5|) (-1262 |#6|) (-13 (-421 |#6| |#7|) (-1056 |#6|))) (T -424)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1010 *5)) (-4 *7 (-1262 *6)) (-4 *8 (-13 (-421 *6 *7) (-1056 *6))) (-4 *9 (-317)) (-4 *10 (-1010 *9)) (-4 *11 (-1262 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1056 *10)))))) -(-10 -7 (-15 -2551 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) -((-2862 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) NIL)) (-4367 ((|#4| (-783) (-1286 |#4|)) 55)) (-1439 (((-112) $) NIL)) (-1595 (((-1286 |#4|) $) 15)) (-1941 ((|#2| $) 53)) (-4378 (($ $) 157)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 103)) (-2728 (($ (-1286 |#4|)) 102)) (-3914 (((-1138) $) NIL)) (-1608 ((|#1| $) 16)) (-3276 (($ $ $) NIL)) (-2920 (($ $ $) NIL)) (-2884 (((-874) $) 148)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 |#4|) $) 141)) (-2011 (($) 11 T CONST)) (-3915 (((-112) $ $) 39)) (-4039 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130))) -(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -2728 ($ (-1286 |#4|))) (-15 -1898 ((-1286 |#4|) $)) (-15 -1941 (|#2| $)) (-15 -1595 ((-1286 |#4|) $)) (-15 -1608 (|#1| $)) (-15 -4378 ($ $)) (-15 -4367 (|#4| (-783) (-1286 |#4|))))) (-317) (-1010 |#1|) (-1262 |#2|) (-13 (-421 |#2| |#3|) (-1056 |#2|))) (T -425)) -((-2728 (*1 *1 *2) (-12 (-5 *2 (-1286 *6)) (-4 *6 (-13 (-421 *4 *5) (-1056 *4))) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-1898 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1056 *4))))) (-1941 (*1 *2 *1) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1056 *2))))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1056 *4))))) (-1608 (*1 *2 *1) (-12 (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1056 *3))))) (-4378 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1056 *3))))) (-4367 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1286 *2)) (-4 *5 (-317)) (-4 *6 (-1010 *5)) (-4 *2 (-13 (-421 *6 *7) (-1056 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1262 *6))))) -(-13 (-485) (-10 -8 (-15 -2728 ($ (-1286 |#4|))) (-15 -1898 ((-1286 |#4|) $)) (-15 -1941 (|#2| $)) (-15 -1595 ((-1286 |#4|) $)) (-15 -1608 (|#1| $)) (-15 -4378 ($ $)) (-15 -4367 (|#4| (-783) (-1286 |#4|))))) -((-2862 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) NIL)) (-1941 ((|#2| $) 71)) (-4390 (($ (-1286 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1056 |#2|)))) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 37)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 |#4|) $) 28)) (-2011 (($) 25 T CONST)) (-3915 (((-112) $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ $ $) 82))) -(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-738) (-10 -8 (-15 -1898 ((-1286 |#4|) $)) (-15 -1941 (|#2| $)) (-15 -4390 ($ (-1286 |#4|))) (IF (|has| |#4| (-1056 |#2|)) (-15 -4390 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1010 |#1|) (-1262 |#2|) (-421 |#2| |#3|) (-1286 |#4|)) (T -426)) -((-1898 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-1941 (*1 *2 *1) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1286 *5)))) (-4390 (*1 *1 *2) (-12 (-5 *2 (-1286 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-4390 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1056 *4)) (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))) -(-13 (-738) (-10 -8 (-15 -1898 ((-1286 |#4|) $)) (-15 -1941 (|#2| $)) (-15 -4390 ($ (-1286 |#4|))) (IF (|has| |#4| (-1056 |#2|)) (-15 -4390 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-2551 ((|#3| (-1 |#4| |#2|) |#1|) 29))) -(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2551 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))) -(-10 -7 (-15 -2551 (|#3| (-1 |#4| |#2|) |#1|))) -((-4246 (((-3 $ "failed")) 98)) (-3620 (((-1286 (-701 |#2|)) (-1286 $)) NIL) (((-1286 (-701 |#2|))) 103)) (-3311 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) 96)) (-1588 (((-3 $ "failed")) 95)) (-4424 (((-701 |#2|) (-1286 $)) NIL) (((-701 |#2|)) 114)) (-4402 (((-701 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) $) 122)) (-3247 (((-1191 (-968 |#2|))) 63)) (-1320 ((|#2| (-1286 $)) NIL) ((|#2|) 118)) (-1339 (($ (-1286 |#2|) (-1286 $)) NIL) (($ (-1286 |#2|)) 124)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) 94)) (-1597 (((-3 $ "failed")) 86)) (-4433 (((-701 |#2|) (-1286 $)) NIL) (((-701 |#2|)) 112)) (-4413 (((-701 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) $) 120)) (-3291 (((-1191 (-968 |#2|))) 62)) (-1329 ((|#2| (-1286 $)) NIL) ((|#2|) 116)) (-3629 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $) 123) (((-701 |#2|) (-1286 $)) 132)) (-2616 (((-1286 |#2|) $) 108) (($ (-1286 |#2|)) 110)) (-3158 (((-656 (-968 |#2|)) (-1286 $)) NIL) (((-656 (-968 |#2|))) 106)) (-1950 (($ (-701 |#2|) $) 102))) -(((-428 |#1| |#2|) (-10 -8 (-15 -1950 (|#1| (-701 |#2|) |#1|)) (-15 -3247 ((-1191 (-968 |#2|)))) (-15 -3291 ((-1191 (-968 |#2|)))) (-15 -4402 ((-701 |#2|) |#1|)) (-15 -4413 ((-701 |#2|) |#1|)) (-15 -4424 ((-701 |#2|))) (-15 -4433 ((-701 |#2|))) (-15 -1320 (|#2|)) (-15 -1329 (|#2|)) (-15 -2616 (|#1| (-1286 |#2|))) (-15 -2616 ((-1286 |#2|) |#1|)) (-15 -1339 (|#1| (-1286 |#2|))) (-15 -3158 ((-656 (-968 |#2|)))) (-15 -3620 ((-1286 (-701 |#2|)))) (-15 -3629 ((-701 |#2|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1|)) (-15 -4246 ((-3 |#1| "failed"))) (-15 -1588 ((-3 |#1| "failed"))) (-15 -1597 ((-3 |#1| "failed"))) (-15 -3311 ((-3 (-2 (|:| |particular| |#1|) (|:| -1898 (-656 |#1|))) "failed"))) (-15 -3320 ((-3 (-2 (|:| |particular| |#1|) (|:| -1898 (-656 |#1|))) "failed"))) (-15 -4424 ((-701 |#2|) (-1286 |#1|))) (-15 -4433 ((-701 |#2|) (-1286 |#1|))) (-15 -1320 (|#2| (-1286 |#1|))) (-15 -1329 (|#2| (-1286 |#1|))) (-15 -1339 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -4402 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -4413 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -3620 ((-1286 (-701 |#2|)) (-1286 |#1|))) (-15 -3158 ((-656 (-968 |#2|)) (-1286 |#1|)))) (-429 |#2|) (-174)) (T -428)) -((-3620 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3158 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-968 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1329 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-1320 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-4433 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-4424 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3291 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-968 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3247 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-968 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) -(-10 -8 (-15 -1950 (|#1| (-701 |#2|) |#1|)) (-15 -3247 ((-1191 (-968 |#2|)))) (-15 -3291 ((-1191 (-968 |#2|)))) (-15 -4402 ((-701 |#2|) |#1|)) (-15 -4413 ((-701 |#2|) |#1|)) (-15 -4424 ((-701 |#2|))) (-15 -4433 ((-701 |#2|))) (-15 -1320 (|#2|)) (-15 -1329 (|#2|)) (-15 -2616 (|#1| (-1286 |#2|))) (-15 -2616 ((-1286 |#2|) |#1|)) (-15 -1339 (|#1| (-1286 |#2|))) (-15 -3158 ((-656 (-968 |#2|)))) (-15 -3620 ((-1286 (-701 |#2|)))) (-15 -3629 ((-701 |#2|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1|)) (-15 -4246 ((-3 |#1| "failed"))) (-15 -1588 ((-3 |#1| "failed"))) (-15 -1597 ((-3 |#1| "failed"))) (-15 -3311 ((-3 (-2 (|:| |particular| |#1|) (|:| -1898 (-656 |#1|))) "failed"))) (-15 -3320 ((-3 (-2 (|:| |particular| |#1|) (|:| -1898 (-656 |#1|))) "failed"))) (-15 -4424 ((-701 |#2|) (-1286 |#1|))) (-15 -4433 ((-701 |#2|) (-1286 |#1|))) (-15 -1320 (|#2| (-1286 |#1|))) (-15 -1329 (|#2| (-1286 |#1|))) (-15 -1339 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3629 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3629 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -4402 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -4413 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -3620 ((-1286 (-701 |#2|)) (-1286 |#1|))) (-15 -3158 ((-656 (-968 |#2|)) (-1286 |#1|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4246 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-1459 (((-3 $ "failed") $ $) 20)) (-3620 (((-1286 (-701 |#1|)) (-1286 $)) 83) (((-1286 (-701 |#1|))) 106)) (-1879 (((-1286 $)) 86)) (-2473 (($) 18 T CONST)) (-3311 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-1588 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-4424 (((-701 |#1|) (-1286 $)) 70) (((-701 |#1|)) 98)) (-1856 ((|#1| $) 79)) (-4402 (((-701 |#1|) $ (-1286 $)) 81) (((-701 |#1|) $) 96)) (-1388 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-3247 (((-1191 (-968 |#1|))) 94 (|has| |#1| (-374)))) (-1420 (($ $ (-937)) 31)) (-1832 ((|#1| $) 77)) (-1610 (((-1191 |#1|) $) 47 (|has| |#1| (-568)))) (-1320 ((|#1| (-1286 $)) 72) ((|#1|) 100)) (-1812 (((-1191 |#1|) $) 68)) (-1744 (((-112)) 62)) (-1339 (($ (-1286 |#1|) (-1286 $)) 74) (($ (-1286 |#1|)) 104)) (-1999 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4423 (((-937)) 85)) (-1711 (((-112)) 59)) (-3593 (($ $ (-937)) 38)) (-1665 (((-112)) 55)) (-1643 (((-112)) 53)) (-1687 (((-112)) 57)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-1597 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-4433 (((-701 |#1|) (-1286 $)) 71) (((-701 |#1|)) 99)) (-1868 ((|#1| $) 80)) (-4413 (((-701 |#1|) $ (-1286 $)) 82) (((-701 |#1|) $) 97)) (-1399 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-3291 (((-1191 (-968 |#1|))) 95 (|has| |#1| (-374)))) (-1410 (($ $ (-937)) 32)) (-1844 ((|#1| $) 78)) (-1623 (((-1191 |#1|) $) 48 (|has| |#1| (-568)))) (-1329 ((|#1| (-1286 $)) 73) ((|#1|) 101)) (-1822 (((-1191 |#1|) $) 69)) (-1756 (((-112)) 63)) (-3733 (((-1177) $) 10)) (-1655 (((-112)) 54)) (-1675 (((-112)) 56)) (-1700 (((-112)) 58)) (-3914 (((-1138) $) 11)) (-1732 (((-112)) 61)) (-2071 ((|#1| $ (-576)) 110)) (-3629 (((-1286 |#1|) $ (-1286 $)) 76) (((-701 |#1|) (-1286 $) (-1286 $)) 75) (((-1286 |#1|) $) 108) (((-701 |#1|) (-1286 $)) 107)) (-2616 (((-1286 |#1|) $) 103) (($ (-1286 |#1|)) 102)) (-3158 (((-656 (-968 |#1|)) (-1286 $)) 84) (((-656 (-968 |#1|))) 105)) (-2920 (($ $ $) 28)) (-1801 (((-112)) 67)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1898 (((-1286 $)) 109)) (-1635 (((-656 (-1286 |#1|))) 49 (|has| |#1| (-568)))) (-2931 (($ $ $ $) 29)) (-1779 (((-112)) 65)) (-1950 (($ (-701 |#1|) $) 93)) (-2908 (($ $ $) 27)) (-1790 (((-112)) 66)) (-1768 (((-112)) 64)) (-1721 (((-112)) 60)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 33)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-429 |#1|) (-141) (-174)) (T -429)) -((-1898 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-429 *3)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3620 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 (-701 *3))))) (-3158 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-968 *3))))) (-1339 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3)))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-1329 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-1320 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-4433 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-4424 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-4413 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3291 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1191 (-968 *3))))) (-3247 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1191 (-968 *3))))) (-1950 (*1 *1 *2 *1) (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))) -(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -1898 ((-1286 $))) (-15 -3629 ((-1286 |t#1|) $)) (-15 -3629 ((-701 |t#1|) (-1286 $))) (-15 -3620 ((-1286 (-701 |t#1|)))) (-15 -3158 ((-656 (-968 |t#1|)))) (-15 -1339 ($ (-1286 |t#1|))) (-15 -2616 ((-1286 |t#1|) $)) (-15 -2616 ($ (-1286 |t#1|))) (-15 -1329 (|t#1|)) (-15 -1320 (|t#1|)) (-15 -4433 ((-701 |t#1|))) (-15 -4424 ((-701 |t#1|))) (-15 -4413 ((-701 |t#1|) $)) (-15 -4402 ((-701 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -3291 ((-1191 (-968 |t#1|)))) (-15 -3247 ((-1191 (-968 |t#1|))))) |%noBranch|) (-15 -1950 ($ (-701 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-296 (-576) |#1|) . T) ((-378 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 60)) (-4235 (($ $) 78)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 192)) (-4241 (($ $) NIL)) (-4221 (((-112) $) 48)) (-4246 ((|#1| $) 16)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL (|has| |#1| (-1240)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-1240)))) (-4267 (($ |#1| (-576)) 42)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 74)) (-1999 (((-3 $ "failed") $) 165)) (-3424 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-3413 (((-112) $) 81 (|has| |#1| (-557)))) (-3404 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-4277 (($ |#1| (-576)) 44)) (-2463 (((-112) $) 212 (|has| |#1| (-1240)))) (-1439 (((-112) $) 62)) (-3719 (((-783) $) 51)) (-4286 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-2756 ((|#1| $ (-576)) 175)) (-4297 (((-576) $ (-576)) 174)) (-4329 (($ |#1| (-576)) 41)) (-2551 (($ (-1 |#1| |#1|) $) 184)) (-3689 (($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3733 (((-1177) $) NIL)) (-4307 (($ |#1| (-576)) 43)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-4257 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-4319 (((-656 (-2 (|:| -2354 |#1|) (|:| -1359 (-576)))) $) 73)) (-2529 (((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-2354 (((-430 $) $) NIL (|has| |#1| (-1240)))) (-2852 (((-3 $ "failed") $ $) 177)) (-1359 (((-576) $) 168)) (-3945 ((|#1| $) 75)) (-3049 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 107 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) $) NIL (|has| |#1| (-526 (-1195) $))) (($ $ (-656 (-1195)) (-656 $)) 108 (|has| |#1| (-526 (-1195) $))) (($ $ (-656 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-656 $) (-656 $)) NIL (|has| |#1| (-319 $)))) (-2071 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-2390 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-2616 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1040))) (((-227) $) 120 (|has| |#1| (-1040)))) (-2884 (((-874) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576)))))) (-1871 (((-783)) 67 T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-1996 (($) 53 T CONST)) (-2011 (($) 52 T CONST)) (-3431 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3915 (((-112) $ $) 160)) (-4029 (($ $) 162) (($ $ $) NIL)) (-4017 (($ $ $) 181)) (** (($ $ (-937)) NIL) (($ $ (-783)) 126)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-430 |#1|) (-13 (-568) (-233 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -3945 (|#1| $)) (-15 -1359 ((-576) $)) (-15 -3689 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -2529 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -4329 ($ |#1| (-576))) (-15 -4319 ((-656 (-2 (|:| -2354 |#1|) (|:| -1359 (-576)))) $)) (-15 -4307 ($ |#1| (-576))) (-15 -4297 ((-576) $ (-576))) (-15 -2756 (|#1| $ (-576))) (-15 -4286 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -3719 ((-783) $)) (-15 -4277 ($ |#1| (-576))) (-15 -4267 ($ |#1| (-576))) (-15 -4257 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4246 (|#1| $)) (-15 -4235 ($ $)) (-15 -2551 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1040)) (-6 (-1040)) |%noBranch|) (IF (|has| |#1| (-1240)) (-6 (-1240)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3413 ((-112) $)) (-15 -3404 ((-419 (-576)) $)) (-15 -3424 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1195) $)) (-6 (-526 (-1195) $)) |%noBranch|))) (-568)) (T -430)) -((-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-3945 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3689 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-4329 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -2354 *3) (|:| -1359 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-4307 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4297 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4286 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-4277 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4267 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4257 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4246 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4235 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-3424 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))) -(-13 (-568) (-233 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -3945 (|#1| $)) (-15 -1359 ((-576) $)) (-15 -3689 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -2529 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -4329 ($ |#1| (-576))) (-15 -4319 ((-656 (-2 (|:| -2354 |#1|) (|:| -1359 (-576)))) $)) (-15 -4307 ($ |#1| (-576))) (-15 -4297 ((-576) $ (-576))) (-15 -2756 (|#1| $ (-576))) (-15 -4286 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -3719 ((-783) $)) (-15 -4277 ($ |#1| (-576))) (-15 -4267 ($ |#1| (-576))) (-15 -4257 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4246 (|#1| $)) (-15 -4235 ($ $)) (-15 -2551 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1040)) (-6 (-1040)) |%noBranch|) (IF (|has| |#1| (-1240)) (-6 (-1240)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3413 ((-112) $)) (-15 -3404 ((-419 (-576)) $)) (-15 -3424 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1195) $)) (-6 (-526 (-1195) $)) |%noBranch|))) -((-1966 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-1348 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17))) -(((-431 |#1|) (-10 -7 (-15 -1966 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -1348 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431)) -((-1348 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-1966 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4))))) -(-10 -7 (-15 -1966 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -1348 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) -((-1396 ((|#2| |#2|) 183)) (-1367 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112)) 60))) -(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1367 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112))) (-15 -1396 (|#2| |#2|))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|)) (-1195) |#2|) (T -432)) -((-1396 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1221) (-442 *3))) (-14 *4 (-1195)) (-14 *5 *2))) (-1367 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-14 *6 (-1195)) (-14 *7 *3)))) -(-10 -7 (-15 -1367 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112))) (-15 -1396 (|#2| |#2|))) -((-2551 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2551 (|#4| (-1 |#3| |#1|) |#2|))) (-1067) (-442 |#1|) (-1067) (-442 |#3|)) (T -433)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))) -(-10 -7 (-15 -2551 (|#4| (-1 |#3| |#1|) |#2|))) -((-1396 ((|#2| |#2|) 106)) (-1376 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177)) 52)) (-1386 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177)) 170))) -(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1376 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -1386 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -1396 (|#2| |#2|))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|) (-10 -8 (-15 -2884 ($ |#3|)))) (-860) (-13 (-1264 |#2| |#3|) (-374) (-1221) (-10 -8 (-15 -2390 ($ $)) (-15 -1956 ($ $)))) (-1001 |#4|) (-1195)) (T -434)) -((-1396 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-4 *2 (-13 (-27) (-1221) (-442 *3) (-10 -8 (-15 -2884 ($ *4))))) (-4 *4 (-860)) (-4 *5 (-13 (-1264 *2 *4) (-374) (-1221) (-10 -8 (-15 -2390 ($ $)) (-15 -1956 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1001 *5)) (-14 *7 (-1195)))) (-1386 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -2884 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1264 *3 *7) (-374) (-1221) (-10 -8 (-15 -2390 ($ $)) (-15 -1956 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1001 *8)) (-14 *10 (-1195)))) (-1376 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -2884 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1264 *3 *7) (-374) (-1221) (-10 -8 (-15 -2390 ($ $)) (-15 -1956 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1001 *8)) (-14 *10 (-1195))))) -(-10 -7 (-15 -1376 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -1386 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -1396 (|#2| |#2|))) -((-2176 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2309 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2551 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2551 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2309 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2176 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1118) (-437 |#1|) (-1118) (-437 |#3|)) (T -435)) -((-2176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-2309 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))) -(-10 -7 (-15 -2551 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2309 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2176 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1408 (($) 51)) (-1645 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-3682 (($ $ $) 46)) (-3672 (((-112) $ $) 35)) (-2416 (((-783)) 55)) (-1330 (($ (-656 |#2|)) 23) (($) NIL)) (-2080 (($) 66)) (-3712 (((-112) $ $) 15)) (-1921 ((|#2| $) 77)) (-4137 ((|#2| $) 75)) (-1875 (((-937) $) 70)) (-3703 (($ $ $) 42)) (-4318 (($ (-937)) 60)) (-3693 (($ $ |#2|) NIL) (($ $ $) 45)) (-3926 (((-783) (-1 (-112) |#2|) $) NIL) (((-783) |#2| $) 31)) (-2895 (($ (-656 |#2|)) 27)) (-1418 (($ $) 53)) (-2884 (((-874) $) 40)) (-1427 (((-783) $) 24)) (-2557 (($ (-656 |#2|)) 22) (($) NIL)) (-3915 (((-112) $ $) 19))) -(((-436 |#1| |#2|) (-10 -8 (-15 -2416 ((-783))) (-15 -4318 (|#1| (-937))) (-15 -1875 ((-937) |#1|)) (-15 -2080 (|#1|)) (-15 -1921 (|#2| |#1|)) (-15 -4137 (|#2| |#1|)) (-15 -1408 (|#1|)) (-15 -1418 (|#1| |#1|)) (-15 -1427 ((-783) |#1|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3712 ((-112) |#1| |#1|)) (-15 -2557 (|#1|)) (-15 -2557 (|#1| (-656 |#2|))) (-15 -1330 (|#1|)) (-15 -1330 (|#1| (-656 |#2|))) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3693 (|#1| |#1| |#1|)) (-15 -3693 (|#1| |#1| |#2|)) (-15 -3682 (|#1| |#1| |#1|)) (-15 -3672 ((-112) |#1| |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -1645 (|#1| |#1| |#2|)) (-15 -1645 (|#1| |#2| |#1|)) (-15 -2895 (|#1| (-656 |#2|))) (-15 -3926 ((-783) |#2| |#1|)) (-15 -3926 ((-783) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1118)) (T -436)) -((-2416 (*1 *2) (-12 (-4 *4 (-1118)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) (-4 *3 (-437 *4))))) -(-10 -8 (-15 -2416 ((-783))) (-15 -4318 (|#1| (-937))) (-15 -1875 ((-937) |#1|)) (-15 -2080 (|#1|)) (-15 -1921 (|#2| |#1|)) (-15 -4137 (|#2| |#1|)) (-15 -1408 (|#1|)) (-15 -1418 (|#1| |#1|)) (-15 -1427 ((-783) |#1|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3712 ((-112) |#1| |#1|)) (-15 -2557 (|#1|)) (-15 -2557 (|#1| (-656 |#2|))) (-15 -1330 (|#1|)) (-15 -1330 (|#1| (-656 |#2|))) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3693 (|#1| |#1| |#1|)) (-15 -3693 (|#1| |#1| |#2|)) (-15 -3682 (|#1| |#1| |#1|)) (-15 -3672 ((-112) |#1| |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -1645 (|#1| |#1| |#2|)) (-15 -1645 (|#1| |#2| |#1|)) (-15 -2895 (|#1| (-656 |#2|))) (-15 -3926 ((-783) |#2| |#1|)) (-15 -3926 ((-783) (-1 (-112) |#2|) |#1|))) -((-2862 (((-112) $ $) 19)) (-1408 (($) 68 (|has| |#1| (-379)))) (-1645 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3682 (($ $ $) 79)) (-3672 (((-112) $ $) 80)) (-2970 (((-112) $ (-783)) 8)) (-2416 (((-783)) 62 (|has| |#1| (-379)))) (-1330 (($ (-656 |#1|)) 75) (($) 74)) (-1443 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-1919 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2833 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3634 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-2080 (($) 65 (|has| |#1| (-379)))) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3712 (((-112) $ $) 71)) (-2408 (((-112) $ (-783)) 9)) (-1921 ((|#1| $) 66 (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-4137 ((|#1| $) 67 (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-1875 (((-937) $) 64 (|has| |#1| (-379)))) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22)) (-3703 (($ $ $) 76)) (-3449 ((|#1| $) 40)) (-3807 (($ |#1| $) 41)) (-4318 (($ (-937)) 63 (|has| |#1| (-379)))) (-3914 (((-1138) $) 21)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3458 ((|#1| $) 42)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-3693 (($ $ |#1|) 78) (($ $ $) 77)) (-1581 (($) 50) (($ (-656 |#1|)) 49)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 51)) (-1418 (($ $) 69 (|has| |#1| (-379)))) (-2884 (((-874) $) 18)) (-1427 (((-783) $) 70)) (-2557 (($ (-656 |#1|)) 73) (($) 72)) (-3722 (((-112) $ $) 23)) (-3541 (($ (-656 |#1|)) 43)) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20)) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-437 |#1|) (-141) (-1118)) (T -437)) -((-1427 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1118)) (-5 *2 (-783)))) (-1418 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-379)))) (-1408 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1118)))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-862)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-862))))) -(-13 (-231 |t#1|) (-1116 |t#1|) (-10 -8 (-6 -4461) (-15 -1427 ((-783) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -1418 ($ $)) (-15 -1408 ($))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -4137 (|t#1| $)) (-15 -1921 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-231 |#1|) . T) ((-241 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-379) |has| |#1| (-379)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1116 |#1|) . T) ((-1118) . T) ((-1236) . T)) -((-1437 (((-598 |#2|) |#2| (-1195)) 36)) (-1546 (((-598 |#2|) |#2| (-1195)) 21)) (-4010 ((|#2| |#2| (-1195)) 26))) -(((-438 |#1| |#2|) (-10 -7 (-15 -1546 ((-598 |#2|) |#2| (-1195))) (-15 -1437 ((-598 |#2|) |#2| (-1195))) (-15 -4010 (|#2| |#2| (-1195)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-29 |#1|))) (T -438)) -((-4010 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1221) (-29 *4))))) (-1437 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1221) (-29 *5))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1221) (-29 *5)))))) -(-10 -7 (-15 -1546 ((-598 |#2|) |#2| (-1195))) (-15 -1437 ((-598 |#2|) |#2| (-1195))) (-15 -4010 (|#2| |#2| (-1195)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) NIL)) (-1460 (($ |#2| |#1|) 37)) (-1447 (($ |#2| |#1|) 35)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 10 T CONST)) (-2011 (($) 16 T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 36)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4448)) (IF (|has| |#1| (-6 -4448)) (-6 -4448) |%noBranch|) |%noBranch|) (-15 -2884 ($ |#1|)) (-15 -2884 ($ (-341 |#2|))) (-15 -1460 ($ |#2| |#1|)) (-15 -1447 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-862) (-21))) (T -439)) -((-2884 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-862) (-21))))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-1460 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21))))) (-1447 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4448)) (IF (|has| |#1| (-6 -4448)) (-6 -4448) |%noBranch|) |%noBranch|) (-15 -2884 ($ |#1|)) (-15 -2884 ($ (-341 |#2|))) (-15 -1460 ($ |#2| |#1|)) (-15 -1447 ($ |#2| |#1|)))) -((-1956 (((-3 |#2| (-656 |#2|)) |#2| (-1195)) 115))) -(((-440 |#1| |#2|) (-10 -7 (-15 -1956 ((-3 |#2| (-656 |#2|)) |#2| (-1195)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-975) (-29 |#1|))) (T -440)) -((-1956 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1221) (-975) (-29 *5)))))) -(-10 -7 (-15 -1956 ((-3 |#2| (-656 |#2|)) |#2| (-1195)))) -((-1607 (((-656 (-1195)) $) 81)) (-3467 (((-419 (-1191 $)) $ (-624 $)) 313)) (-1474 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) 277)) (-2449 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1195) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-968 |#2|)) "failed") $) 363) (((-3 (-968 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-4401 (((-624 $) $) NIL) (((-1195) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-968 |#2|)) $) 345) (((-968 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-2573 (((-115) (-115)) 47)) (-3154 (($ $) 99)) (-3650 (((-3 (-624 $) "failed") $) 268)) (-2558 (((-656 (-624 $)) $) 269)) (-1899 (((-3 (-656 $) "failed") $) 287)) (-1923 (((-3 (-2 (|:| |val| $) (|:| -1359 (-576))) "failed") $) 294)) (-1887 (((-3 (-656 $) "failed") $) 285)) (-1357 (((-3 (-2 (|:| -1755 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-1910 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $ (-1195)) 257)) (-4346 (((-112) $) 17)) (-4359 ((|#2| $) 19)) (-3049 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 276) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 109) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1195)) 62) (($ $ (-656 (-1195))) 280) (($ $) 281) (($ $ (-115) $ (-1195)) 65) (($ $ (-656 (-115)) (-656 $) (-1195)) 72) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) 120) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 282) (($ $ (-1195) (-783) (-1 $ (-656 $))) 105) (($ $ (-1195) (-783) (-1 $ $)) 104)) (-2071 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) 119)) (-2390 (($ $ (-1195)) 278) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-3143 (($ $) 324)) (-2616 (((-905 (-576)) $) 297) (((-905 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-2884 (((-874) $) 279) (($ (-624 $)) 93) (($ (-1195)) 24) (($ |#2|) NIL) (($ (-1143 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-968 (-419 |#2|))) 368) (($ (-419 (-968 (-419 |#2|)))) 341) (($ (-419 (-968 |#2|))) 335) (($ $) NIL) (($ (-968 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-1871 (((-783)) 88)) (-2362 (((-112) (-115)) 42)) (-1629 (($ (-1195) $) 31) (($ (-1195) $ $) 32) (($ (-1195) $ $ $) 33) (($ (-1195) $ $ $ $) 34) (($ (-1195) (-656 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL))) -(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-937) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2884 (|#1| (-576))) (-15 -1871 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -2884 (|#1| (-968 |#2|))) (-15 -2449 ((-3 (-968 |#2|) "failed") |#1|)) (-15 -4401 ((-968 |#2|) |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 * (|#1| |#1| |#2|)) (-15 -2884 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2884 (|#1| (-419 (-968 |#2|)))) (-15 -2449 ((-3 (-419 (-968 |#2|)) "failed") |#1|)) (-15 -4401 ((-419 (-968 |#2|)) |#1|)) (-15 -3467 ((-419 (-1191 |#1|)) |#1| (-624 |#1|))) (-15 -2884 (|#1| (-419 (-968 (-419 |#2|))))) (-15 -2884 (|#1| (-968 (-419 |#2|)))) (-15 -2884 (|#1| (-419 |#2|))) (-15 -3143 (|#1| |#1|)) (-15 -2616 (|#1| (-430 |#1|))) (-15 -3049 (|#1| |#1| (-1195) (-783) (-1 |#1| |#1|))) (-15 -3049 (|#1| |#1| (-1195) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -1923 ((-3 (-2 (|:| |val| |#1|) (|:| -1359 (-576))) "failed") |#1|)) (-15 -1910 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1359 (-576))) "failed") |#1| (-1195))) (-15 -1910 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1359 (-576))) "failed") |#1| (-115))) (-15 -3154 (|#1| |#1|)) (-15 -2884 (|#1| (-1143 |#2| (-624 |#1|)))) (-15 -1357 ((-3 (-2 (|:| -1755 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -1887 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1910 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1359 (-576))) "failed") |#1|)) (-15 -1899 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3049 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1195))) (-15 -3049 (|#1| |#1| (-115) |#1| (-1195))) (-15 -3049 (|#1| |#1|)) (-15 -3049 (|#1| |#1| (-656 (-1195)))) (-15 -3049 (|#1| |#1| (-1195))) (-15 -1629 (|#1| (-1195) (-656 |#1|))) (-15 -1629 (|#1| (-1195) |#1| |#1| |#1| |#1|)) (-15 -1629 (|#1| (-1195) |#1| |#1| |#1|)) (-15 -1629 (|#1| (-1195) |#1| |#1|)) (-15 -1629 (|#1| (-1195) |#1|)) (-15 -1607 ((-656 (-1195)) |#1|)) (-15 -4359 (|#2| |#1|)) (-15 -4346 ((-112) |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -2884 (|#1| (-1195))) (-15 -2449 ((-3 (-1195) "failed") |#1|)) (-15 -4401 ((-1195) |#1|)) (-15 -3049 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3049 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3049 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3049 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -3049 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 -2558 ((-656 (-624 |#1|)) |#1|)) (-15 -3650 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1474 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1474 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1474 (|#1| |#1| (-304 |#1|))) (-15 -2071 (|#1| (-115) (-656 |#1|))) (-15 -2071 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1|)) (-15 -3049 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| (-304 |#1|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3049 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2884 (|#1| (-624 |#1|))) (-15 -2449 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4401 ((-624 |#1|) |#1|)) (-15 -2884 ((-874) |#1|))) (-442 |#2|) (-1118)) (T -441)) -((-2573 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1118)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1118)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-1871 (*1 *2) (-12 (-4 *4 (-1118)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4))))) -(-10 -8 (-15 * (|#1| (-937) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2884 (|#1| (-576))) (-15 -1871 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -2884 (|#1| (-968 |#2|))) (-15 -2449 ((-3 (-968 |#2|) "failed") |#1|)) (-15 -4401 ((-968 |#2|) |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 * (|#1| |#1| |#2|)) (-15 -2884 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2884 (|#1| (-419 (-968 |#2|)))) (-15 -2449 ((-3 (-419 (-968 |#2|)) "failed") |#1|)) (-15 -4401 ((-419 (-968 |#2|)) |#1|)) (-15 -3467 ((-419 (-1191 |#1|)) |#1| (-624 |#1|))) (-15 -2884 (|#1| (-419 (-968 (-419 |#2|))))) (-15 -2884 (|#1| (-968 (-419 |#2|)))) (-15 -2884 (|#1| (-419 |#2|))) (-15 -3143 (|#1| |#1|)) (-15 -2616 (|#1| (-430 |#1|))) (-15 -3049 (|#1| |#1| (-1195) (-783) (-1 |#1| |#1|))) (-15 -3049 (|#1| |#1| (-1195) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -1923 ((-3 (-2 (|:| |val| |#1|) (|:| -1359 (-576))) "failed") |#1|)) (-15 -1910 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1359 (-576))) "failed") |#1| (-1195))) (-15 -1910 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1359 (-576))) "failed") |#1| (-115))) (-15 -3154 (|#1| |#1|)) (-15 -2884 (|#1| (-1143 |#2| (-624 |#1|)))) (-15 -1357 ((-3 (-2 (|:| -1755 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -1887 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1910 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1359 (-576))) "failed") |#1|)) (-15 -1899 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3049 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1195))) (-15 -3049 (|#1| |#1| (-115) |#1| (-1195))) (-15 -3049 (|#1| |#1|)) (-15 -3049 (|#1| |#1| (-656 (-1195)))) (-15 -3049 (|#1| |#1| (-1195))) (-15 -1629 (|#1| (-1195) (-656 |#1|))) (-15 -1629 (|#1| (-1195) |#1| |#1| |#1| |#1|)) (-15 -1629 (|#1| (-1195) |#1| |#1| |#1|)) (-15 -1629 (|#1| (-1195) |#1| |#1|)) (-15 -1629 (|#1| (-1195) |#1|)) (-15 -1607 ((-656 (-1195)) |#1|)) (-15 -4359 (|#2| |#1|)) (-15 -4346 ((-112) |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -2884 (|#1| (-1195))) (-15 -2449 ((-3 (-1195) "failed") |#1|)) (-15 -4401 ((-1195) |#1|)) (-15 -3049 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3049 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3049 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3049 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -3049 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3049 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 -2558 ((-656 (-624 |#1|)) |#1|)) (-15 -3650 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1474 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1474 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1474 (|#1| |#1| (-304 |#1|))) (-15 -2071 (|#1| (-115) (-656 |#1|))) (-15 -2071 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1| |#1|)) (-15 -2071 (|#1| (-115) |#1|)) (-15 -3049 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| (-304 |#1|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3049 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3049 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2884 (|#1| (-624 |#1|))) (-15 -2449 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4401 ((-624 |#1|) |#1|)) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 117 (|has| |#1| (-25)))) (-1607 (((-656 (-1195)) $) 206)) (-3467 (((-419 (-1191 $)) $ (-624 $)) 174 (|has| |#1| (-568)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 146 (|has| |#1| (-568)))) (-4241 (($ $) 147 (|has| |#1| (-568)))) (-4221 (((-112) $) 149 (|has| |#1| (-568)))) (-4271 (((-656 (-624 $)) $) 39)) (-1459 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-1474 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-2944 (($ $) 166 (|has| |#1| (-568)))) (-3986 (((-430 $) $) 167 (|has| |#1| (-568)))) (-2922 (((-112) $ $) 157 (|has| |#1| (-568)))) (-2473 (($) 105 (-3766 (|has| |#1| (-1130)) (|has| |#1| (-25))) CONST)) (-2449 (((-3 (-624 $) "failed") $) 64) (((-3 (-1195) "failed") $) 219) (((-3 (-576) "failed") $) 213 (|has| |#1| (-1056 (-576)))) (((-3 |#1| "failed") $) 210) (((-3 (-419 (-968 |#1|)) "failed") $) 172 (|has| |#1| (-568))) (((-3 (-968 |#1|) "failed") $) 124 (|has| |#1| (-1067))) (((-3 (-419 (-576)) "failed") $) 99 (-3766 (-12 (|has| |#1| (-1056 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1056 (-419 (-576))))))) (-4401 (((-624 $) $) 65) (((-1195) $) 220) (((-576) $) 212 (|has| |#1| (-1056 (-576)))) ((|#1| $) 211) (((-419 (-968 |#1|)) $) 173 (|has| |#1| (-568))) (((-968 |#1|) $) 125 (|has| |#1| (-1067))) (((-419 (-576)) $) 100 (-3766 (-12 (|has| |#1| (-1056 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1056 (-419 (-576))))))) (-2803 (($ $ $) 161 (|has| |#1| (-568)))) (-2613 (((-701 (-576)) (-1286 $)) 141 (-3227 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) (((-701 (-576)) (-701 $)) 140 (-3227 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 139 (-3227 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 138 (|has| |#1| (-1067))) (((-701 |#1|) (-701 $)) 137 (|has| |#1| (-1067))) (((-701 |#1|) (-1286 $)) 136 (|has| |#1| (-1067)))) (-1999 (((-3 $ "failed") $) 107 (|has| |#1| (-1130)))) (-2814 (($ $ $) 160 (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 155 (|has| |#1| (-568)))) (-2463 (((-112) $) 168 (|has| |#1| (-568)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 215 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 214 (|has| |#1| (-899 (-390))))) (-4330 (($ $) 46) (($ (-656 $)) 45)) (-3640 (((-656 (-115)) $) 38)) (-2573 (((-115) (-115)) 37)) (-1439 (((-112) $) 106 (|has| |#1| (-1130)))) (-4064 (((-112) $) 17 (|has| $ (-1056 (-576))))) (-3154 (($ $) 189 (|has| |#1| (-1067)))) (-1595 (((-1143 |#1| (-624 $)) $) 190 (|has| |#1| (-1067)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 164 (|has| |#1| (-568)))) (-3621 (((-1191 $) (-624 $)) 20 (|has| $ (-1067)))) (-2551 (($ (-1 $ $) (-624 $)) 31)) (-3650 (((-3 (-624 $) "failed") $) 41)) (-3888 (($ (-656 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-3733 (((-1177) $) 10)) (-2558 (((-656 (-624 $)) $) 40)) (-1673 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-1899 (((-3 (-656 $) "failed") $) 195 (|has| |#1| (-1130)))) (-1923 (((-3 (-2 (|:| |val| $) (|:| -1359 (-576))) "failed") $) 186 (|has| |#1| (-1067)))) (-1887 (((-3 (-656 $) "failed") $) 193 (|has| |#1| (-25)))) (-1357 (((-3 (-2 (|:| -1755 (-576)) (|:| |var| (-624 $))) "failed") $) 192 (|has| |#1| (-25)))) (-1910 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $) 194 (|has| |#1| (-1130))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $ (-115)) 188 (|has| |#1| (-1067))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $ (-1195)) 187 (|has| |#1| (-1067)))) (-3657 (((-112) $ (-115)) 35) (((-112) $ (-1195)) 34)) (-4333 (($ $) 109 (-3766 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3343 (((-783) $) 42)) (-3914 (((-1138) $) 11)) (-4346 (((-112) $) 208)) (-4359 ((|#1| $) 207)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 154 (|has| |#1| (-568)))) (-3928 (($ (-656 $)) 151 (|has| |#1| (-568))) (($ $ $) 150 (|has| |#1| (-568)))) (-3630 (((-112) $ $) 30) (((-112) $ (-1195)) 29)) (-2354 (((-430 $) $) 165 (|has| |#1| (-568)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 163 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 162 (|has| |#1| (-568)))) (-2852 (((-3 $ "failed") $ $) 145 (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 156 (|has| |#1| (-568)))) (-4072 (((-112) $) 18 (|has| $ (-1056 (-576))))) (-3049 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1195) (-1 $ (-656 $))) 26) (($ $ (-1195) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1195)) 200 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195))) 199 (|has| |#1| (-626 (-548)))) (($ $) 198 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1195)) 197 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1195)) 196 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) 185 (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 184 (|has| |#1| (-1067))) (($ $ (-1195) (-783) (-1 $ (-656 $))) 183 (|has| |#1| (-1067))) (($ $ (-1195) (-783) (-1 $ $)) 182 (|has| |#1| (-1067)))) (-2910 (((-783) $) 158 (|has| |#1| (-568)))) (-2071 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 159 (|has| |#1| (-568)))) (-3663 (($ $) 44) (($ $ $) 43)) (-2390 (($ $ (-1195)) 134 (|has| |#1| (-1067))) (($ $ (-656 (-1195))) 132 (|has| |#1| (-1067))) (($ $ (-1195) (-783)) 131 (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783))) 130 (|has| |#1| (-1067)))) (-3143 (($ $) 179 (|has| |#1| (-568)))) (-1608 (((-1143 |#1| (-624 $)) $) 180 (|has| |#1| (-568)))) (-1360 (($ $) 19 (|has| $ (-1067)))) (-2616 (((-905 (-576)) $) 217 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 216 (|has| |#1| (-626 (-905 (-390))))) (($ (-430 $)) 181 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-3276 (($ $ $) 112 (|has| |#1| (-485)))) (-2920 (($ $ $) 113 (|has| |#1| (-485)))) (-2884 (((-874) $) 12) (($ (-624 $)) 63) (($ (-1195)) 218) (($ |#1|) 209) (($ (-1143 |#1| (-624 $))) 191 (|has| |#1| (-1067))) (($ (-419 |#1|)) 177 (|has| |#1| (-568))) (($ (-968 (-419 |#1|))) 176 (|has| |#1| (-568))) (($ (-419 (-968 (-419 |#1|)))) 175 (|has| |#1| (-568))) (($ (-419 (-968 |#1|))) 171 (|has| |#1| (-568))) (($ $) 144 (|has| |#1| (-568))) (($ (-968 |#1|)) 123 (|has| |#1| (-1067))) (($ (-419 (-576))) 98 (-3766 (|has| |#1| (-568)) (-12 (|has| |#1| (-1056 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1056 (-419 (-576)))))) (($ (-576)) 97 (-3766 (|has| |#1| (-1067)) (|has| |#1| (-1056 (-576)))))) (-3148 (((-3 $ "failed") $) 142 (|has| |#1| (-146)))) (-1871 (((-783)) 126 (|has| |#1| (-1067)) CONST)) (-2377 (($ $) 48) (($ (-656 $)) 47)) (-2362 (((-112) (-115)) 36)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 148 (|has| |#1| (-568)))) (-1629 (($ (-1195) $) 205) (($ (-1195) $ $) 204) (($ (-1195) $ $ $) 203) (($ (-1195) $ $ $ $) 202) (($ (-1195) (-656 $)) 201)) (-1996 (($) 116 (|has| |#1| (-25)) CONST)) (-2011 (($) 104 (|has| |#1| (-1130)) CONST)) (-3431 (($ $ (-1195)) 133 (|has| |#1| (-1067))) (($ $ (-656 (-1195))) 129 (|has| |#1| (-1067))) (($ $ (-1195) (-783)) 128 (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783))) 127 (|has| |#1| (-1067)))) (-3915 (((-112) $ $) 6)) (-4039 (($ (-1143 |#1| (-624 $)) (-1143 |#1| (-624 $))) 178 (|has| |#1| (-568))) (($ $ $) 110 (-3766 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4029 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-4017 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-3766 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 108 (|has| |#1| (-1130))) (($ $ (-937)) 103 (|has| |#1| (-1130)))) (* (($ (-419 (-576)) $) 170 (|has| |#1| (-568))) (($ $ (-419 (-576))) 169 (|has| |#1| (-568))) (($ $ |#1|) 143 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1067))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-783) $) 118 (|has| |#1| (-25))) (($ (-937) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1130))))) -(((-442 |#1|) (-141) (-1118)) (T -442)) -((-4346 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-4359 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-5 *2 (-656 (-1195))))) (-1629 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))) (-1629 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))) (-1629 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))) (-1629 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))) (-1629 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1118)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-4 *3 (-626 (-548))))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1195))) (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-4 *3 (-626 (-548))))) (-3049 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-626 (-548))))) (-3049 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1195)) (-4 *1 (-442 *4)) (-4 *4 (-1118)) (-4 *4 (-626 (-548))))) (-3049 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1195)) (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-626 (-548))))) (-1899 (*1 *2 *1) (|partial| -12 (-4 *3 (-1130)) (-4 *3 (-1118)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-1910 (*1 *2 *1) (|partial| -12 (-4 *3 (-1130)) (-4 *3 (-1118)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1359 (-576)))) (-4 *1 (-442 *3)))) (-1887 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1118)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-1357 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1118)) (-5 *2 (-2 (|:| -1755 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1143 *3 (-624 *1))) (-4 *3 (-1067)) (-4 *3 (-1118)) (-4 *1 (-442 *3)))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *3 (-1118)) (-5 *2 (-1143 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-1067)))) (-1910 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1067)) (-4 *4 (-1118)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1359 (-576)))) (-4 *1 (-442 *4)))) (-1910 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-1067)) (-4 *4 (-1118)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1359 (-576)))) (-4 *1 (-442 *4)))) (-1923 (*1 *2 *1) (|partial| -12 (-4 *3 (-1067)) (-4 *3 (-1118)) (-5 *2 (-2 (|:| |val| *1) (|:| -1359 (-576)))) (-4 *1 (-442 *3)))) (-3049 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067)))) (-3049 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067)))) (-3049 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067)))) (-3049 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067)))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1118)))) (-1608 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1118)) (-5 *2 (-1143 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-568)))) (-4039 (*1 *1 *2 *2) (-12 (-5 *2 (-1143 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1118)) (-4 *1 (-442 *3)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1118)) (-4 *1 (-442 *3)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-968 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1118)) (-4 *1 (-442 *3)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1118)) (-4 *1 (-442 *3)))) (-3467 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1118)) (-4 *4 (-568)) (-5 *2 (-419 (-1191 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-4 *3 (-1130))))) -(-13 (-312) (-1056 (-1195)) (-897 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -4346 ((-112) $)) (-15 -4359 (|t#1| $)) (-15 -1607 ((-656 (-1195)) $)) (-15 -1629 ($ (-1195) $)) (-15 -1629 ($ (-1195) $ $)) (-15 -1629 ($ (-1195) $ $ $)) (-15 -1629 ($ (-1195) $ $ $ $)) (-15 -1629 ($ (-1195) (-656 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -3049 ($ $ (-1195))) (-15 -3049 ($ $ (-656 (-1195)))) (-15 -3049 ($ $)) (-15 -3049 ($ $ (-115) $ (-1195))) (-15 -3049 ($ $ (-656 (-115)) (-656 $) (-1195)))) |%noBranch|) (IF (|has| |t#1| (-1130)) (PROGN (-6 (-738)) (-15 ** ($ $ (-783))) (-15 -1899 ((-3 (-656 $) "failed") $)) (-15 -1910 ((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1887 ((-3 (-656 $) "failed") $)) (-15 -1357 ((-3 (-2 (|:| -1755 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-1056 (-968 |t#1|))) (-6 (-914 (-1195))) (-6 (-388 |t#1|)) (-15 -2884 ($ (-1143 |t#1| (-624 $)))) (-15 -1595 ((-1143 |t#1| (-624 $)) $)) (-15 -3154 ($ $)) (-15 -1910 ((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $ (-115))) (-15 -1910 ((-3 (-2 (|:| |var| (-624 $)) (|:| -1359 (-576))) "failed") $ (-1195))) (-15 -1923 ((-3 (-2 (|:| |val| $) (|:| -1359 (-576))) "failed") $)) (-15 -3049 ($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $)))) (-15 -3049 ($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $))))) (-15 -3049 ($ $ (-1195) (-783) (-1 $ (-656 $)))) (-15 -3049 ($ $ (-1195) (-783) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1056 (-419 (-968 |t#1|)))) (-15 -2616 ($ (-430 $))) (-15 -1608 ((-1143 |t#1| (-624 $)) $)) (-15 -3143 ($ $)) (-15 -4039 ($ (-1143 |t#1| (-624 $)) (-1143 |t#1| (-624 $)))) (-15 -2884 ($ (-419 |t#1|))) (-15 -2884 ($ (-968 (-419 |t#1|)))) (-15 -2884 ($ (-419 (-968 (-419 |t#1|))))) (-15 -3467 ((-419 (-1191 $)) $ (-624 $))) (IF (|has| |t#1| (-1056 (-576))) (-6 (-1056 (-419 (-576)))) |%noBranch|)) |%noBranch|))) -(((-21) -3766 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -3766 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3766 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -3766 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-968 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -3766 (|has| |#1| (-1067)) (|has| |#1| (-1056 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-968 |#1|)) |has| |#1| (-1067)) ((-628 #4=(-1195)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-249) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1067)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-568)) ((-658 (-576)) -3766 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-658 |#1|) -3766 (|has| |#1| (-1067)) (|has| |#1| (-174))) ((-658 $) -3766 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-660 #0#) |has| |#1| (-568)) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))) ((-660 |#1|) -3766 (|has| |#1| (-1067)) (|has| |#1| (-174))) ((-660 $) -3766 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-652 #0#) |has| |#1| (-568)) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))) ((-651 |#1|) |has| |#1| (-1067)) ((-729 #0#) |has| |#1| (-568)) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) -3766 (|has| |#1| (-1130)) (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-909 $ #6=(-1195)) |has| |#1| (-1067)) ((-914 #6#) |has| |#1| (-1067)) ((-916 #6#) |has| |#1| (-1067)) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-936) |has| |#1| (-568)) ((-1056 (-419 (-576))) -3766 (|has| |#1| (-1056 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))))) ((-1056 #1#) |has| |#1| (-568)) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 #2#) . T) ((-1056 #3#) |has| |#1| (-1067)) ((-1056 #4#) . T) ((-1056 |#1|) . T) ((-1069 #0#) |has| |#1| (-568)) ((-1069 |#1|) |has| |#1| (-174)) ((-1069 $) |has| |#1| (-568)) ((-1074 #0#) |has| |#1| (-568)) ((-1074 |#1|) |has| |#1| (-174)) ((-1074 $) |has| |#1| (-568)) ((-1067) -3766 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1076) -3766 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1130) -3766 (|has| |#1| (-1130)) (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1118) . T) ((-1236) . T) ((-1240) |has| |#1| (-568))) -((-2644 ((|#2| |#2| |#2|) 31)) (-2573 (((-115) (-115)) 43)) (-1486 ((|#2| |#2|) 63)) (-1476 ((|#2| |#2|) 66)) (-2633 ((|#2| |#2|) 30)) (-2676 ((|#2| |#2| |#2|) 33)) (-2699 ((|#2| |#2| |#2|) 35)) (-2665 ((|#2| |#2| |#2|) 32)) (-2688 ((|#2| |#2| |#2|) 34)) (-2362 (((-112) (-115)) 41)) (-2720 ((|#2| |#2|) 37)) (-2709 ((|#2| |#2|) 36)) (-2610 ((|#2| |#2|) 25)) (-2654 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2621 ((|#2| |#2| |#2|) 29))) -(((-443 |#1| |#2|) (-10 -7 (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 -2610 (|#2| |#2|)) (-15 -2654 (|#2| |#2|)) (-15 -2654 (|#2| |#2| |#2|)) (-15 -2621 (|#2| |#2| |#2|)) (-15 -2633 (|#2| |#2|)) (-15 -2644 (|#2| |#2| |#2|)) (-15 -2665 (|#2| |#2| |#2|)) (-15 -2676 (|#2| |#2| |#2|)) (-15 -2688 (|#2| |#2| |#2|)) (-15 -2699 (|#2| |#2| |#2|)) (-15 -2709 (|#2| |#2|)) (-15 -2720 (|#2| |#2|)) (-15 -1476 (|#2| |#2|)) (-15 -1486 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443)) -((-1486 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1476 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2720 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2709 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2699 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2688 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2676 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2665 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2644 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2633 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2621 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2654 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2654 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2610 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2573 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 -2610 (|#2| |#2|)) (-15 -2654 (|#2| |#2|)) (-15 -2654 (|#2| |#2| |#2|)) (-15 -2621 (|#2| |#2| |#2|)) (-15 -2633 (|#2| |#2|)) (-15 -2644 (|#2| |#2| |#2|)) (-15 -2665 (|#2| |#2| |#2|)) (-15 -2676 (|#2| |#2| |#2|)) (-15 -2688 (|#2| |#2| |#2|)) (-15 -2699 (|#2| |#2| |#2|)) (-15 -2709 (|#2| |#2|)) (-15 -2720 (|#2| |#2|)) (-15 -1476 (|#2| |#2|)) (-15 -1486 (|#2| |#2|))) -((-2013 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1191 |#2|)) (|:| |pol2| (-1191 |#2|)) (|:| |prim| (-1191 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1191 |#2|))) (|:| |prim| (-1191 |#2|))) (-656 |#2|)) 65))) -(((-444 |#1| |#2|) (-10 -7 (-15 -2013 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1191 |#2|))) (|:| |prim| (-1191 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -2013 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1191 |#2|)) (|:| |pol2| (-1191 |#2|)) (|:| |prim| (-1191 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444)) -((-2013 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1191 *3)) (|:| |pol2| (-1191 *3)) (|:| |prim| (-1191 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1191 *5))) (|:| |prim| (-1191 *5)))) (-5 *1 (-444 *4 *5))))) -(-10 -7 (-15 -2013 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1191 |#2|))) (|:| |prim| (-1191 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -2013 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1191 |#2|)) (|:| |pol2| (-1191 |#2|)) (|:| |prim| (-1191 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1506 (((-1291)) 18)) (-1495 (((-1191 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24))) -(((-445 |#1| |#2|) (-10 -7 (-15 -1495 ((-419 (-576)) |#2|)) (-15 -1495 ((-1191 (-419 (-576))) |#2| (-624 |#2|))) (-15 -1506 ((-1291)))) (-13 (-568) (-1056 (-576))) (-442 |#1|)) (T -445)) -((-1506 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *2 (-1291)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-1495 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))) -(-10 -7 (-15 -1495 ((-419 (-576)) |#2|)) (-15 -1495 ((-1191 (-419 (-576))) |#2| (-624 |#2|))) (-15 -1506 ((-1291)))) -((-4088 (((-112) $) 32)) (-1516 (((-112) $) 34)) (-3846 (((-112) $) 35)) (-1537 (((-112) $) 38)) (-3516 (((-112) $) 33)) (-3508 (((-112) $) 37)) (-2884 (((-874) $) 20) (($ (-1177)) 31) (($ (-1195)) 26) (((-1195) $) 24) (((-1122) $) 23)) (-1526 (((-112) $) 36)) (-3915 (((-112) $ $) 17))) -(((-446) (-13 (-625 (-874)) (-10 -8 (-15 -2884 ($ (-1177))) (-15 -2884 ($ (-1195))) (-15 -2884 ((-1195) $)) (-15 -2884 ((-1122) $)) (-15 -4088 ((-112) $)) (-15 -3516 ((-112) $)) (-15 -3846 ((-112) $)) (-15 -3508 ((-112) $)) (-15 -1537 ((-112) $)) (-15 -1526 ((-112) $)) (-15 -1516 ((-112) $)) (-15 -3915 ((-112) $ $))))) (T -446)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-446)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-446)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-446)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-446)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1537 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3915 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(-13 (-625 (-874)) (-10 -8 (-15 -2884 ($ (-1177))) (-15 -2884 ($ (-1195))) (-15 -2884 ((-1195) $)) (-15 -2884 ((-1122) $)) (-15 -4088 ((-112) $)) (-15 -3516 ((-112) $)) (-15 -3846 ((-112) $)) (-15 -3508 ((-112) $)) (-15 -1537 ((-112) $)) (-15 -1526 ((-112) $)) (-15 -1516 ((-112) $)) (-15 -3915 ((-112) $ $)))) -((-3535 (((-3 (-430 (-1191 (-419 (-576)))) "failed") |#3|) 72)) (-3526 (((-430 |#3|) |#3|) 34)) (-3555 (((-3 (-430 (-1191 (-48))) "failed") |#3|) 46 (|has| |#2| (-1056 (-48))))) (-3546 (((-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -3422 (-112))) |#3|) 37))) -(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -3526 ((-430 |#3|) |#3|)) (-15 -3535 ((-3 (-430 (-1191 (-419 (-576)))) "failed") |#3|)) (-15 -3546 ((-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -3422 (-112))) |#3|)) (IF (|has| |#2| (-1056 (-48))) (-15 -3555 ((-3 (-430 (-1191 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1056 (-576))) (-442 |#1|) (-1262 |#2|)) (T -447)) -((-3555 (*1 *2 *3) (|partial| -12 (-4 *5 (-1056 (-48))) (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1191 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-3546 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -3422 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-3535 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1191 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-3526 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5))))) -(-10 -7 (-15 -3526 ((-430 |#3|) |#3|)) (-15 -3535 ((-3 (-430 (-1191 (-419 (-576)))) "failed") |#3|)) (-15 -3546 ((-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -3422 (-112))) |#3|)) (IF (|has| |#2| (-1056 (-48))) (-15 -3555 ((-3 (-430 (-1191 (-48))) "failed") |#3|)) |%noBranch|)) -((-2862 (((-112) $ $) NIL)) (-2823 (((-1177) $ (-1177)) NIL)) (-1575 (($ $ (-1177)) NIL)) (-2835 (((-1177) $) NIL)) (-3679 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-2980 (($ (-400)) NIL) (($ (-400) (-1177)) NIL)) (-1778 (((-400) $) NIL)) (-3733 (((-1177) $) NIL)) (-2847 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3669 (((-1291) (-1177)) 9)) (-3656 (((-1291) (-1177)) 10)) (-3644 (((-1291)) 11)) (-2884 (((-874) $) NIL)) (-1561 (($ $) 39)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-448) (-13 (-375 (-400) (-1177)) (-10 -7 (-15 -3679 ((-400) (-400) (-400))) (-15 -3679 ((-400) (-400))) (-15 -3669 ((-1291) (-1177))) (-15 -3656 ((-1291) (-1177))) (-15 -3644 ((-1291)))))) (T -448)) -((-3679 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448)))) (-3644 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-448))))) -(-13 (-375 (-400) (-1177)) (-10 -7 (-15 -3679 ((-400) (-400) (-400))) (-15 -3679 ((-400) (-400))) (-15 -3669 ((-1291) (-1177))) (-15 -3656 ((-1291) (-1177))) (-15 -3644 ((-1291))))) -((-2862 (((-112) $ $) NIL)) (-3635 (((-3 (|:| |fst| (-446)) (|:| -2008 "void")) $) 11)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3617 (($) 35)) (-3590 (($) 41)) (-3599 (($) 37)) (-3569 (($) 39)) (-3608 (($) 36)) (-3579 (($) 38)) (-3563 (($) 40)) (-3625 (((-112) $) 8)) (-2888 (((-656 (-968 (-576))) $) 19)) (-2895 (($ (-3 (|:| |fst| (-446)) (|:| -2008 "void")) (-656 (-1195)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2008 "void")) (-656 (-968 (-576))) (-112)) 30)) (-2884 (((-874) $) 24) (($ (-446)) 32)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-449) (-13 (-1118) (-10 -8 (-15 -2884 ($ (-446))) (-15 -3635 ((-3 (|:| |fst| (-446)) (|:| -2008 "void")) $)) (-15 -2888 ((-656 (-968 (-576))) $)) (-15 -3625 ((-112) $)) (-15 -2895 ($ (-3 (|:| |fst| (-446)) (|:| -2008 "void")) (-656 (-1195)) (-112))) (-15 -2895 ($ (-3 (|:| |fst| (-446)) (|:| -2008 "void")) (-656 (-968 (-576))) (-112))) (-15 -3617 ($)) (-15 -3608 ($)) (-15 -3599 ($)) (-15 -3590 ($)) (-15 -3579 ($)) (-15 -3569 ($)) (-15 -3563 ($))))) (T -449)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-5 *1 (-449)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-656 (-968 (-576)))) (-5 *1 (-449)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-2895 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-5 *3 (-656 (-1195))) (-5 *4 (-112)) (-5 *1 (-449)))) (-2895 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-3617 (*1 *1) (-5 *1 (-449))) (-3608 (*1 *1) (-5 *1 (-449))) (-3599 (*1 *1) (-5 *1 (-449))) (-3590 (*1 *1) (-5 *1 (-449))) (-3579 (*1 *1) (-5 *1 (-449))) (-3569 (*1 *1) (-5 *1 (-449))) (-3563 (*1 *1) (-5 *1 (-449)))) -(-13 (-1118) (-10 -8 (-15 -2884 ($ (-446))) (-15 -3635 ((-3 (|:| |fst| (-446)) (|:| -2008 "void")) $)) (-15 -2888 ((-656 (-968 (-576))) $)) (-15 -3625 ((-112) $)) (-15 -2895 ($ (-3 (|:| |fst| (-446)) (|:| -2008 "void")) (-656 (-1195)) (-112))) (-15 -2895 ($ (-3 (|:| |fst| (-446)) (|:| -2008 "void")) (-656 (-968 (-576))) (-112))) (-15 -3617 ($)) (-15 -3608 ($)) (-15 -3599 ($)) (-15 -3590 ($)) (-15 -3579 ($)) (-15 -3569 ($)) (-15 -3563 ($)))) -((-2862 (((-112) $ $) NIL)) (-1778 (((-1195) $) 8)) (-3733 (((-1177) $) 17)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 11)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 14))) -(((-450 |#1|) (-13 (-1118) (-10 -8 (-15 -1778 ((-1195) $)))) (-1195)) (T -450)) -((-1778 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-450 *3)) (-14 *3 *2)))) -(-13 (-1118) (-10 -8 (-15 -1778 ((-1195) $)))) -((-2862 (((-112) $ $) NIL)) (-1382 (((-1136) $) 7)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 13)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 9))) -(((-451) (-13 (-1118) (-10 -8 (-15 -1382 ((-1136) $))))) (T -451)) -((-1382 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-451))))) -(-13 (-1118) (-10 -8 (-15 -1382 ((-1136) $)))) -((-2251 (((-1291) $) 7)) (-2884 (((-874) $) 8) (($ (-1286 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 11))) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-407)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-407)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) (-4 *1 (-407)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-4 *1 (-407)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-389))) (-4 *1 (-407)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-4 *1 (-407)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-575))) (-4 *1 (-407)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-967 (-389))) (-4 *1 (-407)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-389))) (-4 *1 (-407)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-967 (-575))) (-4 *1 (-407)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-575))) (-4 *1 (-407)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-389)))) (-4 *1 (-407)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-418 (-967 (-389)))) (-4 *1 (-407)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-575)))) (-4 *1 (-407)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-418 (-967 (-575)))) (-4 *1 (-407))))) +(-13 (-406) (-10 -8 (-15 -2883 ($ (-655 (-339)))) (-15 -2883 ($ (-339))) (-15 -2883 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339)))))) (-15 -4399 ($ (-325 (-389)))) (-15 -2449 ((-3 $ "failed") (-325 (-389)))) (-15 -4399 ($ (-325 (-575)))) (-15 -2449 ((-3 $ "failed") (-325 (-575)))) (-15 -4399 ($ (-967 (-389)))) (-15 -2449 ((-3 $ "failed") (-967 (-389)))) (-15 -4399 ($ (-967 (-575)))) (-15 -2449 ((-3 $ "failed") (-967 (-575)))) (-15 -4399 ($ (-418 (-967 (-389))))) (-15 -2449 ((-3 $ "failed") (-418 (-967 (-389))))) (-15 -4399 ($ (-418 (-967 (-575))))) (-15 -2449 ((-3 $ "failed") (-418 (-967 (-575))))))) +(((-624 (-873)) . T) ((-406) . T) ((-1235) . T)) +((-4215 (((-655 (-1176)) (-655 (-1176))) 9)) (-2248 (((-1290) (-399)) 26)) (-3133 (((-1121) (-1194) (-655 (-1194)) (-1197) (-655 (-1194))) 59) (((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194)) (-1194)) 34) (((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194))) 33))) +(((-408) (-10 -7 (-15 -3133 ((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194)))) (-15 -3133 ((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194)) (-1194))) (-15 -3133 ((-1121) (-1194) (-655 (-1194)) (-1197) (-655 (-1194)))) (-15 -2248 ((-1290) (-399))) (-15 -4215 ((-655 (-1176)) (-655 (-1176)))))) (T -408)) +((-4215 (*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-408)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-399)) (-5 *2 (-1290)) (-5 *1 (-408)))) (-3133 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-655 (-1194))) (-5 *5 (-1197)) (-5 *3 (-1194)) (-5 *2 (-1121)) (-5 *1 (-408)))) (-3133 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-655 (-655 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-655 (-3 (|:| |array| (-655 *3)) (|:| |scalar| (-1194))))) (-5 *6 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1121)) (-5 *1 (-408)))) (-3133 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-655 (-655 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-655 (-3 (|:| |array| (-655 *3)) (|:| |scalar| (-1194))))) (-5 *6 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1121)) (-5 *1 (-408))))) +(-10 -7 (-15 -3133 ((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194)))) (-15 -3133 ((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194)) (-1194))) (-15 -3133 ((-1121) (-1194) (-655 (-1194)) (-1197) (-655 (-1194)))) (-15 -2248 ((-1290) (-399))) (-15 -4215 ((-655 (-1176)) (-655 (-1176))))) +((-2248 (((-1290) $) 35)) (-2883 (((-873) $) 97) (($ (-339)) 99) (($ (-655 (-339))) 98) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 96) (($ (-325 (-712))) 52) (($ (-325 (-710))) 72) (($ (-325 (-705))) 85) (($ (-303 (-325 (-712)))) 67) (($ (-303 (-325 (-710)))) 80) (($ (-303 (-325 (-705)))) 93) (($ (-325 (-575))) 104) (($ (-325 (-389))) 117) (($ (-325 (-171 (-389)))) 130) (($ (-303 (-325 (-575)))) 112) (($ (-303 (-325 (-389)))) 125) (($ (-303 (-325 (-171 (-389))))) 138))) +(((-409 |#1| |#2| |#3| |#4|) (-13 (-406) (-10 -8 (-15 -2883 ($ (-339))) (-15 -2883 ($ (-655 (-339)))) (-15 -2883 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339)))))) (-15 -2883 ($ (-325 (-712)))) (-15 -2883 ($ (-325 (-710)))) (-15 -2883 ($ (-325 (-705)))) (-15 -2883 ($ (-303 (-325 (-712))))) (-15 -2883 ($ (-303 (-325 (-710))))) (-15 -2883 ($ (-303 (-325 (-705))))) (-15 -2883 ($ (-325 (-575)))) (-15 -2883 ($ (-325 (-389)))) (-15 -2883 ($ (-325 (-171 (-389))))) (-15 -2883 ($ (-303 (-325 (-575))))) (-15 -2883 ($ (-303 (-325 (-389))))) (-15 -2883 ($ (-303 (-325 (-171 (-389)))))))) (-1194) (-3 (|:| |fst| (-445)) (|:| -2007 "void")) (-655 (-1194)) (-1198)) (T -409)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-339)) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-325 (-712))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-325 (-710))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-325 (-705))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-712)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-710)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-705)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-325 (-171 (-389)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-575)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-389)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-171 (-389))))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))) +(-13 (-406) (-10 -8 (-15 -2883 ($ (-339))) (-15 -2883 ($ (-655 (-339)))) (-15 -2883 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339)))))) (-15 -2883 ($ (-325 (-712)))) (-15 -2883 ($ (-325 (-710)))) (-15 -2883 ($ (-325 (-705)))) (-15 -2883 ($ (-303 (-325 (-712))))) (-15 -2883 ($ (-303 (-325 (-710))))) (-15 -2883 ($ (-303 (-325 (-705))))) (-15 -2883 ($ (-325 (-575)))) (-15 -2883 ($ (-325 (-389)))) (-15 -2883 ($ (-325 (-171 (-389))))) (-15 -2883 ($ (-303 (-325 (-575))))) (-15 -2883 ($ (-303 (-325 (-389))))) (-15 -2883 ($ (-303 (-325 (-171 (-389)))))))) +((-2861 (((-112) $ $) NIL)) (-3397 ((|#2| $) 38)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1796 (($ (-418 |#2|)) 93)) (-3688 (((-655 (-2 (|:| -2398 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|))) $) 39)) (-2389 (($ $) 34) (($ $ (-782)) 36)) (-2615 (((-418 |#2|) $) 49)) (-2894 (($ (-655 (-2 (|:| -2398 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|)))) 33)) (-2883 (((-873) $) 131)) (-4400 (((-112) $ $) NIL)) (-3430 (($ $) 35) (($ $ (-782)) 37)) (-3914 (((-112) $ $) NIL)) (-4016 (($ |#2| $) 41))) +(((-410 |#1| |#2|) (-13 (-1117) (-625 (-418 |#2|)) (-10 -8 (-15 -4016 ($ |#2| $)) (-15 -1796 ($ (-418 |#2|))) (-15 -3397 (|#2| $)) (-15 -3688 ((-655 (-2 (|:| -2398 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|))) $)) (-15 -2894 ($ (-655 (-2 (|:| -2398 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|))))) (-15 -2389 ($ $)) (-15 -3430 ($ $)) (-15 -2389 ($ $ (-782))) (-15 -3430 ($ $ (-782))))) (-13 (-373) (-148)) (-1261 |#1|)) (T -410)) +((-4016 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *2)) (-4 *2 (-1261 *3)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *4)))) (-3397 (*1 *2 *1) (-12 (-4 *2 (-1261 *3)) (-5 *1 (-410 *3 *2)) (-4 *3 (-13 (-373) (-148))))) (-3688 (*1 *2 *1) (-12 (-4 *3 (-13 (-373) (-148))) (-5 *2 (-655 (-2 (|:| -2398 (-782)) (|:| -1751 *4) (|:| |num| *4)))) (-5 *1 (-410 *3 *4)) (-4 *4 (-1261 *3)))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -2398 (-782)) (|:| -1751 *4) (|:| |num| *4)))) (-4 *4 (-1261 *3)) (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *4)))) (-2389 (*1 *1 *1) (-12 (-4 *2 (-13 (-373) (-148))) (-5 *1 (-410 *2 *3)) (-4 *3 (-1261 *2)))) (-3430 (*1 *1 *1) (-12 (-4 *2 (-13 (-373) (-148))) (-5 *1 (-410 *2 *3)) (-4 *3 (-1261 *2)))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *4)) (-4 *4 (-1261 *3)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *4)) (-4 *4 (-1261 *3))))) +(-13 (-1117) (-625 (-418 |#2|)) (-10 -8 (-15 -4016 ($ |#2| $)) (-15 -1796 ($ (-418 |#2|))) (-15 -3397 (|#2| $)) (-15 -3688 ((-655 (-2 (|:| -2398 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|))) $)) (-15 -2894 ($ (-655 (-2 (|:| -2398 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|))))) (-15 -2389 ($ $)) (-15 -3430 ($ $)) (-15 -2389 ($ $ (-782))) (-15 -3430 ($ $ (-782))))) +((-2861 (((-112) $ $) 9 (-3765 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))))) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 16 (|has| |#1| (-898 (-389)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 15 (|has| |#1| (-898 (-575))))) (-2288 (((-1176) $) 13 (-3765 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))))) (-3912 (((-1137) $) 12 (-3765 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))))) (-2883 (((-873) $) 11 (-3765 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))))) (-4400 (((-112) $ $) 14 (-3765 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))))) (-3914 (((-112) $ $) 10 (-3765 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389))))))) +(((-411 |#1|) (-141) (-1235)) (T -411)) +NIL +(-13 (-1235) (-10 -7 (IF (|has| |t#1| (-898 (-575))) (-6 (-898 (-575))) |%noBranch|) (IF (|has| |t#1| (-898 (-389))) (-6 (-898 (-389))) |%noBranch|))) +(((-102) -3765 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))) ((-624 (-873)) -3765 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))) ((-898 (-389)) |has| |#1| (-898 (-389))) ((-898 (-575)) |has| |#1| (-898 (-575))) ((-1117) -3765 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))) ((-1235) . T)) +((-4374 (($ $) 10) (($ $ (-782)) 12))) +(((-412 |#1|) (-10 -8 (-15 -4374 (|#1| |#1| (-782))) (-15 -4374 (|#1| |#1|))) (-413)) (T -412)) +NIL +(-10 -8 (-15 -4374 (|#1| |#1| (-782))) (-15 -4374 (|#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 81)) (-2330 (((-429 $) $) 80)) (-2279 (((-112) $ $) 65)) (-3011 (($) 18 T CONST)) (-2802 (($ $ $) 61)) (-1747 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-4374 (($ $) 87) (($ $ (-782)) 86)) (-1336 (((-112) $) 79)) (-2673 (((-844 (-936)) $) 89)) (-1542 (((-112) $) 35)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2353 (((-429 $) $) 82)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3708 (((-782) $) 64)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-3905 (((-3 (-782) "failed") $ $) 88)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74)) (-1518 (((-3 $ "failed") $) 90)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ $) 73)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75))) +(((-413) (-141)) (T -413)) +((-2673 (*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-844 (-936))))) (-3905 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-413)) (-5 *2 (-782)))) (-4374 (*1 *1 *1) (-4 *1 (-413))) (-4374 (*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-782))))) +(-13 (-373) (-146) (-10 -8 (-15 -2673 ((-844 (-936)) $)) (-15 -3905 ((-3 (-782) "failed") $ $)) (-15 -4374 ($ $)) (-15 -4374 ($ $ (-782))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T)) +((-1539 (($ (-575) (-575)) 11) (($ (-575) (-575) (-936)) NIL)) (-1874 (((-936)) 19) (((-936) (-936)) NIL))) +(((-414 |#1|) (-10 -8 (-15 -1874 ((-936) (-936))) (-15 -1874 ((-936))) (-15 -1539 (|#1| (-575) (-575) (-936))) (-15 -1539 (|#1| (-575) (-575)))) (-415)) (T -414)) +((-1874 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-414 *3)) (-4 *3 (-415)))) (-1874 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-414 *3)) (-4 *3 (-415))))) +(-10 -8 (-15 -1874 ((-936) (-936))) (-15 -1874 ((-936))) (-15 -1539 (|#1| (-575) (-575) (-936))) (-15 -1539 (|#1| (-575) (-575)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3127 (((-575) $) 97)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-4080 (($ $) 95)) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 81)) (-2330 (((-429 $) $) 80)) (-2473 (($ $) 105)) (-2279 (((-112) $ $) 65)) (-4428 (((-575) $) 122)) (-3011 (($) 18 T CONST)) (-2447 (($ $) 94)) (-2449 (((-3 (-575) "failed") $) 110) (((-3 (-418 (-575)) "failed") $) 107)) (-4399 (((-575) $) 111) (((-418 (-575)) $) 108)) (-2802 (($ $ $) 61)) (-1747 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-1336 (((-112) $) 79)) (-1499 (((-936)) 138) (((-936) (-936)) 135 (|has| $ (-6 -4451)))) (-4075 (((-112) $) 120)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 101)) (-2673 (((-575) $) 144)) (-1542 (((-112) $) 35)) (-2931 (($ $ (-575)) 104)) (-2255 (($ $) 100)) (-4087 (((-112) $) 121)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-1920 (($ $ $) 119) (($) 132 (-12 (-3215 (|has| $ (-6 -4451))) (-3215 (|has| $ (-6 -4443)))))) (-1425 (($ $ $) 118) (($) 131 (-12 (-3215 (|has| $ (-6 -4451))) (-3215 (|has| $ (-6 -4443)))))) (-3662 (((-575) $) 141)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3906 (((-936) (-575)) 134 (|has| $ (-6 -4451)))) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-4309 (($ $) 96)) (-2736 (($ $) 98)) (-1539 (($ (-575) (-575)) 146) (($ (-575) (-575) (-936)) 145)) (-2353 (((-429 $) $) 82)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-2398 (((-575) $) 142)) (-3708 (((-782) $) 64)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-1874 (((-936)) 139) (((-936) (-936)) 136 (|has| $ (-6 -4451)))) (-3450 (((-936) (-575)) 133 (|has| $ (-6 -4451)))) (-2615 (((-389) $) 113) (((-227) $) 112) (((-904 (-389)) $) 102)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ (-575)) 109) (($ (-418 (-575))) 106)) (-3759 (((-782)) 32 T CONST)) (-1432 (($ $) 99)) (-2351 (((-936)) 140) (((-936) (-936)) 137 (|has| $ (-6 -4451)))) (-4400 (((-112) $ $) 9)) (-1548 (((-936)) 143)) (-1780 (((-112) $ $) 45)) (-2705 (($ $) 123)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3981 (((-112) $ $) 116)) (-3956 (((-112) $ $) 115)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 117)) (-3943 (((-112) $ $) 114)) (-4038 (($ $ $) 73)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77) (($ $ (-418 (-575))) 103)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75))) +(((-415) (-141)) (T -415)) +((-1539 (*1 *1 *2 *2) (-12 (-5 *2 (-575)) (-4 *1 (-415)))) (-1539 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-936)) (-4 *1 (-415)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575)))) (-1548 (*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575)))) (-2351 (*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) (-1874 (*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) (-1499 (*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) (-2351 (*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415)))) (-1874 (*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-575)) (|has| *1 (-6 -4451)) (-4 *1 (-415)) (-5 *2 (-936)))) (-3450 (*1 *2 *3) (-12 (-5 *3 (-575)) (|has| *1 (-6 -4451)) (-4 *1 (-415)) (-5 *2 (-936)))) (-1920 (*1 *1) (-12 (-4 *1 (-415)) (-3215 (|has| *1 (-6 -4451))) (-3215 (|has| *1 (-6 -4443))))) (-1425 (*1 *1) (-12 (-4 *1 (-415)) (-3215 (|has| *1 (-6 -4451))) (-3215 (|has| *1 (-6 -4443)))))) +(-13 (-1077) (-10 -8 (-6 -3494) (-15 -1539 ($ (-575) (-575))) (-15 -1539 ($ (-575) (-575) (-936))) (-15 -2673 ((-575) $)) (-15 -1548 ((-936))) (-15 -2398 ((-575) $)) (-15 -3662 ((-575) $)) (-15 -2351 ((-936))) (-15 -1874 ((-936))) (-15 -1499 ((-936))) (IF (|has| $ (-6 -4451)) (PROGN (-15 -2351 ((-936) (-936))) (-15 -1874 ((-936) (-936))) (-15 -1499 ((-936) (-936))) (-15 -3906 ((-936) (-575))) (-15 -3450 ((-936) (-575)))) |%noBranch|) (IF (|has| $ (-6 -4443)) |%noBranch| (IF (|has| $ (-6 -4451)) |%noBranch| (PROGN (-15 -1920 ($)) (-15 -1425 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-625 (-227)) . T) ((-625 (-389)) . T) ((-625 (-904 (-389))) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-859) . T) ((-861) . T) ((-898 (-389)) . T) ((-935) . T) ((-1019) . T) ((-1039) . T) ((-1077) . T) ((-1055 (-418 (-575))) . T) ((-1055 (-575)) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T)) +((-2550 (((-429 |#2|) (-1 |#2| |#1|) (-429 |#1|)) 20))) +(((-416 |#1| |#2|) (-10 -7 (-15 -2550 ((-429 |#2|) (-1 |#2| |#1|) (-429 |#1|)))) (-567) (-567)) (T -416)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-429 *5)) (-4 *5 (-567)) (-4 *6 (-567)) (-5 *2 (-429 *6)) (-5 *1 (-416 *5 *6))))) +(-10 -7 (-15 -2550 ((-429 |#2|) (-1 |#2| |#1|) (-429 |#1|)))) +((-2550 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 13))) +(((-417 |#1| |#2|) (-10 -7 (-15 -2550 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-567) (-567)) (T -417)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-567)) (-4 *6 (-567)) (-5 *2 (-418 *6)) (-5 *1 (-417 *5 *6))))) +(-10 -7 (-15 -2550 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 13)) (-3127 ((|#1| $) 21 (|has| |#1| (-316)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL (|has| |#1| (-831)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 17) (((-3 (-1194) "failed") $) NIL (|has| |#1| (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) 72 (|has| |#1| (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575))))) (-4399 ((|#1| $) 15) (((-1194) $) NIL (|has| |#1| (-1055 (-1194)))) (((-418 (-575)) $) 69 (|has| |#1| (-1055 (-575)))) (((-575) $) NIL (|has| |#1| (-1055 (-575))))) (-2802 (($ $ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) 51)) (-2079 (($) NIL (|has| |#1| (-556)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-4075 (((-112) $) NIL (|has| |#1| (-831)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| |#1| (-898 (-389))))) (-1542 (((-112) $) 57)) (-4046 (($ $) NIL)) (-1595 ((|#1| $) 73)) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-1169)))) (-4087 (((-112) $) NIL (|has| |#1| (-831)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| |#1| (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 100)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) NIL (|has| |#1| (-316)))) (-2736 ((|#1| $) 28 (|has| |#1| (-556)))) (-1641 (((-429 (-1190 $)) (-1190 $)) 145 (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) 138 (|has| |#1| (-924)))) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3048 (($ $ (-655 |#1|) (-655 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-525 (-1194) |#1|)))) (-3708 (((-782) $) NIL)) (-2070 (($ $ |#1|) NIL (|has| |#1| (-295 |#1| |#1|)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2389 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-4172 (($ $) NIL)) (-1608 ((|#1| $) 75)) (-2615 (((-904 (-575)) $) NIL (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| |#1| (-625 (-904 (-389))))) (((-547) $) NIL (|has| |#1| (-625 (-547)))) (((-389) $) NIL (|has| |#1| (-1039))) (((-227) $) NIL (|has| |#1| (-1039)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 10) (($ (-1194)) NIL (|has| |#1| (-1055 (-1194))))) (-1518 (((-3 $ "failed") $) 102 (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) 103 T CONST)) (-1432 ((|#1| $) 26 (|has| |#1| (-556)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-2705 (($ $) NIL (|has| |#1| (-831)))) (-1996 (($) 22 T CONST)) (-2009 (($) 8 T CONST)) (-4196 (((-1176) $) 44 (-12 (|has| |#1| (-556)) (|has| |#1| (-839)))) (((-1176) $ (-112)) 45 (-12 (|has| |#1| (-556)) (|has| |#1| (-839)))) (((-1290) (-833) $) 46 (-12 (|has| |#1| (-556)) (|has| |#1| (-839)))) (((-1290) (-833) $ (-112)) 47 (-12 (|has| |#1| (-556)) (|has| |#1| (-839))))) (-3430 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) 66)) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) 24 (|has| |#1| (-861)))) (-4038 (($ $ $) 133) (($ |#1| |#1|) 53)) (-4028 (($ $) 25) (($ $ $) 56)) (-4016 (($ $ $) 54)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 132)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 61) (($ $ $) 58) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-418 |#1|) (-13 (-1009 |#1|) (-10 -7 (IF (|has| |#1| (-556)) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4447)) (IF (|has| |#1| (-463)) (IF (|has| |#1| (-6 -4458)) (-6 -4447) |%noBranch|) |%noBranch|) |%noBranch|))) (-567)) (T -418)) +NIL +(-13 (-1009 |#1|) (-10 -7 (IF (|has| |#1| (-556)) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4447)) (IF (|has| |#1| (-463)) (IF (|has| |#1| (-6 -4458)) (-6 -4447) |%noBranch|) |%noBranch|) |%noBranch|))) +((-1389 (((-700 |#2|) (-1285 $)) NIL) (((-700 |#2|)) 18)) (-1385 (($ (-1285 |#2|) (-1285 $)) NIL) (($ (-1285 |#2|)) 24)) (-2746 (((-700 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) $) 40)) (-1943 ((|#3| $) 69)) (-4060 ((|#2| (-1285 $)) NIL) ((|#2|) 20)) (-3962 (((-1285 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) (-1285 $) (-1285 $)) NIL) (((-1285 |#2|) $) 22) (((-700 |#2|) (-1285 $)) 38)) (-2615 (((-1285 |#2|) $) 11) (($ (-1285 |#2|)) 13)) (-2551 ((|#3| $) 55))) +(((-419 |#1| |#2| |#3|) (-10 -8 (-15 -2746 ((-700 |#2|) |#1|)) (-15 -4060 (|#2|)) (-15 -1389 ((-700 |#2|))) (-15 -2615 (|#1| (-1285 |#2|))) (-15 -2615 ((-1285 |#2|) |#1|)) (-15 -1385 (|#1| (-1285 |#2|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1|)) (-15 -1943 (|#3| |#1|)) (-15 -2551 (|#3| |#1|)) (-15 -1389 ((-700 |#2|) (-1285 |#1|))) (-15 -4060 (|#2| (-1285 |#1|))) (-15 -1385 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -2746 ((-700 |#2|) |#1| (-1285 |#1|)))) (-420 |#2| |#3|) (-174) (-1261 |#2|)) (T -419)) +((-1389 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)) (-5 *1 (-419 *3 *4 *5)) (-4 *3 (-420 *4 *5)))) (-4060 (*1 *2) (-12 (-4 *4 (-1261 *2)) (-4 *2 (-174)) (-5 *1 (-419 *3 *2 *4)) (-4 *3 (-420 *2 *4))))) +(-10 -8 (-15 -2746 ((-700 |#2|) |#1|)) (-15 -4060 (|#2|)) (-15 -1389 ((-700 |#2|))) (-15 -2615 (|#1| (-1285 |#2|))) (-15 -2615 ((-1285 |#2|) |#1|)) (-15 -1385 (|#1| (-1285 |#2|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1|)) (-15 -1943 (|#3| |#1|)) (-15 -2551 (|#3| |#1|)) (-15 -1389 ((-700 |#2|) (-1285 |#1|))) (-15 -4060 (|#2| (-1285 |#1|))) (-15 -1385 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -2746 ((-700 |#2|) |#1| (-1285 |#1|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1389 (((-700 |#1|) (-1285 $)) 53) (((-700 |#1|)) 68)) (-1447 ((|#1| $) 59)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1385 (($ (-1285 |#1|) (-1285 $)) 55) (($ (-1285 |#1|)) 71)) (-2746 (((-700 |#1|) $ (-1285 $)) 60) (((-700 |#1|) $) 66)) (-1747 (((-3 $ "failed") $) 37)) (-4422 (((-936)) 61)) (-1542 (((-112) $) 35)) (-2255 ((|#1| $) 58)) (-1943 ((|#2| $) 51 (|has| |#1| (-373)))) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4060 ((|#1| (-1285 $)) 54) ((|#1|) 67)) (-3962 (((-1285 |#1|) $ (-1285 $)) 57) (((-700 |#1|) (-1285 $) (-1285 $)) 56) (((-1285 |#1|) $) 73) (((-700 |#1|) (-1285 $)) 72)) (-2615 (((-1285 |#1|) $) 70) (($ (-1285 |#1|)) 69)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44)) (-1518 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2551 ((|#2| $) 52)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1624 (((-1285 $)) 74)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-420 |#1| |#2|) (-141) (-174) (-1261 |t#1|)) (T -420)) +((-1624 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-1285 *1)) (-4 *1 (-420 *3 *4)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-1285 *3)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-420 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-420 *3 *4)) (-4 *4 (-1261 *3)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-1285 *3)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-420 *3 *4)) (-4 *4 (-1261 *3)))) (-1389 (*1 *2) (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-700 *3)))) (-4060 (*1 *2) (-12 (-4 *1 (-420 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-700 *3))))) +(-13 (-380 |t#1| |t#2|) (-10 -8 (-15 -1624 ((-1285 $))) (-15 -3962 ((-1285 |t#1|) $)) (-15 -3962 ((-700 |t#1|) (-1285 $))) (-15 -1385 ($ (-1285 |t#1|))) (-15 -2615 ((-1285 |t#1|) $)) (-15 -2615 ($ (-1285 |t#1|))) (-15 -1389 ((-700 |t#1|))) (-15 -4060 (|t#1|)) (-15 -2746 ((-700 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-380 |#1| |#2|) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-737) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) 27) (((-3 (-575) "failed") $) 19)) (-4399 ((|#2| $) NIL) (((-418 (-575)) $) 24) (((-575) $) 14)) (-2883 (($ |#2|) NIL) (($ (-418 (-575))) 22) (($ (-575)) 11))) +(((-421 |#1| |#2|) (-10 -8 (-15 -2883 (|#1| (-575))) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2883 (|#1| |#2|))) (-422 |#2|) (-1235)) (T -421)) +NIL +(-10 -8 (-15 -2883 (|#1| (-575))) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2883 (|#1| |#2|))) +((-2449 (((-3 |#1| "failed") $) 9) (((-3 (-418 (-575)) "failed") $) 16 (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) 13 (|has| |#1| (-1055 (-575))))) (-4399 ((|#1| $) 8) (((-418 (-575)) $) 17 (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) 14 (|has| |#1| (-1055 (-575))))) (-2883 (($ |#1|) 6) (($ (-418 (-575))) 15 (|has| |#1| (-1055 (-418 (-575))))) (($ (-575)) 12 (|has| |#1| (-1055 (-575)))))) +(((-422 |#1|) (-141) (-1235)) (T -422)) +NIL +(-13 (-1055 |t#1|) (-10 -7 (IF (|has| |t#1| (-1055 (-575))) (-6 (-1055 (-575))) |%noBranch|) (IF (|has| |t#1| (-1055 (-418 (-575)))) (-6 (-1055 (-418 (-575)))) |%noBranch|))) +(((-627 #0=(-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-627 #1=(-575)) |has| |#1| (-1055 (-575))) ((-627 |#1|) . T) ((-1055 #0#) |has| |#1| (-1055 (-418 (-575)))) ((-1055 #1#) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T)) +((-2550 (((-424 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-424 |#1| |#2| |#3| |#4|)) 35))) +(((-423 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2550 ((-424 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-424 |#1| |#2| |#3| |#4|)))) (-316) (-1009 |#1|) (-1261 |#2|) (-13 (-420 |#2| |#3|) (-1055 |#2|)) (-316) (-1009 |#5|) (-1261 |#6|) (-13 (-420 |#6| |#7|) (-1055 |#6|))) (T -423)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-424 *5 *6 *7 *8)) (-4 *5 (-316)) (-4 *6 (-1009 *5)) (-4 *7 (-1261 *6)) (-4 *8 (-13 (-420 *6 *7) (-1055 *6))) (-4 *9 (-316)) (-4 *10 (-1009 *9)) (-4 *11 (-1261 *10)) (-5 *2 (-424 *9 *10 *11 *12)) (-5 *1 (-423 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-420 *10 *11) (-1055 *10)))))) +(-10 -7 (-15 -2550 ((-424 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-424 |#1| |#2| |#3| |#4|)))) +((-2861 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) NIL)) (-3253 ((|#4| (-782) (-1285 |#4|)) 55)) (-1542 (((-112) $) NIL)) (-1595 (((-1285 |#4|) $) 15)) (-2255 ((|#2| $) 53)) (-1719 (($ $) 157)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 103)) (-4431 (($ (-1285 |#4|)) 102)) (-3912 (((-1137) $) NIL)) (-1608 ((|#1| $) 16)) (-4258 (($ $ $) NIL)) (-3320 (($ $ $) NIL)) (-2883 (((-873) $) 148)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 |#4|) $) 141)) (-2009 (($) 11 T CONST)) (-3914 (((-112) $ $) 39)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 134)) (* (($ $ $) 130))) +(((-424 |#1| |#2| |#3| |#4|) (-13 (-484) (-10 -8 (-15 -4431 ($ (-1285 |#4|))) (-15 -1624 ((-1285 |#4|) $)) (-15 -2255 (|#2| $)) (-15 -1595 ((-1285 |#4|) $)) (-15 -1608 (|#1| $)) (-15 -1719 ($ $)) (-15 -3253 (|#4| (-782) (-1285 |#4|))))) (-316) (-1009 |#1|) (-1261 |#2|) (-13 (-420 |#2| |#3|) (-1055 |#2|))) (T -424)) +((-4431 (*1 *1 *2) (-12 (-5 *2 (-1285 *6)) (-4 *6 (-13 (-420 *4 *5) (-1055 *4))) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-4 *3 (-316)) (-5 *1 (-424 *3 *4 *5 *6)))) (-1624 (*1 *2 *1) (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-5 *2 (-1285 *6)) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *6 (-13 (-420 *4 *5) (-1055 *4))))) (-2255 (*1 *2 *1) (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1009 *3)) (-5 *1 (-424 *3 *2 *4 *5)) (-4 *3 (-316)) (-4 *5 (-13 (-420 *2 *4) (-1055 *2))))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-5 *2 (-1285 *6)) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *6 (-13 (-420 *4 *5) (-1055 *4))))) (-1608 (*1 *2 *1) (-12 (-4 *3 (-1009 *2)) (-4 *4 (-1261 *3)) (-4 *2 (-316)) (-5 *1 (-424 *2 *3 *4 *5)) (-4 *5 (-13 (-420 *3 *4) (-1055 *3))))) (-1719 (*1 *1 *1) (-12 (-4 *2 (-316)) (-4 *3 (-1009 *2)) (-4 *4 (-1261 *3)) (-5 *1 (-424 *2 *3 *4 *5)) (-4 *5 (-13 (-420 *3 *4) (-1055 *3))))) (-3253 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1285 *2)) (-4 *5 (-316)) (-4 *6 (-1009 *5)) (-4 *2 (-13 (-420 *6 *7) (-1055 *6))) (-5 *1 (-424 *5 *6 *7 *2)) (-4 *7 (-1261 *6))))) +(-13 (-484) (-10 -8 (-15 -4431 ($ (-1285 |#4|))) (-15 -1624 ((-1285 |#4|) $)) (-15 -2255 (|#2| $)) (-15 -1595 ((-1285 |#4|) $)) (-15 -1608 (|#1| $)) (-15 -1719 ($ $)) (-15 -3253 (|#4| (-782) (-1285 |#4|))))) +((-2861 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) NIL)) (-2255 ((|#2| $) 71)) (-2387 (($ (-1285 |#4|)) 27) (($ (-424 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1055 |#2|)))) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 37)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 |#4|) $) 28)) (-2009 (($) 25 T CONST)) (-3914 (((-112) $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ $ $) 82))) +(((-425 |#1| |#2| |#3| |#4| |#5|) (-13 (-737) (-10 -8 (-15 -1624 ((-1285 |#4|) $)) (-15 -2255 (|#2| $)) (-15 -2387 ($ (-1285 |#4|))) (IF (|has| |#4| (-1055 |#2|)) (-15 -2387 ($ (-424 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-316) (-1009 |#1|) (-1261 |#2|) (-420 |#2| |#3|) (-1285 |#4|)) (T -425)) +((-1624 (*1 *2 *1) (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-5 *2 (-1285 *6)) (-5 *1 (-425 *3 *4 *5 *6 *7)) (-4 *6 (-420 *4 *5)) (-14 *7 *2))) (-2255 (*1 *2 *1) (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1009 *3)) (-5 *1 (-425 *3 *2 *4 *5 *6)) (-4 *3 (-316)) (-4 *5 (-420 *2 *4)) (-14 *6 (-1285 *5)))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-1285 *6)) (-4 *6 (-420 *4 *5)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-4 *3 (-316)) (-5 *1 (-425 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-424 *3 *4 *5 *6)) (-4 *6 (-1055 *4)) (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-4 *6 (-420 *4 *5)) (-14 *7 (-1285 *6)) (-5 *1 (-425 *3 *4 *5 *6 *7))))) +(-13 (-737) (-10 -8 (-15 -1624 ((-1285 |#4|) $)) (-15 -2255 (|#2| $)) (-15 -2387 ($ (-1285 |#4|))) (IF (|has| |#4| (-1055 |#2|)) (-15 -2387 ($ (-424 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-2550 ((|#3| (-1 |#4| |#2|) |#1|) 29))) +(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 (|#3| (-1 |#4| |#2|) |#1|))) (-428 |#2|) (-174) (-428 |#4|) (-174)) (T -426)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-428 *6)) (-5 *1 (-426 *4 *5 *2 *6)) (-4 *4 (-428 *5))))) +(-10 -7 (-15 -2550 (|#3| (-1 |#4| |#2|) |#1|))) +((-3800 (((-3 $ "failed")) 98)) (-4239 (((-1285 (-700 |#2|)) (-1285 $)) NIL) (((-1285 (-700 |#2|))) 103)) (-1380 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) 96)) (-4132 (((-3 $ "failed")) 95)) (-2974 (((-700 |#2|) (-1285 $)) NIL) (((-700 |#2|)) 114)) (-4093 (((-700 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) $) 122)) (-2199 (((-1190 (-967 |#2|))) 63)) (-2263 ((|#2| (-1285 $)) NIL) ((|#2|) 118)) (-1385 (($ (-1285 |#2|) (-1285 $)) NIL) (($ (-1285 |#2|)) 124)) (-3129 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) 94)) (-3387 (((-3 $ "failed")) 86)) (-2653 (((-700 |#2|) (-1285 $)) NIL) (((-700 |#2|)) 112)) (-4391 (((-700 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) $) 120)) (-3498 (((-1190 (-967 |#2|))) 62)) (-1634 ((|#2| (-1285 $)) NIL) ((|#2|) 116)) (-3962 (((-1285 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) (-1285 $) (-1285 $)) NIL) (((-1285 |#2|) $) 123) (((-700 |#2|) (-1285 $)) 132)) (-2615 (((-1285 |#2|) $) 108) (($ (-1285 |#2|)) 110)) (-3235 (((-655 (-967 |#2|)) (-1285 $)) NIL) (((-655 (-967 |#2|))) 106)) (-1949 (($ (-700 |#2|) $) 102))) +(((-427 |#1| |#2|) (-10 -8 (-15 -1949 (|#1| (-700 |#2|) |#1|)) (-15 -2199 ((-1190 (-967 |#2|)))) (-15 -3498 ((-1190 (-967 |#2|)))) (-15 -4093 ((-700 |#2|) |#1|)) (-15 -4391 ((-700 |#2|) |#1|)) (-15 -2974 ((-700 |#2|))) (-15 -2653 ((-700 |#2|))) (-15 -2263 (|#2|)) (-15 -1634 (|#2|)) (-15 -2615 (|#1| (-1285 |#2|))) (-15 -2615 ((-1285 |#2|) |#1|)) (-15 -1385 (|#1| (-1285 |#2|))) (-15 -3235 ((-655 (-967 |#2|)))) (-15 -4239 ((-1285 (-700 |#2|)))) (-15 -3962 ((-700 |#2|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1|)) (-15 -3800 ((-3 |#1| "failed"))) (-15 -4132 ((-3 |#1| "failed"))) (-15 -3387 ((-3 |#1| "failed"))) (-15 -1380 ((-3 (-2 (|:| |particular| |#1|) (|:| -1624 (-655 |#1|))) "failed"))) (-15 -3129 ((-3 (-2 (|:| |particular| |#1|) (|:| -1624 (-655 |#1|))) "failed"))) (-15 -2974 ((-700 |#2|) (-1285 |#1|))) (-15 -2653 ((-700 |#2|) (-1285 |#1|))) (-15 -2263 (|#2| (-1285 |#1|))) (-15 -1634 (|#2| (-1285 |#1|))) (-15 -1385 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -4093 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -4391 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -4239 ((-1285 (-700 |#2|)) (-1285 |#1|))) (-15 -3235 ((-655 (-967 |#2|)) (-1285 |#1|)))) (-428 |#2|) (-174)) (T -427)) +((-4239 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1285 (-700 *4))) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))) (-3235 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-655 (-967 *4))) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))) (-1634 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-427 *3 *2)) (-4 *3 (-428 *2)))) (-2263 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-427 *3 *2)) (-4 *3 (-428 *2)))) (-2653 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-700 *4)) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))) (-2974 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-700 *4)) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))) (-3498 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1190 (-967 *4))) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))) (-2199 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1190 (-967 *4))) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4))))) +(-10 -8 (-15 -1949 (|#1| (-700 |#2|) |#1|)) (-15 -2199 ((-1190 (-967 |#2|)))) (-15 -3498 ((-1190 (-967 |#2|)))) (-15 -4093 ((-700 |#2|) |#1|)) (-15 -4391 ((-700 |#2|) |#1|)) (-15 -2974 ((-700 |#2|))) (-15 -2653 ((-700 |#2|))) (-15 -2263 (|#2|)) (-15 -1634 (|#2|)) (-15 -2615 (|#1| (-1285 |#2|))) (-15 -2615 ((-1285 |#2|) |#1|)) (-15 -1385 (|#1| (-1285 |#2|))) (-15 -3235 ((-655 (-967 |#2|)))) (-15 -4239 ((-1285 (-700 |#2|)))) (-15 -3962 ((-700 |#2|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1|)) (-15 -3800 ((-3 |#1| "failed"))) (-15 -4132 ((-3 |#1| "failed"))) (-15 -3387 ((-3 |#1| "failed"))) (-15 -1380 ((-3 (-2 (|:| |particular| |#1|) (|:| -1624 (-655 |#1|))) "failed"))) (-15 -3129 ((-3 (-2 (|:| |particular| |#1|) (|:| -1624 (-655 |#1|))) "failed"))) (-15 -2974 ((-700 |#2|) (-1285 |#1|))) (-15 -2653 ((-700 |#2|) (-1285 |#1|))) (-15 -2263 (|#2| (-1285 |#1|))) (-15 -1634 (|#2| (-1285 |#1|))) (-15 -1385 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -3962 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -3962 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -4093 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -4391 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -4239 ((-1285 (-700 |#2|)) (-1285 |#1|))) (-15 -3235 ((-655 (-967 |#2|)) (-1285 |#1|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3800 (((-3 $ "failed")) 42 (|has| |#1| (-567)))) (-2597 (((-3 $ "failed") $ $) 20)) (-4239 (((-1285 (-700 |#1|)) (-1285 $)) 83) (((-1285 (-700 |#1|))) 106)) (-3355 (((-1285 $)) 86)) (-3011 (($) 18 T CONST)) (-1380 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) 45 (|has| |#1| (-567)))) (-4132 (((-3 $ "failed")) 43 (|has| |#1| (-567)))) (-2974 (((-700 |#1|) (-1285 $)) 70) (((-700 |#1|)) 98)) (-1726 ((|#1| $) 79)) (-4093 (((-700 |#1|) $ (-1285 $)) 81) (((-700 |#1|) $) 96)) (-3512 (((-3 $ "failed") $) 50 (|has| |#1| (-567)))) (-2199 (((-1190 (-967 |#1|))) 94 (|has| |#1| (-373)))) (-2661 (($ $ (-936)) 31)) (-2737 ((|#1| $) 77)) (-1884 (((-1190 |#1|) $) 47 (|has| |#1| (-567)))) (-2263 ((|#1| (-1285 $)) 72) ((|#1|) 100)) (-4103 (((-1190 |#1|) $) 68)) (-2810 (((-112)) 62)) (-1385 (($ (-1285 |#1|) (-1285 $)) 74) (($ (-1285 |#1|)) 104)) (-1747 (((-3 $ "failed") $) 52 (|has| |#1| (-567)))) (-4422 (((-936)) 85)) (-4369 (((-112)) 59)) (-3889 (($ $ (-936)) 38)) (-3289 (((-112)) 55)) (-1742 (((-112)) 53)) (-3577 (((-112)) 57)) (-3129 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) 46 (|has| |#1| (-567)))) (-3387 (((-3 $ "failed")) 44 (|has| |#1| (-567)))) (-2653 (((-700 |#1|) (-1285 $)) 71) (((-700 |#1|)) 99)) (-1502 ((|#1| $) 80)) (-4391 (((-700 |#1|) $ (-1285 $)) 82) (((-700 |#1|) $) 97)) (-3456 (((-3 $ "failed") $) 51 (|has| |#1| (-567)))) (-3498 (((-1190 (-967 |#1|))) 95 (|has| |#1| (-373)))) (-1898 (($ $ (-936)) 32)) (-4336 ((|#1| $) 78)) (-3649 (((-1190 |#1|) $) 48 (|has| |#1| (-567)))) (-1634 ((|#1| (-1285 $)) 73) ((|#1|) 101)) (-4013 (((-1190 |#1|) $) 69)) (-4403 (((-112)) 63)) (-2288 (((-1176) $) 10)) (-1536 (((-112)) 54)) (-3978 (((-112)) 56)) (-2204 (((-112)) 58)) (-3912 (((-1137) $) 11)) (-3074 (((-112)) 61)) (-2070 ((|#1| $ (-575)) 110)) (-3962 (((-1285 |#1|) $ (-1285 $)) 76) (((-700 |#1|) (-1285 $) (-1285 $)) 75) (((-1285 |#1|) $) 108) (((-700 |#1|) (-1285 $)) 107)) (-2615 (((-1285 |#1|) $) 103) (($ (-1285 |#1|)) 102)) (-3235 (((-655 (-967 |#1|)) (-1285 $)) 84) (((-655 (-967 |#1|))) 105)) (-3320 (($ $ $) 28)) (-2328 (((-112)) 67)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1624 (((-1285 $)) 109)) (-3431 (((-655 (-1285 |#1|))) 49 (|has| |#1| (-567)))) (-1785 (($ $ $ $) 29)) (-2761 (((-112)) 65)) (-1949 (($ (-700 |#1|) $) 93)) (-3534 (($ $ $) 27)) (-4363 (((-112)) 66)) (-2987 (((-112)) 64)) (-1472 (((-112)) 60)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 33)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-428 |#1|) (-141) (-174)) (T -428)) +((-1624 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1285 *1)) (-4 *1 (-428 *3)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 *3)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-428 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-4239 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 (-700 *3))))) (-3235 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-655 (-967 *3))))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-428 *3)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 *3)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-428 *3)))) (-1634 (*1 *2) (-12 (-4 *1 (-428 *2)) (-4 *2 (-174)))) (-2263 (*1 *2) (-12 (-4 *1 (-428 *2)) (-4 *2 (-174)))) (-2653 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))) (-2974 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))) (-4391 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))) (-3498 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-4 *3 (-373)) (-5 *2 (-1190 (-967 *3))))) (-2199 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-4 *3 (-373)) (-5 *2 (-1190 (-967 *3))))) (-1949 (*1 *1 *2 *1) (-12 (-5 *2 (-700 *3)) (-4 *1 (-428 *3)) (-4 *3 (-174))))) +(-13 (-377 |t#1|) (-295 (-575) |t#1|) (-10 -8 (-15 -1624 ((-1285 $))) (-15 -3962 ((-1285 |t#1|) $)) (-15 -3962 ((-700 |t#1|) (-1285 $))) (-15 -4239 ((-1285 (-700 |t#1|)))) (-15 -3235 ((-655 (-967 |t#1|)))) (-15 -1385 ($ (-1285 |t#1|))) (-15 -2615 ((-1285 |t#1|) $)) (-15 -2615 ($ (-1285 |t#1|))) (-15 -1634 (|t#1|)) (-15 -2263 (|t#1|)) (-15 -2653 ((-700 |t#1|))) (-15 -2974 ((-700 |t#1|))) (-15 -4391 ((-700 |t#1|) $)) (-15 -4093 ((-700 |t#1|) $)) (IF (|has| |t#1| (-373)) (PROGN (-15 -3498 ((-1190 (-967 |t#1|)))) (-15 -2199 ((-1190 (-967 |t#1|))))) |%noBranch|) (-15 -1949 ($ (-700 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-295 (-575) |#1|) . T) ((-377 |#1|) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-731) . T) ((-755 |#1|) . T) ((-772) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 60)) (-2150 (($ $) 78)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 192)) (-1540 (($ $) NIL)) (-3286 (((-112) $) 48)) (-3800 ((|#1| $) 16)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL (|has| |#1| (-1239)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-1239)))) (-2200 (($ |#1| (-575)) 42)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 149)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 74)) (-1747 (((-3 $ "failed") $) 165)) (-2446 (((-3 (-418 (-575)) "failed") $) 85 (|has| |#1| (-556)))) (-3405 (((-112) $) 81 (|has| |#1| (-556)))) (-3100 (((-418 (-575)) $) 92 (|has| |#1| (-556)))) (-3540 (($ |#1| (-575)) 44)) (-1336 (((-112) $) 212 (|has| |#1| (-1239)))) (-1542 (((-112) $) 62)) (-1453 (((-782) $) 51)) (-3324 (((-3 "nil" "sqfr" "irred" "prime") $ (-575)) 176)) (-3643 ((|#1| $ (-575)) 175)) (-1867 (((-575) $ (-575)) 174)) (-1969 (($ |#1| (-575)) 41)) (-2550 (($ (-1 |#1| |#1|) $) 184)) (-2735 (($ |#1| (-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575))))) 79)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-2288 (((-1176) $) NIL)) (-3589 (($ |#1| (-575)) 43)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) 193 (|has| |#1| (-463)))) (-2466 (($ |#1| (-575) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-3378 (((-655 (-2 (|:| -2353 |#1|) (|:| -2398 (-575)))) $) 73)) (-3019 (((-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575)))) $) 12)) (-2353 (((-429 $) $) NIL (|has| |#1| (-1239)))) (-2851 (((-3 $ "failed") $ $) 177)) (-2398 (((-575) $) 168)) (-3945 ((|#1| $) 75)) (-3048 (($ $ (-655 |#1|) (-655 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) 101 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 107 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) $) NIL (|has| |#1| (-525 (-1194) $))) (($ $ (-655 (-1194)) (-655 $)) 108 (|has| |#1| (-525 (-1194) $))) (($ $ (-655 (-303 $))) 104 (|has| |#1| (-318 $))) (($ $ (-303 $)) NIL (|has| |#1| (-318 $))) (($ $ $ $) NIL (|has| |#1| (-318 $))) (($ $ (-655 $) (-655 $)) NIL (|has| |#1| (-318 $)))) (-2070 (($ $ |#1|) 93 (|has| |#1| (-295 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-295 $ $)))) (-2389 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237))) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-2615 (((-547) $) 39 (|has| |#1| (-625 (-547)))) (((-389) $) 114 (|has| |#1| (-1039))) (((-227) $) 120 (|has| |#1| (-1039)))) (-2883 (((-873) $) 147) (($ (-575)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575)))))) (-3759 (((-782)) 67 T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-1996 (($) 53 T CONST)) (-2009 (($) 52 T CONST)) (-3430 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237))) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-3914 (((-112) $ $) 160)) (-4028 (($ $) 162) (($ $ $) NIL)) (-4016 (($ $ $) 181)) (** (($ $ (-936)) NIL) (($ $ (-782)) 126)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-429 |#1|) (-13 (-567) (-232 |#1|) (-38 |#1|) (-348 |#1|) (-422 |#1|) (-10 -8 (-15 -3945 (|#1| $)) (-15 -2398 ((-575) $)) (-15 -2735 ($ |#1| (-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575)))))) (-15 -3019 ((-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575)))) $)) (-15 -1969 ($ |#1| (-575))) (-15 -3378 ((-655 (-2 (|:| -2353 |#1|) (|:| -2398 (-575)))) $)) (-15 -3589 ($ |#1| (-575))) (-15 -1867 ((-575) $ (-575))) (-15 -3643 (|#1| $ (-575))) (-15 -3324 ((-3 "nil" "sqfr" "irred" "prime") $ (-575))) (-15 -1453 ((-782) $)) (-15 -3540 ($ |#1| (-575))) (-15 -2200 ($ |#1| (-575))) (-15 -2466 ($ |#1| (-575) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3800 (|#1| $)) (-15 -2150 ($ $)) (-15 -2550 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-463)) (-6 (-463)) |%noBranch|) (IF (|has| |#1| (-1039)) (-6 (-1039)) |%noBranch|) (IF (|has| |#1| (-1239)) (-6 (-1239)) |%noBranch|) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3405 ((-112) $)) (-15 -3100 ((-418 (-575)) $)) (-15 -2446 ((-3 (-418 (-575)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-295 $ $)) (-6 (-295 $ $)) |%noBranch|) (IF (|has| |#1| (-318 $)) (-6 (-318 $)) |%noBranch|) (IF (|has| |#1| (-525 (-1194) $)) (-6 (-525 (-1194) $)) |%noBranch|))) (-567)) (T -429)) +((-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-567)) (-5 *1 (-429 *3)))) (-3945 (*1 *2 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-429 *3)) (-4 *3 (-567)))) (-2735 (*1 *1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-575))))) (-4 *2 (-567)) (-5 *1 (-429 *2)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-575))))) (-5 *1 (-429 *3)) (-4 *3 (-567)))) (-1969 (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| -2353 *3) (|:| -2398 (-575))))) (-5 *1 (-429 *3)) (-4 *3 (-567)))) (-3589 (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-1867 (*1 *2 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-429 *3)) (-4 *3 (-567)))) (-3643 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-3324 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-429 *4)) (-4 *4 (-567)))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-429 *3)) (-4 *3 (-567)))) (-3540 (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-2200 (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-2466 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-575)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-3800 (*1 *2 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-2150 (*1 *1 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429 *3)) (-4 *3 (-556)) (-4 *3 (-567)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-429 *3)) (-4 *3 (-556)) (-4 *3 (-567)))) (-2446 (*1 *2 *1) (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-429 *3)) (-4 *3 (-556)) (-4 *3 (-567))))) +(-13 (-567) (-232 |#1|) (-38 |#1|) (-348 |#1|) (-422 |#1|) (-10 -8 (-15 -3945 (|#1| $)) (-15 -2398 ((-575) $)) (-15 -2735 ($ |#1| (-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575)))))) (-15 -3019 ((-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575)))) $)) (-15 -1969 ($ |#1| (-575))) (-15 -3378 ((-655 (-2 (|:| -2353 |#1|) (|:| -2398 (-575)))) $)) (-15 -3589 ($ |#1| (-575))) (-15 -1867 ((-575) $ (-575))) (-15 -3643 (|#1| $ (-575))) (-15 -3324 ((-3 "nil" "sqfr" "irred" "prime") $ (-575))) (-15 -1453 ((-782) $)) (-15 -3540 ($ |#1| (-575))) (-15 -2200 ($ |#1| (-575))) (-15 -2466 ($ |#1| (-575) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3800 (|#1| $)) (-15 -2150 ($ $)) (-15 -2550 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-463)) (-6 (-463)) |%noBranch|) (IF (|has| |#1| (-1039)) (-6 (-1039)) |%noBranch|) (IF (|has| |#1| (-1239)) (-6 (-1239)) |%noBranch|) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3405 ((-112) $)) (-15 -3100 ((-418 (-575)) $)) (-15 -2446 ((-3 (-418 (-575)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-295 $ $)) (-6 (-295 $ $)) |%noBranch|) (IF (|has| |#1| (-318 $)) (-6 (-318 $)) |%noBranch|) (IF (|has| |#1| (-525 (-1194) $)) (-6 (-525 (-1194) $)) |%noBranch|))) +((-3016 (((-429 |#1|) (-429 |#1|) (-1 (-429 |#1|) |#1|)) 28)) (-3190 (((-429 |#1|) (-429 |#1|) (-429 |#1|)) 17))) +(((-430 |#1|) (-10 -7 (-15 -3016 ((-429 |#1|) (-429 |#1|) (-1 (-429 |#1|) |#1|))) (-15 -3190 ((-429 |#1|) (-429 |#1|) (-429 |#1|)))) (-567)) (T -430)) +((-3190 (*1 *2 *2 *2) (-12 (-5 *2 (-429 *3)) (-4 *3 (-567)) (-5 *1 (-430 *3)))) (-3016 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-429 *4) *4)) (-4 *4 (-567)) (-5 *2 (-429 *4)) (-5 *1 (-430 *4))))) +(-10 -7 (-15 -3016 ((-429 |#1|) (-429 |#1|) (-1 (-429 |#1|) |#1|))) (-15 -3190 ((-429 |#1|) (-429 |#1|) (-429 |#1|)))) +((-2701 ((|#2| |#2|) 183)) (-3673 (((-3 (|:| |%expansion| (-322 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112)) 60))) +(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3673 ((-3 (|:| |%expansion| (-322 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112))) (-15 -2701 (|#2| |#2|))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|)) (-1194) |#2|) (T -431)) +((-2701 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-431 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1220) (-441 *3))) (-14 *4 (-1194)) (-14 *5 *2))) (-3673 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |%expansion| (-322 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176)))))) (-5 *1 (-431 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-14 *6 (-1194)) (-14 *7 *3)))) +(-10 -7 (-15 -3673 ((-3 (|:| |%expansion| (-322 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112))) (-15 -2701 (|#2| |#2|))) +((-2550 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 (|#4| (-1 |#3| |#1|) |#2|))) (-1066) (-441 |#1|) (-1066) (-441 |#3|)) (T -432)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-441 *6)) (-5 *1 (-432 *5 *4 *6 *2)) (-4 *4 (-441 *5))))) +(-10 -7 (-15 -2550 (|#4| (-1 |#3| |#1|) |#2|))) +((-2701 ((|#2| |#2|) 106)) (-1524 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176)) 52)) (-3894 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176)) 170))) +(((-433 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1524 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176))) (-15 -3894 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176))) (-15 -2701 (|#2| |#2|))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|) (-10 -8 (-15 -2883 ($ |#3|)))) (-859) (-13 (-1263 |#2| |#3|) (-373) (-1220) (-10 -8 (-15 -2389 ($ $)) (-15 -4413 ($ $)))) (-1000 |#4|) (-1194)) (T -433)) +((-2701 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-4 *2 (-13 (-27) (-1220) (-441 *3) (-10 -8 (-15 -2883 ($ *4))))) (-4 *4 (-859)) (-4 *5 (-13 (-1263 *2 *4) (-373) (-1220) (-10 -8 (-15 -2389 ($ $)) (-15 -4413 ($ $))))) (-5 *1 (-433 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1000 *5)) (-14 *7 (-1194)))) (-3894 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-4 *3 (-13 (-27) (-1220) (-441 *6) (-10 -8 (-15 -2883 ($ *7))))) (-4 *7 (-859)) (-4 *8 (-13 (-1263 *3 *7) (-373) (-1220) (-10 -8 (-15 -2389 ($ $)) (-15 -4413 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176)))))) (-5 *1 (-433 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1176)) (-4 *9 (-1000 *8)) (-14 *10 (-1194)))) (-1524 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-4 *3 (-13 (-27) (-1220) (-441 *6) (-10 -8 (-15 -2883 ($ *7))))) (-4 *7 (-859)) (-4 *8 (-13 (-1263 *3 *7) (-373) (-1220) (-10 -8 (-15 -2389 ($ $)) (-15 -4413 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176)))))) (-5 *1 (-433 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1176)) (-4 *9 (-1000 *8)) (-14 *10 (-1194))))) +(-10 -7 (-15 -1524 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176))) (-15 -3894 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176))) (-15 -2701 (|#2| |#2|))) +((-3715 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2308 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2550 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2308 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3715 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1117) (-436 |#1|) (-1117) (-436 |#3|)) (T -434)) +((-3715 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1117)) (-4 *5 (-1117)) (-4 *2 (-436 *5)) (-5 *1 (-434 *6 *4 *5 *2)) (-4 *4 (-436 *6)))) (-2308 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1117)) (-4 *2 (-1117)) (-5 *1 (-434 *5 *4 *2 *6)) (-4 *4 (-436 *5)) (-4 *6 (-436 *2)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-436 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-436 *5))))) +(-10 -7 (-15 -2550 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2308 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3715 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3443 (($) 51)) (-1644 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-3404 (($ $ $) 46)) (-2696 (((-112) $ $) 35)) (-2415 (((-782)) 55)) (-1329 (($ (-655 |#2|)) 23) (($) NIL)) (-2079 (($) 66)) (-3244 (((-112) $ $) 15)) (-1920 ((|#2| $) 77)) (-1425 ((|#2| $) 75)) (-4084 (((-936) $) 70)) (-1479 (($ $ $) 42)) (-4317 (($ (-936)) 60)) (-1771 (($ $ |#2|) NIL) (($ $ $) 45)) (-3925 (((-782) (-1 (-112) |#2|) $) NIL) (((-782) |#2| $) 31)) (-2894 (($ (-655 |#2|)) 27)) (-3296 (($ $) 53)) (-2883 (((-873) $) 40)) (-3130 (((-782) $) 24)) (-2556 (($ (-655 |#2|)) 22) (($) NIL)) (-3914 (((-112) $ $) 19))) +(((-435 |#1| |#2|) (-10 -8 (-15 -2415 ((-782))) (-15 -4317 (|#1| (-936))) (-15 -4084 ((-936) |#1|)) (-15 -2079 (|#1|)) (-15 -1920 (|#2| |#1|)) (-15 -1425 (|#2| |#1|)) (-15 -3443 (|#1|)) (-15 -3296 (|#1| |#1|)) (-15 -3130 ((-782) |#1|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3244 ((-112) |#1| |#1|)) (-15 -2556 (|#1|)) (-15 -2556 (|#1| (-655 |#2|))) (-15 -1329 (|#1|)) (-15 -1329 (|#1| (-655 |#2|))) (-15 -1479 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#2|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 -2696 ((-112) |#1| |#1|)) (-15 -1644 (|#1| |#1| |#1|)) (-15 -1644 (|#1| |#1| |#2|)) (-15 -1644 (|#1| |#2| |#1|)) (-15 -2894 (|#1| (-655 |#2|))) (-15 -3925 ((-782) |#2| |#1|)) (-15 -3925 ((-782) (-1 (-112) |#2|) |#1|))) (-436 |#2|) (-1117)) (T -435)) +((-2415 (*1 *2) (-12 (-4 *4 (-1117)) (-5 *2 (-782)) (-5 *1 (-435 *3 *4)) (-4 *3 (-436 *4))))) +(-10 -8 (-15 -2415 ((-782))) (-15 -4317 (|#1| (-936))) (-15 -4084 ((-936) |#1|)) (-15 -2079 (|#1|)) (-15 -1920 (|#2| |#1|)) (-15 -1425 (|#2| |#1|)) (-15 -3443 (|#1|)) (-15 -3296 (|#1| |#1|)) (-15 -3130 ((-782) |#1|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3244 ((-112) |#1| |#1|)) (-15 -2556 (|#1|)) (-15 -2556 (|#1| (-655 |#2|))) (-15 -1329 (|#1|)) (-15 -1329 (|#1| (-655 |#2|))) (-15 -1479 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#2|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 -2696 ((-112) |#1| |#1|)) (-15 -1644 (|#1| |#1| |#1|)) (-15 -1644 (|#1| |#1| |#2|)) (-15 -1644 (|#1| |#2| |#1|)) (-15 -2894 (|#1| (-655 |#2|))) (-15 -3925 ((-782) |#2| |#1|)) (-15 -3925 ((-782) (-1 (-112) |#2|) |#1|))) +((-2861 (((-112) $ $) 19)) (-3443 (($) 68 (|has| |#1| (-378)))) (-1644 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3404 (($ $ $) 79)) (-2696 (((-112) $ $) 80)) (-1845 (((-112) $ (-782)) 8)) (-2415 (((-782)) 62 (|has| |#1| (-378)))) (-1329 (($ (-655 |#1|)) 75) (($) 74)) (-1999 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1748 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4404 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3633 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-2079 (($) 65 (|has| |#1| (-378)))) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3244 (((-112) $ $) 71)) (-3896 (((-112) $ (-782)) 9)) (-1920 ((|#1| $) 66 (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-1425 ((|#1| $) 67 (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4084 (((-936) $) 64 (|has| |#1| (-378)))) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22)) (-1479 (($ $ $) 76)) (-4012 ((|#1| $) 40)) (-3862 (($ |#1| $) 41)) (-4317 (($ (-936)) 63 (|has| |#1| (-378)))) (-3912 (((-1137) $) 21)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2454 ((|#1| $) 42)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-1771 (($ $ |#1|) 78) (($ $ $) 77)) (-3601 (($) 50) (($ (-655 |#1|)) 49)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 51)) (-3296 (($ $) 69 (|has| |#1| (-378)))) (-2883 (((-873) $) 18)) (-3130 (((-782) $) 70)) (-2556 (($ (-655 |#1|)) 73) (($) 72)) (-4400 (((-112) $ $) 23)) (-1511 (($ (-655 |#1|)) 43)) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20)) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-436 |#1|) (-141) (-1117)) (T -436)) +((-3130 (*1 *2 *1) (-12 (-4 *1 (-436 *3)) (-4 *3 (-1117)) (-5 *2 (-782)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-378)))) (-3443 (*1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-378)) (-4 *2 (-1117)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-861)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-861))))) +(-13 (-231 |t#1|) (-1115 |t#1|) (-10 -8 (-6 -4460) (-15 -3130 ((-782) $)) (IF (|has| |t#1| (-378)) (PROGN (-6 (-378)) (-15 -3296 ($ $)) (-15 -3443 ($))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -1425 (|t#1| $)) (-15 -1920 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-624 (-873)) . T) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-378) |has| |#1| (-378)) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1115 |#1|) . T) ((-1117) . T) ((-1235) . T)) +((-1923 (((-597 |#2|) |#2| (-1194)) 36)) (-1443 (((-597 |#2|) |#2| (-1194)) 21)) (-3114 ((|#2| |#2| (-1194)) 26))) +(((-437 |#1| |#2|) (-10 -7 (-15 -1443 ((-597 |#2|) |#2| (-1194))) (-15 -1923 ((-597 |#2|) |#2| (-1194))) (-15 -3114 (|#2| |#2| (-1194)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-29 |#1|))) (T -437)) +((-3114 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-437 *4 *2)) (-4 *2 (-13 (-1220) (-29 *4))))) (-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-437 *5 *3)) (-4 *3 (-13 (-1220) (-29 *5))))) (-1443 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-437 *5 *3)) (-4 *3 (-13 (-1220) (-29 *5)))))) +(-10 -7 (-15 -1443 ((-597 |#2|) |#2| (-1194))) (-15 -1923 ((-597 |#2|) |#2| (-1194))) (-15 -3114 (|#2| |#2| (-1194)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) NIL)) (-2708 (($ |#2| |#1|) 37)) (-1811 (($ |#2| |#1|) 35)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-340 |#2|)) 25)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 10 T CONST)) (-2009 (($) 16 T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 36)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-438 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4447)) (IF (|has| |#1| (-6 -4447)) (-6 -4447) |%noBranch|) |%noBranch|) (-15 -2883 ($ |#1|)) (-15 -2883 ($ (-340 |#2|))) (-15 -2708 ($ |#2| |#1|)) (-15 -1811 ($ |#2| |#1|)))) (-13 (-174) (-38 (-418 (-575)))) (-13 (-861) (-21))) (T -438)) +((-2883 (*1 *1 *2) (-12 (-5 *1 (-438 *2 *3)) (-4 *2 (-13 (-174) (-38 (-418 (-575))))) (-4 *3 (-13 (-861) (-21))))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-340 *4)) (-4 *4 (-13 (-861) (-21))) (-5 *1 (-438 *3 *4)) (-4 *3 (-13 (-174) (-38 (-418 (-575))))))) (-2708 (*1 *1 *2 *3) (-12 (-5 *1 (-438 *3 *2)) (-4 *3 (-13 (-174) (-38 (-418 (-575))))) (-4 *2 (-13 (-861) (-21))))) (-1811 (*1 *1 *2 *3) (-12 (-5 *1 (-438 *3 *2)) (-4 *3 (-13 (-174) (-38 (-418 (-575))))) (-4 *2 (-13 (-861) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4447)) (IF (|has| |#1| (-6 -4447)) (-6 -4447) |%noBranch|) |%noBranch|) (-15 -2883 ($ |#1|)) (-15 -2883 ($ (-340 |#2|))) (-15 -2708 ($ |#2| |#1|)) (-15 -1811 ($ |#2| |#1|)))) +((-4413 (((-3 |#2| (-655 |#2|)) |#2| (-1194)) 115))) +(((-439 |#1| |#2|) (-10 -7 (-15 -4413 ((-3 |#2| (-655 |#2|)) |#2| (-1194)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-974) (-29 |#1|))) (T -439)) +((-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 *3 (-655 *3))) (-5 *1 (-439 *5 *3)) (-4 *3 (-13 (-1220) (-974) (-29 *5)))))) +(-10 -7 (-15 -4413 ((-3 |#2| (-655 |#2|)) |#2| (-1194)))) +((-1606 (((-655 (-1194)) $) 81)) (-3466 (((-418 (-1190 $)) $ (-623 $)) 313)) (-1473 (($ $ (-303 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-655 (-623 $)) (-655 $)) 277)) (-2449 (((-3 (-623 $) "failed") $) NIL) (((-3 (-1194) "failed") $) 84) (((-3 (-575) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-418 (-967 |#2|)) "failed") $) 363) (((-3 (-967 |#2|) "failed") $) 275) (((-3 (-418 (-575)) "failed") $) NIL)) (-4399 (((-623 $) $) NIL) (((-1194) $) 28) (((-575) $) NIL) ((|#2| $) 271) (((-418 (-967 |#2|)) $) 345) (((-967 |#2|) $) 272) (((-418 (-575)) $) NIL)) (-2572 (((-115) (-115)) 47)) (-4046 (($ $) 99)) (-4306 (((-3 (-623 $) "failed") $) 268)) (-2557 (((-655 (-623 $)) $) 269)) (-3658 (((-3 (-655 $) "failed") $) 287)) (-2056 (((-3 (-2 (|:| |val| $) (|:| -2398 (-575))) "failed") $) 294)) (-1734 (((-3 (-655 $) "failed") $) 285)) (-2991 (((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 $))) "failed") $) 304)) (-2455 (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $) 291) (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $ (-1194)) 257)) (-4345 (((-112) $) 17)) (-4353 ((|#2| $) 19)) (-3048 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) 276) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) 109) (($ $ (-1194) (-1 $ (-655 $))) NIL) (($ $ (-1194) (-1 $ $)) NIL) (($ $ (-655 (-115)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-115) (-1 $ (-655 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1194)) 62) (($ $ (-655 (-1194))) 280) (($ $) 281) (($ $ (-115) $ (-1194)) 65) (($ $ (-655 (-115)) (-655 $) (-1194)) 72) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ $))) 120) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ (-655 $)))) 282) (($ $ (-1194) (-782) (-1 $ (-655 $))) 105) (($ $ (-1194) (-782) (-1 $ $)) 104)) (-2070 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-655 $)) 119)) (-2389 (($ $ (-1194)) 278) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-4172 (($ $) 324)) (-2615 (((-904 (-575)) $) 297) (((-904 (-389)) $) 301) (($ (-429 $)) 359) (((-547) $) NIL)) (-2883 (((-873) $) 279) (($ (-623 $)) 93) (($ (-1194)) 24) (($ |#2|) NIL) (($ (-1142 |#2| (-623 $))) NIL) (($ (-418 |#2|)) 329) (($ (-967 (-418 |#2|))) 368) (($ (-418 (-967 (-418 |#2|)))) 341) (($ (-418 (-967 |#2|))) 335) (($ $) NIL) (($ (-967 |#2|)) 216) (($ (-575)) NIL) (($ (-418 (-575))) 373)) (-3759 (((-782)) 88)) (-2151 (((-112) (-115)) 42)) (-1627 (($ (-1194) $) 31) (($ (-1194) $ $) 32) (($ (-1194) $ $ $) 33) (($ (-1194) $ $ $ $) 34) (($ (-1194) (-655 $)) 39)) (* (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL))) +(((-440 |#1| |#2|) (-10 -8 (-15 * (|#1| (-936) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2883 (|#1| (-575))) (-15 -3759 ((-782))) (-15 * (|#1| |#2| |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2883 (|#1| (-967 |#2|))) (-15 -2449 ((-3 (-967 |#2|) "failed") |#1|)) (-15 -4399 ((-967 |#2|) |#1|)) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 * (|#1| |#1| |#2|)) (-15 -2883 (|#1| |#1|)) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -2883 (|#1| (-418 (-967 |#2|)))) (-15 -2449 ((-3 (-418 (-967 |#2|)) "failed") |#1|)) (-15 -4399 ((-418 (-967 |#2|)) |#1|)) (-15 -3466 ((-418 (-1190 |#1|)) |#1| (-623 |#1|))) (-15 -2883 (|#1| (-418 (-967 (-418 |#2|))))) (-15 -2883 (|#1| (-967 (-418 |#2|)))) (-15 -2883 (|#1| (-418 |#2|))) (-15 -4172 (|#1| |#1|)) (-15 -2615 (|#1| (-429 |#1|))) (-15 -3048 (|#1| |#1| (-1194) (-782) (-1 |#1| |#1|))) (-15 -3048 (|#1| |#1| (-1194) (-782) (-1 |#1| (-655 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-782)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-782)) (-655 (-1 |#1| |#1|)))) (-15 -2056 ((-3 (-2 (|:| |val| |#1|) (|:| -2398 (-575))) "failed") |#1|)) (-15 -2455 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -2398 (-575))) "failed") |#1| (-1194))) (-15 -2455 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -2398 (-575))) "failed") |#1| (-115))) (-15 -4046 (|#1| |#1|)) (-15 -2883 (|#1| (-1142 |#2| (-623 |#1|)))) (-15 -2991 ((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 |#1|))) "failed") |#1|)) (-15 -1734 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -2455 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -2398 (-575))) "failed") |#1|)) (-15 -3658 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -3048 (|#1| |#1| (-655 (-115)) (-655 |#1|) (-1194))) (-15 -3048 (|#1| |#1| (-115) |#1| (-1194))) (-15 -3048 (|#1| |#1|)) (-15 -3048 (|#1| |#1| (-655 (-1194)))) (-15 -3048 (|#1| |#1| (-1194))) (-15 -1627 (|#1| (-1194) (-655 |#1|))) (-15 -1627 (|#1| (-1194) |#1| |#1| |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1| |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1|)) (-15 -1606 ((-655 (-1194)) |#1|)) (-15 -4353 (|#2| |#1|)) (-15 -4345 ((-112) |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -2883 (|#1| (-1194))) (-15 -2449 ((-3 (-1194) "failed") |#1|)) (-15 -4399 ((-1194) |#1|)) (-15 -3048 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3048 (|#1| |#1| (-115) (-1 |#1| (-655 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3048 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| |#1|)))) (-15 -3048 (|#1| |#1| (-1194) (-1 |#1| |#1|))) (-15 -3048 (|#1| |#1| (-1194) (-1 |#1| (-655 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| |#1|)))) (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 -2557 ((-655 (-623 |#1|)) |#1|)) (-15 -4306 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1473 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -1473 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1473 (|#1| |#1| (-303 |#1|))) (-15 -2070 (|#1| (-115) (-655 |#1|))) (-15 -2070 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1|)) (-15 -3048 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| (-303 |#1|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -3048 (|#1| |#1| (-623 |#1|) |#1|)) (-15 -2883 (|#1| (-623 |#1|))) (-15 -2449 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -4399 ((-623 |#1|) |#1|)) (-15 -2883 ((-873) |#1|))) (-441 |#2|) (-1117)) (T -440)) +((-2572 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1117)) (-5 *1 (-440 *3 *4)) (-4 *3 (-441 *4)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1117)) (-5 *2 (-112)) (-5 *1 (-440 *4 *5)) (-4 *4 (-441 *5)))) (-3759 (*1 *2) (-12 (-4 *4 (-1117)) (-5 *2 (-782)) (-5 *1 (-440 *3 *4)) (-4 *3 (-441 *4))))) +(-10 -8 (-15 * (|#1| (-936) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2883 (|#1| (-575))) (-15 -3759 ((-782))) (-15 * (|#1| |#2| |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2883 (|#1| (-967 |#2|))) (-15 -2449 ((-3 (-967 |#2|) "failed") |#1|)) (-15 -4399 ((-967 |#2|) |#1|)) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 * (|#1| |#1| |#2|)) (-15 -2883 (|#1| |#1|)) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -2883 (|#1| (-418 (-967 |#2|)))) (-15 -2449 ((-3 (-418 (-967 |#2|)) "failed") |#1|)) (-15 -4399 ((-418 (-967 |#2|)) |#1|)) (-15 -3466 ((-418 (-1190 |#1|)) |#1| (-623 |#1|))) (-15 -2883 (|#1| (-418 (-967 (-418 |#2|))))) (-15 -2883 (|#1| (-967 (-418 |#2|)))) (-15 -2883 (|#1| (-418 |#2|))) (-15 -4172 (|#1| |#1|)) (-15 -2615 (|#1| (-429 |#1|))) (-15 -3048 (|#1| |#1| (-1194) (-782) (-1 |#1| |#1|))) (-15 -3048 (|#1| |#1| (-1194) (-782) (-1 |#1| (-655 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-782)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-782)) (-655 (-1 |#1| |#1|)))) (-15 -2056 ((-3 (-2 (|:| |val| |#1|) (|:| -2398 (-575))) "failed") |#1|)) (-15 -2455 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -2398 (-575))) "failed") |#1| (-1194))) (-15 -2455 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -2398 (-575))) "failed") |#1| (-115))) (-15 -4046 (|#1| |#1|)) (-15 -2883 (|#1| (-1142 |#2| (-623 |#1|)))) (-15 -2991 ((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 |#1|))) "failed") |#1|)) (-15 -1734 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -2455 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -2398 (-575))) "failed") |#1|)) (-15 -3658 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -3048 (|#1| |#1| (-655 (-115)) (-655 |#1|) (-1194))) (-15 -3048 (|#1| |#1| (-115) |#1| (-1194))) (-15 -3048 (|#1| |#1|)) (-15 -3048 (|#1| |#1| (-655 (-1194)))) (-15 -3048 (|#1| |#1| (-1194))) (-15 -1627 (|#1| (-1194) (-655 |#1|))) (-15 -1627 (|#1| (-1194) |#1| |#1| |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1| |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1|)) (-15 -1606 ((-655 (-1194)) |#1|)) (-15 -4353 (|#2| |#1|)) (-15 -4345 ((-112) |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -2883 (|#1| (-1194))) (-15 -2449 ((-3 (-1194) "failed") |#1|)) (-15 -4399 ((-1194) |#1|)) (-15 -3048 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3048 (|#1| |#1| (-115) (-1 |#1| (-655 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3048 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| |#1|)))) (-15 -3048 (|#1| |#1| (-1194) (-1 |#1| |#1|))) (-15 -3048 (|#1| |#1| (-1194) (-1 |#1| (-655 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3048 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| |#1|)))) (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 -2557 ((-655 (-623 |#1|)) |#1|)) (-15 -4306 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1473 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -1473 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1473 (|#1| |#1| (-303 |#1|))) (-15 -2070 (|#1| (-115) (-655 |#1|))) (-15 -2070 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1| |#1|)) (-15 -2070 (|#1| (-115) |#1|)) (-15 -3048 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| (-303 |#1|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -3048 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -3048 (|#1| |#1| (-623 |#1|) |#1|)) (-15 -2883 (|#1| (-623 |#1|))) (-15 -2449 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -4399 ((-623 |#1|) |#1|)) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 117 (|has| |#1| (-25)))) (-1606 (((-655 (-1194)) $) 206)) (-3466 (((-418 (-1190 $)) $ (-623 $)) 174 (|has| |#1| (-567)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 146 (|has| |#1| (-567)))) (-1540 (($ $) 147 (|has| |#1| (-567)))) (-3286 (((-112) $) 149 (|has| |#1| (-567)))) (-4270 (((-655 (-623 $)) $) 39)) (-2597 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-1473 (($ $ (-303 $)) 51) (($ $ (-655 (-303 $))) 50) (($ $ (-655 (-623 $)) (-655 $)) 49)) (-2058 (($ $) 166 (|has| |#1| (-567)))) (-2330 (((-429 $) $) 167 (|has| |#1| (-567)))) (-2279 (((-112) $ $) 157 (|has| |#1| (-567)))) (-3011 (($) 105 (-3765 (|has| |#1| (-1129)) (|has| |#1| (-25))) CONST)) (-2449 (((-3 (-623 $) "failed") $) 64) (((-3 (-1194) "failed") $) 219) (((-3 (-575) "failed") $) 213 (|has| |#1| (-1055 (-575)))) (((-3 |#1| "failed") $) 210) (((-3 (-418 (-967 |#1|)) "failed") $) 172 (|has| |#1| (-567))) (((-3 (-967 |#1|) "failed") $) 124 (|has| |#1| (-1066))) (((-3 (-418 (-575)) "failed") $) 99 (-3765 (-12 (|has| |#1| (-1055 (-575))) (|has| |#1| (-567))) (|has| |#1| (-1055 (-418 (-575))))))) (-4399 (((-623 $) $) 65) (((-1194) $) 220) (((-575) $) 212 (|has| |#1| (-1055 (-575)))) ((|#1| $) 211) (((-418 (-967 |#1|)) $) 173 (|has| |#1| (-567))) (((-967 |#1|) $) 125 (|has| |#1| (-1066))) (((-418 (-575)) $) 100 (-3765 (-12 (|has| |#1| (-1055 (-575))) (|has| |#1| (-567))) (|has| |#1| (-1055 (-418 (-575))))))) (-2802 (($ $ $) 161 (|has| |#1| (-567)))) (-1749 (((-700 (-575)) (-1285 $)) 141 (-3226 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) (((-700 (-575)) (-700 $)) 140 (-3226 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 139 (-3226 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 138 (|has| |#1| (-1066))) (((-700 |#1|) (-700 $)) 137 (|has| |#1| (-1066))) (((-700 |#1|) (-1285 $)) 136 (|has| |#1| (-1066)))) (-1747 (((-3 $ "failed") $) 107 (|has| |#1| (-1129)))) (-2813 (($ $ $) 160 (|has| |#1| (-567)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 155 (|has| |#1| (-567)))) (-1336 (((-112) $) 168 (|has| |#1| (-567)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 215 (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 214 (|has| |#1| (-898 (-389))))) (-2092 (($ $) 46) (($ (-655 $)) 45)) (-2622 (((-655 (-115)) $) 38)) (-2572 (((-115) (-115)) 37)) (-1542 (((-112) $) 106 (|has| |#1| (-1129)))) (-2437 (((-112) $) 17 (|has| $ (-1055 (-575))))) (-4046 (($ $) 189 (|has| |#1| (-1066)))) (-1595 (((-1142 |#1| (-623 $)) $) 190 (|has| |#1| (-1066)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 164 (|has| |#1| (-567)))) (-4347 (((-1190 $) (-623 $)) 20 (|has| $ (-1066)))) (-2550 (($ (-1 $ $) (-623 $)) 31)) (-4306 (((-3 (-623 $) "failed") $) 41)) (-3887 (($ (-655 $)) 153 (|has| |#1| (-567))) (($ $ $) 152 (|has| |#1| (-567)))) (-2288 (((-1176) $) 10)) (-2557 (((-655 (-623 $)) $) 40)) (-1672 (($ (-115) $) 33) (($ (-115) (-655 $)) 32)) (-3658 (((-3 (-655 $) "failed") $) 195 (|has| |#1| (-1129)))) (-2056 (((-3 (-2 (|:| |val| $) (|:| -2398 (-575))) "failed") $) 186 (|has| |#1| (-1066)))) (-1734 (((-3 (-655 $) "failed") $) 193 (|has| |#1| (-25)))) (-2991 (((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 $))) "failed") $) 192 (|has| |#1| (-25)))) (-2455 (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $) 194 (|has| |#1| (-1129))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $ (-115)) 188 (|has| |#1| (-1066))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $ (-1194)) 187 (|has| |#1| (-1066)))) (-3789 (((-112) $ (-115)) 35) (((-112) $ (-1194)) 34)) (-4332 (($ $) 109 (-3765 (|has| |#1| (-484)) (|has| |#1| (-567))))) (-3343 (((-782) $) 42)) (-3912 (((-1137) $) 11)) (-4345 (((-112) $) 208)) (-4353 ((|#1| $) 207)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 154 (|has| |#1| (-567)))) (-3926 (($ (-655 $)) 151 (|has| |#1| (-567))) (($ $ $) 150 (|has| |#1| (-567)))) (-2878 (((-112) $ $) 30) (((-112) $ (-1194)) 29)) (-2353 (((-429 $) $) 165 (|has| |#1| (-567)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 163 (|has| |#1| (-567))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 162 (|has| |#1| (-567)))) (-2851 (((-3 $ "failed") $ $) 145 (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 156 (|has| |#1| (-567)))) (-2185 (((-112) $) 18 (|has| $ (-1055 (-575))))) (-3048 (($ $ (-623 $) $) 62) (($ $ (-655 (-623 $)) (-655 $)) 61) (($ $ (-655 (-303 $))) 60) (($ $ (-303 $)) 59) (($ $ $ $) 58) (($ $ (-655 $) (-655 $)) 57) (($ $ (-655 (-1194)) (-655 (-1 $ $))) 28) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) 27) (($ $ (-1194) (-1 $ (-655 $))) 26) (($ $ (-1194) (-1 $ $)) 25) (($ $ (-655 (-115)) (-655 (-1 $ $))) 24) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) 23) (($ $ (-115) (-1 $ (-655 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1194)) 200 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-1194))) 199 (|has| |#1| (-625 (-547)))) (($ $) 198 (|has| |#1| (-625 (-547)))) (($ $ (-115) $ (-1194)) 197 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-115)) (-655 $) (-1194)) 196 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ $))) 185 (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ (-655 $)))) 184 (|has| |#1| (-1066))) (($ $ (-1194) (-782) (-1 $ (-655 $))) 183 (|has| |#1| (-1066))) (($ $ (-1194) (-782) (-1 $ $)) 182 (|has| |#1| (-1066)))) (-3708 (((-782) $) 158 (|has| |#1| (-567)))) (-2070 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-655 $)) 52)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 159 (|has| |#1| (-567)))) (-3146 (($ $) 44) (($ $ $) 43)) (-2389 (($ $ (-1194)) 134 (|has| |#1| (-1066))) (($ $ (-655 (-1194))) 132 (|has| |#1| (-1066))) (($ $ (-1194) (-782)) 131 (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) 130 (|has| |#1| (-1066)))) (-4172 (($ $) 179 (|has| |#1| (-567)))) (-1608 (((-1142 |#1| (-623 $)) $) 180 (|has| |#1| (-567)))) (-2552 (($ $) 19 (|has| $ (-1066)))) (-2615 (((-904 (-575)) $) 217 (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) 216 (|has| |#1| (-625 (-904 (-389))))) (($ (-429 $)) 181 (|has| |#1| (-567))) (((-547) $) 101 (|has| |#1| (-625 (-547))))) (-4258 (($ $ $) 112 (|has| |#1| (-484)))) (-3320 (($ $ $) 113 (|has| |#1| (-484)))) (-2883 (((-873) $) 12) (($ (-623 $)) 63) (($ (-1194)) 218) (($ |#1|) 209) (($ (-1142 |#1| (-623 $))) 191 (|has| |#1| (-1066))) (($ (-418 |#1|)) 177 (|has| |#1| (-567))) (($ (-967 (-418 |#1|))) 176 (|has| |#1| (-567))) (($ (-418 (-967 (-418 |#1|)))) 175 (|has| |#1| (-567))) (($ (-418 (-967 |#1|))) 171 (|has| |#1| (-567))) (($ $) 144 (|has| |#1| (-567))) (($ (-967 |#1|)) 123 (|has| |#1| (-1066))) (($ (-418 (-575))) 98 (-3765 (|has| |#1| (-567)) (-12 (|has| |#1| (-1055 (-575))) (|has| |#1| (-567))) (|has| |#1| (-1055 (-418 (-575)))))) (($ (-575)) 97 (-3765 (|has| |#1| (-1066)) (|has| |#1| (-1055 (-575)))))) (-1518 (((-3 $ "failed") $) 142 (|has| |#1| (-146)))) (-3759 (((-782)) 126 (|has| |#1| (-1066)) CONST)) (-2377 (($ $) 48) (($ (-655 $)) 47)) (-2151 (((-112) (-115)) 36)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 148 (|has| |#1| (-567)))) (-1627 (($ (-1194) $) 205) (($ (-1194) $ $) 204) (($ (-1194) $ $ $) 203) (($ (-1194) $ $ $ $) 202) (($ (-1194) (-655 $)) 201)) (-1996 (($) 116 (|has| |#1| (-25)) CONST)) (-2009 (($) 104 (|has| |#1| (-1129)) CONST)) (-3430 (($ $ (-1194)) 133 (|has| |#1| (-1066))) (($ $ (-655 (-1194))) 129 (|has| |#1| (-1066))) (($ $ (-1194) (-782)) 128 (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) 127 (|has| |#1| (-1066)))) (-3914 (((-112) $ $) 6)) (-4038 (($ (-1142 |#1| (-623 $)) (-1142 |#1| (-623 $))) 178 (|has| |#1| (-567))) (($ $ $) 110 (-3765 (|has| |#1| (-484)) (|has| |#1| (-567))))) (-4028 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-4016 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-575)) 111 (-3765 (|has| |#1| (-484)) (|has| |#1| (-567)))) (($ $ (-782)) 108 (|has| |#1| (-1129))) (($ $ (-936)) 103 (|has| |#1| (-1129)))) (* (($ (-418 (-575)) $) 170 (|has| |#1| (-567))) (($ $ (-418 (-575))) 169 (|has| |#1| (-567))) (($ $ |#1|) 143 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1066))) (($ (-575) $) 120 (|has| |#1| (-21))) (($ (-782) $) 118 (|has| |#1| (-25))) (($ (-936) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1129))))) +(((-441 |#1|) (-141) (-1117)) (T -441)) +((-4345 (*1 *2 *1) (-12 (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-5 *2 (-655 (-1194))))) (-1627 (*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))) (-1627 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))) (-1627 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))) (-1627 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))) (-1627 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-655 *1)) (-4 *1 (-441 *4)) (-4 *4 (-1117)))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-4 *3 (-625 (-547))))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-1194))) (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-4 *3 (-625 (-547))))) (-3048 (*1 *1 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-625 (-547))))) (-3048 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1194)) (-4 *1 (-441 *4)) (-4 *4 (-1117)) (-4 *4 (-625 (-547))))) (-3048 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 *1)) (-5 *4 (-1194)) (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-625 (-547))))) (-3658 (*1 *2 *1) (|partial| -12 (-4 *3 (-1129)) (-4 *3 (-1117)) (-5 *2 (-655 *1)) (-4 *1 (-441 *3)))) (-2455 (*1 *2 *1) (|partial| -12 (-4 *3 (-1129)) (-4 *3 (-1117)) (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -2398 (-575)))) (-4 *1 (-441 *3)))) (-1734 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1117)) (-5 *2 (-655 *1)) (-4 *1 (-441 *3)))) (-2991 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1117)) (-5 *2 (-2 (|:| -1754 (-575)) (|:| |var| (-623 *1)))) (-4 *1 (-441 *3)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-1142 *3 (-623 *1))) (-4 *3 (-1066)) (-4 *3 (-1117)) (-4 *1 (-441 *3)))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *3 (-1117)) (-5 *2 (-1142 *3 (-623 *1))) (-4 *1 (-441 *3)))) (-4046 (*1 *1 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-1066)))) (-2455 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1066)) (-4 *4 (-1117)) (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -2398 (-575)))) (-4 *1 (-441 *4)))) (-2455 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1194)) (-4 *4 (-1066)) (-4 *4 (-1117)) (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -2398 (-575)))) (-4 *1 (-441 *4)))) (-2056 (*1 *2 *1) (|partial| -12 (-4 *3 (-1066)) (-4 *3 (-1117)) (-5 *2 (-2 (|:| |val| *1) (|:| -2398 (-575)))) (-4 *1 (-441 *3)))) (-3048 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-782))) (-5 *4 (-655 (-1 *1 *1))) (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066)))) (-3048 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-782))) (-5 *4 (-655 (-1 *1 (-655 *1)))) (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066)))) (-3048 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *4 (-1 *1 (-655 *1))) (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066)))) (-3048 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *4 (-1 *1 *1)) (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-429 *1)) (-4 *1 (-441 *3)) (-4 *3 (-567)) (-4 *3 (-1117)))) (-1608 (*1 *2 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1117)) (-5 *2 (-1142 *3 (-623 *1))) (-4 *1 (-441 *3)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-567)))) (-4038 (*1 *1 *2 *2) (-12 (-5 *2 (-1142 *3 (-623 *1))) (-4 *3 (-567)) (-4 *3 (-1117)) (-4 *1 (-441 *3)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-567)) (-4 *3 (-1117)) (-4 *1 (-441 *3)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-967 (-418 *3))) (-4 *3 (-567)) (-4 *3 (-1117)) (-4 *1 (-441 *3)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-418 *3)))) (-4 *3 (-567)) (-4 *3 (-1117)) (-4 *1 (-441 *3)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-441 *4)) (-4 *4 (-1117)) (-4 *4 (-567)) (-5 *2 (-418 (-1190 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-4 *3 (-1129))))) +(-13 (-311) (-1055 (-1194)) (-896 |t#1|) (-411 |t#1|) (-422 |t#1|) (-10 -8 (-15 -4345 ((-112) $)) (-15 -4353 (|t#1| $)) (-15 -1606 ((-655 (-1194)) $)) (-15 -1627 ($ (-1194) $)) (-15 -1627 ($ (-1194) $ $)) (-15 -1627 ($ (-1194) $ $ $)) (-15 -1627 ($ (-1194) $ $ $ $)) (-15 -1627 ($ (-1194) (-655 $))) (IF (|has| |t#1| (-625 (-547))) (PROGN (-6 (-625 (-547))) (-15 -3048 ($ $ (-1194))) (-15 -3048 ($ $ (-655 (-1194)))) (-15 -3048 ($ $)) (-15 -3048 ($ $ (-115) $ (-1194))) (-15 -3048 ($ $ (-655 (-115)) (-655 $) (-1194)))) |%noBranch|) (IF (|has| |t#1| (-1129)) (PROGN (-6 (-737)) (-15 ** ($ $ (-782))) (-15 -3658 ((-3 (-655 $) "failed") $)) (-15 -2455 ((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-484)) (-6 (-484)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1734 ((-3 (-655 $) "failed") $)) (-15 -2991 ((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1066)) (PROGN (-6 (-1066)) (-6 (-1055 (-967 |t#1|))) (-6 (-913 (-1194))) (-6 (-387 |t#1|)) (-15 -2883 ($ (-1142 |t#1| (-623 $)))) (-15 -1595 ((-1142 |t#1| (-623 $)) $)) (-15 -4046 ($ $)) (-15 -2455 ((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $ (-115))) (-15 -2455 ((-3 (-2 (|:| |var| (-623 $)) (|:| -2398 (-575))) "failed") $ (-1194))) (-15 -2056 ((-3 (-2 (|:| |val| $) (|:| -2398 (-575))) "failed") $)) (-15 -3048 ($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ $)))) (-15 -3048 ($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ (-655 $))))) (-15 -3048 ($ $ (-1194) (-782) (-1 $ (-655 $)))) (-15 -3048 ($ $ (-1194) (-782) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-567)) (PROGN (-6 (-373)) (-6 (-1055 (-418 (-967 |t#1|)))) (-15 -2615 ($ (-429 $))) (-15 -1608 ((-1142 |t#1| (-623 $)) $)) (-15 -4172 ($ $)) (-15 -4038 ($ (-1142 |t#1| (-623 $)) (-1142 |t#1| (-623 $)))) (-15 -2883 ($ (-418 |t#1|))) (-15 -2883 ($ (-967 (-418 |t#1|)))) (-15 -2883 ($ (-418 (-967 (-418 |t#1|))))) (-15 -3466 ((-418 (-1190 $)) $ (-623 $))) (IF (|has| |t#1| (-1055 (-575))) (-6 (-1055 (-418 (-575)))) |%noBranch|)) |%noBranch|))) +(((-21) -3765 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -3765 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3765 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-418 (-575))) |has| |#1| (-567)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-567)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-567)) ((-132) -3765 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-567))) ((-627 #1=(-418 (-967 |#1|))) |has| |#1| (-567)) ((-627 (-575)) -3765 (|has| |#1| (-1066)) (|has| |#1| (-1055 (-575))) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-627 #2=(-623 $)) . T) ((-627 #3=(-967 |#1|)) |has| |#1| (-1066)) ((-627 #4=(-1194)) . T) ((-627 |#1|) . T) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) |has| |#1| (-567)) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-625 (-904 (-389))) |has| |#1| (-625 (-904 (-389)))) ((-625 (-904 (-575))) |has| |#1| (-625 (-904 (-575)))) ((-248) |has| |#1| (-567)) ((-299) |has| |#1| (-567)) ((-316) |has| |#1| (-567)) ((-318 $) . T) ((-311) . T) ((-373) |has| |#1| (-567)) ((-387 |#1|) |has| |#1| (-1066)) ((-411 |#1|) . T) ((-422 |#1|) . T) ((-463) |has| |#1| (-567)) ((-484) |has| |#1| (-484)) ((-525 (-623 $) $) . T) ((-525 $ $) . T) ((-567) |has| |#1| (-567)) ((-657 #0#) |has| |#1| (-567)) ((-657 (-575)) -3765 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-657 |#1|) -3765 (|has| |#1| (-1066)) (|has| |#1| (-174))) ((-657 $) -3765 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-659 #0#) |has| |#1| (-567)) ((-659 #5=(-575)) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))) ((-659 |#1|) -3765 (|has| |#1| (-1066)) (|has| |#1| (-174))) ((-659 $) -3765 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-651 #0#) |has| |#1| (-567)) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-650 #5#) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))) ((-650 |#1|) |has| |#1| (-1066)) ((-728 #0#) |has| |#1| (-567)) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) -3765 (|has| |#1| (-1129)) (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-484)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-908 $ #6=(-1194)) |has| |#1| (-1066)) ((-913 #6#) |has| |#1| (-1066)) ((-915 #6#) |has| |#1| (-1066)) ((-898 (-389)) |has| |#1| (-898 (-389))) ((-898 (-575)) |has| |#1| (-898 (-575))) ((-896 |#1|) . T) ((-935) |has| |#1| (-567)) ((-1055 (-418 (-575))) -3765 (|has| |#1| (-1055 (-418 (-575)))) (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))))) ((-1055 #1#) |has| |#1| (-567)) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 #2#) . T) ((-1055 #3#) |has| |#1| (-1066)) ((-1055 #4#) . T) ((-1055 |#1|) . T) ((-1068 #0#) |has| |#1| (-567)) ((-1068 |#1|) |has| |#1| (-174)) ((-1068 $) |has| |#1| (-567)) ((-1073 #0#) |has| |#1| (-567)) ((-1073 |#1|) |has| |#1| (-174)) ((-1073 $) |has| |#1| (-567)) ((-1066) -3765 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1075) -3765 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1129) -3765 (|has| |#1| (-1129)) (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-484)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1117) . T) ((-1235) . T) ((-1239) |has| |#1| (-567))) +((-1703 ((|#2| |#2| |#2|) 31)) (-2572 (((-115) (-115)) 43)) (-2137 ((|#2| |#2|) 63)) (-2369 ((|#2| |#2|) 66)) (-1860 ((|#2| |#2|) 30)) (-1553 ((|#2| |#2| |#2|) 33)) (-3581 ((|#2| |#2| |#2|) 35)) (-3091 ((|#2| |#2| |#2|) 32)) (-1870 ((|#2| |#2| |#2|) 34)) (-2151 (((-112) (-115)) 41)) (-1854 ((|#2| |#2|) 37)) (-3371 ((|#2| |#2|) 36)) (-2705 ((|#2| |#2|) 25)) (-4138 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3413 ((|#2| |#2| |#2|) 29))) +(((-442 |#1| |#2|) (-10 -7 (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 -2705 (|#2| |#2|)) (-15 -4138 (|#2| |#2|)) (-15 -4138 (|#2| |#2| |#2|)) (-15 -3413 (|#2| |#2| |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -1703 (|#2| |#2| |#2|)) (-15 -3091 (|#2| |#2| |#2|)) (-15 -1553 (|#2| |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2|)) (-15 -3581 (|#2| |#2| |#2|)) (-15 -3371 (|#2| |#2|)) (-15 -1854 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2137 (|#2| |#2|))) (-567) (-441 |#1|)) (T -442)) +((-2137 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-1854 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-3371 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-3581 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-1870 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-1553 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-3091 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-1703 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-3413 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-4138 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-4138 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-2572 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-442 *3 *4)) (-4 *4 (-441 *3)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5)) (-4 *5 (-441 *4))))) +(-10 -7 (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 -2705 (|#2| |#2|)) (-15 -4138 (|#2| |#2|)) (-15 -4138 (|#2| |#2| |#2|)) (-15 -3413 (|#2| |#2| |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -1703 (|#2| |#2| |#2|)) (-15 -3091 (|#2| |#2| |#2|)) (-15 -1553 (|#2| |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2|)) (-15 -3581 (|#2| |#2| |#2|)) (-15 -3371 (|#2| |#2|)) (-15 -1854 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2137 (|#2| |#2|))) +((-1360 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1190 |#2|)) (|:| |pol2| (-1190 |#2|)) (|:| |prim| (-1190 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-655 (-1190 |#2|))) (|:| |prim| (-1190 |#2|))) (-655 |#2|)) 65))) +(((-443 |#1| |#2|) (-10 -7 (-15 -1360 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-655 (-1190 |#2|))) (|:| |prim| (-1190 |#2|))) (-655 |#2|))) (IF (|has| |#2| (-27)) (-15 -1360 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1190 |#2|)) (|:| |pol2| (-1190 |#2|)) (|:| |prim| (-1190 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-567) (-148)) (-441 |#1|)) (T -443)) +((-1360 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-567) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1190 *3)) (|:| |pol2| (-1190 *3)) (|:| |prim| (-1190 *3)))) (-5 *1 (-443 *4 *3)) (-4 *3 (-27)) (-4 *3 (-441 *4)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-655 *5)) (-4 *5 (-441 *4)) (-4 *4 (-13 (-567) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-655 (-1190 *5))) (|:| |prim| (-1190 *5)))) (-5 *1 (-443 *4 *5))))) +(-10 -7 (-15 -1360 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-655 (-1190 |#2|))) (|:| |prim| (-1190 |#2|))) (-655 |#2|))) (IF (|has| |#2| (-27)) (-15 -1360 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1190 |#2|)) (|:| |pol2| (-1190 |#2|)) (|:| |prim| (-1190 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2374 (((-1290)) 18)) (-3831 (((-1190 (-418 (-575))) |#2| (-623 |#2|)) 40) (((-418 (-575)) |#2|) 24))) +(((-444 |#1| |#2|) (-10 -7 (-15 -3831 ((-418 (-575)) |#2|)) (-15 -3831 ((-1190 (-418 (-575))) |#2| (-623 |#2|))) (-15 -2374 ((-1290)))) (-13 (-567) (-1055 (-575))) (-441 |#1|)) (T -444)) +((-2374 (*1 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *2 (-1290)) (-5 *1 (-444 *3 *4)) (-4 *4 (-441 *3)))) (-3831 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-441 *5)) (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-444 *5 *3)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-418 (-575))) (-5 *1 (-444 *4 *3)) (-4 *3 (-441 *4))))) +(-10 -7 (-15 -3831 ((-418 (-575)) |#2|)) (-15 -3831 ((-1190 (-418 (-575))) |#2| (-623 |#2|))) (-15 -2374 ((-1290)))) +((-1837 (((-112) $) 32)) (-2034 (((-112) $) 34)) (-2567 (((-112) $) 35)) (-2102 (((-112) $) 38)) (-3379 (((-112) $) 33)) (-3668 (((-112) $) 37)) (-2883 (((-873) $) 20) (($ (-1176)) 31) (($ (-1194)) 26) (((-1194) $) 24) (((-1121) $) 23)) (-2375 (((-112) $) 36)) (-3914 (((-112) $ $) 17))) +(((-445) (-13 (-624 (-873)) (-10 -8 (-15 -2883 ($ (-1176))) (-15 -2883 ($ (-1194))) (-15 -2883 ((-1194) $)) (-15 -2883 ((-1121) $)) (-15 -1837 ((-112) $)) (-15 -3379 ((-112) $)) (-15 -2567 ((-112) $)) (-15 -3668 ((-112) $)) (-15 -2102 ((-112) $)) (-15 -2375 ((-112) $)) (-15 -2034 ((-112) $)) (-15 -3914 ((-112) $ $))))) (T -445)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-445)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-445)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-445)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-445)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-2567 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-3914 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445))))) +(-13 (-624 (-873)) (-10 -8 (-15 -2883 ($ (-1176))) (-15 -2883 ($ (-1194))) (-15 -2883 ((-1194) $)) (-15 -2883 ((-1121) $)) (-15 -1837 ((-112) $)) (-15 -3379 ((-112) $)) (-15 -2567 ((-112) $)) (-15 -3668 ((-112) $)) (-15 -2102 ((-112) $)) (-15 -2375 ((-112) $)) (-15 -2034 ((-112) $)) (-15 -3914 ((-112) $ $)))) +((-4250 (((-3 (-429 (-1190 (-418 (-575)))) "failed") |#3|) 72)) (-1773 (((-429 |#3|) |#3|) 34)) (-4361 (((-3 (-429 (-1190 (-48))) "failed") |#3|) 46 (|has| |#2| (-1055 (-48))))) (-3920 (((-3 (|:| |overq| (-1190 (-418 (-575)))) (|:| |overan| (-1190 (-48))) (|:| -3420 (-112))) |#3|) 37))) +(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -1773 ((-429 |#3|) |#3|)) (-15 -4250 ((-3 (-429 (-1190 (-418 (-575)))) "failed") |#3|)) (-15 -3920 ((-3 (|:| |overq| (-1190 (-418 (-575)))) (|:| |overan| (-1190 (-48))) (|:| -3420 (-112))) |#3|)) (IF (|has| |#2| (-1055 (-48))) (-15 -4361 ((-3 (-429 (-1190 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-567) (-1055 (-575))) (-441 |#1|) (-1261 |#2|)) (T -446)) +((-4361 (*1 *2 *3) (|partial| -12 (-4 *5 (-1055 (-48))) (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) (-5 *2 (-429 (-1190 (-48)))) (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5)))) (-3920 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) (-5 *2 (-3 (|:| |overq| (-1190 (-418 (-575)))) (|:| |overan| (-1190 (-48))) (|:| -3420 (-112)))) (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5)))) (-4250 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) (-5 *2 (-429 (-1190 (-418 (-575))))) (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5)))) (-1773 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) (-5 *2 (-429 *3)) (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5))))) +(-10 -7 (-15 -1773 ((-429 |#3|) |#3|)) (-15 -4250 ((-3 (-429 (-1190 (-418 (-575)))) "failed") |#3|)) (-15 -3920 ((-3 (|:| |overq| (-1190 (-418 (-575)))) (|:| |overan| (-1190 (-48))) (|:| -3420 (-112))) |#3|)) (IF (|has| |#2| (-1055 (-48))) (-15 -4361 ((-3 (-429 (-1190 (-48))) "failed") |#3|)) |%noBranch|)) +((-2861 (((-112) $ $) NIL)) (-2766 (((-1176) $ (-1176)) NIL)) (-4248 (($ $ (-1176)) NIL)) (-1368 (((-1176) $) NIL)) (-3164 (((-399) (-399) (-399)) 17) (((-399) (-399)) 15)) (-2978 (($ (-399)) NIL) (($ (-399) (-1176)) NIL)) (-1777 (((-399) $) NIL)) (-2288 (((-1176) $) NIL)) (-3212 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2335 (((-1290) (-1176)) 9)) (-3678 (((-1290) (-1176)) 10)) (-1843 (((-1290)) 11)) (-2883 (((-873) $) NIL)) (-3504 (($ $) 39)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-447) (-13 (-374 (-399) (-1176)) (-10 -7 (-15 -3164 ((-399) (-399) (-399))) (-15 -3164 ((-399) (-399))) (-15 -2335 ((-1290) (-1176))) (-15 -3678 ((-1290) (-1176))) (-15 -1843 ((-1290)))))) (T -447)) +((-3164 (*1 *2 *2 *2) (-12 (-5 *2 (-399)) (-5 *1 (-447)))) (-3164 (*1 *2 *2) (-12 (-5 *2 (-399)) (-5 *1 (-447)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-447)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-447)))) (-1843 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-447))))) +(-13 (-374 (-399) (-1176)) (-10 -7 (-15 -3164 ((-399) (-399) (-399))) (-15 -3164 ((-399) (-399))) (-15 -2335 ((-1290) (-1176))) (-15 -3678 ((-1290) (-1176))) (-15 -1843 ((-1290))))) +((-2861 (((-112) $ $) NIL)) (-3304 (((-3 (|:| |fst| (-445)) (|:| -2007 "void")) $) 11)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2069 (($) 35)) (-3645 (($) 41)) (-3248 (($) 37)) (-3471 (($) 39)) (-2886 (($) 36)) (-2005 (($) 38)) (-4009 (($) 40)) (-3603 (((-112) $) 8)) (-3363 (((-655 (-967 (-575))) $) 19)) (-2894 (($ (-3 (|:| |fst| (-445)) (|:| -2007 "void")) (-655 (-1194)) (-112)) 29) (($ (-3 (|:| |fst| (-445)) (|:| -2007 "void")) (-655 (-967 (-575))) (-112)) 30)) (-2883 (((-873) $) 24) (($ (-445)) 32)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-448) (-13 (-1117) (-10 -8 (-15 -2883 ($ (-445))) (-15 -3304 ((-3 (|:| |fst| (-445)) (|:| -2007 "void")) $)) (-15 -3363 ((-655 (-967 (-575))) $)) (-15 -3603 ((-112) $)) (-15 -2894 ($ (-3 (|:| |fst| (-445)) (|:| -2007 "void")) (-655 (-1194)) (-112))) (-15 -2894 ($ (-3 (|:| |fst| (-445)) (|:| -2007 "void")) (-655 (-967 (-575))) (-112))) (-15 -2069 ($)) (-15 -2886 ($)) (-15 -3248 ($)) (-15 -3645 ($)) (-15 -2005 ($)) (-15 -3471 ($)) (-15 -4009 ($))))) (T -448)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-448)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-5 *1 (-448)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-655 (-967 (-575)))) (-5 *1 (-448)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) (-2894 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-5 *3 (-655 (-1194))) (-5 *4 (-112)) (-5 *1 (-448)))) (-2894 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-112)) (-5 *1 (-448)))) (-2069 (*1 *1) (-5 *1 (-448))) (-2886 (*1 *1) (-5 *1 (-448))) (-3248 (*1 *1) (-5 *1 (-448))) (-3645 (*1 *1) (-5 *1 (-448))) (-2005 (*1 *1) (-5 *1 (-448))) (-3471 (*1 *1) (-5 *1 (-448))) (-4009 (*1 *1) (-5 *1 (-448)))) +(-13 (-1117) (-10 -8 (-15 -2883 ($ (-445))) (-15 -3304 ((-3 (|:| |fst| (-445)) (|:| -2007 "void")) $)) (-15 -3363 ((-655 (-967 (-575))) $)) (-15 -3603 ((-112) $)) (-15 -2894 ($ (-3 (|:| |fst| (-445)) (|:| -2007 "void")) (-655 (-1194)) (-112))) (-15 -2894 ($ (-3 (|:| |fst| (-445)) (|:| -2007 "void")) (-655 (-967 (-575))) (-112))) (-15 -2069 ($)) (-15 -2886 ($)) (-15 -3248 ($)) (-15 -3645 ($)) (-15 -2005 ($)) (-15 -3471 ($)) (-15 -4009 ($)))) +((-2861 (((-112) $ $) NIL)) (-1777 (((-1194) $) 8)) (-2288 (((-1176) $) 17)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 11)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 14))) +(((-449 |#1|) (-13 (-1117) (-10 -8 (-15 -1777 ((-1194) $)))) (-1194)) (T -449)) +((-1777 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-449 *3)) (-14 *3 *2)))) +(-13 (-1117) (-10 -8 (-15 -1777 ((-1194) $)))) +((-2861 (((-112) $ $) NIL)) (-1381 (((-1135) $) 7)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 13)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 9))) +(((-450) (-13 (-1117) (-10 -8 (-15 -1381 ((-1135) $))))) (T -450)) +((-1381 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-450))))) +(-13 (-1117) (-10 -8 (-15 -1381 ((-1135) $)))) +((-2248 (((-1290) $) 7)) (-2883 (((-873) $) 8) (($ (-1285 (-710))) 14) (($ (-655 (-339))) 13) (($ (-339)) 12) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 11))) +(((-451) (-141)) (T -451)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-710))) (-4 *1 (-451)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-451)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-451)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) (-4 *1 (-451))))) +(-13 (-406) (-10 -8 (-15 -2883 ($ (-1285 (-710)))) (-15 -2883 ($ (-655 (-339)))) (-15 -2883 ($ (-339))) (-15 -2883 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339)))))))) +(((-624 (-873)) . T) ((-406) . T) ((-1235) . T)) +((-2449 (((-3 $ "failed") (-1285 (-325 (-389)))) 21) (((-3 $ "failed") (-1285 (-325 (-575)))) 19) (((-3 $ "failed") (-1285 (-967 (-389)))) 17) (((-3 $ "failed") (-1285 (-967 (-575)))) 15) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 13) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 11)) (-4399 (($ (-1285 (-325 (-389)))) 22) (($ (-1285 (-325 (-575)))) 20) (($ (-1285 (-967 (-389)))) 18) (($ (-1285 (-967 (-575)))) 16) (($ (-1285 (-418 (-967 (-389))))) 14) (($ (-1285 (-418 (-967 (-575))))) 12)) (-2248 (((-1290) $) 7)) (-2883 (((-873) $) 8) (($ (-655 (-339))) 25) (($ (-339)) 24) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) 23))) (((-452) (-141)) (T -452)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-711))) (-4 *1 (-452)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) (-4 *1 (-452))))) -(-13 (-407) (-10 -8 (-15 -2884 ($ (-1286 (-711)))) (-15 -2884 ($ (-656 (-340)))) (-15 -2884 ($ (-340))) (-15 -2884 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340)))))))) -(((-625 (-874)) . T) ((-407) . T) ((-1236) . T)) -((-2449 (((-3 $ "failed") (-1286 (-326 (-390)))) 21) (((-3 $ "failed") (-1286 (-326 (-576)))) 19) (((-3 $ "failed") (-1286 (-968 (-390)))) 17) (((-3 $ "failed") (-1286 (-968 (-576)))) 15) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 13) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 11)) (-4401 (($ (-1286 (-326 (-390)))) 22) (($ (-1286 (-326 (-576)))) 20) (($ (-1286 (-968 (-390)))) 18) (($ (-1286 (-968 (-576)))) 16) (($ (-1286 (-419 (-968 (-390))))) 14) (($ (-1286 (-419 (-968 (-576))))) 12)) (-2251 (((-1291) $) 7)) (-2884 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) 23))) -(((-453) (-141)) (T -453)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) (-4 *1 (-453)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-1286 (-968 (-390)))) (-4 *1 (-453)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-968 (-390)))) (-4 *1 (-453)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-1286 (-968 (-576)))) (-4 *1 (-453)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-968 (-576)))) (-4 *1 (-453)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-968 (-390))))) (-4 *1 (-453)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-419 (-968 (-390))))) (-4 *1 (-453)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-968 (-576))))) (-4 *1 (-453)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-419 (-968 (-576))))) (-4 *1 (-453))))) -(-13 (-407) (-10 -8 (-15 -2884 ($ (-656 (-340)))) (-15 -2884 ($ (-340))) (-15 -2884 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340)))))) (-15 -4401 ($ (-1286 (-326 (-390))))) (-15 -2449 ((-3 $ "failed") (-1286 (-326 (-390))))) (-15 -4401 ($ (-1286 (-326 (-576))))) (-15 -2449 ((-3 $ "failed") (-1286 (-326 (-576))))) (-15 -4401 ($ (-1286 (-968 (-390))))) (-15 -2449 ((-3 $ "failed") (-1286 (-968 (-390))))) (-15 -4401 ($ (-1286 (-968 (-576))))) (-15 -2449 ((-3 $ "failed") (-1286 (-968 (-576))))) (-15 -4401 ($ (-1286 (-419 (-968 (-390)))))) (-15 -2449 ((-3 $ "failed") (-1286 (-419 (-968 (-390)))))) (-15 -4401 ($ (-1286 (-419 (-968 (-576)))))) (-15 -2449 ((-3 $ "failed") (-1286 (-419 (-968 (-576)))))))) -(((-625 (-874)) . T) ((-407) . T) ((-1236) . T)) -((-3740 (((-112)) 18)) (-3751 (((-112) (-112)) 19)) (-3763 (((-112)) 14)) (-3776 (((-112) (-112)) 15)) (-3799 (((-112)) 16)) (-3809 (((-112) (-112)) 17)) (-3709 (((-937) (-937)) 22) (((-937)) 21)) (-3719 (((-783) (-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576))))) 52)) (-3700 (((-937) (-937)) 24) (((-937)) 23)) (-3730 (((-2 (|:| -4391 (-576)) (|:| -4319 (-656 |#1|))) |#1|) 94)) (-3689 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576))))))) 174)) (-2550 (((-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576)))))) |#1| (-112)) 207)) (-2539 (((-430 |#1|) |#1| (-783) (-783)) 222) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 219) (((-430 |#1|) |#1| (-656 (-783))) 221) (((-430 |#1|) |#1| (-783)) 220) (((-430 |#1|) |#1|) 218)) (-3937 (((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783) (-112)) 224) (((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783)) 225) (((-3 |#1| "failed") (-937) |#1| (-656 (-783))) 227) (((-3 |#1| "failed") (-937) |#1| (-783)) 226) (((-3 |#1| "failed") (-937) |#1|) 228)) (-2354 (((-430 |#1|) |#1| (-783) (-783)) 217) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 213) (((-430 |#1|) |#1| (-656 (-783))) 215) (((-430 |#1|) |#1| (-783)) 214) (((-430 |#1|) |#1|) 212)) (-3788 (((-112) |#1|) 44)) (-3925 (((-749 (-783)) (-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576))))) 99)) (-3820 (((-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576)))))) |#1| (-112) (-1120 (-783)) (-783)) 211))) -(((-454 |#1|) (-10 -7 (-15 -3689 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576)))))))) (-15 -3925 ((-749 (-783)) (-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576)))))) (-15 -3700 ((-937))) (-15 -3700 ((-937) (-937))) (-15 -3709 ((-937))) (-15 -3709 ((-937) (-937))) (-15 -3719 ((-783) (-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576)))))) (-15 -3730 ((-2 (|:| -4391 (-576)) (|:| -4319 (-656 |#1|))) |#1|)) (-15 -3740 ((-112))) (-15 -3751 ((-112) (-112))) (-15 -3763 ((-112))) (-15 -3776 ((-112) (-112))) (-15 -3788 ((-112) |#1|)) (-15 -3799 ((-112))) (-15 -3809 ((-112) (-112))) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -2354 ((-430 |#1|) |#1| (-783))) (-15 -2354 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -2354 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -2354 ((-430 |#1|) |#1| (-783) (-783))) (-15 -2539 ((-430 |#1|) |#1|)) (-15 -2539 ((-430 |#1|) |#1| (-783))) (-15 -2539 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -2539 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -2539 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3937 ((-3 |#1| "failed") (-937) |#1|)) (-15 -3937 ((-3 |#1| "failed") (-937) |#1| (-783))) (-15 -3937 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)))) (-15 -3937 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783))) (-15 -3937 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783) (-112))) (-15 -2550 ((-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576)))))) |#1| (-112))) (-15 -3820 ((-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576)))))) |#1| (-112) (-1120 (-783)) (-783)))) (-1262 (-576))) (T -454)) -((-3820 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1120 (-783))) (-5 *6 (-783)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| *3) (|:| -4435 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2550 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| *3) (|:| -4435 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3937 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-3937 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-3937 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-3937 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-3937 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-937)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-2539 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2539 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2539 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2539 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2539 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2354 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2354 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2354 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3799 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3788 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3776 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3763 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3740 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3730 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4391 (-576)) (|:| -4319 (-656 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2354 *4) (|:| -3813 (-576))))) (-4 *4 (-1262 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3709 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3700 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2354 *4) (|:| -3813 (-576))))) (-4 *4 (-1262 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| *4) (|:| -4435 (-576))))))) (-4 *4 (-1262 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) -(-10 -7 (-15 -3689 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576)))))))) (-15 -3925 ((-749 (-783)) (-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576)))))) (-15 -3700 ((-937))) (-15 -3700 ((-937) (-937))) (-15 -3709 ((-937))) (-15 -3709 ((-937) (-937))) (-15 -3719 ((-783) (-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576)))))) (-15 -3730 ((-2 (|:| -4391 (-576)) (|:| -4319 (-656 |#1|))) |#1|)) (-15 -3740 ((-112))) (-15 -3751 ((-112) (-112))) (-15 -3763 ((-112))) (-15 -3776 ((-112) (-112))) (-15 -3788 ((-112) |#1|)) (-15 -3799 ((-112))) (-15 -3809 ((-112) (-112))) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -2354 ((-430 |#1|) |#1| (-783))) (-15 -2354 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -2354 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -2354 ((-430 |#1|) |#1| (-783) (-783))) (-15 -2539 ((-430 |#1|) |#1|)) (-15 -2539 ((-430 |#1|) |#1| (-783))) (-15 -2539 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -2539 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -2539 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3937 ((-3 |#1| "failed") (-937) |#1|)) (-15 -3937 ((-3 |#1| "failed") (-937) |#1| (-783))) (-15 -3937 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)))) (-15 -3937 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783))) (-15 -3937 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783) (-112))) (-15 -2550 ((-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576)))))) |#1| (-112))) (-15 -3820 ((-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576)))))) |#1| (-112) (-1120 (-783)) (-783)))) -((-3865 (((-576) |#2|) 52) (((-576) |#2| (-783)) 51)) (-3854 (((-576) |#2|) 64)) (-3875 ((|#3| |#2|) 26)) (-1941 ((|#3| |#2| (-937)) 15)) (-1840 ((|#3| |#2|) 16)) (-3887 ((|#3| |#2|) 9)) (-3343 ((|#3| |#2|) 10)) (-3841 ((|#3| |#2| (-937)) 71) ((|#3| |#2|) 34)) (-3831 (((-576) |#2|) 66))) -(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -3831 ((-576) |#2|)) (-15 -3841 (|#3| |#2|)) (-15 -3841 (|#3| |#2| (-937))) (-15 -3854 ((-576) |#2|)) (-15 -3865 ((-576) |#2| (-783))) (-15 -3865 ((-576) |#2|)) (-15 -1941 (|#3| |#2| (-937))) (-15 -3875 (|#3| |#2|)) (-15 -3887 (|#3| |#2|)) (-15 -3343 (|#3| |#2|)) (-15 -1840 (|#3| |#2|))) (-1067) (-1262 |#1|) (-13 (-416) (-1056 |#1|) (-374) (-1221) (-294))) (T -455)) -((-1840 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-3887 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-3875 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *2 (-13 (-416) (-1056 *5) (-374) (-1221) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))))) (-3865 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1262 *5)) (-4 *6 (-13 (-416) (-1056 *5) (-374) (-1221) (-294))))) (-3854 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))))) (-3841 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *2 (-13 (-416) (-1056 *5) (-374) (-1221) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))) (-3841 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294)))))) -(-10 -7 (-15 -3831 ((-576) |#2|)) (-15 -3841 (|#3| |#2|)) (-15 -3841 (|#3| |#2| (-937))) (-15 -3854 ((-576) |#2|)) (-15 -3865 ((-576) |#2| (-783))) (-15 -3865 ((-576) |#2|)) (-15 -1941 (|#3| |#2| (-937))) (-15 -3875 (|#3| |#2|)) (-15 -3887 (|#3| |#2|)) (-15 -3343 (|#3| |#2|)) (-15 -1840 (|#3| |#2|))) -((-3549 ((|#2| (-1286 |#1|)) 42)) (-3909 ((|#2| |#2| |#1|) 58)) (-3899 ((|#2| |#2| |#1|) 49)) (-4379 ((|#2| |#2|) 44)) (-4382 (((-112) |#2|) 32)) (-3953 (((-656 |#2|) (-937) (-430 |#2|)) 21)) (-3937 ((|#2| (-937) (-430 |#2|)) 25)) (-3925 (((-749 (-783)) (-430 |#2|)) 29))) -(((-456 |#1| |#2|) (-10 -7 (-15 -4382 ((-112) |#2|)) (-15 -3549 (|#2| (-1286 |#1|))) (-15 -4379 (|#2| |#2|)) (-15 -3899 (|#2| |#2| |#1|)) (-15 -3909 (|#2| |#2| |#1|)) (-15 -3925 ((-749 (-783)) (-430 |#2|))) (-15 -3937 (|#2| (-937) (-430 |#2|))) (-15 -3953 ((-656 |#2|) (-937) (-430 |#2|)))) (-1067) (-1262 |#1|)) (T -456)) -((-3953 (*1 *2 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-430 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-1067)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))) (-3937 (*1 *2 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-430 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1067)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1067)) (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))) (-3909 (*1 *2 *2 *3) (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-3899 (*1 *2 *2 *3) (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-4379 (*1 *2 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-1067)) (-4 *2 (-1262 *4)) (-5 *1 (-456 *4 *2)))) (-4382 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1262 *4))))) -(-10 -7 (-15 -4382 ((-112) |#2|)) (-15 -3549 (|#2| (-1286 |#1|))) (-15 -4379 (|#2| |#2|)) (-15 -3899 (|#2| |#2| |#1|)) (-15 -3909 (|#2| |#2| |#1|)) (-15 -3925 ((-749 (-783)) (-430 |#2|))) (-15 -3937 (|#2| (-937) (-430 |#2|))) (-15 -3953 ((-656 |#2|) (-937) (-430 |#2|)))) -((-3992 (((-783)) 59)) (-4035 (((-783)) 29 (|has| |#1| (-416))) (((-783) (-783)) 28 (|has| |#1| (-416)))) (-4025 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-4013 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-3980 (((-783)) 58) (((-783) (-783)) 57)) (-3967 ((|#1| (-783) (-576)) 37)) (-4004 (((-1291)) 61))) -(((-457 |#1|) (-10 -7 (-15 -3967 (|#1| (-783) (-576))) (-15 -3980 ((-783) (-783))) (-15 -3980 ((-783))) (-15 -3992 ((-783))) (-15 -4004 ((-1291))) (IF (|has| |#1| (-416)) (PROGN (-15 -4013 ((-576) |#1|)) (-15 -4025 ((-576) |#1|)) (-15 -4035 ((-783) (-783))) (-15 -4035 ((-783)))) |%noBranch|)) (-1067)) (T -457)) -((-4035 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))) (-4035 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))) (-4025 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))) (-4013 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))) (-4004 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))) (-3992 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))) (-3980 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))) (-3980 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))) (-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1067))))) -(-10 -7 (-15 -3967 (|#1| (-783) (-576))) (-15 -3980 ((-783) (-783))) (-15 -3980 ((-783))) (-15 -3992 ((-783))) (-15 -4004 ((-1291))) (IF (|has| |#1| (-416)) (PROGN (-15 -4013 ((-576) |#1|)) (-15 -4025 ((-576) |#1|)) (-15 -4035 ((-783) (-783))) (-15 -4035 ((-783)))) |%noBranch|)) -((-4045 (((-656 (-576)) (-576)) 76)) (-2463 (((-112) (-171 (-576))) 82)) (-2354 (((-430 (-171 (-576))) (-171 (-576))) 75))) -(((-458) (-10 -7 (-15 -2354 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -4045 ((-656 (-576)) (-576))) (-15 -2463 ((-112) (-171 (-576)))))) (T -458)) -((-2463 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-4045 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-2354 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576)))))) -(-10 -7 (-15 -2354 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -4045 ((-656 (-576)) (-576))) (-15 -2463 ((-112) (-171 (-576))))) -((-4054 ((|#4| |#4| (-656 |#4|)) 82)) (-4063 (((-656 |#4|) (-656 |#4|) (-1177) (-1177)) 22) (((-656 |#4|) (-656 |#4|) (-1177)) 21) (((-656 |#4|) (-656 |#4|)) 13))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4054 (|#4| |#4| (-656 |#4|))) (-15 -4063 ((-656 |#4|) (-656 |#4|))) (-15 -4063 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -4063 ((-656 |#4|) (-656 |#4|) (-1177) (-1177)))) (-317) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -459)) -((-4063 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-4063 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) (-4054 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2))))) -(-10 -7 (-15 -4054 (|#4| |#4| (-656 |#4|))) (-15 -4063 ((-656 |#4|) (-656 |#4|))) (-15 -4063 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -4063 ((-656 |#4|) (-656 |#4|) (-1177) (-1177)))) -((-4080 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 89) (((-656 (-656 |#4|)) (-656 |#4|)) 88) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112)) 82) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|)) 83)) (-4071 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 55) (((-656 (-656 |#4|)) (-656 |#4|)) 77))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -4071 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -4080 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -4080 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -4080 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -4080 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) (-13 (-317) (-148)) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -460)) -((-4080 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-4080 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4080 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-4080 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-4071 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(-10 -7 (-15 -4071 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -4071 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -4080 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -4080 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -4080 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -4080 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) -((-3147 (((-783) |#4|) 12)) (-3006 (((-656 (-2 (|:| |totdeg| (-783)) (|:| -1808 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -1808 |#4|)))) 39)) (-3031 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3016 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2906 ((|#4| |#4| (-656 |#4|)) 54)) (-2986 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|)) 96)) (-3069 (((-1291) |#4|) 59)) (-3104 (((-1291) (-656 |#4|)) 69)) (-3081 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-3115 (((-1291) (-576)) 110)) (-3042 (((-656 |#4|) (-656 |#4|)) 104)) (-3137 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -1808 |#4|)) |#4| (-783)) 31)) (-3058 (((-576) |#4|) 109)) (-2997 ((|#4| |#4|) 37)) (-2918 (((-656 |#4|) (-656 |#4|) (-576) (-576)) 74)) (-3092 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-3125 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2929 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2973 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2964 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-2936 (((-112) |#2| |#2|) 75)) (-2955 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2946 (((-112) |#2| |#2| |#2| |#2|) 80)) (-4089 ((|#4| |#4| (-656 |#4|)) 97))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4089 (|#4| |#4| (-656 |#4|))) (-15 -2906 (|#4| |#4| (-656 |#4|))) (-15 -2918 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -2929 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2936 ((-112) |#2| |#2|)) (-15 -2946 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2955 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2964 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2973 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2986 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -2997 (|#4| |#4|)) (-15 -3006 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -1808 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -1808 |#4|))))) (-15 -3016 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3031 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3042 ((-656 |#4|) (-656 |#4|))) (-15 -3058 ((-576) |#4|)) (-15 -3069 ((-1291) |#4|)) (-15 -3081 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -3092 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -3104 ((-1291) (-656 |#4|))) (-15 -3115 ((-1291) (-576))) (-15 -3125 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3137 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -1808 |#4|)) |#4| (-783))) (-15 -3147 ((-783) |#4|))) (-464) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -461)) -((-3147 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))) (-3137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -1808 *4))) (-5 *5 (-783)) (-4 *4 (-965 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-3125 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3092 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-3081 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-3069 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))) (-3058 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))) (-3042 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-3016 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-805)) (-4 *2 (-965 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-862)))) (-3006 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -1808 *3)))) (-5 *4 (-783)) (-4 *3 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3)))) (-2997 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5)))) (-2986 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-2973 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-805)) (-4 *6 (-965 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *4 *3 *5 *6)))) (-2964 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2955 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-805)) (-4 *3 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *3)))) (-2946 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-965 *4 *3 *5)))) (-2936 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-965 *4 *3 *5)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2918 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2906 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))) (-4089 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) -(-10 -7 (-15 -4089 (|#4| |#4| (-656 |#4|))) (-15 -2906 (|#4| |#4| (-656 |#4|))) (-15 -2918 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -2929 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2936 ((-112) |#2| |#2|)) (-15 -2946 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2955 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2964 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2973 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2986 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -2997 (|#4| |#4|)) (-15 -3006 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -1808 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -1808 |#4|))))) (-15 -3016 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3031 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3042 ((-656 |#4|) (-656 |#4|))) (-15 -3058 ((-576) |#4|)) (-15 -3069 ((-1291) |#4|)) (-15 -3081 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -3092 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -3104 ((-1291) (-656 |#4|))) (-15 -3115 ((-1291) (-576))) (-15 -3125 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3137 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -1808 |#4|)) |#4| (-783))) (-15 -3147 ((-783) |#4|))) -((-3806 ((|#4| |#4| (-656 |#4|)) 20 (|has| |#1| (-374)))) (-2330 (((-656 |#4|) (-656 |#4|) (-1177) (-1177)) 46) (((-656 |#4|) (-656 |#4|) (-1177)) 45) (((-656 |#4|) (-656 |#4|)) 34))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2330 ((-656 |#4|) (-656 |#4|))) (-15 -2330 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -2330 ((-656 |#4|) (-656 |#4|) (-1177) (-1177))) (IF (|has| |#1| (-374)) (-15 -3806 (|#4| |#4| (-656 |#4|))) |%noBranch|)) (-464) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -462)) -((-3806 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *2)))) (-2330 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2330 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6))))) -(-10 -7 (-15 -2330 ((-656 |#4|) (-656 |#4|))) (-15 -2330 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -2330 ((-656 |#4|) (-656 |#4|) (-1177) (-1177))) (IF (|has| |#1| (-374)) (-15 -3806 (|#4| |#4| (-656 |#4|))) |%noBranch|)) -((-3888 (($ $ $) 14) (($ (-656 $)) 21)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 46)) (-3928 (($ $ $) NIL) (($ (-656 $)) 22))) -(((-463 |#1|) (-10 -8 (-15 -3214 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -3888 (|#1| (-656 |#1|))) (-15 -3888 (|#1| |#1| |#1|)) (-15 -3928 (|#1| (-656 |#1|))) (-15 -3928 (|#1| |#1| |#1|))) (-464)) (T -463)) -NIL -(-10 -8 (-15 -3214 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -3888 (|#1| (-656 |#1|))) (-15 -3888 (|#1| |#1| |#1|)) (-15 -3928 (|#1| (-656 |#1|))) (-15 -3928 (|#1| |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2852 (((-3 $ "failed") $ $) 48)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-464) (-141)) (T -464)) -((-3928 (*1 *1 *1 *1) (-4 *1 (-464))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3888 (*1 *1 *1 *1) (-4 *1 (-464))) (-3888 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3214 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-464))))) -(-13 (-568) (-10 -8 (-15 -3928 ($ $ $)) (-15 -3928 ($ (-656 $))) (-15 -3888 ($ $ $)) (-15 -3888 ($ (-656 $))) (-15 -3214 ((-1191 $) (-1191 $) (-1191 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4246 (((-3 $ "failed")) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-3620 (((-1286 (-701 (-419 (-968 |#1|)))) (-1286 $)) NIL) (((-1286 (-701 (-419 (-968 |#1|))))) NIL)) (-1879 (((-1286 $)) NIL)) (-2473 (($) NIL T CONST)) (-3311 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) NIL)) (-1588 (((-3 $ "failed")) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-4424 (((-701 (-419 (-968 |#1|))) (-1286 $)) NIL) (((-701 (-419 (-968 |#1|)))) NIL)) (-1856 (((-419 (-968 |#1|)) $) NIL)) (-4402 (((-701 (-419 (-968 |#1|))) $ (-1286 $)) NIL) (((-701 (-419 (-968 |#1|))) $) NIL)) (-1388 (((-3 $ "failed") $) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-3247 (((-1191 (-968 (-419 (-968 |#1|))))) NIL (|has| (-419 (-968 |#1|)) (-374))) (((-1191 (-419 (-968 |#1|)))) 90 (|has| |#1| (-568)))) (-1420 (($ $ (-937)) NIL)) (-1832 (((-419 (-968 |#1|)) $) NIL)) (-1610 (((-1191 (-419 (-968 |#1|))) $) 88 (|has| (-419 (-968 |#1|)) (-568)))) (-1320 (((-419 (-968 |#1|)) (-1286 $)) NIL) (((-419 (-968 |#1|))) NIL)) (-1812 (((-1191 (-419 (-968 |#1|))) $) NIL)) (-1744 (((-112)) NIL)) (-1339 (($ (-1286 (-419 (-968 |#1|))) (-1286 $)) 114) (($ (-1286 (-419 (-968 |#1|)))) NIL)) (-1999 (((-3 $ "failed") $) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-4423 (((-937)) NIL)) (-1711 (((-112)) NIL)) (-3593 (($ $ (-937)) NIL)) (-1665 (((-112)) NIL)) (-1643 (((-112)) NIL)) (-1687 (((-112)) NIL)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) NIL)) (-1597 (((-3 $ "failed")) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-4433 (((-701 (-419 (-968 |#1|))) (-1286 $)) NIL) (((-701 (-419 (-968 |#1|)))) NIL)) (-1868 (((-419 (-968 |#1|)) $) NIL)) (-4413 (((-701 (-419 (-968 |#1|))) $ (-1286 $)) NIL) (((-701 (-419 (-968 |#1|))) $) NIL)) (-1399 (((-3 $ "failed") $) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-3291 (((-1191 (-968 (-419 (-968 |#1|))))) NIL (|has| (-419 (-968 |#1|)) (-374))) (((-1191 (-419 (-968 |#1|)))) 89 (|has| |#1| (-568)))) (-1410 (($ $ (-937)) NIL)) (-1844 (((-419 (-968 |#1|)) $) NIL)) (-1623 (((-1191 (-419 (-968 |#1|))) $) 85 (|has| (-419 (-968 |#1|)) (-568)))) (-1329 (((-419 (-968 |#1|)) (-1286 $)) NIL) (((-419 (-968 |#1|))) NIL)) (-1822 (((-1191 (-419 (-968 |#1|))) $) NIL)) (-1756 (((-112)) NIL)) (-3733 (((-1177) $) NIL)) (-1655 (((-112)) NIL)) (-1675 (((-112)) NIL)) (-1700 (((-112)) NIL)) (-3914 (((-1138) $) NIL)) (-3179 (((-419 (-968 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-3223 (((-419 (-968 |#1|)) $) 100 (|has| |#1| (-568)))) (-3212 (((-419 (-968 |#1|)) $) 104 (|has| |#1| (-568)))) (-3235 (((-1191 (-419 (-968 |#1|))) $) 94 (|has| |#1| (-568)))) (-3168 (((-419 (-968 |#1|))) 77 (|has| |#1| (-568)))) (-3201 (((-419 (-968 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-3269 (((-419 (-968 |#1|)) $) 99 (|has| |#1| (-568)))) (-3257 (((-419 (-968 |#1|)) $) 103 (|has| |#1| (-568)))) (-3282 (((-1191 (-419 (-968 |#1|))) $) 93 (|has| |#1| (-568)))) (-3191 (((-419 (-968 |#1|))) 73 (|has| |#1| (-568)))) (-3301 (($) 110) (($ (-1195)) 118) (($ (-1286 (-1195))) 117) (($ (-1286 $)) 105) (($ (-1195) (-1286 $)) 116) (($ (-1286 (-1195)) (-1286 $)) 115)) (-1732 (((-112)) NIL)) (-2071 (((-419 (-968 |#1|)) $ (-576)) NIL)) (-3629 (((-1286 (-419 (-968 |#1|))) $ (-1286 $)) 107) (((-701 (-419 (-968 |#1|))) (-1286 $) (-1286 $)) NIL) (((-1286 (-419 (-968 |#1|))) $) 43) (((-701 (-419 (-968 |#1|))) (-1286 $)) NIL)) (-2616 (((-1286 (-419 (-968 |#1|))) $) NIL) (($ (-1286 (-419 (-968 |#1|)))) 40)) (-3158 (((-656 (-968 (-419 (-968 |#1|)))) (-1286 $)) NIL) (((-656 (-968 (-419 (-968 |#1|))))) NIL) (((-656 (-968 |#1|)) (-1286 $)) 108 (|has| |#1| (-568))) (((-656 (-968 |#1|))) 109 (|has| |#1| (-568)))) (-2920 (($ $ $) NIL)) (-1801 (((-112)) NIL)) (-2884 (((-874) $) NIL) (($ (-1286 (-419 (-968 |#1|)))) NIL)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) 65)) (-1635 (((-656 (-1286 (-419 (-968 |#1|))))) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-2931 (($ $ $ $) NIL)) (-1779 (((-112)) NIL)) (-1950 (($ (-701 (-419 (-968 |#1|))) $) NIL)) (-2908 (($ $ $) NIL)) (-1790 (((-112)) NIL)) (-1768 (((-112)) NIL)) (-1721 (((-112)) NIL)) (-1996 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) 106)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-968 |#1|))) NIL) (($ (-419 (-968 |#1|)) $) NIL) (($ (-1160 |#2| (-419 (-968 |#1|))) $) NIL))) -(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-968 |#1|))) (-660 (-1160 |#2| (-419 (-968 |#1|)))) (-10 -8 (-15 -2884 ($ (-1286 (-419 (-968 |#1|))))) (-15 -3320 ((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed"))) (-15 -3311 ((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed"))) (-15 -3301 ($)) (-15 -3301 ($ (-1195))) (-15 -3301 ($ (-1286 (-1195)))) (-15 -3301 ($ (-1286 $))) (-15 -3301 ($ (-1195) (-1286 $))) (-15 -3301 ($ (-1286 (-1195)) (-1286 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -3291 ((-1191 (-419 (-968 |#1|))))) (-15 -3282 ((-1191 (-419 (-968 |#1|))) $)) (-15 -3269 ((-419 (-968 |#1|)) $)) (-15 -3257 ((-419 (-968 |#1|)) $)) (-15 -3247 ((-1191 (-419 (-968 |#1|))))) (-15 -3235 ((-1191 (-419 (-968 |#1|))) $)) (-15 -3223 ((-419 (-968 |#1|)) $)) (-15 -3212 ((-419 (-968 |#1|)) $)) (-15 -3201 ((-419 (-968 |#1|)) $ $)) (-15 -3191 ((-419 (-968 |#1|)))) (-15 -3179 ((-419 (-968 |#1|)) $ $)) (-15 -3168 ((-419 (-968 |#1|)))) (-15 -3158 ((-656 (-968 |#1|)) (-1286 $))) (-15 -3158 ((-656 (-968 |#1|))))) |%noBranch|))) (-174) (-937) (-656 (-1195)) (-1286 (-701 |#1|))) (T -465)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-968 *3)))) (-4 *3 (-174)) (-14 *6 (-1286 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))))) (-3320 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -1898 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3311 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -1898 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3301 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-937)) (-14 *4 (-656 (-1195))) (-14 *5 (-1286 (-701 *2))))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 *2)) (-14 *6 (-1286 (-701 *3))))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-1286 (-1195))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-1286 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3301 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-937)) (-14 *6 (-656 *2)) (-14 *7 (-1286 (-701 *4))))) (-3301 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 (-1195))) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-937)) (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4))))) (-3291 (*1 *2) (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3282 (*1 *2 *1) (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3247 (*1 *2) (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3201 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3191 (*1 *2) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3179 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3168 (*1 *2) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-968 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-937)) (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4))))) (-3158 (*1 *2) (-12 (-5 *2 (-656 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) -(-13 (-429 (-419 (-968 |#1|))) (-660 (-1160 |#2| (-419 (-968 |#1|)))) (-10 -8 (-15 -2884 ($ (-1286 (-419 (-968 |#1|))))) (-15 -3320 ((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed"))) (-15 -3311 ((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed"))) (-15 -3301 ($)) (-15 -3301 ($ (-1195))) (-15 -3301 ($ (-1286 (-1195)))) (-15 -3301 ($ (-1286 $))) (-15 -3301 ($ (-1195) (-1286 $))) (-15 -3301 ($ (-1286 (-1195)) (-1286 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -3291 ((-1191 (-419 (-968 |#1|))))) (-15 -3282 ((-1191 (-419 (-968 |#1|))) $)) (-15 -3269 ((-419 (-968 |#1|)) $)) (-15 -3257 ((-419 (-968 |#1|)) $)) (-15 -3247 ((-1191 (-419 (-968 |#1|))))) (-15 -3235 ((-1191 (-419 (-968 |#1|))) $)) (-15 -3223 ((-419 (-968 |#1|)) $)) (-15 -3212 ((-419 (-968 |#1|)) $)) (-15 -3201 ((-419 (-968 |#1|)) $ $)) (-15 -3191 ((-419 (-968 |#1|)))) (-15 -3179 ((-419 (-968 |#1|)) $ $)) (-15 -3168 ((-419 (-968 |#1|)))) (-15 -3158 ((-656 (-968 |#1|)) (-1286 $))) (-15 -3158 ((-656 (-968 |#1|))))) |%noBranch|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 18)) (-1607 (((-656 (-876 |#1|)) $) 87)) (-3467 (((-1191 $) $ (-876 |#1|)) 52) (((-1191 |#2|) $) 138)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4241 (($ $) NIL (|has| |#2| (-568)))) (-4221 (((-112) $) NIL (|has| |#2| (-568)))) (-1853 (((-783) $) 27) (((-783) $ (-656 (-876 |#1|))) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2944 (($ $) NIL (|has| |#2| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4401 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-876 |#1|) $) NIL)) (-2778 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2376 (($ $ (-656 (-576))) 93)) (-4407 (($ $) 80)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#2| (-925)))) (-3098 (($ $ |#2| |#3| $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) 65)) (-2437 (($ (-1191 |#2|) (-876 |#1|)) 143) (($ (-1191 $) (-876 |#1|)) 58)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) 68)) (-2421 (($ |#2| |#3|) 35) (($ $ (-876 |#1|) (-783)) 37) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-876 |#1|)) NIL)) (-1864 ((|#3| $) NIL) (((-783) $ (-876 |#1|)) 56) (((-656 (-783)) $ (-656 (-876 |#1|))) 63)) (-3109 (($ (-1 |#3| |#3|) $) NIL)) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-2788 (((-3 (-876 |#1|) "failed") $) 45)) (-4371 (($ $) NIL)) (-4383 ((|#2| $) 47)) (-3888 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3733 (((-1177) $) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -1359 (-783))) "failed") $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) 46)) (-4359 ((|#2| $) 136)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#2| (-925)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) 100) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) 106) (($ $ (-876 |#1|) $) 98) (($ $ (-656 (-876 |#1|)) (-656 $)) 124)) (-2790 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2390 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) 59)) (-3813 ((|#3| $) 79) (((-783) $ (-876 |#1|)) 42) (((-656 (-783)) $ (-656 (-876 |#1|))) 62)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1841 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-2884 (((-874) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-876 |#1|)) 39) (($ (-419 (-576))) NIL (-3766 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1993 (((-656 |#2|) $) NIL)) (-3245 ((|#2| $ |#3|) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#2| (-568)))) (-1996 (($) 22 T CONST)) (-2011 (($) 31 T CONST)) (-3431 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 131)) (** (($ $ (-937)) NIL) (($ $ (-783)) 129)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) -(((-466 |#1| |#2| |#3|) (-13 (-965 |#2| |#3| (-876 |#1|)) (-10 -8 (-15 -2376 ($ $ (-656 (-576)))))) (-656 (-1195)) (-1067) (-244 (-2872 |#1|) (-783))) (T -466)) -((-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1195))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-244 (-2872 *3) (-783)))))) -(-13 (-965 |#2| |#3| (-876 |#1|)) (-10 -8 (-15 -2376 ($ $ (-656 (-576)))))) -((-3360 (((-112) |#1| (-656 |#2|)) 91)) (-3340 (((-3 (-1286 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|)) 100)) (-3350 (((-3 (-656 |#2|) "failed") |#2| |#1| (-1286 (-656 |#2|))) 102)) (-2123 ((|#2| |#2| |#1|) 35)) (-3330 (((-783) |#2| (-656 |#2|)) 26))) -(((-467 |#1| |#2|) (-10 -7 (-15 -2123 (|#2| |#2| |#1|)) (-15 -3330 ((-783) |#2| (-656 |#2|))) (-15 -3340 ((-3 (-1286 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -3350 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1286 (-656 |#2|)))) (-15 -3360 ((-112) |#1| (-656 |#2|)))) (-317) (-1262 |#1|)) (T -467)) -((-3360 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-1262 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-3350 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1286 (-656 *3))) (-4 *4 (-317)) (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1262 *4)))) (-3340 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1262 *4)) (-5 *2 (-1286 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))) (-3330 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-317)) (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))) (-2123 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1262 *3))))) -(-10 -7 (-15 -2123 (|#2| |#2| |#1|)) (-15 -3330 ((-783) |#2| (-656 |#2|))) (-15 -3340 ((-3 (-1286 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -3350 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1286 (-656 |#2|)))) (-15 -3360 ((-112) |#1| (-656 |#2|)))) -((-2354 (((-430 |#5|) |#5|) 24))) -(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2354 ((-430 |#5|) |#5|))) (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)) (-15 -1441 ((-3 $ "failed") (-1195))))) (-805) (-568) (-568) (-965 |#4| |#2| |#1|)) (T -468)) -((-2354 (*1 *2 *3) (-12 (-4 *4 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)) (-15 -1441 ((-3 $ "failed") (-1195)))))) (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-965 *7 *5 *4))))) -(-10 -7 (-15 -2354 ((-430 |#5|) |#5|))) -((-3126 ((|#3|) 38)) (-3214 (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 34))) -(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3214 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -3126 (|#3|))) (-805) (-862) (-925) (-965 |#3| |#1| |#2|)) (T -469)) -((-3126 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-925)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-965 *2 *3 *4)))) (-3214 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-925)) (-5 *1 (-469 *3 *4 *5 *6))))) -(-10 -7 (-15 -3214 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -3126 (|#3|))) -((-2354 (((-430 (-1191 |#1|)) (-1191 |#1|)) 43))) -(((-470 |#1|) (-10 -7 (-15 -2354 ((-430 (-1191 |#1|)) (-1191 |#1|)))) (-317)) (T -470)) -((-2354 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1191 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1191 *4))))) -(-10 -7 (-15 -2354 ((-430 (-1191 |#1|)) (-1191 |#1|)))) -((-4290 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-783))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-783))) 43) (((-52) |#2| (-1195) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-1874 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576))) 85) (((-52) |#2| (-1195) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-4311 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 72)) (-4301 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576))) 50))) -(((-471 |#1| |#2|) (-10 -7 (-15 -4290 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -4290 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -4290 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-783)))) (-15 -4290 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-783)))) (-15 -4301 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -4301 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -4311 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -4311 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -1874 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -1874 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -1874 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -1874 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -1874 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -1874 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -471)) -((-1874 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8))) (-4 *8 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-1874 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-1874 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-1874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576))) (-4 *7 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-1874 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-4311 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8))) (-4 *8 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-4311 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-4301 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576))) (-4 *7 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-4290 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-783))) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-4290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-783))) (-4 *7 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-4290 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6))))) -(-10 -7 (-15 -4290 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -4290 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -4290 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-783)))) (-15 -4290 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-783)))) (-15 -4301 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -4301 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -4311 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -4311 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -1874 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -1874 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -1874 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -1874 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -1874 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -1874 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))))) -((-2123 ((|#2| |#2| |#1|) 15)) (-3379 (((-656 |#2|) |#2| (-656 |#2|) |#1| (-937)) 82)) (-3369 (((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-937)) 72))) -(((-472 |#1| |#2|) (-10 -7 (-15 -3369 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-937))) (-15 -3379 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-937))) (-15 -2123 (|#2| |#2| |#1|))) (-317) (-1262 |#1|)) (T -472)) -((-2123 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1262 *3)))) (-3379 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-656 *3)) (-5 *5 (-937)) (-4 *3 (-1262 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-3369 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-937)) (-4 *5 (-317)) (-4 *3 (-1262 *5)) (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) -(-10 -7 (-15 -3369 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-937))) (-15 -3379 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-937))) (-15 -2123 (|#2| |#2| |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 28)) (-3533 (($ |#3|) 25)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-4407 (($ $) 32)) (-3389 (($ |#2| |#4| $) 33)) (-2421 (($ |#2| (-725 |#3| |#4| |#5|)) 24)) (-4371 (((-725 |#3| |#4| |#5|) $) 15)) (-3407 ((|#3| $) 19)) (-3416 ((|#4| $) 17)) (-4383 ((|#2| $) 29)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3398 (($ |#2| |#3| |#4|) 26)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 36 T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 34)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -4383 (|#2| $)) (-15 -4371 ((-725 |#3| |#4| |#5|) $)) (-15 -3416 (|#4| $)) (-15 -3407 (|#3| $)) (-15 -4407 ($ $)) (-15 -2421 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -3533 ($ |#3|)) (-15 -3398 ($ |#2| |#3| |#4|)) (-15 -3389 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-656 (-1195)) (-174) (-862) (-244 (-2872 |#1|) (-783)) (-1 (-112) (-2 (|:| -4318 |#3|) (|:| -1359 |#4|)) (-2 (|:| -4318 |#3|) (|:| -1359 |#4|))) (-965 |#2| |#4| (-876 |#1|))) (T -473)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *6 (-244 (-2872 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -4318 *5) (|:| -1359 *6)) (-2 (|:| -4318 *5) (|:| -1359 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862)) (-4 *2 (-965 *4 *6 (-876 *3))))) (-4383 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *5 (-244 (-2872 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4318 *4) (|:| -1359 *5)) (-2 (|:| -4318 *4) (|:| -1359 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-965 *2 *5 (-876 *3))))) (-4371 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *6 (-244 (-2872 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -4318 *5) (|:| -1359 *6)) (-2 (|:| -4318 *5) (|:| -1359 *6)))) (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862)) (-4 *8 (-965 *4 *6 (-876 *3))))) (-3416 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -4318 *5) (|:| -1359 *2)) (-2 (|:| -4318 *5) (|:| -1359 *2)))) (-4 *2 (-244 (-2872 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-862)) (-4 *7 (-965 *4 *2 (-876 *3))))) (-3407 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *5 (-244 (-2872 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4318 *2) (|:| -1359 *5)) (-2 (|:| -4318 *2) (|:| -1359 *5)))) (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-965 *4 *5 (-876 *3))))) (-4407 (*1 *1 *1) (-12 (-14 *2 (-656 (-1195))) (-4 *3 (-174)) (-4 *5 (-244 (-2872 *2) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4318 *4) (|:| -1359 *5)) (-2 (|:| -4318 *4) (|:| -1359 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-965 *3 *5 (-876 *2))))) (-2421 (*1 *1 *2 *3) (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-862)) (-4 *6 (-244 (-2872 *4) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -4318 *5) (|:| -1359 *6)) (-2 (|:| -4318 *5) (|:| -1359 *6)))) (-14 *4 (-656 (-1195))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-965 *2 *6 (-876 *4))))) (-3533 (*1 *1 *2) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *5 (-244 (-2872 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4318 *2) (|:| -1359 *5)) (-2 (|:| -4318 *2) (|:| -1359 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) (-4 *7 (-965 *4 *5 (-876 *3))))) (-3398 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-656 (-1195))) (-4 *2 (-174)) (-4 *4 (-244 (-2872 *5) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4318 *3) (|:| -1359 *4)) (-2 (|:| -4318 *3) (|:| -1359 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) (-4 *7 (-965 *2 *4 (-876 *5))))) (-3389 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-656 (-1195))) (-4 *2 (-174)) (-4 *3 (-244 (-2872 *4) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4318 *5) (|:| -1359 *3)) (-2 (|:| -4318 *5) (|:| -1359 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) (-4 *7 (-965 *2 *3 (-876 *4)))))) -(-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -4383 (|#2| $)) (-15 -4371 ((-725 |#3| |#4| |#5|) $)) (-15 -3416 (|#4| $)) (-15 -3407 (|#3| $)) (-15 -4407 ($ $)) (-15 -2421 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -3533 ($ |#3|)) (-15 -3398 ($ |#2| |#3| |#4|)) (-15 -3389 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-3426 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3426 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-805) (-862) (-568) (-965 |#3| |#1| |#2|) (-13 (-1056 (-419 (-576))) (-374) (-10 -8 (-15 -2884 ($ |#4|)) (-15 -1595 (|#4| $)) (-15 -1608 (|#4| $))))) (T -474)) -((-3426 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-805)) (-4 *6 (-568)) (-4 *7 (-965 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1056 (-419 (-576))) (-374) (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))))) -(-10 -7 (-15 -3426 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2862 (((-112) $ $) NIL)) (-1607 (((-656 |#3|) $) 41)) (-1470 (((-112) $) NIL)) (-1374 (((-112) $) NIL (|has| |#1| (-568)))) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#3|) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3985 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-1425 (((-112) $) NIL (|has| |#1| (-568)))) (-1445 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1435 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1457 (((-112) $) NIL (|has| |#1| (-568)))) (-1384 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1394 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 |#4|)) 49)) (-4401 (($ (-656 |#4|)) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3634 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2309 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461)))) (-4001 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-1323 ((|#3| $) 47)) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#4|) $) 14 (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-2848 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) 21)) (-1524 (((-656 |#3|) $) NIL)) (-1513 (((-112) |#3| $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-1415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3914 (((-1138) $) NIL)) (-1932 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2476 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 39)) (-1458 (($) 17)) (-3926 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) 16)) (-2616 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-656 |#4|)) 51)) (-2895 (($ (-656 |#4|)) 13)) (-1483 (($ $ |#3|) NIL)) (-1504 (($ $ |#3|) NIL)) (-1493 (($ $ |#3|) NIL)) (-2884 (((-874) $) 38) (((-656 |#4|) $) 50)) (-3722 (((-112) $ $) NIL)) (-2492 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 30)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-475 |#1| |#2| |#3| |#4|) (-13 (-994 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2616 ($ (-656 |#4|))) (-6 -4461) (-6 -4462))) (-1067) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -475)) -((-2616 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6))))) -(-13 (-994 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2616 ($ (-656 |#4|))) (-6 -4461) (-6 -4462))) -((-1996 (($) 11)) (-2011 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -2011 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1996 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476)) -NIL -(-10 -8 (-15 -2011 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1996 (|#1|))) -((-2862 (((-112) $ $) 7)) (-2449 (((-3 |#1| "failed") $) 27)) (-4401 ((|#1| $) 28)) (-3782 (($ $ $) 24)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3813 ((|#2| $) 20)) (-2884 (((-874) $) 12) (($ |#1|) 26)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 25 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 16) (($ $ $) 14)) (-4017 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-477 |#1| |#2|) (-141) (-174) (-23)) (T -477)) -((-2011 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3782 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-482 |t#1| |t#2|) (-1056 |t#1|) (-10 -8 (-15 (-2011) ($) -3739) (-15 -3782 ($ $ $)))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-482 |#1| |#2|) . T) ((-1056 |#1|) . T) ((-1118) . T)) -((-3436 (((-1286 (-1286 (-576))) (-1286 (-1286 (-576))) (-937)) 26)) (-3444 (((-1286 (-1286 (-576))) (-937)) 21))) -(((-478) (-10 -7 (-15 -3436 ((-1286 (-1286 (-576))) (-1286 (-1286 (-576))) (-937))) (-15 -3444 ((-1286 (-1286 (-576))) (-937))))) (T -478)) -((-3444 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1286 (-1286 (-576)))) (-5 *1 (-478)))) (-3436 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 (-1286 (-576)))) (-5 *3 (-937)) (-5 *1 (-478))))) -(-10 -7 (-15 -3436 ((-1286 (-1286 (-576))) (-1286 (-1286 (-576))) (-937))) (-15 -3444 ((-1286 (-1286 (-576))) (-937)))) -((-2642 (((-576) (-576)) 32) (((-576)) 24)) (-2686 (((-576) (-576)) 28) (((-576)) 20)) (-2663 (((-576) (-576)) 30) (((-576)) 22)) (-3465 (((-112) (-112)) 14) (((-112)) 12)) (-3454 (((-112) (-112)) 13) (((-112)) 11)) (-3476 (((-112) (-112)) 26) (((-112)) 17))) -(((-479) (-10 -7 (-15 -3454 ((-112))) (-15 -3465 ((-112))) (-15 -3454 ((-112) (-112))) (-15 -3465 ((-112) (-112))) (-15 -3476 ((-112))) (-15 -2663 ((-576))) (-15 -2686 ((-576))) (-15 -2642 ((-576))) (-15 -3476 ((-112) (-112))) (-15 -2663 ((-576) (-576))) (-15 -2686 ((-576) (-576))) (-15 -2642 ((-576) (-576))))) (T -479)) -((-2642 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2686 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2663 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2642 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2686 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2663 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3476 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3465 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3465 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3454 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(-10 -7 (-15 -3454 ((-112))) (-15 -3465 ((-112))) (-15 -3454 ((-112) (-112))) (-15 -3465 ((-112) (-112))) (-15 -3476 ((-112))) (-15 -2663 ((-576))) (-15 -2686 ((-576))) (-15 -2642 ((-576))) (-15 -3476 ((-112) (-112))) (-15 -2663 ((-576) (-576))) (-15 -2686 ((-576) (-576))) (-15 -2642 ((-576) (-576)))) -((-2862 (((-112) $ $) NIL)) (-2497 (((-656 (-390)) $) 34) (((-656 (-390)) $ (-656 (-390))) 146)) (-2280 (((-656 (-1112 (-390))) $) 16) (((-656 (-1112 (-390))) $ (-656 (-1112 (-390)))) 142)) (-2250 (((-656 (-656 (-959 (-227)))) (-656 (-656 (-959 (-227)))) (-656 (-886))) 58)) (-2290 (((-656 (-656 (-959 (-227)))) $) 137)) (-1839 (((-1291) $ (-959 (-227)) (-886)) 163)) (-2303 (($ $) 136) (($ (-656 (-656 (-959 (-227))))) 149) (($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937))) 148) (($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937)) (-656 (-270))) 150)) (-3733 (((-1177) $) NIL)) (-4169 (((-576) $) 110)) (-3914 (((-1138) $) NIL)) (-2316 (($) 147)) (-3486 (((-656 (-227)) (-656 (-656 (-959 (-227))))) 89)) (-2272 (((-1291) $ (-656 (-959 (-227))) (-886) (-886) (-937)) 155) (((-1291) $ (-959 (-227))) 157) (((-1291) $ (-959 (-227)) (-886) (-886) (-937)) 156)) (-2884 (((-874) $) 169) (($ (-656 (-656 (-959 (-227))))) 164)) (-3722 (((-112) $ $) NIL)) (-2262 (((-1291) $ (-959 (-227))) 162)) (-3915 (((-112) $ $) NIL))) -(((-480) (-13 (-1118) (-10 -8 (-15 -2316 ($)) (-15 -2303 ($ $)) (-15 -2303 ($ (-656 (-656 (-959 (-227)))))) (-15 -2303 ($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937)))) (-15 -2303 ($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937)) (-656 (-270)))) (-15 -2290 ((-656 (-656 (-959 (-227)))) $)) (-15 -4169 ((-576) $)) (-15 -2280 ((-656 (-1112 (-390))) $)) (-15 -2280 ((-656 (-1112 (-390))) $ (-656 (-1112 (-390))))) (-15 -2497 ((-656 (-390)) $)) (-15 -2497 ((-656 (-390)) $ (-656 (-390)))) (-15 -2272 ((-1291) $ (-656 (-959 (-227))) (-886) (-886) (-937))) (-15 -2272 ((-1291) $ (-959 (-227)))) (-15 -2272 ((-1291) $ (-959 (-227)) (-886) (-886) (-937))) (-15 -2262 ((-1291) $ (-959 (-227)))) (-15 -1839 ((-1291) $ (-959 (-227)) (-886))) (-15 -2884 ($ (-656 (-656 (-959 (-227)))))) (-15 -2884 ((-874) $)) (-15 -2250 ((-656 (-656 (-959 (-227)))) (-656 (-656 (-959 (-227)))) (-656 (-886)))) (-15 -3486 ((-656 (-227)) (-656 (-656 (-959 (-227))))))))) (T -480)) -((-2884 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-480)))) (-2316 (*1 *1) (-5 *1 (-480))) (-2303 (*1 *1 *1) (-5 *1 (-480))) (-2303 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480)))) (-2303 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886))) (-5 *4 (-656 (-937))) (-5 *1 (-480)))) (-2303 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886))) (-5 *4 (-656 (-937))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-480)))) (-2280 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-480)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-2497 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-2272 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *4 (-886)) (-5 *5 (-937)) (-5 *2 (-1291)) (-5 *1 (-480)))) (-2272 (*1 *2 *1 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-1291)) (-5 *1 (-480)))) (-2272 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-959 (-227))) (-5 *4 (-886)) (-5 *5 (-937)) (-5 *2 (-1291)) (-5 *1 (-480)))) (-2262 (*1 *2 *1 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-1291)) (-5 *1 (-480)))) (-1839 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-959 (-227))) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-480)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480)))) (-2250 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886))) (-5 *1 (-480)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *2 (-656 (-227))) (-5 *1 (-480))))) -(-13 (-1118) (-10 -8 (-15 -2316 ($)) (-15 -2303 ($ $)) (-15 -2303 ($ (-656 (-656 (-959 (-227)))))) (-15 -2303 ($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937)))) (-15 -2303 ($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937)) (-656 (-270)))) (-15 -2290 ((-656 (-656 (-959 (-227)))) $)) (-15 -4169 ((-576) $)) (-15 -2280 ((-656 (-1112 (-390))) $)) (-15 -2280 ((-656 (-1112 (-390))) $ (-656 (-1112 (-390))))) (-15 -2497 ((-656 (-390)) $)) (-15 -2497 ((-656 (-390)) $ (-656 (-390)))) (-15 -2272 ((-1291) $ (-656 (-959 (-227))) (-886) (-886) (-937))) (-15 -2272 ((-1291) $ (-959 (-227)))) (-15 -2272 ((-1291) $ (-959 (-227)) (-886) (-886) (-937))) (-15 -2262 ((-1291) $ (-959 (-227)))) (-15 -1839 ((-1291) $ (-959 (-227)) (-886))) (-15 -2884 ($ (-656 (-656 (-959 (-227)))))) (-15 -2884 ((-874) $)) (-15 -2250 ((-656 (-656 (-959 (-227)))) (-656 (-656 (-959 (-227)))) (-656 (-886)))) (-15 -3486 ((-656 (-227)) (-656 (-656 (-959 (-227)))))))) -((-4029 (($ $) NIL) (($ $ $) 11))) -(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481)) -NIL -(-10 -8 (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3813 ((|#2| $) 20)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 16) (($ $ $) 14)) (-4017 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-482 |#1| |#2|) (-141) (-174) (-23)) (T -482)) -((-3813 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-1996 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4029 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4017 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4029 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-1118) (-10 -8 (-15 -3813 (|t#2| $)) (-15 (-1996) ($) -3739) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4029 ($ $)) (-15 -4017 ($ $ $)) (-15 -4029 ($ $ $)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2336 (((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|))) 134)) (-2324 (((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))) 131)) (-2346 (((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))) 86))) -(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -2324 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -2336 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -2346 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))))) (-656 (-1195)) (-464) (-464)) (T -483)) -((-2346 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-656 (-253 *5 *6))) (|:| |coords| (-656 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))) (-2336 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-2324 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(-10 -7 (-15 -2324 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -2336 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -2346 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))))) -((-1999 (((-3 $ "failed") $) 11)) (-3276 (($ $ $) 23)) (-2920 (($ $ $) 24)) (-4039 (($ $ $) 9)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 22))) -(((-484 |#1|) (-10 -8 (-15 -2920 (|#1| |#1| |#1|)) (-15 -3276 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4039 (|#1| |#1| |#1|)) (-15 -1999 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937)))) (-485)) (T -484)) -NIL -(-10 -8 (-15 -2920 (|#1| |#1| |#1|)) (-15 -3276 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4039 (|#1| |#1| |#1|)) (-15 -1999 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937)))) -((-2862 (((-112) $ $) 7)) (-2473 (($) 19 T CONST)) (-1999 (((-3 $ "failed") $) 16)) (-1439 (((-112) $) 18)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 25)) (-3914 (((-1138) $) 11)) (-3276 (($ $ $) 22)) (-2920 (($ $ $) 21)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2011 (($) 20 T CONST)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ $) 24)) (** (($ $ (-937)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) -(((-485) (-141)) (T -485)) -((-4333 (*1 *1 *1) (-4 *1 (-485))) (-4039 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-3276 (*1 *1 *1 *1) (-4 *1 (-485))) (-2920 (*1 *1 *1 *1) (-4 *1 (-485)))) -(-13 (-738) (-10 -8 (-15 -4333 ($ $)) (-15 -4039 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4458) (-15 -3276 ($ $ $)) (-15 -2920 ($ $ $)))) -(((-102) . T) ((-625 (-874)) . T) ((-738) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 (-1100)) $) NIL)) (-1441 (((-1195) $) 18)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-2916 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2934 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3924 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL (|has| |#1| (-374)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3898 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1874 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-1522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2463 (((-112) $) NIL (|has| |#1| (-374)))) (-1355 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1439 (((-112) $) NIL)) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2962 (($ $ (-937)) NIL) (($ $ (-419 (-576))) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-419 (-576))) NIL) (($ $ (-1100) (-419 (-576))) NIL) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) NIL)) (-2551 (($ (-1 |#1| |#1|) $) 25)) (-3464 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL (|has| |#1| (-374)))) (-1956 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 35 (-3766 (-12 (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2904 (($ $ (-419 (-576))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2666 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-2071 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1130)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2390 (($ $ (-1195)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) 16)) (-3813 (((-419 (-576)) $) NIL)) (-1532 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1282 |#2|)) NIL) (($ (-1271 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3245 ((|#1| $ (-419 (-576))) NIL)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-1752 ((|#1| $) 21)) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1545 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) 27)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-486 |#1| |#2| |#3|) (-13 (-1267 |#1|) (-10 -8 (-15 -2884 ($ (-1282 |#2|))) (-15 -2884 ($ (-1271 |#1| |#2| |#3|))) (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -486)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-1956 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))) -(-13 (-1267 |#1|) (-10 -8 (-15 -2884 ($ (-1282 |#2|))) (-15 -2884 ($ (-1271 |#1| |#2| |#3|))) (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) -((-2862 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2298 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3336 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#2| $ |#1| |#2|) 18)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1397 (((-3 |#2| "failed") |#1| $) 19)) (-2473 (($) NIL T CONST)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2833 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 16)) (-3634 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#2| $ |#1|) NIL)) (-4001 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 ((|#1| $) NIL (|has| |#1| (-862)))) (-1496 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3365 ((|#1| $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2002 (((-656 |#1|) $) NIL)) (-3412 (((-112) |#1| $) NIL)) (-3449 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3807 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3385 (((-656 |#1|) $) NIL)) (-3394 (((-112) |#1| $) NIL)) (-3914 (((-1138) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1962 ((|#2| $) NIL (|has| |#1| (-862)))) (-1932 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL)) (-3346 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1581 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2884 (((-874) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3722 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-487 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2|) (-1118) (-1118) (-1212 |#1| |#2|) |#2|) (T -487)) -NIL -(-1212 |#1| |#2|) -((-2862 (((-112) $ $) NIL)) (-3289 (((-656 (-2 (|:| -2459 $) (|:| -2980 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3299 (((-656 $) (-656 |#4|)) NIL)) (-1607 (((-656 |#3|) $) NIL)) (-1470 (((-112) $) NIL)) (-1374 (((-112) $) NIL (|has| |#1| (-568)))) (-3405 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3358 ((|#4| |#4| $) NIL)) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#3|) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3985 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2473 (($) NIL T CONST)) (-1425 (((-112) $) 29 (|has| |#1| (-568)))) (-1445 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1435 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1457 (((-112) $) NIL (|has| |#1| (-568)))) (-3367 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1384 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1394 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4401 (($ (-656 |#4|)) NIL)) (-1976 (((-3 $ "failed") $) 45)) (-3328 ((|#4| |#4| $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3634 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3414 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3308 ((|#4| |#4| $) NIL)) (-2309 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3435 (((-2 (|:| -2459 (-656 |#4|)) (|:| -2980 (-656 |#4|))) $) NIL)) (-4001 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-3425 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1323 ((|#3| $) 38)) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#4|) $) 19 (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-2848 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) 23)) (-1524 (((-656 |#3|) $) NIL)) (-1513 (((-112) |#3| $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-3654 (((-3 |#4| "failed") $) 42)) (-3443 (((-656 |#4|) $) NIL)) (-3387 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#4| |#4| $) NIL)) (-3461 (((-112) $ $) NIL)) (-1415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3396 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3348 ((|#4| |#4| $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 (((-3 |#4| "failed") $) 40)) (-1932 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3266 (((-3 $ "failed") $ |#4|) 58)) (-2904 (($ $ |#4|) NIL)) (-2476 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 17)) (-1458 (($) 14)) (-3813 (((-783) $) NIL)) (-3926 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) 13)) (-2616 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2895 (($ (-656 |#4|)) 22)) (-1483 (($ $ |#3|) 52)) (-1504 (($ $ |#3|) 54)) (-3318 (($ $) NIL)) (-1493 (($ $ |#3|) NIL)) (-2884 (((-874) $) 35) (((-656 |#4|) $) 46)) (-3255 (((-783) $) NIL (|has| |#3| (-379)))) (-3722 (((-112) $ $) NIL)) (-3453 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3377 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2492 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3278 (((-656 |#3|) $) NIL)) (-3704 (((-112) |#3| $) NIL)) (-3915 (((-112) $ $) NIL)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-488 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|) (-568) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -488)) -NIL -(-1229 |#1| |#2| |#3| |#4|) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-4401 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1632 (($) 17)) (-1439 (((-112) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2616 (((-390) $) 21) (((-227) $) 24) (((-419 (-1191 (-576))) $) 18) (((-548) $) 53)) (-2884 (((-874) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-1996 (($) 37 T CONST)) (-2011 (($) 8 T CONST)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-489) (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))) (-1040) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1191 (-576)))) (-626 (-548)) (-10 -8 (-15 -1632 ($))))) (T -489)) -((-1632 (*1 *1) (-5 *1 (-489)))) -(-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))) (-1040) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1191 (-576)))) (-626 (-548)) (-10 -8 (-15 -1632 ($)))) -((-2862 (((-112) $ $) NIL)) (-3892 (((-1153) $) 11)) (-3880 (((-1153) $) 9)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-490) (-13 (-1101) (-10 -8 (-15 -3880 ((-1153) $)) (-15 -3892 ((-1153) $))))) (T -490)) -((-3880 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-490)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-490))))) -(-13 (-1101) (-10 -8 (-15 -3880 ((-1153) $)) (-15 -3892 ((-1153) $)))) -((-2862 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2298 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3336 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#2| $ |#1| |#2|) 16)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1397 (((-3 |#2| "failed") |#1| $) 20)) (-2473 (($) NIL T CONST)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2833 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 18)) (-3634 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#2| $ |#1|) NIL)) (-4001 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 ((|#1| $) NIL (|has| |#1| (-862)))) (-1496 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3365 ((|#1| $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2002 (((-656 |#1|) $) 13)) (-3412 (((-112) |#1| $) NIL)) (-3449 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3807 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3385 (((-656 |#1|) $) NIL)) (-3394 (((-112) |#1| $) NIL)) (-3914 (((-1138) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1962 ((|#2| $) NIL (|has| |#1| (-862)))) (-1932 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL)) (-3346 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) 19)) (-2071 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1581 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2884 (((-874) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3722 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 11 (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2872 (((-783) $) 15 (|has| $ (-6 -4461))))) -(((-491 |#1| |#2| |#3|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1118) (-1118) (-1177)) (T -491)) -NIL -(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) -((-2356 (((-576) (-576) (-576)) 19)) (-2366 (((-112) (-576) (-576) (-576) (-576)) 28)) (-3903 (((-1286 (-656 (-576))) (-783) (-783)) 41))) -(((-492) (-10 -7 (-15 -2356 ((-576) (-576) (-576))) (-15 -2366 ((-112) (-576) (-576) (-576) (-576))) (-15 -3903 ((-1286 (-656 (-576))) (-783) (-783))))) (T -492)) -((-3903 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1286 (-656 (-576)))) (-5 *1 (-492)))) (-2366 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-2356 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) -(-10 -7 (-15 -2356 ((-576) (-576) (-576))) (-15 -2366 ((-112) (-576) (-576) (-576) (-576))) (-15 -3903 ((-1286 (-656 (-576))) (-783) (-783)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 (-876 |#1|)) $) NIL)) (-3467 (((-1191 $) $ (-876 |#1|)) NIL) (((-1191 |#2|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4241 (($ $) NIL (|has| |#2| (-568)))) (-4221 (((-112) $) NIL (|has| |#2| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2944 (($ $) NIL (|has| |#2| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4401 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-876 |#1|) $) NIL)) (-2778 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2376 (($ $ (-656 (-576))) NIL)) (-4407 (($ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#2| (-925)))) (-3098 (($ $ |#2| (-494 (-2872 |#1|) (-783)) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-2437 (($ (-1191 |#2|) (-876 |#1|)) NIL) (($ (-1191 $) (-876 |#1|)) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#2| (-494 (-2872 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-876 |#1|)) NIL)) (-1864 (((-494 (-2872 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-3109 (($ (-1 (-494 (-2872 |#1|) (-783)) (-494 (-2872 |#1|) (-783))) $) NIL)) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-2788 (((-3 (-876 |#1|) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3733 (((-1177) $) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -1359 (-783))) "failed") $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) NIL)) (-4359 ((|#2| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#2| (-925)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-2790 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2390 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3813 (((-494 (-2872 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1841 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ (-419 (-576))) NIL (-3766 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1993 (((-656 |#2|) $) NIL)) (-3245 ((|#2| $ (-494 (-2872 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#2| (-568)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-493 |#1| |#2|) (-13 (-965 |#2| (-494 (-2872 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -2376 ($ $ (-656 (-576)))))) (-656 (-1195)) (-1067)) (T -493)) -((-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-656 (-1195))) (-4 *4 (-1067))))) -(-13 (-965 |#2| (-494 (-2872 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -2376 ($ $ (-656 (-576)))))) -((-2862 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-1389 (((-112) $) NIL (-3766 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-3533 (($ (-937)) NIL (|has| |#2| (-1067)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2158 (($ $ $) NIL (|has| |#2| (-805)))) (-1459 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2970 (((-112) $ (-783)) NIL)) (-2416 (((-783)) NIL (|has| |#2| (-379)))) (-3055 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1118)))) (-4401 (((-576) $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) ((|#2| $) NIL (|has| |#2| (-1118)))) (-2613 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-1286 $)) NIL (|has| |#2| (-1067)))) (-1999 (((-3 $ "failed") $) NIL (|has| |#2| (-1067)))) (-2080 (($) NIL (|has| |#2| (-379)))) (-2859 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#2| $ (-576)) 11)) (-4001 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-1439 (((-112) $) NIL (|has| |#2| (-1067)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#2| (-862)))) (-1496 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#2| (-862)))) (-2848 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-1875 (((-937) $) NIL (|has| |#2| (-379)))) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#2| (-1118)))) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-4318 (($ (-937)) NIL (|has| |#2| (-379)))) (-3914 (((-1138) $) NIL (|has| |#2| (-1118)))) (-1962 ((|#2| $) NIL (|has| (-576) (-862)))) (-3346 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-2165 ((|#2| $ $) NIL (|has| |#2| (-1067)))) (-1982 (($ (-1286 |#2|)) NIL)) (-1543 (((-135)) NIL (|has| |#2| (-374)))) (-2390 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3926 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-1286 |#2|) $) NIL) (($ (-576)) NIL (-3766 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (($ |#2|) NIL (|has| |#2| (-1118))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-1871 (((-783)) NIL (|has| |#2| (-1067)) CONST)) (-3722 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-2492 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1996 (($) NIL (-3766 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2011 (($) NIL (|has| |#2| (-1067)) CONST)) (-3431 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3983 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3943 (((-112) $ $) 17 (|has| |#2| (-862)))) (-4039 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4029 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4017 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1067))) (($ $ (-937)) NIL (|has| |#2| (-1067)))) (* (($ $ $) NIL (|has| |#2| (-1067))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-937) $) NIL (|has| |#2| (-25)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-494 |#1| |#2|) (-244 |#1| |#2|) (-783) (-805)) (T -494)) -NIL -(-244 |#1| |#2|) -((-2862 (((-112) $ $) NIL)) (-2513 (((-656 (-888)) $) 15)) (-1778 (((-518) $) 13)) (-3733 (((-1177) $) NIL)) (-2388 (($ (-518) (-656 (-888))) 11)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 22) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-495) (-13 (-1101) (-10 -8 (-15 -2388 ($ (-518) (-656 (-888)))) (-15 -1778 ((-518) $)) (-15 -2513 ((-656 (-888)) $))))) (T -495)) -((-2388 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-888))) (-5 *1 (-495)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-656 (-888))) (-5 *1 (-495))))) -(-13 (-1101) (-10 -8 (-15 -2388 ($ (-518) (-656 (-888)))) (-15 -1778 ((-518) $)) (-15 -2513 ((-656 (-888)) $)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) NIL)) (-2473 (($) NIL T CONST)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-2230 (($ $ $) 48)) (-4214 (($ $ $) 47)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4137 ((|#1| $) 40)) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3449 ((|#1| $) 41)) (-3807 (($ |#1| $) 18)) (-2400 (($ (-656 |#1|)) 19)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3458 ((|#1| $) 34)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) 11)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) 45)) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2872 (((-783) $) 29 (|has| $ (-6 -4461))))) -(((-496 |#1|) (-13 (-986 |#1|) (-10 -8 (-15 -2400 ($ (-656 |#1|))))) (-862)) (T -496)) -((-2400 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3))))) -(-13 (-986 |#1|) (-10 -8 (-15 -2400 ($ (-656 |#1|))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2309 (($ $) 71)) (-3384 (((-112) $) NIL)) (-3733 (((-1177) $) NIL)) (-2728 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-3914 (((-1138) $) NIL)) (-3660 (((-3 |#4| "failed") $) 117)) (-3393 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-1754 (((-2 (|:| -2058 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2884 (((-874) $) 110)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 32 T CONST)) (-3915 (((-112) $ $) 121)) (-4029 (($ $) 77) (($ $ $) NIL)) (-4017 (($ $ $) 72)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 78))) -(((-497 |#1| |#2| |#3| |#4|) (-346 |#1| |#2| |#3| |#4|) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -497)) -NIL -(-346 |#1| |#2| |#3| |#4|) -((-2453 (((-576) (-656 (-576))) 53)) (-2411 ((|#1| (-656 |#1|)) 94)) (-2441 (((-656 |#1|) (-656 |#1|)) 95)) (-2427 (((-656 |#1|) (-656 |#1|)) 97)) (-3928 ((|#1| (-656 |#1|)) 96)) (-1841 (((-656 (-576)) (-656 |#1|)) 56))) -(((-498 |#1|) (-10 -7 (-15 -3928 (|#1| (-656 |#1|))) (-15 -2411 (|#1| (-656 |#1|))) (-15 -2427 ((-656 |#1|) (-656 |#1|))) (-15 -2441 ((-656 |#1|) (-656 |#1|))) (-15 -1841 ((-656 (-576)) (-656 |#1|))) (-15 -2453 ((-576) (-656 (-576))))) (-1262 (-576))) (T -498)) -((-2453 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1262 *2)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1262 (-576))) (-5 *2 (-656 (-576))) (-5 *1 (-498 *4)))) (-2441 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3)))) (-2427 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576))))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576)))))) -(-10 -7 (-15 -3928 (|#1| (-656 |#1|))) (-15 -2411 (|#1| (-656 |#1|))) (-15 -2427 ((-656 |#1|) (-656 |#1|))) (-15 -2441 ((-656 |#1|) (-656 |#1|))) (-15 -1841 ((-656 (-576)) (-656 |#1|))) (-15 -2453 ((-576) (-656 (-576))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1905 (((-576) $) NIL (|has| (-576) (-317)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL (|has| (-576) (-832)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1056 (-576))))) (-4401 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1056 (-576)))) (((-576) $) NIL (|has| (-576) (-1056 (-576))))) (-2803 (($ $ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| (-576) (-557)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1370 (((-112) $) NIL (|has| (-576) (-832)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1439 (((-112) $) NIL)) (-3154 (($ $) NIL)) (-1595 (((-576) $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| (-576) (-1170)))) (-1379 (((-112) $) NIL (|has| (-576) (-832)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| (-576) (-862)))) (-2551 (($ (-1 (-576) (-576)) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| (-576) (-1170)) CONST)) (-2465 (($ (-419 (-576))) 9)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-1916 (((-576) $) NIL (|has| (-576) (-557)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3049 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-2910 (((-783) $) NIL)) (-2071 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2390 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3143 (($ $) NIL)) (-1608 (((-576) $) NIL)) (-2616 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1040))) (((-227) $) NIL (|has| (-576) (-1040)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1195)) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL) (((-1022 16) $) 10)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| (-576) (-925))) (|has| (-576) (-146))))) (-1871 (((-783)) NIL T CONST)) (-1929 (((-576) $) NIL (|has| (-576) (-557)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-2610 (($ $) NIL (|has| (-576) (-832)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3983 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3957 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3943 (((-112) $ $) NIL (|has| (-576) (-862)))) (-4039 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-499) (-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 16)) (-10 -8 (-15 -1894 ((-419 (-576)) $)) (-15 -2465 ($ (-419 (-576))))))) (T -499)) -((-1894 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) -(-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 16)) (-10 -8 (-15 -1894 ((-419 (-576)) $)) (-15 -2465 ($ (-419 (-576)))))) -((-1496 (((-656 |#2|) $) 31)) (-3743 (((-112) |#2| $) 36)) (-2476 (((-112) (-1 (-112) |#2|) $) 26)) (-3049 (($ $ (-656 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-3926 (((-783) (-1 (-112) |#2|) $) 30) (((-783) |#2| $) 34)) (-2884 (((-874) $) 45)) (-2492 (((-112) (-1 (-112) |#2|) $) 23)) (-3915 (((-112) $ $) 39)) (-2872 (((-783) $) 18))) -(((-500 |#1| |#2|) (-10 -8 (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -3049 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3049 (|#1| |#1| |#2| |#2|)) (-15 -3049 (|#1| |#1| (-304 |#2|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3743 ((-112) |#2| |#1|)) (-15 -3926 ((-783) |#2| |#1|)) (-15 -1496 ((-656 |#2|) |#1|)) (-15 -3926 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -2476 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2872 ((-783) |#1|))) (-501 |#2|) (-1236)) (T -500)) -NIL -(-10 -8 (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -3049 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3049 (|#1| |#1| |#2| |#2|)) (-15 -3049 (|#1| |#1| (-304 |#2|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3743 ((-112) |#2| |#1|)) (-15 -3926 ((-783) |#2| |#1|)) (-15 -1496 ((-656 |#2|) |#1|)) (-15 -3926 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -2476 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2872 ((-783) |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) 8)) (-2473 (($) 7 T CONST)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-501 |#1|) (-141) (-1236)) (T -501)) -((-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1236)))) (-2848 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1236)))) (-2492 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-2476 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-3926 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-783)))) (-4001 (*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3)))) (-1496 (*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3)))) (-3926 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-783)))) (-3743 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |t#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |t#1| (-1118)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2551 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4462)) (-15 -2848 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4461)) (PROGN (-15 -2492 ((-112) (-1 (-112) |t#1|) $)) (-15 -2476 ((-112) (-1 (-112) |t#1|) $)) (-15 -3926 ((-783) (-1 (-112) |t#1|) $)) (-15 -4001 ((-656 |t#1|) $)) (-15 -1496 ((-656 |t#1|) $)) (IF (|has| |t#1| (-1118)) (PROGN (-15 -3926 ((-783) |t#1| $)) (-15 -3743 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-2884 ((|#1| $) 6) (($ |#1|) 9))) -(((-502 |#1|) (-141) (-1236)) (T -502)) -NIL -(-13 (-625 |t#1|) (-628 |t#1|)) -(((-628 |#1|) . T) ((-625 |#1|) . T)) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-2504 (($ (-1177)) 8)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 15) (((-1177) $) 12)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 11))) -(((-503) (-13 (-1118) (-625 (-1177)) (-10 -8 (-15 -2504 ($ (-1177)))))) (T -503)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-503))))) -(-13 (-1118) (-625 (-1177)) (-10 -8 (-15 -2504 ($ (-1177))))) -((-3924 (($ $) 15)) (-3898 (($ $) 24)) (-1522 (($ $) 12)) (-1532 (($ $) 10)) (-3938 (($ $) 17)) (-3910 (($ $) 22))) -(((-504 |#1|) (-10 -8 (-15 -3910 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3924 (|#1| |#1|))) (-505)) (T -504)) -NIL -(-10 -8 (-15 -3910 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3924 (|#1| |#1|))) -((-3924 (($ $) 11)) (-3898 (($ $) 10)) (-1522 (($ $) 9)) (-1532 (($ $) 8)) (-3938 (($ $) 7)) (-3910 (($ $) 6))) -(((-505) (-141)) (T -505)) -((-3924 (*1 *1 *1) (-4 *1 (-505))) (-3898 (*1 *1 *1) (-4 *1 (-505))) (-1522 (*1 *1 *1) (-4 *1 (-505))) (-1532 (*1 *1 *1) (-4 *1 (-505))) (-3938 (*1 *1 *1) (-4 *1 (-505))) (-3910 (*1 *1 *1) (-4 *1 (-505)))) -(-13 (-10 -8 (-15 -3910 ($ $)) (-15 -3938 ($ $)) (-15 -1532 ($ $)) (-15 -1522 ($ $)) (-15 -3898 ($ $)) (-15 -3924 ($ $)))) -((-2354 (((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)) 54))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2354 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) (-374) (-1262 |#1|) (-13 (-374) (-148) (-736 |#1| |#2|)) (-1262 |#3|)) (T -506)) -((-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1262 *7))))) -(-10 -7 (-15 -2354 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) -((-2862 (((-112) $ $) NIL)) (-3696 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-968 $)) NIL)) (-4023 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-968 $)) NIL)) (-1389 (((-112) $) 39)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-2516 (((-112) $ $) 73)) (-4271 (((-656 (-624 $)) $) 50)) (-1459 (((-3 $ "failed") $ $) NIL)) (-1474 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2474 (($ $) NIL)) (-2922 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-4034 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-968 $)) NIL)) (-1342 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-968 $)) NIL)) (-2449 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-4401 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-2803 (($ $ $) NIL)) (-2613 (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL) (((-2 (|:| -2869 (-701 (-419 (-576)))) (|:| |vec| (-1286 (-419 (-576))))) (-701 $) (-1286 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL) (((-701 (-419 (-576))) (-1286 $)) NIL)) (-2309 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-4330 (($ $) NIL) (($ (-656 $)) NIL)) (-3640 (((-656 (-115)) $) NIL)) (-2573 (((-115) (-115)) NIL)) (-1439 (((-112) $) 42)) (-4064 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-1595 (((-1143 (-576) (-624 $)) $) 37)) (-3298 (($ $ (-576)) NIL)) (-1941 (((-1191 $) (-1191 $) (-624 $)) 87) (((-1191 $) (-1191 $) (-656 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-656 (-624 $))) 77)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3621 (((-1191 $) (-624 $)) 74 (|has| $ (-1067)))) (-2551 (($ (-1 $ $) (-624 $)) NIL)) (-3650 (((-3 (-624 $) "failed") $) NIL)) (-3888 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-2558 (((-656 (-624 $)) $) NIL)) (-1673 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-3657 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) NIL)) (-4333 (($ $) NIL)) (-3343 (((-783) $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3630 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-2354 (((-430 $) $) NIL)) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4072 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-3049 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2910 (((-783) $) NIL)) (-2071 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-3663 (($ $) NIL) (($ $ $) NIL)) (-2390 (($ $) 36) (($ $ (-783)) NIL)) (-1608 (((-1143 (-576) (-624 $)) $) 20)) (-1360 (($ $) NIL (|has| $ (-1067)))) (-2616 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-2884 (((-874) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1143 (-576) (-624 $))) 21)) (-1871 (((-783)) NIL T CONST)) (-2377 (($ $) NIL) (($ (-656 $)) NIL)) (-2362 (((-112) (-115)) 93)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-1996 (($) 10 T CONST)) (-2011 (($) 22 T CONST)) (-3431 (($ $) NIL) (($ $ (-783)) NIL)) (-3915 (((-112) $ $) 24)) (-4039 (($ $ $) 44)) (-4029 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL))) -(((-507) (-13 (-312) (-27) (-1056 (-576)) (-1056 (-419 (-576))) (-651 (-576)) (-1040) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-239) (-10 -8 (-15 -2884 ($ (-1143 (-576) (-624 $)))) (-15 -1595 ((-1143 (-576) (-624 $)) $)) (-15 -1608 ((-1143 (-576) (-624 $)) $)) (-15 -2309 ($ $)) (-15 -2516 ((-112) $ $)) (-15 -1941 ((-1191 $) (-1191 $) (-624 $))) (-15 -1941 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -1941 ($ $ (-624 $))) (-15 -1941 ($ $ (-656 (-624 $))))))) (T -507)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2309 (*1 *1 *1) (-5 *1 (-507))) (-2516 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-1941 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-1941 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-656 (-624 (-507)))) (-5 *1 (-507)))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507))))) -(-13 (-312) (-27) (-1056 (-576)) (-1056 (-419 (-576))) (-651 (-576)) (-1040) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-239) (-10 -8 (-15 -2884 ($ (-1143 (-576) (-624 $)))) (-15 -1595 ((-1143 (-576) (-624 $)) $)) (-15 -1608 ((-1143 (-576) (-624 $)) $)) (-15 -2309 ($ $)) (-15 -2516 ((-112) $ $)) (-15 -1941 ((-1191 $) (-1191 $) (-624 $))) (-15 -1941 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -1941 ($ $ (-624 $))) (-15 -1941 ($ $ (-656 (-624 $)))))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) 38)) (-2634 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2310 (($ (-783) |#1|) 21)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) 17 (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) 41 (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2134 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1962 ((|#1| $) NIL (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3346 (($ $ |#1|) 15 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) 19)) (-2071 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1253 (-576))) NIL)) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) 13)) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 24)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2872 (((-783) $) 11 (|has| $ (-6 -4461))))) -(((-508 |#1| |#2|) (-19 |#1|) (-1236) (-576)) (T -508)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-452)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-452)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) (-4 *1 (-452)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-1285 (-325 (-389)))) (-4 *1 (-452)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-325 (-389)))) (-4 *1 (-452)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-1285 (-325 (-575)))) (-4 *1 (-452)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-325 (-575)))) (-4 *1 (-452)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-1285 (-967 (-389)))) (-4 *1 (-452)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-967 (-389)))) (-4 *1 (-452)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-1285 (-967 (-575)))) (-4 *1 (-452)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-967 (-575)))) (-4 *1 (-452)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-1285 (-418 (-967 (-389))))) (-4 *1 (-452)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-418 (-967 (-389))))) (-4 *1 (-452)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-1285 (-418 (-967 (-575))))) (-4 *1 (-452)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-418 (-967 (-575))))) (-4 *1 (-452))))) +(-13 (-406) (-10 -8 (-15 -2883 ($ (-655 (-339)))) (-15 -2883 ($ (-339))) (-15 -2883 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339)))))) (-15 -4399 ($ (-1285 (-325 (-389))))) (-15 -2449 ((-3 $ "failed") (-1285 (-325 (-389))))) (-15 -4399 ($ (-1285 (-325 (-575))))) (-15 -2449 ((-3 $ "failed") (-1285 (-325 (-575))))) (-15 -4399 ($ (-1285 (-967 (-389))))) (-15 -2449 ((-3 $ "failed") (-1285 (-967 (-389))))) (-15 -4399 ($ (-1285 (-967 (-575))))) (-15 -2449 ((-3 $ "failed") (-1285 (-967 (-575))))) (-15 -4399 ($ (-1285 (-418 (-967 (-389)))))) (-15 -2449 ((-3 $ "failed") (-1285 (-418 (-967 (-389)))))) (-15 -4399 ($ (-1285 (-418 (-967 (-575)))))) (-15 -2449 ((-3 $ "failed") (-1285 (-418 (-967 (-575)))))))) +(((-624 (-873)) . T) ((-406) . T) ((-1235) . T)) +((-1679 (((-112)) 18)) (-1856 (((-112) (-112)) 19)) (-1527 (((-112)) 14)) (-3160 (((-112) (-112)) 15)) (-4350 (((-112)) 16)) (-3951 (((-112) (-112)) 17)) (-4107 (((-936) (-936)) 22) (((-936)) 21)) (-1453 (((-782) (-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575))))) 52)) (-4271 (((-936) (-936)) 24) (((-936)) 23)) (-3279 (((-2 (|:| -2539 (-575)) (|:| -3378 (-655 |#1|))) |#1|) 94)) (-2735 (((-429 |#1|) (-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575))))))) 174)) (-4083 (((-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575)))))) |#1| (-112)) 207)) (-2794 (((-429 |#1|) |#1| (-782) (-782)) 222) (((-429 |#1|) |#1| (-655 (-782)) (-782)) 219) (((-429 |#1|) |#1| (-655 (-782))) 221) (((-429 |#1|) |#1| (-782)) 220) (((-429 |#1|) |#1|) 218)) (-2390 (((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782) (-112)) 224) (((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782)) 225) (((-3 |#1| "failed") (-936) |#1| (-655 (-782))) 227) (((-3 |#1| "failed") (-936) |#1| (-782)) 226) (((-3 |#1| "failed") (-936) |#1|) 228)) (-2353 (((-429 |#1|) |#1| (-782) (-782)) 217) (((-429 |#1|) |#1| (-655 (-782)) (-782)) 213) (((-429 |#1|) |#1| (-655 (-782))) 215) (((-429 |#1|) |#1| (-782)) 214) (((-429 |#1|) |#1|) 212)) (-2817 (((-112) |#1|) 44)) (-3855 (((-748 (-782)) (-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575))))) 99)) (-1912 (((-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575)))))) |#1| (-112) (-1119 (-782)) (-782)) 211))) +(((-453 |#1|) (-10 -7 (-15 -2735 ((-429 |#1|) (-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575)))))))) (-15 -3855 ((-748 (-782)) (-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575)))))) (-15 -4271 ((-936))) (-15 -4271 ((-936) (-936))) (-15 -4107 ((-936))) (-15 -4107 ((-936) (-936))) (-15 -1453 ((-782) (-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575)))))) (-15 -3279 ((-2 (|:| -2539 (-575)) (|:| -3378 (-655 |#1|))) |#1|)) (-15 -1679 ((-112))) (-15 -1856 ((-112) (-112))) (-15 -1527 ((-112))) (-15 -3160 ((-112) (-112))) (-15 -2817 ((-112) |#1|)) (-15 -4350 ((-112))) (-15 -3951 ((-112) (-112))) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2353 ((-429 |#1|) |#1| (-782))) (-15 -2353 ((-429 |#1|) |#1| (-655 (-782)))) (-15 -2353 ((-429 |#1|) |#1| (-655 (-782)) (-782))) (-15 -2353 ((-429 |#1|) |#1| (-782) (-782))) (-15 -2794 ((-429 |#1|) |#1|)) (-15 -2794 ((-429 |#1|) |#1| (-782))) (-15 -2794 ((-429 |#1|) |#1| (-655 (-782)))) (-15 -2794 ((-429 |#1|) |#1| (-655 (-782)) (-782))) (-15 -2794 ((-429 |#1|) |#1| (-782) (-782))) (-15 -2390 ((-3 |#1| "failed") (-936) |#1|)) (-15 -2390 ((-3 |#1| "failed") (-936) |#1| (-782))) (-15 -2390 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)))) (-15 -2390 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782))) (-15 -2390 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782) (-112))) (-15 -4083 ((-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575)))))) |#1| (-112))) (-15 -1912 ((-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575)))))) |#1| (-112) (-1119 (-782)) (-782)))) (-1261 (-575))) (T -453)) +((-1912 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1119 (-782))) (-5 *6 (-782)) (-5 *2 (-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| *3) (|:| -2856 (-575))))))) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| *3) (|:| -2856 (-575))))))) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2390 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *6 (-112)) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) (-2390 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) (-2390 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) (-2390 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-782)) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) (-2390 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-936)) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) (-2794 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2794 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2794 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-782))) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2794 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2794 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2353 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2353 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-782))) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2353 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-4350 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2817 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-3160 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1527 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1679 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-3279 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2539 (-575)) (|:| -3378 (-655 *3)))) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -2353 *4) (|:| -2645 (-575))))) (-4 *4 (-1261 (-575))) (-5 *2 (-782)) (-5 *1 (-453 *4)))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-4107 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-4271 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-4271 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -2353 *4) (|:| -2645 (-575))))) (-4 *4 (-1261 (-575))) (-5 *2 (-748 (-782))) (-5 *1 (-453 *4)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| *4) (|:| -2856 (-575))))))) (-4 *4 (-1261 (-575))) (-5 *2 (-429 *4)) (-5 *1 (-453 *4))))) +(-10 -7 (-15 -2735 ((-429 |#1|) (-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575)))))))) (-15 -3855 ((-748 (-782)) (-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575)))))) (-15 -4271 ((-936))) (-15 -4271 ((-936) (-936))) (-15 -4107 ((-936))) (-15 -4107 ((-936) (-936))) (-15 -1453 ((-782) (-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575)))))) (-15 -3279 ((-2 (|:| -2539 (-575)) (|:| -3378 (-655 |#1|))) |#1|)) (-15 -1679 ((-112))) (-15 -1856 ((-112) (-112))) (-15 -1527 ((-112))) (-15 -3160 ((-112) (-112))) (-15 -2817 ((-112) |#1|)) (-15 -4350 ((-112))) (-15 -3951 ((-112) (-112))) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2353 ((-429 |#1|) |#1| (-782))) (-15 -2353 ((-429 |#1|) |#1| (-655 (-782)))) (-15 -2353 ((-429 |#1|) |#1| (-655 (-782)) (-782))) (-15 -2353 ((-429 |#1|) |#1| (-782) (-782))) (-15 -2794 ((-429 |#1|) |#1|)) (-15 -2794 ((-429 |#1|) |#1| (-782))) (-15 -2794 ((-429 |#1|) |#1| (-655 (-782)))) (-15 -2794 ((-429 |#1|) |#1| (-655 (-782)) (-782))) (-15 -2794 ((-429 |#1|) |#1| (-782) (-782))) (-15 -2390 ((-3 |#1| "failed") (-936) |#1|)) (-15 -2390 ((-3 |#1| "failed") (-936) |#1| (-782))) (-15 -2390 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)))) (-15 -2390 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782))) (-15 -2390 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782) (-112))) (-15 -4083 ((-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575)))))) |#1| (-112))) (-15 -1912 ((-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575)))))) |#1| (-112) (-1119 (-782)) (-782)))) +((-3696 (((-575) |#2|) 52) (((-575) |#2| (-782)) 51)) (-2045 (((-575) |#2|) 64)) (-3335 ((|#3| |#2|) 26)) (-2255 ((|#3| |#2| (-936)) 15)) (-1839 ((|#3| |#2|) 16)) (-3836 ((|#3| |#2|) 9)) (-3343 ((|#3| |#2|) 10)) (-3435 ((|#3| |#2| (-936)) 71) ((|#3| |#2|) 34)) (-3634 (((-575) |#2|) 66))) +(((-454 |#1| |#2| |#3|) (-10 -7 (-15 -3634 ((-575) |#2|)) (-15 -3435 (|#3| |#2|)) (-15 -3435 (|#3| |#2| (-936))) (-15 -2045 ((-575) |#2|)) (-15 -3696 ((-575) |#2| (-782))) (-15 -3696 ((-575) |#2|)) (-15 -2255 (|#3| |#2| (-936))) (-15 -3335 (|#3| |#2|)) (-15 -3836 (|#3| |#2|)) (-15 -3343 (|#3| |#2|)) (-15 -1839 (|#3| |#2|))) (-1066) (-1261 |#1|) (-13 (-415) (-1055 |#1|) (-373) (-1220) (-293))) (T -454)) +((-1839 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) (-3335 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *2 (-13 (-415) (-1055 *5) (-373) (-1220) (-293))) (-5 *1 (-454 *5 *3 *2)) (-4 *3 (-1261 *5)))) (-3696 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5)) (-4 *3 (-1261 *4)) (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))))) (-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *5 *3 *6)) (-4 *3 (-1261 *5)) (-4 *6 (-13 (-415) (-1055 *5) (-373) (-1220) (-293))))) (-2045 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5)) (-4 *3 (-1261 *4)) (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))))) (-3435 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *2 (-13 (-415) (-1055 *5) (-373) (-1220) (-293))) (-5 *1 (-454 *5 *3 *2)) (-4 *3 (-1261 *5)))) (-3435 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) (-3634 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5)) (-4 *3 (-1261 *4)) (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293)))))) +(-10 -7 (-15 -3634 ((-575) |#2|)) (-15 -3435 (|#3| |#2|)) (-15 -3435 (|#3| |#2| (-936))) (-15 -2045 ((-575) |#2|)) (-15 -3696 ((-575) |#2| (-782))) (-15 -3696 ((-575) |#2|)) (-15 -2255 (|#3| |#2| (-936))) (-15 -3335 (|#3| |#2|)) (-15 -3836 (|#3| |#2|)) (-15 -3343 (|#3| |#2|)) (-15 -1839 (|#3| |#2|))) +((-3002 ((|#2| (-1285 |#1|)) 42)) (-2194 ((|#2| |#2| |#1|) 58)) (-2395 ((|#2| |#2| |#1|) 49)) (-4381 ((|#2| |#2|) 44)) (-2995 (((-112) |#2|) 32)) (-2055 (((-655 |#2|) (-936) (-429 |#2|)) 21)) (-2390 ((|#2| (-936) (-429 |#2|)) 25)) (-3855 (((-748 (-782)) (-429 |#2|)) 29))) +(((-455 |#1| |#2|) (-10 -7 (-15 -2995 ((-112) |#2|)) (-15 -3002 (|#2| (-1285 |#1|))) (-15 -4381 (|#2| |#2|)) (-15 -2395 (|#2| |#2| |#1|)) (-15 -2194 (|#2| |#2| |#1|)) (-15 -3855 ((-748 (-782)) (-429 |#2|))) (-15 -2390 (|#2| (-936) (-429 |#2|))) (-15 -2055 ((-655 |#2|) (-936) (-429 |#2|)))) (-1066) (-1261 |#1|)) (T -455)) +((-2055 (*1 *2 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-429 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-1066)) (-5 *2 (-655 *6)) (-5 *1 (-455 *5 *6)))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-429 *2)) (-4 *2 (-1261 *5)) (-5 *1 (-455 *5 *2)) (-4 *5 (-1066)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-429 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-1066)) (-5 *2 (-748 (-782))) (-5 *1 (-455 *4 *5)))) (-2194 (*1 *2 *2 *3) (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3)))) (-2395 (*1 *2 *2 *3) (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3)))) (-4381 (*1 *2 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-1066)) (-4 *2 (-1261 *4)) (-5 *1 (-455 *4 *2)))) (-2995 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-112)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1261 *4))))) +(-10 -7 (-15 -2995 ((-112) |#2|)) (-15 -3002 (|#2| (-1285 |#1|))) (-15 -4381 (|#2| |#2|)) (-15 -2395 (|#2| |#2| |#1|)) (-15 -2194 (|#2| |#2| |#1|)) (-15 -3855 ((-748 (-782)) (-429 |#2|))) (-15 -2390 (|#2| (-936) (-429 |#2|))) (-15 -2055 ((-655 |#2|) (-936) (-429 |#2|)))) +((-1755 (((-782)) 59)) (-2592 (((-782)) 29 (|has| |#1| (-415))) (((-782) (-782)) 28 (|has| |#1| (-415)))) (-2035 (((-575) |#1|) 25 (|has| |#1| (-415)))) (-3426 (((-575) |#1|) 27 (|has| |#1| (-415)))) (-3161 (((-782)) 58) (((-782) (-782)) 57)) (-1402 ((|#1| (-782) (-575)) 37)) (-3598 (((-1290)) 61))) +(((-456 |#1|) (-10 -7 (-15 -1402 (|#1| (-782) (-575))) (-15 -3161 ((-782) (-782))) (-15 -3161 ((-782))) (-15 -1755 ((-782))) (-15 -3598 ((-1290))) (IF (|has| |#1| (-415)) (PROGN (-15 -3426 ((-575) |#1|)) (-15 -2035 ((-575) |#1|)) (-15 -2592 ((-782) (-782))) (-15 -2592 ((-782)))) |%noBranch|)) (-1066)) (T -456)) +((-2592 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))) (-2592 (*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))) (-2035 (*1 *2 *3) (-12 (-5 *2 (-575)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))) (-3426 (*1 *2 *3) (-12 (-5 *2 (-575)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))) (-3598 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))) (-1755 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))) (-3161 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))) (-1402 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-575)) (-5 *1 (-456 *2)) (-4 *2 (-1066))))) +(-10 -7 (-15 -1402 (|#1| (-782) (-575))) (-15 -3161 ((-782) (-782))) (-15 -3161 ((-782))) (-15 -1755 ((-782))) (-15 -3598 ((-1290))) (IF (|has| |#1| (-415)) (PROGN (-15 -3426 ((-575) |#1|)) (-15 -2035 ((-575) |#1|)) (-15 -2592 ((-782) (-782))) (-15 -2592 ((-782)))) |%noBranch|)) +((-2141 (((-655 (-575)) (-575)) 76)) (-1336 (((-112) (-171 (-575))) 82)) (-2353 (((-429 (-171 (-575))) (-171 (-575))) 75))) +(((-457) (-10 -7 (-15 -2353 ((-429 (-171 (-575))) (-171 (-575)))) (-15 -2141 ((-655 (-575)) (-575))) (-15 -1336 ((-112) (-171 (-575)))))) (T -457)) +((-1336 (*1 *2 *3) (-12 (-5 *3 (-171 (-575))) (-5 *2 (-112)) (-5 *1 (-457)))) (-2141 (*1 *2 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-457)) (-5 *3 (-575)))) (-2353 (*1 *2 *3) (-12 (-5 *2 (-429 (-171 (-575)))) (-5 *1 (-457)) (-5 *3 (-171 (-575)))))) +(-10 -7 (-15 -2353 ((-429 (-171 (-575))) (-171 (-575)))) (-15 -2141 ((-655 (-575)) (-575))) (-15 -1336 ((-112) (-171 (-575))))) +((-3682 ((|#4| |#4| (-655 |#4|)) 82)) (-1392 (((-655 |#4|) (-655 |#4|) (-1176) (-1176)) 22) (((-655 |#4|) (-655 |#4|) (-1176)) 21) (((-655 |#4|) (-655 |#4|)) 13))) +(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3682 (|#4| |#4| (-655 |#4|))) (-15 -1392 ((-655 |#4|) (-655 |#4|))) (-15 -1392 ((-655 |#4|) (-655 |#4|) (-1176))) (-15 -1392 ((-655 |#4|) (-655 |#4|) (-1176) (-1176)))) (-316) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -458)) +((-1392 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-316)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-458 *4 *5 *6 *7)))) (-1392 (*1 *2 *2 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-316)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-458 *4 *5 *6 *7)))) (-1392 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-458 *3 *4 *5 *6)))) (-3682 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-316)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-458 *4 *5 *6 *2))))) +(-10 -7 (-15 -3682 (|#4| |#4| (-655 |#4|))) (-15 -1392 ((-655 |#4|) (-655 |#4|))) (-15 -1392 ((-655 |#4|) (-655 |#4|) (-1176))) (-15 -1392 ((-655 |#4|) (-655 |#4|) (-1176) (-1176)))) +((-2260 (((-655 (-655 |#4|)) (-655 |#4|) (-112)) 89) (((-655 (-655 |#4|)) (-655 |#4|)) 88) (((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|) (-112)) 82) (((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|)) 83)) (-4358 (((-655 (-655 |#4|)) (-655 |#4|) (-112)) 55) (((-655 (-655 |#4|)) (-655 |#4|)) 77))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 ((-655 (-655 |#4|)) (-655 |#4|))) (-15 -4358 ((-655 (-655 |#4|)) (-655 |#4|) (-112))) (-15 -2260 ((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|))) (-15 -2260 ((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|) (-112))) (-15 -2260 ((-655 (-655 |#4|)) (-655 |#4|))) (-15 -2260 ((-655 (-655 |#4|)) (-655 |#4|) (-112)))) (-13 (-316) (-148)) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -459)) +((-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8))) (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8)))) (-2260 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7))) (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-2260 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8))) (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8)))) (-2260 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7))) (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8))) (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8)))) (-4358 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7))) (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7))))) +(-10 -7 (-15 -4358 ((-655 (-655 |#4|)) (-655 |#4|))) (-15 -4358 ((-655 (-655 |#4|)) (-655 |#4|) (-112))) (-15 -2260 ((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|))) (-15 -2260 ((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|) (-112))) (-15 -2260 ((-655 (-655 |#4|)) (-655 |#4|))) (-15 -2260 ((-655 (-655 |#4|)) (-655 |#4|) (-112)))) +((-1409 (((-782) |#4|) 12)) (-2044 (((-655 (-2 (|:| |totdeg| (-782)) (|:| -1699 |#4|))) |#4| (-782) (-655 (-2 (|:| |totdeg| (-782)) (|:| -1699 |#4|)))) 39)) (-2610 (((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3824 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-1356 ((|#4| |#4| (-655 |#4|)) 54)) (-4090 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-655 |#4|)) 96)) (-3076 (((-1290) |#4|) 59)) (-3208 (((-1290) (-655 |#4|)) 69)) (-2703 (((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575)) 66)) (-2841 (((-1290) (-575)) 110)) (-1386 (((-655 |#4|) (-655 |#4|)) 104)) (-1656 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-782)) (|:| -1699 |#4|)) |#4| (-782)) 31)) (-3349 (((-575) |#4|) 109)) (-2771 ((|#4| |#4|) 37)) (-3103 (((-655 |#4|) (-655 |#4|) (-575) (-575)) 74)) (-4370 (((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575) (-575)) 123)) (-3316 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2874 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2213 (((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2414 (((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-4202 (((-112) |#2| |#2|) 75)) (-3859 (((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-4144 (((-112) |#2| |#2| |#2| |#2|) 80)) (-1918 ((|#4| |#4| (-655 |#4|)) 97))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1918 (|#4| |#4| (-655 |#4|))) (-15 -1356 (|#4| |#4| (-655 |#4|))) (-15 -3103 ((-655 |#4|) (-655 |#4|) (-575) (-575))) (-15 -2874 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4202 ((-112) |#2| |#2|)) (-15 -4144 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3859 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2414 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2213 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4090 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-655 |#4|))) (-15 -2771 (|#4| |#4|)) (-15 -2044 ((-655 (-2 (|:| |totdeg| (-782)) (|:| -1699 |#4|))) |#4| (-782) (-655 (-2 (|:| |totdeg| (-782)) (|:| -1699 |#4|))))) (-15 -3824 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2610 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1386 ((-655 |#4|) (-655 |#4|))) (-15 -3349 ((-575) |#4|)) (-15 -3076 ((-1290) |#4|)) (-15 -2703 ((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575))) (-15 -4370 ((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575) (-575))) (-15 -3208 ((-1290) (-655 |#4|))) (-15 -2841 ((-1290) (-575))) (-15 -3316 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1656 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-782)) (|:| -1699 |#4|)) |#4| (-782))) (-15 -1409 ((-782) |#4|))) (-463) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -460)) +((-1409 (*1 *2 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-782)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))) (-1656 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-782)) (|:| -1699 *4))) (-5 *5 (-782)) (-4 *4 (-964 *6 *7 *8)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-460 *6 *7 *8 *4)))) (-3316 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-804)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2841 (*1 *2 *3) (-12 (-5 *3 (-575)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1290)) (-5 *1 (-460 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1290)) (-5 *1 (-460 *4 *5 *6 *7)))) (-4370 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-782)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-804)) (-4 *4 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *7 (-861)) (-5 *1 (-460 *5 *6 *7 *4)))) (-2703 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-782)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-804)) (-4 *4 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *7 (-861)) (-5 *1 (-460 *5 *6 *7 *4)))) (-3076 (*1 *2 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1290)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))) (-3349 (*1 *2 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-575)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))) (-1386 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *6)))) (-2610 (*1 *2 *2 *2) (-12 (-5 *2 (-655 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-782)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-804)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *6)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-804)) (-4 *2 (-964 *4 *5 *6)) (-5 *1 (-460 *4 *5 *6 *2)) (-4 *4 (-463)) (-4 *6 (-861)))) (-2044 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-655 (-2 (|:| |totdeg| (-782)) (|:| -1699 *3)))) (-5 *4 (-782)) (-4 *3 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-460 *5 *6 *7 *3)))) (-2771 (*1 *2 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5)))) (-4090 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-460 *5 *6 *7 *3)))) (-2213 (*1 *2 *3 *2) (-12 (-5 *2 (-655 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-782)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-804)) (-4 *6 (-964 *4 *3 *5)) (-4 *4 (-463)) (-4 *5 (-861)) (-5 *1 (-460 *4 *3 *5 *6)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-655 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-782)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-804)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *6)))) (-3859 (*1 *2 *3 *2) (-12 (-5 *2 (-655 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-804)) (-4 *3 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *3)))) (-4144 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-463)) (-4 *3 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-460 *4 *3 *5 *6)) (-4 *6 (-964 *4 *3 *5)))) (-4202 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *3 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-460 *4 *3 *5 *6)) (-4 *6 (-964 *4 *3 *5)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-804)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-460 *4 *5 *6 *7)))) (-3103 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-575)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *7)))) (-1356 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *2)))) (-1918 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *2))))) +(-10 -7 (-15 -1918 (|#4| |#4| (-655 |#4|))) (-15 -1356 (|#4| |#4| (-655 |#4|))) (-15 -3103 ((-655 |#4|) (-655 |#4|) (-575) (-575))) (-15 -2874 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4202 ((-112) |#2| |#2|)) (-15 -4144 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3859 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2414 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2213 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4090 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-655 |#4|))) (-15 -2771 (|#4| |#4|)) (-15 -2044 ((-655 (-2 (|:| |totdeg| (-782)) (|:| -1699 |#4|))) |#4| (-782) (-655 (-2 (|:| |totdeg| (-782)) (|:| -1699 |#4|))))) (-15 -3824 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2610 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1386 ((-655 |#4|) (-655 |#4|))) (-15 -3349 ((-575) |#4|)) (-15 -3076 ((-1290) |#4|)) (-15 -2703 ((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575))) (-15 -4370 ((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575) (-575))) (-15 -3208 ((-1290) (-655 |#4|))) (-15 -2841 ((-1290) (-575))) (-15 -3316 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1656 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-782)) (|:| -1699 |#4|)) |#4| (-782))) (-15 -1409 ((-782) |#4|))) +((-3760 ((|#4| |#4| (-655 |#4|)) 20 (|has| |#1| (-373)))) (-1919 (((-655 |#4|) (-655 |#4|) (-1176) (-1176)) 46) (((-655 |#4|) (-655 |#4|) (-1176)) 45) (((-655 |#4|) (-655 |#4|)) 34))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1919 ((-655 |#4|) (-655 |#4|))) (-15 -1919 ((-655 |#4|) (-655 |#4|) (-1176))) (-15 -1919 ((-655 |#4|) (-655 |#4|) (-1176) (-1176))) (IF (|has| |#1| (-373)) (-15 -3760 (|#4| |#4| (-655 |#4|))) |%noBranch|)) (-463) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -461)) +((-3760 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-373)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2)))) (-1919 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1919 (*1 *2 *2 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1919 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6))))) +(-10 -7 (-15 -1919 ((-655 |#4|) (-655 |#4|))) (-15 -1919 ((-655 |#4|) (-655 |#4|) (-1176))) (-15 -1919 ((-655 |#4|) (-655 |#4|) (-1176) (-1176))) (IF (|has| |#1| (-373)) (-15 -3760 (|#4| |#4| (-655 |#4|))) |%noBranch|)) +((-3887 (($ $ $) 14) (($ (-655 $)) 21)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 46)) (-3926 (($ $ $) NIL) (($ (-655 $)) 22))) +(((-462 |#1|) (-10 -8 (-15 -2290 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -3887 (|#1| (-655 |#1|))) (-15 -3887 (|#1| |#1| |#1|)) (-15 -3926 (|#1| (-655 |#1|))) (-15 -3926 (|#1| |#1| |#1|))) (-463)) (T -462)) +NIL +(-10 -8 (-15 -2290 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -3887 (|#1| (-655 |#1|))) (-15 -3887 (|#1| |#1| |#1|)) (-15 -3926 (|#1| (-655 |#1|))) (-15 -3926 (|#1| |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2851 (((-3 $ "failed") $ $) 48)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-463) (-141)) (T -463)) +((-3926 (*1 *1 *1 *1) (-4 *1 (-463))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-463)))) (-3887 (*1 *1 *1 *1) (-4 *1 (-463))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-463)))) (-2290 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-463))))) +(-13 (-567) (-10 -8 (-15 -3926 ($ $ $)) (-15 -3926 ($ (-655 $))) (-15 -3887 ($ $ $)) (-15 -3887 ($ (-655 $))) (-15 -2290 ((-1190 $) (-1190 $) (-1190 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3800 (((-3 $ "failed")) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-4239 (((-1285 (-700 (-418 (-967 |#1|)))) (-1285 $)) NIL) (((-1285 (-700 (-418 (-967 |#1|))))) NIL)) (-3355 (((-1285 $)) NIL)) (-3011 (($) NIL T CONST)) (-1380 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) NIL)) (-4132 (((-3 $ "failed")) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-2974 (((-700 (-418 (-967 |#1|))) (-1285 $)) NIL) (((-700 (-418 (-967 |#1|)))) NIL)) (-1726 (((-418 (-967 |#1|)) $) NIL)) (-4093 (((-700 (-418 (-967 |#1|))) $ (-1285 $)) NIL) (((-700 (-418 (-967 |#1|))) $) NIL)) (-3512 (((-3 $ "failed") $) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-2199 (((-1190 (-967 (-418 (-967 |#1|))))) NIL (|has| (-418 (-967 |#1|)) (-373))) (((-1190 (-418 (-967 |#1|)))) 90 (|has| |#1| (-567)))) (-2661 (($ $ (-936)) NIL)) (-2737 (((-418 (-967 |#1|)) $) NIL)) (-1884 (((-1190 (-418 (-967 |#1|))) $) 88 (|has| (-418 (-967 |#1|)) (-567)))) (-2263 (((-418 (-967 |#1|)) (-1285 $)) NIL) (((-418 (-967 |#1|))) NIL)) (-4103 (((-1190 (-418 (-967 |#1|))) $) NIL)) (-2810 (((-112)) NIL)) (-1385 (($ (-1285 (-418 (-967 |#1|))) (-1285 $)) 114) (($ (-1285 (-418 (-967 |#1|)))) NIL)) (-1747 (((-3 $ "failed") $) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-4422 (((-936)) NIL)) (-4369 (((-112)) NIL)) (-3889 (($ $ (-936)) NIL)) (-3289 (((-112)) NIL)) (-1742 (((-112)) NIL)) (-3577 (((-112)) NIL)) (-3129 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) NIL)) (-3387 (((-3 $ "failed")) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-2653 (((-700 (-418 (-967 |#1|))) (-1285 $)) NIL) (((-700 (-418 (-967 |#1|)))) NIL)) (-1502 (((-418 (-967 |#1|)) $) NIL)) (-4391 (((-700 (-418 (-967 |#1|))) $ (-1285 $)) NIL) (((-700 (-418 (-967 |#1|))) $) NIL)) (-3456 (((-3 $ "failed") $) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-3498 (((-1190 (-967 (-418 (-967 |#1|))))) NIL (|has| (-418 (-967 |#1|)) (-373))) (((-1190 (-418 (-967 |#1|)))) 89 (|has| |#1| (-567)))) (-1898 (($ $ (-936)) NIL)) (-4336 (((-418 (-967 |#1|)) $) NIL)) (-3649 (((-1190 (-418 (-967 |#1|))) $) 85 (|has| (-418 (-967 |#1|)) (-567)))) (-1634 (((-418 (-967 |#1|)) (-1285 $)) NIL) (((-418 (-967 |#1|))) NIL)) (-4013 (((-1190 (-418 (-967 |#1|))) $) NIL)) (-4403 (((-112)) NIL)) (-2288 (((-1176) $) NIL)) (-1536 (((-112)) NIL)) (-3978 (((-112)) NIL)) (-2204 (((-112)) NIL)) (-3912 (((-1137) $) NIL)) (-1535 (((-418 (-967 |#1|)) $ $) 76 (|has| |#1| (-567)))) (-1921 (((-418 (-967 |#1|)) $) 100 (|has| |#1| (-567)))) (-3341 (((-418 (-967 |#1|)) $) 104 (|has| |#1| (-567)))) (-3596 (((-1190 (-418 (-967 |#1|))) $) 94 (|has| |#1| (-567)))) (-1717 (((-418 (-967 |#1|))) 77 (|has| |#1| (-567)))) (-1459 (((-418 (-967 |#1|)) $ $) 69 (|has| |#1| (-567)))) (-2869 (((-418 (-967 |#1|)) $) 99 (|has| |#1| (-567)))) (-3933 (((-418 (-967 |#1|)) $) 103 (|has| |#1| (-567)))) (-3710 (((-1190 (-418 (-967 |#1|))) $) 93 (|has| |#1| (-567)))) (-2846 (((-418 (-967 |#1|))) 73 (|has| |#1| (-567)))) (-1615 (($) 110) (($ (-1194)) 118) (($ (-1285 (-1194))) 117) (($ (-1285 $)) 105) (($ (-1194) (-1285 $)) 116) (($ (-1285 (-1194)) (-1285 $)) 115)) (-3074 (((-112)) NIL)) (-2070 (((-418 (-967 |#1|)) $ (-575)) NIL)) (-3962 (((-1285 (-418 (-967 |#1|))) $ (-1285 $)) 107) (((-700 (-418 (-967 |#1|))) (-1285 $) (-1285 $)) NIL) (((-1285 (-418 (-967 |#1|))) $) 43) (((-700 (-418 (-967 |#1|))) (-1285 $)) NIL)) (-2615 (((-1285 (-418 (-967 |#1|))) $) NIL) (($ (-1285 (-418 (-967 |#1|)))) 40)) (-3235 (((-655 (-967 (-418 (-967 |#1|)))) (-1285 $)) NIL) (((-655 (-967 (-418 (-967 |#1|))))) NIL) (((-655 (-967 |#1|)) (-1285 $)) 108 (|has| |#1| (-567))) (((-655 (-967 |#1|))) 109 (|has| |#1| (-567)))) (-3320 (($ $ $) NIL)) (-2328 (((-112)) NIL)) (-2883 (((-873) $) NIL) (($ (-1285 (-418 (-967 |#1|)))) NIL)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) 65)) (-3431 (((-655 (-1285 (-418 (-967 |#1|))))) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-1785 (($ $ $ $) NIL)) (-2761 (((-112)) NIL)) (-1949 (($ (-700 (-418 (-967 |#1|))) $) NIL)) (-3534 (($ $ $) NIL)) (-4363 (((-112)) NIL)) (-2987 (((-112)) NIL)) (-1472 (((-112)) NIL)) (-1996 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) 106)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 61) (($ $ (-418 (-967 |#1|))) NIL) (($ (-418 (-967 |#1|)) $) NIL) (($ (-1159 |#2| (-418 (-967 |#1|))) $) NIL))) +(((-464 |#1| |#2| |#3| |#4|) (-13 (-428 (-418 (-967 |#1|))) (-659 (-1159 |#2| (-418 (-967 |#1|)))) (-10 -8 (-15 -2883 ($ (-1285 (-418 (-967 |#1|))))) (-15 -3129 ((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed"))) (-15 -1380 ((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed"))) (-15 -1615 ($)) (-15 -1615 ($ (-1194))) (-15 -1615 ($ (-1285 (-1194)))) (-15 -1615 ($ (-1285 $))) (-15 -1615 ($ (-1194) (-1285 $))) (-15 -1615 ($ (-1285 (-1194)) (-1285 $))) (IF (|has| |#1| (-567)) (PROGN (-15 -3498 ((-1190 (-418 (-967 |#1|))))) (-15 -3710 ((-1190 (-418 (-967 |#1|))) $)) (-15 -2869 ((-418 (-967 |#1|)) $)) (-15 -3933 ((-418 (-967 |#1|)) $)) (-15 -2199 ((-1190 (-418 (-967 |#1|))))) (-15 -3596 ((-1190 (-418 (-967 |#1|))) $)) (-15 -1921 ((-418 (-967 |#1|)) $)) (-15 -3341 ((-418 (-967 |#1|)) $)) (-15 -1459 ((-418 (-967 |#1|)) $ $)) (-15 -2846 ((-418 (-967 |#1|)))) (-15 -1535 ((-418 (-967 |#1|)) $ $)) (-15 -1717 ((-418 (-967 |#1|)))) (-15 -3235 ((-655 (-967 |#1|)) (-1285 $))) (-15 -3235 ((-655 (-967 |#1|))))) |%noBranch|))) (-174) (-936) (-655 (-1194)) (-1285 (-700 |#1|))) (T -464)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1285 (-418 (-967 *3)))) (-4 *3 (-174)) (-14 *6 (-1285 (-700 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))))) (-3129 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-464 *3 *4 *5 *6)) (|:| -1624 (-655 (-464 *3 *4 *5 *6))))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1380 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-464 *3 *4 *5 *6)) (|:| -1624 (-655 (-464 *3 *4 *5 *6))))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1615 (*1 *1) (-12 (-5 *1 (-464 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-936)) (-14 *4 (-655 (-1194))) (-14 *5 (-1285 (-700 *2))))) (-1615 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 *2)) (-14 *6 (-1285 (-700 *3))))) (-1615 (*1 *1 *2) (-12 (-5 *2 (-1285 (-1194))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1615 (*1 *1 *2) (-12 (-5 *2 (-1285 (-464 *3 *4 *5 *6))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1615 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-464 *4 *5 *6 *7))) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-936)) (-14 *6 (-655 *2)) (-14 *7 (-1285 (-700 *4))))) (-1615 (*1 *1 *2 *3) (-12 (-5 *2 (-1285 (-1194))) (-5 *3 (-1285 (-464 *4 *5 *6 *7))) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-936)) (-14 *6 (-655 (-1194))) (-14 *7 (-1285 (-700 *4))))) (-3498 (*1 *2) (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-2199 (*1 *2) (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1459 (*1 *2 *1 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-2846 (*1 *2) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1535 (*1 *2 *1 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1717 (*1 *2) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-1285 (-464 *4 *5 *6 *7))) (-5 *2 (-655 (-967 *4))) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-567)) (-4 *4 (-174)) (-14 *5 (-936)) (-14 *6 (-655 (-1194))) (-14 *7 (-1285 (-700 *4))))) (-3235 (*1 *2) (-12 (-5 *2 (-655 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) +(-13 (-428 (-418 (-967 |#1|))) (-659 (-1159 |#2| (-418 (-967 |#1|)))) (-10 -8 (-15 -2883 ($ (-1285 (-418 (-967 |#1|))))) (-15 -3129 ((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed"))) (-15 -1380 ((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed"))) (-15 -1615 ($)) (-15 -1615 ($ (-1194))) (-15 -1615 ($ (-1285 (-1194)))) (-15 -1615 ($ (-1285 $))) (-15 -1615 ($ (-1194) (-1285 $))) (-15 -1615 ($ (-1285 (-1194)) (-1285 $))) (IF (|has| |#1| (-567)) (PROGN (-15 -3498 ((-1190 (-418 (-967 |#1|))))) (-15 -3710 ((-1190 (-418 (-967 |#1|))) $)) (-15 -2869 ((-418 (-967 |#1|)) $)) (-15 -3933 ((-418 (-967 |#1|)) $)) (-15 -2199 ((-1190 (-418 (-967 |#1|))))) (-15 -3596 ((-1190 (-418 (-967 |#1|))) $)) (-15 -1921 ((-418 (-967 |#1|)) $)) (-15 -3341 ((-418 (-967 |#1|)) $)) (-15 -1459 ((-418 (-967 |#1|)) $ $)) (-15 -2846 ((-418 (-967 |#1|)))) (-15 -1535 ((-418 (-967 |#1|)) $ $)) (-15 -1717 ((-418 (-967 |#1|)))) (-15 -3235 ((-655 (-967 |#1|)) (-1285 $))) (-15 -3235 ((-655 (-967 |#1|))))) |%noBranch|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 18)) (-1606 (((-655 (-875 |#1|)) $) 87)) (-3466 (((-1190 $) $ (-875 |#1|)) 52) (((-1190 |#2|) $) 138)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-567)))) (-1540 (($ $) NIL (|has| |#2| (-567)))) (-3286 (((-112) $) NIL (|has| |#2| (-567)))) (-3805 (((-782) $) 27) (((-782) $ (-655 (-875 |#1|))) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2058 (($ $) NIL (|has| |#2| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#2| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) 50) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-875 |#1|) "failed") $) NIL)) (-4399 ((|#2| $) 48) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-875 |#1|) $) NIL)) (-4232 (($ $ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-2998 (($ $ (-655 (-575))) 93)) (-4406 (($ $) 80)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#2| (-924)))) (-3703 (($ $ |#2| |#3| $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) 65)) (-2433 (($ (-1190 |#2|) (-875 |#1|)) 143) (($ (-1190 $) (-875 |#1|)) 58)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) 68)) (-2417 (($ |#2| |#3|) 35) (($ $ (-875 |#1|) (-782)) 37) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-875 |#1|)) NIL)) (-4337 ((|#3| $) NIL) (((-782) $ (-875 |#1|)) 56) (((-655 (-782)) $ (-655 (-875 |#1|))) 63)) (-2520 (($ (-1 |#3| |#3|) $) NIL)) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-3976 (((-3 (-875 |#1|) "failed") $) 45)) (-4371 (($ $) NIL)) (-4383 ((|#2| $) 47)) (-3887 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-2288 (((-1176) $) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| (-875 |#1|)) (|:| -2398 (-782))) "failed") $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) 46)) (-4353 ((|#2| $) 136)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) 149 (|has| |#2| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#2| (-924)))) (-2851 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-567)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-875 |#1|) |#2|) 100) (($ $ (-655 (-875 |#1|)) (-655 |#2|)) 106) (($ $ (-875 |#1|) $) 98) (($ $ (-655 (-875 |#1|)) (-655 $)) 124)) (-4060 (($ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-2389 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) 59)) (-2645 ((|#3| $) 79) (((-782) $ (-875 |#1|)) 42) (((-655 (-782)) $ (-655 (-875 |#1|))) 62)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-875 |#1|) (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-2178 ((|#2| $) 145 (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-2883 (((-873) $) 173) (($ (-575)) NIL) (($ |#2|) 99) (($ (-875 |#1|)) 39) (($ (-418 (-575))) NIL (-3765 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#2| (-567)))) (-2501 (((-655 |#2|) $) NIL)) (-2012 ((|#2| $ |#3|) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#2| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#2| (-567)))) (-1996 (($) 22 T CONST)) (-2009 (($) 31 T CONST)) (-3430 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) 76 (|has| |#2| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 131)) (** (($ $ (-936)) NIL) (($ $ (-782)) 129)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 36) (($ $ (-418 (-575))) NIL (|has| |#2| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#2| (-38 (-418 (-575))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) +(((-465 |#1| |#2| |#3|) (-13 (-964 |#2| |#3| (-875 |#1|)) (-10 -8 (-15 -2998 ($ $ (-655 (-575)))))) (-655 (-1194)) (-1066) (-243 (-2871 |#1|) (-782))) (T -465)) +((-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-14 *3 (-655 (-1194))) (-5 *1 (-465 *3 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-243 (-2871 *3) (-782)))))) +(-13 (-964 |#2| |#3| (-875 |#1|)) (-10 -8 (-15 -2998 ($ $ (-655 (-575)))))) +((-1670 (((-112) |#1| (-655 |#2|)) 91)) (-1436 (((-3 (-1285 (-655 |#2|)) "failed") (-782) |#1| (-655 |#2|)) 100)) (-3178 (((-3 (-655 |#2|) "failed") |#2| |#1| (-1285 (-655 |#2|))) 102)) (-4256 ((|#2| |#2| |#1|) 35)) (-1655 (((-782) |#2| (-655 |#2|)) 26))) +(((-466 |#1| |#2|) (-10 -7 (-15 -4256 (|#2| |#2| |#1|)) (-15 -1655 ((-782) |#2| (-655 |#2|))) (-15 -1436 ((-3 (-1285 (-655 |#2|)) "failed") (-782) |#1| (-655 |#2|))) (-15 -3178 ((-3 (-655 |#2|) "failed") |#2| |#1| (-1285 (-655 |#2|)))) (-15 -1670 ((-112) |#1| (-655 |#2|)))) (-316) (-1261 |#1|)) (T -466)) +((-1670 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *5)) (-4 *5 (-1261 *3)) (-4 *3 (-316)) (-5 *2 (-112)) (-5 *1 (-466 *3 *5)))) (-3178 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1285 (-655 *3))) (-4 *4 (-316)) (-5 *2 (-655 *3)) (-5 *1 (-466 *4 *3)) (-4 *3 (-1261 *4)))) (-1436 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-782)) (-4 *4 (-316)) (-4 *6 (-1261 *4)) (-5 *2 (-1285 (-655 *6))) (-5 *1 (-466 *4 *6)) (-5 *5 (-655 *6)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-316)) (-5 *2 (-782)) (-5 *1 (-466 *5 *3)))) (-4256 (*1 *2 *2 *3) (-12 (-4 *3 (-316)) (-5 *1 (-466 *3 *2)) (-4 *2 (-1261 *3))))) +(-10 -7 (-15 -4256 (|#2| |#2| |#1|)) (-15 -1655 ((-782) |#2| (-655 |#2|))) (-15 -1436 ((-3 (-1285 (-655 |#2|)) "failed") (-782) |#1| (-655 |#2|))) (-15 -3178 ((-3 (-655 |#2|) "failed") |#2| |#1| (-1285 (-655 |#2|)))) (-15 -1670 ((-112) |#1| (-655 |#2|)))) +((-2353 (((-429 |#5|) |#5|) 24))) +(((-467 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2353 ((-429 |#5|) |#5|))) (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194))))) (-804) (-567) (-567) (-964 |#4| |#2| |#1|)) (T -467)) +((-2353 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-4 *5 (-804)) (-4 *7 (-567)) (-5 *2 (-429 *3)) (-5 *1 (-467 *4 *5 *6 *7 *3)) (-4 *6 (-567)) (-4 *3 (-964 *7 *5 *4))))) +(-10 -7 (-15 -2353 ((-429 |#5|) |#5|))) +((-3374 ((|#3|) 38)) (-2290 (((-1190 |#4|) (-1190 |#4|) (-1190 |#4|)) 34))) +(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2290 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -3374 (|#3|))) (-804) (-861) (-924) (-964 |#3| |#1| |#2|)) (T -468)) +((-3374 (*1 *2) (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-924)) (-5 *1 (-468 *3 *4 *2 *5)) (-4 *5 (-964 *2 *3 *4)))) (-2290 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-924)) (-5 *1 (-468 *3 *4 *5 *6))))) +(-10 -7 (-15 -2290 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -3374 (|#3|))) +((-2353 (((-429 (-1190 |#1|)) (-1190 |#1|)) 43))) +(((-469 |#1|) (-10 -7 (-15 -2353 ((-429 (-1190 |#1|)) (-1190 |#1|)))) (-316)) (T -469)) +((-2353 (*1 *2 *3) (-12 (-4 *4 (-316)) (-5 *2 (-429 (-1190 *4))) (-5 *1 (-469 *4)) (-5 *3 (-1190 *4))))) +(-10 -7 (-15 -2353 ((-429 (-1190 |#1|)) (-1190 |#1|)))) +((-4290 (((-52) |#2| (-1194) (-303 |#2|) (-1252 (-782))) 44) (((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-782))) 43) (((-52) |#2| (-1194) (-303 |#2|)) 36) (((-52) (-1 |#2| (-575)) (-303 |#2|)) 29)) (-1873 (((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575))) 88) (((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575))) 87) (((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575))) 86) (((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575))) 85) (((-52) |#2| (-1194) (-303 |#2|)) 80) (((-52) (-1 |#2| (-575)) (-303 |#2|)) 79)) (-4311 (((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575))) 74) (((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575))) 72)) (-4301 (((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575))) 51) (((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575))) 50))) +(((-470 |#1| |#2|) (-10 -7 (-15 -4290 ((-52) (-1 |#2| (-575)) (-303 |#2|))) (-15 -4290 ((-52) |#2| (-1194) (-303 |#2|))) (-15 -4290 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-782)))) (-15 -4290 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-782)))) (-15 -4301 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575)))) (-15 -4301 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575)))) (-15 -4311 ((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -4311 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -1873 ((-52) (-1 |#2| (-575)) (-303 |#2|))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|))) (-15 -1873 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575)))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575)))) (-15 -1873 ((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575))))) (-13 (-567) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -470)) +((-1873 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-418 (-575)))) (-5 *7 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *8))) (-4 *8 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *8 *3)))) (-1873 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-418 (-575)))) (-5 *4 (-303 *8)) (-5 *5 (-1252 (-418 (-575)))) (-5 *6 (-418 (-575))) (-4 *8 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *7 *8)))) (-1873 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *7 *3)))) (-1873 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-575))) (-4 *7 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *6 *7)))) (-1873 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *6 *3)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-575))) (-5 *4 (-303 *6)) (-4 *6 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *5 *6)))) (-4311 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-418 (-575)))) (-5 *7 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *8))) (-4 *8 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *8 *3)))) (-4311 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-418 (-575)))) (-5 *4 (-303 *8)) (-5 *5 (-1252 (-418 (-575)))) (-5 *6 (-418 (-575))) (-4 *8 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *7 *8)))) (-4301 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *7 *3)))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-575))) (-4 *7 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *6 *7)))) (-4290 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-782))) (-4 *3 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *7 *3)))) (-4290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-782))) (-4 *7 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *6 *7)))) (-4290 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *6 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-575))) (-5 *4 (-303 *6)) (-4 *6 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *5 *6))))) +(-10 -7 (-15 -4290 ((-52) (-1 |#2| (-575)) (-303 |#2|))) (-15 -4290 ((-52) |#2| (-1194) (-303 |#2|))) (-15 -4290 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-782)))) (-15 -4290 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-782)))) (-15 -4301 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575)))) (-15 -4301 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575)))) (-15 -4311 ((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -4311 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -1873 ((-52) (-1 |#2| (-575)) (-303 |#2|))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|))) (-15 -1873 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575)))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575)))) (-15 -1873 ((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575))))) +((-4256 ((|#2| |#2| |#1|) 15)) (-1905 (((-655 |#2|) |#2| (-655 |#2|) |#1| (-936)) 82)) (-3514 (((-2 (|:| |plist| (-655 |#2|)) (|:| |modulo| |#1|)) |#2| (-655 |#2|) |#1| (-936)) 72))) +(((-471 |#1| |#2|) (-10 -7 (-15 -3514 ((-2 (|:| |plist| (-655 |#2|)) (|:| |modulo| |#1|)) |#2| (-655 |#2|) |#1| (-936))) (-15 -1905 ((-655 |#2|) |#2| (-655 |#2|) |#1| (-936))) (-15 -4256 (|#2| |#2| |#1|))) (-316) (-1261 |#1|)) (T -471)) +((-4256 (*1 *2 *2 *3) (-12 (-4 *3 (-316)) (-5 *1 (-471 *3 *2)) (-4 *2 (-1261 *3)))) (-1905 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-655 *3)) (-5 *5 (-936)) (-4 *3 (-1261 *4)) (-4 *4 (-316)) (-5 *1 (-471 *4 *3)))) (-3514 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-936)) (-4 *5 (-316)) (-4 *3 (-1261 *5)) (-5 *2 (-2 (|:| |plist| (-655 *3)) (|:| |modulo| *5))) (-5 *1 (-471 *5 *3)) (-5 *4 (-655 *3))))) +(-10 -7 (-15 -3514 ((-2 (|:| |plist| (-655 |#2|)) (|:| |modulo| |#1|)) |#2| (-655 |#2|) |#1| (-936))) (-15 -1905 ((-655 |#2|) |#2| (-655 |#2|) |#1| (-936))) (-15 -4256 (|#2| |#2| |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 28)) (-4176 (($ |#3|) 25)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-4406 (($ $) 32)) (-1626 (($ |#2| |#4| $) 33)) (-2417 (($ |#2| (-724 |#3| |#4| |#5|)) 24)) (-4371 (((-724 |#3| |#4| |#5|) $) 15)) (-1924 ((|#3| $) 19)) (-2439 ((|#4| $) 17)) (-4383 ((|#2| $) 29)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-3260 (($ |#2| |#3| |#4|) 26)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 36 T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 34)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-472 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-728 |#6|) (-728 |#2|) (-10 -8 (-15 -4383 (|#2| $)) (-15 -4371 ((-724 |#3| |#4| |#5|) $)) (-15 -2439 (|#4| $)) (-15 -1924 (|#3| $)) (-15 -4406 ($ $)) (-15 -2417 ($ |#2| (-724 |#3| |#4| |#5|))) (-15 -4176 ($ |#3|)) (-15 -3260 ($ |#2| |#3| |#4|)) (-15 -1626 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-655 (-1194)) (-174) (-861) (-243 (-2871 |#1|) (-782)) (-1 (-112) (-2 (|:| -4317 |#3|) (|:| -2398 |#4|)) (-2 (|:| -4317 |#3|) (|:| -2398 |#4|))) (-964 |#2| |#4| (-875 |#1|))) (T -472)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) (-4 *6 (-243 (-2871 *3) (-782))) (-14 *7 (-1 (-112) (-2 (|:| -4317 *5) (|:| -2398 *6)) (-2 (|:| -4317 *5) (|:| -2398 *6)))) (-5 *1 (-472 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) (-4 *2 (-964 *4 *6 (-875 *3))))) (-4383 (*1 *2 *1) (-12 (-14 *3 (-655 (-1194))) (-4 *5 (-243 (-2871 *3) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *4) (|:| -2398 *5)) (-2 (|:| -4317 *4) (|:| -2398 *5)))) (-4 *2 (-174)) (-5 *1 (-472 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-964 *2 *5 (-875 *3))))) (-4371 (*1 *2 *1) (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) (-4 *6 (-243 (-2871 *3) (-782))) (-14 *7 (-1 (-112) (-2 (|:| -4317 *5) (|:| -2398 *6)) (-2 (|:| -4317 *5) (|:| -2398 *6)))) (-5 *2 (-724 *5 *6 *7)) (-5 *1 (-472 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861)) (-4 *8 (-964 *4 *6 (-875 *3))))) (-2439 (*1 *2 *1) (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -4317 *5) (|:| -2398 *2)) (-2 (|:| -4317 *5) (|:| -2398 *2)))) (-4 *2 (-243 (-2871 *3) (-782))) (-5 *1 (-472 *3 *4 *5 *2 *6 *7)) (-4 *5 (-861)) (-4 *7 (-964 *4 *2 (-875 *3))))) (-1924 (*1 *2 *1) (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) (-4 *5 (-243 (-2871 *3) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *2) (|:| -2398 *5)) (-2 (|:| -4317 *2) (|:| -2398 *5)))) (-4 *2 (-861)) (-5 *1 (-472 *3 *4 *2 *5 *6 *7)) (-4 *7 (-964 *4 *5 (-875 *3))))) (-4406 (*1 *1 *1) (-12 (-14 *2 (-655 (-1194))) (-4 *3 (-174)) (-4 *5 (-243 (-2871 *2) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *4) (|:| -2398 *5)) (-2 (|:| -4317 *4) (|:| -2398 *5)))) (-5 *1 (-472 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-964 *3 *5 (-875 *2))))) (-2417 (*1 *1 *2 *3) (-12 (-5 *3 (-724 *5 *6 *7)) (-4 *5 (-861)) (-4 *6 (-243 (-2871 *4) (-782))) (-14 *7 (-1 (-112) (-2 (|:| -4317 *5) (|:| -2398 *6)) (-2 (|:| -4317 *5) (|:| -2398 *6)))) (-14 *4 (-655 (-1194))) (-4 *2 (-174)) (-5 *1 (-472 *4 *2 *5 *6 *7 *8)) (-4 *8 (-964 *2 *6 (-875 *4))))) (-4176 (*1 *1 *2) (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) (-4 *5 (-243 (-2871 *3) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *2) (|:| -2398 *5)) (-2 (|:| -4317 *2) (|:| -2398 *5)))) (-5 *1 (-472 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) (-4 *7 (-964 *4 *5 (-875 *3))))) (-3260 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-655 (-1194))) (-4 *2 (-174)) (-4 *4 (-243 (-2871 *5) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *3) (|:| -2398 *4)) (-2 (|:| -4317 *3) (|:| -2398 *4)))) (-5 *1 (-472 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) (-4 *7 (-964 *2 *4 (-875 *5))))) (-1626 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-655 (-1194))) (-4 *2 (-174)) (-4 *3 (-243 (-2871 *4) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *5) (|:| -2398 *3)) (-2 (|:| -4317 *5) (|:| -2398 *3)))) (-5 *1 (-472 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) (-4 *7 (-964 *2 *3 (-875 *4)))))) +(-13 (-728 |#6|) (-728 |#2|) (-10 -8 (-15 -4383 (|#2| $)) (-15 -4371 ((-724 |#3| |#4| |#5|) $)) (-15 -2439 (|#4| $)) (-15 -1924 (|#3| $)) (-15 -4406 ($ $)) (-15 -2417 ($ |#2| (-724 |#3| |#4| |#5|))) (-15 -4176 ($ |#3|)) (-15 -3260 ($ |#2| |#3| |#4|)) (-15 -1626 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2656 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-473 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2656 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-804) (-861) (-567) (-964 |#3| |#1| |#2|) (-13 (-1055 (-418 (-575))) (-373) (-10 -8 (-15 -2883 ($ |#4|)) (-15 -1595 (|#4| $)) (-15 -1608 (|#4| $))))) (T -473)) +((-2656 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-804)) (-4 *6 (-567)) (-4 *7 (-964 *6 *5 *3)) (-5 *1 (-473 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1055 (-418 (-575))) (-373) (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))))) +(-10 -7 (-15 -2656 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2861 (((-112) $ $) NIL)) (-1606 (((-655 |#3|) $) 41)) (-2210 (((-112) $) NIL)) (-3036 (((-112) $) NIL (|has| |#1| (-567)))) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#3|) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3985 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1437 (((-112) $) NIL (|has| |#1| (-567)))) (-2365 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4289 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1812 (((-112) $) NIL (|has| |#1| (-567)))) (-3629 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-3563 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 |#4|)) 49)) (-4399 (($ (-655 |#4|)) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3633 (($ |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-2308 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4460)))) (-4001 (((-655 |#4|) $) 18 (|has| $ (-6 -4460)))) (-3838 ((|#3| $) 47)) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#4|) $) 14 (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-2847 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) 21)) (-1444 (((-655 |#3|) $) NIL)) (-1808 (((-112) |#3| $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-4395 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-3912 (((-1137) $) NIL)) (-3704 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 39)) (-1938 (($) 17)) (-3925 (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) 16)) (-2615 (((-547) $) NIL (|has| |#4| (-625 (-547)))) (($ (-655 |#4|)) 51)) (-2894 (($ (-655 |#4|)) 13)) (-1879 (($ $ |#3|) NIL)) (-3427 (($ $ |#3|) NIL)) (-3608 (($ $ |#3|) NIL)) (-2883 (((-873) $) 38) (((-655 |#4|) $) 50)) (-4400 (((-112) $ $) NIL)) (-3771 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 30)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-474 |#1| |#2| |#3| |#4|) (-13 (-993 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2615 ($ (-655 |#4|))) (-6 -4460) (-6 -4461))) (-1066) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -474)) +((-2615 (*1 *1 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-474 *3 *4 *5 *6))))) +(-13 (-993 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2615 ($ (-655 |#4|))) (-6 -4460) (-6 -4461))) +((-1996 (($) 11)) (-2009 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-475 |#1| |#2| |#3|) (-10 -8 (-15 -2009 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1996 (|#1|))) (-476 |#2| |#3|) (-174) (-23)) (T -475)) +NIL +(-10 -8 (-15 -2009 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1996 (|#1|))) +((-2861 (((-112) $ $) 7)) (-2449 (((-3 |#1| "failed") $) 27)) (-4399 ((|#1| $) 28)) (-3557 (($ $ $) 24)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2645 ((|#2| $) 20)) (-2883 (((-873) $) 12) (($ |#1|) 26)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 25 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 16) (($ $ $) 14)) (-4016 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-476 |#1| |#2|) (-141) (-174) (-23)) (T -476)) +((-2009 (*1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3557 (*1 *1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-481 |t#1| |t#2|) (-1055 |t#1|) (-10 -8 (-15 (-2009) ($) -3738) (-15 -3557 ($ $ $)))) +(((-102) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-481 |#1| |#2|) . T) ((-1055 |#1|) . T) ((-1117) . T)) +((-2128 (((-1285 (-1285 (-575))) (-1285 (-1285 (-575))) (-936)) 26)) (-3618 (((-1285 (-1285 (-575))) (-936)) 21))) +(((-477) (-10 -7 (-15 -2128 ((-1285 (-1285 (-575))) (-1285 (-1285 (-575))) (-936))) (-15 -3618 ((-1285 (-1285 (-575))) (-936))))) (T -477)) +((-3618 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1285 (-1285 (-575)))) (-5 *1 (-477)))) (-2128 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 (-1285 (-575)))) (-5 *3 (-936)) (-5 *1 (-477))))) +(-10 -7 (-15 -2128 ((-1285 (-1285 (-575))) (-1285 (-1285 (-575))) (-936))) (-15 -3618 ((-1285 (-1285 (-575))) (-936)))) +((-1464 (((-575) (-575)) 32) (((-575)) 24)) (-1677 (((-575) (-575)) 28) (((-575)) 20)) (-2873 (((-575) (-575)) 30) (((-575)) 22)) (-2866 (((-112) (-112)) 14) (((-112)) 12)) (-3302 (((-112) (-112)) 13) (((-112)) 11)) (-4295 (((-112) (-112)) 26) (((-112)) 17))) +(((-478) (-10 -7 (-15 -3302 ((-112))) (-15 -2866 ((-112))) (-15 -3302 ((-112) (-112))) (-15 -2866 ((-112) (-112))) (-15 -4295 ((-112))) (-15 -2873 ((-575))) (-15 -1677 ((-575))) (-15 -1464 ((-575))) (-15 -4295 ((-112) (-112))) (-15 -2873 ((-575) (-575))) (-15 -1677 ((-575) (-575))) (-15 -1464 ((-575) (-575))))) (T -478)) +((-1464 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-4295 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) (-1464 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-1677 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-2873 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-4295 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) (-2866 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) (-3302 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) (-2866 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) (-3302 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478))))) +(-10 -7 (-15 -3302 ((-112))) (-15 -2866 ((-112))) (-15 -3302 ((-112) (-112))) (-15 -2866 ((-112) (-112))) (-15 -4295 ((-112))) (-15 -2873 ((-575))) (-15 -1677 ((-575))) (-15 -1464 ((-575))) (-15 -4295 ((-112) (-112))) (-15 -2873 ((-575) (-575))) (-15 -1677 ((-575) (-575))) (-15 -1464 ((-575) (-575)))) +((-2861 (((-112) $ $) NIL)) (-2496 (((-655 (-389)) $) 34) (((-655 (-389)) $ (-655 (-389))) 146)) (-2650 (((-655 (-1111 (-389))) $) 16) (((-655 (-1111 (-389))) $ (-655 (-1111 (-389)))) 142)) (-2404 (((-655 (-655 (-958 (-227)))) (-655 (-655 (-958 (-227)))) (-655 (-885))) 58)) (-3366 (((-655 (-655 (-958 (-227)))) $) 137)) (-1838 (((-1290) $ (-958 (-227)) (-885)) 163)) (-1815 (($ $) 136) (($ (-655 (-655 (-958 (-227))))) 149) (($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936))) 148) (($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936)) (-655 (-269))) 150)) (-2288 (((-1176) $) NIL)) (-4169 (((-575) $) 110)) (-3912 (((-1137) $) NIL)) (-1636 (($) 147)) (-3884 (((-655 (-227)) (-655 (-655 (-958 (-227))))) 89)) (-2964 (((-1290) $ (-655 (-958 (-227))) (-885) (-885) (-936)) 155) (((-1290) $ (-958 (-227))) 157) (((-1290) $ (-958 (-227)) (-885) (-885) (-936)) 156)) (-2883 (((-873) $) 169) (($ (-655 (-655 (-958 (-227))))) 164)) (-4400 (((-112) $ $) NIL)) (-4246 (((-1290) $ (-958 (-227))) 162)) (-3914 (((-112) $ $) NIL))) +(((-479) (-13 (-1117) (-10 -8 (-15 -1636 ($)) (-15 -1815 ($ $)) (-15 -1815 ($ (-655 (-655 (-958 (-227)))))) (-15 -1815 ($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936)))) (-15 -1815 ($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936)) (-655 (-269)))) (-15 -3366 ((-655 (-655 (-958 (-227)))) $)) (-15 -4169 ((-575) $)) (-15 -2650 ((-655 (-1111 (-389))) $)) (-15 -2650 ((-655 (-1111 (-389))) $ (-655 (-1111 (-389))))) (-15 -2496 ((-655 (-389)) $)) (-15 -2496 ((-655 (-389)) $ (-655 (-389)))) (-15 -2964 ((-1290) $ (-655 (-958 (-227))) (-885) (-885) (-936))) (-15 -2964 ((-1290) $ (-958 (-227)))) (-15 -2964 ((-1290) $ (-958 (-227)) (-885) (-885) (-936))) (-15 -4246 ((-1290) $ (-958 (-227)))) (-15 -1838 ((-1290) $ (-958 (-227)) (-885))) (-15 -2883 ($ (-655 (-655 (-958 (-227)))))) (-15 -2883 ((-873) $)) (-15 -2404 ((-655 (-655 (-958 (-227)))) (-655 (-655 (-958 (-227)))) (-655 (-885)))) (-15 -3884 ((-655 (-227)) (-655 (-655 (-958 (-227))))))))) (T -479)) +((-2883 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-479)))) (-1636 (*1 *1) (-5 *1 (-479))) (-1815 (*1 *1 *1) (-5 *1 (-479))) (-1815 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479)))) (-1815 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885))) (-5 *4 (-655 (-936))) (-5 *1 (-479)))) (-1815 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885))) (-5 *4 (-655 (-936))) (-5 *5 (-655 (-269))) (-5 *1 (-479)))) (-3366 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-479)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-479)))) (-2650 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-479)))) (-2496 (*1 *2 *1) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-479)))) (-2496 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-479)))) (-2964 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *4 (-885)) (-5 *5 (-936)) (-5 *2 (-1290)) (-5 *1 (-479)))) (-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-958 (-227))) (-5 *2 (-1290)) (-5 *1 (-479)))) (-2964 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-958 (-227))) (-5 *4 (-885)) (-5 *5 (-936)) (-5 *2 (-1290)) (-5 *1 (-479)))) (-4246 (*1 *2 *1 *3) (-12 (-5 *3 (-958 (-227))) (-5 *2 (-1290)) (-5 *1 (-479)))) (-1838 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-958 (-227))) (-5 *4 (-885)) (-5 *2 (-1290)) (-5 *1 (-479)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479)))) (-2404 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885))) (-5 *1 (-479)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *2 (-655 (-227))) (-5 *1 (-479))))) +(-13 (-1117) (-10 -8 (-15 -1636 ($)) (-15 -1815 ($ $)) (-15 -1815 ($ (-655 (-655 (-958 (-227)))))) (-15 -1815 ($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936)))) (-15 -1815 ($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936)) (-655 (-269)))) (-15 -3366 ((-655 (-655 (-958 (-227)))) $)) (-15 -4169 ((-575) $)) (-15 -2650 ((-655 (-1111 (-389))) $)) (-15 -2650 ((-655 (-1111 (-389))) $ (-655 (-1111 (-389))))) (-15 -2496 ((-655 (-389)) $)) (-15 -2496 ((-655 (-389)) $ (-655 (-389)))) (-15 -2964 ((-1290) $ (-655 (-958 (-227))) (-885) (-885) (-936))) (-15 -2964 ((-1290) $ (-958 (-227)))) (-15 -2964 ((-1290) $ (-958 (-227)) (-885) (-885) (-936))) (-15 -4246 ((-1290) $ (-958 (-227)))) (-15 -1838 ((-1290) $ (-958 (-227)) (-885))) (-15 -2883 ($ (-655 (-655 (-958 (-227)))))) (-15 -2883 ((-873) $)) (-15 -2404 ((-655 (-655 (-958 (-227)))) (-655 (-655 (-958 (-227)))) (-655 (-885)))) (-15 -3884 ((-655 (-227)) (-655 (-655 (-958 (-227)))))))) +((-4028 (($ $) NIL) (($ $ $) 11))) +(((-480 |#1| |#2| |#3|) (-10 -8 (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|))) (-481 |#2| |#3|) (-174) (-23)) (T -480)) +NIL +(-10 -8 (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2645 ((|#2| $) 20)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 16) (($ $ $) 14)) (-4016 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-481 |#1| |#2|) (-141) (-174) (-23)) (T -481)) +((-2645 (*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-1996 (*1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4028 (*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4016 (*1 *1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4028 (*1 *1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-1117) (-10 -8 (-15 -2645 (|t#2| $)) (-15 (-1996) ($) -3738) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4028 ($ $)) (-15 -4016 ($ $ $)) (-15 -4028 ($ $ $)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-1931 (((-3 (-655 (-492 |#1| |#2|)) "failed") (-655 (-492 |#1| |#2|)) (-655 (-875 |#1|))) 134)) (-4252 (((-655 (-655 (-252 |#1| |#2|))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|))) 131)) (-2581 (((-2 (|:| |dpolys| (-655 (-252 |#1| |#2|))) (|:| |coords| (-655 (-575)))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|))) 86))) +(((-482 |#1| |#2| |#3|) (-10 -7 (-15 -4252 ((-655 (-655 (-252 |#1| |#2|))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|)))) (-15 -1931 ((-3 (-655 (-492 |#1| |#2|)) "failed") (-655 (-492 |#1| |#2|)) (-655 (-875 |#1|)))) (-15 -2581 ((-2 (|:| |dpolys| (-655 (-252 |#1| |#2|))) (|:| |coords| (-655 (-575)))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|))))) (-655 (-1194)) (-463) (-463)) (T -482)) +((-2581 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-875 *5))) (-14 *5 (-655 (-1194))) (-4 *6 (-463)) (-5 *2 (-2 (|:| |dpolys| (-655 (-252 *5 *6))) (|:| |coords| (-655 (-575))))) (-5 *1 (-482 *5 *6 *7)) (-5 *3 (-655 (-252 *5 *6))) (-4 *7 (-463)))) (-1931 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-492 *4 *5))) (-5 *3 (-655 (-875 *4))) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-482 *4 *5 *6)) (-4 *6 (-463)))) (-4252 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-875 *5))) (-14 *5 (-655 (-1194))) (-4 *6 (-463)) (-5 *2 (-655 (-655 (-252 *5 *6)))) (-5 *1 (-482 *5 *6 *7)) (-5 *3 (-655 (-252 *5 *6))) (-4 *7 (-463))))) +(-10 -7 (-15 -4252 ((-655 (-655 (-252 |#1| |#2|))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|)))) (-15 -1931 ((-3 (-655 (-492 |#1| |#2|)) "failed") (-655 (-492 |#1| |#2|)) (-655 (-875 |#1|)))) (-15 -2581 ((-2 (|:| |dpolys| (-655 (-252 |#1| |#2|))) (|:| |coords| (-655 (-575)))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|))))) +((-1747 (((-3 $ "failed") $) 11)) (-4258 (($ $ $) 23)) (-3320 (($ $ $) 24)) (-4038 (($ $ $) 9)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 22))) +(((-483 |#1|) (-10 -8 (-15 -3320 (|#1| |#1| |#1|)) (-15 -4258 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4038 (|#1| |#1| |#1|)) (-15 -1747 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936)))) (-484)) (T -483)) +NIL +(-10 -8 (-15 -3320 (|#1| |#1| |#1|)) (-15 -4258 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4038 (|#1| |#1| |#1|)) (-15 -1747 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936)))) +((-2861 (((-112) $ $) 7)) (-3011 (($) 19 T CONST)) (-1747 (((-3 $ "failed") $) 16)) (-1542 (((-112) $) 18)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 25)) (-3912 (((-1137) $) 11)) (-4258 (($ $ $) 22)) (-3320 (($ $ $) 21)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-2009 (($) 20 T CONST)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ $) 24)) (** (($ $ (-936)) 14) (($ $ (-782)) 17) (($ $ (-575)) 23)) (* (($ $ $) 15))) +(((-484) (-141)) (T -484)) +((-4332 (*1 *1 *1) (-4 *1 (-484))) (-4038 (*1 *1 *1 *1) (-4 *1 (-484))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-484)) (-5 *2 (-575)))) (-4258 (*1 *1 *1 *1) (-4 *1 (-484))) (-3320 (*1 *1 *1 *1) (-4 *1 (-484)))) +(-13 (-737) (-10 -8 (-15 -4332 ($ $)) (-15 -4038 ($ $ $)) (-15 ** ($ $ (-575))) (-6 -4457) (-15 -4258 ($ $ $)) (-15 -3320 ($ $ $)))) +(((-102) . T) ((-624 (-873)) . T) ((-737) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 18)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-4080 (($ $ (-418 (-575))) NIL) (($ $ (-418 (-575)) (-418 (-575))) NIL)) (-2144 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL (|has| |#1| (-373)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3897 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1336 (((-112) $) NIL (|has| |#1| (-373)))) (-2789 (((-112) $) NIL)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-418 (-575)) $) NIL) (((-418 (-575)) $ (-418 (-575))) NIL)) (-1542 (((-112) $) NIL)) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3461 (($ $ (-936)) NIL) (($ $ (-418 (-575))) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-418 (-575))) NIL) (($ $ (-1099) (-418 (-575))) NIL) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) NIL)) (-2550 (($ (-1 |#1| |#1|) $) 25)) (-3463 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4413 (($ $) 29 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 35 (-3765 (-12 (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 30 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-4276 (($ $ (-418 (-575))) NIL)) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2665 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2070 ((|#1| $ (-418 (-575))) NIL) (($ $ $) NIL (|has| (-418 (-575)) (-1129)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-2389 (($ $ (-1194)) 28 (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-1281 |#2|)) 16)) (-2645 (((-418 (-575)) $) NIL)) (-1530 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1281 |#2|)) NIL) (($ (-1270 |#1| |#2| |#3|)) 9) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-2012 ((|#1| $ (-418 (-575))) NIL)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 21)) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-418 (-575))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) 27)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-485 |#1| |#2| |#3|) (-13 (-1266 |#1|) (-10 -8 (-15 -2883 ($ (-1281 |#2|))) (-15 -2883 ($ (-1270 |#1| |#2| |#3|))) (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -485)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-485 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-1270 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3) (-5 *1 (-485 *3 *4 *5)))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-485 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-4413 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-485 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))) +(-13 (-1266 |#1|) (-10 -8 (-15 -2883 ($ (-1281 |#2|))) (-15 -2883 ($ (-1270 |#1| |#2| |#3|))) (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) +((-2861 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2297 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4161 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#2| $ |#1| |#2|) 18)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1399 (((-3 |#2| "failed") |#1| $) 19)) (-3011 (($) NIL T CONST)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-4404 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 16)) (-3633 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#2| $ |#1|) NIL)) (-4001 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 ((|#1| $) NIL (|has| |#1| (-861)))) (-3955 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3197 ((|#1| $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2001 (((-655 |#1|) $) NIL)) (-3308 (((-112) |#1| $) NIL)) (-4012 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3862 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4310 (((-655 |#1|) $) NIL)) (-2969 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1961 ((|#2| $) NIL (|has| |#1| (-861)))) (-3704 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-3954 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3601 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2883 (((-873) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-4400 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-486 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2|) (-1117) (-1117) (-1211 |#1| |#2|) |#2|) (T -486)) +NIL +(-1211 |#1| |#2|) +((-2861 (((-112) $ $) NIL)) (-3303 (((-655 (-2 (|:| -2458 $) (|:| -2978 (-655 |#4|)))) (-655 |#4|)) NIL)) (-1740 (((-655 $) (-655 |#4|)) NIL)) (-1606 (((-655 |#3|) $) NIL)) (-2210 (((-112) $) NIL)) (-3036 (((-112) $) NIL (|has| |#1| (-567)))) (-3309 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2749 ((|#4| |#4| $) NIL)) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#3|) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3985 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3011 (($) NIL T CONST)) (-1437 (((-112) $) 29 (|has| |#1| (-567)))) (-2365 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4289 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1812 (((-112) $) NIL (|has| |#1| (-567)))) (-3376 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3629 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-3563 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 |#4|)) NIL)) (-4399 (($ (-655 |#4|)) NIL)) (-1975 (((-3 $ "failed") $) 45)) (-2690 ((|#4| |#4| $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3633 (($ |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-2249 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4183 ((|#4| |#4| $) NIL)) (-2308 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2029 (((-2 (|:| -2458 (-655 |#4|)) (|:| -2978 (-655 |#4|))) $) NIL)) (-4001 (((-655 |#4|) $) 18 (|has| $ (-6 -4460)))) (-2548 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3838 ((|#3| $) 38)) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#4|) $) 19 (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-2847 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) 23)) (-1444 (((-655 |#3|) $) NIL)) (-1808 (((-112) |#3| $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-3653 (((-3 |#4| "failed") $) 42)) (-1590 (((-655 |#4|) $) NIL)) (-1411 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4367 ((|#4| |#4| $) NIL)) (-2687 (((-112) $ $) NIL)) (-4395 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-3188 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2973 ((|#4| |#4| $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 (((-3 |#4| "failed") $) 40)) (-3704 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2500 (((-3 $ "failed") $ |#4|) 58)) (-4276 (($ $ |#4|) NIL)) (-3207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 17)) (-1938 (($) 14)) (-2645 (((-782) $) NIL)) (-3925 (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) 13)) (-2615 (((-547) $) NIL (|has| |#4| (-625 (-547))))) (-2894 (($ (-655 |#4|)) 22)) (-1879 (($ $ |#3|) 52)) (-3427 (($ $ |#3|) 54)) (-2921 (($ $) NIL)) (-3608 (($ $ |#3|) NIL)) (-2883 (((-873) $) 35) (((-655 |#4|) $) 46)) (-3706 (((-782) $) NIL (|has| |#3| (-378)))) (-4400 (((-112) $ $) NIL)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2994 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) NIL)) (-3771 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-1359 (((-655 |#3|) $) NIL)) (-1591 (((-112) |#3| $) NIL)) (-3914 (((-112) $ $) NIL)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-487 |#1| |#2| |#3| |#4|) (-1228 |#1| |#2| |#3| |#4|) (-567) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -487)) +NIL +(-1228 |#1| |#2| |#3| |#4|) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL)) (-4399 (((-575) $) NIL) (((-418 (-575)) $) NIL)) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-1631 (($) 17)) (-1542 (((-112) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2615 (((-389) $) 21) (((-227) $) 24) (((-418 (-1190 (-575))) $) 18) (((-547) $) 53)) (-2883 (((-873) $) 51) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (((-227) $) 23) (((-389) $) 20)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-1996 (($) 37 T CONST)) (-2009 (($) 8 T CONST)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL))) +(((-488) (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))) (-1039) (-624 (-227)) (-624 (-389)) (-625 (-418 (-1190 (-575)))) (-625 (-547)) (-10 -8 (-15 -1631 ($))))) (T -488)) +((-1631 (*1 *1) (-5 *1 (-488)))) +(-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))) (-1039) (-624 (-227)) (-624 (-389)) (-625 (-418 (-1190 (-575)))) (-625 (-547)) (-10 -8 (-15 -1631 ($)))) +((-2861 (((-112) $ $) NIL)) (-3892 (((-1152) $) 11)) (-3880 (((-1152) $) 9)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-489) (-13 (-1100) (-10 -8 (-15 -3880 ((-1152) $)) (-15 -3892 ((-1152) $))))) (T -489)) +((-3880 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-489)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-489))))) +(-13 (-1100) (-10 -8 (-15 -3880 ((-1152) $)) (-15 -3892 ((-1152) $)))) +((-2861 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2297 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4161 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#2| $ |#1| |#2|) 16)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1399 (((-3 |#2| "failed") |#1| $) 20)) (-3011 (($) NIL T CONST)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-4404 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 18)) (-3633 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#2| $ |#1|) NIL)) (-4001 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 ((|#1| $) NIL (|has| |#1| (-861)))) (-3955 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3197 ((|#1| $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2001 (((-655 |#1|) $) 13)) (-3308 (((-112) |#1| $) NIL)) (-4012 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3862 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4310 (((-655 |#1|) $) NIL)) (-2969 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1961 ((|#2| $) NIL (|has| |#1| (-861)))) (-3704 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-3954 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) 19)) (-2070 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3601 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2883 (((-873) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-4400 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 11 (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2871 (((-782) $) 15 (|has| $ (-6 -4460))))) +(((-490 |#1| |#2| |#3|) (-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) (-1117) (-1117) (-1176)) (T -490)) +NIL +(-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) +((-2822 (((-575) (-575) (-575)) 19)) (-4425 (((-112) (-575) (-575) (-575) (-575)) 28)) (-3903 (((-1285 (-655 (-575))) (-782) (-782)) 41))) +(((-491) (-10 -7 (-15 -2822 ((-575) (-575) (-575))) (-15 -4425 ((-112) (-575) (-575) (-575) (-575))) (-15 -3903 ((-1285 (-655 (-575))) (-782) (-782))))) (T -491)) +((-3903 (*1 *2 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1285 (-655 (-575)))) (-5 *1 (-491)))) (-4425 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *2 (-112)) (-5 *1 (-491)))) (-2822 (*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-491))))) +(-10 -7 (-15 -2822 ((-575) (-575) (-575))) (-15 -4425 ((-112) (-575) (-575) (-575) (-575))) (-15 -3903 ((-1285 (-655 (-575))) (-782) (-782)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 (-875 |#1|)) $) NIL)) (-3466 (((-1190 $) $ (-875 |#1|)) NIL) (((-1190 |#2|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-567)))) (-1540 (($ $) NIL (|has| |#2| (-567)))) (-3286 (((-112) $) NIL (|has| |#2| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 (-875 |#1|))) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2058 (($ $) NIL (|has| |#2| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#2| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-875 |#1|) "failed") $) NIL)) (-4399 ((|#2| $) NIL) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-875 |#1|) $) NIL)) (-4232 (($ $ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-2998 (($ $ (-655 (-575))) NIL)) (-4406 (($ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#2| (-924)))) (-3703 (($ $ |#2| (-493 (-2871 |#1|) (-782)) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-2433 (($ (-1190 |#2|) (-875 |#1|)) NIL) (($ (-1190 $) (-875 |#1|)) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#2| (-493 (-2871 |#1|) (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-875 |#1|)) NIL)) (-4337 (((-493 (-2871 |#1|) (-782)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-2520 (($ (-1 (-493 (-2871 |#1|) (-782)) (-493 (-2871 |#1|) (-782))) $) NIL)) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-3976 (((-3 (-875 |#1|) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-2288 (((-1176) $) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| (-875 |#1|)) (|:| -2398 (-782))) "failed") $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) NIL)) (-4353 ((|#2| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#2| (-924)))) (-2851 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-567)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-875 |#1|) |#2|) NIL) (($ $ (-655 (-875 |#1|)) (-655 |#2|)) NIL) (($ $ (-875 |#1|) $) NIL) (($ $ (-655 (-875 |#1|)) (-655 $)) NIL)) (-4060 (($ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-2389 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-2645 (((-493 (-2871 |#1|) (-782)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-875 |#1|) (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-2178 ((|#2| $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-875 |#1|)) NIL) (($ (-418 (-575))) NIL (-3765 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#2| (-567)))) (-2501 (((-655 |#2|) $) NIL)) (-2012 ((|#2| $ (-493 (-2871 |#1|) (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#2| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#2| (-567)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#2| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#2| (-38 (-418 (-575))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-492 |#1| |#2|) (-13 (-964 |#2| (-493 (-2871 |#1|) (-782)) (-875 |#1|)) (-10 -8 (-15 -2998 ($ $ (-655 (-575)))))) (-655 (-1194)) (-1066)) (T -492)) +((-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-492 *3 *4)) (-14 *3 (-655 (-1194))) (-4 *4 (-1066))))) +(-13 (-964 |#2| (-493 (-2871 |#1|) (-782)) (-875 |#1|)) (-10 -8 (-15 -2998 ($ $ (-655 (-575)))))) +((-2861 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-3799 (((-112) $) NIL (-3765 (|has| |#2| (-23)) (|has| |#2| (-737))))) (-4176 (($ (-936)) NIL (|has| |#2| (-1066)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3605 (($ $ $) NIL (|has| |#2| (-804)))) (-2597 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-1845 (((-112) $ (-782)) NIL)) (-2415 (((-782)) NIL (|has| |#2| (-378)))) (-3054 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1117)))) (-4399 (((-575) $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) ((|#2| $) NIL (|has| |#2| (-1117)))) (-1749 (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-700 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-1285 $)) NIL (|has| |#2| (-1066)))) (-1747 (((-3 $ "failed") $) NIL (|has| |#2| (-1066)))) (-2079 (($) NIL (|has| |#2| (-378)))) (-2859 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#2| $ (-575)) 11)) (-4001 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1542 (((-112) $) NIL (|has| |#2| (-1066)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#2| (-861)))) (-3955 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#2| (-861)))) (-2847 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-4084 (((-936) $) NIL (|has| |#2| (-378)))) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#2| (-1117)))) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#2| (-378)))) (-3912 (((-1137) $) NIL (|has| |#2| (-1117)))) (-1961 ((|#2| $) NIL (|has| (-575) (-861)))) (-3954 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#2| $ (-575) |#2|) NIL) ((|#2| $ (-575)) NIL)) (-1886 ((|#2| $ $) NIL (|has| |#2| (-1066)))) (-1981 (($ (-1285 |#2|)) NIL)) (-4386 (((-135)) NIL (|has| |#2| (-373)))) (-2389 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3925 (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-1285 |#2|) $) NIL) (($ (-575)) NIL (-3765 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (($ |#2|) NIL (|has| |#2| (-1117))) (((-873) $) NIL (|has| |#2| (-624 (-873))))) (-3759 (((-782)) NIL (|has| |#2| (-1066)) CONST)) (-4400 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-3771 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-1996 (($) NIL (-3765 (|has| |#2| (-23)) (|has| |#2| (-737))) CONST)) (-2009 (($) NIL (|has| |#2| (-1066)) CONST)) (-3430 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3981 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3943 (((-112) $ $) 17 (|has| |#2| (-861)))) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4028 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4016 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-782)) NIL (|has| |#2| (-1066))) (($ $ (-936)) NIL (|has| |#2| (-1066)))) (* (($ $ $) NIL (|has| |#2| (-1066))) (($ $ |#2|) NIL (|has| |#2| (-737))) (($ |#2| $) NIL (|has| |#2| (-737))) (($ (-575) $) NIL (|has| |#2| (-21))) (($ (-782) $) NIL (|has| |#2| (-23))) (($ (-936) $) NIL (|has| |#2| (-25)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-493 |#1| |#2|) (-243 |#1| |#2|) (-782) (-804)) (T -493)) +NIL +(-243 |#1| |#2|) +((-2861 (((-112) $ $) NIL)) (-2512 (((-655 (-887)) $) 15)) (-1777 (((-517) $) 13)) (-2288 (((-1176) $) NIL)) (-2772 (($ (-517) (-655 (-887))) 11)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 22) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-494) (-13 (-1100) (-10 -8 (-15 -2772 ($ (-517) (-655 (-887)))) (-15 -1777 ((-517) $)) (-15 -2512 ((-655 (-887)) $))))) (T -494)) +((-2772 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-655 (-887))) (-5 *1 (-494)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-494)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-655 (-887))) (-5 *1 (-494))))) +(-13 (-1100) (-10 -8 (-15 -2772 ($ (-517) (-655 (-887)))) (-15 -1777 ((-517) $)) (-15 -2512 ((-655 (-887)) $)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) NIL)) (-3011 (($) NIL T CONST)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-4174 (($ $ $) 48)) (-3794 (($ $ $) 47)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1425 ((|#1| $) 40)) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4012 ((|#1| $) 41)) (-3862 (($ |#1| $) 18)) (-4375 (($ (-655 |#1|)) 19)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2454 ((|#1| $) 34)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) 11)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) 45)) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2871 (((-782) $) 29 (|has| $ (-6 -4460))))) +(((-495 |#1|) (-13 (-985 |#1|) (-10 -8 (-15 -4375 ($ (-655 |#1|))))) (-861)) (T -495)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-495 *3))))) +(-13 (-985 |#1|) (-10 -8 (-15 -4375 ($ (-655 |#1|))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2308 (($ $) 71)) (-2321 (((-112) $) NIL)) (-2288 (((-1176) $) NIL)) (-4431 (((-424 |#2| (-418 |#2|) |#3| |#4|) $) 45)) (-3912 (((-1137) $) NIL)) (-3659 (((-3 |#4| "failed") $) 117)) (-3995 (($ (-424 |#2| (-418 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-575)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-4299 (((-2 (|:| -2059 (-424 |#2| (-418 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2883 (((-873) $) 110)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 32 T CONST)) (-3914 (((-112) $ $) 121)) (-4028 (($ $) 77) (($ $ $) NIL)) (-4016 (($ $ $) 72)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 78))) +(((-496 |#1| |#2| |#3| |#4|) (-345 |#1| |#2| |#3| |#4|) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -496)) +NIL +(-345 |#1| |#2| |#3| |#4|) +((-1784 (((-575) (-655 (-575))) 53)) (-2445 ((|#1| (-655 |#1|)) 94)) (-3057 (((-655 |#1|) (-655 |#1|)) 95)) (-4206 (((-655 |#1|) (-655 |#1|)) 97)) (-3926 ((|#1| (-655 |#1|)) 96)) (-2178 (((-655 (-575)) (-655 |#1|)) 56))) +(((-497 |#1|) (-10 -7 (-15 -3926 (|#1| (-655 |#1|))) (-15 -2445 (|#1| (-655 |#1|))) (-15 -4206 ((-655 |#1|) (-655 |#1|))) (-15 -3057 ((-655 |#1|) (-655 |#1|))) (-15 -2178 ((-655 (-575)) (-655 |#1|))) (-15 -1784 ((-575) (-655 (-575))))) (-1261 (-575))) (T -497)) +((-1784 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-575)) (-5 *1 (-497 *4)) (-4 *4 (-1261 *2)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-1261 (-575))) (-5 *2 (-655 (-575))) (-5 *1 (-497 *4)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1261 (-575))) (-5 *1 (-497 *3)))) (-4206 (*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1261 (-575))) (-5 *1 (-497 *3)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-5 *1 (-497 *2)) (-4 *2 (-1261 (-575))))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-5 *1 (-497 *2)) (-4 *2 (-1261 (-575)))))) +(-10 -7 (-15 -3926 (|#1| (-655 |#1|))) (-15 -2445 (|#1| (-655 |#1|))) (-15 -4206 ((-655 |#1|) (-655 |#1|))) (-15 -3057 ((-655 |#1|) (-655 |#1|))) (-15 -2178 ((-655 (-575)) (-655 |#1|))) (-15 -1784 ((-575) (-655 (-575))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3127 (((-575) $) NIL (|has| (-575) (-316)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL (|has| (-575) (-831)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-575) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-575) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-575) (-1055 (-575))))) (-4399 (((-575) $) NIL) (((-1194) $) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-575) (-1055 (-575)))) (((-575) $) NIL (|has| (-575) (-1055 (-575))))) (-2802 (($ $ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| (-575) (-556)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-4075 (((-112) $) NIL (|has| (-575) (-831)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-575) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-575) (-898 (-389))))) (-1542 (((-112) $) NIL)) (-4046 (($ $) NIL)) (-1595 (((-575) $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| (-575) (-1169)))) (-4087 (((-112) $) NIL (|has| (-575) (-831)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| (-575) (-861)))) (-2550 (($ (-1 (-575) (-575)) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| (-575) (-1169)) CONST)) (-1522 (($ (-418 (-575))) 9)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) NIL (|has| (-575) (-316))) (((-418 (-575)) $) NIL)) (-2736 (((-575) $) NIL (|has| (-575) (-556)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3048 (($ $ (-655 (-575)) (-655 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-575) (-575)) NIL (|has| (-575) (-318 (-575)))) (($ $ (-303 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-303 (-575)))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-1194)) (-655 (-575))) NIL (|has| (-575) (-525 (-1194) (-575)))) (($ $ (-1194) (-575)) NIL (|has| (-575) (-525 (-1194) (-575))))) (-3708 (((-782) $) NIL)) (-2070 (($ $ (-575)) NIL (|has| (-575) (-295 (-575) (-575))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2389 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-4172 (($ $) NIL)) (-1608 (((-575) $) NIL)) (-2615 (((-904 (-575)) $) NIL (|has| (-575) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-575) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-575) (-625 (-547)))) (((-389) $) NIL (|has| (-575) (-1039))) (((-227) $) NIL (|has| (-575) (-1039)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-575) (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) 8) (($ (-575)) NIL) (($ (-1194)) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL) (((-1021 16) $) 10)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-575) (-924))) (|has| (-575) (-146))))) (-3759 (((-782)) NIL T CONST)) (-1432 (((-575) $) NIL (|has| (-575) (-556)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-2705 (($ $) NIL (|has| (-575) (-831)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-3981 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3956 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3943 (((-112) $ $) NIL (|has| (-575) (-861)))) (-4038 (($ $ $) NIL) (($ (-575) (-575)) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-575) $) NIL) (($ $ (-575)) NIL))) +(((-498) (-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 16)) (-10 -8 (-15 -4309 ((-418 (-575)) $)) (-15 -1522 ($ (-418 (-575))))))) (T -498)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-498)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-498))))) +(-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 16)) (-10 -8 (-15 -4309 ((-418 (-575)) $)) (-15 -1522 ($ (-418 (-575)))))) +((-3955 (((-655 |#2|) $) 31)) (-2625 (((-112) |#2| $) 36)) (-3207 (((-112) (-1 (-112) |#2|) $) 26)) (-3048 (($ $ (-655 (-303 |#2|))) 13) (($ $ (-303 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-655 |#2|) (-655 |#2|)) NIL)) (-3925 (((-782) (-1 (-112) |#2|) $) 30) (((-782) |#2| $) 34)) (-2883 (((-873) $) 45)) (-3771 (((-112) (-1 (-112) |#2|) $) 23)) (-3914 (((-112) $ $) 39)) (-2871 (((-782) $) 18))) +(((-499 |#1| |#2|) (-10 -8 (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -3048 (|#1| |#1| (-655 |#2|) (-655 |#2|))) (-15 -3048 (|#1| |#1| |#2| |#2|)) (-15 -3048 (|#1| |#1| (-303 |#2|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -2625 ((-112) |#2| |#1|)) (-15 -3925 ((-782) |#2| |#1|)) (-15 -3955 ((-655 |#2|) |#1|)) (-15 -3925 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -3207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2871 ((-782) |#1|))) (-500 |#2|) (-1235)) (T -499)) +NIL +(-10 -8 (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -3048 (|#1| |#1| (-655 |#2|) (-655 |#2|))) (-15 -3048 (|#1| |#1| |#2| |#2|)) (-15 -3048 (|#1| |#1| (-303 |#2|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -2625 ((-112) |#2| |#1|)) (-15 -3925 ((-782) |#2| |#1|)) (-15 -3955 ((-655 |#2|) |#1|)) (-15 -3925 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -3207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2871 ((-782) |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) 8)) (-3011 (($) 7 T CONST)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-500 |#1|) (-141) (-1235)) (T -500)) +((-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3)) (-4 *3 (-1235)))) (-2847 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4461)) (-4 *1 (-500 *3)) (-4 *3 (-1235)))) (-3771 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4)) (-4 *4 (-1235)) (-5 *2 (-112)))) (-3207 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4)) (-4 *4 (-1235)) (-5 *2 (-112)))) (-3925 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4)) (-4 *4 (-1235)) (-5 *2 (-782)))) (-4001 (*1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) (-5 *2 (-655 *3)))) (-3955 (*1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) (-5 *2 (-655 *3)))) (-3925 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-782)))) (-2625 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-624 (-873))) (-6 (-624 (-873))) |%noBranch|) (IF (|has| |t#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |t#1| (-1117)) (IF (|has| |t#1| (-318 |t#1|)) (-6 (-318 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2550 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4461)) (-15 -2847 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4460)) (PROGN (-15 -3771 ((-112) (-1 (-112) |t#1|) $)) (-15 -3207 ((-112) (-1 (-112) |t#1|) $)) (-15 -3925 ((-782) (-1 (-112) |t#1|) $)) (-15 -4001 ((-655 |t#1|) $)) (-15 -3955 ((-655 |t#1|) $)) (IF (|has| |t#1| (-1117)) (PROGN (-15 -3925 ((-782) |t#1| $)) (-15 -2625 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-2883 ((|#1| $) 6) (($ |#1|) 9))) +(((-501 |#1|) (-141) (-1235)) (T -501)) +NIL +(-13 (-624 |t#1|) (-627 |t#1|)) +(((-627 |#1|) . T) ((-624 |#1|) . T)) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-2432 (($ (-1176)) 8)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 15) (((-1176) $) 12)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 11))) +(((-502) (-13 (-1117) (-624 (-1176)) (-10 -8 (-15 -2432 ($ (-1176)))))) (T -502)) +((-2432 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-502))))) +(-13 (-1117) (-624 (-1176)) (-10 -8 (-15 -2432 ($ (-1176))))) +((-3923 (($ $) 15)) (-3897 (($ $) 24)) (-1521 (($ $) 12)) (-1530 (($ $) 10)) (-3937 (($ $) 17)) (-3909 (($ $) 22))) +(((-503 |#1|) (-10 -8 (-15 -3909 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -1530 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3923 (|#1| |#1|))) (-504)) (T -503)) +NIL +(-10 -8 (-15 -3909 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -1530 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3923 (|#1| |#1|))) +((-3923 (($ $) 11)) (-3897 (($ $) 10)) (-1521 (($ $) 9)) (-1530 (($ $) 8)) (-3937 (($ $) 7)) (-3909 (($ $) 6))) +(((-504) (-141)) (T -504)) +((-3923 (*1 *1 *1) (-4 *1 (-504))) (-3897 (*1 *1 *1) (-4 *1 (-504))) (-1521 (*1 *1 *1) (-4 *1 (-504))) (-1530 (*1 *1 *1) (-4 *1 (-504))) (-3937 (*1 *1 *1) (-4 *1 (-504))) (-3909 (*1 *1 *1) (-4 *1 (-504)))) +(-13 (-10 -8 (-15 -3909 ($ $)) (-15 -3937 ($ $)) (-15 -1530 ($ $)) (-15 -1521 ($ $)) (-15 -3897 ($ $)) (-15 -3923 ($ $)))) +((-2353 (((-429 |#4|) |#4| (-1 (-429 |#2|) |#2|)) 54))) +(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2353 ((-429 |#4|) |#4| (-1 (-429 |#2|) |#2|)))) (-373) (-1261 |#1|) (-13 (-373) (-148) (-735 |#1| |#2|)) (-1261 |#3|)) (T -505)) +((-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-4 *7 (-13 (-373) (-148) (-735 *5 *6))) (-5 *2 (-429 *3)) (-5 *1 (-505 *5 *6 *7 *3)) (-4 *3 (-1261 *7))))) +(-10 -7 (-15 -2353 ((-429 |#4|) |#4| (-1 (-429 |#2|) |#2|)))) +((-2861 (((-112) $ $) NIL)) (-1967 (((-655 $) (-1190 $) (-1194)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-967 $)) NIL)) (-1895 (($ (-1190 $) (-1194)) NIL) (($ (-1190 $)) NIL) (($ (-967 $)) NIL)) (-3799 (((-112) $) 39)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4199 (((-112) $ $) 73)) (-4270 (((-655 (-623 $)) $) 50)) (-2597 (((-3 $ "failed") $ $) NIL)) (-1473 (($ $ (-303 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2473 (($ $) NIL)) (-2279 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-2472 (((-655 $) (-1190 $) (-1194)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-967 $)) NIL)) (-3700 (($ (-1190 $) (-1194)) NIL) (($ (-1190 $)) NIL) (($ (-967 $)) NIL)) (-2449 (((-3 (-623 $) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL)) (-4399 (((-623 $) $) NIL) (((-575) $) NIL) (((-418 (-575)) $) 55)) (-2802 (($ $ $) NIL)) (-1749 (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL) (((-2 (|:| -2412 (-700 (-418 (-575)))) (|:| |vec| (-1285 (-418 (-575))))) (-700 $) (-1285 $)) NIL) (((-700 (-418 (-575))) (-700 $)) NIL) (((-700 (-418 (-575))) (-1285 $)) NIL)) (-2308 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-2092 (($ $) NIL) (($ (-655 $)) NIL)) (-2622 (((-655 (-115)) $) NIL)) (-2572 (((-115) (-115)) NIL)) (-1542 (((-112) $) 42)) (-2437 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-1595 (((-1142 (-575) (-623 $)) $) 37)) (-2931 (($ $ (-575)) NIL)) (-2255 (((-1190 $) (-1190 $) (-623 $)) 87) (((-1190 $) (-1190 $) (-655 (-623 $))) 62) (($ $ (-623 $)) 76) (($ $ (-655 (-623 $))) 77)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-4347 (((-1190 $) (-623 $)) 74 (|has| $ (-1066)))) (-2550 (($ (-1 $ $) (-623 $)) NIL)) (-4306 (((-3 (-623 $) "failed") $) NIL)) (-3887 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-2557 (((-655 (-623 $)) $) NIL)) (-1672 (($ (-115) $) NIL) (($ (-115) (-655 $)) NIL)) (-3789 (((-112) $ (-115)) NIL) (((-112) $ (-1194)) NIL)) (-4332 (($ $) NIL)) (-3343 (((-782) $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2878 (((-112) $ $) NIL) (((-112) $ (-1194)) NIL)) (-2353 (((-429 $) $) NIL)) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2185 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-3048 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-1194) (-1 $ (-655 $))) NIL) (($ $ (-1194) (-1 $ $)) NIL) (($ $ (-655 (-115)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-115) (-1 $ (-655 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3708 (((-782) $) NIL)) (-2070 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-655 $)) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3146 (($ $) NIL) (($ $ $) NIL)) (-2389 (($ $) 36) (($ $ (-782)) NIL)) (-1608 (((-1142 (-575) (-623 $)) $) 20)) (-2552 (($ $) NIL (|has| $ (-1066)))) (-2615 (((-389) $) 101) (((-227) $) 109) (((-171 (-389)) $) 117)) (-2883 (((-873) $) NIL) (($ (-623 $)) NIL) (($ (-418 (-575))) NIL) (($ $) NIL) (($ (-575)) NIL) (($ (-1142 (-575) (-623 $))) 21)) (-3759 (((-782)) NIL T CONST)) (-2377 (($ $) NIL) (($ (-655 $)) NIL)) (-2151 (((-112) (-115)) 93)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-1996 (($) 10 T CONST)) (-2009 (($) 22 T CONST)) (-3430 (($ $) NIL) (($ $ (-782)) NIL)) (-3914 (((-112) $ $) 24)) (-4038 (($ $ $) 44)) (-4028 (($ $ $) NIL) (($ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-418 (-575))) NIL) (($ $ (-575)) 48) (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL) (($ $ $) 27) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL))) +(((-506) (-13 (-311) (-27) (-1055 (-575)) (-1055 (-418 (-575))) (-650 (-575)) (-1039) (-650 (-418 (-575))) (-148) (-625 (-171 (-389))) (-238) (-10 -8 (-15 -2883 ($ (-1142 (-575) (-623 $)))) (-15 -1595 ((-1142 (-575) (-623 $)) $)) (-15 -1608 ((-1142 (-575) (-623 $)) $)) (-15 -2308 ($ $)) (-15 -4199 ((-112) $ $)) (-15 -2255 ((-1190 $) (-1190 $) (-623 $))) (-15 -2255 ((-1190 $) (-1190 $) (-655 (-623 $)))) (-15 -2255 ($ $ (-623 $))) (-15 -2255 ($ $ (-655 (-623 $))))))) (T -506)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506)))) (-2308 (*1 *1 *1) (-5 *1 (-506))) (-4199 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-506)))) (-2255 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-506))) (-5 *3 (-623 (-506))) (-5 *1 (-506)))) (-2255 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-506))) (-5 *3 (-655 (-623 (-506)))) (-5 *1 (-506)))) (-2255 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-506))) (-5 *1 (-506)))) (-2255 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-623 (-506)))) (-5 *1 (-506))))) +(-13 (-311) (-27) (-1055 (-575)) (-1055 (-418 (-575))) (-650 (-575)) (-1039) (-650 (-418 (-575))) (-148) (-625 (-171 (-389))) (-238) (-10 -8 (-15 -2883 ($ (-1142 (-575) (-623 $)))) (-15 -1595 ((-1142 (-575) (-623 $)) $)) (-15 -1608 ((-1142 (-575) (-623 $)) $)) (-15 -2308 ($ $)) (-15 -4199 ((-112) $ $)) (-15 -2255 ((-1190 $) (-1190 $) (-623 $))) (-15 -2255 ((-1190 $) (-1190 $) (-655 (-623 $)))) (-15 -2255 ($ $ (-623 $))) (-15 -2255 ($ $ (-655 (-623 $)))))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#1| $ (-575) |#1|) 44 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) 39 (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) 38)) (-2632 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2309 (($ (-782) |#1|) 21)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) 17 (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) 41 (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2135 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1961 ((|#1| $) NIL (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3954 (($ $ |#1|) 15 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) 19)) (-2070 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) 43) (($ $ (-1252 (-575))) NIL)) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) 13)) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 24)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2871 (((-782) $) 11 (|has| $ (-6 -4460))))) +(((-507 |#1| |#2|) (-19 |#1|) (-1235) (-575)) (T -507)) NIL (-19 |#1|) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1552 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-3501 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-2473 (($) NIL T CONST)) (-1759 (((-508 |#1| |#3|) $ (-576)) NIL)) (-2859 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2789 ((|#1| $ (-576) (-576)) NIL)) (-4001 (((-656 |#1|) $) NIL)) (-4244 (((-783) $) NIL)) (-2310 (($ (-783) (-783) |#1|) NIL)) (-4256 (((-783) $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-1805 (((-576) $) NIL)) (-1782 (((-576) $) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1793 (((-576) $) NIL)) (-1771 (((-576) $) NIL)) (-2848 (($ (-1 |#1| |#1|) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3346 (($ $ |#1|) NIL)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-1747 (((-508 |#1| |#2|) $ (-576)) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1236) (-576) (-576)) (T -509)) -NIL -(-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) -((-2541 (((-656 (-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783)) 32)) (-2529 (((-656 (-1191 |#1|)) |#1| (-783) (-783) (-783)) 43)) (-4430 (((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)) 107))) -(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -2529 ((-656 (-1191 |#1|)) |#1| (-783) (-783) (-783))) (-15 -2541 ((-656 (-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -4430 ((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) (-360) (-1262 |#1|) (-1262 |#2|)) (T -510)) -((-4430 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-2 (|:| -1898 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7))))) (-5 *5 (-783)) (-4 *8 (-1262 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -1898 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-2541 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -1898 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -1898 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6)))) (-4 *7 (-1262 *6)))) (-2529 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1262 *3)) (-5 *2 (-656 (-1191 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1262 *5))))) -(-10 -7 (-15 -2529 ((-656 (-1191 |#1|)) |#1| (-783) (-783) (-783))) (-15 -2541 ((-656 (-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -4430 ((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) -((-2618 (((-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 70)) (-2553 ((|#1| (-701 |#1|) |#1| (-783)) 24)) (-2583 (((-783) (-783) (-783)) 34)) (-2606 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 50)) (-2596 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 58) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 55)) (-2567 ((|#1| (-701 |#1|) (-701 |#1|) |#1| (-576)) 28)) (-3323 ((|#1| (-701 |#1|)) 18))) -(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -3323 (|#1| (-701 |#1|))) (-15 -2553 (|#1| (-701 |#1|) |#1| (-783))) (-15 -2567 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -2583 ((-783) (-783) (-783))) (-15 -2596 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2596 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2606 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2618 ((-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $)))) (-1262 |#1|) (-421 |#1| |#2|)) (T -511)) -((-2618 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2606 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2596 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2596 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2583 (*1 *2 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2567 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2553 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-701 *2)) (-4 *4 (-1262 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))) -(-10 -7 (-15 -3323 (|#1| (-701 |#1|))) (-15 -2553 (|#1| (-701 |#1|) |#1| (-783))) (-15 -2567 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -2583 ((-783) (-783) (-783))) (-15 -2596 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2596 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2606 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2618 ((-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1898 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) -((-2862 (((-112) $ $) NIL)) (-2880 (($ $) NIL)) (-1971 (($ $ $) 40)) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1891 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2032 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3055 (((-112) $ (-1253 (-576)) (-112)) NIL (|has| $ (-6 -4462))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-3634 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-2309 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-2859 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4462)))) (-2789 (((-112) $ (-576)) NIL)) (-2634 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1118))) (((-576) (-112) $) NIL (|has| (-112) (-1118))) (((-576) (-1 (-112) (-112)) $) NIL)) (-4001 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-3239 (($ $ $) 38)) (-3216 (($ $) NIL)) (-1466 (($ $ $) NIL)) (-2310 (($ (-783) (-112)) 27)) (-1564 (($ $ $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) 8 (|has| (-576) (-862)))) (-1921 (($ $ $) NIL)) (-4214 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1496 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL)) (-2848 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-2134 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 (((-112) $) NIL (|has| (-576) (-862)))) (-1932 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3346 (($ $ (-112)) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-3403 (((-656 (-112)) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) 28)) (-2071 (($ $ (-1253 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-3240 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3926 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) 29)) (-2616 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-2895 (($ (-656 (-112))) NIL)) (-1514 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2884 (((-874) $) 26)) (-3722 (((-112) $ $) NIL)) (-2492 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-3227 (($ $ $) 36)) (-2923 (($ $ $) NIL)) (-2913 (($ $ $) 45)) (-2924 (($ $) 43)) (-2901 (($ $ $) 44)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 30)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 31)) (-2911 (($ $ $) NIL)) (-2872 (((-783) $) 13 (|has| $ (-6 -4461))))) -(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -2924 ($ $)) (-15 -2913 ($ $ $)) (-15 -2901 ($ $ $)))) (-576)) (T -512)) -((-2924 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-2913 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-2901 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))) -(-13 (-124) (-10 -8 (-15 -2924 ($ $)) (-15 -2913 ($ $ $)) (-15 -2901 ($ $ $)))) -((-2641 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1191 |#4|)) 35)) (-2630 (((-1191 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1191 |#4|)) 22)) (-2651 (((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1191 |#4|))) 46)) (-2662 (((-1191 (-1191 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2630 (|#2| (-1 |#1| |#4|) (-1191 |#4|))) (-15 -2630 ((-1191 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2641 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1191 |#4|))) (-15 -2651 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1191 |#4|)))) (-15 -2662 ((-1191 (-1191 |#4|)) (-1 |#4| |#1|) |#3|))) (-1067) (-1262 |#1|) (-1262 |#2|) (-1067)) (T -513)) -((-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1067)) (-4 *7 (-1067)) (-4 *6 (-1262 *5)) (-5 *2 (-1191 (-1191 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1262 *6)))) (-2651 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-701 (-1191 *8))) (-4 *5 (-1067)) (-4 *8 (-1067)) (-4 *6 (-1262 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1262 *6)))) (-2641 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1067)) (-4 *7 (-1067)) (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2)))) (-2630 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1067)) (-4 *7 (-1067)) (-4 *4 (-1262 *5)) (-5 *2 (-1191 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1262 *4)))) (-2630 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1067)) (-4 *7 (-1067)) (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2))))) -(-10 -7 (-15 -2630 (|#2| (-1 |#1| |#4|) (-1191 |#4|))) (-15 -2630 ((-1191 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2641 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1191 |#4|))) (-15 -2651 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1191 |#4|)))) (-15 -2662 ((-1191 (-1191 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2862 (((-112) $ $) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2673 (((-1291) $) 25)) (-2071 (((-1177) $ (-1195)) 30)) (-2483 (((-1291) $) 17)) (-2884 (((-874) $) 27) (($ (-1177)) 26)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 11)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 9))) -(((-514) (-13 (-862) (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 ((-1291) $)) (-15 -2673 ((-1291) $)) (-15 -2884 ($ (-1177)))))) (T -514)) -((-2071 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1177)) (-5 *1 (-514)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-514))))) -(-13 (-862) (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 ((-1291) $)) (-15 -2673 ((-1291) $)) (-15 -2884 ($ (-1177))))) -((-2615 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2594 ((|#1| |#4|) 10)) (-2604 ((|#3| |#4|) 17))) -(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2594 (|#1| |#4|)) (-15 -2604 (|#3| |#4|)) (-15 -2615 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1010 |#1|) (-384 |#1|) (-384 |#2|)) (T -515)) -((-2615 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-2604 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-2594 (*1 *2 *3) (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -2594 (|#1| |#4|)) (-15 -2604 (|#3| |#4|)) (-15 -2615 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2862 (((-112) $ $) NIL)) (-2780 (((-112) $ (-656 |#3|)) 126) (((-112) $) 127)) (-1389 (((-112) $) 178)) (-2696 (($ $ |#4|) 117) (($ $ |#4| (-656 |#3|)) 121)) (-2685 (((-1184 (-656 (-968 |#1|)) (-656 (-304 (-968 |#1|)))) (-656 |#4|)) 171 (|has| |#3| (-626 (-1195))))) (-2770 (($ $ $) 107) (($ $ |#4|) 105)) (-1439 (((-112) $) 177)) (-2738 (($ $) 131)) (-3733 (((-1177) $) NIL)) (-3703 (($ $ $) 99) (($ (-656 $)) 101)) (-2792 (((-112) |#4| $) 129)) (-2806 (((-112) $ $) 82)) (-2728 (($ (-656 |#4|)) 106)) (-3914 (((-1138) $) NIL)) (-2717 (($ (-656 |#4|)) 175)) (-2706 (((-112) $) 176)) (-2330 (($ $) 85)) (-3070 (((-656 |#4|) $) 73)) (-2760 (((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|)) NIL)) (-2818 (((-112) |#4| $) 89)) (-1543 (((-576) $ (-656 |#3|)) 133) (((-576) $) 134)) (-2884 (((-874) $) 174) (($ (-656 |#4|)) 102)) (-3722 (((-112) $ $) NIL)) (-2749 (($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $))) NIL)) (-3915 (((-112) $ $) 84)) (-4017 (($ $ $) 109)) (** (($ $ (-783)) 115)) (* (($ $ $) 113))) -(((-516 |#1| |#2| |#3| |#4|) (-13 (-1118) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -4017 ($ $ $)) (-15 -1439 ((-112) $)) (-15 -1389 ((-112) $)) (-15 -2818 ((-112) |#4| $)) (-15 -2806 ((-112) $ $)) (-15 -2792 ((-112) |#4| $)) (-15 -2780 ((-112) $ (-656 |#3|))) (-15 -2780 ((-112) $)) (-15 -3703 ($ $ $)) (-15 -3703 ($ (-656 $))) (-15 -2770 ($ $ $)) (-15 -2770 ($ $ |#4|)) (-15 -2330 ($ $)) (-15 -2760 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -2749 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -1543 ((-576) $ (-656 |#3|))) (-15 -1543 ((-576) $)) (-15 -2738 ($ $)) (-15 -2728 ($ (-656 |#4|))) (-15 -2717 ($ (-656 |#4|))) (-15 -2706 ((-112) $)) (-15 -3070 ((-656 |#4|) $)) (-15 -2884 ($ (-656 |#4|))) (-15 -2696 ($ $ |#4|)) (-15 -2696 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1195))) (-15 -2685 ((-1184 (-656 (-968 |#1|)) (-656 (-304 (-968 |#1|)))) (-656 |#4|))) |%noBranch|))) (-374) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -516)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-4017 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-1439 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-1389 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-2818 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))) (-2806 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-2792 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))) (-2780 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-3703 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-3703 (*1 *1 *2) (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-2770 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-2770 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5)))) (-2330 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-2760 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-1543 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))) (-1543 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-2738 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2717 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2706 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-3070 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2696 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5)))) (-2696 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-965 *4 *5 *6)))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *5 *6)) (-4 *6 (-626 (-1195))) (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1184 (-656 (-968 *4)) (-656 (-304 (-968 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) -(-13 (-1118) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -4017 ($ $ $)) (-15 -1439 ((-112) $)) (-15 -1389 ((-112) $)) (-15 -2818 ((-112) |#4| $)) (-15 -2806 ((-112) $ $)) (-15 -2792 ((-112) |#4| $)) (-15 -2780 ((-112) $ (-656 |#3|))) (-15 -2780 ((-112) $)) (-15 -3703 ($ $ $)) (-15 -3703 ($ (-656 $))) (-15 -2770 ($ $ $)) (-15 -2770 ($ $ |#4|)) (-15 -2330 ($ $)) (-15 -2760 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -2749 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -1543 ((-576) $ (-656 |#3|))) (-15 -1543 ((-576) $)) (-15 -2738 ($ $)) (-15 -2728 ($ (-656 |#4|))) (-15 -2717 ($ (-656 |#4|))) (-15 -2706 ((-112) $)) (-15 -3070 ((-656 |#4|) $)) (-15 -2884 ($ (-656 |#4|))) (-15 -2696 ($ $ |#4|)) (-15 -2696 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1195))) (-15 -2685 ((-1184 (-656 (-968 |#1|)) (-656 (-304 (-968 |#1|)))) (-656 |#4|))) |%noBranch|))) -((-2830 (((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-2843 (((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-2690 (((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-2463 (((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-2855 (((-656 (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-2865 (((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))) 195))) -(((-517 |#1| |#2|) (-10 -7 (-15 -2830 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2843 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2463 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2690 ((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2855 ((-656 (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2865 ((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))))) (-656 (-1195)) (-783)) (T -517)) -((-2865 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *1 (-517 *4 *5)))) (-2855 (*1 *2 *3) (-12 (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-656 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))))) (-2690 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-246 *4 (-783)) (-876 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-2843 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5))))) -(-10 -7 (-15 -2830 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2843 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2463 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2690 ((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2855 ((-656 (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2865 ((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2875 (($) 6)) (-2884 (((-874) $) 12) (((-1195) $) 10)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 8))) -(((-518) (-13 (-1118) (-625 (-1195)) (-10 -8 (-15 -2875 ($))))) (T -518)) -((-2875 (*1 *1) (-5 *1 (-518)))) -(-13 (-1118) (-625 (-1195)) (-10 -8 (-15 -2875 ($)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-4407 (($ $) NIL)) (-2421 (($ |#1| |#2|) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2887 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 12 T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) 11) (($ $ $) 35)) (-4017 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21))) -(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-862)) (T -519)) -NIL -(-13 (-21) (-521 |#1| |#2|)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 13)) (-2473 (($) NIL T CONST)) (-4407 (($ $) 41)) (-2421 (($ |#1| |#2|) 38)) (-2551 (($ (-1 |#1| |#1|) $) 40)) (-2887 ((|#2| $) NIL)) (-4383 ((|#1| $) 42)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 10 T CONST)) (-3915 (((-112) $ $) NIL)) (-4017 (($ $ $) 26)) (* (($ (-937) $) NIL) (($ (-783) $) 36))) -(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-862)) (T -520)) -NIL -(-13 (-23) (-521 |#1| |#2|)) -((-2862 (((-112) $ $) 7)) (-4407 (($ $) 14)) (-2421 (($ |#1| |#2|) 17)) (-2551 (($ (-1 |#1| |#1|) $) 18)) (-2887 ((|#2| $) 15)) (-4383 ((|#1| $) 16)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-521 |#1| |#2|) (-141) (-1118) (-862)) (T -521)) -((-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-862)))) (-2421 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-862)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1118)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-862)))) (-4407 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-862))))) -(-13 (-1118) (-10 -8 (-15 -2551 ($ (-1 |t#1| |t#1|) $)) (-15 -2421 ($ |t#1| |t#2|)) (-15 -4383 (|t#1| $)) (-15 -2887 (|t#2| $)) (-15 -4407 ($ $)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2473 (($) NIL T CONST)) (-4407 (($ $) NIL)) (-2421 (($ |#1| |#2|) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2887 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 22)) (-4017 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL))) -(((-522 |#1| |#2|) (-13 (-804) (-521 |#1| |#2|)) (-804) (-862)) (T -522)) -NIL -(-13 (-804) (-521 |#1| |#2|)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2158 (($ $ $) 23)) (-1459 (((-3 $ "failed") $ $) 19)) (-2473 (($) NIL T CONST)) (-4407 (($ $) NIL)) (-2421 (($ |#1| |#2|) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2887 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL))) -(((-523 |#1| |#2|) (-13 (-805) (-521 |#1| |#2|)) (-805) (-862)) (T -523)) -NIL -(-13 (-805) (-521 |#1| |#2|)) -((-2862 (((-112) $ $) NIL)) (-4407 (($ $) 32)) (-2421 (($ |#1| |#2|) 28)) (-2551 (($ (-1 |#1| |#1|) $) 30)) (-2887 ((|#2| $) 34)) (-4383 ((|#1| $) 33)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 27)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 20))) -(((-524 |#1| |#2|) (-521 |#1| |#2|) (-1118) (-862)) (T -524)) -NIL -(-521 |#1| |#2|) -((-3049 (($ $ (-656 |#2|) (-656 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -3049 (|#1| |#1| |#2| |#3|)) (-15 -3049 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) (-526 |#2| |#3|) (-1118) (-1236)) (T -525)) -NIL -(-10 -8 (-15 -3049 (|#1| |#1| |#2| |#3|)) (-15 -3049 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) -((-3049 (($ $ (-656 |#1|) (-656 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-526 |#1| |#2|) (-141) (-1118) (-1236)) (T -526)) -((-3049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1236)))) (-3049 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1236))))) -(-13 (-10 -8 (-15 -3049 ($ $ |t#1| |t#2|)) (-15 -3049 ($ $ (-656 |t#1|) (-656 |t#2|))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 17)) (-2934 (((-656 (-2 (|:| |gen| |#1|) (|:| -2666 |#2|))) $) 19)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2416 (((-783) $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-2756 ((|#1| $ (-576)) 24)) (-3074 ((|#2| $ (-576)) 22)) (-2679 (($ (-1 |#1| |#1|) $) 48)) (-3063 (($ (-1 |#2| |#2|) $) 45)) (-3733 (((-1177) $) NIL)) (-3050 (($ $ $) 55 (|has| |#2| (-804)))) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 44) (($ |#1|) NIL)) (-3245 ((|#2| |#1| $) 51)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 11 T CONST)) (-3915 (((-112) $ $) 30)) (-4017 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-937) $) NIL) (($ (-783) $) 37) (($ |#2| |#1|) 32))) -(((-527 |#1| |#2| |#3|) (-333 |#1| |#2|) (-1118) (-132) |#2|) (T -527)) -NIL -(-333 |#1| |#2|) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-1604 (((-112) (-112)) 32)) (-3055 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-1443 (($ (-1 (-112) |#1|) $) 77)) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-2257 (($ $) 81 (|has| |#1| (-1118)))) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2833 (($ |#1| $) NIL (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) 64)) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) NIL)) (-2634 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-1620 (($ $ (-576)) 19)) (-1630 (((-783) $) 13)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2310 (($ (-783) |#1|) 31)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) 29 (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-2230 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) 28 (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3807 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-2134 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1639 (($ (-656 |#1|)) 43)) (-1962 ((|#1| $) NIL (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3346 (($ $ |#1|) 24 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 60)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) 21)) (-2071 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1253 (-576))) NIL)) (-1455 (($ $ (-1253 (-576))) 71) (($ $ (-576)) 65)) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1902 (($ $ $ (-576)) 61 (|has| $ (-6 -4462)))) (-3079 (($ $) 51)) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) NIL)) (-1806 (($ $ $) 62) (($ $ |#1|) 59)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2872 (((-783) $) 22 (|has| $ (-6 -4461))))) -(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1639 ($ (-656 |#1|))) (-15 -1630 ((-783) $)) (-15 -1620 ($ $ (-576))) (-15 -1604 ((-112) (-112))))) (-1236) (-576)) (T -528)) -((-1639 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 (-576)))) (-1620 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 *2))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 (-576))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1639 ($ (-656 |#1|))) (-15 -1630 ((-783) $)) (-15 -1620 ($ $ (-576))) (-15 -1604 ((-112) (-112))))) -((-2862 (((-112) $ $) NIL)) (-1662 (((-1153) $) 11)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1652 (((-1153) $) 13)) (-3690 (((-1153) $) 9)) (-2884 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-529) (-13 (-1101) (-10 -8 (-15 -3690 ((-1153) $)) (-15 -1662 ((-1153) $)) (-15 -1652 ((-1153) $))))) (T -529)) -((-3690 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529))))) -(-13 (-1101) (-10 -8 (-15 -3690 ((-1153) $)) (-15 -1662 ((-1153) $)) (-15 -1652 ((-1153) $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 (((-593 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-593 |#1|) (-379)))) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) NIL (|has| (-593 |#1|) (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-593 |#1|) "failed") $) NIL)) (-4401 (((-593 |#1|) $) NIL)) (-1339 (($ (-1286 (-593 |#1|))) NIL)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| (-593 |#1|) (-379)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) NIL (|has| (-593 |#1|) (-379)))) (-2635 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-4188 (($ $ (-783)) NIL (-3766 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-3766 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2463 (((-112) $) NIL)) (-2927 (((-937) $) NIL (|has| (-593 |#1|) (-379))) (((-845 (-937)) $) NIL (-3766 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1439 (((-112) $) NIL)) (-1909 (($) NIL (|has| (-593 |#1|) (-379)))) (-1886 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-1941 (((-593 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-593 |#1|) (-379)))) (-1831 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 (-593 |#1|)) $) NIL) (((-1191 $) $ (-937)) NIL (|has| (-593 |#1|) (-379)))) (-1875 (((-937) $) NIL (|has| (-593 |#1|) (-379)))) (-3130 (((-1191 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-3119 (((-1191 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1191 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-3141 (($ $ (-1191 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-4318 (($ (-937)) NIL (|has| (-593 |#1|) (-379)))) (-3683 (((-112) $) NIL)) (-3914 (((-1138) $) NIL)) (-3660 (($) NIL (|has| (-593 |#1|) (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-2354 (((-430 $) $) NIL)) (-3673 (((-845 (-937))) NIL) (((-937)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-783) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3766 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1543 (((-135)) NIL)) (-2390 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-3813 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-1360 (((-1191 (-593 |#1|))) NIL)) (-2560 (($) NIL (|has| (-593 |#1|) (-379)))) (-3152 (($) NIL (|has| (-593 |#1|) (-379)))) (-3629 (((-1286 (-593 |#1|)) $) NIL) (((-701 (-593 |#1|)) (-1286 $)) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-593 |#1|) (-379)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-3148 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3766 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3649 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-593 |#1|) (-379)))) (-3431 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL))) -(((-530 |#1| |#2|) (-339 (-593 |#1|)) (-937) (-937)) (T -530)) -NIL -(-339 (-593 |#1|)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#1| $ (-576) (-576) |#1|) 51)) (-1552 (($ $ (-576) |#4|) NIL)) (-3501 (($ $ (-576) |#5|) NIL)) (-2473 (($) NIL T CONST)) (-1759 ((|#4| $ (-576)) NIL)) (-2859 ((|#1| $ (-576) (-576) |#1|) 50)) (-2789 ((|#1| $ (-576) (-576)) 45)) (-4001 (((-656 |#1|) $) NIL)) (-4244 (((-783) $) 33)) (-2310 (($ (-783) (-783) |#1|) 30)) (-4256 (((-783) $) 38)) (-2408 (((-112) $ (-783)) NIL)) (-1805 (((-576) $) 31)) (-1782 (((-576) $) 32)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1793 (((-576) $) 37)) (-1771 (((-576) $) 39)) (-2848 (($ (-1 |#1| |#1|) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) 55 (|has| |#1| (-1118)))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3346 (($ $ |#1|) NIL)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 14)) (-1458 (($) 16)) (-2071 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-1747 ((|#5| $ (-576)) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1236) (-576) (-576) (-384 |#1|) (-384 |#1|)) (T -531)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#1| $ (-575) (-575) |#1|) NIL)) (-3918 (($ $ (-575) (-507 |#1| |#3|)) NIL)) (-4188 (($ $ (-575) (-507 |#1| |#2|)) NIL)) (-3011 (($) NIL T CONST)) (-1565 (((-507 |#1| |#3|) $ (-575)) NIL)) (-2859 ((|#1| $ (-575) (-575) |#1|) NIL)) (-2788 ((|#1| $ (-575) (-575)) NIL)) (-4001 (((-655 |#1|) $) NIL)) (-4243 (((-782) $) NIL)) (-2309 (($ (-782) (-782) |#1|) NIL)) (-4255 (((-782) $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2667 (((-575) $) NIL)) (-1775 (((-575) $) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1776 (((-575) $) NIL)) (-3293 (((-575) $) NIL)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3954 (($ $ |#1|) NIL)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-575) (-575)) NIL) ((|#1| $ (-575) (-575) |#1|) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-1792 (((-507 |#1| |#2|) $ (-575)) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-508 |#1| |#2| |#3|) (-57 |#1| (-507 |#1| |#3|) (-507 |#1| |#2|)) (-1235) (-575) (-575)) (T -508)) +NIL +(-57 |#1| (-507 |#1| |#3|) (-507 |#1| |#2|)) +((-1682 (((-655 (-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-782) (-782)) 32)) (-3019 (((-655 (-1190 |#1|)) |#1| (-782) (-782) (-782)) 43)) (-2326 (((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-655 |#3|) (-655 (-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-782)) 107))) +(((-509 |#1| |#2| |#3|) (-10 -7 (-15 -3019 ((-655 (-1190 |#1|)) |#1| (-782) (-782) (-782))) (-15 -1682 ((-655 (-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-782) (-782))) (-15 -2326 ((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-655 |#3|) (-655 (-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-782)))) (-359) (-1261 |#1|) (-1261 |#2|)) (T -509)) +((-2326 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 (-2 (|:| -1624 (-700 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-700 *7))))) (-5 *5 (-782)) (-4 *8 (-1261 *7)) (-4 *7 (-1261 *6)) (-4 *6 (-359)) (-5 *2 (-2 (|:| -1624 (-700 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-700 *7)))) (-5 *1 (-509 *6 *7 *8)))) (-1682 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-782)) (-4 *5 (-359)) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -1624 (-700 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-700 *6))))) (-5 *1 (-509 *5 *6 *7)) (-5 *3 (-2 (|:| -1624 (-700 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-700 *6)))) (-4 *7 (-1261 *6)))) (-3019 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-782)) (-4 *3 (-359)) (-4 *5 (-1261 *3)) (-5 *2 (-655 (-1190 *3))) (-5 *1 (-509 *3 *5 *6)) (-4 *6 (-1261 *5))))) +(-10 -7 (-15 -3019 ((-655 (-1190 |#1|)) |#1| (-782) (-782) (-782))) (-15 -1682 ((-655 (-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-782) (-782))) (-15 -2326 ((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-655 |#3|) (-655 (-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-782)))) +((-3176 (((-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|)))) 70)) (-4230 ((|#1| (-700 |#1|) |#1| (-782)) 24)) (-1710 (((-782) (-782) (-782)) 34)) (-2345 (((-700 |#1|) (-700 |#1|) (-700 |#1|)) 50)) (-3689 (((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|) 58) (((-700 |#1|) (-700 |#1|) (-700 |#1|)) 55)) (-2949 ((|#1| (-700 |#1|) (-700 |#1|) |#1| (-575)) 28)) (-3439 ((|#1| (-700 |#1|)) 18))) +(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -3439 (|#1| (-700 |#1|))) (-15 -4230 (|#1| (-700 |#1|) |#1| (-782))) (-15 -2949 (|#1| (-700 |#1|) (-700 |#1|) |#1| (-575))) (-15 -1710 ((-782) (-782) (-782))) (-15 -3689 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3689 ((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|)) (-15 -2345 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3176 ((-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|)))))) (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $)))) (-1261 |#1|) (-420 |#1| |#2|)) (T -510)) +((-3176 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-2345 (*1 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-3689 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-700 *3)) (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-3689 (*1 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-1710 (*1 *2 *2 *2) (-12 (-5 *2 (-782)) (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-2949 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-700 *2)) (-5 *4 (-575)) (-4 *2 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) (-4 *5 (-1261 *2)) (-5 *1 (-510 *2 *5 *6)) (-4 *6 (-420 *2 *5)))) (-4230 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-700 *2)) (-5 *4 (-782)) (-4 *2 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) (-4 *5 (-1261 *2)) (-5 *1 (-510 *2 *5 *6)) (-4 *6 (-420 *2 *5)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-700 *2)) (-4 *4 (-1261 *2)) (-4 *2 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) (-5 *1 (-510 *2 *4 *5)) (-4 *5 (-420 *2 *4))))) +(-10 -7 (-15 -3439 (|#1| (-700 |#1|))) (-15 -4230 (|#1| (-700 |#1|) |#1| (-782))) (-15 -2949 (|#1| (-700 |#1|) (-700 |#1|) |#1| (-575))) (-15 -1710 ((-782) (-782) (-782))) (-15 -3689 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3689 ((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|)) (-15 -2345 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3176 ((-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -1624 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|)))))) +((-2861 (((-112) $ $) NIL)) (-2881 (($ $) NIL)) (-1971 (($ $ $) 40)) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2119 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2031 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3054 (((-112) $ (-1252 (-575)) (-112)) NIL (|has| $ (-6 -4461))) (((-112) $ (-575) (-112)) 42 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-3633 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2308 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2859 (((-112) $ (-575) (-112)) NIL (|has| $ (-6 -4461)))) (-2788 (((-112) $ (-575)) NIL)) (-2632 (((-575) (-112) $ (-575)) NIL (|has| (-112) (-1117))) (((-575) (-112) $) NIL (|has| (-112) (-1117))) (((-575) (-1 (-112) (-112)) $) NIL)) (-4001 (((-655 (-112)) $) NIL (|has| $ (-6 -4460)))) (-3238 (($ $ $) 38)) (-3215 (($ $) NIL)) (-1917 (($ $ $) NIL)) (-2309 (($ (-782) (-112)) 27)) (-2612 (($ $ $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) 8 (|has| (-575) (-861)))) (-1920 (($ $ $) NIL)) (-3794 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3955 (((-655 (-112)) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL)) (-2847 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-2135 (($ $ $ (-575)) NIL) (($ (-112) $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 (((-112) $) NIL (|has| (-575) (-861)))) (-3704 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3954 (($ $ (-112)) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-112)) (-655 (-112))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-303 (-112))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-655 (-303 (-112)))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-1691 (((-655 (-112)) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) 28)) (-2070 (($ $ (-1252 (-575))) NIL) (((-112) $ (-575)) 22) (((-112) $ (-575) (-112)) NIL)) (-3239 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3925 (((-782) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117)))) (((-782) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) 29)) (-2615 (((-547) $) NIL (|has| (-112) (-625 (-547))))) (-2894 (($ (-655 (-112))) NIL)) (-1514 (($ (-655 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2883 (((-873) $) 26)) (-4400 (((-112) $ $) NIL)) (-3771 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3226 (($ $ $) 36)) (-2924 (($ $ $) NIL)) (-2912 (($ $ $) 45)) (-2923 (($ $) 43)) (-2900 (($ $ $) 44)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 30)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 31)) (-2911 (($ $ $) NIL)) (-2871 (((-782) $) 13 (|has| $ (-6 -4460))))) +(((-511 |#1|) (-13 (-124) (-10 -8 (-15 -2923 ($ $)) (-15 -2912 ($ $ $)) (-15 -2900 ($ $ $)))) (-575)) (T -511)) +((-2923 (*1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575)))) (-2912 (*1 *1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575)))) (-2900 (*1 *1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575))))) +(-13 (-124) (-10 -8 (-15 -2923 ($ $)) (-15 -2912 ($ $ $)) (-15 -2900 ($ $ $)))) +((-1370 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1190 |#4|)) 35)) (-2840 (((-1190 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1190 |#4|)) 22)) (-3230 (((-3 (-700 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-700 (-1190 |#4|))) 46)) (-3046 (((-1190 (-1190 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2840 (|#2| (-1 |#1| |#4|) (-1190 |#4|))) (-15 -2840 ((-1190 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1370 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1190 |#4|))) (-15 -3230 ((-3 (-700 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-700 (-1190 |#4|)))) (-15 -3046 ((-1190 (-1190 |#4|)) (-1 |#4| |#1|) |#3|))) (-1066) (-1261 |#1|) (-1261 |#2|) (-1066)) (T -512)) +((-3046 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1066)) (-4 *7 (-1066)) (-4 *6 (-1261 *5)) (-5 *2 (-1190 (-1190 *7))) (-5 *1 (-512 *5 *6 *4 *7)) (-4 *4 (-1261 *6)))) (-3230 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-700 (-1190 *8))) (-4 *5 (-1066)) (-4 *8 (-1066)) (-4 *6 (-1261 *5)) (-5 *2 (-700 *6)) (-5 *1 (-512 *5 *6 *7 *8)) (-4 *7 (-1261 *6)))) (-1370 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1190 *7)) (-4 *5 (-1066)) (-4 *7 (-1066)) (-4 *2 (-1261 *5)) (-5 *1 (-512 *5 *2 *6 *7)) (-4 *6 (-1261 *2)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1066)) (-4 *7 (-1066)) (-4 *4 (-1261 *5)) (-5 *2 (-1190 *7)) (-5 *1 (-512 *5 *4 *6 *7)) (-4 *6 (-1261 *4)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1190 *7)) (-4 *5 (-1066)) (-4 *7 (-1066)) (-4 *2 (-1261 *5)) (-5 *1 (-512 *5 *2 *6 *7)) (-4 *6 (-1261 *2))))) +(-10 -7 (-15 -2840 (|#2| (-1 |#1| |#4|) (-1190 |#4|))) (-15 -2840 ((-1190 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1370 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1190 |#4|))) (-15 -3230 ((-3 (-700 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-700 (-1190 |#4|)))) (-15 -3046 ((-1190 (-1190 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2861 (((-112) $ $) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2514 (((-1290) $) 25)) (-2070 (((-1176) $ (-1194)) 30)) (-2484 (((-1290) $) 17)) (-2883 (((-873) $) 27) (($ (-1176)) 26)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 11)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 9))) +(((-513) (-13 (-861) (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 ((-1290) $)) (-15 -2514 ((-1290) $)) (-15 -2883 ($ (-1176)))))) (T -513)) +((-2070 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1176)) (-5 *1 (-513)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-513)))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-513)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-513))))) +(-13 (-861) (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 ((-1290) $)) (-15 -2514 ((-1290) $)) (-15 -2883 ($ (-1176))))) +((-1958 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1516 ((|#1| |#4|) 10)) (-3369 ((|#3| |#4|) 17))) +(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1516 (|#1| |#4|)) (-15 -3369 (|#3| |#4|)) (-15 -1958 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-567) (-1009 |#1|) (-383 |#1|) (-383 |#2|)) (T -514)) +((-1958 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *6 (-383 *4)) (-4 *3 (-383 *5)))) (-3369 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) (-4 *2 (-383 *4)) (-5 *1 (-514 *4 *5 *2 *3)) (-4 *3 (-383 *5)))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-514 *2 *4 *5 *3)) (-4 *5 (-383 *2)) (-4 *3 (-383 *4))))) +(-10 -7 (-15 -1516 (|#1| |#4|)) (-15 -3369 (|#3| |#4|)) (-15 -1958 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2861 (((-112) $ $) NIL)) (-4429 (((-112) $ (-655 |#3|)) 126) (((-112) $) 127)) (-3799 (((-112) $) 178)) (-1341 (($ $ |#4|) 117) (($ $ |#4| (-655 |#3|)) 121)) (-2879 (((-1183 (-655 (-967 |#1|)) (-655 (-303 (-967 |#1|)))) (-655 |#4|)) 171 (|has| |#3| (-625 (-1194))))) (-2829 (($ $ $) 107) (($ $ |#4|) 105)) (-1542 (((-112) $) 177)) (-4112 (($ $) 131)) (-2288 (((-1176) $) NIL)) (-1479 (($ $ $) 99) (($ (-655 $)) 101)) (-3050 (((-112) |#4| $) 129)) (-3726 (((-112) $ $) 82)) (-4431 (($ (-655 |#4|)) 106)) (-3912 (((-1137) $) NIL)) (-2844 (($ (-655 |#4|)) 175)) (-3059 (((-112) $) 176)) (-1919 (($ $) 85)) (-3144 (((-655 |#4|) $) 73)) (-4088 (((-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $)) $ (-655 |#3|)) NIL)) (-2285 (((-112) |#4| $) 89)) (-4386 (((-575) $ (-655 |#3|)) 133) (((-575) $) 134)) (-2883 (((-873) $) 174) (($ (-655 |#4|)) 102)) (-4400 (((-112) $ $) NIL)) (-4170 (($ (-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $))) NIL)) (-3914 (((-112) $ $) 84)) (-4016 (($ $ $) 109)) (** (($ $ (-782)) 115)) (* (($ $ $) 113))) +(((-515 |#1| |#2| |#3| |#4|) (-13 (-1117) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-782))) (-15 -4016 ($ $ $)) (-15 -1542 ((-112) $)) (-15 -3799 ((-112) $)) (-15 -2285 ((-112) |#4| $)) (-15 -3726 ((-112) $ $)) (-15 -3050 ((-112) |#4| $)) (-15 -4429 ((-112) $ (-655 |#3|))) (-15 -4429 ((-112) $)) (-15 -1479 ($ $ $)) (-15 -1479 ($ (-655 $))) (-15 -2829 ($ $ $)) (-15 -2829 ($ $ |#4|)) (-15 -1919 ($ $)) (-15 -4088 ((-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $)) $ (-655 |#3|))) (-15 -4170 ($ (-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $)))) (-15 -4386 ((-575) $ (-655 |#3|))) (-15 -4386 ((-575) $)) (-15 -4112 ($ $)) (-15 -4431 ($ (-655 |#4|))) (-15 -2844 ($ (-655 |#4|))) (-15 -3059 ((-112) $)) (-15 -3144 ((-655 |#4|) $)) (-15 -2883 ($ (-655 |#4|))) (-15 -1341 ($ $ |#4|)) (-15 -1341 ($ $ |#4| (-655 |#3|))) (IF (|has| |#3| (-625 (-1194))) (-15 -2879 ((-1183 (-655 (-967 |#1|)) (-655 (-303 (-967 |#1|)))) (-655 |#4|))) |%noBranch|))) (-373) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -515)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-4016 (*1 *1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-1542 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-3799 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-2285 (*1 *2 *3 *1) (-12 (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))) (-3726 (*1 *2 *1 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-3050 (*1 *2 *3 *1) (-12 (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))) (-4429 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))) (-4429 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-1479 (*1 *1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-1479 (*1 *1 *2) (-12 (-5 *2 (-655 (-515 *3 *4 *5 *6))) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-2829 (*1 *1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-2829 (*1 *1 *1 *2) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5)))) (-1919 (*1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-4088 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) (-5 *2 (-2 (|:| |mval| (-700 *4)) (|:| |invmval| (-700 *4)) (|:| |genIdeal| (-515 *4 *5 *6 *7)))) (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))) (-4170 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-700 *3)) (|:| |invmval| (-700 *3)) (|:| |genIdeal| (-515 *3 *4 *5 *6)))) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-4386 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) (-5 *2 (-575)) (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))) (-4386 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-575)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-4112 (*1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-4431 (*1 *1 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)))) (-3059 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-3144 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *6)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)))) (-1341 (*1 *1 *1 *2) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5)))) (-1341 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) (-5 *1 (-515 *4 *5 *6 *2)) (-4 *2 (-964 *4 *5 *6)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *5 *6)) (-4 *6 (-625 (-1194))) (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1183 (-655 (-967 *4)) (-655 (-303 (-967 *4))))) (-5 *1 (-515 *4 *5 *6 *7))))) +(-13 (-1117) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-782))) (-15 -4016 ($ $ $)) (-15 -1542 ((-112) $)) (-15 -3799 ((-112) $)) (-15 -2285 ((-112) |#4| $)) (-15 -3726 ((-112) $ $)) (-15 -3050 ((-112) |#4| $)) (-15 -4429 ((-112) $ (-655 |#3|))) (-15 -4429 ((-112) $)) (-15 -1479 ($ $ $)) (-15 -1479 ($ (-655 $))) (-15 -2829 ($ $ $)) (-15 -2829 ($ $ |#4|)) (-15 -1919 ($ $)) (-15 -4088 ((-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $)) $ (-655 |#3|))) (-15 -4170 ($ (-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $)))) (-15 -4386 ((-575) $ (-655 |#3|))) (-15 -4386 ((-575) $)) (-15 -4112 ($ $)) (-15 -4431 ($ (-655 |#4|))) (-15 -2844 ($ (-655 |#4|))) (-15 -3059 ((-112) $)) (-15 -3144 ((-655 |#4|) $)) (-15 -2883 ($ (-655 |#4|))) (-15 -1341 ($ $ |#4|)) (-15 -1341 ($ $ |#4| (-655 |#3|))) (IF (|has| |#3| (-625 (-1194))) (-15 -2879 ((-1183 (-655 (-967 |#1|)) (-655 (-303 (-967 |#1|)))) (-655 |#4|))) |%noBranch|))) +((-2202 (((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) 176)) (-3966 (((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) 177)) (-2692 (((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) 129)) (-1336 (((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) NIL)) (-2608 (((-655 (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) 179)) (-2146 (((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-655 (-875 |#1|))) 195))) +(((-516 |#1| |#2|) (-10 -7 (-15 -2202 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -3966 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -1336 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -2692 ((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -2608 ((-655 (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -2146 ((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-655 (-875 |#1|))))) (-655 (-1194)) (-782)) (T -516)) +((-2146 (*1 *2 *2 *3) (-12 (-5 *2 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575))))) (-5 *3 (-655 (-875 *4))) (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *1 (-516 *4 *5)))) (-2608 (*1 *2 *3) (-12 (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-655 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575)))))) (-5 *1 (-516 *4 *5)) (-5 *3 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575))))))) (-2692 (*1 *2 *2) (-12 (-5 *2 (-515 (-418 (-575)) (-245 *4 (-782)) (-875 *3) (-252 *3 (-418 (-575))))) (-14 *3 (-655 (-1194))) (-14 *4 (-782)) (-5 *1 (-516 *3 *4)))) (-1336 (*1 *2 *3) (-12 (-5 *3 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575))))) (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575))))) (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575))))) (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5))))) +(-10 -7 (-15 -2202 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -3966 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -1336 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -2692 ((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -2608 ((-655 (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -2146 ((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-655 (-875 |#1|))))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3470 (($) 6)) (-2883 (((-873) $) 12) (((-1194) $) 10)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 8))) +(((-517) (-13 (-1117) (-624 (-1194)) (-10 -8 (-15 -3470 ($))))) (T -517)) +((-3470 (*1 *1) (-5 *1 (-517)))) +(-13 (-1117) (-624 (-1194)) (-10 -8 (-15 -3470 ($)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-2417 (($ |#1| |#2|) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3261 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 12 T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) 11) (($ $ $) 35)) (-4016 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 21))) +(((-518 |#1| |#2|) (-13 (-21) (-520 |#1| |#2|)) (-21) (-861)) (T -518)) +NIL +(-13 (-21) (-520 |#1| |#2|)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 13)) (-3011 (($) NIL T CONST)) (-4406 (($ $) 41)) (-2417 (($ |#1| |#2|) 38)) (-2550 (($ (-1 |#1| |#1|) $) 40)) (-3261 ((|#2| $) NIL)) (-4383 ((|#1| $) 42)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 10 T CONST)) (-3914 (((-112) $ $) NIL)) (-4016 (($ $ $) 26)) (* (($ (-936) $) NIL) (($ (-782) $) 36))) +(((-519 |#1| |#2|) (-13 (-23) (-520 |#1| |#2|)) (-23) (-861)) (T -519)) +NIL +(-13 (-23) (-520 |#1| |#2|)) +((-2861 (((-112) $ $) 7)) (-4406 (($ $) 14)) (-2417 (($ |#1| |#2|) 17)) (-2550 (($ (-1 |#1| |#1|) $) 18)) (-3261 ((|#2| $) 15)) (-4383 ((|#1| $) 16)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-520 |#1| |#2|) (-141) (-1117) (-861)) (T -520)) +((-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-520 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-861)))) (-2417 (*1 *1 *2 *3) (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-861)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-520 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1117)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-520 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-861)))) (-4406 (*1 *1 *1) (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-861))))) +(-13 (-1117) (-10 -8 (-15 -2550 ($ (-1 |t#1| |t#1|) $)) (-15 -2417 ($ |t#1| |t#2|)) (-15 -4383 (|t#1| $)) (-15 -3261 (|t#2| $)) (-15 -4406 ($ $)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3011 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-2417 (($ |#1| |#2|) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3261 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 22)) (-4016 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL))) +(((-521 |#1| |#2|) (-13 (-803) (-520 |#1| |#2|)) (-803) (-861)) (T -521)) +NIL +(-13 (-803) (-520 |#1| |#2|)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3605 (($ $ $) 23)) (-2597 (((-3 $ "failed") $ $) 19)) (-3011 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-2417 (($ |#1| |#2|) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3261 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4016 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL))) +(((-522 |#1| |#2|) (-13 (-804) (-520 |#1| |#2|)) (-804) (-861)) (T -522)) +NIL +(-13 (-804) (-520 |#1| |#2|)) +((-2861 (((-112) $ $) NIL)) (-4406 (($ $) 32)) (-2417 (($ |#1| |#2|) 28)) (-2550 (($ (-1 |#1| |#1|) $) 30)) (-3261 ((|#2| $) 34)) (-4383 ((|#1| $) 33)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 27)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 20))) +(((-523 |#1| |#2|) (-520 |#1| |#2|) (-1117) (-861)) (T -523)) +NIL +(-520 |#1| |#2|) +((-3048 (($ $ (-655 |#2|) (-655 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-524 |#1| |#2| |#3|) (-10 -8 (-15 -3048 (|#1| |#1| |#2| |#3|)) (-15 -3048 (|#1| |#1| (-655 |#2|) (-655 |#3|)))) (-525 |#2| |#3|) (-1117) (-1235)) (T -524)) +NIL +(-10 -8 (-15 -3048 (|#1| |#1| |#2| |#3|)) (-15 -3048 (|#1| |#1| (-655 |#2|) (-655 |#3|)))) +((-3048 (($ $ (-655 |#1|) (-655 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-525 |#1| |#2|) (-141) (-1117) (-1235)) (T -525)) +((-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 *5)) (-4 *1 (-525 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1235)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-525 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1235))))) +(-13 (-10 -8 (-15 -3048 ($ $ |t#1| |t#2|)) (-15 -3048 ($ $ (-655 |t#1|) (-655 |t#2|))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 17)) (-2144 (((-655 (-2 (|:| |gen| |#1|) (|:| -2665 |#2|))) $) 19)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2415 (((-782) $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-3643 ((|#1| $ (-575)) 24)) (-3386 ((|#2| $ (-575)) 22)) (-1772 (($ (-1 |#1| |#1|) $) 48)) (-3716 (($ (-1 |#2| |#2|) $) 45)) (-2288 (((-1176) $) NIL)) (-3874 (($ $ $) 55 (|has| |#2| (-803)))) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 44) (($ |#1|) NIL)) (-2012 ((|#2| |#1| $) 51)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 11 T CONST)) (-3914 (((-112) $ $) 30)) (-4016 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-936) $) NIL) (($ (-782) $) 37) (($ |#2| |#1|) 32))) +(((-526 |#1| |#2| |#3|) (-332 |#1| |#2|) (-1117) (-132) |#2|) (T -526)) +NIL +(-332 |#1| |#2|) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-1580 (((-112) (-112)) 32)) (-3054 ((|#1| $ (-575) |#1|) 42 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-1999 (($ (-1 (-112) |#1|) $) 77)) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1878 (($ $) 81 (|has| |#1| (-1117)))) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4404 (($ |#1| $) NIL (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) 64)) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) NIL)) (-2632 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-1361 (($ $ (-575)) 19)) (-3118 (((-782) $) 13)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2309 (($ (-782) |#1|) 31)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) 29 (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-4174 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) 28 (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3862 (($ $ $ (-575)) 73) (($ |#1| $ (-575)) 57)) (-2135 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2666 (($ (-655 |#1|)) 43)) (-1961 ((|#1| $) NIL (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3954 (($ $ |#1|) 24 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 60)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) 21)) (-2070 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) 53) (($ $ (-1252 (-575))) NIL)) (-2797 (($ $ (-1252 (-575))) 71) (($ $ (-575)) 65)) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4005 (($ $ $ (-575)) 61 (|has| $ (-6 -4461)))) (-3078 (($ $) 51)) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) NIL)) (-2774 (($ $ $) 62) (($ $ |#1|) 59)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2871 (((-782) $) 22 (|has| $ (-6 -4460))))) +(((-527 |#1| |#2|) (-13 (-19 |#1|) (-291 |#1|) (-10 -8 (-15 -2666 ($ (-655 |#1|))) (-15 -3118 ((-782) $)) (-15 -1361 ($ $ (-575))) (-15 -1580 ((-112) (-112))))) (-1235) (-575)) (T -527)) +((-2666 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-527 *3 *4)) (-14 *4 (-575)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235)) (-14 *4 (-575)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235)) (-14 *4 *2))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235)) (-14 *4 (-575))))) +(-13 (-19 |#1|) (-291 |#1|) (-10 -8 (-15 -2666 ($ (-655 |#1|))) (-15 -3118 ((-782) $)) (-15 -1361 ($ $ (-575))) (-15 -1580 ((-112) (-112))))) +((-2861 (((-112) $ $) NIL)) (-2955 (((-1152) $) 11)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4341 (((-1152) $) 13)) (-3690 (((-1152) $) 9)) (-2883 (((-873) $) 19) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-528) (-13 (-1100) (-10 -8 (-15 -3690 ((-1152) $)) (-15 -2955 ((-1152) $)) (-15 -4341 ((-1152) $))))) (T -528)) +((-3690 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528))))) +(-13 (-1100) (-10 -8 (-15 -3690 ((-1152) $)) (-15 -2955 ((-1152) $)) (-15 -4341 ((-1152) $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 (((-592 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-592 |#1|) (-378)))) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-592 |#1|) (-378)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) NIL (|has| (-592 |#1|) (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-592 |#1|) "failed") $) NIL)) (-4399 (((-592 |#1|) $) NIL)) (-1385 (($ (-1285 (-592 |#1|))) NIL)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-592 |#1|) (-378)))) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| (-592 |#1|) (-378)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) NIL (|has| (-592 |#1|) (-378)))) (-1980 (((-112) $) NIL (|has| (-592 |#1|) (-378)))) (-4374 (($ $ (-782)) NIL (-3765 (|has| (-592 |#1|) (-146)) (|has| (-592 |#1|) (-378)))) (($ $) NIL (-3765 (|has| (-592 |#1|) (-146)) (|has| (-592 |#1|) (-378))))) (-1336 (((-112) $) NIL)) (-2673 (((-936) $) NIL (|has| (-592 |#1|) (-378))) (((-844 (-936)) $) NIL (-3765 (|has| (-592 |#1|) (-146)) (|has| (-592 |#1|) (-378))))) (-1542 (((-112) $) NIL)) (-3547 (($) NIL (|has| (-592 |#1|) (-378)))) (-2922 (((-112) $) NIL (|has| (-592 |#1|) (-378)))) (-2255 (((-592 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-592 |#1|) (-378)))) (-2607 (((-3 $ "failed") $) NIL (|has| (-592 |#1|) (-378)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 (-592 |#1|)) $) NIL) (((-1190 $) $ (-936)) NIL (|has| (-592 |#1|) (-378)))) (-4084 (((-936) $) NIL (|has| (-592 |#1|) (-378)))) (-2394 (((-1190 (-592 |#1|)) $) NIL (|has| (-592 |#1|) (-378)))) (-3255 (((-1190 (-592 |#1|)) $) NIL (|has| (-592 |#1|) (-378))) (((-3 (-1190 (-592 |#1|)) "failed") $ $) NIL (|has| (-592 |#1|) (-378)))) (-2065 (($ $ (-1190 (-592 |#1|))) NIL (|has| (-592 |#1|) (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| (-592 |#1|) (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| (-592 |#1|) (-378)))) (-3497 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3659 (($) NIL (|has| (-592 |#1|) (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| (-592 |#1|) (-378)))) (-2353 (((-429 $) $) NIL)) (-2819 (((-844 (-936))) NIL) (((-936)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-782) $) NIL (|has| (-592 |#1|) (-378))) (((-3 (-782) "failed") $ $) NIL (-3765 (|has| (-592 |#1|) (-146)) (|has| (-592 |#1|) (-378))))) (-4386 (((-135)) NIL)) (-2389 (($ $ (-782)) NIL (|has| (-592 |#1|) (-378))) (($ $) NIL (|has| (-592 |#1|) (-378)))) (-2645 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-2552 (((-1190 (-592 |#1|))) NIL)) (-3500 (($) NIL (|has| (-592 |#1|) (-378)))) (-3832 (($) NIL (|has| (-592 |#1|) (-378)))) (-3962 (((-1285 (-592 |#1|)) $) NIL) (((-700 (-592 |#1|)) (-1285 $)) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-592 |#1|) (-378)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-592 |#1|)) NIL)) (-1518 (($ $) NIL (|has| (-592 |#1|) (-378))) (((-3 $ "failed") $) NIL (-3765 (|has| (-592 |#1|) (-146)) (|has| (-592 |#1|) (-378))))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-4216 (($ $) NIL (|has| (-592 |#1|) (-378))) (($ $ (-782)) NIL (|has| (-592 |#1|) (-378)))) (-3430 (($ $ (-782)) NIL (|has| (-592 |#1|) (-378))) (($ $) NIL (|has| (-592 |#1|) (-378)))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ (-592 |#1|)) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-592 |#1|)) NIL) (($ (-592 |#1|) $) NIL))) +(((-529 |#1| |#2|) (-338 (-592 |#1|)) (-936) (-936)) (T -529)) +NIL +(-338 (-592 |#1|)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#1| $ (-575) (-575) |#1|) 51)) (-3918 (($ $ (-575) |#4|) NIL)) (-4188 (($ $ (-575) |#5|) NIL)) (-3011 (($) NIL T CONST)) (-1565 ((|#4| $ (-575)) NIL)) (-2859 ((|#1| $ (-575) (-575) |#1|) 50)) (-2788 ((|#1| $ (-575) (-575)) 45)) (-4001 (((-655 |#1|) $) NIL)) (-4243 (((-782) $) 33)) (-2309 (($ (-782) (-782) |#1|) 30)) (-4255 (((-782) $) 38)) (-3896 (((-112) $ (-782)) NIL)) (-2667 (((-575) $) 31)) (-1775 (((-575) $) 32)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1776 (((-575) $) 37)) (-3293 (((-575) $) 39)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) 55 (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3954 (($ $ |#1|) NIL)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 14)) (-1938 (($) 16)) (-2070 ((|#1| $ (-575) (-575)) 48) ((|#1| $ (-575) (-575) |#1|) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-1792 ((|#5| $ (-575)) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-530 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1235) (-575) (-575) (-383 |#1|) (-383 |#1|)) (T -530)) NIL (-57 |#1| |#4| |#5|) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4183 ((|#1| $) NIL)) (-2990 ((|#1| $) NIL)) (-3463 (($ $) NIL)) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1748 (($ $ (-576)) 70 (|has| $ (-6 -4462)))) (-1913 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1891 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4462)))) (-2032 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3434 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1772 (($ $ $) 23 (|has| $ (-6 -4462)))) (-1761 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1783 ((|#1| $ |#1|) 21 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4462))) (($ $ "rest" $) 24 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-1443 (($ (-1 (-112) |#1|) $) NIL)) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2978 ((|#1| $) NIL)) (-2473 (($) NIL T CONST)) (-2745 (($ $) 28 (|has| $ (-6 -4462)))) (-4379 (($ $) 29)) (-1976 (($ $) 18) (($ $ (-783)) 32)) (-2257 (($ $) 62 (|has| |#1| (-1118)))) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2833 (($ |#1| $) NIL (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) NIL)) (-3634 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2859 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) NIL)) (-1811 (((-112) $) NIL)) (-2634 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118))) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) (-1 (-112) |#1|) $) NIL)) (-4001 (((-656 |#1|) $) 27 (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) NIL)) (-3452 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2310 (($ (-783) |#1|) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) 31 (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-2230 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-4214 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1685 (($ |#1|) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-2482 (((-656 |#1|) $) NIL)) (-4306 (((-112) $) NIL)) (-3733 (((-1177) $) 58 (|has| |#1| (-1118)))) (-3654 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-3807 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2134 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1962 ((|#1| $) 13) (($ $ (-783)) NIL)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3346 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-1821 (((-112) $) NIL)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 12)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) 17)) (-1458 (($) 16)) (-2071 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-3473 (((-576) $ $) NIL)) (-1455 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3240 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-4053 (((-112) $) 35)) (-1816 (($ $) NIL)) (-1794 (($ $) NIL (|has| $ (-6 -4462)))) (-1826 (((-783) $) NIL)) (-1836 (($ $) 40)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) 36)) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 26)) (-1806 (($ $ $) 61) (($ $ |#1|) NIL)) (-1514 (($ $ $) NIL) (($ |#1| $) 10) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-2884 (((-874) $) 50 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) NIL)) (-3462 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) 54 (|has| |#1| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2872 (((-783) $) 9 (|has| $ (-6 -4461))))) -(((-532 |#1| |#2|) (-678 |#1|) (-1236) (-576)) (T -532)) -NIL -(-678 |#1|) -((-1735 ((|#4| |#4|) 38)) (-4423 (((-783) |#4|) 44)) (-1724 (((-783) |#4|) 45)) (-1714 (((-656 |#3|) |#4|) 55 (|has| |#3| (-6 -4462)))) (-3633 (((-3 |#4| "failed") |#4|) 67)) (-1671 ((|#4| |#4|) 59)) (-3314 ((|#1| |#4|) 58))) -(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1735 (|#4| |#4|)) (-15 -4423 ((-783) |#4|)) (-15 -1724 ((-783) |#4|)) (IF (|has| |#3| (-6 -4462)) (-15 -1714 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -3314 (|#1| |#4|)) (-15 -1671 (|#4| |#4|)) (-15 -3633 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -533)) -((-3633 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3314 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-1714 (*1 *2 *3) (-12 (|has| *6 (-6 -4462)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4423 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -1735 (|#4| |#4|)) (-15 -4423 ((-783) |#4|)) (-15 -1724 ((-783) |#4|)) (IF (|has| |#3| (-6 -4462)) (-15 -1714 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -3314 (|#1| |#4|)) (-15 -1671 (|#4| |#4|)) (-15 -3633 ((-3 |#4| "failed") |#4|))) -((-1735 ((|#8| |#4|) 20)) (-1714 (((-656 |#3|) |#4|) 29 (|has| |#7| (-6 -4462)))) (-3633 (((-3 |#8| "failed") |#4|) 23))) -(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1735 (|#8| |#4|)) (-15 -3633 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4462)) (-15 -1714 ((-656 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1010 |#1|) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -534)) -((-1714 (*1 *2 *3) (-12 (|has| *9 (-6 -4462)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1010 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) (-4 *10 (-699 *7 *8 *9)))) (-3633 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1010 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-1735 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1010 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))) -(-10 -7 (-15 -1735 (|#8| |#4|)) (-15 -3633 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4462)) (-15 -1714 ((-656 |#3|) |#4|)) |%noBranch|)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2881 (($ (-783) (-783)) NIL)) (-1991 (($ $ $) NIL)) (-2899 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-1825 (((-112) $) NIL)) (-1979 (($ $ (-576) (-576)) 21)) (-1965 (($ $ (-576) (-576)) NIL)) (-1953 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2018 (($ $) NIL)) (-1847 (((-112) $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-1940 (($ $ (-576) (-576) $) NIL)) (-3055 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-1552 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-3501 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-3353 (($ (-783) |#1|) NIL)) (-2473 (($) NIL T CONST)) (-1735 (($ $) 30 (|has| |#1| (-317)))) (-1759 (((-614 |#1| |#3|) $ (-576)) NIL)) (-4423 (((-783) $) 33 (|has| |#1| (-568)))) (-2859 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2789 ((|#1| $ (-576) (-576)) NIL)) (-4001 (((-656 |#1|) $) NIL)) (-1724 (((-783) $) 35 (|has| |#1| (-568)))) (-1714 (((-656 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-4244 (((-783) $) NIL)) (-2310 (($ (-783) (-783) |#1|) NIL)) (-4256 (((-783) $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3304 ((|#1| $) 28 (|has| |#1| (-6 (-4463 "*"))))) (-1805 (((-576) $) 10)) (-1782 (((-576) $) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1793 (((-576) $) 13)) (-1771 (((-576) $) NIL)) (-4317 (($ (-656 (-656 |#1|))) NIL)) (-2848 (($ (-1 |#1| |#1|) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3667 (((-656 (-656 |#1|)) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3633 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-2005 (($ $ $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3346 (($ $ |#1|) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-3344 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-1835 (((-112) $) NIL)) (-3314 ((|#1| $) 26 (|has| |#1| (-6 (-4463 "*"))))) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-1747 (((-614 |#1| |#2|) $ (-576)) NIL)) (-2884 (($ (-614 |#1| |#2|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-1815 (((-112) $) NIL)) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-535 |#1| |#2| |#3|) (-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1067) (-576) (-576)) (T -535)) -NIL -(-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-1681 (((-656 (-1235)) $) 13)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL) (($ (-656 (-1235))) 11)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-536) (-13 (-1101) (-10 -8 (-15 -2884 ($ (-656 (-1235)))) (-15 -1681 ((-656 (-1235)) $))))) (T -536)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536))))) -(-13 (-1101) (-10 -8 (-15 -2884 ($ (-656 (-1235)))) (-15 -1681 ((-656 (-1235)) $)))) -((-2862 (((-112) $ $) NIL)) (-1695 (((-1153) $) 14)) (-3733 (((-1177) $) NIL)) (-1866 (((-518) $) 11)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 21) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-537) (-13 (-1101) (-10 -8 (-15 -1866 ((-518) $)) (-15 -1695 ((-1153) $))))) (T -537)) -((-1866 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-537))))) -(-13 (-1101) (-10 -8 (-15 -1866 ((-518) $)) (-15 -1695 ((-1153) $)))) -((-1763 (((-703 (-1244)) $) 15)) (-1716 (((-703 (-1242)) $) 38)) (-1738 (((-703 (-1241)) $) 29)) (-1774 (((-703 (-561)) $) 12)) (-1727 (((-703 (-559)) $) 42)) (-1750 (((-703 (-558)) $) 33)) (-1707 (((-783) $ (-129)) 54))) -(((-538 |#1|) (-10 -8 (-15 -1707 ((-783) |#1| (-129))) (-15 -1716 ((-703 (-1242)) |#1|)) (-15 -1727 ((-703 (-559)) |#1|)) (-15 -1738 ((-703 (-1241)) |#1|)) (-15 -1750 ((-703 (-558)) |#1|)) (-15 -1763 ((-703 (-1244)) |#1|)) (-15 -1774 ((-703 (-561)) |#1|))) (-539)) (T -538)) -NIL -(-10 -8 (-15 -1707 ((-783) |#1| (-129))) (-15 -1716 ((-703 (-1242)) |#1|)) (-15 -1727 ((-703 (-559)) |#1|)) (-15 -1738 ((-703 (-1241)) |#1|)) (-15 -1750 ((-703 (-558)) |#1|)) (-15 -1763 ((-703 (-1244)) |#1|)) (-15 -1774 ((-703 (-561)) |#1|))) -((-1763 (((-703 (-1244)) $) 12)) (-1716 (((-703 (-1242)) $) 8)) (-1738 (((-703 (-1241)) $) 10)) (-1774 (((-703 (-561)) $) 13)) (-1727 (((-703 (-559)) $) 9)) (-1750 (((-703 (-558)) $) 11)) (-1707 (((-783) $ (-129)) 7)) (-1785 (((-703 (-130)) $) 14)) (-1561 (($ $) 6))) -(((-539) (-141)) (T -539)) -((-1785 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244))))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1241))))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242))))) (-1707 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) -(-13 (-175) (-10 -8 (-15 -1785 ((-703 (-130)) $)) (-15 -1774 ((-703 (-561)) $)) (-15 -1763 ((-703 (-1244)) $)) (-15 -1750 ((-703 (-558)) $)) (-15 -1738 ((-703 (-1241)) $)) (-15 -1727 ((-703 (-559)) $)) (-15 -1716 ((-703 (-1242)) $)) (-15 -1707 ((-783) $ (-129))))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4182 ((|#1| $) NIL)) (-2989 ((|#1| $) NIL)) (-3462 (($ $) NIL)) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1893 (($ $ (-575)) 70 (|has| $ (-6 -4461)))) (-2762 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2119 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4461)))) (-2031 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-1915 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3391 (($ $ $) 23 (|has| $ (-6 -4461)))) (-3602 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-1876 ((|#1| $ |#1|) 21 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4461))) (($ $ "rest" $) 24 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-1999 (($ (-1 (-112) |#1|) $) NIL)) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2977 ((|#1| $) NIL)) (-3011 (($) NIL T CONST)) (-1789 (($ $) 28 (|has| $ (-6 -4461)))) (-4381 (($ $) 29)) (-1975 (($ $) 18) (($ $ (-782)) 32)) (-1878 (($ $) 62 (|has| |#1| (-1117)))) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4404 (($ |#1| $) NIL (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) NIL)) (-3633 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2859 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) NIL)) (-2087 (((-112) $) NIL)) (-2632 (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117))) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) (-1 (-112) |#1|) $) NIL)) (-4001 (((-655 |#1|) $) 27 (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) NIL)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2309 (($ (-782) |#1|) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) 31 (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-4174 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-3794 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1684 (($ |#1|) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2482 (((-655 |#1|) $) NIL)) (-1526 (((-112) $) NIL)) (-2288 (((-1176) $) 58 (|has| |#1| (-1117)))) (-3653 ((|#1| $) NIL) (($ $ (-782)) NIL)) (-3862 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-2135 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1961 ((|#1| $) 13) (($ $ (-782)) NIL)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3954 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-3888 (((-112) $) NIL)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 12)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) 17)) (-1938 (($) 16)) (-2070 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1252 (-575))) NIL) ((|#1| $ (-575)) NIL) ((|#1| $ (-575) |#1|) NIL)) (-2220 (((-575) $ $) NIL)) (-2797 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3239 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-1648 (((-112) $) 35)) (-1397 (($ $) NIL)) (-1877 (($ $) NIL (|has| $ (-6 -4461)))) (-3269 (((-782) $) NIL)) (-1863 (($ $) 40)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) 36)) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 26)) (-2774 (($ $ $) 61) (($ $ |#1|) NIL)) (-1514 (($ $ $) NIL) (($ |#1| $) 10) (($ (-655 $)) NIL) (($ $ |#1|) NIL)) (-2883 (((-873) $) 50 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) NIL)) (-2781 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) 54 (|has| |#1| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2871 (((-782) $) 9 (|has| $ (-6 -4460))))) +(((-531 |#1| |#2|) (-677 |#1|) (-1235) (-575)) (T -531)) +NIL +(-677 |#1|) +((-3356 ((|#4| |#4|) 38)) (-4422 (((-782) |#4|) 44)) (-1911 (((-782) |#4|) 45)) (-3264 (((-655 |#3|) |#4|) 55 (|has| |#3| (-6 -4461)))) (-3205 (((-3 |#4| "failed") |#4|) 67)) (-3773 ((|#4| |#4|) 59)) (-3674 ((|#1| |#4|) 58))) +(((-532 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3356 (|#4| |#4|)) (-15 -4422 ((-782) |#4|)) (-15 -1911 ((-782) |#4|)) (IF (|has| |#3| (-6 -4461)) (-15 -3264 ((-655 |#3|) |#4|)) |%noBranch|) (-15 -3674 (|#1| |#4|)) (-15 -3773 (|#4| |#4|)) (-15 -3205 ((-3 |#4| "failed") |#4|))) (-373) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|)) (T -532)) +((-3205 (*1 *2 *2) (|partial| -12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-3773 (*1 *2 *2) (-12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-3674 (*1 *2 *3) (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-373)) (-5 *1 (-532 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5)))) (-3264 (*1 *2 *3) (-12 (|has| *6 (-6 -4461)) (-4 *4 (-373)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-655 *6)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-1911 (*1 *2 *3) (-12 (-4 *4 (-373)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-4422 (*1 *2 *3) (-12 (-4 *4 (-373)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5))))) +(-10 -7 (-15 -3356 (|#4| |#4|)) (-15 -4422 ((-782) |#4|)) (-15 -1911 ((-782) |#4|)) (IF (|has| |#3| (-6 -4461)) (-15 -3264 ((-655 |#3|) |#4|)) |%noBranch|) (-15 -3674 (|#1| |#4|)) (-15 -3773 (|#4| |#4|)) (-15 -3205 ((-3 |#4| "failed") |#4|))) +((-3356 ((|#8| |#4|) 20)) (-3264 (((-655 |#3|) |#4|) 29 (|has| |#7| (-6 -4461)))) (-3205 (((-3 |#8| "failed") |#4|) 23))) +(((-533 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3356 (|#8| |#4|)) (-15 -3205 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4461)) (-15 -3264 ((-655 |#3|) |#4|)) |%noBranch|)) (-567) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|) (-1009 |#1|) (-383 |#5|) (-383 |#5|) (-698 |#5| |#6| |#7|)) (T -533)) +((-3264 (*1 *2 *3) (-12 (|has| *9 (-6 -4461)) (-4 *4 (-567)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-4 *7 (-1009 *4)) (-4 *8 (-383 *7)) (-4 *9 (-383 *7)) (-5 *2 (-655 *6)) (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-698 *4 *5 *6)) (-4 *10 (-698 *7 *8 *9)))) (-3205 (*1 *2 *3) (|partial| -12 (-4 *4 (-567)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-4 *7 (-1009 *4)) (-4 *2 (-698 *7 *8 *9)) (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-698 *4 *5 *6)) (-4 *8 (-383 *7)) (-4 *9 (-383 *7)))) (-3356 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-4 *7 (-1009 *4)) (-4 *2 (-698 *7 *8 *9)) (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-698 *4 *5 *6)) (-4 *8 (-383 *7)) (-4 *9 (-383 *7))))) +(-10 -7 (-15 -3356 (|#8| |#4|)) (-15 -3205 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4461)) (-15 -3264 ((-655 |#3|) |#4|)) |%noBranch|)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2880 (($ (-782) (-782)) NIL)) (-3544 (($ $ $) NIL)) (-1926 (($ (-613 |#1| |#3|)) NIL) (($ $) NIL)) (-3158 (((-112) $) NIL)) (-3922 (($ $ (-575) (-575)) 21)) (-2905 (($ $ (-575) (-575)) NIL)) (-4104 (($ $ (-575) (-575) (-575) (-575)) NIL)) (-3823 (($ $) NIL)) (-1503 (((-112) $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3383 (($ $ (-575) (-575) $) NIL)) (-3054 ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575)) $) NIL)) (-3918 (($ $ (-575) (-613 |#1| |#3|)) NIL)) (-4188 (($ $ (-575) (-613 |#1| |#2|)) NIL)) (-2271 (($ (-782) |#1|) NIL)) (-3011 (($) NIL T CONST)) (-3356 (($ $) 30 (|has| |#1| (-316)))) (-1565 (((-613 |#1| |#3|) $ (-575)) NIL)) (-4422 (((-782) $) 33 (|has| |#1| (-567)))) (-2859 ((|#1| $ (-575) (-575) |#1|) NIL)) (-2788 ((|#1| $ (-575) (-575)) NIL)) (-4001 (((-655 |#1|) $) NIL)) (-1911 (((-782) $) 35 (|has| |#1| (-567)))) (-3264 (((-655 (-613 |#1| |#2|)) $) 38 (|has| |#1| (-567)))) (-4243 (((-782) $) NIL)) (-2309 (($ (-782) (-782) |#1|) NIL)) (-4255 (((-782) $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-1907 ((|#1| $) 28 (|has| |#1| (-6 (-4462 "*"))))) (-2667 (((-575) $) 10)) (-1775 (((-575) $) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1776 (((-575) $) 13)) (-3293 (((-575) $) NIL)) (-4316 (($ (-655 (-655 |#1|))) NIL)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3487 (((-655 (-655 |#1|)) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3205 (((-3 $ "failed") $) 42 (|has| |#1| (-373)))) (-2054 (($ $ $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3954 (($ $ |#1|) NIL)) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-575) (-575)) NIL) ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575))) NIL)) (-3740 (($ (-655 |#1|)) NIL) (($ (-655 $)) NIL)) (-1763 (((-112) $) NIL)) (-3674 ((|#1| $) 26 (|has| |#1| (-6 (-4462 "*"))))) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-1792 (((-613 |#1| |#2|) $ (-575)) NIL)) (-2883 (($ (-613 |#1| |#2|)) NIL) (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-4412 (((-112) $) NIL)) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $ $) NIL) (($ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-575) $) NIL) (((-613 |#1| |#2|) $ (-613 |#1| |#2|)) NIL) (((-613 |#1| |#3|) (-613 |#1| |#3|) $) NIL)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-534 |#1| |#2| |#3|) (-698 |#1| (-613 |#1| |#3|) (-613 |#1| |#2|)) (-1066) (-575) (-575)) (T -534)) +NIL +(-698 |#1| (-613 |#1| |#3|) (-613 |#1| |#2|)) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3277 (((-655 (-1234)) $) 13)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 19) (($ (-1199)) NIL) (((-1199) $) NIL) (($ (-655 (-1234))) 11)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-535) (-13 (-1100) (-10 -8 (-15 -2883 ($ (-655 (-1234)))) (-15 -3277 ((-655 (-1234)) $))))) (T -535)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-535)))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-535))))) +(-13 (-1100) (-10 -8 (-15 -2883 ($ (-655 (-1234)))) (-15 -3277 ((-655 (-1234)) $)))) +((-2861 (((-112) $ $) NIL)) (-1793 (((-1152) $) 14)) (-2288 (((-1176) $) NIL)) (-1405 (((-517) $) 11)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 21) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-536) (-13 (-1100) (-10 -8 (-15 -1405 ((-517) $)) (-15 -1793 ((-1152) $))))) (T -536)) +((-1405 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-536)))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536))))) +(-13 (-1100) (-10 -8 (-15 -1405 ((-517) $)) (-15 -1793 ((-1152) $)))) +((-3787 (((-702 (-1243)) $) 15)) (-3850 (((-702 (-1241)) $) 38)) (-2352 (((-702 (-1240)) $) 29)) (-2337 (((-702 (-560)) $) 12)) (-3113 (((-702 (-558)) $) 42)) (-2139 (((-702 (-557)) $) 33)) (-3647 (((-782) $ (-129)) 54))) +(((-537 |#1|) (-10 -8 (-15 -3647 ((-782) |#1| (-129))) (-15 -3850 ((-702 (-1241)) |#1|)) (-15 -3113 ((-702 (-558)) |#1|)) (-15 -2352 ((-702 (-1240)) |#1|)) (-15 -2139 ((-702 (-557)) |#1|)) (-15 -3787 ((-702 (-1243)) |#1|)) (-15 -2337 ((-702 (-560)) |#1|))) (-538)) (T -537)) +NIL +(-10 -8 (-15 -3647 ((-782) |#1| (-129))) (-15 -3850 ((-702 (-1241)) |#1|)) (-15 -3113 ((-702 (-558)) |#1|)) (-15 -2352 ((-702 (-1240)) |#1|)) (-15 -2139 ((-702 (-557)) |#1|)) (-15 -3787 ((-702 (-1243)) |#1|)) (-15 -2337 ((-702 (-560)) |#1|))) +((-3787 (((-702 (-1243)) $) 12)) (-3850 (((-702 (-1241)) $) 8)) (-2352 (((-702 (-1240)) $) 10)) (-2337 (((-702 (-560)) $) 13)) (-3113 (((-702 (-558)) $) 9)) (-2139 (((-702 (-557)) $) 11)) (-3647 (((-782) $ (-129)) 7)) (-2114 (((-702 (-130)) $) 14)) (-3504 (($ $) 6))) +(((-538) (-141)) (T -538)) +((-2114 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-130))))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-560))))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1243))))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-557))))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1240))))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-558))))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1241))))) (-3647 (*1 *2 *1 *3) (-12 (-4 *1 (-538)) (-5 *3 (-129)) (-5 *2 (-782))))) +(-13 (-175) (-10 -8 (-15 -2114 ((-702 (-130)) $)) (-15 -2337 ((-702 (-560)) $)) (-15 -3787 ((-702 (-1243)) $)) (-15 -2139 ((-702 (-557)) $)) (-15 -2352 ((-702 (-1240)) $)) (-15 -3113 ((-702 (-558)) $)) (-15 -3850 ((-702 (-1241)) $)) (-15 -3647 ((-782) $ (-129))))) (((-175) . T)) -((-1818 (((-1191 |#1|) (-783)) 115)) (-1448 (((-1286 |#1|) (-1286 |#1|) (-937)) 108)) (-1797 (((-1291) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))) |#1|) 123)) (-1838 (((-1286 |#1|) (-1286 |#1|) (-783)) 53)) (-2080 (((-1286 |#1|) (-937)) 110)) (-1863 (((-1286 |#1|) (-1286 |#1|) (-576)) 30)) (-1808 (((-1191 |#1|) (-1286 |#1|)) 116)) (-1909 (((-1286 |#1|) (-937)) 137)) (-1886 (((-112) (-1286 |#1|)) 120)) (-1941 (((-1286 |#1|) (-1286 |#1|) (-937)) 100)) (-1922 (((-1191 |#1|) (-1286 |#1|)) 131)) (-1875 (((-937) (-1286 |#1|)) 96)) (-4333 (((-1286 |#1|) (-1286 |#1|)) 38)) (-4318 (((-1286 |#1|) (-937) (-937)) 140)) (-1851 (((-1286 |#1|) (-1286 |#1|) (-1138) (-1138)) 29)) (-1828 (((-1286 |#1|) (-1286 |#1|) (-783) (-1138)) 54)) (-1898 (((-1286 (-1286 |#1|)) (-937)) 136)) (-4039 (((-1286 |#1|) (-1286 |#1|) (-1286 |#1|)) 121)) (** (((-1286 |#1|) (-1286 |#1|) (-576)) 67)) (* (((-1286 |#1|) (-1286 |#1|) (-1286 |#1|)) 31))) -(((-540 |#1|) (-10 -7 (-15 -1797 ((-1291) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))) |#1|)) (-15 -2080 ((-1286 |#1|) (-937))) (-15 -4318 ((-1286 |#1|) (-937) (-937))) (-15 -1808 ((-1191 |#1|) (-1286 |#1|))) (-15 -1818 ((-1191 |#1|) (-783))) (-15 -1828 ((-1286 |#1|) (-1286 |#1|) (-783) (-1138))) (-15 -1838 ((-1286 |#1|) (-1286 |#1|) (-783))) (-15 -1851 ((-1286 |#1|) (-1286 |#1|) (-1138) (-1138))) (-15 -1863 ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 ** ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 * ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -4039 ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -1941 ((-1286 |#1|) (-1286 |#1|) (-937))) (-15 -1448 ((-1286 |#1|) (-1286 |#1|) (-937))) (-15 -4333 ((-1286 |#1|) (-1286 |#1|))) (-15 -1875 ((-937) (-1286 |#1|))) (-15 -1886 ((-112) (-1286 |#1|))) (-15 -1898 ((-1286 (-1286 |#1|)) (-937))) (-15 -1909 ((-1286 |#1|) (-937))) (-15 -1922 ((-1191 |#1|) (-1286 |#1|)))) (-360)) (T -540)) -((-1922 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1286 (-1286 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-937)) (-5 *1 (-540 *4)))) (-4333 (*1 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-1448 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-937)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1941 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-937)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4039 (*1 *2 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1851 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1138)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1838 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1828 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1286 *5)) (-5 *3 (-783)) (-5 *4 (-1138)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-1818 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)))) (-4318 (*1 *2 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138)))))) (-4 *4 (-360)) (-5 *2 (-1291)) (-5 *1 (-540 *4))))) -(-10 -7 (-15 -1797 ((-1291) (-1286 (-656 (-2 (|:| -4183 |#1|) (|:| -4318 (-1138))))) |#1|)) (-15 -2080 ((-1286 |#1|) (-937))) (-15 -4318 ((-1286 |#1|) (-937) (-937))) (-15 -1808 ((-1191 |#1|) (-1286 |#1|))) (-15 -1818 ((-1191 |#1|) (-783))) (-15 -1828 ((-1286 |#1|) (-1286 |#1|) (-783) (-1138))) (-15 -1838 ((-1286 |#1|) (-1286 |#1|) (-783))) (-15 -1851 ((-1286 |#1|) (-1286 |#1|) (-1138) (-1138))) (-15 -1863 ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 ** ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 * ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -4039 ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -1941 ((-1286 |#1|) (-1286 |#1|) (-937))) (-15 -1448 ((-1286 |#1|) (-1286 |#1|) (-937))) (-15 -4333 ((-1286 |#1|) (-1286 |#1|))) (-15 -1875 ((-937) (-1286 |#1|))) (-15 -1886 ((-112) (-1286 |#1|))) (-15 -1898 ((-1286 (-1286 |#1|)) (-937))) (-15 -1909 ((-1286 |#1|) (-937))) (-15 -1922 ((-1191 |#1|) (-1286 |#1|)))) -((-1763 (((-703 (-1244)) $) NIL)) (-1716 (((-703 (-1242)) $) NIL)) (-1738 (((-703 (-1241)) $) NIL)) (-1774 (((-703 (-561)) $) NIL)) (-1727 (((-703 (-559)) $) NIL)) (-1750 (((-703 (-558)) $) NIL)) (-1707 (((-783) $ (-129)) NIL)) (-1785 (((-703 (-130)) $) 26)) (-1934 (((-1138) $ (-1138)) 31)) (-2634 (((-1138) $) 30)) (-4268 (((-112) $) 20)) (-1958 (($ (-400)) 14) (($ (-1177)) 16)) (-1945 (((-112) $) 27)) (-2884 (((-874) $) 34)) (-1561 (($ $) 28))) -(((-541) (-13 (-539) (-625 (-874)) (-10 -8 (-15 -1958 ($ (-400))) (-15 -1958 ($ (-1177))) (-15 -1945 ((-112) $)) (-15 -4268 ((-112) $)) (-15 -2634 ((-1138) $)) (-15 -1934 ((-1138) $ (-1138)))))) (T -541)) -((-1958 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-1958 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-541)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-541)))) (-1934 (*1 *2 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-541))))) -(-13 (-539) (-625 (-874)) (-10 -8 (-15 -1958 ($ (-400))) (-15 -1958 ($ (-1177))) (-15 -1945 ((-112) $)) (-15 -4268 ((-112) $)) (-15 -2634 ((-1138) $)) (-15 -1934 ((-1138) $ (-1138))))) -((-3931 (((-1 |#1| |#1|) |#1|) 11)) (-1970 (((-1 |#1| |#1|)) 10))) -(((-542 |#1|) (-10 -7 (-15 -1970 ((-1 |#1| |#1|))) (-15 -3931 ((-1 |#1| |#1|) |#1|))) (-13 (-738) (-25))) (T -542)) -((-3931 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))) (-1970 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(-10 -7 (-15 -1970 ((-1 |#1| |#1|))) (-15 -3931 ((-1 |#1| |#1|) |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2158 (($ $ $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-4407 (($ $) NIL)) (-2421 (($ (-783) |#1|) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-2551 (($ (-1 (-783) (-783)) $) NIL)) (-2887 ((|#1| $) NIL)) (-4383 (((-783) $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 27)) (-3722 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL))) -(((-543 |#1|) (-13 (-805) (-521 (-783) |#1|)) (-862)) (T -543)) -NIL -(-13 (-805) (-521 (-783) |#1|)) -((-1995 (((-656 |#2|) (-1191 |#1|) |#3|) 98)) (-2010 (((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1191 |#1|)) (-1191 |#1|))) 114)) (-1984 (((-1191 |#1|) (-701 |#1|)) 110))) -(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -1984 ((-1191 |#1|) (-701 |#1|))) (-15 -1995 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -2010 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1191 |#1|)) (-1191 |#1|))))) (-374) (-374) (-13 (-374) (-860))) (T -544)) -((-2010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1191 *6)) (-1191 *6))) (-4 *6 (-374)) (-5 *2 (-656 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))) (-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1191 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) -(-10 -7 (-15 -1984 ((-1191 |#1|) (-701 |#1|))) (-15 -1995 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -2010 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1191 |#1|)) (-1191 |#1|))))) -((-4236 (((-703 (-1244)) $ (-1244)) NIL)) (-4247 (((-703 (-561)) $ (-561)) NIL)) (-4227 (((-783) $ (-129)) 39)) (-4258 (((-703 (-130)) $ (-130)) 40)) (-1763 (((-703 (-1244)) $) NIL)) (-1716 (((-703 (-1242)) $) NIL)) (-1738 (((-703 (-1241)) $) NIL)) (-1774 (((-703 (-561)) $) NIL)) (-1727 (((-703 (-559)) $) NIL)) (-1750 (((-703 (-558)) $) NIL)) (-1707 (((-783) $ (-129)) 35)) (-1785 (((-703 (-130)) $) 37)) (-2957 (((-112) $) 27)) (-1683 (((-703 $) (-591) (-970)) 18) (((-703 $) (-503) (-970)) 24)) (-2884 (((-874) $) 48)) (-1561 (($ $) 42))) -(((-545) (-13 (-779 (-591)) (-625 (-874)) (-10 -8 (-15 -1683 ((-703 $) (-503) (-970)))))) (T -545)) -((-1683 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-970)) (-5 *2 (-703 (-545))) (-5 *1 (-545))))) -(-13 (-779 (-591)) (-625 (-874)) (-10 -8 (-15 -1683 ((-703 $) (-503) (-970))))) -((-2033 (((-855 (-576))) 12)) (-2044 (((-855 (-576))) 14)) (-1641 (((-845 (-576))) 9))) -(((-546) (-10 -7 (-15 -1641 ((-845 (-576)))) (-15 -2033 ((-855 (-576)))) (-15 -2044 ((-855 (-576)))))) (T -546)) -((-2044 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-2033 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-1641 (*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546))))) -(-10 -7 (-15 -1641 ((-845 (-576)))) (-15 -2033 ((-855 (-576)))) (-15 -2044 ((-855 (-576))))) -((-2057 (((-548) (-1195)) 15)) (-1802 ((|#1| (-548)) 20))) -(((-547 |#1|) (-10 -7 (-15 -2057 ((-548) (-1195))) (-15 -1802 (|#1| (-548)))) (-1236)) (T -547)) -((-1802 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1236)))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1236))))) -(-10 -7 (-15 -2057 ((-548) (-1195))) (-15 -1802 (|#1| (-548)))) -((-2862 (((-112) $ $) NIL)) (-2035 (((-1177) $) 55)) (-3857 (((-112) $) 51)) (-3819 (((-1195) $) 52)) (-3868 (((-112) $) 49)) (-1651 (((-1177) $) 50)) (-2023 (($ (-1177)) 56)) (-3891 (((-112) $) NIL)) (-3916 (((-112) $) NIL)) (-3879 (((-112) $) NIL)) (-3733 (((-1177) $) NIL)) (-4335 (($ $ (-656 (-1195))) 21)) (-1802 (((-52) $) 23)) (-3846 (((-112) $) NIL)) (-3842 (((-576) $) NIL)) (-3914 (((-1138) $) NIL)) (-3764 (($ $ (-656 (-1195)) (-1195)) 73)) (-3834 (((-112) $) NIL)) (-1540 (((-227) $) NIL)) (-3954 (($ $) 44)) (-1401 (((-874) $) NIL)) (-2572 (((-112) $ $) NIL)) (-2071 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-3844 (((-656 $) $) 30)) (-3540 (((-1195) (-656 $)) 57)) (-2616 (($ (-1177)) NIL) (($ (-1195)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-874)) NIL) (($ (-656 $)) 65) (((-1122) $) 12) (($ (-1122)) 13)) (-2661 (((-1195) (-1195) (-656 $)) 60)) (-2884 (((-874) $) 54)) (-3812 (($ $) 59)) (-3823 (($ $) 58)) (-2046 (($ $ (-656 $)) 66)) (-3722 (((-112) $ $) NIL)) (-3902 (((-112) $) 29)) (-1996 (($) 9 T CONST)) (-2011 (($) 11 T CONST)) (-3915 (((-112) $ $) 74)) (-4039 (($ $ $) 82)) (-4017 (($ $ $) 75)) (** (($ $ (-783)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-2872 (((-576) $) NIL))) -(((-548) (-13 (-1121 (-1177) (-1195) (-576) (-227) (-874)) (-626 (-1122)) (-10 -8 (-15 -1802 ((-52) $)) (-15 -2616 ($ (-1122))) (-15 -2046 ($ $ (-656 $))) (-15 -3764 ($ $ (-656 (-1195)) (-1195))) (-15 -4335 ($ $ (-656 (-1195)))) (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 -4039 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 0 ($) -3739) (-15 1 ($) -3739) (-15 -3954 ($ $)) (-15 -2035 ((-1177) $)) (-15 -2023 ($ (-1177))) (-15 -3540 ((-1195) (-656 $))) (-15 -2661 ((-1195) (-1195) (-656 $)))))) (T -548)) -((-1802 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-548)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1195)) (-5 *1 (-548)))) (-4335 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-548)))) (-4017 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-4039 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-1996 (*1 *1) (-5 *1 (-548))) (-2011 (*1 *1) (-5 *1 (-548))) (-3954 (*1 *1 *1) (-5 *1 (-548))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-548)))) (-2023 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-548)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1195)) (-5 *1 (-548)))) (-2661 (*1 *2 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) -(-13 (-1121 (-1177) (-1195) (-576) (-227) (-874)) (-626 (-1122)) (-10 -8 (-15 -1802 ((-52) $)) (-15 -2616 ($ (-1122))) (-15 -2046 ($ $ (-656 $))) (-15 -3764 ($ $ (-656 (-1195)) (-1195))) (-15 -4335 ($ $ (-656 (-1195)))) (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 -4039 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 (-1996) ($) -3739) (-15 (-2011) ($) -3739) (-15 -3954 ($ $)) (-15 -2035 ((-1177) $)) (-15 -2023 ($ (-1177))) (-15 -3540 ((-1195) (-656 $))) (-15 -2661 ((-1195) (-1195) (-656 $))))) -((-1901 ((|#2| |#2|) 17)) (-1878 ((|#2| |#2|) 13)) (-1912 ((|#2| |#2| (-576) (-576)) 20)) (-1889 ((|#2| |#2|) 15))) -(((-549 |#1| |#2|) (-10 -7 (-15 -1878 (|#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -1901 (|#2| |#2|)) (-15 -1912 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1277 |#1|)) (T -549)) -((-1912 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1277 *4)))) (-1901 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1277 *3)))) (-1889 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1277 *3)))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1277 *3))))) -(-10 -7 (-15 -1878 (|#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -1901 (|#2| |#2|)) (-15 -1912 (|#2| |#2| (-576) (-576)))) -((-2093 (((-656 (-304 (-968 |#2|))) (-656 |#2|) (-656 (-1195))) 32)) (-2069 (((-656 |#2|) (-968 |#1|) |#3|) 54) (((-656 |#2|) (-1191 |#1|) |#3|) 53)) (-2082 (((-656 (-656 |#2|)) (-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195)) |#3|) 106))) -(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2069 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -2069 ((-656 |#2|) (-968 |#1|) |#3|)) (-15 -2082 ((-656 (-656 |#2|)) (-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195)) |#3|)) (-15 -2093 ((-656 (-304 (-968 |#2|))) (-656 |#2|) (-656 (-1195))))) (-464) (-374) (-13 (-374) (-860))) (T -550)) -((-2093 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1195))) (-4 *6 (-374)) (-5 *2 (-656 (-304 (-968 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))) (-2082 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-860))))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-968 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -2069 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -2069 ((-656 |#2|) (-968 |#1|) |#3|)) (-15 -2082 ((-656 (-656 |#2|)) (-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195)) |#3|)) (-15 -2093 ((-656 (-304 (-968 |#2|))) (-656 |#2|) (-656 (-1195))))) -((-2123 ((|#2| |#2| |#1|) 17)) (-2103 ((|#2| (-656 |#2|)) 31)) (-2113 ((|#2| (-656 |#2|)) 52))) -(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2103 (|#2| (-656 |#2|))) (-15 -2113 (|#2| (-656 |#2|))) (-15 -2123 (|#2| |#2| |#1|))) (-317) (-1262 |#1|) |#1| (-1 |#1| |#1| (-783))) (T -551)) -((-2123 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1262 *3)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(-10 -7 (-15 -2103 (|#2| (-656 |#2|))) (-15 -2113 (|#2| (-656 |#2|))) (-15 -2123 (|#2| |#2| |#1|))) -((-2354 (((-430 (-1191 |#4|)) (-1191 |#4|) (-1 (-430 (-1191 |#3|)) (-1191 |#3|))) 89) (((-430 |#4|) |#4| (-1 (-430 (-1191 |#3|)) (-1191 |#3|))) 210))) -(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2354 ((-430 |#4|) |#4| (-1 (-430 (-1191 |#3|)) (-1191 |#3|)))) (-15 -2354 ((-430 (-1191 |#4|)) (-1191 |#4|) (-1 (-430 (-1191 |#3|)) (-1191 |#3|))))) (-862) (-805) (-13 (-317) (-148)) (-965 |#3| |#2| |#1|)) (T -552)) -((-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *8 (-965 *7 *6 *5)) (-5 *2 (-430 (-1191 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1191 *8)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-965 *7 *6 *5))))) -(-10 -7 (-15 -2354 ((-430 |#4|) |#4| (-1 (-430 (-1191 |#3|)) (-1191 |#3|)))) (-15 -2354 ((-430 (-1191 |#4|)) (-1191 |#4|) (-1 (-430 (-1191 |#3|)) (-1191 |#3|))))) -((-1901 ((|#4| |#4|) 74)) (-1878 ((|#4| |#4|) 70)) (-1912 ((|#4| |#4| (-576) (-576)) 76)) (-1889 ((|#4| |#4|) 72))) -(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1878 (|#4| |#4|)) (-15 -1889 (|#4| |#4|)) (-15 -1901 (|#4| |#4|)) (-15 -1912 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1262 |#1|) (-736 |#1| |#2|) (-1277 |#3|)) (T -553)) -((-1912 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1262 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1277 *6)))) (-1901 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) (-1889 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5))))) -(-10 -7 (-15 -1878 (|#4| |#4|)) (-15 -1889 (|#4| |#4|)) (-15 -1901 (|#4| |#4|)) (-15 -1912 (|#4| |#4| (-576) (-576)))) -((-1901 ((|#2| |#2|) 27)) (-1878 ((|#2| |#2|) 23)) (-1912 ((|#2| |#2| (-576) (-576)) 29)) (-1889 ((|#2| |#2|) 25))) -(((-554 |#1| |#2|) (-10 -7 (-15 -1878 (|#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -1901 (|#2| |#2|)) (-15 -1912 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1277 |#1|)) (T -554)) -((-1912 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1277 *4)))) (-1901 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1277 *3)))) (-1889 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1277 *3)))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1277 *3))))) -(-10 -7 (-15 -1878 (|#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -1901 (|#2| |#2|)) (-15 -1912 (|#2| |#2| (-576) (-576)))) -((-2133 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32))) -(((-555 |#1| |#2|) (-10 -7 (-15 -2133 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2133 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2133 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1067) (-1262 |#1|)) (T -555)) -((-2133 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4)))) (-2133 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4)))) (-2133 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1067)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1262 *5))))) -(-10 -7 (-15 -2133 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2133 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2133 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) -((-2199 (($ $ $) 84)) (-3986 (((-430 $) $) 52)) (-2449 (((-3 (-576) "failed") $) 64)) (-4401 (((-576) $) 42)) (-3424 (((-3 (-419 (-576)) "failed") $) 79)) (-3413 (((-112) $) 26)) (-3404 (((-419 (-576)) $) 77)) (-2463 (((-112) $) 55)) (-2156 (($ $ $ $) 92)) (-1370 (((-112) $) 17)) (-2954 (($ $ $) 62)) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 74)) (-1831 (((-3 $ "failed") $) 69)) (-3537 (($ $) 24)) (-2144 (($ $ $) 90)) (-3475 (($) 65)) (-2935 (($ $) 58)) (-2354 (((-430 $) $) 50)) (-4072 (((-112) $) 15)) (-2910 (((-783) $) 32)) (-2390 (($ $) 11) (($ $ (-783)) NIL)) (-3079 (($ $) 18)) (-2616 (((-576) $) NIL) (((-548) $) 41) (((-905 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-1871 (((-783)) 9)) (-2218 (((-112) $ $) 21)) (-1658 (($ $ $) 60))) -(((-556 |#1|) (-10 -8 (-15 -2144 (|#1| |#1| |#1|)) (-15 -2156 (|#1| |#1| |#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3079 (|#1| |#1|)) (-15 -3424 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3404 ((-419 (-576)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -2218 ((-112) |#1| |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -3475 (|#1|)) (-15 -1831 ((-3 |#1| "failed") |#1|)) (-15 -2616 ((-227) |#1|)) (-15 -2616 ((-390) |#1|)) (-15 -2954 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -1606 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2616 ((-576) |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -1370 ((-112) |#1|)) (-15 -2910 ((-783) |#1|)) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -3986 ((-430 |#1|) |#1|)) (-15 -2463 ((-112) |#1|)) (-15 -1871 ((-783)))) (-557)) (T -556)) -((-1871 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) -(-10 -8 (-15 -2144 (|#1| |#1| |#1|)) (-15 -2156 (|#1| |#1| |#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3079 (|#1| |#1|)) (-15 -3424 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3404 ((-419 (-576)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -2218 ((-112) |#1| |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -3475 (|#1|)) (-15 -1831 ((-3 |#1| "failed") |#1|)) (-15 -2616 ((-227) |#1|)) (-15 -2616 ((-390) |#1|)) (-15 -2954 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -1606 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2616 ((-576) |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -1370 ((-112) |#1|)) (-15 -2910 ((-783) |#1|)) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -3986 ((-430 |#1|) |#1|)) (-15 -2463 ((-112) |#1|)) (-15 -1871 ((-783)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-2199 (($ $ $) 92)) (-1459 (((-3 $ "failed") $ $) 20)) (-2178 (($ $ $ $) 81)) (-2944 (($ $) 57)) (-3986 (((-430 $) $) 58)) (-2922 (((-112) $ $) 134)) (-3966 (((-576) $) 123)) (-3626 (($ $ $) 95)) (-2473 (($) 18 T CONST)) (-2449 (((-3 (-576) "failed") $) 115)) (-4401 (((-576) $) 116)) (-2803 (($ $ $) 138)) (-2613 (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 113) (((-701 (-576)) (-701 $)) 112) (((-701 (-576)) (-1286 $)) 111)) (-1999 (((-3 $ "failed") $) 37)) (-3424 (((-3 (-419 (-576)) "failed") $) 89)) (-3413 (((-112) $) 91)) (-3404 (((-419 (-576)) $) 90)) (-2080 (($) 88) (($ $) 87)) (-2814 (($ $ $) 137)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 132)) (-2463 (((-112) $) 59)) (-2156 (($ $ $ $) 79)) (-2208 (($ $ $) 93)) (-1370 (((-112) $) 125)) (-2954 (($ $ $) 104)) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 107)) (-1439 (((-112) $) 35)) (-4064 (((-112) $) 99)) (-1831 (((-3 $ "failed") $) 101)) (-1379 (((-112) $) 124)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 141)) (-2166 (($ $ $ $) 80)) (-1921 (($ $ $) 126)) (-4137 (($ $ $) 127)) (-3537 (($ $) 83)) (-1840 (($ $) 96)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-2144 (($ $ $) 78)) (-3475 (($) 100 T CONST)) (-3048 (($ $) 85)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2935 (($ $) 105)) (-2354 (((-430 $) $) 56)) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 139)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 133)) (-4072 (((-112) $) 98)) (-2910 (((-783) $) 135)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 136)) (-2390 (($ $) 121) (($ $ (-783)) 119)) (-3355 (($ $) 84)) (-3079 (($ $) 86)) (-2616 (((-576) $) 117) (((-548) $) 109) (((-905 (-576)) $) 108) (((-390) $) 103) (((-227) $) 102)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 114)) (-1871 (((-783)) 32 T CONST)) (-2218 (((-112) $ $) 94)) (-1658 (($ $ $) 106)) (-3722 (((-112) $ $) 9)) (-1549 (($) 97)) (-4232 (((-112) $ $) 45)) (-2189 (($ $ $ $) 82)) (-2610 (($ $) 122)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $) 120) (($ $ (-783)) 118)) (-3983 (((-112) $ $) 129)) (-3957 (((-112) $ $) 130)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 128)) (-3943 (((-112) $ $) 131)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 110))) -(((-557) (-141)) (T -557)) -((-4064 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-1549 (*1 *1) (-4 *1 (-557))) (-1840 (*1 *1 *1) (-4 *1 (-557))) (-3626 (*1 *1 *1 *1) (-4 *1 (-557))) (-2218 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2208 (*1 *1 *1 *1) (-4 *1 (-557))) (-2199 (*1 *1 *1 *1) (-4 *1 (-557))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-3424 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-2080 (*1 *1) (-4 *1 (-557))) (-2080 (*1 *1 *1) (-4 *1 (-557))) (-3079 (*1 *1 *1) (-4 *1 (-557))) (-3048 (*1 *1 *1) (-4 *1 (-557))) (-3355 (*1 *1 *1) (-4 *1 (-557))) (-3537 (*1 *1 *1) (-4 *1 (-557))) (-2189 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2178 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2166 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2156 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2144 (*1 *1 *1 *1) (-4 *1 (-557)))) -(-13 (-1240) (-317) (-832) (-239) (-626 (-576)) (-1056 (-576)) (-651 (-576)) (-626 (-548)) (-626 (-905 (-576))) (-899 (-576)) (-144) (-1040) (-148) (-1170) (-10 -8 (-15 -4064 ((-112) $)) (-15 -4072 ((-112) $)) (-6 -4460) (-15 -1549 ($)) (-15 -1840 ($ $)) (-15 -3626 ($ $ $)) (-15 -2218 ((-112) $ $)) (-15 -2208 ($ $ $)) (-15 -2199 ($ $ $)) (-15 -3413 ((-112) $)) (-15 -3404 ((-419 (-576)) $)) (-15 -3424 ((-3 (-419 (-576)) "failed") $)) (-15 -2080 ($)) (-15 -2080 ($ $)) (-15 -3079 ($ $)) (-15 -3048 ($ $)) (-15 -3355 ($ $)) (-15 -3537 ($ $)) (-15 -2189 ($ $ $ $)) (-15 -2178 ($ $ $ $)) (-15 -2166 ($ $ $ $)) (-15 -2156 ($ $ $ $)) (-15 -2144 ($ $ $)) (-6 -4459))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-144) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-548)) . T) ((-626 (-576)) . T) ((-626 (-905 (-576))) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0=(-576)) . T) ((-660 $) . T) ((-652 $) . T) ((-651 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-832) . T) ((-860) . T) ((-862) . T) ((-899 (-576)) . T) ((-936) . T) ((-1040) . T) ((-1056 (-576)) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) . T) ((-1236) . T) ((-1240) . T)) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) NIL)) (-2473 (($) NIL T CONST)) (-2080 (($) NIL)) (-1921 (($ $ $) NIL) (($) NIL T CONST)) (-4137 (($ $ $) NIL) (($) NIL T CONST)) (-1875 (((-937) $) NIL)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) -(((-558) (-13 (-856) (-10 -8 (-15 -2473 ($) -3739)))) (T -558)) -((-2473 (*1 *1) (-5 *1 (-558)))) -(-13 (-856) (-10 -8 (-15 -2473 ($) -3739))) +((-3562 (((-1190 |#1|) (-782)) 115)) (-1447 (((-1285 |#1|) (-1285 |#1|) (-936)) 108)) (-2084 (((-1290) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))) |#1|) 123)) (-2081 (((-1285 |#1|) (-1285 |#1|) (-782)) 53)) (-2079 (((-1285 |#1|) (-936)) 110)) (-4219 (((-1285 |#1|) (-1285 |#1|) (-575)) 30)) (-1699 (((-1190 |#1|) (-1285 |#1|)) 116)) (-3547 (((-1285 |#1|) (-936)) 137)) (-2922 (((-112) (-1285 |#1|)) 120)) (-2255 (((-1285 |#1|) (-1285 |#1|) (-936)) 100)) (-1943 (((-1190 |#1|) (-1285 |#1|)) 131)) (-4084 (((-936) (-1285 |#1|)) 96)) (-4332 (((-1285 |#1|) (-1285 |#1|)) 38)) (-4317 (((-1285 |#1|) (-936) (-936)) 140)) (-3705 (((-1285 |#1|) (-1285 |#1|) (-1137) (-1137)) 29)) (-3464 (((-1285 |#1|) (-1285 |#1|) (-782) (-1137)) 54)) (-1624 (((-1285 (-1285 |#1|)) (-936)) 136)) (-4038 (((-1285 |#1|) (-1285 |#1|) (-1285 |#1|)) 121)) (** (((-1285 |#1|) (-1285 |#1|) (-575)) 67)) (* (((-1285 |#1|) (-1285 |#1|) (-1285 |#1|)) 31))) +(((-539 |#1|) (-10 -7 (-15 -2084 ((-1290) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))) |#1|)) (-15 -2079 ((-1285 |#1|) (-936))) (-15 -4317 ((-1285 |#1|) (-936) (-936))) (-15 -1699 ((-1190 |#1|) (-1285 |#1|))) (-15 -3562 ((-1190 |#1|) (-782))) (-15 -3464 ((-1285 |#1|) (-1285 |#1|) (-782) (-1137))) (-15 -2081 ((-1285 |#1|) (-1285 |#1|) (-782))) (-15 -3705 ((-1285 |#1|) (-1285 |#1|) (-1137) (-1137))) (-15 -4219 ((-1285 |#1|) (-1285 |#1|) (-575))) (-15 ** ((-1285 |#1|) (-1285 |#1|) (-575))) (-15 * ((-1285 |#1|) (-1285 |#1|) (-1285 |#1|))) (-15 -4038 ((-1285 |#1|) (-1285 |#1|) (-1285 |#1|))) (-15 -2255 ((-1285 |#1|) (-1285 |#1|) (-936))) (-15 -1447 ((-1285 |#1|) (-1285 |#1|) (-936))) (-15 -4332 ((-1285 |#1|) (-1285 |#1|))) (-15 -4084 ((-936) (-1285 |#1|))) (-15 -2922 ((-112) (-1285 |#1|))) (-15 -1624 ((-1285 (-1285 |#1|)) (-936))) (-15 -3547 ((-1285 |#1|) (-936))) (-15 -1943 ((-1190 |#1|) (-1285 |#1|)))) (-359)) (T -539)) +((-1943 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4)) (-4 *4 (-359)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1285 (-1285 *4))) (-5 *1 (-539 *4)) (-4 *4 (-359)))) (-2922 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-112)) (-5 *1 (-539 *4)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-936)) (-5 *1 (-539 *4)))) (-4332 (*1 *2 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3)))) (-1447 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-936)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-2255 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-936)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-4038 (*1 *2 *2 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-575)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-4219 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-575)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-3705 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1137)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-2081 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-3464 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1285 *5)) (-5 *3 (-782)) (-5 *4 (-1137)) (-4 *5 (-359)) (-5 *1 (-539 *5)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4)) (-4 *4 (-359)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4)))) (-4317 (*1 *2 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4)) (-4 *4 (-359)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4)) (-4 *4 (-359)))) (-2084 (*1 *2 *3 *4) (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137)))))) (-4 *4 (-359)) (-5 *2 (-1290)) (-5 *1 (-539 *4))))) +(-10 -7 (-15 -2084 ((-1290) (-1285 (-655 (-2 (|:| -4182 |#1|) (|:| -4317 (-1137))))) |#1|)) (-15 -2079 ((-1285 |#1|) (-936))) (-15 -4317 ((-1285 |#1|) (-936) (-936))) (-15 -1699 ((-1190 |#1|) (-1285 |#1|))) (-15 -3562 ((-1190 |#1|) (-782))) (-15 -3464 ((-1285 |#1|) (-1285 |#1|) (-782) (-1137))) (-15 -2081 ((-1285 |#1|) (-1285 |#1|) (-782))) (-15 -3705 ((-1285 |#1|) (-1285 |#1|) (-1137) (-1137))) (-15 -4219 ((-1285 |#1|) (-1285 |#1|) (-575))) (-15 ** ((-1285 |#1|) (-1285 |#1|) (-575))) (-15 * ((-1285 |#1|) (-1285 |#1|) (-1285 |#1|))) (-15 -4038 ((-1285 |#1|) (-1285 |#1|) (-1285 |#1|))) (-15 -2255 ((-1285 |#1|) (-1285 |#1|) (-936))) (-15 -1447 ((-1285 |#1|) (-1285 |#1|) (-936))) (-15 -4332 ((-1285 |#1|) (-1285 |#1|))) (-15 -4084 ((-936) (-1285 |#1|))) (-15 -2922 ((-112) (-1285 |#1|))) (-15 -1624 ((-1285 (-1285 |#1|)) (-936))) (-15 -3547 ((-1285 |#1|) (-936))) (-15 -1943 ((-1190 |#1|) (-1285 |#1|)))) +((-3787 (((-702 (-1243)) $) NIL)) (-3850 (((-702 (-1241)) $) NIL)) (-2352 (((-702 (-1240)) $) NIL)) (-2337 (((-702 (-560)) $) NIL)) (-3113 (((-702 (-558)) $) NIL)) (-2139 (((-702 (-557)) $) NIL)) (-3647 (((-782) $ (-129)) NIL)) (-2114 (((-702 (-130)) $) 26)) (-3932 (((-1137) $ (-1137)) 31)) (-2632 (((-1137) $) 30)) (-2274 (((-112) $) 20)) (-1486 (($ (-399)) 14) (($ (-1176)) 16)) (-2720 (((-112) $) 27)) (-2883 (((-873) $) 34)) (-3504 (($ $) 28))) +(((-540) (-13 (-538) (-624 (-873)) (-10 -8 (-15 -1486 ($ (-399))) (-15 -1486 ($ (-1176))) (-15 -2720 ((-112) $)) (-15 -2274 ((-112) $)) (-15 -2632 ((-1137) $)) (-15 -3932 ((-1137) $ (-1137)))))) (T -540)) +((-1486 (*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-540)))) (-1486 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-540)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-540)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-540)))) (-2632 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-540)))) (-3932 (*1 *2 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-540))))) +(-13 (-538) (-624 (-873)) (-10 -8 (-15 -1486 ($ (-399))) (-15 -1486 ($ (-1176))) (-15 -2720 ((-112) $)) (-15 -2274 ((-112) $)) (-15 -2632 ((-1137) $)) (-15 -3932 ((-1137) $ (-1137))))) +((-3930 (((-1 |#1| |#1|) |#1|) 11)) (-3453 (((-1 |#1| |#1|)) 10))) +(((-541 |#1|) (-10 -7 (-15 -3453 ((-1 |#1| |#1|))) (-15 -3930 ((-1 |#1| |#1|) |#1|))) (-13 (-737) (-25))) (T -541)) +((-3930 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-737) (-25))))) (-3453 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-737) (-25)))))) +(-10 -7 (-15 -3453 ((-1 |#1| |#1|))) (-15 -3930 ((-1 |#1| |#1|) |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3605 (($ $ $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-2417 (($ (-782) |#1|) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2550 (($ (-1 (-782) (-782)) $) NIL)) (-3261 ((|#1| $) NIL)) (-4383 (((-782) $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 27)) (-4400 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4016 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL))) +(((-542 |#1|) (-13 (-804) (-520 (-782) |#1|)) (-861)) (T -542)) +NIL +(-13 (-804) (-520 (-782) |#1|)) +((-2714 (((-655 |#2|) (-1190 |#1|) |#3|) 98)) (-4382 (((-655 (-2 (|:| |outval| |#2|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#2|))))) (-700 |#1|) |#3| (-1 (-429 (-1190 |#1|)) (-1190 |#1|))) 114)) (-3088 (((-1190 |#1|) (-700 |#1|)) 110))) +(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -3088 ((-1190 |#1|) (-700 |#1|))) (-15 -2714 ((-655 |#2|) (-1190 |#1|) |#3|)) (-15 -4382 ((-655 (-2 (|:| |outval| |#2|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#2|))))) (-700 |#1|) |#3| (-1 (-429 (-1190 |#1|)) (-1190 |#1|))))) (-373) (-373) (-13 (-373) (-859))) (T -543)) +((-4382 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *6)) (-5 *5 (-1 (-429 (-1190 *6)) (-1190 *6))) (-4 *6 (-373)) (-5 *2 (-655 (-2 (|:| |outval| *7) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 *7)))))) (-5 *1 (-543 *6 *7 *4)) (-4 *7 (-373)) (-4 *4 (-13 (-373) (-859))))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *5)) (-4 *5 (-373)) (-5 *2 (-655 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859))))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-700 *4)) (-4 *4 (-373)) (-5 *2 (-1190 *4)) (-5 *1 (-543 *4 *5 *6)) (-4 *5 (-373)) (-4 *6 (-13 (-373) (-859)))))) +(-10 -7 (-15 -3088 ((-1190 |#1|) (-700 |#1|))) (-15 -2714 ((-655 |#2|) (-1190 |#1|) |#3|)) (-15 -4382 ((-655 (-2 (|:| |outval| |#2|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#2|))))) (-700 |#1|) |#3| (-1 (-429 (-1190 |#1|)) (-1190 |#1|))))) +((-2256 (((-702 (-1243)) $ (-1243)) NIL)) (-3913 (((-702 (-560)) $ (-560)) NIL)) (-2471 (((-782) $ (-129)) 39)) (-2584 (((-702 (-130)) $ (-130)) 40)) (-3787 (((-702 (-1243)) $) NIL)) (-3850 (((-702 (-1241)) $) NIL)) (-2352 (((-702 (-1240)) $) NIL)) (-2337 (((-702 (-560)) $) NIL)) (-3113 (((-702 (-558)) $) NIL)) (-2139 (((-702 (-557)) $) NIL)) (-3647 (((-782) $ (-129)) 35)) (-2114 (((-702 (-130)) $) 37)) (-4095 (((-112) $) 27)) (-3424 (((-702 $) (-590) (-969)) 18) (((-702 $) (-502) (-969)) 24)) (-2883 (((-873) $) 48)) (-3504 (($ $) 42))) +(((-544) (-13 (-778 (-590)) (-624 (-873)) (-10 -8 (-15 -3424 ((-702 $) (-502) (-969)))))) (T -544)) +((-3424 (*1 *2 *3 *4) (-12 (-5 *3 (-502)) (-5 *4 (-969)) (-5 *2 (-702 (-544))) (-5 *1 (-544))))) +(-13 (-778 (-590)) (-624 (-873)) (-10 -8 (-15 -3424 ((-702 $) (-502) (-969))))) +((-2032 (((-854 (-575))) 12)) (-2043 (((-854 (-575))) 14)) (-1640 (((-844 (-575))) 9))) +(((-545) (-10 -7 (-15 -1640 ((-844 (-575)))) (-15 -2032 ((-854 (-575)))) (-15 -2043 ((-854 (-575)))))) (T -545)) +((-2043 (*1 *2) (-12 (-5 *2 (-854 (-575))) (-5 *1 (-545)))) (-2032 (*1 *2) (-12 (-5 *2 (-854 (-575))) (-5 *1 (-545)))) (-1640 (*1 *2) (-12 (-5 *2 (-844 (-575))) (-5 *1 (-545))))) +(-10 -7 (-15 -1640 ((-844 (-575)))) (-15 -2032 ((-854 (-575)))) (-15 -2043 ((-854 (-575))))) +((-2870 (((-547) (-1194)) 15)) (-1800 ((|#1| (-547)) 20))) +(((-546 |#1|) (-10 -7 (-15 -2870 ((-547) (-1194))) (-15 -1800 (|#1| (-547)))) (-1235)) (T -546)) +((-1800 (*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-546 *2)) (-4 *2 (-1235)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-547)) (-5 *1 (-546 *4)) (-4 *4 (-1235))))) +(-10 -7 (-15 -2870 ((-547) (-1194))) (-15 -1800 (|#1| (-547)))) +((-2861 (((-112) $ $) NIL)) (-3991 (((-1176) $) 55)) (-4221 (((-112) $) 51)) (-3818 (((-1194) $) 52)) (-3988 (((-112) $) 49)) (-1650 (((-1176) $) 50)) (-3121 (($ (-1176)) 56)) (-2992 (((-112) $) NIL)) (-4392 (((-112) $) NIL)) (-2342 (((-112) $) NIL)) (-2288 (((-1176) $) NIL)) (-4334 (($ $ (-655 (-1194))) 21)) (-1800 (((-52) $) 23)) (-2567 (((-112) $) NIL)) (-3841 (((-575) $) NIL)) (-3912 (((-1137) $) NIL)) (-3763 (($ $ (-655 (-1194)) (-1194)) 73)) (-4003 (((-112) $) NIL)) (-1539 (((-227) $) NIL)) (-3952 (($ $) 44)) (-1400 (((-873) $) NIL)) (-2571 (((-112) $ $) NIL)) (-2070 (($ $ (-575)) NIL) (($ $ (-655 (-575))) NIL)) (-3843 (((-655 $) $) 30)) (-3539 (((-1194) (-655 $)) 57)) (-2615 (($ (-1176)) NIL) (($ (-1194)) 19) (($ (-575)) 8) (($ (-227)) 28) (($ (-873)) NIL) (($ (-655 $)) 65) (((-1121) $) 12) (($ (-1121)) 13)) (-2659 (((-1194) (-1194) (-655 $)) 60)) (-2883 (((-873) $) 54)) (-3013 (($ $) 59)) (-4179 (($ $) 58)) (-3141 (($ $ (-655 $)) 66)) (-4400 (((-112) $ $) NIL)) (-2775 (((-112) $) 29)) (-1996 (($) 9 T CONST)) (-2009 (($) 11 T CONST)) (-3914 (((-112) $ $) 74)) (-4038 (($ $ $) 82)) (-4016 (($ $ $) 75)) (** (($ $ (-782)) 81) (($ $ (-575)) 80)) (* (($ $ $) 76)) (-2871 (((-575) $) NIL))) +(((-547) (-13 (-1120 (-1176) (-1194) (-575) (-227) (-873)) (-625 (-1121)) (-10 -8 (-15 -1800 ((-52) $)) (-15 -2615 ($ (-1121))) (-15 -3141 ($ $ (-655 $))) (-15 -3763 ($ $ (-655 (-1194)) (-1194))) (-15 -4334 ($ $ (-655 (-1194)))) (-15 -4016 ($ $ $)) (-15 * ($ $ $)) (-15 -4038 ($ $ $)) (-15 ** ($ $ (-782))) (-15 ** ($ $ (-575))) (-15 0 ($) -3738) (-15 1 ($) -3738) (-15 -3952 ($ $)) (-15 -3991 ((-1176) $)) (-15 -3121 ($ (-1176))) (-15 -3539 ((-1194) (-655 $))) (-15 -2659 ((-1194) (-1194) (-655 $)))))) (T -547)) +((-1800 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-547)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-547)))) (-3141 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-547))) (-5 *1 (-547)))) (-3763 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-1194)) (-5 *1 (-547)))) (-4334 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-547)))) (-4016 (*1 *1 *1 *1) (-5 *1 (-547))) (* (*1 *1 *1 *1) (-5 *1 (-547))) (-4038 (*1 *1 *1 *1) (-5 *1 (-547))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-547)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-547)))) (-1996 (*1 *1) (-5 *1 (-547))) (-2009 (*1 *1) (-5 *1 (-547))) (-3952 (*1 *1 *1) (-5 *1 (-547))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-547)))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-547)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-655 (-547))) (-5 *2 (-1194)) (-5 *1 (-547)))) (-2659 (*1 *2 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-547))) (-5 *1 (-547))))) +(-13 (-1120 (-1176) (-1194) (-575) (-227) (-873)) (-625 (-1121)) (-10 -8 (-15 -1800 ((-52) $)) (-15 -2615 ($ (-1121))) (-15 -3141 ($ $ (-655 $))) (-15 -3763 ($ $ (-655 (-1194)) (-1194))) (-15 -4334 ($ $ (-655 (-1194)))) (-15 -4016 ($ $ $)) (-15 * ($ $ $)) (-15 -4038 ($ $ $)) (-15 ** ($ $ (-782))) (-15 ** ($ $ (-575))) (-15 (-1996) ($) -3738) (-15 (-2009) ($) -3738) (-15 -3952 ($ $)) (-15 -3991 ((-1176) $)) (-15 -3121 ($ (-1176))) (-15 -3539 ((-1194) (-655 $))) (-15 -2659 ((-1194) (-1194) (-655 $))))) +((-3866 ((|#2| |#2|) 17)) (-3252 ((|#2| |#2|) 13)) (-2686 ((|#2| |#2| (-575) (-575)) 20)) (-1979 ((|#2| |#2|) 15))) +(((-548 |#1| |#2|) (-10 -7 (-15 -3252 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -3866 (|#2| |#2|)) (-15 -2686 (|#2| |#2| (-575) (-575)))) (-13 (-567) (-148)) (-1276 |#1|)) (T -548)) +((-2686 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-575)) (-4 *4 (-13 (-567) (-148))) (-5 *1 (-548 *4 *2)) (-4 *2 (-1276 *4)))) (-3866 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1276 *3)))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1276 *3)))) (-3252 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1276 *3))))) +(-10 -7 (-15 -3252 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -3866 (|#2| |#2|)) (-15 -2686 (|#2| |#2| (-575) (-575)))) +((-2919 (((-655 (-303 (-967 |#2|))) (-655 |#2|) (-655 (-1194))) 32)) (-1419 (((-655 |#2|) (-967 |#1|) |#3|) 54) (((-655 |#2|) (-1190 |#1|) |#3|) 53)) (-3148 (((-655 (-655 |#2|)) (-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194)) |#3|) 106))) +(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -1419 ((-655 |#2|) (-1190 |#1|) |#3|)) (-15 -1419 ((-655 |#2|) (-967 |#1|) |#3|)) (-15 -3148 ((-655 (-655 |#2|)) (-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194)) |#3|)) (-15 -2919 ((-655 (-303 (-967 |#2|))) (-655 |#2|) (-655 (-1194))))) (-463) (-373) (-13 (-373) (-859))) (T -549)) +((-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-1194))) (-4 *6 (-373)) (-5 *2 (-655 (-303 (-967 *6)))) (-5 *1 (-549 *5 *6 *7)) (-4 *5 (-463)) (-4 *7 (-13 (-373) (-859))))) (-3148 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194))) (-4 *6 (-463)) (-5 *2 (-655 (-655 *7))) (-5 *1 (-549 *6 *7 *5)) (-4 *7 (-373)) (-4 *5 (-13 (-373) (-859))))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-967 *5)) (-4 *5 (-463)) (-5 *2 (-655 *6)) (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859))))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *5)) (-4 *5 (-463)) (-5 *2 (-655 *6)) (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859)))))) +(-10 -7 (-15 -1419 ((-655 |#2|) (-1190 |#1|) |#3|)) (-15 -1419 ((-655 |#2|) (-967 |#1|) |#3|)) (-15 -3148 ((-655 (-655 |#2|)) (-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194)) |#3|)) (-15 -2919 ((-655 (-303 (-967 |#2|))) (-655 |#2|) (-655 (-1194))))) +((-4256 ((|#2| |#2| |#1|) 17)) (-1364 ((|#2| (-655 |#2|)) 31)) (-2508 ((|#2| (-655 |#2|)) 52))) +(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1364 (|#2| (-655 |#2|))) (-15 -2508 (|#2| (-655 |#2|))) (-15 -4256 (|#2| |#2| |#1|))) (-316) (-1261 |#1|) |#1| (-1 |#1| |#1| (-782))) (T -550)) +((-4256 (*1 *2 *2 *3) (-12 (-4 *3 (-316)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-782))) (-5 *1 (-550 *3 *2 *4 *5)) (-4 *2 (-1261 *3)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-550 *4 *2 *5 *6)) (-4 *4 (-316)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-782))))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-550 *4 *2 *5 *6)) (-4 *4 (-316)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-782)))))) +(-10 -7 (-15 -1364 (|#2| (-655 |#2|))) (-15 -2508 (|#2| (-655 |#2|))) (-15 -4256 (|#2| |#2| |#1|))) +((-2353 (((-429 (-1190 |#4|)) (-1190 |#4|) (-1 (-429 (-1190 |#3|)) (-1190 |#3|))) 89) (((-429 |#4|) |#4| (-1 (-429 (-1190 |#3|)) (-1190 |#3|))) 210))) +(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2353 ((-429 |#4|) |#4| (-1 (-429 (-1190 |#3|)) (-1190 |#3|)))) (-15 -2353 ((-429 (-1190 |#4|)) (-1190 |#4|) (-1 (-429 (-1190 |#3|)) (-1190 |#3|))))) (-861) (-804) (-13 (-316) (-148)) (-964 |#3| |#2| |#1|)) (T -551)) +((-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-429 (-1190 *7)) (-1190 *7))) (-4 *7 (-13 (-316) (-148))) (-4 *5 (-861)) (-4 *6 (-804)) (-4 *8 (-964 *7 *6 *5)) (-5 *2 (-429 (-1190 *8))) (-5 *1 (-551 *5 *6 *7 *8)) (-5 *3 (-1190 *8)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-429 (-1190 *7)) (-1190 *7))) (-4 *7 (-13 (-316) (-148))) (-4 *5 (-861)) (-4 *6 (-804)) (-5 *2 (-429 *3)) (-5 *1 (-551 *5 *6 *7 *3)) (-4 *3 (-964 *7 *6 *5))))) +(-10 -7 (-15 -2353 ((-429 |#4|) |#4| (-1 (-429 (-1190 |#3|)) (-1190 |#3|)))) (-15 -2353 ((-429 (-1190 |#4|)) (-1190 |#4|) (-1 (-429 (-1190 |#3|)) (-1190 |#3|))))) +((-3866 ((|#4| |#4|) 74)) (-3252 ((|#4| |#4|) 70)) (-2686 ((|#4| |#4| (-575) (-575)) 76)) (-1979 ((|#4| |#4|) 72))) +(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3252 (|#4| |#4|)) (-15 -1979 (|#4| |#4|)) (-15 -3866 (|#4| |#4|)) (-15 -2686 (|#4| |#4| (-575) (-575)))) (-13 (-373) (-378) (-625 (-575))) (-1261 |#1|) (-735 |#1| |#2|) (-1276 |#3|)) (T -552)) +((-2686 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-575)) (-4 *4 (-13 (-373) (-378) (-625 *3))) (-4 *5 (-1261 *4)) (-4 *6 (-735 *4 *5)) (-5 *1 (-552 *4 *5 *6 *2)) (-4 *2 (-1276 *6)))) (-3866 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3)) (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5)))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3)) (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5)))) (-3252 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3)) (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5))))) +(-10 -7 (-15 -3252 (|#4| |#4|)) (-15 -1979 (|#4| |#4|)) (-15 -3866 (|#4| |#4|)) (-15 -2686 (|#4| |#4| (-575) (-575)))) +((-3866 ((|#2| |#2|) 27)) (-3252 ((|#2| |#2|) 23)) (-2686 ((|#2| |#2| (-575) (-575)) 29)) (-1979 ((|#2| |#2|) 25))) +(((-553 |#1| |#2|) (-10 -7 (-15 -3252 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -3866 (|#2| |#2|)) (-15 -2686 (|#2| |#2| (-575) (-575)))) (-13 (-373) (-378) (-625 (-575))) (-1276 |#1|)) (T -553)) +((-2686 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-575)) (-4 *4 (-13 (-373) (-378) (-625 *3))) (-5 *1 (-553 *4 *2)) (-4 *2 (-1276 *4)))) (-3866 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2)) (-4 *2 (-1276 *3)))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2)) (-4 *2 (-1276 *3)))) (-3252 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2)) (-4 *2 (-1276 *3))))) +(-10 -7 (-15 -3252 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -3866 (|#2| |#2|)) (-15 -2686 (|#2| |#2| (-575) (-575)))) +((-3006 (((-3 (-575) "failed") |#2| |#1| (-1 (-3 (-575) "failed") |#1|)) 18) (((-3 (-575) "failed") |#2| |#1| (-575) (-1 (-3 (-575) "failed") |#1|)) 14) (((-3 (-575) "failed") |#2| (-575) (-1 (-3 (-575) "failed") |#1|)) 32))) +(((-554 |#1| |#2|) (-10 -7 (-15 -3006 ((-3 (-575) "failed") |#2| (-575) (-1 (-3 (-575) "failed") |#1|))) (-15 -3006 ((-3 (-575) "failed") |#2| |#1| (-575) (-1 (-3 (-575) "failed") |#1|))) (-15 -3006 ((-3 (-575) "failed") |#2| |#1| (-1 (-3 (-575) "failed") |#1|)))) (-1066) (-1261 |#1|)) (T -554)) +((-3006 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-575) "failed") *4)) (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-554 *4 *3)) (-4 *3 (-1261 *4)))) (-3006 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-575) "failed") *4)) (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-554 *4 *3)) (-4 *3 (-1261 *4)))) (-3006 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-575) "failed") *5)) (-4 *5 (-1066)) (-5 *2 (-575)) (-5 *1 (-554 *5 *3)) (-4 *3 (-1261 *5))))) +(-10 -7 (-15 -3006 ((-3 (-575) "failed") |#2| (-575) (-1 (-3 (-575) "failed") |#1|))) (-15 -3006 ((-3 (-575) "failed") |#2| |#1| (-575) (-1 (-3 (-575) "failed") |#1|))) (-15 -3006 ((-3 (-575) "failed") |#2| |#1| (-1 (-3 (-575) "failed") |#1|)))) +((-1349 (($ $ $) 84)) (-2330 (((-429 $) $) 52)) (-2449 (((-3 (-575) "failed") $) 64)) (-4399 (((-575) $) 42)) (-2446 (((-3 (-418 (-575)) "failed") $) 79)) (-3405 (((-112) $) 26)) (-3100 (((-418 (-575)) $) 77)) (-1336 (((-112) $) 55)) (-1455 (($ $ $ $) 92)) (-4075 (((-112) $) 17)) (-3747 (($ $ $) 62)) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 74)) (-2607 (((-3 $ "failed") $) 69)) (-3537 (($ $) 24)) (-1619 (($ $ $) 90)) (-3474 (($) 65)) (-2217 (($ $) 58)) (-2353 (((-429 $) $) 50)) (-2185 (((-112) $) 15)) (-3708 (((-782) $) 32)) (-2389 (($ $) 11) (($ $ (-782)) NIL)) (-3078 (($ $) 18)) (-2615 (((-575) $) NIL) (((-547) $) 41) (((-904 (-575)) $) 45) (((-389) $) 35) (((-227) $) 38)) (-3759 (((-782)) 9)) (-2830 (((-112) $ $) 21)) (-3820 (($ $ $) 60))) +(((-555 |#1|) (-10 -8 (-15 -1619 (|#1| |#1| |#1|)) (-15 -1455 (|#1| |#1| |#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -2446 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -3100 ((-418 (-575)) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -1349 (|#1| |#1| |#1|)) (-15 -2830 ((-112) |#1| |#1|)) (-15 -2185 ((-112) |#1|)) (-15 -3474 (|#1|)) (-15 -2607 ((-3 |#1| "failed") |#1|)) (-15 -2615 ((-227) |#1|)) (-15 -2615 ((-389) |#1|)) (-15 -3747 (|#1| |#1| |#1|)) (-15 -2217 (|#1| |#1|)) (-15 -3820 (|#1| |#1| |#1|)) (-15 -1704 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2615 ((-575) |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -4075 ((-112) |#1|)) (-15 -3708 ((-782) |#1|)) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2330 ((-429 |#1|) |#1|)) (-15 -1336 ((-112) |#1|)) (-15 -3759 ((-782)))) (-556)) (T -555)) +((-3759 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-555 *3)) (-4 *3 (-556))))) +(-10 -8 (-15 -1619 (|#1| |#1| |#1|)) (-15 -1455 (|#1| |#1| |#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -2446 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -3100 ((-418 (-575)) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -1349 (|#1| |#1| |#1|)) (-15 -2830 ((-112) |#1| |#1|)) (-15 -2185 ((-112) |#1|)) (-15 -3474 (|#1|)) (-15 -2607 ((-3 |#1| "failed") |#1|)) (-15 -2615 ((-227) |#1|)) (-15 -2615 ((-389) |#1|)) (-15 -3747 (|#1| |#1| |#1|)) (-15 -2217 (|#1| |#1|)) (-15 -3820 (|#1| |#1| |#1|)) (-15 -1704 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2615 ((-575) |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -4075 ((-112) |#1|)) (-15 -3708 ((-782) |#1|)) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2330 ((-429 |#1|) |#1|)) (-15 -1336 ((-112) |#1|)) (-15 -3759 ((-782)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-1349 (($ $ $) 92)) (-2597 (((-3 $ "failed") $ $) 20)) (-3949 (($ $ $ $) 81)) (-2058 (($ $) 57)) (-2330 (((-429 $) $) 58)) (-2279 (((-112) $ $) 134)) (-4428 (((-575) $) 123)) (-3624 (($ $ $) 95)) (-3011 (($) 18 T CONST)) (-2449 (((-3 (-575) "failed") $) 115)) (-4399 (((-575) $) 116)) (-2802 (($ $ $) 138)) (-1749 (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 113) (((-700 (-575)) (-700 $)) 112) (((-700 (-575)) (-1285 $)) 111)) (-1747 (((-3 $ "failed") $) 37)) (-2446 (((-3 (-418 (-575)) "failed") $) 89)) (-3405 (((-112) $) 91)) (-3100 (((-418 (-575)) $) 90)) (-2079 (($) 88) (($ $) 87)) (-2813 (($ $ $) 137)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 132)) (-1336 (((-112) $) 59)) (-1455 (($ $ $ $) 79)) (-4149 (($ $ $) 93)) (-4075 (((-112) $) 125)) (-3747 (($ $ $) 104)) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 107)) (-1542 (((-112) $) 35)) (-2437 (((-112) $) 99)) (-2607 (((-3 $ "failed") $) 101)) (-4087 (((-112) $) 124)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 141)) (-1993 (($ $ $ $) 80)) (-1920 (($ $ $) 126)) (-1425 (($ $ $) 127)) (-3537 (($ $) 83)) (-1839 (($ $) 96)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-1619 (($ $ $) 78)) (-3474 (($) 100 T CONST)) (-3047 (($ $) 85)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2217 (($ $) 105)) (-2353 (((-429 $) $) 56)) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 139)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 133)) (-2185 (((-112) $) 98)) (-3708 (((-782) $) 135)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 136)) (-2389 (($ $) 121) (($ $ (-782)) 119)) (-3353 (($ $) 84)) (-3078 (($ $) 86)) (-2615 (((-575) $) 117) (((-547) $) 109) (((-904 (-575)) $) 108) (((-389) $) 103) (((-227) $) 102)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-575)) 114)) (-3759 (((-782)) 32 T CONST)) (-2830 (((-112) $ $) 94)) (-3820 (($ $ $) 106)) (-4400 (((-112) $ $) 9)) (-1548 (($) 97)) (-1780 (((-112) $ $) 45)) (-2755 (($ $ $ $) 82)) (-2705 (($ $) 122)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $) 120) (($ $ (-782)) 118)) (-3981 (((-112) $ $) 129)) (-3956 (((-112) $ $) 130)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 128)) (-3943 (((-112) $ $) 131)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ (-575) $) 110))) +(((-556) (-141)) (T -556)) +((-2437 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-1548 (*1 *1) (-4 *1 (-556))) (-1839 (*1 *1 *1) (-4 *1 (-556))) (-3624 (*1 *1 *1 *1) (-4 *1 (-556))) (-2830 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-4149 (*1 *1 *1 *1) (-4 *1 (-556))) (-1349 (*1 *1 *1 *1) (-4 *1 (-556))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-418 (-575))))) (-2446 (*1 *2 *1) (|partial| -12 (-4 *1 (-556)) (-5 *2 (-418 (-575))))) (-2079 (*1 *1) (-4 *1 (-556))) (-2079 (*1 *1 *1) (-4 *1 (-556))) (-3078 (*1 *1 *1) (-4 *1 (-556))) (-3047 (*1 *1 *1) (-4 *1 (-556))) (-3353 (*1 *1 *1) (-4 *1 (-556))) (-3537 (*1 *1 *1) (-4 *1 (-556))) (-2755 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-3949 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-1993 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-1455 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-1619 (*1 *1 *1 *1) (-4 *1 (-556)))) +(-13 (-1239) (-316) (-831) (-238) (-625 (-575)) (-1055 (-575)) (-650 (-575)) (-625 (-547)) (-625 (-904 (-575))) (-898 (-575)) (-144) (-1039) (-148) (-1169) (-10 -8 (-15 -2437 ((-112) $)) (-15 -2185 ((-112) $)) (-6 -4459) (-15 -1548 ($)) (-15 -1839 ($ $)) (-15 -3624 ($ $ $)) (-15 -2830 ((-112) $ $)) (-15 -4149 ($ $ $)) (-15 -1349 ($ $ $)) (-15 -3405 ((-112) $)) (-15 -3100 ((-418 (-575)) $)) (-15 -2446 ((-3 (-418 (-575)) "failed") $)) (-15 -2079 ($)) (-15 -2079 ($ $)) (-15 -3078 ($ $)) (-15 -3047 ($ $)) (-15 -3353 ($ $)) (-15 -3537 ($ $)) (-15 -2755 ($ $ $ $)) (-15 -3949 ($ $ $ $)) (-15 -1993 ($ $ $ $)) (-15 -1455 ($ $ $ $)) (-15 -1619 ($ $ $)) (-6 -4458))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-144) . T) ((-174) . T) ((-625 (-227)) . T) ((-625 (-389)) . T) ((-625 (-547)) . T) ((-625 (-575)) . T) ((-625 (-904 (-575))) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-299) . T) ((-316) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0=(-575)) . T) ((-659 $) . T) ((-651 $) . T) ((-650 #0#) . T) ((-728 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-831) . T) ((-859) . T) ((-861) . T) ((-898 (-575)) . T) ((-935) . T) ((-1039) . T) ((-1055 (-575)) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) . T) ((-1235) . T) ((-1239) . T)) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) NIL)) (-3011 (($) NIL T CONST)) (-2079 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-1425 (($ $ $) NIL) (($) NIL T CONST)) (-4084 (((-936) $) NIL)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) +(((-557) (-13 (-855) (-10 -8 (-15 -3011 ($) -3738)))) (T -557)) +((-3011 (*1 *1) (-5 *1 (-557)))) +(-13 (-855) (-10 -8 (-15 -3011 ($) -3738))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) NIL)) (-2473 (($) NIL T CONST)) (-2080 (($) NIL)) (-1921 (($ $ $) NIL) (($) NIL T CONST)) (-4137 (($ $ $) NIL) (($) NIL T CONST)) (-1875 (((-937) $) NIL)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) -(((-559) (-13 (-856) (-10 -8 (-15 -2473 ($) -3739)))) (T -559)) -((-2473 (*1 *1) (-5 *1 (-559)))) -(-13 (-856) (-10 -8 (-15 -2473 ($) -3739))) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) NIL)) (-3011 (($) NIL T CONST)) (-2079 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-1425 (($ $ $) NIL) (($) NIL T CONST)) (-4084 (((-936) $) NIL)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) +(((-558) (-13 (-855) (-10 -8 (-15 -3011 ($) -3738)))) (T -558)) +((-3011 (*1 *1) (-5 *1 (-558)))) +(-13 (-855) (-10 -8 (-15 -3011 ($) -3738))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) NIL)) (-2473 (($) NIL T CONST)) (-2080 (($) NIL)) (-1921 (($ $ $) NIL) (($) NIL T CONST)) (-4137 (($ $ $) NIL) (($) NIL T CONST)) (-1875 (((-937) $) NIL)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) -(((-560) (-13 (-856) (-10 -8 (-15 -2473 ($) -3739)))) (T -560)) -((-2473 (*1 *1) (-5 *1 (-560)))) -(-13 (-856) (-10 -8 (-15 -2473 ($) -3739))) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) NIL)) (-3011 (($) NIL T CONST)) (-2079 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-1425 (($ $ $) NIL) (($) NIL T CONST)) (-4084 (((-936) $) NIL)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) +(((-559) (-13 (-855) (-10 -8 (-15 -3011 ($) -3738)))) (T -559)) +((-3011 (*1 *1) (-5 *1 (-559)))) +(-13 (-855) (-10 -8 (-15 -3011 ($) -3738))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) NIL)) (-2473 (($) NIL T CONST)) (-2080 (($) NIL)) (-1921 (($ $ $) NIL) (($) NIL T CONST)) (-4137 (($ $ $) NIL) (($) NIL T CONST)) (-1875 (((-937) $) NIL)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) -(((-561) (-13 (-856) (-10 -8 (-15 -2473 ($) -3739)))) (T -561)) -((-2473 (*1 *1) (-5 *1 (-561)))) -(-13 (-856) (-10 -8 (-15 -2473 ($) -3739))) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) NIL)) (-3011 (($) NIL T CONST)) (-2079 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-1425 (($ $ $) NIL) (($) NIL T CONST)) (-4084 (((-936) $) NIL)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) +(((-560) (-13 (-855) (-10 -8 (-15 -3011 ($) -3738)))) (T -560)) +((-3011 (*1 *1) (-5 *1 (-560)))) +(-13 (-855) (-10 -8 (-15 -3011 ($) -3738))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-2862 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2298 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3336 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#2| $ |#1| |#2|) NIL)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1397 (((-3 |#2| "failed") |#1| $) NIL)) (-2473 (($) NIL T CONST)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2833 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3634 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#2| $ |#1|) NIL)) (-4001 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 ((|#1| $) NIL (|has| |#1| (-862)))) (-1496 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3365 ((|#1| $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2002 (((-656 |#1|) $) NIL)) (-3412 (((-112) |#1| $) NIL)) (-3449 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3807 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3385 (((-656 |#1|) $) NIL)) (-3394 (((-112) |#1| $) NIL)) (-3914 (((-1138) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1962 ((|#2| $) NIL (|has| |#1| (-862)))) (-1932 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL)) (-3346 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1581 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2884 (((-874) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3722 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-562 |#1| |#2| |#3|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1118) (-1118) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461)))) (T -562)) -NIL -(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) -((-2229 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1191 |#2|) (-1191 |#2|))) 50))) -(((-563 |#1| |#2|) (-10 -7 (-15 -2229 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1191 |#2|) (-1191 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563)) -((-2229 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1191 *3) (-1191 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3))))) -(-10 -7 (-15 -2229 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1191 |#2|) (-1191 |#2|))))) -((-4145 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-4153 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-4136 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220))) -(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4136 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4145 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4153 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1056 (-576))) (-13 (-27) (-442 |#1|)) (-1262 |#2|) (-1262 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564)) -((-4153 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *7 (-1262 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)))) (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)))) (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(-10 -7 (-15 -4136 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4145 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4153 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-4176 (((-112) (-576) (-576)) 12)) (-4159 (((-576) (-576)) 7)) (-4167 (((-576) (-576) (-576)) 10))) -(((-565) (-10 -7 (-15 -4159 ((-576) (-576))) (-15 -4167 ((-576) (-576) (-576))) (-15 -4176 ((-112) (-576) (-576))))) (T -565)) -((-4176 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-4167 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(-10 -7 (-15 -4159 ((-576) (-576))) (-15 -4167 ((-576) (-576) (-576))) (-15 -4176 ((-112) (-576) (-576)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-2241 ((|#1| $) 67)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-3924 (($ $) 97)) (-3787 (($ $) 80)) (-2158 ((|#1| $) 68)) (-1459 (((-3 $ "failed") $ $) 20)) (-2474 (($ $) 79)) (-3898 (($ $) 96)) (-3762 (($ $) 81)) (-1522 (($ $) 95)) (-3808 (($ $) 82)) (-2473 (($) 18 T CONST)) (-2449 (((-3 (-576) "failed") $) 75)) (-4401 (((-576) $) 76)) (-1999 (((-3 $ "failed") $) 37)) (-4202 (($ |#1| |#1|) 72)) (-1370 (((-112) $) 66)) (-1632 (($) 107)) (-1439 (((-112) $) 35)) (-3298 (($ $ (-576)) 78)) (-1379 (((-112) $) 65)) (-1921 (($ $ $) 113)) (-4137 (($ $ $) 112)) (-3464 (($ $) 104)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-4212 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-419 (-576))) 70)) (-4193 ((|#1| $) 69)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2852 (((-3 $ "failed") $ $) 48)) (-2666 (($ $) 105)) (-1532 (($ $) 94)) (-3818 (($ $) 83)) (-3938 (($ $) 93)) (-3798 (($ $) 84)) (-3910 (($ $) 92)) (-3775 (($ $) 85)) (-4185 (((-112) $ |#1|) 64)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 74)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1570 (($ $) 103)) (-3853 (($ $) 91)) (-4232 (((-112) $ $) 45)) (-1545 (($ $) 102)) (-3829 (($ $) 90)) (-1594 (($ $) 101)) (-3874 (($ $) 89)) (-2915 (($ $) 100)) (-3886 (($ $) 88)) (-1584 (($ $) 99)) (-3864 (($ $) 87)) (-1555 (($ $) 98)) (-3840 (($ $) 86)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3983 (((-112) $ $) 110)) (-3957 (((-112) $ $) 109)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 111)) (-3943 (((-112) $ $) 108)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ $) 106) (($ $ (-419 (-576))) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-566 |#1|) (-141) (-13 (-416) (-1221))) (T -566)) -((-4212 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-4202 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-4212 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-4212 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))) (-4185 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112))))) -(-13 (-464) (-862) (-1221) (-1020) (-1056 (-576)) (-10 -8 (-6 -3495) (-15 -4212 ($ |t#1| |t#1|)) (-15 -4202 ($ |t#1| |t#1|)) (-15 -4212 ($ |t#1|)) (-15 -4212 ($ (-419 (-576)))) (-15 -4193 (|t#1| $)) (-15 -2158 (|t#1| $)) (-15 -2241 (|t#1| $)) (-15 -1370 ((-112) $)) (-15 -1379 ((-112) $)) (-15 -4185 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-294) . T) ((-300) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-862) . T) ((-1020) . T) ((-1056 (-576)) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) . T) ((-1224) . T)) -((-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 9)) (-4241 (($ $) 11)) (-4221 (((-112) $) 20)) (-1999 (((-3 $ "failed") $) 16)) (-4232 (((-112) $ $) 22))) -(((-567 |#1|) (-10 -8 (-15 -4221 ((-112) |#1|)) (-15 -4232 ((-112) |#1| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -4253 ((-2 (|:| -4246 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1999 ((-3 |#1| "failed") |#1|))) (-568)) (T -567)) -NIL -(-10 -8 (-15 -4221 ((-112) |#1|)) (-15 -4232 ((-112) |#1| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -4253 ((-2 (|:| -4246 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1999 ((-3 |#1| "failed") |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2852 (((-3 $ "failed") $ $) 48)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-568) (-141)) (T -568)) -((-2852 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-4253 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4246 *1) (|:| -4448 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-4241 (*1 *1 *1) (-4 *1 (-568))) (-4232 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-4221 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -2852 ((-3 $ "failed") $ $)) (-15 -4253 ((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $)) (-15 -4241 ($ $)) (-15 -4232 ((-112) $ $)) (-15 -4221 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-4274 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1195) (-656 |#2|)) 38)) (-4294 (((-598 |#2|) |#2| (-1195)) 63)) (-4283 (((-3 |#2| "failed") |#2| (-1195)) 156)) (-4304 (((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) (-624 |#2|) (-656 (-624 |#2|))) 159)) (-4264 (((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) |#2|) 41))) -(((-569 |#1| |#2|) (-10 -7 (-15 -4264 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) |#2|)) (-15 -4274 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1195) (-656 |#2|))) (-15 -4283 ((-3 |#2| "failed") |#2| (-1195))) (-15 -4294 ((-598 |#2|) |#2| (-1195))) (-15 -4304 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) (-624 |#2|) (-656 (-624 |#2|))))) (-13 (-464) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -569)) -((-4304 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1195)) (-5 *6 (-656 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -3849 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-4283 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-4274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-4264 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -3849 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) -(-10 -7 (-15 -4264 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) |#2|)) (-15 -4274 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1195) (-656 |#2|))) (-15 -4283 ((-3 |#2| "failed") |#2| (-1195))) (-15 -4294 ((-598 |#2|) |#2| (-1195))) (-15 -4304 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) (-624 |#2|) (-656 (-624 |#2|))))) -((-3986 (((-430 |#1|) |#1|) 19)) (-2354 (((-430 |#1|) |#1|) 34)) (-4325 (((-3 |#1| "failed") |#1|) 49)) (-4314 (((-430 |#1|) |#1|) 60))) -(((-570 |#1|) (-10 -7 (-15 -2354 ((-430 |#1|) |#1|)) (-15 -3986 ((-430 |#1|) |#1|)) (-15 -4314 ((-430 |#1|) |#1|)) (-15 -4325 ((-3 |#1| "failed") |#1|))) (-557)) (T -570)) -((-4325 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-4314 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-3986 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-2354 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -2354 ((-430 |#1|) |#1|)) (-15 -3986 ((-430 |#1|) |#1|)) (-15 -4314 ((-430 |#1|) |#1|)) (-15 -4325 ((-3 |#1| "failed") |#1|))) -((-4337 (($) 9)) (-2623 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-2002 (((-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-3807 (($ (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-4362 (($ (-656 (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-3180 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-3403 (((-656 (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-4349 (((-1291)) 11))) -(((-571) (-10 -8 (-15 -4337 ($)) (-15 -4349 ((-1291))) (-15 -2002 ((-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -4362 ($ (-656 (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3807 ($ (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2623 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3403 ((-656 (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3180 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571)) -((-3180 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2623 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-4362 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-4349 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-571)))) (-4337 (*1 *1) (-5 *1 (-571)))) -(-10 -8 (-15 -4337 ($)) (-15 -4349 ((-1291))) (-15 -2002 ((-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -4362 ($ (-656 (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3807 ($ (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2623 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3403 ((-656 (-2 (|:| -4169 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3180 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1908 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3467 (((-1191 (-419 (-1191 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1191 |#2|)) 35)) (-4397 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1191 |#2|)) 115)) (-4374 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|)) 55)) (-4386 (((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1191 |#2|))) 92) (((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1191 |#2|)) 114)) (-4409 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) |#2| (-1191 |#2|)) 116)) (-4419 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1898 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 133 (|has| |#3| (-668 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1898 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|)) 132 (|has| |#3| (-668 |#2|)))) (-2437 ((|#2| (-1191 (-419 (-1191 |#2|))) (-624 |#2|) |#2|) 53)) (-2297 (((-1191 (-419 (-1191 |#2|))) (-1191 |#2|) (-624 |#2|)) 34))) -(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -4374 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -4374 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -4386 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1191 |#2|))) (-15 -4386 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -4397 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1191 |#2|))) (-15 -4397 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -4409 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) |#2| (-1191 |#2|))) (-15 -4409 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -3467 ((-1191 (-419 (-1191 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1191 |#2|))) (-15 -2437 (|#2| (-1191 (-419 (-1191 |#2|))) (-624 |#2|) |#2|)) (-15 -2297 ((-1191 (-419 (-1191 |#2|))) (-1191 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -4419 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1898 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -4419 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1898 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))))) |%noBranch|)) (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1221)) (-1118)) (T -572)) -((-4419 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1191 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118)))) (-4419 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1191 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1191 (-419 (-1191 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1191 *6)) (-4 *7 (-1118)))) (-2437 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1191 (-419 (-1191 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1118)))) (-3467 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1191 (-419 (-1191 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1191 *3)) (-4 *7 (-1118)))) (-4409 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-5 *5 (-419 (-1191 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1118)))) (-4409 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-5 *5 (-1191 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1118)))) (-4397 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1118)))) (-4397 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1191 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1118)))) (-4386 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -3849 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118)))) (-4386 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -3849 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118)))) (-4374 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118)))) (-4374 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118))))) -(-10 -7 (-15 -4374 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -4374 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -4386 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1191 |#2|))) (-15 -4386 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -4397 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1191 |#2|))) (-15 -4397 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -4409 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) |#2| (-1191 |#2|))) (-15 -4409 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -3467 ((-1191 (-419 (-1191 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1191 |#2|))) (-15 -2437 (|#2| (-1191 (-419 (-1191 |#2|))) (-624 |#2|) |#2|)) (-15 -2297 ((-1191 (-419 (-1191 |#2|))) (-1191 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -4419 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1898 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -4419 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1898 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))))) |%noBranch|)) -((-1393 (((-576) (-576) (-783)) 85)) (-1383 (((-576) (-576)) 83)) (-1373 (((-576) (-576)) 81)) (-1363 (((-576) (-576)) 87)) (-1708 (((-576) (-576) (-576)) 65)) (-1354 (((-576) (-576) (-576)) 62)) (-1345 (((-419 (-576)) (-576)) 30)) (-1336 (((-576) (-576)) 34)) (-1326 (((-576) (-576)) 74)) (-1672 (((-576) (-576)) 46)) (-4439 (((-656 (-576)) (-576)) 80)) (-4430 (((-576) (-576) (-576) (-576) (-576)) 58)) (-1631 (((-419 (-576)) (-576)) 55))) -(((-573) (-10 -7 (-15 -1631 ((-419 (-576)) (-576))) (-15 -4430 ((-576) (-576) (-576) (-576) (-576))) (-15 -4439 ((-656 (-576)) (-576))) (-15 -1672 ((-576) (-576))) (-15 -1326 ((-576) (-576))) (-15 -1336 ((-576) (-576))) (-15 -1345 ((-419 (-576)) (-576))) (-15 -1354 ((-576) (-576) (-576))) (-15 -1708 ((-576) (-576) (-576))) (-15 -1363 ((-576) (-576))) (-15 -1373 ((-576) (-576))) (-15 -1383 ((-576) (-576))) (-15 -1393 ((-576) (-576) (-783))))) (T -573)) -((-1393 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))) (-1383 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1373 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1363 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1708 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1354 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1345 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-1336 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1326 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1672 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4439 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-4430 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1631 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(-10 -7 (-15 -1631 ((-419 (-576)) (-576))) (-15 -4430 ((-576) (-576) (-576) (-576) (-576))) (-15 -4439 ((-656 (-576)) (-576))) (-15 -1672 ((-576) (-576))) (-15 -1326 ((-576) (-576))) (-15 -1336 ((-576) (-576))) (-15 -1345 ((-419 (-576)) (-576))) (-15 -1354 ((-576) (-576) (-576))) (-15 -1708 ((-576) (-576) (-576))) (-15 -1363 ((-576) (-576))) (-15 -1373 ((-576) (-576))) (-15 -1383 ((-576) (-576))) (-15 -1393 ((-576) (-576) (-783)))) -((-1405 (((-2 (|:| |answer| |#4|) (|:| -3837 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 ((-2 (|:| |answer| |#4|) (|:| -3837 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574)) -((-1405 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3837 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))) -(-10 -7 (-15 -1405 ((-2 (|:| |answer| |#4|) (|:| -3837 |#4|)) |#4| (-1 |#2| |#2|)))) -((-1405 (((-2 (|:| |answer| (-419 |#2|)) (|:| -3837 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18))) -(((-575 |#1| |#2|) (-10 -7 (-15 -1405 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3837 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1262 |#1|)) (T -575)) -((-1405 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -3837 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -1405 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3837 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 30)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 96)) (-4241 (($ $) 97)) (-4221 (((-112) $) NIL)) (-2199 (($ $ $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2178 (($ $ $ $) 52)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL)) (-3626 (($ $ $) 91)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL)) (-4401 (((-576) $) NIL)) (-2803 (($ $ $) 54)) (-2613 (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 77) (((-701 (-576)) (-701 $)) 73) (((-701 (-576)) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) 93)) (-3424 (((-3 (-419 (-576)) "failed") $) NIL)) (-3413 (((-112) $) NIL)) (-3404 (((-419 (-576)) $) NIL)) (-2080 (($) 79) (($ $) 80)) (-2814 (($ $ $) 90)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-2156 (($ $ $ $) NIL)) (-2208 (($ $ $) 70)) (-1370 (((-112) $) NIL)) (-2954 (($ $ $) NIL)) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1439 (((-112) $) 34)) (-4064 (((-112) $) 85)) (-1831 (((-3 $ "failed") $) NIL)) (-1379 (((-112) $) 43)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2166 (($ $ $ $) 55)) (-1921 (($ $ $) 87)) (-4137 (($ $ $) 86)) (-3537 (($ $) NIL)) (-1840 (($ $) 49)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) 69)) (-2144 (($ $ $) NIL)) (-3475 (($) NIL T CONST)) (-3048 (($ $) 38)) (-3914 (((-1138) $) 42)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 128)) (-3928 (($ $ $) 94) (($ (-656 $)) NIL)) (-2935 (($ $) NIL)) (-2354 (((-430 $) $) 114)) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) 112)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4072 (((-112) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 89)) (-2390 (($ $) NIL) (($ $ (-783)) NIL)) (-3355 (($ $) 40)) (-3079 (($ $) 36)) (-2616 (((-576) $) 48) (((-548) $) 64) (((-905 (-576)) $) NIL) (((-390) $) 58) (((-227) $) 61) (((-1177) $) 66)) (-2884 (((-874) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-1871 (((-783)) NIL T CONST)) (-2218 (((-112) $ $) NIL)) (-1658 (($ $ $) NIL)) (-3722 (((-112) $ $) NIL)) (-1549 (($) 35)) (-4232 (((-112) $ $) NIL)) (-2189 (($ $ $ $) 51)) (-2610 (($ $) 78)) (-1996 (($) 6 T CONST)) (-2011 (($) 31 T CONST)) (-1813 (((-1177) $) 26) (((-1177) $ (-112)) 27) (((-1291) (-834) $) 28) (((-1291) (-834) $ (-112)) 29)) (-3431 (($ $) NIL) (($ $ (-783)) NIL)) (-3983 (((-112) $ $) 50)) (-3957 (((-112) $ $) 81)) (-3915 (((-112) $ $) 33)) (-3970 (((-112) $ $) 82)) (-3943 (((-112) $ $) 10)) (-4029 (($ $) 16) (($ $ $) 39)) (-4017 (($ $ $) 37)) (** (($ $ (-937)) NIL) (($ $ (-783)) 84)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 83) (($ $ $) 53) (($ (-576) $) 83))) -(((-576) (-13 (-557) (-626 (-1177)) (-840) (-10 -7 (-6 -4448) (-6 -4453) (-6 -4449) (-6 -4443)))) (T -576)) -NIL -(-13 (-557) (-626 (-1177)) (-840) (-10 -7 (-6 -4448) (-6 -4453) (-6 -4449) (-6 -4443))) -((-4037 (((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781) (-1081)) 116) (((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781)) 118)) (-1956 (((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1195)) 195) (((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1177)) 194) (((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390) (-1081)) 199) (((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390)) 200) (((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390)) 201) (((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390))))) 202) (((-1053) (-326 (-390)) (-1112 (-855 (-390)))) 190) (((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390)) 189) (((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390)) 185) (((-1053) (-781)) 177) (((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390) (-1081)) 184))) -(((-577) (-10 -7 (-15 -1956 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390) (-1081))) (-15 -1956 ((-1053) (-781))) (-15 -1956 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390))) (-15 -1956 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390))) (-15 -1956 ((-1053) (-326 (-390)) (-1112 (-855 (-390))))) (-15 -1956 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))))) (-15 -1956 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390))) (-15 -1956 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390))) (-15 -1956 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390) (-1081))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781) (-1081))) (-15 -1956 ((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1177))) (-15 -1956 ((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1195))))) (T -577)) -((-1956 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1110 (-855 (-390)))) (-5 *5 (-1195)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-1956 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1110 (-855 (-390)))) (-5 *5 (-1177)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-4037 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1081)) (-5 *2 (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053)))) (-5 *1 (-577)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053)))) (-5 *1 (-577)))) (-1956 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) (-5 *5 (-390)) (-5 *6 (-1081)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-1956 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-1956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) (-5 *2 (-1053)) (-5 *1 (-577)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) (-5 *2 (-1053)) (-5 *1 (-577)))) (-1956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-1956 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-1956 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) (-5 *5 (-390)) (-5 *6 (-1081)) (-5 *2 (-1053)) (-5 *1 (-577))))) -(-10 -7 (-15 -1956 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390) (-1081))) (-15 -1956 ((-1053) (-781))) (-15 -1956 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390))) (-15 -1956 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390))) (-15 -1956 ((-1053) (-326 (-390)) (-1112 (-855 (-390))))) (-15 -1956 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))))) (-15 -1956 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390))) (-15 -1956 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390))) (-15 -1956 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390) (-1081))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781) (-1081))) (-15 -1956 ((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1177))) (-15 -1956 ((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1195)))) -((-1434 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|)) 196)) (-1414 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 99)) (-1424 (((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 192)) (-1444 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195))) 201)) (-1456 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1898 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1195)) 210 (|has| |#3| (-668 |#2|))))) -(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -1414 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -1424 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -1434 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -1444 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)))) (IF (|has| |#3| (-668 |#2|)) (-15 -1456 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1898 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1195))) |%noBranch|)) (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1221)) (-1118)) (T -578)) -((-1456 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1195)) (-4 *4 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118)))) (-1444 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-4 *2 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1118)))) (-1434 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1118)))) (-1424 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -3849 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1118)))) (-1414 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1118))))) -(-10 -7 (-15 -1414 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -1424 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -1434 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -1444 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)))) (IF (|has| |#3| (-668 |#2|)) (-15 -1456 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1898 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1195))) |%noBranch|)) -((-1469 (((-2 (|:| -1846 |#2|) (|:| |nconst| |#2|)) |#2| (-1195)) 64)) (-1492 (((-3 |#2| "failed") |#2| (-1195) (-855 |#2|) (-855 |#2|)) 175 (-12 (|has| |#2| (-1157)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576)))))) (-1482 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576))))))) -(((-579 |#1| |#2|) (-10 -7 (-15 -1469 ((-2 (|:| -1846 |#2|) (|:| |nconst| |#2|)) |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -1482 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195))) (-15 -1492 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) (IF (|has| |#2| (-1157)) (-15 -1492 ((-3 |#2| "failed") |#2| (-1195) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1056 (-576)) (-464) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -579)) -((-1492 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1195)) (-5 *4 (-855 *2)) (-4 *2 (-1157)) (-4 *2 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) (-5 *1 (-579 *5 *2)))) (-1492 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-1482 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-1469 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| -1846 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) -(-10 -7 (-15 -1469 ((-2 (|:| -1846 |#2|) (|:| |nconst| |#2|)) |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -1482 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195))) (-15 -1492 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) (IF (|has| |#2| (-1157)) (-15 -1492 ((-3 |#2| "failed") |#2| (-1195) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1523 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))) 41)) (-1956 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-1503 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-1512 (((-3 (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48))) -(((-580 |#1| |#2|) (-10 -7 (-15 -1956 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -1503 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -1512 ((-3 (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -1523 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1056 (-576))) (-1262 |#1|)) (T -580)) -((-1523 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-1512 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -3849 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-1503 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148) (-1056 (-576)))) (-5 *1 (-580 *3 *4)))) (-1956 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -1956 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -1503 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -1512 ((-3 (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -1523 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) -((-1534 (((-3 (-576) "failed") |#1|) 14)) (-3846 (((-112) |#1|) 13)) (-3842 (((-576) |#1|) 9))) -(((-581 |#1|) (-10 -7 (-15 -3842 ((-576) |#1|)) (-15 -3846 ((-112) |#1|)) (-15 -1534 ((-3 (-576) "failed") |#1|))) (-1056 (-576))) (T -581)) -((-1534 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1056 *2)))) (-3846 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1056 (-576))))) (-3842 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1056 *2))))) -(-10 -7 (-15 -3842 ((-576) |#1|)) (-15 -3846 ((-112) |#1|)) (-15 -1534 ((-3 (-576) "failed") |#1|))) -((-1571 (((-3 (-2 (|:| |mainpart| (-419 (-968 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-968 |#1|))) (|:| |logand| (-419 (-968 |#1|))))))) "failed") (-419 (-968 |#1|)) (-1195) (-656 (-419 (-968 |#1|)))) 48)) (-1546 (((-598 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-1195)) 28)) (-1556 (((-3 (-419 (-968 |#1|)) "failed") (-419 (-968 |#1|)) (-1195)) 23)) (-1585 (((-3 (-2 (|:| -3849 (-419 (-968 |#1|))) (|:| |coeff| (-419 (-968 |#1|)))) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|))) 35))) -(((-582 |#1|) (-10 -7 (-15 -1546 ((-598 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -1556 ((-3 (-419 (-968 |#1|)) "failed") (-419 (-968 |#1|)) (-1195))) (-15 -1571 ((-3 (-2 (|:| |mainpart| (-419 (-968 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-968 |#1|))) (|:| |logand| (-419 (-968 |#1|))))))) "failed") (-419 (-968 |#1|)) (-1195) (-656 (-419 (-968 |#1|))))) (-15 -1585 ((-3 (-2 (|:| -3849 (-419 (-968 |#1|))) (|:| |coeff| (-419 (-968 |#1|)))) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|))))) (-13 (-568) (-1056 (-576)) (-148))) (T -582)) -((-1585 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)) (-148))) (-5 *2 (-2 (|:| -3849 (-419 (-968 *5))) (|:| |coeff| (-419 (-968 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-968 *5))))) (-1571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 (-419 (-968 *6)))) (-5 *3 (-419 (-968 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-1556 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-968 *4))) (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)) (-148))) (-5 *1 (-582 *4)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)) (-148))) (-5 *2 (-598 (-419 (-968 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-968 *5)))))) -(-10 -7 (-15 -1546 ((-598 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -1556 ((-3 (-419 (-968 |#1|)) "failed") (-419 (-968 |#1|)) (-1195))) (-15 -1571 ((-3 (-2 (|:| |mainpart| (-419 (-968 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-968 |#1|))) (|:| |logand| (-419 (-968 |#1|))))))) "failed") (-419 (-968 |#1|)) (-1195) (-656 (-419 (-968 |#1|))))) (-15 -1585 ((-3 (-2 (|:| -3849 (-419 (-968 |#1|))) (|:| |coeff| (-419 (-968 |#1|)))) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|))))) -((-2862 (((-112) $ $) 75)) (-1389 (((-112) $) 48)) (-2241 ((|#1| $) 39)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) 79)) (-3924 (($ $) 139)) (-3787 (($ $) 118)) (-2158 ((|#1| $) 37)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $) NIL)) (-3898 (($ $) 141)) (-3762 (($ $) 114)) (-1522 (($ $) 143)) (-3808 (($ $) 122)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) 93)) (-4401 (((-576) $) 95)) (-1999 (((-3 $ "failed") $) 78)) (-4202 (($ |#1| |#1|) 35)) (-1370 (((-112) $) 44)) (-1632 (($) 104)) (-1439 (((-112) $) 55)) (-3298 (($ $ (-576)) NIL)) (-1379 (((-112) $) 45)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3464 (($ $) 106)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4212 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-4193 ((|#1| $) 36)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) 81) (($ (-656 $)) NIL)) (-2852 (((-3 $ "failed") $ $) 80)) (-2666 (($ $) 108)) (-1532 (($ $) 147)) (-3818 (($ $) 120)) (-3938 (($ $) 149)) (-3798 (($ $) 124)) (-3910 (($ $) 145)) (-3775 (($ $) 116)) (-4185 (((-112) $ |#1|) 42)) (-2884 (((-874) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-1871 (((-783)) 102 T CONST)) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) 161)) (-3853 (($ $) 130)) (-4232 (((-112) $ $) NIL)) (-1545 (($ $) 159)) (-3829 (($ $) 126)) (-1594 (($ $) 157)) (-3874 (($ $) 137)) (-2915 (($ $) 155)) (-3886 (($ $) 135)) (-1584 (($ $) 153)) (-3864 (($ $) 132)) (-1555 (($ $) 151)) (-3840 (($ $) 128)) (-1996 (($) 30 T CONST)) (-2011 (($) 10 T CONST)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 49)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 47)) (-4029 (($ $) 53) (($ $ $) 54)) (-4017 (($ $ $) 52)) (** (($ $ (-937)) 71) (($ $ (-783)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-937) $) 66) (($ (-783) $) NIL) (($ (-576) $) 65) (($ $ $) 61))) -(((-583 |#1|) (-566 |#1|) (-13 (-416) (-1221))) (T -583)) -NIL -(-566 |#1|) -((-3169 (((-3 (-656 (-1191 (-576))) "failed") (-656 (-1191 (-576))) (-1191 (-576))) 27))) -(((-584) (-10 -7 (-15 -3169 ((-3 (-656 (-1191 (-576))) "failed") (-656 (-1191 (-576))) (-1191 (-576)))))) (T -584)) -((-3169 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 (-576)))) (-5 *3 (-1191 (-576))) (-5 *1 (-584))))) -(-10 -7 (-15 -3169 ((-3 (-656 (-1191 (-576))) "failed") (-656 (-1191 (-576))) (-1191 (-576))))) -((-3543 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1195)) 19)) (-3566 (((-656 (-624 |#2|)) (-656 |#2|) (-1195)) 23)) (-1645 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|))) 11)) (-3576 ((|#2| |#2| (-1195)) 59 (|has| |#1| (-568)))) (-3586 ((|#2| |#2| (-1195)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-3560 (((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1195)) 25)) (-3552 (((-624 |#2|) (-656 (-624 |#2|))) 24)) (-3597 (((-598 |#2|) |#2| (-1195) (-1 (-598 |#2|) |#2| (-1195)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1056 (-1195))) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-899 (-576))))))) -(((-585 |#1| |#2|) (-10 -7 (-15 -3543 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1195))) (-15 -3552 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -3560 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1195))) (-15 -1645 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -3566 ((-656 (-624 |#2|)) (-656 |#2|) (-1195))) (IF (|has| |#1| (-568)) (-15 -3576 (|#2| |#2| (-1195))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3586 (|#2| |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1056 (-1195))) (-15 -3597 ((-598 |#2|) |#2| (-1195) (-1 (-598 |#2|) |#2| (-1195)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1118) (-442 |#1|)) (T -585)) -((-3597 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1195))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1195))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1056 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1195)) (-4 *7 (-626 (-905 (-576)))) (-4 *7 (-464)) (-4 *7 (-899 (-576))) (-4 *7 (-1118)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-3586 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-464)) (-4 *4 (-1118)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-3576 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-4 *4 (-1118)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-3566 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-1195)) (-4 *6 (-442 *5)) (-4 *5 (-1118)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-1645 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1118)) (-5 *1 (-585 *3 *4)))) (-3560 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1195)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1118)) (-5 *1 (-585 *5 *6)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1118)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-3543 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1195)) (-4 *5 (-442 *4)) (-4 *4 (-1118)) (-5 *1 (-585 *4 *5))))) -(-10 -7 (-15 -3543 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1195))) (-15 -3552 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -3560 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1195))) (-15 -1645 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -3566 ((-656 (-624 |#2|)) (-656 |#2|) (-1195))) (IF (|has| |#1| (-568)) (-15 -3576 (|#2| |#2| (-1195))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3586 (|#2| |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1056 (-1195))) (-15 -3597 ((-598 |#2|) |#2| (-1195) (-1 (-598 |#2|) |#2| (-1195)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3622 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-3651 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|))) 174)) (-3686 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|))) 171)) (-3697 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-3605 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-3676 (((-3 (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-3631 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-3715 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-3727 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-3664 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|))) 178)) (-3706 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-3614 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-3641 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210))) -(((-586 |#1| |#2|) (-10 -7 (-15 -3605 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3614 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3622 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3631 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -3641 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -3651 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -3664 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -3676 ((-3 (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -3686 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -3697 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3706 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3715 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3727 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1262 |#1|)) (T -586)) -((-3727 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-3706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2436 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *1 (-586 *4 *5)))) (-3697 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3849 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1262 *4)))) (-3686 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) (-4 *7 (-1262 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-3676 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3849 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-3664 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2436 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-3651 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3849 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-3641 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2436 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -3849 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3631 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3849 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -3849 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3622 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3614 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2436 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3605 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3849 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(-10 -7 (-15 -3605 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3614 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3622 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3631 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -3641 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -3651 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -3664 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -3676 ((-3 (-2 (|:| -3849 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -3686 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -3697 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3706 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2436 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3715 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3727 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-3736 (((-3 |#2| "failed") |#2| (-1195) (-1195)) 10))) -(((-587 |#1| |#2|) (-10 -7 (-15 -3736 ((-3 |#2| "failed") |#2| (-1195) (-1195)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-975) (-1157) (-29 |#1|))) (T -587)) -((-3736 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1221) (-975) (-1157) (-29 *4)))))) -(-10 -7 (-15 -3736 ((-3 |#2| "failed") |#2| (-1195) (-1195)))) -((-4236 (((-703 (-1244)) $ (-1244)) 26)) (-4247 (((-703 (-561)) $ (-561)) 25)) (-4227 (((-783) $ (-129)) 27)) (-4258 (((-703 (-130)) $ (-130)) 24)) (-1763 (((-703 (-1244)) $) 12)) (-1716 (((-703 (-1242)) $) 8)) (-1738 (((-703 (-1241)) $) 10)) (-1774 (((-703 (-561)) $) 13)) (-1727 (((-703 (-559)) $) 9)) (-1750 (((-703 (-558)) $) 11)) (-1707 (((-783) $ (-129)) 7)) (-1785 (((-703 (-130)) $) 14)) (-1561 (($ $) 6))) -(((-588) (-141)) (T -588)) -NIL -(-13 (-539) (-872)) -(((-175) . T) ((-539) . T) ((-872) . T)) -((-4236 (((-703 (-1244)) $ (-1244)) NIL)) (-4247 (((-703 (-561)) $ (-561)) NIL)) (-4227 (((-783) $ (-129)) NIL)) (-4258 (((-703 (-130)) $ (-130)) NIL)) (-1763 (((-703 (-1244)) $) NIL)) (-1716 (((-703 (-1242)) $) NIL)) (-1738 (((-703 (-1241)) $) NIL)) (-1774 (((-703 (-561)) $) NIL)) (-1727 (((-703 (-559)) $) NIL)) (-1750 (((-703 (-558)) $) NIL)) (-1707 (((-783) $ (-129)) NIL)) (-1785 (((-703 (-130)) $) NIL)) (-4268 (((-112) $) NIL)) (-3747 (($ (-400)) 14) (($ (-1177)) 16)) (-2884 (((-874) $) NIL)) (-1561 (($ $) NIL))) -(((-589) (-13 (-588) (-625 (-874)) (-10 -8 (-15 -3747 ($ (-400))) (-15 -3747 ($ (-1177))) (-15 -4268 ((-112) $))))) (T -589)) -((-3747 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-3747 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-589)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))) -(-13 (-588) (-625 (-874)) (-10 -8 (-15 -3747 ($ (-400))) (-15 -3747 ($ (-1177))) (-15 -4268 ((-112) $)))) -((-2862 (((-112) $ $) NIL)) (-3723 (($) 7 T CONST)) (-3733 (((-1177) $) NIL)) (-2546 (($) 6 T CONST)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 15)) (-3759 (($) 9 T CONST)) (-3772 (($) 8 T CONST)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 11))) -(((-590) (-13 (-1118) (-10 -8 (-15 -2546 ($) -3739) (-15 -3723 ($) -3739) (-15 -3772 ($) -3739) (-15 -3759 ($) -3739)))) (T -590)) -((-2546 (*1 *1) (-5 *1 (-590))) (-3723 (*1 *1) (-5 *1 (-590))) (-3772 (*1 *1) (-5 *1 (-590))) (-3759 (*1 *1) (-5 *1 (-590)))) -(-13 (-1118) (-10 -8 (-15 -2546 ($) -3739) (-15 -3723 ($) -3739) (-15 -3772 ($) -3739) (-15 -3759 ($) -3739))) -((-2862 (((-112) $ $) NIL)) (-3532 (((-703 $) (-503)) 21)) (-3733 (((-1177) $) NIL)) (-3795 (($ (-1177)) 14)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 33)) (-3784 (((-215 4 (-130)) $) 24)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 26))) -(((-591) (-13 (-1118) (-10 -8 (-15 -3795 ($ (-1177))) (-15 -3784 ((-215 4 (-130)) $)) (-15 -3532 ((-703 $) (-503)))))) (T -591)) -((-3795 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-591)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) -(-13 (-1118) (-10 -8 (-15 -3795 ($ (-1177))) (-15 -3784 ((-215 4 (-130)) $)) (-15 -3532 ((-703 $) (-503))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $ (-576)) 75)) (-2922 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-1527 (($ (-1191 (-576)) (-576)) 81)) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) 66)) (-1539 (($ $) 43)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2927 (((-783) $) 16)) (-1439 (((-112) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3517 (((-576)) 37)) (-3509 (((-576) $) 41)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2904 (($ $ (-576)) 24)) (-2852 (((-3 $ "failed") $ $) 71)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) 17)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 72)) (-3527 (((-1175 (-576)) $) 19)) (-1346 (($ $) 26)) (-2884 (((-874) $) 102) (($ (-576)) 61) (($ $) NIL)) (-1871 (((-783)) 15 T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-3495 (((-576) $ (-576)) 46)) (-1996 (($) 44 T CONST)) (-2011 (($) 21 T CONST)) (-3915 (((-112) $ $) 52)) (-4029 (($ $) 60) (($ $ $) 48)) (-4017 (($ $ $) 59)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 62) (($ $ $) 63))) -(((-592 |#1| |#2|) (-881 |#1|) (-576) (-112)) (T -592)) -NIL -(-881 |#1|) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 30)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 (($ $ (-937)) NIL (|has| $ (-379))) (($ $) NIL)) (-2575 (((-1208 (-937) (-783)) (-576)) 59)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 $ "failed") $) 95)) (-4401 (($ $) 94)) (-1339 (($ (-1286 $)) 93)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) 44)) (-2080 (($) NIL)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) 61)) (-2635 (((-112) $) NIL)) (-4188 (($ $) NIL) (($ $ (-783)) NIL)) (-2463 (((-112) $) NIL)) (-2927 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-1439 (((-112) $) NIL)) (-1909 (($) 49 (|has| $ (-379)))) (-1886 (((-112) $) NIL (|has| $ (-379)))) (-1941 (($ $ (-937)) NIL (|has| $ (-379))) (($ $) NIL)) (-1831 (((-3 $ "failed") $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 $) $ (-937)) NIL (|has| $ (-379))) (((-1191 $) $) 104)) (-1875 (((-937) $) 67)) (-3130 (((-1191 $) $) NIL (|has| $ (-379)))) (-3119 (((-3 (-1191 $) "failed") $ $) NIL (|has| $ (-379))) (((-1191 $) $) NIL (|has| $ (-379)))) (-3141 (($ $ (-1191 $)) NIL (|has| $ (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL T CONST)) (-4318 (($ (-937)) 60)) (-3683 (((-112) $) 87)) (-3914 (((-1138) $) NIL)) (-3660 (($) 28 (|has| $ (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) 54)) (-2354 (((-430 $) $) NIL)) (-3673 (((-937)) 86) (((-845 (-937))) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-1543 (((-135)) NIL)) (-2390 (($ $) NIL) (($ $ (-783)) NIL)) (-3813 (((-937) $) 85) (((-845 (-937)) $) NIL)) (-1360 (((-1191 $)) 102)) (-2560 (($) 66)) (-3152 (($) 50 (|has| $ (-379)))) (-3629 (((-701 $) (-1286 $)) NIL) (((-1286 $) $) 91)) (-2616 (((-576) $) 40)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3148 (((-3 $ "failed") $) NIL) (($ $) 105)) (-1871 (((-783)) 51 T CONST)) (-3722 (((-112) $ $) 107)) (-1898 (((-1286 $) (-937)) 97) (((-1286 $)) 96)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) 31 T CONST)) (-2011 (($) 27 T CONST)) (-3649 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-3431 (($ $) NIL) (($ $ (-783)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 34)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-593 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-937)) (T -593)) -NIL -(-13 (-360) (-339 $) (-626 (-576))) -((-3805 (((-1291) (-1177)) 10))) -(((-594) (-10 -7 (-15 -3805 ((-1291) (-1177))))) (T -594)) -((-3805 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-594))))) -(-10 -7 (-15 -3805 ((-1291) (-1177)))) -((-2921 (((-598 |#2|) (-598 |#2|)) 42)) (-3945 (((-656 |#2|) (-598 |#2|)) 44)) (-3999 ((|#2| (-598 |#2|)) 50))) -(((-595 |#1| |#2|) (-10 -7 (-15 -2921 ((-598 |#2|) (-598 |#2|))) (-15 -3945 ((-656 |#2|) (-598 |#2|))) (-15 -3999 (|#2| (-598 |#2|)))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-29 |#1|) (-1221))) (T -595)) -((-3999 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1221))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1221))) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) (-5 *1 (-595 *4 *5)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1221))) (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-595 *3 *4))))) -(-10 -7 (-15 -2921 ((-598 |#2|) (-598 |#2|))) (-15 -3945 ((-656 |#2|) (-598 |#2|))) (-15 -3999 (|#2| (-598 |#2|)))) -((-2551 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30))) -(((-596 |#1| |#2|) (-10 -7 (-15 -2551 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -2551 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2551 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2551 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596)) -((-2551 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-2551 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-2551 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3849 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -3849 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))) -(-10 -7 (-15 -2551 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -2551 ((-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3849 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2551 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2551 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3895 (($ (-518) (-609)) 14)) (-3871 (($ (-518) (-609) $) 16)) (-3883 (($ (-518) (-609)) 15)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL) (($ (-1200)) 7) (((-1200) $) 6)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-597) (-13 (-1118) (-502 (-1200)) (-10 -8 (-15 -3895 ($ (-518) (-609))) (-15 -3883 ($ (-518) (-609))) (-15 -3871 ($ (-518) (-609) $))))) (T -597)) -((-3895 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-3883 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-3871 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(-13 (-1118) (-502 (-1200)) (-10 -8 (-15 -3895 ($ (-518) (-609))) (-15 -3883 ($ (-518) (-609))) (-15 -3871 ($ (-518) (-609) $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 76)) (-4401 ((|#1| $) NIL)) (-3849 ((|#1| $) 30)) (-3826 (((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3860 (($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3837 (((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) $) 31)) (-3733 (((-1177) $) NIL)) (-1997 (($ |#1| |#1|) 38) (($ |#1| (-1195)) 49 (|has| |#1| (-1056 (-1195))))) (-3914 (((-1138) $) NIL)) (-3815 (((-112) $) 35)) (-2390 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1195)) 89 (|has| |#1| (-914 (-1195))))) (-2884 (((-874) $) 110) (($ |#1|) 29)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 18 T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) 17) (($ $ $) NIL)) (-4017 (($ $ $) 85)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL))) -(((-598 |#1|) (-13 (-729 (-419 (-576))) (-1056 |#1|) (-10 -8 (-15 -3860 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3849 (|#1| $)) (-15 -3837 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) $)) (-15 -3826 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3815 ((-112) $)) (-15 -1997 ($ |#1| |#1|)) (-15 -2390 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-914 (-1195))) (-15 -2390 (|#1| $ (-1195))) |%noBranch|) (IF (|has| |#1| (-1056 (-1195))) (-15 -1997 ($ |#1| (-1195))) |%noBranch|))) (-374)) (T -598)) -((-3860 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *2)) (|:| |logand| (-1191 *2))))) (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-3849 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *3)) (|:| |logand| (-1191 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-1997 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2390 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2390 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-914 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1195)))) (-1997 (*1 *1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *1 (-598 *2)) (-4 *2 (-1056 *3)) (-4 *2 (-374))))) -(-13 (-729 (-419 (-576))) (-1056 |#1|) (-10 -8 (-15 -3860 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3849 (|#1| $)) (-15 -3837 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) $)) (-15 -3826 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3815 ((-112) $)) (-15 -1997 ($ |#1| |#1|)) (-15 -2390 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-914 (-1195))) (-15 -2390 (|#1| $ (-1195))) |%noBranch|) (IF (|has| |#1| (-1056 (-1195))) (-15 -1997 ($ |#1| (-1195))) |%noBranch|))) -((-3949 (((-112) |#1|) 16)) (-3963 (((-3 |#1| "failed") |#1|) 14)) (-3920 (((-2 (|:| -1549 |#1|) (|:| -1359 (-783))) |#1|) 38) (((-3 |#1| "failed") |#1| (-783)) 18)) (-3906 (((-112) |#1| (-783)) 19)) (-3976 ((|#1| |#1|) 42)) (-3934 ((|#1| |#1| (-783)) 45))) -(((-599 |#1|) (-10 -7 (-15 -3906 ((-112) |#1| (-783))) (-15 -3920 ((-3 |#1| "failed") |#1| (-783))) (-15 -3920 ((-2 (|:| -1549 |#1|) (|:| -1359 (-783))) |#1|)) (-15 -3934 (|#1| |#1| (-783))) (-15 -3949 ((-112) |#1|)) (-15 -3963 ((-3 |#1| "failed") |#1|)) (-15 -3976 (|#1| |#1|))) (-557)) (T -599)) -((-3976 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3963 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3949 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3934 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3920 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1549 *3) (|:| -1359 (-783)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3920 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3906 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -3906 ((-112) |#1| (-783))) (-15 -3920 ((-3 |#1| "failed") |#1| (-783))) (-15 -3920 ((-2 (|:| -1549 |#1|) (|:| -1359 (-783))) |#1|)) (-15 -3934 (|#1| |#1| (-783))) (-15 -3949 ((-112) |#1|)) (-15 -3963 ((-3 |#1| "failed") |#1|)) (-15 -3976 (|#1| |#1|))) -((-3988 (((-1191 |#1|) (-937)) 44))) -(((-600 |#1|) (-10 -7 (-15 -3988 ((-1191 |#1|) (-937)))) (-360)) (T -600)) -((-3988 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360))))) -(-10 -7 (-15 -3988 ((-1191 |#1|) (-937)))) -((-2921 (((-598 (-419 (-968 |#1|))) (-598 (-419 (-968 |#1|)))) 27)) (-1956 (((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-968 |#1|)) (-1195)) 34 (|has| |#1| (-148)))) (-3945 (((-656 (-326 |#1|)) (-598 (-419 (-968 |#1|)))) 19)) (-4010 (((-326 |#1|) (-419 (-968 |#1|)) (-1195)) 32 (|has| |#1| (-148)))) (-3999 (((-326 |#1|) (-598 (-419 (-968 |#1|)))) 21))) -(((-601 |#1|) (-10 -7 (-15 -2921 ((-598 (-419 (-968 |#1|))) (-598 (-419 (-968 |#1|))))) (-15 -3945 ((-656 (-326 |#1|)) (-598 (-419 (-968 |#1|))))) (-15 -3999 ((-326 |#1|) (-598 (-419 (-968 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1956 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -4010 ((-326 |#1|) (-419 (-968 |#1|)) (-1195)))) |%noBranch|)) (-13 (-464) (-1056 (-576)) (-651 (-576)))) (T -601)) -((-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-968 *4)))) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-968 *4)))) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-968 *3)))) (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-601 *3))))) -(-10 -7 (-15 -2921 ((-598 (-419 (-968 |#1|))) (-598 (-419 (-968 |#1|))))) (-15 -3945 ((-656 (-326 |#1|)) (-598 (-419 (-968 |#1|))))) (-15 -3999 ((-326 |#1|) (-598 (-419 (-968 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1956 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -4010 ((-326 |#1|) (-419 (-968 |#1|)) (-1195)))) |%noBranch|)) -((-4031 (((-656 (-701 (-576))) (-656 (-937)) (-656 (-921 (-576)))) 78) (((-656 (-701 (-576))) (-656 (-937))) 79) (((-701 (-576)) (-656 (-937)) (-921 (-576))) 72)) (-4020 (((-783) (-656 (-937))) 69))) -(((-602) (-10 -7 (-15 -4020 ((-783) (-656 (-937)))) (-15 -4031 ((-701 (-576)) (-656 (-937)) (-921 (-576)))) (-15 -4031 ((-656 (-701 (-576))) (-656 (-937)))) (-15 -4031 ((-656 (-701 (-576))) (-656 (-937)) (-656 (-921 (-576))))))) (T -602)) -((-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-937))) (-5 *4 (-656 (-921 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-937))) (-5 *4 (-921 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-602)))) (-4020 (*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-783)) (-5 *1 (-602))))) -(-10 -7 (-15 -4020 ((-783) (-656 (-937)))) (-15 -4031 ((-701 (-576)) (-656 (-937)) (-921 (-576)))) (-15 -4031 ((-656 (-701 (-576))) (-656 (-937)))) (-15 -4031 ((-656 (-701 (-576))) (-656 (-937)) (-656 (-921 (-576)))))) -((-1601 (((-656 |#5|) |#5| (-112)) 100)) (-4041 (((-112) |#5| (-656 |#5|)) 34))) -(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1601 ((-656 |#5|) |#5| (-112))) (-15 -4041 ((-112) |#5| (-656 |#5|)))) (-13 (-317) (-148)) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1127 |#1| |#2| |#3| |#4|)) (T -603)) -((-4041 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1127 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-656 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1127 *5 *6 *7 *8))))) -(-10 -7 (-15 -1601 ((-656 |#5|) |#5| (-112))) (-15 -4041 ((-112) |#5| (-656 |#5|)))) -((-2862 (((-112) $ $) NIL)) (-3892 (((-1153) $) 11)) (-3880 (((-1153) $) 9)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-604) (-13 (-1101) (-10 -8 (-15 -3880 ((-1153) $)) (-15 -3892 ((-1153) $))))) (T -604)) -((-3880 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-604)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-604))))) -(-13 (-1101) (-10 -8 (-15 -3880 ((-1153) $)) (-15 -3892 ((-1153) $)))) -((-2862 (((-112) $ $) NIL (|has| (-145) (-1118)))) (-2939 (($ $) 38)) (-2949 (($ $) NIL)) (-2909 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-3448 (((-112) $ $) 67)) (-3430 (((-112) $ $ (-576)) 62)) (-2921 (((-656 $) $ (-145)) 75) (((-656 $) $ (-142)) 76)) (-1913 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-1891 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-862))))) (-2032 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4462))) (((-145) $ (-1253 (-576)) (-145)) NIL (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-3781 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-2932 (($ $ (-1253 (-576)) $) 57)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-3634 (($ (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2859 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4462)))) (-2789 (((-145) $ (-576)) NIL)) (-3469 (((-112) $ $) 88)) (-2634 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1118))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1118))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-4001 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-2310 (($ (-783) (-145)) 9)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) 32 (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| (-145) (-862)))) (-4214 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-1496 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-3365 (((-576) $) 47 (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| (-145) (-862)))) (-3129 (((-112) $ $ (-145)) 89)) (-1616 (((-783) $ $ (-145)) 86)) (-2848 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2958 (($ $) 41)) (-1684 (($ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3792 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-3733 (((-1177) $) 43 (|has| (-145) (-1118)))) (-2134 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) 85 (|has| (-145) (-1118)))) (-1962 (((-145) $) NIL (|has| (-576) (-862)))) (-1932 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3346 (($ $ (-145)) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-3403 (((-656 (-145)) $) NIL)) (-2809 (((-112) $) 15)) (-1458 (($) 10)) (-2071 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1253 (-576))) 25) (($ $ $) NIL)) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3926 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-1902 (($ $ $ (-576)) 81 (|has| $ (-6 -4462)))) (-3079 (($ $) 20)) (-2616 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-2895 (($ (-656 (-145))) NIL)) (-1514 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-656 $)) 82)) (-2884 (($ (-145)) NIL) (((-874) $) 31 (|has| (-145) (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| (-145) (-1118)))) (-2492 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3957 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3915 (((-112) $ $) 17 (|has| (-145) (-1118)))) (-3970 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3943 (((-112) $ $) 18 (|has| (-145) (-862)))) (-2872 (((-783) $) 16 (|has| $ (-6 -4461))))) -(((-605 |#1|) (-1162) (-576)) (T -605)) -NIL -(-1162) -((-4377 (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1112 |#4|)) 32))) -(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4377 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1112 |#4|))) (-15 -4377 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) (-805) (-862) (-568) (-965 |#3| |#1| |#2|)) (T -606)) -((-4377 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-965 *6 *5 *4)))) (-4377 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1112 *3)) (-4 *3 (-965 *7 *6 *4)) (-4 *6 (-805)) (-4 *4 (-862)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *6 *4 *7 *3))))) -(-10 -7 (-15 -4377 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1112 |#4|))) (-15 -4377 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 71)) (-1607 (((-656 (-1100)) $) NIL)) (-1441 (((-1195) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-2916 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-2934 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-3174 (($ $) 109)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3153 (((-874) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1044 (-855 (-576))) (-1195) |#1| (-419 (-576))) 241)) (-1874 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-2473 (($) NIL T CONST)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-1355 (((-112) $) NIL)) (-2927 (((-576) $) 63) (((-576) $ (-576)) 64)) (-1439 (((-112) $) NIL)) (-2962 (($ $ (-937)) 83)) (-1968 (($ (-1 |#1| (-576)) $) 80)) (-3734 (((-112) $) 26)) (-2421 (($ |#1| (-576)) 22) (($ $ (-1100) (-576)) NIL) (($ $ (-656 (-1100)) (-656 (-576))) NIL)) (-2551 (($ (-1 |#1| |#1|) $) 75)) (-3218 (($ (-1044 (-855 (-576))) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-1956 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-3186 (((-3 $ "failed") $ $ (-112)) 108)) (-3163 (($ $ $) 116)) (-3914 (((-1138) $) NIL)) (-3196 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-3207 (((-1044 (-855 (-576))) $) 14)) (-2904 (($ $ (-576)) 47)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3049 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2071 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1130)))) (-2390 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3813 (((-576) $) NIL)) (-1346 (($ $) 48)) (-2884 (((-874) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-3245 ((|#1| $ (-576)) 61)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) 39 T CONST)) (-1752 ((|#1| $) NIL)) (-2942 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3075 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-2960 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3099 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-4111 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-3051 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-3131 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3142 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-3110 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3120 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-4101 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-3037 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-4120 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-3064 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-2951 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3087 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-4076 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-3002 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-4095 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3025 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-4060 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-2981 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-4051 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-2968 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-4068 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-2992 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-4085 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3011 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3495 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-1996 (($) 30 T CONST)) (-2011 (($) 40 T CONST)) (-3431 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3915 (((-112) $ $) 73)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) 91) (($ $ $) 72)) (-4017 (($ $ $) 88)) (** (($ $ (-937)) NIL) (($ $ (-783)) 111)) (* (($ (-937) $) 98) (($ (-783) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-607 |#1|) (-13 (-1264 |#1| (-576)) (-10 -8 (-15 -3218 ($ (-1044 (-855 (-576))) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3207 ((-1044 (-855 (-576))) $)) (-15 -3196 ((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -1874 ($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3734 ((-112) $)) (-15 -1968 ($ (-1 |#1| (-576)) $)) (-15 -3186 ((-3 $ "failed") $ $ (-112))) (-15 -3174 ($ $)) (-15 -3163 ($ $ $)) (-15 -3153 ((-874) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1044 (-855 (-576))) (-1195) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ($ $)) (-15 -3142 ($ $ |#1|)) (-15 -3131 ($ $ (-419 (-576)))) (-15 -3120 ($ $)) (-15 -3110 ($ $)) (-15 -3099 ($ $)) (-15 -3087 ($ $)) (-15 -3075 ($ $)) (-15 -3064 ($ $)) (-15 -3051 ($ $)) (-15 -3037 ($ $)) (-15 -3025 ($ $)) (-15 -3011 ($ $)) (-15 -3002 ($ $)) (-15 -2992 ($ $)) (-15 -2981 ($ $)) (-15 -2968 ($ $)) (-15 -2960 ($ $)) (-15 -2951 ($ $)) (-15 -2942 ($ $)) (-15 -4120 ($ $)) (-15 -4111 ($ $)) (-15 -4101 ($ $)) (-15 -4095 ($ $)) (-15 -4085 ($ $)) (-15 -4076 ($ $)) (-15 -4068 ($ $)) (-15 -4060 ($ $)) (-15 -4051 ($ $))) |%noBranch|))) (-1067)) (T -607)) -((-3734 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1067)))) (-3218 (*1 *1 *2 *3) (-12 (-5 *2 (-1044 (-855 (-576)))) (-5 *3 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1067)) (-5 *1 (-607 *4)))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-1044 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1067)))) (-3196 (*1 *2 *1) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1067)))) (-1874 (*1 *1 *2) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1067)) (-5 *1 (-607 *3)))) (-1968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1067)) (-5 *1 (-607 *3)))) (-3186 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1067)))) (-3174 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1067)))) (-3163 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1067)))) (-3153 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1044 (-855 (-576)))) (-5 *5 (-1195)) (-5 *7 (-419 (-576))) (-4 *6 (-1067)) (-5 *2 (-874)) (-5 *1 (-607 *6)))) (-1956 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3142 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1067)))) (-3120 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3110 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3099 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3087 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3075 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3064 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3051 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3037 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3025 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3011 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3002 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2992 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2981 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2968 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2960 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2951 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2942 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4120 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4111 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4101 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4095 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4085 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4076 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4068 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4060 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4051 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(-13 (-1264 |#1| (-576)) (-10 -8 (-15 -3218 ($ (-1044 (-855 (-576))) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3207 ((-1044 (-855 (-576))) $)) (-15 -3196 ((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -1874 ($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3734 ((-112) $)) (-15 -1968 ($ (-1 |#1| (-576)) $)) (-15 -3186 ((-3 $ "failed") $ $ (-112))) (-15 -3174 ($ $)) (-15 -3163 ($ $ $)) (-15 -3153 ((-874) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1044 (-855 (-576))) (-1195) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ($ $)) (-15 -3142 ($ $ |#1|)) (-15 -3131 ($ $ (-419 (-576)))) (-15 -3120 ($ $)) (-15 -3110 ($ $)) (-15 -3099 ($ $)) (-15 -3087 ($ $)) (-15 -3075 ($ $)) (-15 -3064 ($ $)) (-15 -3051 ($ $)) (-15 -3037 ($ $)) (-15 -3025 ($ $)) (-15 -3011 ($ $)) (-15 -3002 ($ $)) (-15 -2992 ($ $)) (-15 -2981 ($ $)) (-15 -2968 ($ $)) (-15 -2960 ($ $)) (-15 -2951 ($ $)) (-15 -2942 ($ $)) (-15 -4120 ($ $)) (-15 -4111 ($ $)) (-15 -4101 ($ $)) (-15 -4095 ($ $)) (-15 -4085 ($ $)) (-15 -4076 ($ $)) (-15 -4068 ($ $)) (-15 -4060 ($ $)) (-15 -4051 ($ $))) |%noBranch|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 63)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-1874 (($ (-1175 |#1|)) 9)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) 44)) (-1355 (((-112) $) 56)) (-2927 (((-783) $) 61) (((-783) $ (-783)) 60)) (-1439 (((-112) $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2852 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-1993 (((-1175 |#1|) $) 25)) (-1871 (((-783)) 55 T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1996 (($) 10 T CONST)) (-2011 (($) 14 T CONST)) (-3915 (((-112) $ $) 24)) (-4029 (($ $) 32) (($ $ $) 16)) (-4017 (($ $ $) 27)) (** (($ $ (-937)) NIL) (($ $ (-783)) 53)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38))) -(((-608 |#1|) (-13 (-1067) (-111 |#1| |#1|) (-10 -8 (-15 -1993 ((-1175 |#1|) $)) (-15 -1874 ($ (-1175 |#1|))) (-15 -1355 ((-112) $)) (-15 -2927 ((-783) $)) (-15 -2927 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1067)) (T -608)) -((-1993 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) (-1874 (*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-608 *3)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) (-2927 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1067))))) -(-13 (-1067) (-111 |#1| |#1|) (-10 -8 (-15 -1993 ((-1175 |#1|) $)) (-15 -1874 ($ (-1175 |#1|))) (-15 -1355 ((-112) $)) (-15 -2927 ((-783) $)) (-15 -2927 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) -((-2862 (((-112) $ $) NIL)) (-3252 (($) 8 T CONST)) (-3263 (($) 7 T CONST)) (-3229 (($ $ (-656 $)) 16)) (-3733 (((-1177) $) NIL)) (-3275 (($) 6 T CONST)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL) (($ (-1200)) 15) (((-1200) $) 10)) (-3242 (($) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-609) (-13 (-1118) (-502 (-1200)) (-10 -8 (-15 -3275 ($) -3739) (-15 -3263 ($) -3739) (-15 -3252 ($) -3739) (-15 -3242 ($) -3739) (-15 -3229 ($ $ (-656 $)))))) (T -609)) -((-3275 (*1 *1) (-5 *1 (-609))) (-3263 (*1 *1) (-5 *1 (-609))) (-3252 (*1 *1) (-5 *1 (-609))) (-3242 (*1 *1) (-5 *1 (-609))) (-3229 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) -(-13 (-1118) (-502 (-1200)) (-10 -8 (-15 -3275 ($) -3739) (-15 -3263 ($) -3739) (-15 -3252 ($) -3739) (-15 -3242 ($) -3739) (-15 -3229 ($ $ (-656 $))))) -((-2551 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15))) -(((-610 |#1| |#2|) (-10 -7 (-15 -2551 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1236) (-1236)) (T -610)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) -(-10 -7 (-15 -2551 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) -((-2551 (((-1175 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1175 |#2|)) 20) (((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18))) -(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -2551 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -2551 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-613 |#2|))) (-15 -2551 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1175 |#2|)))) (-1236) (-1236) (-1236)) (T -611)) -((-2551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1175 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8)) (-5 *1 (-611 *6 *7 *8)))) (-2551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8)) (-5 *1 (-611 *6 *7 *8)))) (-2551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) -(-10 -7 (-15 -2551 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -2551 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-613 |#2|))) (-15 -2551 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1175 |#2|)))) -((-3326 ((|#3| |#3| (-656 (-624 |#3|)) (-656 (-1195))) 57)) (-3316 (((-171 |#2|) |#3|) 122)) (-3287 ((|#3| (-171 |#2|)) 46)) (-3297 ((|#2| |#3|) 21)) (-3306 ((|#3| |#2|) 35))) -(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -3287 (|#3| (-171 |#2|))) (-15 -3297 (|#2| |#3|)) (-15 -3306 (|#3| |#2|)) (-15 -3316 ((-171 |#2|) |#3|)) (-15 -3326 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1195))))) (-568) (-13 (-442 |#1|) (-1020) (-1221)) (-13 (-442 (-171 |#1|)) (-1020) (-1221))) (T -612)) -((-3326 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1195))) (-4 *2 (-13 (-442 (-171 *5)) (-1020) (-1221))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1020) (-1221))))) (-3316 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1020) (-1221))) (-4 *3 (-13 (-442 (-171 *4)) (-1020) (-1221))))) (-3306 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1020) (-1221))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1020) (-1221))))) (-3297 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1020) (-1221))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1020) (-1221))))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1020) (-1221))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1020) (-1221))) (-5 *1 (-612 *4 *5 *2))))) -(-10 -7 (-15 -3287 (|#3| (-171 |#2|))) (-15 -3297 (|#2| |#3|)) (-15 -3306 (|#3| |#2|)) (-15 -3316 ((-171 |#2|) |#3|)) (-15 -3326 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1195))))) -((-3985 (($ (-1 (-112) |#1|) $) 17)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-3903 (($ (-1 |#1| |#1|) |#1|) 9)) (-3959 (($ (-1 (-112) |#1|) $) 13)) (-3972 (($ (-1 (-112) |#1|) $) 15)) (-2895 (((-1175 |#1|) $) 18)) (-2884 (((-874) $) NIL))) -(((-613 |#1|) (-13 (-625 (-874)) (-10 -8 (-15 -2551 ($ (-1 |#1| |#1|) $)) (-15 -3959 ($ (-1 (-112) |#1|) $)) (-15 -3972 ($ (-1 (-112) |#1|) $)) (-15 -3985 ($ (-1 (-112) |#1|) $)) (-15 -3903 ($ (-1 |#1| |#1|) |#1|)) (-15 -2895 ((-1175 |#1|) $)))) (-1236)) (T -613)) -((-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-3985 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-3903 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1236))))) -(-13 (-625 (-874)) (-10 -8 (-15 -2551 ($ (-1 |#1| |#1|) $)) (-15 -3959 ($ (-1 (-112) |#1|) $)) (-15 -3972 ($ (-1 (-112) |#1|) $)) (-15 -3985 ($ (-1 (-112) |#1|) $)) (-15 -3903 ($ (-1 |#1| |#1|) |#1|)) (-15 -2895 ((-1175 |#1|) $)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2881 (($ (-783)) NIL (|has| |#1| (-23)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) NIL)) (-2634 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-4057 (((-701 |#1|) $ $) NIL (|has| |#1| (-1067)))) (-2310 (($ (-783) |#1|) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2142 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-2374 (((-112) $ (-783)) NIL)) (-1840 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2134 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1962 ((|#1| $) NIL (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3346 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2165 ((|#1| $ $) NIL (|has| |#1| (-1067)))) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2153 (($ $ $) NIL (|has| |#1| (-1067)))) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) NIL)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4029 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4017 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-614 |#1| |#2|) (-1284 |#1|) (-1236) (-576)) (T -614)) -NIL -(-1284 |#1|) -((-3336 (((-1291) $ |#2| |#2|) 35)) (-3356 ((|#2| $) 23)) (-3365 ((|#2| $) 21)) (-2848 (($ (-1 |#3| |#3|) $) 32)) (-2551 (($ (-1 |#3| |#3|) $) 30)) (-1962 ((|#3| $) 26)) (-3346 (($ $ |#3|) 33)) (-3375 (((-112) |#3| $) 17)) (-3403 (((-656 |#3|) $) 15)) (-2071 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -3336 ((-1291) |#1| |#2| |#2|)) (-15 -3346 (|#1| |#1| |#3|)) (-15 -1962 (|#3| |#1|)) (-15 -3356 (|#2| |#1|)) (-15 -3365 (|#2| |#1|)) (-15 -3375 ((-112) |#3| |#1|)) (-15 -3403 ((-656 |#3|) |#1|)) (-15 -2071 (|#3| |#1| |#2|)) (-15 -2071 (|#3| |#1| |#2| |#3|)) (-15 -2848 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2551 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1118) (-1236)) (T -615)) -NIL -(-10 -8 (-15 -3336 ((-1291) |#1| |#2| |#2|)) (-15 -3346 (|#1| |#1| |#3|)) (-15 -1962 (|#3| |#1|)) (-15 -3356 (|#2| |#1|)) (-15 -3365 (|#2| |#1|)) (-15 -3375 ((-112) |#3| |#1|)) (-15 -3403 ((-656 |#3|) |#1|)) (-15 -2071 (|#3| |#1| |#2|)) (-15 -2071 (|#3| |#1| |#2| |#3|)) (-15 -2848 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2551 (|#1| (-1 |#3| |#3|) |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#2| (-1118)))) (-3336 (((-1291) $ |#1| |#1|) 41 (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) 8)) (-3055 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4462)))) (-2473 (($) 7 T CONST)) (-2859 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4462)))) (-2789 ((|#2| $ |#1|) 52)) (-4001 (((-656 |#2|) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-3356 ((|#1| $) 44 (|has| |#1| (-862)))) (-1496 (((-656 |#2|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-3365 ((|#1| $) 45 (|has| |#1| (-862)))) (-2848 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#2| |#2|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#2| (-1118)))) (-3385 (((-656 |#1|) $) 47)) (-3394 (((-112) |#1| $) 48)) (-3914 (((-1138) $) 21 (|has| |#2| (-1118)))) (-1962 ((|#2| $) 43 (|has| |#1| (-862)))) (-3346 (($ $ |#2|) 42 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) 49)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3926 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4461))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2884 (((-874) $) 18 (|has| |#2| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#2| (-1118)))) (-2492 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#2| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-616 |#1| |#2|) (-141) (-1118) (-1236)) (T -616)) -((-3403 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236)) (-5 *2 (-656 *4)))) (-3394 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236)) (-5 *2 (-656 *3)))) (-3375 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1118)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1118)) (-4 *2 (-862)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1118)) (-4 *2 (-862)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1118)) (-4 *3 (-862)) (-4 *2 (-1236)))) (-3346 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236)))) (-3336 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236)) (-5 *2 (-1291))))) -(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -3403 ((-656 |t#2|) $)) (-15 -3394 ((-112) |t#1| $)) (-15 -3385 ((-656 |t#1|) $)) (IF (|has| |t#2| (-1118)) (IF (|has| $ (-6 -4461)) (-15 -3375 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -3365 (|t#1| $)) (-15 -3356 (|t#1| $)) (-15 -1962 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3346 ($ $ |t#2|)) (-15 -3336 ((-1291) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1118)) ((-625 (-874)) -3766 (|has| |#2| (-1118)) (|has| |#2| (-625 (-874)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-1118) |has| |#2| (-1118)) ((-1236) . T)) -((-2884 (((-874) $) 19) (($ (-130)) 13) (((-130) $) 14))) -(((-617) (-13 (-625 (-874)) (-502 (-130)))) (T -617)) -NIL -(-13 (-625 (-874)) (-502 (-130))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL) (($ (-1200)) NIL) (((-1200) $) NIL) (((-1235) $) 14) (($ (-656 (-1235))) 13)) (-3233 (((-656 (-1235)) $) 10)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-618) (-13 (-1101) (-625 (-1235)) (-10 -8 (-15 -2884 ($ (-656 (-1235)))) (-15 -3233 ((-656 (-1235)) $))))) (T -618)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618))))) -(-13 (-1101) (-625 (-1235)) (-10 -8 (-15 -2884 ($ (-656 (-1235)))) (-15 -3233 ((-656 (-1235)) $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4246 (((-3 $ "failed")) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-3620 (((-1286 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1286 (-701 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1879 (((-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2473 (($) NIL T CONST)) (-3311 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1588 (((-3 $ "failed")) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4424 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1856 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4402 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1388 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3247 (((-1191 (-968 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1420 (($ $ (-937)) NIL)) (-1832 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1610 (((-1191 |#1|) $) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1320 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1812 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1744 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1339 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1286 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1999 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4423 (((-937)) NIL (|has| |#2| (-378 |#1|)))) (-1711 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3593 (($ $ (-937)) NIL)) (-1665 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1643 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1687 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1597 (((-3 $ "failed")) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4433 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1868 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4413 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1399 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3291 (((-1191 (-968 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1410 (($ $ (-937)) NIL)) (-1844 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1623 (((-1191 |#1|) $) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1329 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1822 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1756 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3733 (((-1177) $) NIL)) (-1655 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1675 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1700 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3914 (((-1138) $) NIL)) (-1732 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2071 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3629 (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $) (-1286 $)) NIL (|has| |#2| (-378 |#1|))) (((-1286 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2616 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3158 (((-656 (-968 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-968 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2920 (($ $ $) NIL)) (-1801 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2884 (((-874) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL (|has| |#2| (-429 |#1|)))) (-1635 (((-656 (-1286 |#1|))) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2931 (($ $ $ $) NIL)) (-1779 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1950 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2908 (($ $ $) NIL)) (-1790 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1768 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1721 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1996 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) 24)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-619 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2884 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -619)) -((-2884 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3))))) -(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2884 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-2862 (((-112) $ $) NIL)) (-2823 (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) 39)) (-2298 (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL) (($) NIL)) (-3336 (((-1291) $ (-1177) (-1177)) NIL (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#1| $ (-1177) |#1|) 49)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-1397 (((-3 |#1| "failed") (-1177) $) 52)) (-2473 (($) NIL T CONST)) (-1575 (($ $ (-1177)) 25)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118))))) (-2833 (((-3 |#1| "failed") (-1177) $) 53) (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461))) (($ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL (|has| $ (-6 -4461)))) (-3634 (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461))) (($ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118))))) (-2309 (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118))))) (-2835 (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) 38)) (-2859 ((|#1| $ (-1177) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-1177)) NIL)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2537 (($ $) 54)) (-2980 (($ (-400)) 23) (($ (-400) (-1177)) 22)) (-1778 (((-400) $) 40)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-1177) $) NIL (|has| (-1177) (-862)))) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (((-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118))))) (-3365 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-2002 (((-656 (-1177)) $) 45)) (-3412 (((-112) (-1177) $) NIL)) (-2847 (((-1177) $) 41)) (-3449 (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL)) (-3807 (($ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL)) (-3385 (((-656 (-1177)) $) NIL)) (-3394 (((-112) (-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 ((|#1| $) NIL (|has| (-1177) (-862)))) (-1932 (((-3 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) "failed") (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL)) (-3346 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (($ $ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (($ $ (-656 (-304 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) 43)) (-2071 ((|#1| $ (-1177) |#1|) NIL) ((|#1| $ (-1177)) 48)) (-1581 (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL) (($) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (((-783) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (((-783) (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL)) (-2884 (((-874) $) 21)) (-1561 (($ $) 26)) (-3722 (((-112) $ $) NIL)) (-3541 (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL)) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20)) (-2872 (((-783) $) 47 (|has| $ (-6 -4461))))) -(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) (-1212 (-1177) |#1|) (-10 -8 (-6 -4461) (-15 -2537 ($ $)))) (-1118)) (T -620)) -((-2537 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1118))))) -(-13 (-375 (-400) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) (-1212 (-1177) |#1|) (-10 -8 (-6 -4461) (-15 -2537 ($ $)))) -((-3743 (((-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) $) 16)) (-2002 (((-656 |#2|) $) 20)) (-3412 (((-112) |#2| $) 12))) -(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -2002 ((-656 |#2|) |#1|)) (-15 -3412 ((-112) |#2| |#1|)) (-15 -3743 ((-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|))) (-622 |#2| |#3|) (-1118) (-1118)) (T -621)) -NIL -(-10 -8 (-15 -2002 ((-656 |#2|) |#1|)) (-15 -3412 ((-112) |#2| |#1|)) (-15 -3743 ((-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|))) -((-2862 (((-112) $ $) 19 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-2970 (((-112) $ (-783)) 8)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 46 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 56 (|has| $ (-6 -4461)))) (-1397 (((-3 |#2| "failed") |#1| $) 62)) (-2473 (($) 7 T CONST)) (-1919 (($ $) 59 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461))))) (-2833 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 47 (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 63)) (-3634 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 55 (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 57 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 54 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 53 (|has| $ (-6 -4461)))) (-4001 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-2002 (((-656 |#1|) $) 64)) (-3412 (((-112) |#1| $) 65)) (-3449 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 40)) (-3807 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 41)) (-3914 (((-1138) $) 21 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-1932 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 52)) (-3458 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 42)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) 27 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 26 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 25 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 24 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-1581 (($) 50) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 49)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 32 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 60 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 51)) (-2884 (((-874) $) 18 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-3541 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 43)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-622 |#1| |#2|) (-141) (-1118) (-1118)) (T -622)) -((-3412 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-5 *2 (-112)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-5 *2 (-656 *3)))) (-2833 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))) (-1397 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118))))) -(-13 (-231 (-2 (|:| -4169 |t#1|) (|:| -3180 |t#2|))) (-10 -8 (-15 -3412 ((-112) |t#1| $)) (-15 -2002 ((-656 |t#1|) $)) (-15 -2833 ((-3 |t#2| "failed") |t#1| $)) (-15 -1397 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T) ((-102) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) ((-625 (-874)) -3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-241 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))) ((-1118) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) ((-1236) . T)) -((-3441 (((-624 |#2|) |#1|) 17)) (-3451 (((-3 |#1| "failed") (-624 |#2|)) 21))) -(((-623 |#1| |#2|) (-10 -7 (-15 -3441 ((-624 |#2|) |#1|)) (-15 -3451 ((-3 |#1| "failed") (-624 |#2|)))) (-1118) (-1118)) (T -623)) -((-3451 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1118)) (-4 *2 (-1118)) (-5 *1 (-623 *2 *4)))) (-3441 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118))))) -(-10 -7 (-15 -3441 ((-624 |#2|) |#1|)) (-15 -3451 ((-3 |#1| "failed") (-624 |#2|)))) -((-2862 (((-112) $ $) NIL)) (-3423 (((-3 (-1195) "failed") $) 46)) (-1472 (((-1291) $ (-783)) 22)) (-2634 (((-783) $) 20)) (-2573 (((-115) $) 9)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-1673 (($ (-115) (-656 |#1|) (-783)) 32) (($ (-1195)) 33)) (-3657 (((-112) $ (-115)) 15) (((-112) $ (-1195)) 13)) (-3343 (((-783) $) 17)) (-3914 (((-1138) $) NIL)) (-2616 (((-905 (-576)) $) 95 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 102 (|has| |#1| (-626 (-905 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-2884 (((-874) $) 72)) (-3722 (((-112) $ $) NIL)) (-3433 (((-656 |#1|) $) 19)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 51)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 53))) -(((-624 |#1|) (-13 (-133) (-862) (-897 |#1|) (-10 -8 (-15 -2573 ((-115) $)) (-15 -3433 ((-656 |#1|) $)) (-15 -3343 ((-783) $)) (-15 -1673 ($ (-115) (-656 |#1|) (-783))) (-15 -1673 ($ (-1195))) (-15 -3423 ((-3 (-1195) "failed") $)) (-15 -3657 ((-112) $ (-115))) (-15 -3657 ((-112) $ (-1195))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1118)) (T -624)) -((-2573 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) (-1673 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1118)) (-5 *1 (-624 *5)))) (-1673 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) (-3423 (*1 *2 *1) (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) (-3657 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1118)))) (-3657 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1118))))) -(-13 (-133) (-862) (-897 |#1|) (-10 -8 (-15 -2573 ((-115) $)) (-15 -3433 ((-656 |#1|) $)) (-15 -3343 ((-783) $)) (-15 -1673 ($ (-115) (-656 |#1|) (-783))) (-15 -1673 ($ (-1195))) (-15 -3423 ((-3 (-1195) "failed") $)) (-15 -3657 ((-112) $ (-115))) (-15 -3657 ((-112) $ (-1195))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-2884 ((|#1| $) 6))) -(((-625 |#1|) (-141) (-1236)) (T -625)) -((-2884 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1236))))) -(-13 (-10 -8 (-15 -2884 (|t#1| $)))) -((-2616 ((|#1| $) 6))) -(((-626 |#1|) (-141) (-1236)) (T -626)) -((-2616 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1236))))) -(-13 (-10 -8 (-15 -2616 (|t#1| $)))) -((-3459 (((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16))) -(((-627 |#1| |#2|) (-10 -7 (-15 -3459 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -3459 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1056 (-576)) (-1056 (-419 (-576)))) (-1262 |#1|)) (T -627)) -((-3459 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-148) (-27) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-1191 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-3459 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-1191 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -3459 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -3459 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) -((-2884 (($ |#1|) 6))) -(((-628 |#1|) (-141) (-1236)) (T -628)) -((-2884 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1236))))) -(-13 (-10 -8 (-15 -2884 ($ |t#1|)))) -((-2862 (((-112) $ $) NIL)) (-1949 (($) 14 T CONST)) (-2004 (($) 15 T CONST)) (-3239 (($ $ $) 29)) (-3216 (($ $) 27)) (-3733 (((-1177) $) NIL)) (-2219 (($ $ $) 30)) (-3914 (((-1138) $) NIL)) (-3941 (($) 11 T CONST)) (-2209 (($ $ $) 31)) (-2884 (((-874) $) 35)) (-1985 (((-112) $ (|[\|\|]| -3941)) 24) (((-112) $ (|[\|\|]| -1949)) 26) (((-112) $ (|[\|\|]| -2004)) 21)) (-3722 (((-112) $ $) NIL)) (-3227 (($ $ $) 28)) (-3915 (((-112) $ $) 18))) -(((-629) (-13 (-985) (-10 -8 (-15 -1949 ($) -3739) (-15 -1985 ((-112) $ (|[\|\|]| -3941))) (-15 -1985 ((-112) $ (|[\|\|]| -1949))) (-15 -1985 ((-112) $ (|[\|\|]| -2004)))))) (T -629)) -((-1949 (*1 *1) (-5 *1 (-629))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3941)) (-5 *2 (-112)) (-5 *1 (-629)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1949)) (-5 *2 (-112)) (-5 *1 (-629)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2004)) (-5 *2 (-112)) (-5 *1 (-629))))) -(-13 (-985) (-10 -8 (-15 -1949 ($) -3739) (-15 -1985 ((-112) $ (|[\|\|]| -3941))) (-15 -1985 ((-112) $ (|[\|\|]| -1949))) (-15 -1985 ((-112) $ (|[\|\|]| -2004))))) -((-2616 (($ |#1|) 6))) -(((-630 |#1|) (-141) (-1236)) (T -630)) -((-2616 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1236))))) -(-13 (-10 -8 (-15 -2616 ($ |t#1|)))) -((-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-631 |#1| |#2|) (-10 -8 (-15 -2884 (|#1| |#2|)) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) (-632 |#2|) (-1067)) (T -631)) -NIL -(-10 -8 (-15 -2884 (|#1| |#2|)) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-632 |#1|) (-141) (-1067)) (T -632)) -((-2884 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1067))))) -(-13 (-1067) (-660 |t#1|) (-10 -8 (-15 -2884 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-738) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3966 (((-576) $) NIL (|has| |#1| (-860)))) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) NIL)) (-1370 (((-112) $) NIL (|has| |#1| (-860)))) (-1439 (((-112) $) NIL)) (-1595 ((|#1| $) 13)) (-1379 (((-112) $) NIL (|has| |#1| (-860)))) (-1921 (($ $ $) NIL (|has| |#1| (-860)))) (-4137 (($ $ $) NIL (|has| |#1| (-860)))) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1608 ((|#3| $) 15)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-1871 (((-783)) 20 T CONST)) (-3722 (((-112) $ $) NIL)) (-2610 (($ $) NIL (|has| |#1| (-860)))) (-1996 (($) NIL T CONST)) (-2011 (($) 12 T CONST)) (-3983 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-860)))) (-4039 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -4039 ($ $ |#3|)) (-15 -4039 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -633)) -((-4039 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-4039 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1608 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -4039 ($ $ |#3|)) (-15 -4039 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $)))) -((-3472 ((|#2| |#2| (-1195) (-1195)) 16))) -(((-634 |#1| |#2|) (-10 -7 (-15 -3472 (|#2| |#2| (-1195) (-1195)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-975) (-29 |#1|))) (T -634)) -((-3472 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1221) (-975) (-29 *4)))))) -(-10 -7 (-15 -3472 (|#2| |#2| (-1195) (-1195)))) -((-2862 (((-112) $ $) 64)) (-1389 (((-112) $) 58)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3483 ((|#1| $) 55)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2726 (((-2 (|:| -4171 $) (|:| -4162 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) 27)) (-1999 (((-3 $ "failed") $) 88)) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2927 (((-576) $) 22)) (-1439 (((-112) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3734 (((-112) $) 40)) (-2421 (($ |#1| (-576)) 24)) (-4383 ((|#1| $) 57)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2852 (((-3 $ "failed") $ $) 93)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2910 (((-783) $) 115 (|has| |#1| (-374)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 114 (|has| |#1| (-374)))) (-2390 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-3813 (((-576) $) 38)) (-2616 (((-419 |#2|) $) 47)) (-2884 (((-874) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-3245 ((|#1| $ (-576)) 72)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-1996 (($) 9 T CONST)) (-2011 (($) 14 T CONST)) (-3431 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-3915 (((-112) $ $) 21)) (-4029 (($ $) 51) (($ $ $) NIL)) (-4017 (($ $ $) 90)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 29) (($ $ $) 49))) -(((-635 |#1| |#2|) (-13 (-233 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1056 |#2|) (-10 -8 (-15 -3734 ((-112) $)) (-15 -3813 ((-576) $)) (-15 -2927 ((-576) $)) (-15 -4407 ($ $)) (-15 -4383 (|#1| $)) (-15 -3483 (|#1| $)) (-15 -3245 (|#1| $ (-576))) (-15 -2421 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -2726 ((-2 (|:| -4171 $) (|:| -4162 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1262 |#1|)) (T -635)) -((-3734 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1262 *3)))) (-3813 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1262 *3)))) (-2927 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1262 *3)))) (-4407 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) (-4383 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) (-3483 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) (-3245 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1262 *2)))) (-2421 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1262 *2)))) (-2726 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -4171 (-635 *4 *5)) (|:| -4162 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))) -(-13 (-233 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1056 |#2|) (-10 -8 (-15 -3734 ((-112) $)) (-15 -3813 ((-576) $)) (-15 -2927 ((-576) $)) (-15 -4407 ($ $)) (-15 -4383 (|#1| $)) (-15 -3483 (|#1| $)) (-15 -3245 (|#1| $ (-576))) (-15 -2421 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -2726 ((-2 (|:| -4171 $) (|:| -4162 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) -((-3299 (((-656 |#6|) (-656 |#4|) (-112)) 54)) (-3494 ((|#6| |#6|) 48))) -(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3494 (|#6| |#6|)) (-15 -3299 ((-656 |#6|) (-656 |#4|) (-112)))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|) (-1127 |#1| |#2| |#3| |#4|)) (T -636)) -((-3299 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *10 (-1127 *5 *6 *7 *8)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *2 (-1127 *3 *4 *5 *6))))) -(-10 -7 (-15 -3494 (|#6| |#6|)) (-15 -3299 ((-656 |#6|) (-656 |#4|) (-112)))) -((-3504 (((-112) |#3| (-783) (-656 |#3|)) 29)) (-3513 (((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1191 |#3|)))) "failed") |#3| (-656 (-1191 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4319 (-656 (-2 (|:| |irr| |#4|) (|:| -4435 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)) 69))) -(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3504 ((-112) |#3| (-783) (-656 |#3|))) (-15 -3513 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1191 |#3|)))) "failed") |#3| (-656 (-1191 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4319 (-656 (-2 (|:| |irr| |#4|) (|:| -4435 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) (-862) (-805) (-317) (-965 |#3| |#2| |#1|)) (T -637)) -((-3513 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4319 (-656 (-2 (|:| |irr| *10) (|:| -4435 (-576))))))) (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-862)) (-4 *3 (-317)) (-4 *10 (-965 *3 *9 *8)) (-4 *9 (-805)) (-5 *2 (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) (|:| |corrfact| (-656 (-1191 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1191 *3))))) (-3504 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-862)) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-965 *3 *7 *6))))) -(-10 -7 (-15 -3504 ((-112) |#3| (-783) (-656 |#3|))) (-15 -3513 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1191 |#3|)))) "failed") |#3| (-656 (-1191 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4319 (-656 (-2 (|:| |irr| |#4|) (|:| -4435 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) -((-2862 (((-112) $ $) NIL)) (-3892 (((-1153) $) 11)) (-3880 (((-1153) $) 9)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-638) (-13 (-1101) (-10 -8 (-15 -3880 ((-1153) $)) (-15 -3892 ((-1153) $))))) (T -638)) -((-3880 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-638)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-638))))) -(-13 (-1101) (-10 -8 (-15 -3880 ((-1153) $)) (-15 -3892 ((-1153) $)))) -((-2862 (((-112) $ $) NIL)) (-3489 (((-656 |#1|) $) NIL)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) NIL)) (-3725 (($ $) 77)) (-3464 (((-676 |#1| |#2|) $) 60)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 81)) (-3522 (((-656 (-304 |#2|)) $ $) 42)) (-3914 (((-1138) $) NIL)) (-2666 (($ (-676 |#1| |#2|)) 56)) (-3276 (($ $ $) NIL)) (-2920 (($ $ $) NIL)) (-2884 (((-874) $) 66) (((-1301 |#1| |#2|) $) NIL) (((-1306 |#1| |#2|) $) 74)) (-3722 (((-112) $ $) NIL)) (-2011 (($) 61 T CONST)) (-2286 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) 41)) (-2299 (((-656 (-676 |#1| |#2|)) (-656 |#1|)) 73)) (-3993 (((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) 46)) (-3915 (((-112) $ $) 62)) (-4039 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52))) -(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -2666 ($ (-676 |#1| |#2|))) (-15 -3464 ((-676 |#1| |#2|) $)) (-15 -3993 ((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $)) (-15 -2884 ((-1301 |#1| |#2|) $)) (-15 -2884 ((-1306 |#1| |#2|) $)) (-15 -3725 ($ $)) (-15 -3489 ((-656 |#1|) $)) (-15 -2299 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -2286 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -3522 ((-656 (-304 |#2|)) $ $)))) (-862) (-13 (-174) (-729 (-419 (-576)))) (-937)) (T -639)) -((-2666 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-937)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-906 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1306 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-3725 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-937)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-676 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) (-14 *6 (-937)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-3522 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937))))) -(-13 (-485) (-10 -8 (-15 -2666 ($ (-676 |#1| |#2|))) (-15 -3464 ((-676 |#1| |#2|) $)) (-15 -3993 ((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $)) (-15 -2884 ((-1301 |#1| |#2|) $)) (-15 -2884 ((-1306 |#1| |#2|) $)) (-15 -3725 ($ $)) (-15 -3489 ((-656 |#1|) $)) (-15 -2299 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -2286 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -3522 ((-656 (-304 |#2|)) $ $)))) -((-3299 (((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)) 103) (((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112)) 77)) (-2311 (((-112) (-656 (-792 |#1| (-876 |#2|)))) 26)) (-2352 (((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)) 102)) (-2342 (((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112)) 76)) (-2330 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|)))) 30)) (-2320 (((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|)))) 29))) -(((-640 |#1| |#2|) (-10 -7 (-15 -2311 ((-112) (-656 (-792 |#1| (-876 |#2|))))) (-15 -2320 ((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|))))) (-15 -2330 ((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))))) (-15 -2342 ((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2352 ((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -3299 ((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -3299 ((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)))) (-464) (-656 (-1195))) (T -640)) -((-3299 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1164 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) (-5 *1 (-640 *5 *6)))) (-3299 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-640 *5 *6)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1164 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) (-5 *1 (-640 *5 *6)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-640 *5 *6)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4)))) (-2320 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-656 (-792 *4 (-876 *5)))) (-4 *4 (-464)) (-14 *5 (-656 (-1195))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) -(-10 -7 (-15 -2311 ((-112) (-656 (-792 |#1| (-876 |#2|))))) (-15 -2320 ((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|))))) (-15 -2330 ((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))))) (-15 -2342 ((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2352 ((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -3299 ((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -3299 ((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)))) -((-3924 (($ $) 38)) (-3787 (($ $) 21)) (-3898 (($ $) 37)) (-3762 (($ $) 22)) (-1522 (($ $) 36)) (-3808 (($ $) 23)) (-1632 (($) 48)) (-3464 (($ $) 45)) (-2332 (($ $) 17)) (-1997 (($ $ (-1110 $)) 7) (($ $ (-1195)) 6)) (-2666 (($ $) 46)) (-3718 (($ $) 15)) (-3750 (($ $) 16)) (-1532 (($ $) 35)) (-3818 (($ $) 24)) (-3938 (($ $) 34)) (-3798 (($ $) 25)) (-3910 (($ $) 33)) (-3775 (($ $) 26)) (-1570 (($ $) 44)) (-3853 (($ $) 32)) (-1545 (($ $) 43)) (-3829 (($ $) 31)) (-1594 (($ $) 42)) (-3874 (($ $) 30)) (-2915 (($ $) 41)) (-3886 (($ $) 29)) (-1584 (($ $) 40)) (-3864 (($ $) 28)) (-1555 (($ $) 39)) (-3840 (($ $) 27)) (-2384 (($ $) 19)) (-2395 (($ $) 20)) (-2372 (($ $) 18)) (** (($ $ $) 47))) -(((-641) (-141)) (T -641)) -((-2395 (*1 *1 *1) (-4 *1 (-641))) (-2384 (*1 *1 *1) (-4 *1 (-641))) (-2372 (*1 *1 *1) (-4 *1 (-641))) (-2332 (*1 *1 *1) (-4 *1 (-641))) (-3750 (*1 *1 *1) (-4 *1 (-641))) (-3718 (*1 *1 *1) (-4 *1 (-641)))) -(-13 (-975) (-1221) (-10 -8 (-15 -2395 ($ $)) (-15 -2384 ($ $)) (-15 -2372 ($ $)) (-15 -2332 ($ $)) (-15 -3750 ($ $)) (-15 -3718 ($ $)))) -(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-975) . T) ((-1221) . T) ((-1224) . T)) -((-2573 (((-115) (-115)) 88)) (-2332 ((|#2| |#2|) 28)) (-1997 ((|#2| |#2| (-1110 |#2|)) 84) ((|#2| |#2| (-1195)) 50)) (-3718 ((|#2| |#2|) 27)) (-3750 ((|#2| |#2|) 29)) (-2362 (((-112) (-115)) 33)) (-2384 ((|#2| |#2|) 24)) (-2395 ((|#2| |#2|) 26)) (-2372 ((|#2| |#2|) 25))) -(((-642 |#1| |#2|) (-10 -7 (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 -2395 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -2372 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -3718 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -1997 (|#2| |#2| (-1195))) (-15 -1997 (|#2| |#2| (-1110 |#2|)))) (-568) (-13 (-442 |#1|) (-1020) (-1221))) (T -642)) -((-1997 (*1 *2 *2 *3) (-12 (-5 *3 (-1110 *2)) (-4 *2 (-13 (-442 *4) (-1020) (-1221))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-1997 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1020) (-1221))))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-3718 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-2332 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-2372 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-2573 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1020) (-1221))))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1020) (-1221)))))) -(-10 -7 (-15 -2362 ((-112) (-115))) (-15 -2573 ((-115) (-115))) (-15 -2395 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -2372 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -3718 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -1997 (|#2| |#2| (-1195))) (-15 -1997 (|#2| |#2| (-1110 |#2|)))) -((-2524 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-2434 (((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 89)) (-2447 (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|)) 91) (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|)) 90)) (-2406 (((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|))) 134)) (-2498 (((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 104)) (-2417 (((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|))) 145)) (-2471 (((-1286 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|))) 68)) (-2458 (((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 47)) (-2511 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 60)) (-2481 (((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 112))) -(((-643 |#1| |#2|) (-10 -7 (-15 -2406 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -2417 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -2434 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2447 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2447 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2458 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2471 ((-1286 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -2481 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2498 ((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2511 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2524 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-656 (-1195)) (-464)) (T -643)) -((-2524 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-2511 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-2498 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-876 *4)) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-2481 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1195))) (-5 *1 (-643 *5 *6)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-1286 *6)) (-5 *1 (-643 *5 *6)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1195))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-2447 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-2417 (*1 *2 *3) (-12 (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-656 (-253 *4 *5))) (|:| |gvlist| (-656 (-576))))) (-5 *1 (-643 *4 *5))))) -(-10 -7 (-15 -2406 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -2417 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -2434 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2447 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2447 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2458 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2471 ((-1286 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -2481 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2498 ((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2511 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2524 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) -((-2862 (((-112) $ $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118))))) (-2298 (($) NIL) (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))))) NIL)) (-3336 (((-1291) $ (-1177) (-1177)) NIL (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 (((-52) $ (-1177) (-52)) 16) (((-52) $ (-1195) (-52)) 17)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-1397 (((-3 (-52) "failed") (-1177) $) NIL)) (-2473 (($) NIL T CONST)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118))))) (-2833 (($ (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-3 (-52) "failed") (-1177) $) NIL)) (-3634 (($ (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $ (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118)))) (((-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $ (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2859 (((-52) $ (-1177) (-52)) NIL (|has| $ (-6 -4462)))) (-2789 (((-52) $ (-1177)) NIL)) (-4001 (((-656 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2537 (($ $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-1177) $) NIL (|has| (-1177) (-862)))) (-1496 (((-656 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-3365 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2561 (($ (-400)) 9)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118))))) (-2002 (((-656 (-1177)) $) NIL)) (-3412 (((-112) (-1177) $) NIL)) (-3449 (((-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) $) NIL)) (-3807 (($ (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) $) NIL)) (-3385 (((-656 (-1177)) $) NIL)) (-3394 (((-112) (-1177) $) NIL)) (-3914 (((-1138) $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118))))) (-1962 (((-52) $) NIL (|has| (-1177) (-862)))) (-1932 (((-3 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) "failed") (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL)) (-3346 (($ $ (-52)) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) $) NIL)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118)))) (($ $ (-304 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118)))) (($ $ (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118)))) (($ $ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-3403 (((-656 (-52)) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 (((-52) $ (-1177)) 14) (((-52) $ (-1177) (-52)) NIL) (((-52) $ (-1195)) 15)) (-1581 (($) NIL) (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))))) NIL)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))))) NIL)) (-2884 (((-874) $) NIL (-3766 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-625 (-874)))))) (-3722 (((-112) $ $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))))) NIL)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 (-52))) (-1118))))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-644) (-13 (-1212 (-1177) (-52)) (-296 (-1195) (-52)) (-10 -8 (-15 -2561 ($ (-400))) (-15 -2537 ($ $)) (-15 -3055 ((-52) $ (-1195) (-52)))))) (T -644)) -((-2561 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-2537 (*1 *1 *1) (-5 *1 (-644))) (-3055 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1195)) (-5 *1 (-644))))) -(-13 (-1212 (-1177) (-52)) (-296 (-1195) (-52)) (-10 -8 (-15 -2561 ($ (-400))) (-15 -2537 ($ $)) (-15 -3055 ((-52) $ (-1195) (-52))))) -((-4039 (($ $ |#2|) 10))) -(((-645 |#1| |#2|) (-10 -8 (-15 -4039 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645)) -NIL -(-10 -8 (-15 -4039 (|#1| |#1| |#2|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2895 (($ $ $) 34)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-646 |#1|) (-141) (-174)) (T -646)) -((-2895 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-4039 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-729 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2895 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -4039 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4246 (((-3 $ "failed")) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-3620 (((-1286 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1286 (-701 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1879 (((-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2473 (($) NIL T CONST)) (-3311 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1588 (((-3 $ "failed")) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4424 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1856 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4402 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1388 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3247 (((-1191 (-968 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1420 (($ $ (-937)) NIL)) (-1832 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1610 (((-1191 |#1|) $) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1320 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1812 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1744 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1339 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1286 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1999 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4423 (((-937)) NIL (|has| |#2| (-378 |#1|)))) (-1711 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3593 (($ $ (-937)) NIL)) (-1665 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1643 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1687 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1597 (((-3 $ "failed")) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4433 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1868 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4413 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1399 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3291 (((-1191 (-968 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1410 (($ $ (-937)) NIL)) (-1844 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1623 (((-1191 |#1|) $) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1329 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1822 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1756 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3733 (((-1177) $) NIL)) (-1655 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1675 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1700 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3914 (((-1138) $) NIL)) (-1732 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2071 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3629 (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $) (-1286 $)) NIL (|has| |#2| (-378 |#1|))) (((-1286 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2616 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3158 (((-656 (-968 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-968 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2920 (($ $ $) NIL)) (-1801 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2884 (((-874) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL (|has| |#2| (-429 |#1|)))) (-1635 (((-656 (-1286 |#1|))) NIL (-3766 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2931 (($ $ $ $) NIL)) (-1779 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1950 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2908 (($ $ $) NIL)) (-1790 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1768 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1721 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) 20)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-647 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2884 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -647)) -((-2884 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3))))) -(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2884 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-2563 (((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1177)) 106) (((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|))) 131)) (-2548 (((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|))) 136))) -(((-648 |#1| |#2|) (-10 -7 (-15 -2563 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2548 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -2563 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1177)))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -648)) -((-2563 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1177)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) (-2548 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-845 *3))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-2563 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3))))) -(-10 -7 (-15 -2563 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2548 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -2563 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1177)))) -((-2563 (((-3 (-855 (-419 (-968 |#1|))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))) (-1177)) 86) (((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|)))) 20) (((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-855 (-968 |#1|)))) 35)) (-2548 (((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|)))) 23) (((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-845 (-968 |#1|)))) 43))) -(((-649 |#1|) (-10 -7 (-15 -2563 ((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-855 (-968 |#1|))))) (-15 -2563 ((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -2548 ((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-845 (-968 |#1|))))) (-15 -2548 ((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -2563 ((-3 (-855 (-419 (-968 |#1|))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))) (-1177)))) (-464)) (T -649)) -((-2563 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-968 *6)))) (-5 *5 (-1177)) (-5 *3 (-419 (-968 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-649 *6)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5))) (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-845 (-968 *5)))) (-4 *5 (-464)) (-5 *2 (-845 (-419 (-968 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-968 *5))))) (-2563 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 (-968 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-855 (-419 (-968 *5))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 *5))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-968 *5)))))) -(-10 -7 (-15 -2563 ((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-855 (-968 |#1|))))) (-15 -2563 ((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -2548 ((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-845 (-968 |#1|))))) (-15 -2548 ((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -2563 ((-3 (-855 (-419 (-968 |#1|))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))) (-1177)))) -((-2602 (((-3 (-1286 (-419 |#1|)) "failed") (-1286 |#2|) |#2|) 64 (-3216 (|has| |#1| (-374)))) (((-3 (-1286 |#1|) "failed") (-1286 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-2578 (((-112) (-1286 |#2|)) 33)) (-2591 (((-3 (-1286 |#1|) "failed") (-1286 |#2|)) 40))) -(((-650 |#1| |#2|) (-10 -7 (-15 -2578 ((-112) (-1286 |#2|))) (-15 -2591 ((-3 (-1286 |#1|) "failed") (-1286 |#2|))) (IF (|has| |#1| (-374)) (-15 -2602 ((-3 (-1286 |#1|) "failed") (-1286 |#2|) |#2|)) (-15 -2602 ((-3 (-1286 (-419 |#1|)) "failed") (-1286 |#2|) |#2|)))) (-568) (-13 (-1067) (-651 |#1|))) (T -650)) -((-2602 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 *5))) (-3216 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1286 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-2602 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1286 *5)) (-5 *1 (-650 *5 *4)))) (-2591 (*1 *2 *3) (|partial| -12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1067) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-1286 *4)) (-5 *1 (-650 *4 *5)))) (-2578 (*1 *2 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1067) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) -(-10 -7 (-15 -2578 ((-112) (-1286 |#2|))) (-15 -2591 ((-3 (-1286 |#1|) "failed") (-1286 |#2|))) (IF (|has| |#1| (-374)) (-15 -2602 ((-3 (-1286 |#1|) "failed") (-1286 |#2|) |#2|)) (-15 -2602 ((-3 (-1286 (-419 |#1|)) "failed") (-1286 |#2|) |#2|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-2613 (((-701 |#1|) (-1286 $)) 31) (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 29)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-651 |#1|) (-141) (-1067)) (T -651)) -((-2613 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1067)) (-5 *2 (-701 *4)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1067)) (-5 *2 (-701 *4)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *1)) (-5 *4 (-1286 *1)) (-4 *1 (-651 *5)) (-4 *5 (-1067)) (-5 *2 (-2 (|:| -2869 (-701 *5)) (|:| |vec| (-1286 *5))))))) -(-13 (-660 |t#1|) (-10 -8 (-15 -2613 ((-701 |t#1|) (-1286 $))) (-15 -2613 ((-701 |t#1|) (-701 $))) (-15 -2613 ((-2 (|:| -2869 (-701 |t#1|)) (|:| |vec| (-1286 |t#1|))) (-701 $) (-1286 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1118) . T)) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 16 T CONST)) (-3915 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) -(((-652 |#1|) (-141) (-1130)) (T -652)) -NIL -(-13 (-658 |t#1|) (-1069 |t#1|)) -(((-102) . T) ((-625 (-874)) . T) ((-658 |#1|) . T) ((-1069 |#1|) . T) ((-1118) . T)) -((-1616 ((|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|) 17) ((|#2| (-656 |#1|) (-656 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|)) 12))) -(((-653 |#1| |#2|) (-10 -7 (-15 -1616 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1616 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1616 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1616 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1616 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1616 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) (-1118) (-1236)) (T -653)) -((-1616 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1118)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) (-1616 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1118)) (-4 *6 (-1236)) (-5 *1 (-653 *5 *6)))) (-1616 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1118)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1118)) (-4 *5 (-1236)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1118)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1118)) (-4 *6 (-1236)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6))))) -(-10 -7 (-15 -1616 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1616 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1616 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1616 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1616 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1616 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) -((-2176 (((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 16)) (-2309 ((|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 18)) (-2551 (((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)) 13))) -(((-654 |#1| |#2|) (-10 -7 (-15 -2176 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2309 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2551 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) (-1236) (-1236)) (T -654)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) (-2309 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-654 *5 *2)))) (-2176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5))))) -(-10 -7 (-15 -2176 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2309 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2551 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) -((-2551 (((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)) 21))) -(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -2551 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) (-1236) (-1236) (-1236)) (T -655)) -((-2551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-656 *8)) (-5 *1 (-655 *6 *7 *8))))) -(-10 -7 (-15 -2551 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4183 ((|#1| $) NIL)) (-2990 ((|#1| $) NIL)) (-3463 (($ $) NIL)) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1748 (($ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1891 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2032 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3434 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1772 (($ $ $) NIL (|has| $ (-6 -4462)))) (-1761 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1783 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "rest" $) NIL (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-2647 (($ $ $) 37 (|has| |#1| (-1118)))) (-2637 (($ $ $) 41 (|has| |#1| (-1118)))) (-2625 (($ $ $) 44 (|has| |#1| (-1118)))) (-1443 (($ (-1 (-112) |#1|) $) NIL)) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2978 ((|#1| $) NIL)) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1976 (($ $) 23) (($ $ (-783)) NIL)) (-2257 (($ $) NIL (|has| |#1| (-1118)))) (-1919 (($ $) 36 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2833 (($ |#1| $) NIL (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) NIL)) (-3634 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2859 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) NIL)) (-1811 (((-112) $) NIL)) (-2634 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118))) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) (-1 (-112) |#1|) $) NIL)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3202 (((-112) $) 11)) (-3484 (((-656 $) $) NIL)) (-3452 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3460 (($) 9 T CONST)) (-2310 (($ (-783) |#1|) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-2230 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4214 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1685 (($ |#1|) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-2482 (((-656 |#1|) $) NIL)) (-4306 (((-112) $) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3654 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-3807 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2134 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1962 ((|#1| $) 20) (($ $ (-783)) NIL)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3346 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-1821 (((-112) $) NIL)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) 39)) (-1458 (($) 38)) (-2071 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-3473 (((-576) $ $) NIL)) (-1455 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3240 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-4053 (((-112) $) NIL)) (-1816 (($ $) NIL)) (-1794 (($ $) NIL (|has| $ (-6 -4462)))) (-1826 (((-783) $) NIL)) (-1836 (($ $) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) NIL)) (-2822 (($ |#1| $) 12)) (-1806 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1514 (($ $ $) 35) (($ |#1| $) 43) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) NIL)) (-3462 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3911 (($ $ $) 13)) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-1813 (((-1177) $) 31 (|has| |#1| (-840))) (((-1177) $ (-112)) 32 (|has| |#1| (-840))) (((-1291) (-834) $) 33 (|has| |#1| (-840))) (((-1291) (-834) $ (-112)) 34 (|has| |#1| (-840)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-656 |#1|) (-13 (-678 |#1|) (-10 -8 (-15 -3460 ($) -3739) (-15 -3202 ((-112) $)) (-15 -2822 ($ |#1| $)) (-15 -3911 ($ $ $)) (IF (|has| |#1| (-1118)) (PROGN (-15 -2647 ($ $ $)) (-15 -2637 ($ $ $)) (-15 -2625 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-1236)) (T -656)) -((-3460 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1236)))) (-2822 (*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))) (-3911 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))) (-2647 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236)))) (-2637 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236)))) (-2625 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236))))) -(-13 (-678 |#1|) (-10 -8 (-15 -3460 ($) -3739) (-15 -3202 ((-112) $)) (-15 -2822 ($ |#1| $)) (-15 -3911 ($ $ $)) (IF (|has| |#1| (-1118)) (PROGN (-15 -2647 ($ $ $)) (-15 -2637 ($ $ $)) (-15 -2625 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 11) (($ (-1200)) NIL) (((-1200) $) NIL) ((|#1| $) 8)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-657 |#1|) (-13 (-1101) (-625 |#1|)) (-1118)) (T -657)) -NIL -(-13 (-1101) (-625 |#1|)) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 16 T CONST)) (-3915 (((-112) $ $) 6)) (* (($ |#1| $) 14))) -(((-658 |#1|) (-141) (-1130)) (T -658)) -((-1996 (*1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1130)))) (-1389 (*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1130))))) -(-13 (-1118) (-10 -8 (-15 (-1996) ($) -3739) (-15 -1389 ((-112) $)) (-15 * ($ |t#1| $)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2657 (($ |#1| |#1| $) 43)) (-2970 (((-112) $ (-783)) NIL)) (-1443 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2257 (($ $) 45)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2833 (($ |#1| $) 56 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4461)))) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-4001 (((-656 |#1|) $) 9 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2848 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 37)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3449 ((|#1| $) 47)) (-3807 (($ |#1| $) 29) (($ |#1| $ (-783)) 42)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3458 ((|#1| $) 50)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 23)) (-1458 (($) 28)) (-2669 (((-112) $) 54)) (-2245 (((-656 (-2 (|:| -3180 |#1|) (|:| -3926 (-783)))) $) 67)) (-1581 (($) 26) (($ (-656 |#1|)) 19)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) 63 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) 20)) (-2616 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) NIL)) (-2884 (((-874) $) 14 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) 24)) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 69 (|has| |#1| (-1118)))) (-2872 (((-783) $) 17 (|has| $ (-6 -4461))))) -(((-659 |#1|) (-13 (-707 |#1|) (-10 -8 (-6 -4461) (-15 -2669 ((-112) $)) (-15 -2657 ($ |#1| |#1| $)))) (-1118)) (T -659)) -((-2669 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1118)))) (-2657 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1118))))) -(-13 (-707 |#1|) (-10 -8 (-6 -4461) (-15 -2669 ((-112) $)) (-15 -2657 ($ |#1| |#1| $)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-660 |#1|) (-141) (-1076)) (T -660)) -NIL -(-13 (-21) (-658 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783) $) 17)) (-2724 (($ $ |#1|) 69)) (-2745 (($ $) 39)) (-4379 (($ $) 37)) (-2449 (((-3 |#1| "failed") $) 61)) (-4401 ((|#1| $) NIL)) (-3612 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-4316 (((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576)) 56)) (-2756 ((|#1| $ (-576)) 35)) (-2766 ((|#2| $ (-576)) 34)) (-2679 (($ (-1 |#1| |#1|) $) 41)) (-2692 (($ (-1 |#2| |#2|) $) 47)) (-2734 (($) 11)) (-2786 (($ |#1| |#2|) 24)) (-2776 (($ (-656 (-2 (|:| |gen| |#1|) (|:| -2666 |#2|)))) 25)) (-2800 (((-656 (-2 (|:| |gen| |#1|) (|:| -2666 |#2|))) $) 14)) (-2713 (($ |#1| $) 71)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2702 (((-112) $ $) 76)) (-2884 (((-874) $) 21) (($ |#1|) 18)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 27))) -(((-661 |#1| |#2| |#3|) (-13 (-1118) (-1056 |#1|) (-10 -8 (-15 -4316 ((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576))) (-15 -2800 ((-656 (-2 (|:| |gen| |#1|) (|:| -2666 |#2|))) $)) (-15 -2786 ($ |#1| |#2|)) (-15 -2776 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -2666 |#2|))))) (-15 -2766 (|#2| $ (-576))) (-15 -2756 (|#1| $ (-576))) (-15 -4379 ($ $)) (-15 -2745 ($ $)) (-15 -2416 ((-783) $)) (-15 -2734 ($)) (-15 -2724 ($ $ |#1|)) (-15 -2713 ($ |#1| $)) (-15 -3612 ($ |#1| |#2| $)) (-15 -3612 ($ $ $)) (-15 -2702 ((-112) $ $)) (-15 -2692 ($ (-1 |#2| |#2|) $)) (-15 -2679 ($ (-1 |#1| |#1|) $)))) (-1118) (-23) |#2|) (T -661)) -((-4316 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-874) (-874) (-874))) (-5 *4 (-576)) (-5 *2 (-874)) (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1118)) (-4 *6 (-23)) (-14 *7 *6))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2666 *4)))) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4))) (-2786 (*1 *1 *2 *3) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2666 *4)))) (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))) (-2766 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) (-4 *4 (-1118)) (-14 *5 *2))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1118)) (-5 *1 (-661 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4379 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-2745 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4))) (-2734 (*1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-2724 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-2713 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-3612 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-3612 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-2702 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4))) (-2692 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)))) (-2679 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-661 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1118) (-1056 |#1|) (-10 -8 (-15 -4316 ((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576))) (-15 -2800 ((-656 (-2 (|:| |gen| |#1|) (|:| -2666 |#2|))) $)) (-15 -2786 ($ |#1| |#2|)) (-15 -2776 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -2666 |#2|))))) (-15 -2766 (|#2| $ (-576))) (-15 -2756 (|#1| $ (-576))) (-15 -4379 ($ $)) (-15 -2745 ($ $)) (-15 -2416 ((-783) $)) (-15 -2734 ($)) (-15 -2724 ($ $ |#1|)) (-15 -2713 ($ |#1| $)) (-15 -3612 ($ |#1| |#2| $)) (-15 -3612 ($ $ $)) (-15 -2702 ((-112) $ $)) (-15 -2692 ($ (-1 |#2| |#2|) $)) (-15 -2679 ($ (-1 |#1| |#1|) $)))) -((-3365 (((-576) $) 31)) (-2134 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-3385 (((-656 (-576)) $) 12)) (-3394 (((-112) (-576) $) 18)) (-1514 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-656 $)) NIL))) -(((-662 |#1| |#2|) (-10 -8 (-15 -2134 (|#1| |#1| |#1| (-576))) (-15 -2134 (|#1| |#2| |#1| (-576))) (-15 -1514 (|#1| (-656 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -3365 ((-576) |#1|)) (-15 -3385 ((-656 (-576)) |#1|)) (-15 -3394 ((-112) (-576) |#1|))) (-663 |#2|) (-1236)) (T -662)) -NIL -(-10 -8 (-15 -2134 (|#1| |#1| |#1| (-576))) (-15 -2134 (|#1| |#2| |#1| (-576))) (-15 -1514 (|#1| (-656 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -3365 ((-576) |#1|)) (-15 -3385 ((-656 (-576)) |#1|)) (-15 -3394 ((-112) (-576) |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3336 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) 8)) (-3055 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-1919 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) 52)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2310 (($ (-783) |#1|) 70)) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 44 (|has| (-576) (-862)))) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 45 (|has| (-576) (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2134 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3385 (((-656 (-576)) $) 47)) (-3394 (((-112) (-576) $) 48)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1962 ((|#1| $) 43 (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3346 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) 49)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-3240 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 72)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-663 |#1|) (-141) (-1236)) (T -663)) -((-2310 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-1514 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-1514 (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-1514 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-2551 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-3240 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-3240 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-2134 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-2134 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-3055 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1253 (-576))) (|has| *1 (-6 -4462)) (-4 *1 (-663 *2)) (-4 *2 (-1236))))) -(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1253 (-576)) $) (-10 -8 (-15 -2310 ($ (-783) |t#1|)) (-15 -1514 ($ $ |t#1|)) (-15 -1514 ($ |t#1| $)) (-15 -1514 ($ $ $)) (-15 -1514 ($ (-656 $))) (-15 -2551 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3240 ($ $ (-576))) (-15 -3240 ($ $ (-1253 (-576)))) (-15 -2134 ($ |t#1| $ (-576))) (-15 -2134 ($ $ $ (-576))) (IF (|has| $ (-6 -4462)) (-15 -3055 (|t#1| $ (-1253 (-576)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-1525 (((-3 |#2| "failed") |#3| |#2| (-1195) |#2| (-656 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) "failed") |#3| |#2| (-1195)) 44))) -(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -1525 ((-3 (-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) "failed") |#3| |#2| (-1195))) (-15 -1525 ((-3 |#2| "failed") |#3| |#2| (-1195) |#2| (-656 |#2|)))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-975)) (-668 |#2|)) (T -664)) -((-1525 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) (-1525 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1195)) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1221) (-975))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1898 (-656 *4)))) (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -1525 ((-3 (-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) "failed") |#3| |#2| (-1195))) (-15 -1525 ((-3 |#2| "failed") |#3| |#2| (-1195) |#2| (-656 |#2|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2811 (($ $) NIL (|has| |#1| (-374)))) (-2836 (($ $ $) NIL (|has| |#1| (-374)))) (-2849 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2194 (($ $ $) NIL (|has| |#1| (-374)))) (-4105 (($ $ $) NIL (|has| |#1| (-374)))) (-4115 (($ $ $) NIL (|has| |#1| (-374)))) (-2172 (($ $ $) NIL (|has| |#1| (-374)))) (-2162 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2183 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4189 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-464)))) (-1439 (((-112) $) NIL)) (-2421 (($ |#1| (-783)) NIL)) (-4172 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-568)))) (-4163 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-568)))) (-1864 (((-783) $) NIL)) (-4149 (($ $ $) NIL (|has| |#1| (-374)))) (-4157 (($ $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $ $) NIL (|has| |#1| (-374)))) (-4132 (($ $ $) NIL (|has| |#1| (-374)))) (-4124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-4141 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4181 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2071 ((|#1| $ |#1|) NIL)) (-2860 (($ $ $) NIL (|has| |#1| (-374)))) (-3813 (((-783) $) NIL)) (-1841 ((|#1| $) NIL (|has| |#1| (-464)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) NIL)) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-783)) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1950 ((|#1| $ |#1| |#1|) NIL)) (-2028 (($ $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($) NIL)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-665 |#1|) (-668 |#1|) (-239)) (T -665)) -NIL -(-668 |#1|) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2811 (($ $) NIL (|has| |#1| (-374)))) (-2836 (($ $ $) NIL (|has| |#1| (-374)))) (-2849 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2194 (($ $ $) NIL (|has| |#1| (-374)))) (-4105 (($ $ $) NIL (|has| |#1| (-374)))) (-4115 (($ $ $) NIL (|has| |#1| (-374)))) (-2172 (($ $ $) NIL (|has| |#1| (-374)))) (-2162 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2183 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4189 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-464)))) (-1439 (((-112) $) NIL)) (-2421 (($ |#1| (-783)) NIL)) (-4172 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-568)))) (-4163 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-568)))) (-1864 (((-783) $) NIL)) (-4149 (($ $ $) NIL (|has| |#1| (-374)))) (-4157 (($ $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $ $) NIL (|has| |#1| (-374)))) (-4132 (($ $ $) NIL (|has| |#1| (-374)))) (-4124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-4141 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4181 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2071 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2860 (($ $ $) NIL (|has| |#1| (-374)))) (-3813 (((-783) $) NIL)) (-1841 ((|#1| $) NIL (|has| |#1| (-464)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) NIL)) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-783)) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1950 ((|#1| $ |#1| |#1|) NIL)) (-2028 (($ $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($) NIL)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-666 |#1| |#2|) (-13 (-668 |#1|) (-296 |#2| |#2|)) (-239) (-13 (-660 |#1|) (-10 -8 (-15 -2390 ($ $))))) (T -666)) -NIL -(-13 (-668 |#1|) (-296 |#2| |#2|)) -((-2811 (($ $) 29)) (-2028 (($ $) 27)) (-3431 (($) 13))) -(((-667 |#1| |#2|) (-10 -8 (-15 -2811 (|#1| |#1|)) (-15 -2028 (|#1| |#1|)) (-15 -3431 (|#1|))) (-668 |#2|) (-1067)) (T -667)) -NIL -(-10 -8 (-15 -2811 (|#1| |#1|)) (-15 -2028 (|#1| |#1|)) (-15 -3431 (|#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-2811 (($ $) 87 (|has| |#1| (-374)))) (-2836 (($ $ $) 89 (|has| |#1| (-374)))) (-2849 (($ $ (-783)) 88 (|has| |#1| (-374)))) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-2194 (($ $ $) 50 (|has| |#1| (-374)))) (-4105 (($ $ $) 51 (|has| |#1| (-374)))) (-4115 (($ $ $) 53 (|has| |#1| (-374)))) (-2172 (($ $ $) 48 (|has| |#1| (-374)))) (-2162 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 47 (|has| |#1| (-374)))) (-2183 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-4189 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 52 (|has| |#1| (-374)))) (-2449 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-4401 (((-576) $) 79 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 75)) (-4407 (($ $) 69)) (-1999 (((-3 $ "failed") $) 37)) (-2192 (($ $) 60 (|has| |#1| (-464)))) (-1439 (((-112) $) 35)) (-2421 (($ |#1| (-783)) 67)) (-4172 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 62 (|has| |#1| (-568)))) (-4163 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63 (|has| |#1| (-568)))) (-1864 (((-783) $) 71)) (-4149 (($ $ $) 57 (|has| |#1| (-374)))) (-4157 (($ $ $) 58 (|has| |#1| (-374)))) (-2150 (($ $ $) 46 (|has| |#1| (-374)))) (-4132 (($ $ $) 55 (|has| |#1| (-374)))) (-4124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 54 (|has| |#1| (-374)))) (-4141 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-4181 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 59 (|has| |#1| (-374)))) (-4383 ((|#1| $) 70)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2852 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2071 ((|#1| $ |#1|) 92)) (-2860 (($ $ $) 86 (|has| |#1| (-374)))) (-3813 (((-783) $) 72)) (-1841 ((|#1| $) 61 (|has| |#1| (-464)))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) 73)) (-1993 (((-656 |#1|) $) 66)) (-3245 ((|#1| $ (-783)) 68)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1950 ((|#1| $ |#1| |#1|) 65)) (-2028 (($ $) 90)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($) 91)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-668 |#1|) (-141) (-1067)) (T -668)) -((-3431 (*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)))) (-2028 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)))) (-2836 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2849 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1067)) (-4 *3 (-374)))) (-2811 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2860 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(-13 (-864 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -3431 ($)) (-15 -2028 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -2836 ($ $ $)) (-15 -2849 ($ $ (-783))) (-15 -2811 ($ $)) (-15 -2860 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-296 |#1| |#1|) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1056 #0#) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T) ((-864 |#1|) . T)) -((-2824 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-2354 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 19))) -(((-669 |#1| |#2|) (-10 -7 (-15 -2354 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2354 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -2824 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))) (-1262 |#1|)) (T -669)) -((-2824 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-2354 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-665 (-419 *6)))) (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6)))))) -(-10 -7 (-15 -2354 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2354 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -2824 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2811 (($ $) NIL (|has| |#1| (-374)))) (-2836 (($ $ $) 28 (|has| |#1| (-374)))) (-2849 (($ $ (-783)) 31 (|has| |#1| (-374)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2194 (($ $ $) NIL (|has| |#1| (-374)))) (-4105 (($ $ $) NIL (|has| |#1| (-374)))) (-4115 (($ $ $) NIL (|has| |#1| (-374)))) (-2172 (($ $ $) NIL (|has| |#1| (-374)))) (-2162 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2183 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4189 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-464)))) (-1439 (((-112) $) NIL)) (-2421 (($ |#1| (-783)) NIL)) (-4172 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-568)))) (-4163 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-568)))) (-1864 (((-783) $) NIL)) (-4149 (($ $ $) NIL (|has| |#1| (-374)))) (-4157 (($ $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $ $) NIL (|has| |#1| (-374)))) (-4132 (($ $ $) NIL (|has| |#1| (-374)))) (-4124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-4141 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4181 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2071 ((|#1| $ |#1|) 24)) (-2860 (($ $ $) 33 (|has| |#1| (-374)))) (-3813 (((-783) $) NIL)) (-1841 ((|#1| $) NIL (|has| |#1| (-464)))) (-2884 (((-874) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) NIL)) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-783)) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1950 ((|#1| $ |#1| |#1|) 23)) (-2028 (($ $) NIL)) (-1996 (($) 21 T CONST)) (-2011 (($) 8 T CONST)) (-3431 (($) NIL)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-670 |#1| |#2|) (-668 |#1|) (-1067) (-1 |#1| |#1|)) (T -670)) -NIL -(-668 |#1|) -((-2836 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-2849 ((|#2| |#2| (-783) (-1 |#1| |#1|)) 45)) (-2860 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) -(((-671 |#1| |#2|) (-10 -7 (-15 -2836 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2849 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -2860 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -671)) -((-2860 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))) (-2849 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))) (-2836 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4))))) -(-10 -7 (-15 -2836 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2849 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -2860 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2923 (($ $ $) 9))) -(((-672 |#1|) (-10 -8 (-15 -2923 (|#1| |#1| |#1|))) (-673)) (T -672)) -NIL -(-10 -8 (-15 -2923 (|#1| |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-2880 (($ $) 10)) (-2923 (($ $ $) 8)) (-3915 (((-112) $ $) 6)) (-2911 (($ $ $) 9))) -(((-673) (-141)) (T -673)) -((-2880 (*1 *1 *1) (-4 *1 (-673))) (-2911 (*1 *1 *1 *1) (-4 *1 (-673))) (-2923 (*1 *1 *1 *1) (-4 *1 (-673)))) -(-13 (-102) (-10 -8 (-15 -2880 ($ $)) (-15 -2911 ($ $ $)) (-15 -2923 ($ $ $)))) +((-2861 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2297 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4161 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#2| $ |#1| |#2|) NIL)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1399 (((-3 |#2| "failed") |#1| $) NIL)) (-3011 (($) NIL T CONST)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-4404 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) NIL)) (-3633 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#2| $ |#1|) NIL)) (-4001 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 ((|#1| $) NIL (|has| |#1| (-861)))) (-3955 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3197 ((|#1| $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2001 (((-655 |#1|) $) NIL)) (-3308 (((-112) |#1| $) NIL)) (-4012 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3862 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4310 (((-655 |#1|) $) NIL)) (-2969 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1961 ((|#2| $) NIL (|has| |#1| (-861)))) (-3704 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-3954 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3601 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2883 (((-873) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-4400 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-561 |#1| |#2| |#3|) (-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) (-1117) (-1117) (-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460)))) (T -561)) +NIL +(-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) +((-4109 (((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-1 (-1190 |#2|) (-1190 |#2|))) 50))) +(((-562 |#1| |#2|) (-10 -7 (-15 -4109 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-1 (-1190 |#2|) (-1190 |#2|))))) (-567) (-13 (-27) (-441 |#1|))) (T -562)) +((-4109 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-623 *3)) (-5 *5 (-1 (-1190 *3) (-1190 *3))) (-4 *3 (-13 (-27) (-441 *6))) (-4 *6 (-567)) (-5 *2 (-597 *3)) (-5 *1 (-562 *6 *3))))) +(-10 -7 (-15 -4109 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-1 (-1190 |#2|) (-1190 |#2|))))) +((-4078 (((-597 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-1988 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-1355 (((-597 |#5|) |#5| (-1 |#3| |#3|)) 220))) +(((-563 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1355 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4078 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1988 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-567) (-1055 (-575))) (-13 (-27) (-441 |#1|)) (-1261 |#2|) (-1261 (-418 |#3|)) (-352 |#2| |#3| |#4|)) (T -563)) +((-1988 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-27) (-441 *4))) (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *7 (-1261 (-418 *6))) (-5 *1 (-563 *4 *5 *6 *7 *2)) (-4 *2 (-352 *5 *6 *7)))) (-4078 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1261 *6)) (-4 *6 (-13 (-27) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)))) (-4 *8 (-1261 (-418 *7))) (-5 *2 (-597 *3)) (-5 *1 (-563 *5 *6 *7 *8 *3)) (-4 *3 (-352 *6 *7 *8)))) (-1355 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1261 *6)) (-4 *6 (-13 (-27) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)))) (-4 *8 (-1261 (-418 *7))) (-5 *2 (-597 *3)) (-5 *1 (-563 *5 *6 *7 *8 *3)) (-4 *3 (-352 *6 *7 *8))))) +(-10 -7 (-15 -1355 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4078 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1988 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2770 (((-112) (-575) (-575)) 12)) (-1426 (((-575) (-575)) 7)) (-3081 (((-575) (-575) (-575)) 10))) +(((-564) (-10 -7 (-15 -1426 ((-575) (-575))) (-15 -3081 ((-575) (-575) (-575))) (-15 -2770 ((-112) (-575) (-575))))) (T -564)) +((-2770 (*1 *2 *3 *3) (-12 (-5 *3 (-575)) (-5 *2 (-112)) (-5 *1 (-564)))) (-3081 (*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-564)))) (-1426 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-564))))) +(-10 -7 (-15 -1426 ((-575) (-575))) (-15 -3081 ((-575) (-575) (-575))) (-15 -2770 ((-112) (-575) (-575)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2240 ((|#1| $) 67)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-3923 (($ $) 97)) (-3786 (($ $) 80)) (-3605 ((|#1| $) 68)) (-2597 (((-3 $ "failed") $ $) 20)) (-2473 (($ $) 79)) (-3897 (($ $) 96)) (-3761 (($ $) 81)) (-1521 (($ $) 95)) (-3807 (($ $) 82)) (-3011 (($) 18 T CONST)) (-2449 (((-3 (-575) "failed") $) 75)) (-4399 (((-575) $) 76)) (-1747 (((-3 $ "failed") $) 37)) (-3218 (($ |#1| |#1|) 72)) (-4075 (((-112) $) 66)) (-1631 (($) 107)) (-1542 (((-112) $) 35)) (-2931 (($ $ (-575)) 78)) (-4087 (((-112) $) 65)) (-1920 (($ $ $) 113)) (-1425 (($ $ $) 112)) (-3463 (($ $) 104)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-2680 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-418 (-575))) 70)) (-3650 ((|#1| $) 69)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2851 (((-3 $ "failed") $ $) 48)) (-2665 (($ $) 105)) (-1530 (($ $) 94)) (-3817 (($ $) 83)) (-3937 (($ $) 93)) (-3797 (($ $) 84)) (-3909 (($ $) 92)) (-3774 (($ $) 85)) (-4184 (((-112) $ |#1|) 64)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-575)) 74)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1568 (($ $) 103)) (-3852 (($ $) 91)) (-1780 (((-112) $ $) 45)) (-1544 (($ $) 102)) (-3828 (($ $) 90)) (-1592 (($ $) 101)) (-3873 (($ $) 89)) (-2914 (($ $) 100)) (-3885 (($ $) 88)) (-1583 (($ $) 99)) (-3863 (($ $) 87)) (-1554 (($ $) 98)) (-3839 (($ $) 86)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3981 (((-112) $ $) 110)) (-3956 (((-112) $ $) 109)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 111)) (-3943 (((-112) $ $) 108)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ $) 106) (($ $ (-418 (-575))) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-565 |#1|) (-141) (-13 (-415) (-1220))) (T -565)) +((-2680 (*1 *1 *2 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-3218 (*1 *1 *2 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-2680 (*1 *1 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-2680 (*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-2240 (*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112)))) (-4184 (*1 *2 *1 *3) (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112))))) +(-13 (-463) (-861) (-1220) (-1019) (-1055 (-575)) (-10 -8 (-6 -3494) (-15 -2680 ($ |t#1| |t#1|)) (-15 -3218 ($ |t#1| |t#1|)) (-15 -2680 ($ |t#1|)) (-15 -2680 ($ (-418 (-575)))) (-15 -3650 (|t#1| $)) (-15 -3605 (|t#1| $)) (-15 -2240 (|t#1| $)) (-15 -4075 ((-112) $)) (-15 -4087 ((-112) $)) (-15 -4184 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-293) . T) ((-299) . T) ((-463) . T) ((-504) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-861) . T) ((-1019) . T) ((-1055 (-575)) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) . T) ((-1223) . T)) +((-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 9)) (-1540 (($ $) 11)) (-3286 (((-112) $) 20)) (-1747 (((-3 $ "failed") $) 16)) (-1780 (((-112) $ $) 22))) +(((-566 |#1|) (-10 -8 (-15 -3286 ((-112) |#1|)) (-15 -1780 ((-112) |#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -3370 ((-2 (|:| -3800 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1747 ((-3 |#1| "failed") |#1|))) (-567)) (T -566)) +NIL +(-10 -8 (-15 -3286 ((-112) |#1|)) (-15 -1780 ((-112) |#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -3370 ((-2 (|:| -3800 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1747 ((-3 |#1| "failed") |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2851 (((-3 $ "failed") $ $) 48)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-567) (-141)) (T -567)) +((-2851 (*1 *1 *1 *1) (|partial| -4 *1 (-567))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3800 *1) (|:| -4447 *1) (|:| |associate| *1))) (-4 *1 (-567)))) (-1540 (*1 *1 *1) (-4 *1 (-567))) (-1780 (*1 *2 *1 *1) (-12 (-4 *1 (-567)) (-5 *2 (-112)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-567)) (-5 *2 (-112))))) +(-13 (-174) (-38 $) (-299) (-10 -8 (-15 -2851 ((-3 $ "failed") $ $)) (-15 -3370 ((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $)) (-15 -1540 ($ $)) (-15 -1780 ((-112) $ $)) (-15 -3286 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2709 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1194) (-655 |#2|)) 38)) (-2763 (((-597 |#2|) |#2| (-1194)) 63)) (-2990 (((-3 |#2| "failed") |#2| (-1194)) 156)) (-1319 (((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) (-623 |#2|) (-655 (-623 |#2|))) 159)) (-1910 (((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) |#2|) 41))) +(((-568 |#1| |#2|) (-10 -7 (-15 -1910 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) |#2|)) (-15 -2709 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1194) (-655 |#2|))) (-15 -2990 ((-3 |#2| "failed") |#2| (-1194))) (-15 -2763 ((-597 |#2|) |#2| (-1194))) (-15 -1319 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) (-623 |#2|) (-655 (-623 |#2|))))) (-13 (-463) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -568)) +((-1319 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1194)) (-5 *6 (-655 (-623 *3))) (-5 *5 (-623 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-2 (|:| -1630 *3) (|:| |coeff| *3))) (-5 *1 (-568 *7 *3)))) (-2763 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-568 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-2990 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-2709 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *6 *3)))) (-1910 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-2 (|:| -1630 *3) (|:| |coeff| *3))) (-5 *1 (-568 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5)))))) +(-10 -7 (-15 -1910 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) |#2|)) (-15 -2709 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1194) (-655 |#2|))) (-15 -2990 ((-3 |#2| "failed") |#2| (-1194))) (-15 -2763 ((-597 |#2|) |#2| (-1194))) (-15 -1319 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) (-623 |#2|) (-655 (-623 |#2|))))) +((-2330 (((-429 |#1|) |#1|) 19)) (-2353 (((-429 |#1|) |#1|) 34)) (-2831 (((-3 |#1| "failed") |#1|) 49)) (-3058 (((-429 |#1|) |#1|) 60))) +(((-569 |#1|) (-10 -7 (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2330 ((-429 |#1|) |#1|)) (-15 -3058 ((-429 |#1|) |#1|)) (-15 -2831 ((-3 |#1| "failed") |#1|))) (-556)) (T -569)) +((-2831 (*1 *2 *2) (|partial| -12 (-5 *1 (-569 *2)) (-4 *2 (-556)))) (-3058 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556)))) (-2330 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556)))) (-2353 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556))))) +(-10 -7 (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2330 ((-429 |#1|) |#1|)) (-15 -3058 ((-429 |#1|) |#1|)) (-15 -2831 ((-3 |#1| "failed") |#1|))) +((-1335 (($) 9)) (-2624 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-2001 (((-655 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-3862 (($ (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-3971 (($ (-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-3179 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-1691 (((-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-2100 (((-1290)) 11))) +(((-570) (-10 -8 (-15 -1335 ($)) (-15 -2100 ((-1290))) (-15 -2001 ((-655 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3971 ($ (-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3862 ($ (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2624 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1691 ((-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3179 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -570)) +((-3179 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-570)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-570)))) (-2624 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-570)))) (-3862 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-570)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-570)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-570)))) (-2100 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-570)))) (-1335 (*1 *1) (-5 *1 (-570)))) +(-10 -8 (-15 -1335 ($)) (-15 -2100 ((-1290))) (-15 -2001 ((-655 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3971 ($ (-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3862 ($ (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2624 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1691 ((-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3179 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3466 (((-1190 (-418 (-1190 |#2|))) |#2| (-623 |#2|) (-623 |#2|) (-1190 |#2|)) 35)) (-1795 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) |#2| (-1190 |#2|)) 115)) (-1563 (((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|))) 85) (((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|)) 55)) (-3299 (((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| (-623 |#2|) |#2| (-418 (-1190 |#2|))) 92) (((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| |#2| (-1190 |#2|)) 114)) (-2109 (((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) (-623 |#2|) |#2| (-418 (-1190 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) |#2| (-1190 |#2|)) 116)) (-3775 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1624 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|))) 133 (|has| |#3| (-667 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1624 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|)) 132 (|has| |#3| (-667 |#2|)))) (-2433 ((|#2| (-1190 (-418 (-1190 |#2|))) (-623 |#2|) |#2|) 53)) (-2295 (((-1190 (-418 (-1190 |#2|))) (-1190 |#2|) (-623 |#2|)) 34))) +(((-571 |#1| |#2| |#3|) (-10 -7 (-15 -1563 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|))) (-15 -1563 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -3299 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| |#2| (-1190 |#2|))) (-15 -3299 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -1795 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) |#2| (-1190 |#2|))) (-15 -1795 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -2109 ((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) |#2| (-1190 |#2|))) (-15 -2109 ((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -3466 ((-1190 (-418 (-1190 |#2|))) |#2| (-623 |#2|) (-623 |#2|) (-1190 |#2|))) (-15 -2433 (|#2| (-1190 (-418 (-1190 |#2|))) (-623 |#2|) |#2|)) (-15 -2295 ((-1190 (-418 (-1190 |#2|))) (-1190 |#2|) (-623 |#2|))) (IF (|has| |#3| (-667 |#2|)) (PROGN (-15 -3775 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1624 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|))) (-15 -3775 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1624 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|))))) |%noBranch|)) (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))) (-13 (-441 |#1|) (-27) (-1220)) (-1117)) (T -571)) +((-3775 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-623 *4)) (-5 *6 (-418 (-1190 *4))) (-4 *4 (-13 (-441 *7) (-27) (-1220))) (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117)))) (-3775 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-623 *4)) (-5 *6 (-1190 *4)) (-4 *4 (-13 (-441 *7) (-27) (-1220))) (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117)))) (-2295 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *6)) (-4 *6 (-13 (-441 *5) (-27) (-1220))) (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-1190 (-418 (-1190 *6)))) (-5 *1 (-571 *5 *6 *7)) (-5 *3 (-1190 *6)) (-4 *7 (-1117)))) (-2433 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1190 (-418 (-1190 *2)))) (-5 *4 (-623 *2)) (-4 *2 (-13 (-441 *5) (-27) (-1220))) (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1117)))) (-3466 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-1190 (-418 (-1190 *3)))) (-5 *1 (-571 *6 *3 *7)) (-5 *5 (-1190 *3)) (-4 *7 (-1117)))) (-2109 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-623 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194))) (-5 *5 (-418 (-1190 *2))) (-4 *2 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *1 (-571 *6 *2 *7)) (-4 *7 (-1117)))) (-2109 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-623 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194))) (-5 *5 (-1190 *2)) (-4 *2 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *1 (-571 *6 *2 *7)) (-4 *7 (-1117)))) (-1795 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3)) (-5 *6 (-418 (-1190 *3))) (-4 *3 (-13 (-441 *7) (-27) (-1220))) (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *7 *3 *8)) (-4 *8 (-1117)))) (-1795 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3)) (-5 *6 (-1190 *3)) (-4 *3 (-13 (-441 *7) (-27) (-1220))) (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *7 *3 *8)) (-4 *8 (-1117)))) (-3299 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-418 (-1190 *3))) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| -1630 *3) (|:| |coeff| *3))) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117)))) (-3299 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-1190 *3)) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| -1630 *3) (|:| |coeff| *3))) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117)))) (-1563 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-623 *3)) (-5 *5 (-418 (-1190 *3))) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117)))) (-1563 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-623 *3)) (-5 *5 (-1190 *3)) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117))))) +(-10 -7 (-15 -1563 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|))) (-15 -1563 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -3299 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| |#2| (-1190 |#2|))) (-15 -3299 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -1795 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) |#2| (-1190 |#2|))) (-15 -1795 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -2109 ((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) |#2| (-1190 |#2|))) (-15 -2109 ((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -3466 ((-1190 (-418 (-1190 |#2|))) |#2| (-623 |#2|) (-623 |#2|) (-1190 |#2|))) (-15 -2433 (|#2| (-1190 (-418 (-1190 |#2|))) (-623 |#2|) |#2|)) (-15 -2295 ((-1190 (-418 (-1190 |#2|))) (-1190 |#2|) (-623 |#2|))) (IF (|has| |#3| (-667 |#2|)) (PROGN (-15 -3775 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1624 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|))) (-15 -3775 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1624 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|))))) |%noBranch|)) +((-2028 (((-575) (-575) (-782)) 85)) (-3519 (((-575) (-575)) 83)) (-3417 (((-575) (-575)) 81)) (-2440 (((-575) (-575)) 87)) (-3755 (((-575) (-575) (-575)) 65)) (-2651 (((-575) (-575) (-575)) 62)) (-4055 (((-418 (-575)) (-575)) 30)) (-4225 (((-575) (-575)) 34)) (-2574 (((-575) (-575)) 74)) (-3872 (((-575) (-575)) 46)) (-1986 (((-655 (-575)) (-575)) 80)) (-2326 (((-575) (-575) (-575) (-575) (-575)) 58)) (-3227 (((-418 (-575)) (-575)) 55))) +(((-572) (-10 -7 (-15 -3227 ((-418 (-575)) (-575))) (-15 -2326 ((-575) (-575) (-575) (-575) (-575))) (-15 -1986 ((-655 (-575)) (-575))) (-15 -3872 ((-575) (-575))) (-15 -2574 ((-575) (-575))) (-15 -4225 ((-575) (-575))) (-15 -4055 ((-418 (-575)) (-575))) (-15 -2651 ((-575) (-575) (-575))) (-15 -3755 ((-575) (-575) (-575))) (-15 -2440 ((-575) (-575))) (-15 -3417 ((-575) (-575))) (-15 -3519 ((-575) (-575))) (-15 -2028 ((-575) (-575) (-782))))) (T -572)) +((-2028 (*1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-782)) (-5 *1 (-572)))) (-3519 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-2440 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-3755 (*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-2651 (*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-4055 (*1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-572)) (-5 *3 (-575)))) (-4225 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-2574 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-3872 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-1986 (*1 *2 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-572)) (-5 *3 (-575)))) (-2326 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-3227 (*1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-572)) (-5 *3 (-575))))) +(-10 -7 (-15 -3227 ((-418 (-575)) (-575))) (-15 -2326 ((-575) (-575) (-575) (-575) (-575))) (-15 -1986 ((-655 (-575)) (-575))) (-15 -3872 ((-575) (-575))) (-15 -2574 ((-575) (-575))) (-15 -4225 ((-575) (-575))) (-15 -4055 ((-418 (-575)) (-575))) (-15 -2651 ((-575) (-575) (-575))) (-15 -3755 ((-575) (-575) (-575))) (-15 -2440 ((-575) (-575))) (-15 -3417 ((-575) (-575))) (-15 -3519 ((-575) (-575))) (-15 -2028 ((-575) (-575) (-782)))) +((-2223 (((-2 (|:| |answer| |#4|) (|:| -3104 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-573 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2223 ((-2 (|:| |answer| |#4|) (|:| -3104 |#4|)) |#4| (-1 |#2| |#2|)))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -573)) +((-2223 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-4 *7 (-1261 (-418 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3104 *3))) (-5 *1 (-573 *5 *6 *7 *3)) (-4 *3 (-352 *5 *6 *7))))) +(-10 -7 (-15 -2223 ((-2 (|:| |answer| |#4|) (|:| -3104 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2223 (((-2 (|:| |answer| (-418 |#2|)) (|:| -3104 (-418 |#2|)) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|)) 18))) +(((-574 |#1| |#2|) (-10 -7 (-15 -2223 ((-2 (|:| |answer| (-418 |#2|)) (|:| -3104 (-418 |#2|)) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|)))) (-373) (-1261 |#1|)) (T -574)) +((-2223 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| |answer| (-418 *6)) (|:| -3104 (-418 *6)) (|:| |specpart| (-418 *6)) (|:| |polypart| *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-418 *6))))) +(-10 -7 (-15 -2223 ((-2 (|:| |answer| (-418 |#2|)) (|:| -3104 (-418 |#2|)) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 30)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 96)) (-1540 (($ $) 97)) (-3286 (((-112) $) NIL)) (-1349 (($ $ $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3949 (($ $ $ $) 52)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL)) (-3624 (($ $ $) 91)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL)) (-4399 (((-575) $) NIL)) (-2802 (($ $ $) 54)) (-1749 (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 77) (((-700 (-575)) (-700 $)) 73) (((-700 (-575)) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) 93)) (-2446 (((-3 (-418 (-575)) "failed") $) NIL)) (-3405 (((-112) $) NIL)) (-3100 (((-418 (-575)) $) NIL)) (-2079 (($) 79) (($ $) 80)) (-2813 (($ $ $) 90)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-1455 (($ $ $ $) NIL)) (-4149 (($ $ $) 70)) (-4075 (((-112) $) NIL)) (-3747 (($ $ $) NIL)) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL)) (-1542 (((-112) $) 34)) (-2437 (((-112) $) 85)) (-2607 (((-3 $ "failed") $) NIL)) (-4087 (((-112) $) 43)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1993 (($ $ $ $) 55)) (-1920 (($ $ $) 87)) (-1425 (($ $ $) 86)) (-3537 (($ $) NIL)) (-1839 (($ $) 49)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) 69)) (-1619 (($ $ $) NIL)) (-3474 (($) NIL T CONST)) (-3047 (($ $) 38)) (-3912 (((-1137) $) 42)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 128)) (-3926 (($ $ $) 94) (($ (-655 $)) NIL)) (-2217 (($ $) NIL)) (-2353 (((-429 $) $) 114)) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL)) (-2851 (((-3 $ "failed") $ $) 112)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2185 (((-112) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 89)) (-2389 (($ $) NIL) (($ $ (-782)) NIL)) (-3353 (($ $) 40)) (-3078 (($ $) 36)) (-2615 (((-575) $) 48) (((-547) $) 64) (((-904 (-575)) $) NIL) (((-389) $) 58) (((-227) $) 61) (((-1176) $) 66)) (-2883 (((-873) $) 46) (($ (-575)) 47) (($ $) NIL) (($ (-575)) 47)) (-3759 (((-782)) NIL T CONST)) (-2830 (((-112) $ $) NIL)) (-3820 (($ $ $) NIL)) (-4400 (((-112) $ $) NIL)) (-1548 (($) 35)) (-1780 (((-112) $ $) NIL)) (-2755 (($ $ $ $) 51)) (-2705 (($ $) 78)) (-1996 (($) 6 T CONST)) (-2009 (($) 31 T CONST)) (-4196 (((-1176) $) 26) (((-1176) $ (-112)) 27) (((-1290) (-833) $) 28) (((-1290) (-833) $ (-112)) 29)) (-3430 (($ $) NIL) (($ $ (-782)) NIL)) (-3981 (((-112) $ $) 50)) (-3956 (((-112) $ $) 81)) (-3914 (((-112) $ $) 33)) (-3970 (((-112) $ $) 82)) (-3943 (((-112) $ $) 10)) (-4028 (($ $) 16) (($ $ $) 39)) (-4016 (($ $ $) 37)) (** (($ $ (-936)) NIL) (($ $ (-782)) 84)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 83) (($ $ $) 53) (($ (-575) $) 83))) +(((-575) (-13 (-556) (-625 (-1176)) (-839) (-10 -7 (-6 -4447) (-6 -4452) (-6 -4448) (-6 -4442)))) (T -575)) +NIL +(-13 (-556) (-625 (-1176)) (-839) (-10 -7 (-6 -4447) (-6 -4452) (-6 -4448) (-6 -4442))) +((-2803 (((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780) (-1080)) 116) (((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780)) 118)) (-4413 (((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1194)) 195) (((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1176)) 194) (((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389) (-1080)) 199) (((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389)) 200) (((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389)) 201) (((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389))))) 202) (((-1052) (-325 (-389)) (-1111 (-854 (-389)))) 190) (((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389)) 189) (((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389)) 185) (((-1052) (-780)) 177) (((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389) (-1080)) 184))) +(((-576) (-10 -7 (-15 -4413 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389) (-1080))) (-15 -4413 ((-1052) (-780))) (-15 -4413 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389))) (-15 -4413 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389))) (-15 -4413 ((-1052) (-325 (-389)) (-1111 (-854 (-389))))) (-15 -4413 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))))) (-15 -4413 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389))) (-15 -4413 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389))) (-15 -4413 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389) (-1080))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780) (-1080))) (-15 -4413 ((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1176))) (-15 -4413 ((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1194))))) (T -576)) +((-4413 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-325 (-389))) (-5 *4 (-1109 (-854 (-389)))) (-5 *5 (-1194)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4413 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-325 (-389))) (-5 *4 (-1109 (-854 (-389)))) (-5 *5 (-1176)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-1080)) (-5 *2 (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052)))) (-5 *1 (-576)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052)))) (-5 *1 (-576)))) (-4413 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) (-5 *5 (-389)) (-5 *6 (-1080)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4413 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4413 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4413 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4413 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) (-5 *5 (-389)) (-5 *6 (-1080)) (-5 *2 (-1052)) (-5 *1 (-576))))) +(-10 -7 (-15 -4413 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389) (-1080))) (-15 -4413 ((-1052) (-780))) (-15 -4413 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389))) (-15 -4413 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389))) (-15 -4413 ((-1052) (-325 (-389)) (-1111 (-854 (-389))))) (-15 -4413 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))))) (-15 -4413 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389))) (-15 -4413 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389))) (-15 -4413 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389) (-1080))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780) (-1080))) (-15 -4413 ((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1176))) (-15 -4413 ((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1194)))) +((-1694 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|)) 195)) (-4251 (((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|)) 97)) (-1320 (((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2|) 191)) (-2126 (((-3 |#2| "failed") |#2| |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194))) 200)) (-1674 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1624 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-1194)) 209 (|has| |#3| (-667 |#2|))))) +(((-577 |#1| |#2| |#3|) (-10 -7 (-15 -4251 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|))) (-15 -1320 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2|)) (-15 -1694 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|))) (-15 -2126 ((-3 |#2| "failed") |#2| |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)))) (IF (|has| |#3| (-667 |#2|)) (-15 -1674 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1624 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-1194))) |%noBranch|)) (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))) (-13 (-441 |#1|) (-27) (-1220)) (-1117)) (T -577)) +((-1674 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-623 *4)) (-5 *6 (-1194)) (-4 *4 (-13 (-441 *7) (-27) (-1220))) (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) (-5 *1 (-577 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117)))) (-2126 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-623 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194))) (-4 *2 (-13 (-441 *5) (-27) (-1220))) (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *1 (-577 *5 *2 *6)) (-4 *6 (-1117)))) (-1694 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3)) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *6 *3 *7)) (-4 *7 (-1117)))) (-1320 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-441 *5) (-27) (-1220))) (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| -1630 *3) (|:| |coeff| *3))) (-5 *1 (-577 *5 *3 *6)) (-4 *6 (-1117)))) (-4251 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-441 *5) (-27) (-1220))) (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-577 *5 *3 *6)) (-4 *6 (-1117))))) +(-10 -7 (-15 -4251 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|))) (-15 -1320 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2|)) (-15 -1694 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|))) (-15 -2126 ((-3 |#2| "failed") |#2| |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)))) (IF (|has| |#3| (-667 |#2|)) (-15 -1674 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1624 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-1194))) |%noBranch|)) +((-2115 (((-2 (|:| -1403 |#2|) (|:| |nconst| |#2|)) |#2| (-1194)) 64)) (-3515 (((-3 |#2| "failed") |#2| (-1194) (-854 |#2|) (-854 |#2|)) 175 (-12 (|has| |#2| (-1156)) (|has| |#1| (-625 (-904 (-575)))) (|has| |#1| (-898 (-575))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)) 154 (-12 (|has| |#2| (-640)) (|has| |#1| (-625 (-904 (-575)))) (|has| |#1| (-898 (-575)))))) (-1756 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)) 156 (-12 (|has| |#2| (-640)) (|has| |#1| (-625 (-904 (-575)))) (|has| |#1| (-898 (-575))))))) +(((-578 |#1| |#2|) (-10 -7 (-15 -2115 ((-2 (|:| -1403 |#2|) (|:| |nconst| |#2|)) |#2| (-1194))) (IF (|has| |#1| (-625 (-904 (-575)))) (IF (|has| |#1| (-898 (-575))) (PROGN (IF (|has| |#2| (-640)) (PROGN (-15 -1756 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194))) (-15 -3515 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)))) |%noBranch|) (IF (|has| |#2| (-1156)) (-15 -3515 ((-3 |#2| "failed") |#2| (-1194) (-854 |#2|) (-854 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1055 (-575)) (-463) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -578)) +((-3515 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1194)) (-5 *4 (-854 *2)) (-4 *2 (-1156)) (-4 *2 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-625 (-904 (-575)))) (-4 *5 (-898 (-575))) (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) (-5 *1 (-578 *5 *2)))) (-3515 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-625 (-904 (-575)))) (-4 *5 (-898 (-575))) (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-578 *5 *3)) (-4 *3 (-640)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-1756 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-625 (-904 (-575)))) (-4 *5 (-898 (-575))) (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-578 *5 *3)) (-4 *3 (-640)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) (-5 *2 (-2 (|:| -1403 *3) (|:| |nconst| *3))) (-5 *1 (-578 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5)))))) +(-10 -7 (-15 -2115 ((-2 (|:| -1403 |#2|) (|:| |nconst| |#2|)) |#2| (-1194))) (IF (|has| |#1| (-625 (-904 (-575)))) (IF (|has| |#1| (-898 (-575))) (PROGN (IF (|has| |#2| (-640)) (PROGN (-15 -1756 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194))) (-15 -3515 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)))) |%noBranch|) (IF (|has| |#2| (-1156)) (-15 -3515 ((-3 |#2| "failed") |#2| (-1194) (-854 |#2|) (-854 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1354 (((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-655 (-418 |#2|))) 41)) (-4413 (((-597 (-418 |#2|)) (-418 |#2|)) 28)) (-3329 (((-3 (-418 |#2|) "failed") (-418 |#2|)) 17)) (-1706 (((-3 (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-418 |#2|)) 48))) +(((-579 |#1| |#2|) (-10 -7 (-15 -4413 ((-597 (-418 |#2|)) (-418 |#2|))) (-15 -3329 ((-3 (-418 |#2|) "failed") (-418 |#2|))) (-15 -1706 ((-3 (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-418 |#2|))) (-15 -1354 ((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-655 (-418 |#2|))))) (-13 (-373) (-148) (-1055 (-575))) (-1261 |#1|)) (T -579)) +((-1354 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-655 (-418 *6))) (-5 *3 (-418 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *5 *6)))) (-1706 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| -1630 (-418 *5)) (|:| |coeff| (-418 *5)))) (-5 *1 (-579 *4 *5)) (-5 *3 (-418 *5)))) (-3329 (*1 *2 *2) (|partial| -12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-13 (-373) (-148) (-1055 (-575)))) (-5 *1 (-579 *3 *4)))) (-4413 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4)) (-5 *2 (-597 (-418 *5))) (-5 *1 (-579 *4 *5)) (-5 *3 (-418 *5))))) +(-10 -7 (-15 -4413 ((-597 (-418 |#2|)) (-418 |#2|))) (-15 -3329 ((-3 (-418 |#2|) "failed") (-418 |#2|))) (-15 -1706 ((-3 (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-418 |#2|))) (-15 -1354 ((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-655 (-418 |#2|))))) +((-1774 (((-3 (-575) "failed") |#1|) 14)) (-2567 (((-112) |#1|) 13)) (-3841 (((-575) |#1|) 9))) +(((-580 |#1|) (-10 -7 (-15 -3841 ((-575) |#1|)) (-15 -2567 ((-112) |#1|)) (-15 -1774 ((-3 (-575) "failed") |#1|))) (-1055 (-575))) (T -580)) +((-1774 (*1 *2 *3) (|partial| -12 (-5 *2 (-575)) (-5 *1 (-580 *3)) (-4 *3 (-1055 *2)))) (-2567 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1055 (-575))))) (-3841 (*1 *2 *3) (-12 (-5 *2 (-575)) (-5 *1 (-580 *3)) (-4 *3 (-1055 *2))))) +(-10 -7 (-15 -3841 ((-575) |#1|)) (-15 -2567 ((-112) |#1|)) (-15 -1774 ((-3 (-575) "failed") |#1|))) +((-1914 (((-3 (-2 (|:| |mainpart| (-418 (-967 |#1|))) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 (-967 |#1|))) (|:| |logand| (-418 (-967 |#1|))))))) "failed") (-418 (-967 |#1|)) (-1194) (-655 (-418 (-967 |#1|)))) 48)) (-1443 (((-597 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-1194)) 28)) (-3063 (((-3 (-418 (-967 |#1|)) "failed") (-418 (-967 |#1|)) (-1194)) 23)) (-3810 (((-3 (-2 (|:| -1630 (-418 (-967 |#1|))) (|:| |coeff| (-418 (-967 |#1|)))) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|))) 35))) +(((-581 |#1|) (-10 -7 (-15 -1443 ((-597 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -3063 ((-3 (-418 (-967 |#1|)) "failed") (-418 (-967 |#1|)) (-1194))) (-15 -1914 ((-3 (-2 (|:| |mainpart| (-418 (-967 |#1|))) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 (-967 |#1|))) (|:| |logand| (-418 (-967 |#1|))))))) "failed") (-418 (-967 |#1|)) (-1194) (-655 (-418 (-967 |#1|))))) (-15 -3810 ((-3 (-2 (|:| -1630 (-418 (-967 |#1|))) (|:| |coeff| (-418 (-967 |#1|)))) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|))))) (-13 (-567) (-1055 (-575)) (-148))) (T -581)) +((-3810 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)) (-148))) (-5 *2 (-2 (|:| -1630 (-418 (-967 *5))) (|:| |coeff| (-418 (-967 *5))))) (-5 *1 (-581 *5)) (-5 *3 (-418 (-967 *5))))) (-1914 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 (-418 (-967 *6)))) (-5 *3 (-418 (-967 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-581 *6)))) (-3063 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-418 (-967 *4))) (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)) (-148))) (-5 *1 (-581 *4)))) (-1443 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)) (-148))) (-5 *2 (-597 (-418 (-967 *5)))) (-5 *1 (-581 *5)) (-5 *3 (-418 (-967 *5)))))) +(-10 -7 (-15 -1443 ((-597 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -3063 ((-3 (-418 (-967 |#1|)) "failed") (-418 (-967 |#1|)) (-1194))) (-15 -1914 ((-3 (-2 (|:| |mainpart| (-418 (-967 |#1|))) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 (-967 |#1|))) (|:| |logand| (-418 (-967 |#1|))))))) "failed") (-418 (-967 |#1|)) (-1194) (-655 (-418 (-967 |#1|))))) (-15 -3810 ((-3 (-2 (|:| -1630 (-418 (-967 |#1|))) (|:| |coeff| (-418 (-967 |#1|)))) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|))))) +((-2861 (((-112) $ $) 75)) (-3799 (((-112) $) 48)) (-2240 ((|#1| $) 39)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) 79)) (-3923 (($ $) 139)) (-3786 (($ $) 118)) (-3605 ((|#1| $) 37)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2473 (($ $) NIL)) (-3897 (($ $) 141)) (-3761 (($ $) 114)) (-1521 (($ $) 143)) (-3807 (($ $) 122)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) 93)) (-4399 (((-575) $) 95)) (-1747 (((-3 $ "failed") $) 78)) (-3218 (($ |#1| |#1|) 35)) (-4075 (((-112) $) 44)) (-1631 (($) 104)) (-1542 (((-112) $) 55)) (-2931 (($ $ (-575)) NIL)) (-4087 (((-112) $) 45)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-3463 (($ $) 106)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-2680 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-418 (-575))) 92)) (-3650 ((|#1| $) 36)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) 81) (($ (-655 $)) NIL)) (-2851 (((-3 $ "failed") $ $) 80)) (-2665 (($ $) 108)) (-1530 (($ $) 147)) (-3817 (($ $) 120)) (-3937 (($ $) 149)) (-3797 (($ $) 124)) (-3909 (($ $) 145)) (-3774 (($ $) 116)) (-4184 (((-112) $ |#1|) 42)) (-2883 (((-873) $) 100) (($ (-575)) 83) (($ $) NIL) (($ (-575)) 83)) (-3759 (((-782)) 102 T CONST)) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) 161)) (-3852 (($ $) 130)) (-1780 (((-112) $ $) NIL)) (-1544 (($ $) 159)) (-3828 (($ $) 126)) (-1592 (($ $) 157)) (-3873 (($ $) 137)) (-2914 (($ $) 155)) (-3885 (($ $) 135)) (-1583 (($ $) 153)) (-3863 (($ $) 132)) (-1554 (($ $) 151)) (-3839 (($ $) 128)) (-1996 (($) 30 T CONST)) (-2009 (($) 10 T CONST)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 49)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 47)) (-4028 (($ $) 53) (($ $ $) 54)) (-4016 (($ $ $) 52)) (** (($ $ (-936)) 71) (($ $ (-782)) NIL) (($ $ $) 110) (($ $ (-418 (-575))) 163)) (* (($ (-936) $) 66) (($ (-782) $) NIL) (($ (-575) $) 65) (($ $ $) 61))) +(((-582 |#1|) (-565 |#1|) (-13 (-415) (-1220))) (T -582)) +NIL +(-565 |#1|) +((-1830 (((-3 (-655 (-1190 (-575))) "failed") (-655 (-1190 (-575))) (-1190 (-575))) 27))) +(((-583) (-10 -7 (-15 -1830 ((-3 (-655 (-1190 (-575))) "failed") (-655 (-1190 (-575))) (-1190 (-575)))))) (T -583)) +((-1830 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 (-575)))) (-5 *3 (-1190 (-575))) (-5 *1 (-583))))) +(-10 -7 (-15 -1830 ((-3 (-655 (-1190 (-575))) "failed") (-655 (-1190 (-575))) (-1190 (-575))))) +((-3630 (((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-1194)) 19)) (-3131 (((-655 (-623 |#2|)) (-655 |#2|) (-1194)) 23)) (-1644 (((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-655 (-623 |#2|))) 11)) (-1657 ((|#2| |#2| (-1194)) 59 (|has| |#1| (-567)))) (-1410 ((|#2| |#2| (-1194)) 87 (-12 (|has| |#2| (-293)) (|has| |#1| (-463))))) (-3675 (((-623 |#2|) (-623 |#2|) (-655 (-623 |#2|)) (-1194)) 25)) (-3287 (((-623 |#2|) (-655 (-623 |#2|))) 24)) (-3033 (((-597 |#2|) |#2| (-1194) (-1 (-597 |#2|) |#2| (-1194)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194))) 115 (-12 (|has| |#2| (-293)) (|has| |#2| (-640)) (|has| |#2| (-1055 (-1194))) (|has| |#1| (-625 (-904 (-575)))) (|has| |#1| (-463)) (|has| |#1| (-898 (-575))))))) +(((-584 |#1| |#2|) (-10 -7 (-15 -3630 ((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-1194))) (-15 -3287 ((-623 |#2|) (-655 (-623 |#2|)))) (-15 -3675 ((-623 |#2|) (-623 |#2|) (-655 (-623 |#2|)) (-1194))) (-15 -1644 ((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-655 (-623 |#2|)))) (-15 -3131 ((-655 (-623 |#2|)) (-655 |#2|) (-1194))) (IF (|has| |#1| (-567)) (-15 -1657 (|#2| |#2| (-1194))) |%noBranch|) (IF (|has| |#1| (-463)) (IF (|has| |#2| (-293)) (PROGN (-15 -1410 (|#2| |#2| (-1194))) (IF (|has| |#1| (-625 (-904 (-575)))) (IF (|has| |#1| (-898 (-575))) (IF (|has| |#2| (-640)) (IF (|has| |#2| (-1055 (-1194))) (-15 -3033 ((-597 |#2|) |#2| (-1194) (-1 (-597 |#2|) |#2| (-1194)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1117) (-441 |#1|)) (T -584)) +((-3033 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-597 *3) *3 (-1194))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1194))) (-4 *3 (-293)) (-4 *3 (-640)) (-4 *3 (-1055 *4)) (-4 *3 (-441 *7)) (-5 *4 (-1194)) (-4 *7 (-625 (-904 (-575)))) (-4 *7 (-463)) (-4 *7 (-898 (-575))) (-4 *7 (-1117)) (-5 *2 (-597 *3)) (-5 *1 (-584 *7 *3)))) (-1410 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-463)) (-4 *4 (-1117)) (-5 *1 (-584 *4 *2)) (-4 *2 (-293)) (-4 *2 (-441 *4)))) (-1657 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-4 *4 (-1117)) (-5 *1 (-584 *4 *2)) (-4 *2 (-441 *4)))) (-3131 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-1194)) (-4 *6 (-441 *5)) (-4 *5 (-1117)) (-5 *2 (-655 (-623 *6))) (-5 *1 (-584 *5 *6)))) (-1644 (*1 *2 *2 *2) (-12 (-5 *2 (-655 (-623 *4))) (-4 *4 (-441 *3)) (-4 *3 (-1117)) (-5 *1 (-584 *3 *4)))) (-3675 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-655 (-623 *6))) (-5 *4 (-1194)) (-5 *2 (-623 *6)) (-4 *6 (-441 *5)) (-4 *5 (-1117)) (-5 *1 (-584 *5 *6)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-655 (-623 *5))) (-4 *4 (-1117)) (-5 *2 (-623 *5)) (-5 *1 (-584 *4 *5)) (-4 *5 (-441 *4)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-623 *5))) (-5 *3 (-1194)) (-4 *5 (-441 *4)) (-4 *4 (-1117)) (-5 *1 (-584 *4 *5))))) +(-10 -7 (-15 -3630 ((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-1194))) (-15 -3287 ((-623 |#2|) (-655 (-623 |#2|)))) (-15 -3675 ((-623 |#2|) (-623 |#2|) (-655 (-623 |#2|)) (-1194))) (-15 -1644 ((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-655 (-623 |#2|)))) (-15 -3131 ((-655 (-623 |#2|)) (-655 |#2|) (-1194))) (IF (|has| |#1| (-567)) (-15 -1657 (|#2| |#2| (-1194))) |%noBranch|) (IF (|has| |#1| (-463)) (IF (|has| |#2| (-293)) (PROGN (-15 -1410 (|#2| |#2| (-1194))) (IF (|has| |#1| (-625 (-904 (-575)))) (IF (|has| |#1| (-898 (-575))) (IF (|has| |#2| (-640)) (IF (|has| |#2| (-1055 (-1194))) (-15 -3033 ((-597 |#2|) |#2| (-1194) (-1 (-597 |#2|) |#2| (-1194)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1343 (((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-655 |#1|) "failed") (-575) |#1| |#1|)) 199)) (-4423 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-655 (-418 |#2|))) 174)) (-2407 (((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-655 (-418 |#2|))) 171)) (-2078 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2530 (((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-1827 (((-3 (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-418 |#2|)) 202)) (-2979 (((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-418 |#2|)) 205)) (-4128 (((-2 (|:| |ir| (-597 (-418 |#2|))) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|)) 88)) (-2971 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-3256 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-655 (-418 |#2|))) 178)) (-3733 (((-3 (-634 |#1| |#2|) "failed") (-634 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|)) 166)) (-2094 (((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|)) 189)) (-2741 (((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-418 |#2|)) 210))) +(((-585 |#1| |#2|) (-10 -7 (-15 -2530 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2094 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|))) (-15 -1343 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-655 |#1|) "failed") (-575) |#1| |#1|))) (-15 -2979 ((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-418 |#2|))) (-15 -2741 ((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-418 |#2|))) (-15 -4423 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-655 (-418 |#2|)))) (-15 -3256 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-655 (-418 |#2|)))) (-15 -1827 ((-3 (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-418 |#2|))) (-15 -2407 ((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-655 (-418 |#2|)))) (-15 -2078 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3733 ((-3 (-634 |#1| |#2|) "failed") (-634 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|))) (-15 -4128 ((-2 (|:| |ir| (-597 (-418 |#2|))) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|))) (-15 -2971 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-373) (-1261 |#1|)) (T -585)) +((-2971 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-585 *5 *3)))) (-4128 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| |ir| (-597 (-418 *6))) (|:| |specpart| (-418 *6)) (|:| |polypart| *6))) (-5 *1 (-585 *5 *6)) (-5 *3 (-418 *6)))) (-3733 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2435 *4) (|:| |sol?| (-112))) (-575) *4)) (-4 *4 (-373)) (-4 *5 (-1261 *4)) (-5 *1 (-585 *4 *5)))) (-2078 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1630 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-373)) (-5 *1 (-585 *4 *2)) (-4 *2 (-1261 *4)))) (-2407 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-655 (-418 *7))) (-4 *7 (-1261 *6)) (-5 *3 (-418 *7)) (-4 *6 (-373)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-585 *6 *7)))) (-1827 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| -1630 (-418 *6)) (|:| |coeff| (-418 *6)))) (-5 *1 (-585 *5 *6)) (-5 *3 (-418 *6)))) (-3256 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2435 *7) (|:| |sol?| (-112))) (-575) *7)) (-5 *6 (-655 (-418 *8))) (-4 *7 (-373)) (-4 *8 (-1261 *7)) (-5 *3 (-418 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-585 *7 *8)))) (-4423 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1630 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-655 (-418 *8))) (-4 *7 (-373)) (-4 *8 (-1261 *7)) (-5 *3 (-418 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-585 *7 *8)))) (-2741 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2435 *6) (|:| |sol?| (-112))) (-575) *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-418 *7)) (|:| |a0| *6)) (-2 (|:| -1630 (-418 *7)) (|:| |coeff| (-418 *7))) "failed")) (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))) (-2979 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1630 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-418 *7)) (|:| |a0| *6)) (-2 (|:| -1630 (-418 *7)) (|:| |coeff| (-418 *7))) "failed")) (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))) (-1343 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-655 *6) "failed") (-575) *6 *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6))) (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))) (-2094 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2435 *6) (|:| |sol?| (-112))) (-575) *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6))) (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))) (-2530 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1630 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6))) (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7))))) +(-10 -7 (-15 -2530 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2094 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|))) (-15 -1343 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-655 |#1|) "failed") (-575) |#1| |#1|))) (-15 -2979 ((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-418 |#2|))) (-15 -2741 ((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-418 |#2|))) (-15 -4423 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-655 (-418 |#2|)))) (-15 -3256 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-655 (-418 |#2|)))) (-15 -1827 ((-3 (-2 (|:| -1630 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-418 |#2|))) (-15 -2407 ((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-655 (-418 |#2|)))) (-15 -2078 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3733 ((-3 (-634 |#1| |#2|) "failed") (-634 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2435 |#1|) (|:| |sol?| (-112))) (-575) |#1|))) (-15 -4128 ((-2 (|:| |ir| (-597 (-418 |#2|))) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|))) (-15 -2971 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2660 (((-3 |#2| "failed") |#2| (-1194) (-1194)) 10))) +(((-586 |#1| |#2|) (-10 -7 (-15 -2660 ((-3 |#2| "failed") |#2| (-1194) (-1194)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-974) (-1156) (-29 |#1|))) (T -586)) +((-2660 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-586 *4 *2)) (-4 *2 (-13 (-1220) (-974) (-1156) (-29 *4)))))) +(-10 -7 (-15 -2660 ((-3 |#2| "failed") |#2| (-1194) (-1194)))) +((-2256 (((-702 (-1243)) $ (-1243)) 26)) (-3913 (((-702 (-560)) $ (-560)) 25)) (-2471 (((-782) $ (-129)) 27)) (-2584 (((-702 (-130)) $ (-130)) 24)) (-3787 (((-702 (-1243)) $) 12)) (-3850 (((-702 (-1241)) $) 8)) (-2352 (((-702 (-1240)) $) 10)) (-2337 (((-702 (-560)) $) 13)) (-3113 (((-702 (-558)) $) 9)) (-2139 (((-702 (-557)) $) 11)) (-3647 (((-782) $ (-129)) 7)) (-2114 (((-702 (-130)) $) 14)) (-3504 (($ $) 6))) +(((-587) (-141)) (T -587)) +NIL +(-13 (-538) (-871)) +(((-175) . T) ((-538) . T) ((-871) . T)) +((-2256 (((-702 (-1243)) $ (-1243)) NIL)) (-3913 (((-702 (-560)) $ (-560)) NIL)) (-2471 (((-782) $ (-129)) NIL)) (-2584 (((-702 (-130)) $ (-130)) NIL)) (-3787 (((-702 (-1243)) $) NIL)) (-3850 (((-702 (-1241)) $) NIL)) (-2352 (((-702 (-1240)) $) NIL)) (-2337 (((-702 (-560)) $) NIL)) (-3113 (((-702 (-558)) $) NIL)) (-2139 (((-702 (-557)) $) NIL)) (-3647 (((-782) $ (-129)) NIL)) (-2114 (((-702 (-130)) $) NIL)) (-2274 (((-112) $) NIL)) (-2892 (($ (-399)) 14) (($ (-1176)) 16)) (-2883 (((-873) $) NIL)) (-3504 (($ $) NIL))) +(((-588) (-13 (-587) (-624 (-873)) (-10 -8 (-15 -2892 ($ (-399))) (-15 -2892 ($ (-1176))) (-15 -2274 ((-112) $))))) (T -588)) +((-2892 (*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-588)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-588)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588))))) +(-13 (-587) (-624 (-873)) (-10 -8 (-15 -2892 ($ (-399))) (-15 -2892 ($ (-1176))) (-15 -2274 ((-112) $)))) +((-2861 (((-112) $ $) NIL)) (-3722 (($) 7 T CONST)) (-2288 (((-1176) $) NIL)) (-2545 (($) 6 T CONST)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 15)) (-4380 (($) 9 T CONST)) (-4064 (($) 8 T CONST)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 11))) +(((-589) (-13 (-1117) (-10 -8 (-15 -2545 ($) -3738) (-15 -3722 ($) -3738) (-15 -4064 ($) -3738) (-15 -4380 ($) -3738)))) (T -589)) +((-2545 (*1 *1) (-5 *1 (-589))) (-3722 (*1 *1) (-5 *1 (-589))) (-4064 (*1 *1) (-5 *1 (-589))) (-4380 (*1 *1) (-5 *1 (-589)))) +(-13 (-1117) (-10 -8 (-15 -2545 ($) -3738) (-15 -3722 ($) -3738) (-15 -4064 ($) -3738) (-15 -4380 ($) -3738))) +((-2861 (((-112) $ $) NIL)) (-3530 (((-702 $) (-502)) 21)) (-2288 (((-1176) $) NIL)) (-2167 (($ (-1176)) 14)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 33)) (-2517 (((-215 4 (-130)) $) 24)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 26))) +(((-590) (-13 (-1117) (-10 -8 (-15 -2167 ($ (-1176))) (-15 -2517 ((-215 4 (-130)) $)) (-15 -3530 ((-702 $) (-502)))))) (T -590)) +((-2167 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-590)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-590)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-502)) (-5 *2 (-702 (-590))) (-5 *1 (-590))))) +(-13 (-1117) (-10 -8 (-15 -2167 ($ (-1176))) (-15 -2517 ((-215 4 (-130)) $)) (-15 -3530 ((-702 $) (-502))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2473 (($ $ (-575)) 75)) (-2279 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-2516 (($ (-1190 (-575)) (-575)) 81)) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) 66)) (-2189 (($ $) 43)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-2673 (((-782) $) 16)) (-1542 (((-112) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3486 (((-575)) 37)) (-3788 (((-575) $) 41)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4276 (($ $ (-575)) 24)) (-2851 (((-3 $ "failed") $ $) 71)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) 17)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 72)) (-1874 (((-1174 (-575)) $) 19)) (-2972 (($ $) 26)) (-2883 (((-873) $) 102) (($ (-575)) 61) (($ $) NIL)) (-3759 (((-782)) 15 T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-3494 (((-575) $ (-575)) 46)) (-1996 (($) 44 T CONST)) (-2009 (($) 21 T CONST)) (-3914 (((-112) $ $) 52)) (-4028 (($ $) 60) (($ $ $) 48)) (-4016 (($ $ $) 59)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 62) (($ $ $) 63))) +(((-591 |#1| |#2|) (-880 |#1|) (-575) (-112)) (T -591)) +NIL +(-880 |#1|) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 30)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 (($ $ (-936)) NIL (|has| $ (-378))) (($ $) NIL)) (-2243 (((-1207 (-936) (-782)) (-575)) 59)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 $ "failed") $) 95)) (-4399 (($ $) 94)) (-1385 (($ (-1285 $)) 93)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) 44)) (-2079 (($) NIL)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) 61)) (-1980 (((-112) $) NIL)) (-4374 (($ $) NIL) (($ $ (-782)) NIL)) (-1336 (((-112) $) NIL)) (-2673 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-1542 (((-112) $) NIL)) (-3547 (($) 49 (|has| $ (-378)))) (-2922 (((-112) $) NIL (|has| $ (-378)))) (-2255 (($ $ (-936)) NIL (|has| $ (-378))) (($ $) NIL)) (-2607 (((-3 $ "failed") $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 $) $ (-936)) NIL (|has| $ (-378))) (((-1190 $) $) 104)) (-4084 (((-936) $) 67)) (-2394 (((-1190 $) $) NIL (|has| $ (-378)))) (-3255 (((-3 (-1190 $) "failed") $ $) NIL (|has| $ (-378))) (((-1190 $) $) NIL (|has| $ (-378)))) (-2065 (($ $ (-1190 $)) NIL (|has| $ (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL T CONST)) (-4317 (($ (-936)) 60)) (-3497 (((-112) $) 87)) (-3912 (((-1137) $) NIL)) (-3659 (($) 28 (|has| $ (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) 54)) (-2353 (((-429 $) $) NIL)) (-2819 (((-936)) 86) (((-844 (-936))) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-3 (-782) "failed") $ $) NIL) (((-782) $) NIL)) (-4386 (((-135)) NIL)) (-2389 (($ $) NIL) (($ $ (-782)) NIL)) (-2645 (((-936) $) 85) (((-844 (-936)) $) NIL)) (-2552 (((-1190 $)) 102)) (-3500 (($) 66)) (-3832 (($) 50 (|has| $ (-378)))) (-3962 (((-700 $) (-1285 $)) NIL) (((-1285 $) $) 91)) (-2615 (((-575) $) 40)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) 42) (($ $) NIL) (($ (-418 (-575))) NIL)) (-1518 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3759 (((-782)) 51 T CONST)) (-4400 (((-112) $ $) 107)) (-1624 (((-1285 $) (-936)) 97) (((-1285 $)) 96)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) 31 T CONST)) (-2009 (($) 27 T CONST)) (-4216 (($ $ (-782)) NIL (|has| $ (-378))) (($ $) NIL (|has| $ (-378)))) (-3430 (($ $) NIL) (($ $ (-782)) NIL)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 34)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 81) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL))) +(((-592 |#1|) (-13 (-359) (-338 $) (-625 (-575))) (-936)) (T -592)) +NIL +(-13 (-359) (-338 $) (-625 (-575))) +((-3652 (((-1290) (-1176)) 10))) +(((-593) (-10 -7 (-15 -3652 ((-1290) (-1176))))) (T -593)) +((-3652 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-593))))) +(-10 -7 (-15 -3652 ((-1290) (-1176)))) +((-3436 (((-597 |#2|) (-597 |#2|)) 42)) (-3945 (((-655 |#2|) (-597 |#2|)) 44)) (-4389 ((|#2| (-597 |#2|)) 50))) +(((-594 |#1| |#2|) (-10 -7 (-15 -3436 ((-597 |#2|) (-597 |#2|))) (-15 -3945 ((-655 |#2|) (-597 |#2|))) (-15 -4389 (|#2| (-597 |#2|)))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-29 |#1|) (-1220))) (T -594)) +((-4389 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-29 *4) (-1220))) (-5 *1 (-594 *4 *2)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-13 (-29 *4) (-1220))) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-655 *5)) (-5 *1 (-594 *4 *5)))) (-3436 (*1 *2 *2) (-12 (-5 *2 (-597 *4)) (-4 *4 (-13 (-29 *3) (-1220))) (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-594 *3 *4))))) +(-10 -7 (-15 -3436 ((-597 |#2|) (-597 |#2|))) (-15 -3945 ((-655 |#2|) (-597 |#2|))) (-15 -4389 (|#2| (-597 |#2|)))) +((-2550 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)) 30))) +(((-595 |#1| |#2|) (-10 -7 (-15 -2550 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))) (-15 -2550 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2550 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2550 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-373) (-373)) (T -595)) +((-2550 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-373)) (-4 *6 (-373)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-595 *5 *6)))) (-2550 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-373)) (-4 *2 (-373)) (-5 *1 (-595 *5 *2)))) (-2550 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1630 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-373)) (-4 *6 (-373)) (-5 *2 (-2 (|:| -1630 *6) (|:| |coeff| *6))) (-5 *1 (-595 *5 *6)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-373)) (-4 *6 (-373)) (-5 *2 (-597 *6)) (-5 *1 (-595 *5 *6))))) +(-10 -7 (-15 -2550 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))) (-15 -2550 ((-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1630 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2550 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2550 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3336 (($ (-517) (-608)) 14)) (-3064 (($ (-517) (-608) $) 16)) (-3542 (($ (-517) (-608)) 15)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL) (($ (-1199)) 7) (((-1199) $) 6)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-596) (-13 (-1117) (-501 (-1199)) (-10 -8 (-15 -3336 ($ (-517) (-608))) (-15 -3542 ($ (-517) (-608))) (-15 -3064 ($ (-517) (-608) $))))) (T -596)) +((-3336 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596)))) (-3542 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596)))) (-3064 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596))))) +(-13 (-1117) (-501 (-1199)) (-10 -8 (-15 -3336 ($ (-517) (-608))) (-15 -3542 ($ (-517) (-608))) (-15 -3064 ($ (-517) (-608) $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 76)) (-4399 ((|#1| $) NIL)) (-1630 ((|#1| $) 30)) (-1366 (((-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1382 (($ |#1| (-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) (-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3104 (((-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) $) 31)) (-2288 (((-1176) $) NIL)) (-2827 (($ |#1| |#1|) 38) (($ |#1| (-1194)) 49 (|has| |#1| (-1055 (-1194))))) (-3912 (((-1137) $) NIL)) (-1587 (((-112) $) 35)) (-2389 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1194)) 89 (|has| |#1| (-913 (-1194))))) (-2883 (((-873) $) 110) (($ |#1|) 29)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 18 T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) 17) (($ $ $) NIL)) (-4016 (($ $ $) 85)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 16) (($ (-418 (-575)) $) 41) (($ $ (-418 (-575))) NIL))) +(((-597 |#1|) (-13 (-728 (-418 (-575))) (-1055 |#1|) (-10 -8 (-15 -1382 ($ |#1| (-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) (-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1630 (|#1| $)) (-15 -3104 ((-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) $)) (-15 -1366 ((-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1587 ((-112) $)) (-15 -2827 ($ |#1| |#1|)) (-15 -2389 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-913 (-1194))) (-15 -2389 (|#1| $ (-1194))) |%noBranch|) (IF (|has| |#1| (-1055 (-1194))) (-15 -2827 ($ |#1| (-1194))) |%noBranch|))) (-373)) (T -597)) +((-1382 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 *2)) (|:| |logand| (-1190 *2))))) (-5 *4 (-655 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-373)) (-5 *1 (-597 *2)))) (-1630 (*1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-373)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 *3)) (|:| |logand| (-1190 *3))))) (-5 *1 (-597 *3)) (-4 *3 (-373)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-597 *3)) (-4 *3 (-373)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-373)))) (-2827 (*1 *1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-373)))) (-2389 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-597 *2)) (-4 *2 (-373)))) (-2389 (*1 *2 *1 *3) (-12 (-4 *2 (-373)) (-4 *2 (-913 *3)) (-5 *1 (-597 *2)) (-5 *3 (-1194)))) (-2827 (*1 *1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *1 (-597 *2)) (-4 *2 (-1055 *3)) (-4 *2 (-373))))) +(-13 (-728 (-418 (-575))) (-1055 |#1|) (-10 -8 (-15 -1382 ($ |#1| (-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) (-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1630 (|#1| $)) (-15 -3104 ((-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) $)) (-15 -1366 ((-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1587 ((-112) $)) (-15 -2827 ($ |#1| |#1|)) (-15 -2389 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-913 (-1194))) (-15 -2389 (|#1| $ (-1194))) |%noBranch|) (IF (|has| |#1| (-1055 (-1194))) (-15 -2827 ($ |#1| (-1194))) |%noBranch|))) +((-1752 (((-112) |#1|) 16)) (-4191 (((-3 |#1| "failed") |#1|) 14)) (-1589 (((-2 (|:| -1548 |#1|) (|:| -2398 (-782))) |#1|) 38) (((-3 |#1| "failed") |#1| (-782)) 18)) (-1791 (((-112) |#1| (-782)) 19)) (-4029 ((|#1| |#1|) 42)) (-3312 ((|#1| |#1| (-782)) 45))) +(((-598 |#1|) (-10 -7 (-15 -1791 ((-112) |#1| (-782))) (-15 -1589 ((-3 |#1| "failed") |#1| (-782))) (-15 -1589 ((-2 (|:| -1548 |#1|) (|:| -2398 (-782))) |#1|)) (-15 -3312 (|#1| |#1| (-782))) (-15 -1752 ((-112) |#1|)) (-15 -4191 ((-3 |#1| "failed") |#1|)) (-15 -4029 (|#1| |#1|))) (-556)) (T -598)) +((-4029 (*1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-4191 (*1 *2 *2) (|partial| -12 (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-1752 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-556)))) (-3312 (*1 *2 *2 *3) (-12 (-5 *3 (-782)) (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-1589 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1548 *3) (|:| -2398 (-782)))) (-5 *1 (-598 *3)) (-4 *3 (-556)))) (-1589 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-782)) (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-556))))) +(-10 -7 (-15 -1791 ((-112) |#1| (-782))) (-15 -1589 ((-3 |#1| "failed") |#1| (-782))) (-15 -1589 ((-2 (|:| -1548 |#1|) (|:| -2398 (-782))) |#1|)) (-15 -3312 (|#1| |#1| (-782))) (-15 -1752 ((-112) |#1|)) (-15 -4191 ((-3 |#1| "failed") |#1|)) (-15 -4029 (|#1| |#1|))) +((-2533 (((-1190 |#1|) (-936)) 44))) +(((-599 |#1|) (-10 -7 (-15 -2533 ((-1190 |#1|) (-936)))) (-359)) (T -599)) +((-2533 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-599 *4)) (-4 *4 (-359))))) +(-10 -7 (-15 -2533 ((-1190 |#1|) (-936)))) +((-3436 (((-597 (-418 (-967 |#1|))) (-597 (-418 (-967 |#1|)))) 27)) (-4413 (((-3 (-325 |#1|) (-655 (-325 |#1|))) (-418 (-967 |#1|)) (-1194)) 34 (|has| |#1| (-148)))) (-3945 (((-655 (-325 |#1|)) (-597 (-418 (-967 |#1|)))) 19)) (-3114 (((-325 |#1|) (-418 (-967 |#1|)) (-1194)) 32 (|has| |#1| (-148)))) (-4389 (((-325 |#1|) (-597 (-418 (-967 |#1|)))) 21))) +(((-600 |#1|) (-10 -7 (-15 -3436 ((-597 (-418 (-967 |#1|))) (-597 (-418 (-967 |#1|))))) (-15 -3945 ((-655 (-325 |#1|)) (-597 (-418 (-967 |#1|))))) (-15 -4389 ((-325 |#1|) (-597 (-418 (-967 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4413 ((-3 (-325 |#1|) (-655 (-325 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -3114 ((-325 |#1|) (-418 (-967 |#1|)) (-1194)))) |%noBranch|)) (-13 (-463) (-1055 (-575)) (-650 (-575)))) (T -600)) +((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-148)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-325 *5)) (-5 *1 (-600 *5)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-148)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (-325 *5) (-655 (-325 *5)))) (-5 *1 (-600 *5)))) (-4389 (*1 *2 *3) (-12 (-5 *3 (-597 (-418 (-967 *4)))) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-325 *4)) (-5 *1 (-600 *4)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-597 (-418 (-967 *4)))) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-655 (-325 *4))) (-5 *1 (-600 *4)))) (-3436 (*1 *2 *2) (-12 (-5 *2 (-597 (-418 (-967 *3)))) (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-600 *3))))) +(-10 -7 (-15 -3436 ((-597 (-418 (-967 |#1|))) (-597 (-418 (-967 |#1|))))) (-15 -3945 ((-655 (-325 |#1|)) (-597 (-418 (-967 |#1|))))) (-15 -4389 ((-325 |#1|) (-597 (-418 (-967 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4413 ((-3 (-325 |#1|) (-655 (-325 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -3114 ((-325 |#1|) (-418 (-967 |#1|)) (-1194)))) |%noBranch|)) +((-3452 (((-655 (-700 (-575))) (-655 (-936)) (-655 (-920 (-575)))) 78) (((-655 (-700 (-575))) (-655 (-936))) 79) (((-700 (-575)) (-655 (-936)) (-920 (-575))) 72)) (-2887 (((-782) (-655 (-936))) 69))) +(((-601) (-10 -7 (-15 -2887 ((-782) (-655 (-936)))) (-15 -3452 ((-700 (-575)) (-655 (-936)) (-920 (-575)))) (-15 -3452 ((-655 (-700 (-575))) (-655 (-936)))) (-15 -3452 ((-655 (-700 (-575))) (-655 (-936)) (-655 (-920 (-575))))))) (T -601)) +((-3452 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-936))) (-5 *4 (-655 (-920 (-575)))) (-5 *2 (-655 (-700 (-575)))) (-5 *1 (-601)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-655 (-700 (-575)))) (-5 *1 (-601)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-936))) (-5 *4 (-920 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-601)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-782)) (-5 *1 (-601))))) +(-10 -7 (-15 -2887 ((-782) (-655 (-936)))) (-15 -3452 ((-700 (-575)) (-655 (-936)) (-920 (-575)))) (-15 -3452 ((-655 (-700 (-575))) (-655 (-936)))) (-15 -3452 ((-655 (-700 (-575))) (-655 (-936)) (-655 (-920 (-575)))))) +((-2566 (((-655 |#5|) |#5| (-112)) 100)) (-1825 (((-112) |#5| (-655 |#5|)) 34))) +(((-602 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2566 ((-655 |#5|) |#5| (-112))) (-15 -1825 ((-112) |#5| (-655 |#5|)))) (-13 (-316) (-148)) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1126 |#1| |#2| |#3| |#4|)) (T -602)) +((-1825 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-1126 *5 *6 *7 *8)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-602 *5 *6 *7 *8 *3)))) (-2566 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-655 *3)) (-5 *1 (-602 *5 *6 *7 *8 *3)) (-4 *3 (-1126 *5 *6 *7 *8))))) +(-10 -7 (-15 -2566 ((-655 |#5|) |#5| (-112))) (-15 -1825 ((-112) |#5| (-655 |#5|)))) +((-2861 (((-112) $ $) NIL)) (-3892 (((-1152) $) 11)) (-3880 (((-1152) $) 9)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-603) (-13 (-1100) (-10 -8 (-15 -3880 ((-1152) $)) (-15 -3892 ((-1152) $))))) (T -603)) +((-3880 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-603)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-603))))) +(-13 (-1100) (-10 -8 (-15 -3880 ((-1152) $)) (-15 -3892 ((-1152) $)))) +((-2861 (((-112) $ $) NIL (|has| (-145) (-1117)))) (-1605 (($ $) 38)) (-4430 (($ $) NIL)) (-3635 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3447 (((-112) $ $) 67)) (-3429 (((-112) $ $ (-575)) 62)) (-3436 (((-655 $) $ (-145)) 75) (((-655 $) $ (-142)) 76)) (-2762 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-2119 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-861))))) (-2031 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 (((-145) $ (-575) (-145)) 59 (|has| $ (-6 -4461))) (((-145) $ (-1252 (-575)) (-145)) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-3780 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1908 (($ $ (-1252 (-575)) $) 57)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-3633 (($ (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4460)))) (-2859 (((-145) $ (-575) (-145)) NIL (|has| $ (-6 -4461)))) (-2788 (((-145) $ (-575)) NIL)) (-3468 (((-112) $ $) 88)) (-2632 (((-575) (-1 (-112) (-145)) $) NIL) (((-575) (-145) $) NIL (|has| (-145) (-1117))) (((-575) (-145) $ (-575)) 64 (|has| (-145) (-1117))) (((-575) $ $ (-575)) 63) (((-575) (-142) $ (-575)) 66)) (-4001 (((-655 (-145)) $) NIL (|has| $ (-6 -4460)))) (-2309 (($ (-782) (-145)) 9)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) 32 (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| (-145) (-861)))) (-3794 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-3955 (((-655 (-145)) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-3197 (((-575) $) 47 (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| (-145) (-861)))) (-3128 (((-112) $ $ (-145)) 89)) (-1616 (((-782) $ $ (-145)) 86)) (-2847 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3025 (($ $) 41)) (-3506 (($ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-3791 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-2288 (((-1176) $) 43 (|has| (-145) (-1117)))) (-2135 (($ (-145) $ (-575)) NIL) (($ $ $ (-575)) 27)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) 85 (|has| (-145) (-1117)))) (-1961 (((-145) $) NIL (|has| (-575) (-861)))) (-3704 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3954 (($ $ (-145)) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-145)))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-303 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-655 (-145)) (-655 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-1691 (((-655 (-145)) $) NIL)) (-4076 (((-112) $) 15)) (-1938 (($) 10)) (-2070 (((-145) $ (-575) (-145)) NIL) (((-145) $ (-575)) 68) (($ $ (-1252 (-575))) 25) (($ $ $) NIL)) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3925 (((-782) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460))) (((-782) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-4005 (($ $ $ (-575)) 81 (|has| $ (-6 -4461)))) (-3078 (($ $) 20)) (-2615 (((-547) $) NIL (|has| (-145) (-625 (-547))))) (-2894 (($ (-655 (-145))) NIL)) (-1514 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-655 $)) 82)) (-2883 (($ (-145)) NIL) (((-873) $) 31 (|has| (-145) (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| (-145) (-1117)))) (-3771 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3956 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3914 (((-112) $ $) 17 (|has| (-145) (-1117)))) (-3970 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3943 (((-112) $ $) 18 (|has| (-145) (-861)))) (-2871 (((-782) $) 16 (|has| $ (-6 -4460))))) +(((-604 |#1|) (-1161) (-575)) (T -604)) +NIL +(-1161) +((-4376 (((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2| (-1111 |#4|)) 32))) +(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4376 ((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2| (-1111 |#4|))) (-15 -4376 ((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2|))) (-804) (-861) (-567) (-964 |#3| |#1| |#2|)) (T -605)) +((-4376 (*1 *2 *3 *4) (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-567)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-575)))) (-5 *1 (-605 *5 *4 *6 *3)) (-4 *3 (-964 *6 *5 *4)))) (-4376 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1111 *3)) (-4 *3 (-964 *7 *6 *4)) (-4 *6 (-804)) (-4 *4 (-861)) (-4 *7 (-567)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-575)))) (-5 *1 (-605 *6 *4 *7 *3))))) +(-10 -7 (-15 -4376 ((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2| (-1111 |#4|))) (-15 -4376 ((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 71)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-4080 (($ $ (-575)) 58) (($ $ (-575) (-575)) 59)) (-2144 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) 65)) (-4224 (($ $) 109)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3953 (((-873) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) (-1043 (-854 (-575))) (-1194) |#1| (-418 (-575))) 241)) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) 36)) (-3011 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2789 (((-112) $) NIL)) (-2673 (((-575) $) 63) (((-575) $ (-575)) 64)) (-1542 (((-112) $) NIL)) (-3461 (($ $ (-936)) 83)) (-3247 (($ (-1 |#1| (-575)) $) 80)) (-2376 (((-112) $) 26)) (-2417 (($ |#1| (-575)) 22) (($ $ (-1099) (-575)) NIL) (($ $ (-655 (-1099)) (-655 (-575))) NIL)) (-2550 (($ (-1 |#1| |#1|) $) 75)) (-2695 (($ (-1043 (-854 (-575))) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) 13)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-4413 (($ $) 161 (|has| |#1| (-38 (-418 (-575)))))) (-2283 (((-3 $ "failed") $ $ (-112)) 108)) (-2493 (($ $ $) 116)) (-3912 (((-1137) $) NIL)) (-2149 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) 15)) (-3967 (((-1043 (-854 (-575))) $) 14)) (-4276 (($ $ (-575)) 47)) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3048 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-575)))))) (-2070 ((|#1| $ (-575)) 62) (($ $ $) NIL (|has| (-575) (-1129)))) (-2389 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-575) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (-2645 (((-575) $) NIL)) (-2972 (($ $) 48)) (-2883 (((-873) $) NIL) (($ (-575)) 29) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567))) (($ |#1|) 28 (|has| |#1| (-174)))) (-2012 ((|#1| $ (-575)) 61)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) 39 T CONST)) (-1751 ((|#1| $) NIL)) (-1807 (($ $) 198 (|has| |#1| (-38 (-418 (-575)))))) (-3459 (($ $) 169 (|has| |#1| (-38 (-418 (-575)))))) (-3241 (($ $) 202 (|has| |#1| (-38 (-418 (-575)))))) (-3812 (($ $) 174 (|has| |#1| (-38 (-418 (-575)))))) (-3928 (($ $) 201 (|has| |#1| (-38 (-418 (-575)))))) (-4002 (($ $) 173 (|has| |#1| (-38 (-418 (-575)))))) (-2470 (($ $ (-418 (-575))) 177 (|has| |#1| (-38 (-418 (-575)))))) (-2173 (($ $ |#1|) 157 (|has| |#1| (-38 (-418 (-575)))))) (-2159 (($ $) 204 (|has| |#1| (-38 (-418 (-575)))))) (-3339 (($ $) 160 (|has| |#1| (-38 (-418 (-575)))))) (-4236 (($ $) 203 (|has| |#1| (-38 (-418 (-575)))))) (-2086 (($ $) 175 (|has| |#1| (-38 (-418 (-575)))))) (-2367 (($ $) 199 (|has| |#1| (-38 (-418 (-575)))))) (-3816 (($ $) 171 (|has| |#1| (-38 (-418 (-575)))))) (-1512 (($ $) 200 (|has| |#1| (-38 (-418 (-575)))))) (-1941 (($ $) 172 (|has| |#1| (-38 (-418 (-575)))))) (-3145 (($ $) 209 (|has| |#1| (-38 (-418 (-575)))))) (-1649 (($ $) 185 (|has| |#1| (-38 (-418 (-575)))))) (-1730 (($ $) 206 (|has| |#1| (-38 (-418 (-575)))))) (-3285 (($ $) 181 (|has| |#1| (-38 (-418 (-575)))))) (-3098 (($ $) 213 (|has| |#1| (-38 (-418 (-575)))))) (-3571 (($ $) 189 (|has| |#1| (-38 (-418 (-575)))))) (-1431 (($ $) 215 (|has| |#1| (-38 (-418 (-575)))))) (-1646 (($ $) 191 (|has| |#1| (-38 (-418 (-575)))))) (-1932 (($ $) 211 (|has| |#1| (-38 (-418 (-575)))))) (-3444 (($ $) 187 (|has| |#1| (-38 (-418 (-575)))))) (-2804 (($ $) 208 (|has| |#1| (-38 (-418 (-575)))))) (-1324 (($ $) 183 (|has| |#1| (-38 (-418 (-575)))))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-3494 ((|#1| $ (-575)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-1996 (($) 30 T CONST)) (-2009 (($) 40 T CONST)) (-3430 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-575) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (-3914 (((-112) $ $) 73)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) 91) (($ $ $) 72)) (-4016 (($ $ $) 88)) (** (($ $ (-936)) NIL) (($ $ (-782)) 111)) (* (($ (-936) $) 98) (($ (-782) $) 96) (($ (-575) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-606 |#1|) (-13 (-1263 |#1| (-575)) (-10 -8 (-15 -2695 ($ (-1043 (-854 (-575))) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))))) (-15 -3967 ((-1043 (-854 (-575))) $)) (-15 -2149 ((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $)) (-15 -1873 ($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))))) (-15 -2376 ((-112) $)) (-15 -3247 ($ (-1 |#1| (-575)) $)) (-15 -2283 ((-3 $ "failed") $ $ (-112))) (-15 -4224 ($ $)) (-15 -2493 ($ $ $)) (-15 -3953 ((-873) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) (-1043 (-854 (-575))) (-1194) |#1| (-418 (-575)))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ($ $)) (-15 -2173 ($ $ |#1|)) (-15 -2470 ($ $ (-418 (-575)))) (-15 -3339 ($ $)) (-15 -2159 ($ $)) (-15 -3812 ($ $)) (-15 -1941 ($ $)) (-15 -3459 ($ $)) (-15 -3816 ($ $)) (-15 -4002 ($ $)) (-15 -2086 ($ $)) (-15 -3285 ($ $)) (-15 -1324 ($ $)) (-15 -1649 ($ $)) (-15 -3444 ($ $)) (-15 -3571 ($ $)) (-15 -1646 ($ $)) (-15 -3241 ($ $)) (-15 -1512 ($ $)) (-15 -1807 ($ $)) (-15 -2367 ($ $)) (-15 -3928 ($ $)) (-15 -4236 ($ $)) (-15 -1730 ($ $)) (-15 -2804 ($ $)) (-15 -3145 ($ $)) (-15 -1932 ($ $)) (-15 -3098 ($ $)) (-15 -1431 ($ $))) |%noBranch|))) (-1066)) (T -606)) +((-2376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1066)))) (-2695 (*1 *1 *2 *3) (-12 (-5 *2 (-1043 (-854 (-575)))) (-5 *3 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *4)))) (-4 *4 (-1066)) (-5 *1 (-606 *4)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1043 (-854 (-575)))) (-5 *1 (-606 *3)) (-4 *3 (-1066)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3)))) (-5 *1 (-606 *3)) (-4 *3 (-1066)))) (-1873 (*1 *1 *2) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3)))) (-4 *3 (-1066)) (-5 *1 (-606 *3)))) (-3247 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-575))) (-4 *3 (-1066)) (-5 *1 (-606 *3)))) (-2283 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1066)))) (-4224 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1066)))) (-2493 (*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1066)))) (-3953 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *6)))) (-5 *4 (-1043 (-854 (-575)))) (-5 *5 (-1194)) (-5 *7 (-418 (-575))) (-4 *6 (-1066)) (-5 *2 (-873)) (-5 *1 (-606 *6)))) (-4413 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2173 (*1 *1 *1 *2) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2470 (*1 *1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-606 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1066)))) (-3339 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-1941 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3459 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3816 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-4002 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2086 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3285 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-1324 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-1649 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3444 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3571 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-1646 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3241 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-1512 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-1807 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3928 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-4236 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-1730 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2804 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3145 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-1932 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3098 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-1431 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(-13 (-1263 |#1| (-575)) (-10 -8 (-15 -2695 ($ (-1043 (-854 (-575))) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))))) (-15 -3967 ((-1043 (-854 (-575))) $)) (-15 -2149 ((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $)) (-15 -1873 ($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))))) (-15 -2376 ((-112) $)) (-15 -3247 ($ (-1 |#1| (-575)) $)) (-15 -2283 ((-3 $ "failed") $ $ (-112))) (-15 -4224 ($ $)) (-15 -2493 ($ $ $)) (-15 -3953 ((-873) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) (-1043 (-854 (-575))) (-1194) |#1| (-418 (-575)))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ($ $)) (-15 -2173 ($ $ |#1|)) (-15 -2470 ($ $ (-418 (-575)))) (-15 -3339 ($ $)) (-15 -2159 ($ $)) (-15 -3812 ($ $)) (-15 -1941 ($ $)) (-15 -3459 ($ $)) (-15 -3816 ($ $)) (-15 -4002 ($ $)) (-15 -2086 ($ $)) (-15 -3285 ($ $)) (-15 -1324 ($ $)) (-15 -1649 ($ $)) (-15 -3444 ($ $)) (-15 -3571 ($ $)) (-15 -1646 ($ $)) (-15 -3241 ($ $)) (-15 -1512 ($ $)) (-15 -1807 ($ $)) (-15 -2367 ($ $)) (-15 -3928 ($ $)) (-15 -4236 ($ $)) (-15 -1730 ($ $)) (-15 -2804 ($ $)) (-15 -3145 ($ $)) (-15 -1932 ($ $)) (-15 -3098 ($ $)) (-15 -1431 ($ $))) |%noBranch|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 63)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-1873 (($ (-1174 |#1|)) 9)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) 44)) (-2789 (((-112) $) 56)) (-2673 (((-782) $) 61) (((-782) $ (-782)) 60)) (-1542 (((-112) $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2851 (((-3 $ "failed") $ $) 46 (|has| |#1| (-567)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL (|has| |#1| (-567)))) (-2501 (((-1174 |#1|) $) 25)) (-3759 (((-782)) 55 T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1996 (($) 10 T CONST)) (-2009 (($) 14 T CONST)) (-3914 (((-112) $ $) 24)) (-4028 (($ $) 32) (($ $ $) 16)) (-4016 (($ $ $) 27)) (** (($ $ (-936)) NIL) (($ $ (-782)) 53)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-575)) 38))) +(((-607 |#1|) (-13 (-1066) (-111 |#1| |#1|) (-10 -8 (-15 -2501 ((-1174 |#1|) $)) (-15 -1873 ($ (-1174 |#1|))) (-15 -2789 ((-112) $)) (-15 -2673 ((-782) $)) (-15 -2673 ((-782) $ (-782))) (-15 * ($ $ (-575))) (IF (|has| |#1| (-567)) (-6 (-567)) |%noBranch|))) (-1066)) (T -607)) +((-2501 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) (-1873 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-607 *3)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) (-2673 (*1 *2 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-607 *3)) (-4 *3 (-1066))))) +(-13 (-1066) (-111 |#1| |#1|) (-10 -8 (-15 -2501 ((-1174 |#1|) $)) (-15 -1873 ($ (-1174 |#1|))) (-15 -2789 ((-112) $)) (-15 -2673 ((-782) $)) (-15 -2673 ((-782) $ (-782))) (-15 * ($ $ (-575))) (IF (|has| |#1| (-567)) (-6 (-567)) |%noBranch|))) +((-2861 (((-112) $ $) NIL)) (-1456 (($) 8 T CONST)) (-3411 (($) 7 T CONST)) (-4293 (($ $ (-655 $)) 16)) (-2288 (((-1176) $) NIL)) (-4163 (($) 6 T CONST)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL) (($ (-1199)) 15) (((-1199) $) 10)) (-4039 (($) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-608) (-13 (-1117) (-501 (-1199)) (-10 -8 (-15 -4163 ($) -3738) (-15 -3411 ($) -3738) (-15 -1456 ($) -3738) (-15 -4039 ($) -3738) (-15 -4293 ($ $ (-655 $)))))) (T -608)) +((-4163 (*1 *1) (-5 *1 (-608))) (-3411 (*1 *1) (-5 *1 (-608))) (-1456 (*1 *1) (-5 *1 (-608))) (-4039 (*1 *1) (-5 *1 (-608))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-608))) (-5 *1 (-608))))) +(-13 (-1117) (-501 (-1199)) (-10 -8 (-15 -4163 ($) -3738) (-15 -3411 ($) -3738) (-15 -1456 ($) -3738) (-15 -4039 ($) -3738) (-15 -4293 ($ $ (-655 $))))) +((-2550 (((-612 |#2|) (-1 |#2| |#1|) (-612 |#1|)) 15))) +(((-609 |#1| |#2|) (-10 -7 (-15 -2550 ((-612 |#2|) (-1 |#2| |#1|) (-612 |#1|)))) (-1235) (-1235)) (T -609)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-612 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-612 *6)) (-5 *1 (-609 *5 *6))))) +(-10 -7 (-15 -2550 ((-612 |#2|) (-1 |#2| |#1|) (-612 |#1|)))) +((-2550 (((-1174 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-1174 |#2|)) 20) (((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-612 |#2|)) 19) (((-612 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-612 |#2|)) 18))) +(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -2550 ((-612 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-612 |#2|))) (-15 -2550 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-612 |#2|))) (-15 -2550 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-1174 |#2|)))) (-1235) (-1235) (-1235)) (T -610)) +((-2550 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-1174 *7)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8)) (-5 *1 (-610 *6 *7 *8)))) (-2550 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-612 *7)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8)) (-5 *1 (-610 *6 *7 *8)))) (-2550 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-612 *7)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-612 *8)) (-5 *1 (-610 *6 *7 *8))))) +(-10 -7 (-15 -2550 ((-612 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-612 |#2|))) (-15 -2550 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-612 |#2|))) (-15 -2550 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-1174 |#2|)))) +((-2416 ((|#3| |#3| (-655 (-623 |#3|)) (-655 (-1194))) 57)) (-3893 (((-171 |#2|) |#3|) 122)) (-3070 ((|#3| (-171 |#2|)) 46)) (-2845 ((|#2| |#3|) 21)) (-2121 ((|#3| |#2|) 35))) +(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -3070 (|#3| (-171 |#2|))) (-15 -2845 (|#2| |#3|)) (-15 -2121 (|#3| |#2|)) (-15 -3893 ((-171 |#2|) |#3|)) (-15 -2416 (|#3| |#3| (-655 (-623 |#3|)) (-655 (-1194))))) (-567) (-13 (-441 |#1|) (-1019) (-1220)) (-13 (-441 (-171 |#1|)) (-1019) (-1220))) (T -611)) +((-2416 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-655 (-623 *2))) (-5 *4 (-655 (-1194))) (-4 *2 (-13 (-441 (-171 *5)) (-1019) (-1220))) (-4 *5 (-567)) (-5 *1 (-611 *5 *6 *2)) (-4 *6 (-13 (-441 *5) (-1019) (-1220))))) (-3893 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-171 *5)) (-5 *1 (-611 *4 *5 *3)) (-4 *5 (-13 (-441 *4) (-1019) (-1220))) (-4 *3 (-13 (-441 (-171 *4)) (-1019) (-1220))))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *2 (-13 (-441 (-171 *4)) (-1019) (-1220))) (-5 *1 (-611 *4 *3 *2)) (-4 *3 (-13 (-441 *4) (-1019) (-1220))))) (-2845 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *2 (-13 (-441 *4) (-1019) (-1220))) (-5 *1 (-611 *4 *2 *3)) (-4 *3 (-13 (-441 (-171 *4)) (-1019) (-1220))))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-441 *4) (-1019) (-1220))) (-4 *4 (-567)) (-4 *2 (-13 (-441 (-171 *4)) (-1019) (-1220))) (-5 *1 (-611 *4 *5 *2))))) +(-10 -7 (-15 -3070 (|#3| (-171 |#2|))) (-15 -2845 (|#2| |#3|)) (-15 -2121 (|#3| |#2|)) (-15 -3893 ((-171 |#2|) |#3|)) (-15 -2416 (|#3| |#3| (-655 (-623 |#3|)) (-655 (-1194))))) +((-3985 (($ (-1 (-112) |#1|) $) 17)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3903 (($ (-1 |#1| |#1|) |#1|) 9)) (-3958 (($ (-1 (-112) |#1|) $) 13)) (-3972 (($ (-1 (-112) |#1|) $) 15)) (-2894 (((-1174 |#1|) $) 18)) (-2883 (((-873) $) NIL))) +(((-612 |#1|) (-13 (-624 (-873)) (-10 -8 (-15 -2550 ($ (-1 |#1| |#1|) $)) (-15 -3958 ($ (-1 (-112) |#1|) $)) (-15 -3972 ($ (-1 (-112) |#1|) $)) (-15 -3985 ($ (-1 (-112) |#1|) $)) (-15 -3903 ($ (-1 |#1| |#1|) |#1|)) (-15 -2894 ((-1174 |#1|) $)))) (-1235)) (T -612)) +((-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) (-3985 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) (-3903 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1235))))) +(-13 (-624 (-873)) (-10 -8 (-15 -2550 ($ (-1 |#1| |#1|) $)) (-15 -3958 ($ (-1 (-112) |#1|) $)) (-15 -3972 ($ (-1 (-112) |#1|) $)) (-15 -3985 ($ (-1 (-112) |#1|) $)) (-15 -3903 ($ (-1 |#1| |#1|) |#1|)) (-15 -2894 ((-1174 |#1|) $)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2880 (($ (-782)) NIL (|has| |#1| (-23)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) NIL)) (-2632 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-4056 (((-700 |#1|) $ $) NIL (|has| |#1| (-1066)))) (-2309 (($ (-782) |#1|) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2706 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-4026 (((-112) $ (-782)) NIL)) (-1839 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2135 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1961 ((|#1| $) NIL (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3954 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-1886 ((|#1| $ $) NIL (|has| |#1| (-1066)))) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-4304 (($ $ $) NIL (|has| |#1| (-1066)))) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) NIL)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4028 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4016 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-575) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-737))) (($ $ |#1|) NIL (|has| |#1| (-737)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-613 |#1| |#2|) (-1283 |#1|) (-1235) (-575)) (T -613)) +NIL +(-1283 |#1|) +((-4161 (((-1290) $ |#2| |#2|) 35)) (-2541 ((|#2| $) 23)) (-3197 ((|#2| $) 21)) (-2847 (($ (-1 |#3| |#3|) $) 32)) (-2550 (($ (-1 |#3| |#3|) $) 30)) (-1961 ((|#3| $) 26)) (-3954 (($ $ |#3|) 33)) (-2767 (((-112) |#3| $) 17)) (-1691 (((-655 |#3|) $) 15)) (-2070 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-614 |#1| |#2| |#3|) (-10 -8 (-15 -4161 ((-1290) |#1| |#2| |#2|)) (-15 -3954 (|#1| |#1| |#3|)) (-15 -1961 (|#3| |#1|)) (-15 -2541 (|#2| |#1|)) (-15 -3197 (|#2| |#1|)) (-15 -2767 ((-112) |#3| |#1|)) (-15 -1691 ((-655 |#3|) |#1|)) (-15 -2070 (|#3| |#1| |#2|)) (-15 -2070 (|#3| |#1| |#2| |#3|)) (-15 -2847 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2550 (|#1| (-1 |#3| |#3|) |#1|))) (-615 |#2| |#3|) (-1117) (-1235)) (T -614)) +NIL +(-10 -8 (-15 -4161 ((-1290) |#1| |#2| |#2|)) (-15 -3954 (|#1| |#1| |#3|)) (-15 -1961 (|#3| |#1|)) (-15 -2541 (|#2| |#1|)) (-15 -3197 (|#2| |#1|)) (-15 -2767 ((-112) |#3| |#1|)) (-15 -1691 ((-655 |#3|) |#1|)) (-15 -2070 (|#3| |#1| |#2|)) (-15 -2070 (|#3| |#1| |#2| |#3|)) (-15 -2847 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2550 (|#1| (-1 |#3| |#3|) |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#2| (-1117)))) (-4161 (((-1290) $ |#1| |#1|) 41 (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) 8)) (-3054 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4461)))) (-3011 (($) 7 T CONST)) (-2859 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4461)))) (-2788 ((|#2| $ |#1|) 52)) (-4001 (((-655 |#2|) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-2541 ((|#1| $) 44 (|has| |#1| (-861)))) (-3955 (((-655 |#2|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-3197 ((|#1| $) 45 (|has| |#1| (-861)))) (-2847 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#2| |#2|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#2| (-1117)))) (-4310 (((-655 |#1|) $) 47)) (-2969 (((-112) |#1| $) 48)) (-3912 (((-1137) $) 21 (|has| |#2| (-1117)))) (-1961 ((|#2| $) 43 (|has| |#1| (-861)))) (-3954 (($ $ |#2|) 42 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#2|))) 27 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) 26 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) 24 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) 49)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3925 (((-782) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4460))) (((-782) |#2| $) 29 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2883 (((-873) $) 18 (|has| |#2| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#2| (-1117)))) (-3771 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#2| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-615 |#1| |#2|) (-141) (-1117) (-1235)) (T -615)) +((-1691 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235)) (-5 *2 (-655 *4)))) (-2969 (*1 *2 *3 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235)) (-5 *2 (-112)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235)) (-5 *2 (-655 *3)))) (-2767 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-615 *4 *3)) (-4 *4 (-1117)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1117)) (-4 *2 (-861)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1117)) (-4 *2 (-861)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1117)) (-4 *3 (-861)) (-4 *2 (-1235)))) (-3954 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-615 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235)))) (-4161 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235)) (-5 *2 (-1290))))) +(-13 (-500 |t#2|) (-297 |t#1| |t#2|) (-10 -8 (-15 -1691 ((-655 |t#2|) $)) (-15 -2969 ((-112) |t#1| $)) (-15 -4310 ((-655 |t#1|) $)) (IF (|has| |t#2| (-1117)) (IF (|has| $ (-6 -4460)) (-15 -2767 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -3197 (|t#1| $)) (-15 -2541 (|t#1| $)) (-15 -1961 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3954 ($ $ |t#2|)) (-15 -4161 ((-1290) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1117)) ((-624 (-873)) -3765 (|has| |#2| (-1117)) (|has| |#2| (-624 (-873)))) ((-295 |#1| |#2|) . T) ((-297 |#1| |#2|) . T) ((-318 |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-500 |#2|) . T) ((-525 |#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-1117) |has| |#2| (-1117)) ((-1235) . T)) +((-2883 (((-873) $) 19) (($ (-130)) 13) (((-130) $) 14))) +(((-616) (-13 (-624 (-873)) (-501 (-130)))) (T -616)) +NIL +(-13 (-624 (-873)) (-501 (-130))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL) (($ (-1199)) NIL) (((-1199) $) NIL) (((-1234) $) 14) (($ (-655 (-1234))) 13)) (-3232 (((-655 (-1234)) $) 10)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-617) (-13 (-1100) (-624 (-1234)) (-10 -8 (-15 -2883 ($ (-655 (-1234)))) (-15 -3232 ((-655 (-1234)) $))))) (T -617)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-617)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-617))))) +(-13 (-1100) (-624 (-1234)) (-10 -8 (-15 -2883 ($ (-655 (-1234)))) (-15 -3232 ((-655 (-1234)) $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3800 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-4239 (((-1285 (-700 |#1|))) NIL (|has| |#2| (-428 |#1|))) (((-1285 (-700 |#1|)) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3355 (((-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3011 (($) NIL T CONST)) (-1380 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-4132 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2974 (((-700 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-1726 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-4093 (((-700 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3512 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2199 (((-1190 (-967 |#1|))) NIL (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-373))))) (-2661 (($ $ (-936)) NIL)) (-2737 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-1884 (((-1190 |#1|) $) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2263 ((|#1|) NIL (|has| |#2| (-428 |#1|))) ((|#1| (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-4103 (((-1190 |#1|) $) NIL (|has| |#2| (-377 |#1|)))) (-2810 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1385 (($ (-1285 |#1|)) NIL (|has| |#2| (-428 |#1|))) (($ (-1285 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-1747 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-4422 (((-936)) NIL (|has| |#2| (-377 |#1|)))) (-4369 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3889 (($ $ (-936)) NIL)) (-3289 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1742 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3577 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3129 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3387 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2653 (((-700 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-1502 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-4391 (((-700 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3456 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3498 (((-1190 (-967 |#1|))) NIL (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-373))))) (-1898 (($ $ (-936)) NIL)) (-4336 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-3649 (((-1190 |#1|) $) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-1634 ((|#1|) NIL (|has| |#2| (-428 |#1|))) ((|#1| (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-4013 (((-1190 |#1|) $) NIL (|has| |#2| (-377 |#1|)))) (-4403 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2288 (((-1176) $) NIL)) (-1536 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3978 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2204 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3912 (((-1137) $) NIL)) (-3074 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2070 ((|#1| $ (-575)) NIL (|has| |#2| (-428 |#1|)))) (-3962 (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-428 |#1|))) (((-1285 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $) (-1285 $)) NIL (|has| |#2| (-377 |#1|))) (((-1285 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-2615 (($ (-1285 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-1285 |#1|) $) NIL (|has| |#2| (-428 |#1|)))) (-3235 (((-655 (-967 |#1|))) NIL (|has| |#2| (-428 |#1|))) (((-655 (-967 |#1|)) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3320 (($ $ $) NIL)) (-2328 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2883 (((-873) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL (|has| |#2| (-428 |#1|)))) (-3431 (((-655 (-1285 |#1|))) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-1785 (($ $ $ $) NIL)) (-2761 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1949 (($ (-700 |#1|) $) NIL (|has| |#2| (-428 |#1|)))) (-3534 (($ $ $) NIL)) (-4363 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2987 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1472 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1996 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) 24)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-618 |#1| |#2|) (-13 (-755 |#1|) (-624 |#2|) (-10 -8 (-15 -2883 ($ |#2|)) (IF (|has| |#2| (-428 |#1|)) (-6 (-428 |#1|)) |%noBranch|) (IF (|has| |#2| (-377 |#1|)) (-6 (-377 |#1|)) |%noBranch|))) (-174) (-755 |#1|)) (T -618)) +((-2883 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-618 *3 *2)) (-4 *2 (-755 *3))))) +(-13 (-755 |#1|) (-624 |#2|) (-10 -8 (-15 -2883 ($ |#2|)) (IF (|has| |#2| (-428 |#1|)) (-6 (-428 |#1|)) |%noBranch|) (IF (|has| |#2| (-377 |#1|)) (-6 (-377 |#1|)) |%noBranch|))) +((-2861 (((-112) $ $) NIL)) (-2766 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) 39)) (-2297 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL) (($) NIL)) (-4161 (((-1290) $ (-1176) (-1176)) NIL (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#1| $ (-1176) |#1|) 49)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-1399 (((-3 |#1| "failed") (-1176) $) 52)) (-3011 (($) NIL T CONST)) (-4248 (($ $ (-1176)) 25)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-4404 (((-3 |#1| "failed") (-1176) $) 53) (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (|has| $ (-6 -4460)))) (-3633 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-2308 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-1368 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) 38)) (-2859 ((|#1| $ (-1176) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-1176)) NIL)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-2569 (($ $) 54)) (-2978 (($ (-399)) 23) (($ (-399) (-1176)) 22)) (-1777 (((-399) $) 40)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-1176) $) NIL (|has| (-1176) (-861)))) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (((-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-3197 (((-1176) $) NIL (|has| (-1176) (-861)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-2001 (((-655 (-1176)) $) 45)) (-3308 (((-112) (-1176) $) NIL)) (-3212 (((-1176) $) 41)) (-4012 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-3862 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-4310 (((-655 (-1176)) $) NIL)) (-2969 (((-112) (-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 ((|#1| $) NIL (|has| (-1176) (-861)))) (-3704 (((-3 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) "failed") (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL)) (-3954 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-655 (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) 43)) (-2070 ((|#1| $ (-1176) |#1|) NIL) ((|#1| $ (-1176)) 48)) (-3601 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL) (($) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (((-782) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (((-782) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-2883 (((-873) $) 21)) (-3504 (($ $) 26)) (-4400 (((-112) $ $) NIL)) (-1511 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20)) (-2871 (((-782) $) 47 (|has| $ (-6 -4460))))) +(((-619 |#1|) (-13 (-374 (-399) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) (-1211 (-1176) |#1|) (-10 -8 (-6 -4460) (-15 -2569 ($ $)))) (-1117)) (T -619)) +((-2569 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1117))))) +(-13 (-374 (-399) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) (-1211 (-1176) |#1|) (-10 -8 (-6 -4460) (-15 -2569 ($ $)))) +((-2625 (((-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) 16)) (-2001 (((-655 |#2|) $) 20)) (-3308 (((-112) |#2| $) 12))) +(((-620 |#1| |#2| |#3|) (-10 -8 (-15 -2001 ((-655 |#2|) |#1|)) (-15 -3308 ((-112) |#2| |#1|)) (-15 -2625 ((-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|))) (-621 |#2| |#3|) (-1117) (-1117)) (T -620)) +NIL +(-10 -8 (-15 -2001 ((-655 |#2|) |#1|)) (-15 -3308 ((-112) |#2| |#1|)) (-15 -2625 ((-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|))) +((-2861 (((-112) $ $) 19 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-1845 (((-112) $ (-782)) 8)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 46 (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 56 (|has| $ (-6 -4460)))) (-1399 (((-3 |#2| "failed") |#1| $) 62)) (-3011 (($) 7 T CONST)) (-1748 (($ $) 59 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))))) (-4404 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 47 (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 63)) (-3633 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 55 (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 57 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 54 (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 53 (|has| $ (-6 -4460)))) (-4001 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-2001 (((-655 |#1|) $) 64)) (-3308 (((-112) |#1| $) 65)) (-4012 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 40)) (-3862 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 41)) (-3912 (((-1137) $) 21 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-3704 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 52)) (-2454 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 42)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) 27 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 26 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 25 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 24 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3601 (($) 50) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 49)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 32 (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 60 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 51)) (-2883 (((-873) $) 18 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-1511 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 43)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-621 |#1| |#2|) (-141) (-1117) (-1117)) (T -621)) +((-3308 (*1 *2 *3 *1) (-12 (-4 *1 (-621 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-5 *2 (-112)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-5 *2 (-655 *3)))) (-4404 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-621 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))) (-1399 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-621 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117))))) +(-13 (-231 (-2 (|:| -4169 |t#1|) (|:| -3179 |t#2|))) (-10 -8 (-15 -3308 ((-112) |t#1| $)) (-15 -2001 ((-655 |t#1|) $)) (-15 -4404 ((-3 |t#2| "failed") |t#1| $)) (-15 -1399 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((-102) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) ((-624 (-873)) -3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873)))) ((-152 #0#) . T) ((-625 (-547)) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))) ((-231 #0#) . T) ((-240 #0#) . T) ((-318 #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-500 #0#) . T) ((-525 #0# #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-1117) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) ((-1235) . T)) +((-1377 (((-623 |#2|) |#1|) 17)) (-3007 (((-3 |#1| "failed") (-623 |#2|)) 21))) +(((-622 |#1| |#2|) (-10 -7 (-15 -1377 ((-623 |#2|) |#1|)) (-15 -3007 ((-3 |#1| "failed") (-623 |#2|)))) (-1117) (-1117)) (T -622)) +((-3007 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *4)) (-4 *4 (-1117)) (-4 *2 (-1117)) (-5 *1 (-622 *2 *4)))) (-1377 (*1 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *1 (-622 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117))))) +(-10 -7 (-15 -1377 ((-623 |#2|) |#1|)) (-15 -3007 ((-3 |#1| "failed") (-623 |#2|)))) +((-2861 (((-112) $ $) NIL)) (-2371 (((-3 (-1194) "failed") $) 46)) (-2275 (((-1290) $ (-782)) 22)) (-2632 (((-782) $) 20)) (-2572 (((-115) $) 9)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-1672 (($ (-115) (-655 |#1|) (-782)) 32) (($ (-1194)) 33)) (-3789 (((-112) $ (-115)) 15) (((-112) $ (-1194)) 13)) (-3343 (((-782) $) 17)) (-3912 (((-1137) $) NIL)) (-2615 (((-904 (-575)) $) 95 (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) 102 (|has| |#1| (-625 (-904 (-389))))) (((-547) $) 88 (|has| |#1| (-625 (-547))))) (-2883 (((-873) $) 72)) (-4400 (((-112) $ $) NIL)) (-1803 (((-655 |#1|) $) 19)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 51)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 53))) +(((-623 |#1|) (-13 (-133) (-861) (-896 |#1|) (-10 -8 (-15 -2572 ((-115) $)) (-15 -1803 ((-655 |#1|) $)) (-15 -3343 ((-782) $)) (-15 -1672 ($ (-115) (-655 |#1|) (-782))) (-15 -1672 ($ (-1194))) (-15 -2371 ((-3 (-1194) "failed") $)) (-15 -3789 ((-112) $ (-115))) (-15 -3789 ((-112) $ (-1194))) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|))) (-1117)) (T -623)) +((-2572 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) (-1803 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) (-1672 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-655 *5)) (-5 *4 (-782)) (-4 *5 (-1117)) (-5 *1 (-623 *5)))) (-1672 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) (-2371 (*1 *2 *1) (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) (-3789 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-623 *4)) (-4 *4 (-1117)))) (-3789 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-112)) (-5 *1 (-623 *4)) (-4 *4 (-1117))))) +(-13 (-133) (-861) (-896 |#1|) (-10 -8 (-15 -2572 ((-115) $)) (-15 -1803 ((-655 |#1|) $)) (-15 -3343 ((-782) $)) (-15 -1672 ($ (-115) (-655 |#1|) (-782))) (-15 -1672 ($ (-1194))) (-15 -2371 ((-3 (-1194) "failed") $)) (-15 -3789 ((-112) $ (-115))) (-15 -3789 ((-112) $ (-1194))) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|))) +((-2883 ((|#1| $) 6))) +(((-624 |#1|) (-141) (-1235)) (T -624)) +((-2883 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1235))))) +(-13 (-10 -8 (-15 -2883 (|t#1| $)))) +((-2615 ((|#1| $) 6))) +(((-625 |#1|) (-141) (-1235)) (T -625)) +((-2615 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1235))))) +(-13 (-10 -8 (-15 -2615 (|t#1| $)))) +((-2565 (((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 (-429 |#2|) |#2|)) 15) (((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|)) 16))) +(((-626 |#1| |#2|) (-10 -7 (-15 -2565 ((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|))) (-15 -2565 ((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 (-429 |#2|) |#2|)))) (-13 (-148) (-27) (-1055 (-575)) (-1055 (-418 (-575)))) (-1261 |#1|)) (T -626)) +((-2565 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-148) (-27) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-1190 (-418 *6))) (-5 *1 (-626 *5 *6)) (-5 *3 (-418 *6)))) (-2565 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-1190 (-418 *5))) (-5 *1 (-626 *4 *5)) (-5 *3 (-418 *5))))) +(-10 -7 (-15 -2565 ((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|))) (-15 -2565 ((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 (-429 |#2|) |#2|)))) +((-2883 (($ |#1|) 6))) +(((-627 |#1|) (-141) (-1235)) (T -627)) +((-2883 (*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1235))))) +(-13 (-10 -8 (-15 -2883 ($ |t#1|)))) +((-2861 (((-112) $ $) NIL)) (-1948 (($) 14 T CONST)) (-2002 (($) 15 T CONST)) (-3238 (($ $ $) 29)) (-3215 (($ $) 27)) (-2288 (((-1176) $) NIL)) (-2920 (($ $ $) 30)) (-3912 (((-1137) $) NIL)) (-3939 (($) 11 T CONST)) (-3083 (($ $ $) 31)) (-2883 (((-873) $) 35)) (-1984 (((-112) $ (|[\|\|]| -3939)) 24) (((-112) $ (|[\|\|]| -1948)) 26) (((-112) $ (|[\|\|]| -2002)) 21)) (-4400 (((-112) $ $) NIL)) (-3226 (($ $ $) 28)) (-3914 (((-112) $ $) 18))) +(((-628) (-13 (-984) (-10 -8 (-15 -1948 ($) -3738) (-15 -1984 ((-112) $ (|[\|\|]| -3939))) (-15 -1984 ((-112) $ (|[\|\|]| -1948))) (-15 -1984 ((-112) $ (|[\|\|]| -2002)))))) (T -628)) +((-1948 (*1 *1) (-5 *1 (-628))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3939)) (-5 *2 (-112)) (-5 *1 (-628)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1948)) (-5 *2 (-112)) (-5 *1 (-628)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2002)) (-5 *2 (-112)) (-5 *1 (-628))))) +(-13 (-984) (-10 -8 (-15 -1948 ($) -3738) (-15 -1984 ((-112) $ (|[\|\|]| -3939))) (-15 -1984 ((-112) $ (|[\|\|]| -1948))) (-15 -1984 ((-112) $ (|[\|\|]| -2002))))) +((-2615 (($ |#1|) 6))) +(((-629 |#1|) (-141) (-1235)) (T -629)) +((-2615 (*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1235))))) +(-13 (-10 -8 (-15 -2615 ($ |t#1|)))) +((-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) 10))) +(((-630 |#1| |#2|) (-10 -8 (-15 -2883 (|#1| |#2|)) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) (-631 |#2|) (-1066)) (T -630)) +NIL +(-10 -8 (-15 -2883 (|#1| |#2|)) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 41)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-631 |#1|) (-141) (-1066)) (T -631)) +((-2883 (*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1066))))) +(-13 (-1066) (-659 |t#1|) (-10 -8 (-15 -2883 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-737) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-4428 (((-575) $) NIL (|has| |#1| (-859)))) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) NIL)) (-4075 (((-112) $) NIL (|has| |#1| (-859)))) (-1542 (((-112) $) NIL)) (-1595 ((|#1| $) 13)) (-4087 (((-112) $) NIL (|has| |#1| (-859)))) (-1920 (($ $ $) NIL (|has| |#1| (-859)))) (-1425 (($ $ $) NIL (|has| |#1| (-859)))) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1608 ((|#3| $) 15)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL)) (-3759 (((-782)) 20 T CONST)) (-4400 (((-112) $ $) NIL)) (-2705 (($ $) NIL (|has| |#1| (-859)))) (-1996 (($) NIL T CONST)) (-2009 (($) 12 T CONST)) (-3981 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-859)))) (-4038 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-632 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (-15 -4038 ($ $ |#3|)) (-15 -4038 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-737) |#2|)) (T -632)) +((-4038 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-737) *4)))) (-4038 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-632 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-737) *4)))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-632 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-737) *3)))) (-1608 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-737) *4)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (-15 -4038 ($ $ |#3|)) (-15 -4038 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $)))) +((-2124 ((|#2| |#2| (-1194) (-1194)) 16))) +(((-633 |#1| |#2|) (-10 -7 (-15 -2124 (|#2| |#2| (-1194) (-1194)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-974) (-29 |#1|))) (T -633)) +((-2124 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-633 *4 *2)) (-4 *2 (-13 (-1220) (-974) (-29 *4)))))) +(-10 -7 (-15 -2124 (|#2| |#2| (-1194) (-1194)))) +((-2861 (((-112) $ $) 64)) (-3799 (((-112) $) 58)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3623 ((|#1| $) 55)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-4265 (((-2 (|:| -3397 $) (|:| -3688 (-418 |#2|))) (-418 |#2|)) 111 (|has| |#1| (-373)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) 27)) (-1747 (((-3 $ "failed") $) 88)) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-2673 (((-575) $) 22)) (-1542 (((-112) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2376 (((-112) $) 40)) (-2417 (($ |#1| (-575)) 24)) (-4383 ((|#1| $) 57)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) 101 (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-2851 (((-3 $ "failed") $ $) 93)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3708 (((-782) $) 115 (|has| |#1| (-373)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 114 (|has| |#1| (-373)))) (-2389 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-2645 (((-575) $) 38)) (-2615 (((-418 |#2|) $) 47)) (-2883 (((-873) $) 69) (($ (-575)) 35) (($ $) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) 34) (($ |#2|) 25)) (-2012 ((|#1| $ (-575)) 72)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-1996 (($) 9 T CONST)) (-2009 (($) 14 T CONST)) (-3430 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-3914 (((-112) $ $) 21)) (-4028 (($ $) 51) (($ $ $) NIL)) (-4016 (($ $ $) 90)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 29) (($ $ $) 49))) +(((-634 |#1| |#2|) (-13 (-232 |#2|) (-567) (-625 (-418 |#2|)) (-422 |#1|) (-1055 |#2|) (-10 -8 (-15 -2376 ((-112) $)) (-15 -2645 ((-575) $)) (-15 -2673 ((-575) $)) (-15 -4406 ($ $)) (-15 -4383 (|#1| $)) (-15 -3623 (|#1| $)) (-15 -2012 (|#1| $ (-575))) (-15 -2417 ($ |#1| (-575))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-6 (-316)) (-15 -4265 ((-2 (|:| -3397 $) (|:| -3688 (-418 |#2|))) (-418 |#2|)))) |%noBranch|))) (-567) (-1261 |#1|)) (T -634)) +((-2376 (*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-634 *3 *4)) (-4 *4 (-1261 *3)))) (-2645 (*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-575)) (-5 *1 (-634 *3 *4)) (-4 *4 (-1261 *3)))) (-2673 (*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-575)) (-5 *1 (-634 *3 *4)) (-4 *4 (-1261 *3)))) (-4406 (*1 *1 *1) (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2)))) (-4383 (*1 *2 *1) (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2)))) (-3623 (*1 *2 *1) (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *2 (-567)) (-5 *1 (-634 *2 *4)) (-4 *4 (-1261 *2)))) (-2417 (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-4 *2 (-567)) (-5 *1 (-634 *2 *4)) (-4 *4 (-1261 *2)))) (-4265 (*1 *2 *3) (-12 (-4 *4 (-373)) (-4 *4 (-567)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| -3397 (-634 *4 *5)) (|:| -3688 (-418 *5)))) (-5 *1 (-634 *4 *5)) (-5 *3 (-418 *5))))) +(-13 (-232 |#2|) (-567) (-625 (-418 |#2|)) (-422 |#1|) (-1055 |#2|) (-10 -8 (-15 -2376 ((-112) $)) (-15 -2645 ((-575) $)) (-15 -2673 ((-575) $)) (-15 -4406 ($ $)) (-15 -4383 (|#1| $)) (-15 -3623 (|#1| $)) (-15 -2012 (|#1| $ (-575))) (-15 -2417 ($ |#1| (-575))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-6 (-316)) (-15 -4265 ((-2 (|:| -3397 $) (|:| -3688 (-418 |#2|))) (-418 |#2|)))) |%noBranch|))) +((-1740 (((-655 |#6|) (-655 |#4|) (-112)) 54)) (-1622 ((|#6| |#6|) 48))) +(((-635 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1622 (|#6| |#6|)) (-15 -1740 ((-655 |#6|) (-655 |#4|) (-112)))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|) (-1126 |#1| |#2| |#3| |#4|)) (T -635)) +((-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 *10)) (-5 *1 (-635 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *10 (-1126 *5 *6 *7 *8)))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-635 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *2 (-1126 *3 *4 *5 *6))))) +(-10 -7 (-15 -1622 (|#6| |#6|)) (-15 -1740 ((-655 |#6|) (-655 |#4|) (-112)))) +((-4424 (((-112) |#3| (-782) (-655 |#3|)) 29)) (-3068 (((-3 (-2 (|:| |polfac| (-655 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-655 (-1190 |#3|)))) "failed") |#3| (-655 (-1190 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3378 (-655 (-2 (|:| |irr| |#4|) (|:| -2856 (-575)))))) (-655 |#3|) (-655 |#1|) (-655 |#3|)) 69))) +(((-636 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4424 ((-112) |#3| (-782) (-655 |#3|))) (-15 -3068 ((-3 (-2 (|:| |polfac| (-655 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-655 (-1190 |#3|)))) "failed") |#3| (-655 (-1190 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3378 (-655 (-2 (|:| |irr| |#4|) (|:| -2856 (-575)))))) (-655 |#3|) (-655 |#1|) (-655 |#3|)))) (-861) (-804) (-316) (-964 |#3| |#2| |#1|)) (T -636)) +((-3068 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3378 (-655 (-2 (|:| |irr| *10) (|:| -2856 (-575))))))) (-5 *6 (-655 *3)) (-5 *7 (-655 *8)) (-4 *8 (-861)) (-4 *3 (-316)) (-4 *10 (-964 *3 *9 *8)) (-4 *9 (-804)) (-5 *2 (-2 (|:| |polfac| (-655 *10)) (|:| |correct| *3) (|:| |corrfact| (-655 (-1190 *3))))) (-5 *1 (-636 *8 *9 *3 *10)) (-5 *4 (-655 (-1190 *3))))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-782)) (-5 *5 (-655 *3)) (-4 *3 (-316)) (-4 *6 (-861)) (-4 *7 (-804)) (-5 *2 (-112)) (-5 *1 (-636 *6 *7 *3 *8)) (-4 *8 (-964 *3 *7 *6))))) +(-10 -7 (-15 -4424 ((-112) |#3| (-782) (-655 |#3|))) (-15 -3068 ((-3 (-2 (|:| |polfac| (-655 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-655 (-1190 |#3|)))) "failed") |#3| (-655 (-1190 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3378 (-655 (-2 (|:| |irr| |#4|) (|:| -2856 (-575)))))) (-655 |#3|) (-655 |#1|) (-655 |#3|)))) +((-2861 (((-112) $ $) NIL)) (-3892 (((-1152) $) 11)) (-3880 (((-1152) $) 9)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-637) (-13 (-1100) (-10 -8 (-15 -3880 ((-1152) $)) (-15 -3892 ((-1152) $))))) (T -637)) +((-3880 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-637)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-637))))) +(-13 (-1100) (-10 -8 (-15 -3880 ((-1152) $)) (-15 -3892 ((-1152) $)))) +((-2861 (((-112) $ $) NIL)) (-3489 (((-655 |#1|) $) NIL)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) NIL)) (-3061 (($ $) 77)) (-3463 (((-675 |#1| |#2|) $) 60)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 81)) (-2748 (((-655 (-303 |#2|)) $ $) 42)) (-3912 (((-1137) $) NIL)) (-2665 (($ (-675 |#1| |#2|)) 56)) (-4258 (($ $ $) NIL)) (-3320 (($ $ $) NIL)) (-2883 (((-873) $) 66) (((-1300 |#1| |#2|) $) NIL) (((-1305 |#1| |#2|) $) 74)) (-4400 (((-112) $ $) NIL)) (-2009 (($) 61 T CONST)) (-3038 (((-655 (-2 (|:| |k| (-683 |#1|)) (|:| |c| |#2|))) $) 41)) (-2682 (((-655 (-675 |#1| |#2|)) (-655 |#1|)) 73)) (-1913 (((-655 (-2 (|:| |k| (-905 |#1|)) (|:| |c| |#2|))) $) 46)) (-3914 (((-112) $ $) 62)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ $ $) 52))) +(((-638 |#1| |#2| |#3|) (-13 (-484) (-10 -8 (-15 -2665 ($ (-675 |#1| |#2|))) (-15 -3463 ((-675 |#1| |#2|) $)) (-15 -1913 ((-655 (-2 (|:| |k| (-905 |#1|)) (|:| |c| |#2|))) $)) (-15 -2883 ((-1300 |#1| |#2|) $)) (-15 -2883 ((-1305 |#1| |#2|) $)) (-15 -3061 ($ $)) (-15 -3489 ((-655 |#1|) $)) (-15 -2682 ((-655 (-675 |#1| |#2|)) (-655 |#1|))) (-15 -3038 ((-655 (-2 (|:| |k| (-683 |#1|)) (|:| |c| |#2|))) $)) (-15 -2748 ((-655 (-303 |#2|)) $ $)))) (-861) (-13 (-174) (-728 (-418 (-575)))) (-936)) (T -638)) +((-2665 (*1 *1 *2) (-12 (-5 *2 (-675 *3 *4)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-5 *1 (-638 *3 *4 *5)) (-14 *5 (-936)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-675 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-1913 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |k| (-905 *3)) (|:| |c| *4)))) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-1305 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-3061 (*1 *1 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-13 (-174) (-728 (-418 (-575))))) (-14 *4 (-936)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-861)) (-5 *2 (-655 (-675 *4 *5))) (-5 *1 (-638 *4 *5 *6)) (-4 *5 (-13 (-174) (-728 (-418 (-575))))) (-14 *6 (-936)))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |k| (-683 *3)) (|:| |c| *4)))) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-2748 (*1 *2 *1 *1) (-12 (-5 *2 (-655 (-303 *4))) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936))))) +(-13 (-484) (-10 -8 (-15 -2665 ($ (-675 |#1| |#2|))) (-15 -3463 ((-675 |#1| |#2|) $)) (-15 -1913 ((-655 (-2 (|:| |k| (-905 |#1|)) (|:| |c| |#2|))) $)) (-15 -2883 ((-1300 |#1| |#2|) $)) (-15 -2883 ((-1305 |#1| |#2|) $)) (-15 -3061 ($ $)) (-15 -3489 ((-655 |#1|) $)) (-15 -2682 ((-655 (-675 |#1| |#2|)) (-655 |#1|))) (-15 -3038 ((-655 (-2 (|:| |k| (-683 |#1|)) (|:| |c| |#2|))) $)) (-15 -2748 ((-655 (-303 |#2|)) $ $)))) +((-1740 (((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112)) 103) (((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112)) 77)) (-4322 (((-112) (-655 (-791 |#1| (-875 |#2|)))) 26)) (-2523 (((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112)) 102)) (-3396 (((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112)) 76)) (-1919 (((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|)))) 30)) (-4007 (((-3 (-655 (-791 |#1| (-875 |#2|))) "failed") (-655 (-791 |#1| (-875 |#2|)))) 29))) +(((-639 |#1| |#2|) (-10 -7 (-15 -4322 ((-112) (-655 (-791 |#1| (-875 |#2|))))) (-15 -4007 ((-3 (-655 (-791 |#1| (-875 |#2|))) "failed") (-655 (-791 |#1| (-875 |#2|))))) (-15 -1919 ((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|))))) (-15 -3396 ((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -2523 ((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -1740 ((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -1740 ((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112)))) (-463) (-655 (-1194))) (T -639)) +((-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1163 *5 (-542 (-875 *6)) (-875 *6) (-791 *5 (-875 *6))))) (-5 *1 (-639 *5 *6)))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-639 *5 *6)))) (-2523 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1163 *5 (-542 (-875 *6)) (-875 *6) (-791 *5 (-875 *6))))) (-5 *1 (-639 *5 *6)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-639 *5 *6)))) (-1919 (*1 *2 *2) (-12 (-5 *2 (-655 (-791 *3 (-875 *4)))) (-4 *3 (-463)) (-14 *4 (-655 (-1194))) (-5 *1 (-639 *3 *4)))) (-4007 (*1 *2 *2) (|partial| -12 (-5 *2 (-655 (-791 *3 (-875 *4)))) (-4 *3 (-463)) (-14 *4 (-655 (-1194))) (-5 *1 (-639 *3 *4)))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-655 (-791 *4 (-875 *5)))) (-4 *4 (-463)) (-14 *5 (-655 (-1194))) (-5 *2 (-112)) (-5 *1 (-639 *4 *5))))) +(-10 -7 (-15 -4322 ((-112) (-655 (-791 |#1| (-875 |#2|))))) (-15 -4007 ((-3 (-655 (-791 |#1| (-875 |#2|))) "failed") (-655 (-791 |#1| (-875 |#2|))))) (-15 -1919 ((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|))))) (-15 -3396 ((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -2523 ((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -1740 ((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -1740 ((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112)))) +((-3923 (($ $) 38)) (-3786 (($ $) 21)) (-3897 (($ $) 37)) (-3761 (($ $) 22)) (-1521 (($ $) 36)) (-3807 (($ $) 23)) (-1631 (($) 48)) (-3463 (($ $) 45)) (-2329 (($ $) 17)) (-2827 (($ $ (-1109 $)) 7) (($ $ (-1194)) 6)) (-2665 (($ $) 46)) (-3717 (($ $) 15)) (-3749 (($ $) 16)) (-1530 (($ $) 35)) (-3817 (($ $) 24)) (-3937 (($ $) 34)) (-3797 (($ $) 25)) (-3909 (($ $) 33)) (-3774 (($ $) 26)) (-1568 (($ $) 44)) (-3852 (($ $) 32)) (-1544 (($ $) 43)) (-3828 (($ $) 31)) (-1592 (($ $) 42)) (-3873 (($ $) 30)) (-2914 (($ $) 41)) (-3885 (($ $) 29)) (-1583 (($ $) 40)) (-3863 (($ $) 28)) (-1554 (($ $) 39)) (-3839 (($ $) 27)) (-2347 (($ $) 19)) (-2131 (($ $) 20)) (-3801 (($ $) 18)) (** (($ $ $) 47))) +(((-640) (-141)) (T -640)) +((-2131 (*1 *1 *1) (-4 *1 (-640))) (-2347 (*1 *1 *1) (-4 *1 (-640))) (-3801 (*1 *1 *1) (-4 *1 (-640))) (-2329 (*1 *1 *1) (-4 *1 (-640))) (-3749 (*1 *1 *1) (-4 *1 (-640))) (-3717 (*1 *1 *1) (-4 *1 (-640)))) +(-13 (-974) (-1220) (-10 -8 (-15 -2131 ($ $)) (-15 -2347 ($ $)) (-15 -3801 ($ $)) (-15 -2329 ($ $)) (-15 -3749 ($ $)) (-15 -3717 ($ $)))) +(((-35) . T) ((-95) . T) ((-293) . T) ((-504) . T) ((-974) . T) ((-1220) . T) ((-1223) . T)) +((-2572 (((-115) (-115)) 88)) (-2329 ((|#2| |#2|) 28)) (-2827 ((|#2| |#2| (-1109 |#2|)) 84) ((|#2| |#2| (-1194)) 50)) (-3717 ((|#2| |#2|) 27)) (-3749 ((|#2| |#2|) 29)) (-2151 (((-112) (-115)) 33)) (-2347 ((|#2| |#2|) 24)) (-2131 ((|#2| |#2|) 26)) (-3801 ((|#2| |#2|) 25))) +(((-641 |#1| |#2|) (-10 -7 (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 -2131 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -3717 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -2827 (|#2| |#2| (-1194))) (-15 -2827 (|#2| |#2| (-1109 |#2|)))) (-567) (-13 (-441 |#1|) (-1019) (-1220))) (T -641)) +((-2827 (*1 *2 *2 *3) (-12 (-5 *3 (-1109 *2)) (-4 *2 (-13 (-441 *4) (-1019) (-1220))) (-4 *4 (-567)) (-5 *1 (-641 *4 *2)))) (-2827 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-641 *4 *2)) (-4 *2 (-13 (-441 *4) (-1019) (-1220))))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-3717 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-2131 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-2572 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-641 *3 *4)) (-4 *4 (-13 (-441 *3) (-1019) (-1220))))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-641 *4 *5)) (-4 *5 (-13 (-441 *4) (-1019) (-1220)))))) +(-10 -7 (-15 -2151 ((-112) (-115))) (-15 -2572 ((-115) (-115))) (-15 -2131 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -3717 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -2827 (|#2| |#2| (-1194))) (-15 -2827 (|#2| |#2| (-1109 |#2|)))) +((-3779 (((-492 |#1| |#2|) (-252 |#1| |#2|)) 63)) (-3679 (((-655 (-252 |#1| |#2|)) (-655 (-492 |#1| |#2|))) 89)) (-2464 (((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-875 |#1|)) 91) (((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)) (-875 |#1|)) 90)) (-3687 (((-2 (|:| |gblist| (-655 (-252 |#1| |#2|))) (|:| |gvlist| (-655 (-575)))) (-655 (-492 |#1| |#2|))) 134)) (-3142 (((-655 (-492 |#1| |#2|)) (-875 |#1|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|))) 104)) (-1711 (((-2 (|:| |glbase| (-655 (-252 |#1| |#2|))) (|:| |glval| (-655 (-575)))) (-655 (-252 |#1| |#2|))) 145)) (-4010 (((-1285 |#2|) (-492 |#1| |#2|) (-655 (-492 |#1| |#2|))) 68)) (-4166 (((-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|))) 47)) (-1869 (((-252 |#1| |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|))) 60)) (-4438 (((-252 |#1| |#2|) (-655 |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|))) 112))) +(((-642 |#1| |#2|) (-10 -7 (-15 -3687 ((-2 (|:| |gblist| (-655 (-252 |#1| |#2|))) (|:| |gvlist| (-655 (-575)))) (-655 (-492 |#1| |#2|)))) (-15 -1711 ((-2 (|:| |glbase| (-655 (-252 |#1| |#2|))) (|:| |glval| (-655 (-575)))) (-655 (-252 |#1| |#2|)))) (-15 -3679 ((-655 (-252 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -2464 ((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)) (-875 |#1|))) (-15 -2464 ((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-875 |#1|))) (-15 -4166 ((-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -4010 ((-1285 |#2|) (-492 |#1| |#2|) (-655 (-492 |#1| |#2|)))) (-15 -4438 ((-252 |#1| |#2|) (-655 |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|)))) (-15 -3142 ((-655 (-492 |#1| |#2|)) (-875 |#1|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -1869 ((-252 |#1| |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|)))) (-15 -3779 ((-492 |#1| |#2|) (-252 |#1| |#2|)))) (-655 (-1194)) (-463)) (T -642)) +((-3779 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *2 (-492 *4 *5)) (-5 *1 (-642 *4 *5)))) (-1869 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-252 *4 *5))) (-5 *2 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-642 *4 *5)))) (-3142 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-655 (-492 *4 *5))) (-5 *3 (-875 *4)) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-642 *4 *5)))) (-4438 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-252 *5 *6))) (-4 *6 (-463)) (-5 *2 (-252 *5 *6)) (-14 *5 (-655 (-1194))) (-5 *1 (-642 *5 *6)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-492 *5 *6))) (-5 *3 (-492 *5 *6)) (-14 *5 (-655 (-1194))) (-4 *6 (-463)) (-5 *2 (-1285 *6)) (-5 *1 (-642 *5 *6)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-655 (-492 *3 *4))) (-14 *3 (-655 (-1194))) (-4 *4 (-463)) (-5 *1 (-642 *3 *4)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-492 *5 *6))) (-5 *4 (-875 *5)) (-14 *5 (-655 (-1194))) (-5 *2 (-492 *5 *6)) (-5 *1 (-642 *5 *6)) (-4 *6 (-463)))) (-2464 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-655 (-492 *5 *6))) (-5 *4 (-875 *5)) (-14 *5 (-655 (-1194))) (-5 *2 (-492 *5 *6)) (-5 *1 (-642 *5 *6)) (-4 *6 (-463)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-655 (-492 *4 *5))) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *2 (-655 (-252 *4 *5))) (-5 *1 (-642 *4 *5)))) (-1711 (*1 *2 *3) (-12 (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *2 (-2 (|:| |glbase| (-655 (-252 *4 *5))) (|:| |glval| (-655 (-575))))) (-5 *1 (-642 *4 *5)) (-5 *3 (-655 (-252 *4 *5))))) (-3687 (*1 *2 *3) (-12 (-5 *3 (-655 (-492 *4 *5))) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *2 (-2 (|:| |gblist| (-655 (-252 *4 *5))) (|:| |gvlist| (-655 (-575))))) (-5 *1 (-642 *4 *5))))) +(-10 -7 (-15 -3687 ((-2 (|:| |gblist| (-655 (-252 |#1| |#2|))) (|:| |gvlist| (-655 (-575)))) (-655 (-492 |#1| |#2|)))) (-15 -1711 ((-2 (|:| |glbase| (-655 (-252 |#1| |#2|))) (|:| |glval| (-655 (-575)))) (-655 (-252 |#1| |#2|)))) (-15 -3679 ((-655 (-252 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -2464 ((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)) (-875 |#1|))) (-15 -2464 ((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-875 |#1|))) (-15 -4166 ((-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -4010 ((-1285 |#2|) (-492 |#1| |#2|) (-655 (-492 |#1| |#2|)))) (-15 -4438 ((-252 |#1| |#2|) (-655 |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|)))) (-15 -3142 ((-655 (-492 |#1| |#2|)) (-875 |#1|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -1869 ((-252 |#1| |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|)))) (-15 -3779 ((-492 |#1| |#2|) (-252 |#1| |#2|)))) +((-2861 (((-112) $ $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-2297 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL)) (-4161 (((-1290) $ (-1176) (-1176)) NIL (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 (((-52) $ (-1176) (-52)) 16) (((-52) $ (-1194) (-52)) 17)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-1399 (((-3 (-52) "failed") (-1176) $) NIL)) (-3011 (($) NIL T CONST)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-4404 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-3 (-52) "failed") (-1176) $) NIL)) (-3633 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (((-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-2859 (((-52) $ (-1176) (-52)) NIL (|has| $ (-6 -4461)))) (-2788 (((-52) $ (-1176)) NIL)) (-4001 (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-2569 (($ $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-1176) $) NIL (|has| (-1176) (-861)))) (-3955 (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-3197 (((-1176) $) NIL (|has| (-1176) (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2559 (($ (-399)) 9)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-2001 (((-655 (-1176)) $) NIL)) (-3308 (((-112) (-1176) $) NIL)) (-4012 (((-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL)) (-3862 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL)) (-4310 (((-655 (-1176)) $) NIL)) (-2969 (((-112) (-1176) $) NIL)) (-3912 (((-1137) $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-1961 (((-52) $) NIL (|has| (-1176) (-861)))) (-3704 (((-3 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) "failed") (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL)) (-3954 (($ $ (-52)) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (($ $ (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (($ $ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-52)) (-655 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-303 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-655 (-303 (-52)))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-1691 (((-655 (-52)) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 (((-52) $ (-1176)) 14) (((-52) $ (-1176) (-52)) NIL) (((-52) $ (-1194)) 15)) (-3601 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (((-782) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117)))) (((-782) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL)) (-2883 (((-873) $) NIL (-3765 (|has| (-52) (-624 (-873))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-624 (-873)))))) (-4400 (((-112) $ $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-643) (-13 (-1211 (-1176) (-52)) (-295 (-1194) (-52)) (-10 -8 (-15 -2559 ($ (-399))) (-15 -2569 ($ $)) (-15 -3054 ((-52) $ (-1194) (-52)))))) (T -643)) +((-2559 (*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-643)))) (-2569 (*1 *1 *1) (-5 *1 (-643))) (-3054 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1194)) (-5 *1 (-643))))) +(-13 (-1211 (-1176) (-52)) (-295 (-1194) (-52)) (-10 -8 (-15 -2559 ($ (-399))) (-15 -2569 ($ $)) (-15 -3054 ((-52) $ (-1194) (-52))))) +((-4038 (($ $ |#2|) 10))) +(((-644 |#1| |#2|) (-10 -8 (-15 -4038 (|#1| |#1| |#2|))) (-645 |#2|) (-174)) (T -644)) +NIL +(-10 -8 (-15 -4038 (|#1| |#1| |#2|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2894 (($ $ $) 34)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 33 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-645 |#1|) (-141) (-174)) (T -645)) +((-2894 (*1 *1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-174)))) (-4038 (*1 *1 *1 *2) (-12 (-4 *1 (-645 *2)) (-4 *2 (-174)) (-4 *2 (-373))))) +(-13 (-728 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2894 ($ $ $)) (IF (|has| |t#1| (-373)) (-15 -4038 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3800 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-4239 (((-1285 (-700 |#1|))) NIL (|has| |#2| (-428 |#1|))) (((-1285 (-700 |#1|)) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3355 (((-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3011 (($) NIL T CONST)) (-1380 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-4132 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2974 (((-700 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-1726 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-4093 (((-700 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3512 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2199 (((-1190 (-967 |#1|))) NIL (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-373))))) (-2661 (($ $ (-936)) NIL)) (-2737 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-1884 (((-1190 |#1|) $) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2263 ((|#1|) NIL (|has| |#2| (-428 |#1|))) ((|#1| (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-4103 (((-1190 |#1|) $) NIL (|has| |#2| (-377 |#1|)))) (-2810 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1385 (($ (-1285 |#1|)) NIL (|has| |#2| (-428 |#1|))) (($ (-1285 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-1747 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-4422 (((-936)) NIL (|has| |#2| (-377 |#1|)))) (-4369 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3889 (($ $ (-936)) NIL)) (-3289 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1742 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3577 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3129 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3387 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2653 (((-700 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-1502 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-4391 (((-700 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3456 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3498 (((-1190 (-967 |#1|))) NIL (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-373))))) (-1898 (($ $ (-936)) NIL)) (-4336 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-3649 (((-1190 |#1|) $) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-1634 ((|#1|) NIL (|has| |#2| (-428 |#1|))) ((|#1| (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-4013 (((-1190 |#1|) $) NIL (|has| |#2| (-377 |#1|)))) (-4403 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2288 (((-1176) $) NIL)) (-1536 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3978 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2204 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3912 (((-1137) $) NIL)) (-3074 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2070 ((|#1| $ (-575)) NIL (|has| |#2| (-428 |#1|)))) (-3962 (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-428 |#1|))) (((-1285 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $) (-1285 $)) NIL (|has| |#2| (-377 |#1|))) (((-1285 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-2615 (($ (-1285 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-1285 |#1|) $) NIL (|has| |#2| (-428 |#1|)))) (-3235 (((-655 (-967 |#1|))) NIL (|has| |#2| (-428 |#1|))) (((-655 (-967 |#1|)) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3320 (($ $ $) NIL)) (-2328 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2883 (((-873) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL (|has| |#2| (-428 |#1|)))) (-3431 (((-655 (-1285 |#1|))) NIL (-3765 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-1785 (($ $ $ $) NIL)) (-2761 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1949 (($ (-700 |#1|) $) NIL (|has| |#2| (-428 |#1|)))) (-3534 (($ $ $) NIL)) (-4363 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2987 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1472 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) 20)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-646 |#1| |#2|) (-13 (-755 |#1|) (-624 |#2|) (-10 -8 (-15 -2883 ($ |#2|)) (IF (|has| |#2| (-428 |#1|)) (-6 (-428 |#1|)) |%noBranch|) (IF (|has| |#2| (-377 |#1|)) (-6 (-377 |#1|)) |%noBranch|))) (-174) (-755 |#1|)) (T -646)) +((-2883 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-646 *3 *2)) (-4 *2 (-755 *3))))) +(-13 (-755 |#1|) (-624 |#2|) (-10 -8 (-15 -2883 ($ |#2|)) (IF (|has| |#2| (-428 |#1|)) (-6 (-428 |#1|)) |%noBranch|) (IF (|has| |#2| (-377 |#1|)) (-6 (-377 |#1|)) |%noBranch|))) +((-3725 (((-3 (-854 |#2|) "failed") |#2| (-303 |#2|) (-1176)) 106) (((-3 (-854 |#2|) (-2 (|:| |leftHandLimit| (-3 (-854 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-854 |#2|) "failed"))) "failed") |#2| (-303 (-854 |#2|))) 131)) (-1956 (((-3 (-844 |#2|) "failed") |#2| (-303 (-844 |#2|))) 136))) +(((-647 |#1| |#2|) (-10 -7 (-15 -3725 ((-3 (-854 |#2|) (-2 (|:| |leftHandLimit| (-3 (-854 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-854 |#2|) "failed"))) "failed") |#2| (-303 (-854 |#2|)))) (-15 -1956 ((-3 (-844 |#2|) "failed") |#2| (-303 (-844 |#2|)))) (-15 -3725 ((-3 (-854 |#2|) "failed") |#2| (-303 |#2|) (-1176)))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -647)) +((-3725 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-303 *3)) (-5 *5 (-1176)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-854 *3)) (-5 *1 (-647 *6 *3)))) (-1956 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-303 (-844 *3))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-844 *3)) (-5 *1 (-647 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-3725 (*1 *2 *3 *4) (-12 (-5 *4 (-303 (-854 *3))) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (-854 *3) (-2 (|:| |leftHandLimit| (-3 (-854 *3) "failed")) (|:| |rightHandLimit| (-3 (-854 *3) "failed"))) "failed")) (-5 *1 (-647 *5 *3))))) +(-10 -7 (-15 -3725 ((-3 (-854 |#2|) (-2 (|:| |leftHandLimit| (-3 (-854 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-854 |#2|) "failed"))) "failed") |#2| (-303 (-854 |#2|)))) (-15 -1956 ((-3 (-844 |#2|) "failed") |#2| (-303 (-844 |#2|)))) (-15 -3725 ((-3 (-854 |#2|) "failed") |#2| (-303 |#2|) (-1176)))) +((-3725 (((-3 (-854 (-418 (-967 |#1|))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))) (-1176)) 86) (((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|)))) 20) (((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-854 (-967 |#1|)))) 35)) (-1956 (((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|)))) 23) (((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-844 (-967 |#1|)))) 43))) +(((-648 |#1|) (-10 -7 (-15 -3725 ((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-854 (-967 |#1|))))) (-15 -3725 ((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -1956 ((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-844 (-967 |#1|))))) (-15 -1956 ((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -3725 ((-3 (-854 (-418 (-967 |#1|))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))) (-1176)))) (-463)) (T -648)) +((-3725 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-303 (-418 (-967 *6)))) (-5 *5 (-1176)) (-5 *3 (-418 (-967 *6))) (-4 *6 (-463)) (-5 *2 (-854 *3)) (-5 *1 (-648 *6)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *4 (-303 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5))) (-4 *5 (-463)) (-5 *2 (-844 *3)) (-5 *1 (-648 *5)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *4 (-303 (-844 (-967 *5)))) (-4 *5 (-463)) (-5 *2 (-844 (-418 (-967 *5)))) (-5 *1 (-648 *5)) (-5 *3 (-418 (-967 *5))))) (-3725 (*1 *2 *3 *4) (-12 (-5 *4 (-303 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5))) (-4 *5 (-463)) (-5 *2 (-3 (-854 *3) (-2 (|:| |leftHandLimit| (-3 (-854 *3) "failed")) (|:| |rightHandLimit| (-3 (-854 *3) "failed"))) "failed")) (-5 *1 (-648 *5)))) (-3725 (*1 *2 *3 *4) (-12 (-5 *4 (-303 (-854 (-967 *5)))) (-4 *5 (-463)) (-5 *2 (-3 (-854 (-418 (-967 *5))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 *5))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 *5))) "failed"))) "failed")) (-5 *1 (-648 *5)) (-5 *3 (-418 (-967 *5)))))) +(-10 -7 (-15 -3725 ((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-854 (-967 |#1|))))) (-15 -3725 ((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -1956 ((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-844 (-967 |#1|))))) (-15 -1956 ((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -3725 ((-3 (-854 (-418 (-967 |#1|))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))) (-1176)))) +((-3157 (((-3 (-1285 (-418 |#1|)) "failed") (-1285 |#2|) |#2|) 64 (-3215 (|has| |#1| (-373)))) (((-3 (-1285 |#1|) "failed") (-1285 |#2|) |#2|) 49 (|has| |#1| (-373)))) (-2480 (((-112) (-1285 |#2|)) 33)) (-4318 (((-3 (-1285 |#1|) "failed") (-1285 |#2|)) 40))) +(((-649 |#1| |#2|) (-10 -7 (-15 -2480 ((-112) (-1285 |#2|))) (-15 -4318 ((-3 (-1285 |#1|) "failed") (-1285 |#2|))) (IF (|has| |#1| (-373)) (-15 -3157 ((-3 (-1285 |#1|) "failed") (-1285 |#2|) |#2|)) (-15 -3157 ((-3 (-1285 (-418 |#1|)) "failed") (-1285 |#2|) |#2|)))) (-567) (-13 (-1066) (-650 |#1|))) (T -649)) +((-3157 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 *5))) (-3215 (-4 *5 (-373))) (-4 *5 (-567)) (-5 *2 (-1285 (-418 *5))) (-5 *1 (-649 *5 *4)))) (-3157 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 *5))) (-4 *5 (-373)) (-4 *5 (-567)) (-5 *2 (-1285 *5)) (-5 *1 (-649 *5 *4)))) (-4318 (*1 *2 *3) (|partial| -12 (-5 *3 (-1285 *5)) (-4 *5 (-13 (-1066) (-650 *4))) (-4 *4 (-567)) (-5 *2 (-1285 *4)) (-5 *1 (-649 *4 *5)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-1285 *5)) (-4 *5 (-13 (-1066) (-650 *4))) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-649 *4 *5))))) +(-10 -7 (-15 -2480 ((-112) (-1285 |#2|))) (-15 -4318 ((-3 (-1285 |#1|) "failed") (-1285 |#2|))) (IF (|has| |#1| (-373)) (-15 -3157 ((-3 (-1285 |#1|) "failed") (-1285 |#2|) |#2|)) (-15 -3157 ((-3 (-1285 (-418 |#1|)) "failed") (-1285 |#2|) |#2|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1749 (((-700 |#1|) (-1285 $)) 31) (((-700 |#1|) (-700 $)) 30) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 29)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27))) +(((-650 |#1|) (-141) (-1066)) (T -650)) +((-1749 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-650 *4)) (-4 *4 (-1066)) (-5 *2 (-700 *4)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-700 *1)) (-4 *1 (-650 *4)) (-4 *4 (-1066)) (-5 *2 (-700 *4)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *1)) (-5 *4 (-1285 *1)) (-4 *1 (-650 *5)) (-4 *5 (-1066)) (-5 *2 (-2 (|:| -2412 (-700 *5)) (|:| |vec| (-1285 *5))))))) +(-13 (-659 |t#1|) (-10 -8 (-15 -1749 ((-700 |t#1|) (-1285 $))) (-15 -1749 ((-700 |t#1|) (-700 $))) (-15 -1749 ((-2 (|:| -2412 (-700 |t#1|)) (|:| |vec| (-1285 |t#1|))) (-700 $) (-1285 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-1117) . T)) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 16 T CONST)) (-3914 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) +(((-651 |#1|) (-141) (-1129)) (T -651)) +NIL +(-13 (-657 |t#1|) (-1068 |t#1|)) +(((-102) . T) ((-624 (-873)) . T) ((-657 |#1|) . T) ((-1068 |#1|) . T) ((-1117) . T)) +((-1616 ((|#2| (-655 |#1|) (-655 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-655 |#1|) (-655 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) |#2|) 17) ((|#2| (-655 |#1|) (-655 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|)) 12))) +(((-652 |#1| |#2|) (-10 -7 (-15 -1616 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|))) (-15 -1616 (|#2| (-655 |#1|) (-655 |#2|) |#1|)) (-15 -1616 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) |#2|)) (-15 -1616 (|#2| (-655 |#1|) (-655 |#2|) |#1| |#2|)) (-15 -1616 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) (-1 |#2| |#1|))) (-15 -1616 (|#2| (-655 |#1|) (-655 |#2|) |#1| (-1 |#2| |#1|)))) (-1117) (-1235)) (T -652)) +((-1616 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1117)) (-4 *2 (-1235)) (-5 *1 (-652 *5 *2)))) (-1616 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-655 *5)) (-5 *4 (-655 *6)) (-4 *5 (-1117)) (-4 *6 (-1235)) (-5 *1 (-652 *5 *6)))) (-1616 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-4 *5 (-1117)) (-4 *2 (-1235)) (-5 *1 (-652 *5 *2)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 *5)) (-4 *6 (-1117)) (-4 *5 (-1235)) (-5 *2 (-1 *5 *6)) (-5 *1 (-652 *6 *5)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-4 *5 (-1117)) (-4 *2 (-1235)) (-5 *1 (-652 *5 *2)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *6)) (-4 *5 (-1117)) (-4 *6 (-1235)) (-5 *2 (-1 *6 *5)) (-5 *1 (-652 *5 *6))))) +(-10 -7 (-15 -1616 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|))) (-15 -1616 (|#2| (-655 |#1|) (-655 |#2|) |#1|)) (-15 -1616 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) |#2|)) (-15 -1616 (|#2| (-655 |#1|) (-655 |#2|) |#1| |#2|)) (-15 -1616 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) (-1 |#2| |#1|))) (-15 -1616 (|#2| (-655 |#1|) (-655 |#2|) |#1| (-1 |#2| |#1|)))) +((-3715 (((-655 |#2|) (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|) 16)) (-2308 ((|#2| (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|) 18)) (-2550 (((-655 |#2|) (-1 |#2| |#1|) (-655 |#1|)) 13))) +(((-653 |#1| |#2|) (-10 -7 (-15 -3715 ((-655 |#2|) (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|)) (-15 -2308 (|#2| (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|)) (-15 -2550 ((-655 |#2|) (-1 |#2| |#1|) (-655 |#1|)))) (-1235) (-1235)) (T -653)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-655 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-655 *6)) (-5 *1 (-653 *5 *6)))) (-2308 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-655 *5)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-653 *5 *2)))) (-3715 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-655 *6)) (-4 *6 (-1235)) (-4 *5 (-1235)) (-5 *2 (-655 *5)) (-5 *1 (-653 *6 *5))))) +(-10 -7 (-15 -3715 ((-655 |#2|) (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|)) (-15 -2308 (|#2| (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|)) (-15 -2550 ((-655 |#2|) (-1 |#2| |#1|) (-655 |#1|)))) +((-2550 (((-655 |#3|) (-1 |#3| |#1| |#2|) (-655 |#1|) (-655 |#2|)) 21))) +(((-654 |#1| |#2| |#3|) (-10 -7 (-15 -2550 ((-655 |#3|) (-1 |#3| |#1| |#2|) (-655 |#1|) (-655 |#2|)))) (-1235) (-1235) (-1235)) (T -654)) +((-2550 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-655 *6)) (-5 *5 (-655 *7)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-655 *8)) (-5 *1 (-654 *6 *7 *8))))) +(-10 -7 (-15 -2550 ((-655 |#3|) (-1 |#3| |#1| |#2|) (-655 |#1|) (-655 |#2|)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4182 ((|#1| $) NIL)) (-2989 ((|#1| $) NIL)) (-3462 (($ $) NIL)) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1893 (($ $ (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2119 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2031 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-1915 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3391 (($ $ $) NIL (|has| $ (-6 -4461)))) (-3602 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-1876 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "rest" $) NIL (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3944 (($ $ $) 37 (|has| |#1| (-1117)))) (-2175 (($ $ $) 41 (|has| |#1| (-1117)))) (-2422 (($ $ $) 44 (|has| |#1| (-1117)))) (-1999 (($ (-1 (-112) |#1|) $) NIL)) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2977 ((|#1| $) NIL)) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1975 (($ $) 23) (($ $ (-782)) NIL)) (-1878 (($ $) NIL (|has| |#1| (-1117)))) (-1748 (($ $) 36 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4404 (($ |#1| $) NIL (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) NIL)) (-3633 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2859 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) NIL)) (-2087 (((-112) $) NIL)) (-2632 (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117))) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) (-1 (-112) |#1|) $) NIL)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3203 (((-112) $) 11)) (-3698 (((-655 $) $) NIL)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3460 (($) 9 T CONST)) (-2309 (($ (-782) |#1|) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-4174 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3794 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1684 (($ |#1|) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2482 (((-655 |#1|) $) NIL)) (-1526 (((-112) $) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3653 ((|#1| $) NIL) (($ $ (-782)) NIL)) (-3862 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-2135 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1961 ((|#1| $) 20) (($ $ (-782)) NIL)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3954 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-3888 (((-112) $) NIL)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) 39)) (-1938 (($) 38)) (-2070 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1252 (-575))) NIL) ((|#1| $ (-575)) 42) ((|#1| $ (-575) |#1|) NIL)) (-2220 (((-575) $ $) NIL)) (-2797 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3239 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-1648 (((-112) $) NIL)) (-1397 (($ $) NIL)) (-1877 (($ $) NIL (|has| $ (-6 -4461)))) (-3269 (((-782) $) NIL)) (-1863 (($ $) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) 53 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) NIL)) (-2821 (($ |#1| $) 12)) (-2774 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1514 (($ $ $) 35) (($ |#1| $) 43) (($ (-655 $)) NIL) (($ $ |#1|) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) NIL)) (-2781 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3908 (($ $ $) 13)) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-4196 (((-1176) $) 31 (|has| |#1| (-839))) (((-1176) $ (-112)) 32 (|has| |#1| (-839))) (((-1290) (-833) $) 33 (|has| |#1| (-839))) (((-1290) (-833) $ (-112)) 34 (|has| |#1| (-839)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-655 |#1|) (-13 (-677 |#1|) (-10 -8 (-15 -3460 ($) -3738) (-15 -3203 ((-112) $)) (-15 -2821 ($ |#1| $)) (-15 -3908 ($ $ $)) (IF (|has| |#1| (-1117)) (PROGN (-15 -3944 ($ $ $)) (-15 -2175 ($ $ $)) (-15 -2422 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|))) (-1235)) (T -655)) +((-3460 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-1235)))) (-2821 (*1 *1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235)))) (-3908 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235)))) (-3944 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235)))) (-2175 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235)))) (-2422 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235))))) +(-13 (-677 |#1|) (-10 -8 (-15 -3460 ($) -3738) (-15 -3203 ((-112) $)) (-15 -2821 ($ |#1| $)) (-15 -3908 ($ $ $)) (IF (|has| |#1| (-1117)) (PROGN (-15 -3944 ($ $ $)) (-15 -2175 ($ $ $)) (-15 -2422 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 11) (($ (-1199)) NIL) (((-1199) $) NIL) ((|#1| $) 8)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-656 |#1|) (-13 (-1100) (-624 |#1|)) (-1117)) (T -656)) +NIL +(-13 (-1100) (-624 |#1|)) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 16 T CONST)) (-3914 (((-112) $ $) 6)) (* (($ |#1| $) 14))) +(((-657 |#1|) (-141) (-1129)) (T -657)) +((-1996 (*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1129)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1129)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1129))))) +(-13 (-1117) (-10 -8 (-15 (-1996) ($) -3738) (-15 -3799 ((-112) $)) (-15 * ($ |t#1| $)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1465 (($ |#1| |#1| $) 43)) (-1845 (((-112) $ (-782)) NIL)) (-1999 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1878 (($ $) 45)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4404 (($ |#1| $) 56 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4460)))) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-4001 (((-655 |#1|) $) 9 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2847 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 37)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4012 ((|#1| $) 47)) (-3862 (($ |#1| $) 29) (($ |#1| $ (-782)) 42)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2454 ((|#1| $) 50)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 23)) (-1938 (($) 28)) (-3358 (((-112) $) 54)) (-3240 (((-655 (-2 (|:| -3179 |#1|) (|:| -3925 (-782)))) $) 67)) (-3601 (($) 26) (($ (-655 |#1|)) 19)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) 63 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) 20)) (-2615 (((-547) $) 34 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) NIL)) (-2883 (((-873) $) 14 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) 24)) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 69 (|has| |#1| (-1117)))) (-2871 (((-782) $) 17 (|has| $ (-6 -4460))))) +(((-658 |#1|) (-13 (-706 |#1|) (-10 -8 (-6 -4460) (-15 -3358 ((-112) $)) (-15 -1465 ($ |#1| |#1| $)))) (-1117)) (T -658)) +((-3358 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-1117)))) (-1465 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1117))))) +(-13 (-706 |#1|) (-10 -8 (-6 -4460) (-15 -3358 ((-112) $)) (-15 -1465 ($ |#1| |#1| $)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27))) +(((-659 |#1|) (-141) (-1075)) (T -659)) +NIL +(-13 (-21) (-657 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782) $) 17)) (-2190 (($ $ |#1|) 69)) (-1789 (($ $) 39)) (-4381 (($ $) 37)) (-2449 (((-3 |#1| "failed") $) 61)) (-4399 ((|#1| $) NIL)) (-3611 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3282 (((-873) $ (-1 (-873) (-873) (-873)) (-1 (-873) (-873) (-873)) (-575)) 56)) (-3643 ((|#1| $ (-575)) 35)) (-2302 ((|#2| $ (-575)) 34)) (-1772 (($ (-1 |#1| |#1|) $) 41)) (-2195 (($ (-1 |#2| |#2|) $) 47)) (-3737 (($) 11)) (-3758 (($ |#1| |#2|) 24)) (-2156 (($ (-655 (-2 (|:| |gen| |#1|) (|:| -2665 |#2|)))) 25)) (-2331 (((-655 (-2 (|:| |gen| |#1|) (|:| -2665 |#2|))) $) 14)) (-2413 (($ |#1| $) 71)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3845 (((-112) $ $) 76)) (-2883 (((-873) $) 21) (($ |#1|) 18)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 27))) +(((-660 |#1| |#2| |#3|) (-13 (-1117) (-1055 |#1|) (-10 -8 (-15 -3282 ((-873) $ (-1 (-873) (-873) (-873)) (-1 (-873) (-873) (-873)) (-575))) (-15 -2331 ((-655 (-2 (|:| |gen| |#1|) (|:| -2665 |#2|))) $)) (-15 -3758 ($ |#1| |#2|)) (-15 -2156 ($ (-655 (-2 (|:| |gen| |#1|) (|:| -2665 |#2|))))) (-15 -2302 (|#2| $ (-575))) (-15 -3643 (|#1| $ (-575))) (-15 -4381 ($ $)) (-15 -1789 ($ $)) (-15 -2415 ((-782) $)) (-15 -3737 ($)) (-15 -2190 ($ $ |#1|)) (-15 -2413 ($ |#1| $)) (-15 -3611 ($ |#1| |#2| $)) (-15 -3611 ($ $ $)) (-15 -3845 ((-112) $ $)) (-15 -2195 ($ (-1 |#2| |#2|) $)) (-15 -1772 ($ (-1 |#1| |#1|) $)))) (-1117) (-23) |#2|) (T -660)) +((-3282 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-873) (-873) (-873))) (-5 *4 (-575)) (-5 *2 (-873)) (-5 *1 (-660 *5 *6 *7)) (-4 *5 (-1117)) (-4 *6 (-23)) (-14 *7 *6))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2665 *4)))) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4))) (-3758 (*1 *1 *2 *3) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-2156 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2665 *4)))) (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-660 *3 *4 *5)))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *2 (-23)) (-5 *1 (-660 *4 *2 *5)) (-4 *4 (-1117)) (-14 *5 *2))) (-3643 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *2 (-1117)) (-5 *1 (-660 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4381 (*1 *1 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-1789 (*1 *1 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4))) (-3737 (*1 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-2190 (*1 *1 *1 *2) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-2413 (*1 *1 *2 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-3611 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-3611 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-3845 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4))) (-2195 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)))) (-1772 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-660 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1117) (-1055 |#1|) (-10 -8 (-15 -3282 ((-873) $ (-1 (-873) (-873) (-873)) (-1 (-873) (-873) (-873)) (-575))) (-15 -2331 ((-655 (-2 (|:| |gen| |#1|) (|:| -2665 |#2|))) $)) (-15 -3758 ($ |#1| |#2|)) (-15 -2156 ($ (-655 (-2 (|:| |gen| |#1|) (|:| -2665 |#2|))))) (-15 -2302 (|#2| $ (-575))) (-15 -3643 (|#1| $ (-575))) (-15 -4381 ($ $)) (-15 -1789 ($ $)) (-15 -2415 ((-782) $)) (-15 -3737 ($)) (-15 -2190 ($ $ |#1|)) (-15 -2413 ($ |#1| $)) (-15 -3611 ($ |#1| |#2| $)) (-15 -3611 ($ $ $)) (-15 -3845 ((-112) $ $)) (-15 -2195 ($ (-1 |#2| |#2|) $)) (-15 -1772 ($ (-1 |#1| |#1|) $)))) +((-3197 (((-575) $) 31)) (-2135 (($ |#2| $ (-575)) 27) (($ $ $ (-575)) NIL)) (-4310 (((-655 (-575)) $) 12)) (-2969 (((-112) (-575) $) 18)) (-1514 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-655 $)) NIL))) +(((-661 |#1| |#2|) (-10 -8 (-15 -2135 (|#1| |#1| |#1| (-575))) (-15 -2135 (|#1| |#2| |#1| (-575))) (-15 -1514 (|#1| (-655 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -3197 ((-575) |#1|)) (-15 -4310 ((-655 (-575)) |#1|)) (-15 -2969 ((-112) (-575) |#1|))) (-662 |#2|) (-1235)) (T -661)) +NIL +(-10 -8 (-15 -2135 (|#1| |#1| |#1| (-575))) (-15 -2135 (|#1| |#2| |#1| (-575))) (-15 -1514 (|#1| (-655 |#1|))) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#2|)) (-15 -3197 ((-575) |#1|)) (-15 -4310 ((-655 (-575)) |#1|)) (-15 -2969 ((-112) (-575) |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4161 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) 8)) (-3054 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1748 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) 52)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-2309 (($ (-782) |#1|) 70)) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 44 (|has| (-575) (-861)))) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 45 (|has| (-575) (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-2135 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-4310 (((-655 (-575)) $) 47)) (-2969 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1961 ((|#1| $) 43 (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3954 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) 49)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-3239 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 81 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 72)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-662 |#1|) (-141) (-1235)) (T -662)) +((-2309 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-1514 (*1 *1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235)))) (-1514 (*1 *1 *2 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235)))) (-1514 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-2550 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-3239 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-3239 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 (-575))) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-2135 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-662 *2)) (-4 *2 (-1235)))) (-2135 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-3054 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1252 (-575))) (|has| *1 (-6 -4461)) (-4 *1 (-662 *2)) (-4 *2 (-1235))))) +(-13 (-615 (-575) |t#1|) (-152 |t#1|) (-295 (-1252 (-575)) $) (-10 -8 (-15 -2309 ($ (-782) |t#1|)) (-15 -1514 ($ $ |t#1|)) (-15 -1514 ($ |t#1| $)) (-15 -1514 ($ $ $)) (-15 -1514 ($ (-655 $))) (-15 -2550 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3239 ($ $ (-575))) (-15 -3239 ($ $ (-1252 (-575)))) (-15 -2135 ($ |t#1| $ (-575))) (-15 -2135 ($ $ $ (-575))) (IF (|has| $ (-6 -4461)) (-15 -3054 (|t#1| $ (-1252 (-575)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-1546 (((-3 |#2| "failed") |#3| |#2| (-1194) |#2| (-655 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) "failed") |#3| |#2| (-1194)) 44))) +(((-663 |#1| |#2| |#3|) (-10 -7 (-15 -1546 ((-3 (-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) "failed") |#3| |#2| (-1194))) (-15 -1546 ((-3 |#2| "failed") |#3| |#2| (-1194) |#2| (-655 |#2|)))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)) (-13 (-29 |#1|) (-1220) (-974)) (-667 |#2|)) (T -663)) +((-1546 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 *2)) (-4 *2 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *1 (-663 *6 *2 *3)) (-4 *3 (-667 *2)))) (-1546 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1194)) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-4 *4 (-13 (-29 *6) (-1220) (-974))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1624 (-655 *4)))) (-5 *1 (-663 *6 *4 *3)) (-4 *3 (-667 *4))))) +(-10 -7 (-15 -1546 ((-3 (-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) "failed") |#3| |#2| (-1194))) (-15 -1546 ((-3 |#2| "failed") |#3| |#2| (-1194) |#2| (-655 |#2|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3099 (($ $) NIL (|has| |#1| (-373)))) (-1487 (($ $ $) NIL (|has| |#1| (-373)))) (-3322 (($ $ (-782)) NIL (|has| |#1| (-373)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2077 (($ $ $) NIL (|has| |#1| (-373)))) (-1497 (($ $ $) NIL (|has| |#1| (-373)))) (-3126 (($ $ $) NIL (|has| |#1| (-373)))) (-1363 (($ $ $) NIL (|has| |#1| (-373)))) (-3963 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-3326 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-1345 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#1| (-463)))) (-1542 (((-112) $) NIL)) (-2417 (($ |#1| (-782)) NIL)) (-2262 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-567)))) (-3819 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-567)))) (-4337 (((-782) $) NIL)) (-3220 (($ $ $) NIL (|has| |#1| (-373)))) (-4329 (($ $ $) NIL (|has| |#1| (-373)))) (-2134 (($ $ $) NIL (|has| |#1| (-373)))) (-2239 (($ $ $) NIL (|has| |#1| (-373)))) (-2793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-3707 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-2011 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-2070 ((|#1| $ |#1|) NIL)) (-1761 (($ $ $) NIL (|has| |#1| (-373)))) (-2645 (((-782) $) NIL)) (-2178 ((|#1| $) NIL (|has| |#1| (-463)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) NIL)) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-782)) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1949 ((|#1| $ |#1| |#1|) NIL)) (-3541 (($ $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($) NIL)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-664 |#1|) (-667 |#1|) (-238)) (T -664)) +NIL +(-667 |#1|) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3099 (($ $) NIL (|has| |#1| (-373)))) (-1487 (($ $ $) NIL (|has| |#1| (-373)))) (-3322 (($ $ (-782)) NIL (|has| |#1| (-373)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2077 (($ $ $) NIL (|has| |#1| (-373)))) (-1497 (($ $ $) NIL (|has| |#1| (-373)))) (-3126 (($ $ $) NIL (|has| |#1| (-373)))) (-1363 (($ $ $) NIL (|has| |#1| (-373)))) (-3963 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-3326 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-1345 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#1| (-463)))) (-1542 (((-112) $) NIL)) (-2417 (($ |#1| (-782)) NIL)) (-2262 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-567)))) (-3819 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-567)))) (-4337 (((-782) $) NIL)) (-3220 (($ $ $) NIL (|has| |#1| (-373)))) (-4329 (($ $ $) NIL (|has| |#1| (-373)))) (-2134 (($ $ $) NIL (|has| |#1| (-373)))) (-2239 (($ $ $) NIL (|has| |#1| (-373)))) (-2793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-3707 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-2011 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-2070 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1761 (($ $ $) NIL (|has| |#1| (-373)))) (-2645 (((-782) $) NIL)) (-2178 ((|#1| $) NIL (|has| |#1| (-463)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) NIL)) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-782)) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1949 ((|#1| $ |#1| |#1|) NIL)) (-3541 (($ $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($) NIL)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-665 |#1| |#2|) (-13 (-667 |#1|) (-295 |#2| |#2|)) (-238) (-13 (-659 |#1|) (-10 -8 (-15 -2389 ($ $))))) (T -665)) +NIL +(-13 (-667 |#1|) (-295 |#2| |#2|)) +((-3099 (($ $) 29)) (-3541 (($ $) 27)) (-3430 (($) 13))) +(((-666 |#1| |#2|) (-10 -8 (-15 -3099 (|#1| |#1|)) (-15 -3541 (|#1| |#1|)) (-15 -3430 (|#1|))) (-667 |#2|) (-1066)) (T -666)) +NIL +(-10 -8 (-15 -3099 (|#1| |#1|)) (-15 -3541 (|#1| |#1|)) (-15 -3430 (|#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3099 (($ $) 87 (|has| |#1| (-373)))) (-1487 (($ $ $) 89 (|has| |#1| (-373)))) (-3322 (($ $ (-782)) 88 (|has| |#1| (-373)))) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2077 (($ $ $) 50 (|has| |#1| (-373)))) (-1497 (($ $ $) 51 (|has| |#1| (-373)))) (-3126 (($ $ $) 53 (|has| |#1| (-373)))) (-1363 (($ $ $) 48 (|has| |#1| (-373)))) (-3963 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 47 (|has| |#1| (-373)))) (-3326 (((-3 $ "failed") $ $) 49 (|has| |#1| (-373)))) (-1345 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 52 (|has| |#1| (-373)))) (-2449 (((-3 (-575) "failed") $) 80 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 77 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 74)) (-4399 (((-575) $) 79 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 76 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 75)) (-4406 (($ $) 69)) (-1747 (((-3 $ "failed") $) 37)) (-1824 (($ $) 60 (|has| |#1| (-463)))) (-1542 (((-112) $) 35)) (-2417 (($ |#1| (-782)) 67)) (-2262 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 62 (|has| |#1| (-567)))) (-3819 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63 (|has| |#1| (-567)))) (-4337 (((-782) $) 71)) (-3220 (($ $ $) 57 (|has| |#1| (-373)))) (-4329 (($ $ $) 58 (|has| |#1| (-373)))) (-2134 (($ $ $) 46 (|has| |#1| (-373)))) (-2239 (($ $ $) 55 (|has| |#1| (-373)))) (-2793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 54 (|has| |#1| (-373)))) (-3707 (((-3 $ "failed") $ $) 56 (|has| |#1| (-373)))) (-2011 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 59 (|has| |#1| (-373)))) (-4383 ((|#1| $) 70)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2851 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-567)))) (-2070 ((|#1| $ |#1|) 92)) (-1761 (($ $ $) 86 (|has| |#1| (-373)))) (-2645 (((-782) $) 72)) (-2178 ((|#1| $) 61 (|has| |#1| (-463)))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 78 (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) 73)) (-2501 (((-655 |#1|) $) 66)) (-2012 ((|#1| $ (-782)) 68)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1949 ((|#1| $ |#1| |#1|) 65)) (-3541 (($ $) 90)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($) 91)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-667 |#1|) (-141) (-1066)) (T -667)) +((-3430 (*1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)))) (-3541 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)))) (-1487 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-667 *3)) (-4 *3 (-1066)) (-4 *3 (-373)))) (-3099 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-1761 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) +(-13 (-863 |t#1|) (-295 |t#1| |t#1|) (-10 -8 (-15 -3430 ($)) (-15 -3541 ($ $)) (IF (|has| |t#1| (-373)) (PROGN (-15 -1487 ($ $ $)) (-15 -3322 ($ $ (-782))) (-15 -3099 ($ $)) (-15 -1761 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 #0=(-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-295 |#1| |#1|) . T) ((-422 |#1|) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) |has| |#1| (-174)) ((-728 |#1|) |has| |#1| (-174)) ((-737) . T) ((-1055 #0#) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T) ((-863 |#1|) . T)) +((-2893 (((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|))) 85 (|has| |#1| (-27)))) (-2353 (((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|))) 84 (|has| |#1| (-27))) (((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|)) 19))) +(((-668 |#1| |#2|) (-10 -7 (-15 -2353 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2353 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|)))) (-15 -2893 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|))))) |%noBranch|)) (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))) (-1261 |#1|)) (T -668)) +((-2893 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-664 (-418 *5)))) (-5 *1 (-668 *4 *5)) (-5 *3 (-664 (-418 *5))))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-664 (-418 *5)))) (-5 *1 (-668 *4 *5)) (-5 *3 (-664 (-418 *5))))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-664 (-418 *6)))) (-5 *1 (-668 *5 *6)) (-5 *3 (-664 (-418 *6)))))) +(-10 -7 (-15 -2353 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2353 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|)))) (-15 -2893 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|))))) |%noBranch|)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3099 (($ $) NIL (|has| |#1| (-373)))) (-1487 (($ $ $) 28 (|has| |#1| (-373)))) (-3322 (($ $ (-782)) 31 (|has| |#1| (-373)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2077 (($ $ $) NIL (|has| |#1| (-373)))) (-1497 (($ $ $) NIL (|has| |#1| (-373)))) (-3126 (($ $ $) NIL (|has| |#1| (-373)))) (-1363 (($ $ $) NIL (|has| |#1| (-373)))) (-3963 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-3326 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-1345 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#1| (-463)))) (-1542 (((-112) $) NIL)) (-2417 (($ |#1| (-782)) NIL)) (-2262 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-567)))) (-3819 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-567)))) (-4337 (((-782) $) NIL)) (-3220 (($ $ $) NIL (|has| |#1| (-373)))) (-4329 (($ $ $) NIL (|has| |#1| (-373)))) (-2134 (($ $ $) NIL (|has| |#1| (-373)))) (-2239 (($ $ $) NIL (|has| |#1| (-373)))) (-2793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-3707 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-2011 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-2070 ((|#1| $ |#1|) 24)) (-1761 (($ $ $) 33 (|has| |#1| (-373)))) (-2645 (((-782) $) NIL)) (-2178 ((|#1| $) NIL (|has| |#1| (-463)))) (-2883 (((-873) $) 20) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) NIL)) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-782)) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1949 ((|#1| $ |#1| |#1|) 23)) (-3541 (($ $) NIL)) (-1996 (($) 21 T CONST)) (-2009 (($) 8 T CONST)) (-3430 (($) NIL)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-669 |#1| |#2|) (-667 |#1|) (-1066) (-1 |#1| |#1|)) (T -669)) +NIL +(-667 |#1|) +((-1487 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-3322 ((|#2| |#2| (-782) (-1 |#1| |#1|)) 45)) (-1761 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) +(((-670 |#1| |#2|) (-10 -7 (-15 -1487 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3322 (|#2| |#2| (-782) (-1 |#1| |#1|))) (-15 -1761 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-373) (-667 |#1|)) (T -670)) +((-1761 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-373)) (-5 *1 (-670 *4 *2)) (-4 *2 (-667 *4)))) (-3322 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1 *5 *5)) (-4 *5 (-373)) (-5 *1 (-670 *5 *2)) (-4 *2 (-667 *5)))) (-1487 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-373)) (-5 *1 (-670 *4 *2)) (-4 *2 (-667 *4))))) +(-10 -7 (-15 -1487 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3322 (|#2| |#2| (-782) (-1 |#1| |#1|))) (-15 -1761 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2924 (($ $ $) 9))) +(((-671 |#1|) (-10 -8 (-15 -2924 (|#1| |#1| |#1|))) (-672)) (T -671)) +NIL +(-10 -8 (-15 -2924 (|#1| |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-2881 (($ $) 10)) (-2924 (($ $ $) 8)) (-3914 (((-112) $ $) 6)) (-2911 (($ $ $) 9))) +(((-672) (-141)) (T -672)) +((-2881 (*1 *1 *1) (-4 *1 (-672))) (-2911 (*1 *1 *1 *1) (-4 *1 (-672))) (-2924 (*1 *1 *1 *1) (-4 *1 (-672)))) +(-13 (-102) (-10 -8 (-15 -2881 ($ $)) (-15 -2911 ($ $ $)) (-15 -2924 ($ $ $)))) (((-102) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 15)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-1595 ((|#1| $) 23)) (-1921 (($ $ $) NIL (|has| |#1| (-803)))) (-4137 (($ $ $) NIL (|has| |#1| (-803)))) (-3733 (((-1177) $) 48)) (-3914 (((-1138) $) NIL)) (-1608 ((|#3| $) 24)) (-2884 (((-874) $) 43)) (-3722 (((-112) $ $) 22)) (-1996 (($) 10 T CONST)) (-3983 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3915 (((-112) $ $) 20)) (-3970 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3943 (((-112) $ $) 26 (|has| |#1| (-803)))) (-4039 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4029 (($ $) 17) (($ $ $) NIL)) (-4017 (($ $ $) 29)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-674 |#1| |#2| |#3|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -4039 ($ $ |#3|)) (-15 -4039 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $)))) (-729 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -674)) -((-4039 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-4039 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1608 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))))) -(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -4039 ($ $ |#3|)) (-15 -4039 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $)))) -((-2870 (((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|)) 33))) -(((-675 |#1|) (-10 -7 (-15 -2870 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|)))) (-925)) (T -675)) -((-2870 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *4))) (-5 *3 (-1191 *4)) (-4 *4 (-925)) (-5 *1 (-675 *4))))) -(-10 -7 (-15 -2870 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-3489 (((-656 |#1|) $) 84)) (-3803 (($ $ (-783)) 94)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-3745 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 50)) (-2449 (((-3 (-684 |#1|) "failed") $) NIL)) (-4401 (((-684 |#1|) $) NIL)) (-4407 (($ $) 93)) (-1518 (((-783) $) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-3694 (($ (-684 |#1|) |#2|) 70)) (-3725 (($ $) 89)) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-3757 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 49)) (-2107 (((-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4371 (((-684 |#1|) $) NIL)) (-4383 ((|#2| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3049 (($ $ |#1| $) 32) (($ $ (-656 |#1|) (-656 $)) 34)) (-3813 (((-783) $) 91)) (-2895 (($ $ $) 20) (($ (-684 |#1|) (-684 |#1|)) 79) (($ (-684 |#1|) $) 77) (($ $ (-684 |#1|)) 78)) (-2884 (((-874) $) NIL) (($ |#1|) 76) (((-1301 |#1| |#2|) $) 60) (((-1310 |#1| |#2|) $) 43) (($ (-684 |#1|)) 27)) (-1993 (((-656 |#2|) $) NIL)) (-3245 ((|#2| $ (-684 |#1|)) NIL)) (-1755 ((|#2| (-1310 |#1| |#2|) $) 45)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 23 T CONST)) (-3993 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3793 (((-3 $ "failed") (-1301 |#1| |#2|)) 62)) (-1926 (($ (-684 |#1|)) 14)) (-3915 (((-112) $ $) 46)) (-4039 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4029 (($ $) 68) (($ $ $) NIL)) (-4017 (($ $ $) 31)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-684 |#1|)) NIL))) -(((-676 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -3793 ((-3 $ "failed") (-1301 |#1| |#2|))) (-15 -2895 ($ (-684 |#1|) (-684 |#1|))) (-15 -2895 ($ (-684 |#1|) $)) (-15 -2895 ($ $ (-684 |#1|))))) (-862) (-174)) (T -676)) -((-3793 (*1 *1 *2) (|partial| -12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-676 *3 *4)))) (-2895 (*1 *1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-2895 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-2895 (*1 *1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174))))) -(-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -3793 ((-3 $ "failed") (-1301 |#1| |#2|))) (-15 -2895 ($ (-684 |#1|) (-684 |#1|))) (-15 -2895 ($ (-684 |#1|) $)) (-15 -2895 ($ $ (-684 |#1|))))) -((-1913 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-1891 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1443 (($ (-1 (-112) |#2|) $) 29)) (-2745 (($ $) 65)) (-2257 (($ $) 74)) (-2833 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2309 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-2634 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-2310 (($ (-783) |#2|) 63)) (-2230 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-4214 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2551 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1685 (($ |#2|) 15)) (-3807 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-1932 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1455 (($ $ (-1253 (-576))) 51) (($ $ (-576)) 44)) (-1902 (($ $ $ (-576)) 70)) (-3079 (($ $) 68)) (-3943 (((-112) $ $) 76))) -(((-677 |#1| |#2|) (-10 -8 (-15 -1685 (|#1| |#2|)) (-15 -1455 (|#1| |#1| (-576))) (-15 -1455 (|#1| |#1| (-1253 (-576)))) (-15 -2833 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3807 (|#1| |#2| |#1| (-576))) (-15 -3807 (|#1| |#1| |#1| (-576))) (-15 -2230 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1443 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2833 (|#1| |#2| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -2230 (|#1| |#1| |#1|)) (-15 -4214 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1913 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2634 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2634 ((-576) |#2| |#1|)) (-15 -2634 ((-576) |#2| |#1| (-576))) (-15 -4214 (|#1| |#1| |#1|)) (-15 -1913 ((-112) |#1|)) (-15 -1902 (|#1| |#1| |#1| (-576))) (-15 -2745 (|#1| |#1|)) (-15 -1891 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1891 (|#1| |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1932 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2310 (|#1| (-783) |#2|)) (-15 -2551 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3079 (|#1| |#1|))) (-678 |#2|) (-1236)) (T -677)) -NIL -(-10 -8 (-15 -1685 (|#1| |#2|)) (-15 -1455 (|#1| |#1| (-576))) (-15 -1455 (|#1| |#1| (-1253 (-576)))) (-15 -2833 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3807 (|#1| |#2| |#1| (-576))) (-15 -3807 (|#1| |#1| |#1| (-576))) (-15 -2230 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1443 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2833 (|#1| |#2| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -2230 (|#1| |#1| |#1|)) (-15 -4214 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1913 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2634 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2634 ((-576) |#2| |#1|)) (-15 -2634 ((-576) |#2| |#1| (-576))) (-15 -4214 (|#1| |#1| |#1|)) (-15 -1913 ((-112) |#1|)) (-15 -1902 (|#1| |#1| |#1| (-576))) (-15 -2745 (|#1| |#1|)) (-15 -1891 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1891 (|#1| |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2309 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1932 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2310 (|#1| (-783) |#2|)) (-15 -2551 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3079 (|#1| |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-4183 ((|#1| $) 49)) (-2990 ((|#1| $) 66)) (-3463 (($ $) 68)) (-3336 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-1748 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-1913 (((-112) $) 144 (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-1891 (($ $) 148 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4462)))) (-2032 (($ $) 143 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-2970 (((-112) $ (-783)) 8)) (-3434 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-1772 (($ $ $) 57 (|has| $ (-6 -4462)))) (-1761 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1783 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 119 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-1443 (($ (-1 (-112) |#1|) $) 131)) (-3985 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4461)))) (-2978 ((|#1| $) 67)) (-2473 (($) 7 T CONST)) (-2745 (($ $) 146 (|has| $ (-6 -4462)))) (-4379 (($ $) 136)) (-1976 (($ $) 74) (($ $ (-783)) 72)) (-2257 (($ $) 133 (|has| |#1| (-1118)))) (-1919 (($ $) 101 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2833 (($ |#1| $) 132 (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) 127)) (-3634 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4461))) (($ |#1| $) 102 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2859 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) 89)) (-1811 (((-112) $) 85)) (-2634 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1118))) (((-576) |#1| $) 140 (|has| |#1| (-1118))) (((-576) (-1 (-112) |#1|) $) 139)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) 51)) (-3452 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-2310 (($ (-783) |#1|) 111)) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 97 (|has| (-576) (-862)))) (-1921 (($ $ $) 149 (|has| |#1| (-862)))) (-2230 (($ $ $) 134 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-4214 (($ $ $) 142 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 96 (|has| (-576) (-862)))) (-4137 (($ $ $) 150 (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1685 (($ |#1|) 124)) (-2374 (((-112) $ (-783)) 10)) (-2482 (((-656 |#1|) $) 46)) (-4306 (((-112) $) 50)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3654 ((|#1| $) 71) (($ $ (-783)) 69)) (-3807 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-2134 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3385 (((-656 (-576)) $) 94)) (-3394 (((-112) (-576) $) 93)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1962 ((|#1| $) 77) (($ $ (-783)) 75)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3346 (($ $ |#1|) 98 (|has| $ (-6 -4462)))) (-1821 (((-112) $) 86)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) 92)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1253 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3473 (((-576) $ $) 45)) (-1455 (($ $ (-1253 (-576))) 126) (($ $ (-576)) 125)) (-3240 (($ $ (-1253 (-576))) 116) (($ $ (-576)) 115)) (-4053 (((-112) $) 47)) (-1816 (($ $) 63)) (-1794 (($ $) 60 (|has| $ (-6 -4462)))) (-1826 (((-783) $) 64)) (-1836 (($ $) 65)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1902 (($ $ $ (-576)) 145 (|has| $ (-6 -4462)))) (-3079 (($ $) 13)) (-2616 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 109)) (-1806 (($ $ $) 62) (($ $ |#1|) 61)) (-1514 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) 52)) (-3462 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) 152 (|has| |#1| (-862)))) (-3957 (((-112) $ $) 153 (|has| |#1| (-862)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-3970 (((-112) $ $) 151 (|has| |#1| (-862)))) (-3943 (((-112) $ $) 154 (|has| |#1| (-862)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-678 |#1|) (-141) (-1236)) (T -678)) -((-1685 (*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1236))))) -(-13 (-1167 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -1685 ($ |t#1|)))) -(((-34) . T) ((-102) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1028 |#1|) . T) ((-1118) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-1167 |#1|) . T) ((-1236) . T) ((-1274 |#1|) . T)) -((-1525 (((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|))))) (-656 (-656 |#1|)) (-656 (-1286 |#1|))) 22) (((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|))))) (-701 |#1|) (-656 (-1286 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|)))) (-656 (-656 |#1|)) (-1286 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|)) 14)) (-4423 (((-783) (-701 |#1|) (-1286 |#1|)) 30)) (-3419 (((-3 (-1286 |#1|) "failed") (-701 |#1|) (-1286 |#1|)) 24)) (-2882 (((-112) (-701 |#1|) (-1286 |#1|)) 27))) -(((-679 |#1|) (-10 -7 (-15 -1525 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|))) (-15 -1525 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|)))) (-656 (-656 |#1|)) (-1286 |#1|))) (-15 -1525 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|))))) (-701 |#1|) (-656 (-1286 |#1|)))) (-15 -1525 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|))))) (-656 (-656 |#1|)) (-656 (-1286 |#1|)))) (-15 -3419 ((-3 (-1286 |#1|) "failed") (-701 |#1|) (-1286 |#1|))) (-15 -2882 ((-112) (-701 |#1|) (-1286 |#1|))) (-15 -4423 ((-783) (-701 |#1|) (-1286 |#1|)))) (-374)) (T -679)) -((-4423 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-679 *5)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-679 *5)))) (-3419 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1286 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *1 (-679 *4)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -1898 (-656 (-1286 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5))))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -1898 (-656 (-1286 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5))))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -1898 (-656 (-1286 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1286 *5)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -1898 (-656 (-1286 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1286 *5))))) -(-10 -7 (-15 -1525 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|))) (-15 -1525 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|)))) (-656 (-656 |#1|)) (-1286 |#1|))) (-15 -1525 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|))))) (-701 |#1|) (-656 (-1286 |#1|)))) (-15 -1525 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|))))) (-656 (-656 |#1|)) (-656 (-1286 |#1|)))) (-15 -3419 ((-3 (-1286 |#1|) "failed") (-701 |#1|) (-1286 |#1|))) (-15 -2882 ((-112) (-701 |#1|) (-1286 |#1|))) (-15 -4423 ((-783) (-701 |#1|) (-1286 |#1|)))) -((-1525 (((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1898 (-656 |#3|)))) |#4| (-656 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1898 (-656 |#3|))) |#4| |#3|) 60)) (-4423 (((-783) |#4| |#3|) 18)) (-3419 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2882 (((-112) |#4| |#3|) 14))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1525 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1898 (-656 |#3|))) |#4| |#3|)) (-15 -1525 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1898 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -3419 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2882 ((-112) |#4| |#3|)) (-15 -4423 ((-783) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4462))) (-13 (-384 |#1|) (-10 -7 (-6 -4462))) (-699 |#1| |#2| |#3|)) (T -680)) -((-4423 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-783)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-2882 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-112)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-3419 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4462)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))) (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) (-1525 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-656 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1898 (-656 *7))))) (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) (-4 *3 (-699 *5 *6 *7)))) (-1525 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(-10 -7 (-15 -1525 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1898 (-656 |#3|))) |#4| |#3|)) (-15 -1525 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1898 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -3419 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2882 ((-112) |#4| |#3|)) (-15 -4423 ((-783) |#4| |#3|))) -((-2893 (((-2 (|:| |particular| (-3 (-1286 (-419 |#4|)) "failed")) (|:| -1898 (-656 (-1286 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)) 51))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2893 ((-2 (|:| |particular| (-3 (-1286 (-419 |#4|)) "failed")) (|:| -1898 (-656 (-1286 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) (-568) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -681)) -((-2893 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 (-419 *8)) "failed")) (|:| -1898 (-656 (-1286 (-419 *8)))))) (-5 *1 (-681 *5 *6 *7 *8))))) -(-10 -7 (-15 -2893 ((-2 (|:| |particular| (-3 (-1286 (-419 |#4|)) "failed")) (|:| -1898 (-656 (-1286 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4246 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-1448 ((|#2| $) NIL)) (-1825 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3620 (((-1286 (-701 |#2|))) NIL) (((-1286 (-701 |#2|)) (-1286 $)) NIL)) (-1847 (((-112) $) NIL)) (-1879 (((-1286 $)) 42)) (-2970 (((-112) $ (-783)) NIL)) (-3353 (($ |#2|) NIL)) (-2473 (($) NIL T CONST)) (-1735 (($ $) NIL (|has| |#2| (-317)))) (-1759 (((-246 |#1| |#2|) $ (-576)) NIL)) (-3311 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-1588 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-4424 (((-701 |#2|)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1856 ((|#2| $) NIL)) (-4402 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1286 $)) NIL)) (-1388 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-3247 (((-1191 (-968 |#2|))) NIL (|has| |#2| (-374)))) (-1420 (($ $ (-937)) NIL)) (-1832 ((|#2| $) NIL)) (-1610 (((-1191 |#2|) $) NIL (|has| |#2| (-568)))) (-1320 ((|#2|) NIL) ((|#2| (-1286 $)) NIL)) (-1812 (((-1191 |#2|) $) NIL)) (-1744 (((-112)) NIL)) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) ((|#2| $) NIL)) (-1339 (($ (-1286 |#2|)) NIL) (($ (-1286 |#2|) (-1286 $)) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-4423 (((-783) $) NIL (|has| |#2| (-568))) (((-937)) 43)) (-2789 ((|#2| $ (-576) (-576)) NIL)) (-1711 (((-112)) NIL)) (-3593 (($ $ (-937)) NIL)) (-4001 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-1439 (((-112) $) NIL)) (-1724 (((-783) $) NIL (|has| |#2| (-568)))) (-1714 (((-656 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-4244 (((-783) $) NIL)) (-1665 (((-112)) NIL)) (-4256 (((-783) $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3304 ((|#2| $) NIL (|has| |#2| (-6 (-4463 "*"))))) (-1805 (((-576) $) NIL)) (-1782 (((-576) $) NIL)) (-1496 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1793 (((-576) $) NIL)) (-1771 (((-576) $) NIL)) (-4317 (($ (-656 (-656 |#2|))) NIL)) (-2848 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3667 (((-656 (-656 |#2|)) $) NIL)) (-1643 (((-112)) NIL)) (-1687 (((-112)) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3320 (((-3 (-2 (|:| |particular| $) (|:| -1898 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-1597 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-4433 (((-701 |#2|)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1868 ((|#2| $) NIL)) (-4413 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1286 $)) NIL)) (-1399 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-3291 (((-1191 (-968 |#2|))) NIL (|has| |#2| (-374)))) (-1410 (($ $ (-937)) NIL)) (-1844 ((|#2| $) NIL)) (-1623 (((-1191 |#2|) $) NIL (|has| |#2| (-568)))) (-1329 ((|#2|) NIL) ((|#2| (-1286 $)) NIL)) (-1822 (((-1191 |#2|) $) NIL)) (-1756 (((-112)) NIL)) (-3733 (((-1177) $) NIL)) (-1655 (((-112)) NIL)) (-1675 (((-112)) NIL)) (-1700 (((-112)) NIL)) (-3633 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-3914 (((-1138) $) NIL)) (-1732 (((-112)) NIL)) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-2476 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-2390 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-3323 ((|#2| $) NIL)) (-3344 (($ (-656 |#2|)) NIL)) (-1835 (((-112) $) NIL)) (-3333 (((-246 |#1| |#2|) $) NIL)) (-3314 ((|#2| $) NIL (|has| |#2| (-6 (-4463 "*"))))) (-3926 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3079 (($ $) NIL)) (-3629 (((-701 |#2|) (-1286 $)) NIL) (((-1286 |#2|) $) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $ (-1286 $)) 31)) (-2616 (($ (-1286 |#2|)) NIL) (((-1286 |#2|) $) NIL)) (-3158 (((-656 (-968 |#2|))) NIL) (((-656 (-968 |#2|)) (-1286 $)) NIL)) (-2920 (($ $ $) NIL)) (-1801 (((-112)) NIL)) (-1747 (((-246 |#1| |#2|) $ (-576)) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1056 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) 41)) (-1635 (((-656 (-1286 |#2|))) NIL (|has| |#2| (-568)))) (-2931 (($ $ $ $) NIL)) (-1779 (((-112)) NIL)) (-1950 (($ (-701 |#2|) $) NIL)) (-2492 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1815 (((-112) $) NIL)) (-2908 (($ $ $) NIL)) (-1790 (((-112)) NIL)) (-1768 (((-112)) NIL)) (-1721 (((-112)) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-682 |#1| |#2|) (-13 (-1141 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) (-937) (-174)) (T -682)) -NIL -(-13 (-1141 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3780 (((-656 (-1153)) $) 10)) (-2884 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-683) (-13 (-1101) (-10 -8 (-15 -3780 ((-656 (-1153)) $))))) (T -683)) -((-3780 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-683))))) -(-13 (-1101) (-10 -8 (-15 -3780 ((-656 (-1153)) $)))) -((-2862 (((-112) $ $) NIL)) (-3489 (((-656 |#1|) $) NIL)) (-2436 (($ $) 62)) (-3982 (((-112) $) NIL)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-2925 (((-3 $ "failed") (-831 |#1|)) 27)) (-1657 (((-112) (-831 |#1|)) 17)) (-1646 (($ (-831 |#1|)) 28)) (-2394 (((-112) $ $) 36)) (-1840 (((-937) $) 43)) (-2419 (($ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2354 (((-656 $) (-831 |#1|)) 19)) (-2884 (((-874) $) 51) (($ |#1|) 40) (((-831 |#1|) $) 47) (((-689 |#1|) $) 52)) (-3722 (((-112) $ $) NIL)) (-2912 (((-59 (-656 $)) (-656 |#1|) (-937)) 67)) (-2902 (((-656 $) (-656 |#1|) (-937)) 70)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 63)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 46))) -(((-684 |#1|) (-13 (-862) (-1056 |#1|) (-10 -8 (-15 -3982 ((-112) $)) (-15 -2419 ($ $)) (-15 -2436 ($ $)) (-15 -1840 ((-937) $)) (-15 -2394 ((-112) $ $)) (-15 -2884 ((-831 |#1|) $)) (-15 -2884 ((-689 |#1|) $)) (-15 -2354 ((-656 $) (-831 |#1|))) (-15 -1657 ((-112) (-831 |#1|))) (-15 -1646 ($ (-831 |#1|))) (-15 -2925 ((-3 $ "failed") (-831 |#1|))) (-15 -3489 ((-656 |#1|) $)) (-15 -2912 ((-59 (-656 $)) (-656 |#1|) (-937))) (-15 -2902 ((-656 $) (-656 |#1|) (-937))))) (-862)) (T -684)) -((-3982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2419 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) (-2436 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2394 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-684 *4))) (-5 *1 (-684 *4)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-1646 (*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))) (-2925 (*1 *1 *2) (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-937)) (-4 *5 (-862)) (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-937)) (-4 *5 (-862)) (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) -(-13 (-862) (-1056 |#1|) (-10 -8 (-15 -3982 ((-112) $)) (-15 -2419 ($ $)) (-15 -2436 ($ $)) (-15 -1840 ((-937) $)) (-15 -2394 ((-112) $ $)) (-15 -2884 ((-831 |#1|) $)) (-15 -2884 ((-689 |#1|) $)) (-15 -2354 ((-656 $) (-831 |#1|))) (-15 -1657 ((-112) (-831 |#1|))) (-15 -1646 ($ (-831 |#1|))) (-15 -2925 ((-3 $ "failed") (-831 |#1|))) (-15 -3489 ((-656 |#1|) $)) (-15 -2912 ((-59 (-656 $)) (-656 |#1|) (-937))) (-15 -2902 ((-656 $) (-656 |#1|) (-937))))) -((-4183 ((|#2| $) 100)) (-3463 (($ $) 121)) (-2970 (((-112) $ (-783)) 35)) (-1976 (($ $) 109) (($ $ (-783)) 112)) (-1811 (((-112) $) 122)) (-3484 (((-656 $) $) 96)) (-3452 (((-112) $ $) 92)) (-2408 (((-112) $ (-783)) 33)) (-3356 (((-576) $) 66)) (-3365 (((-576) $) 65)) (-2374 (((-112) $ (-783)) 31)) (-4306 (((-112) $) 98)) (-3654 ((|#2| $) 113) (($ $ (-783)) 117)) (-2134 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-3385 (((-656 (-576)) $) 64)) (-3394 (((-112) (-576) $) 59)) (-1962 ((|#2| $) NIL) (($ $ (-783)) 108)) (-2904 (($ $ (-576)) 125)) (-1821 (((-112) $) 124)) (-2476 (((-112) (-1 (-112) |#2|) $) 42)) (-3403 (((-656 |#2|) $) 46)) (-2071 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1253 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-3473 (((-576) $ $) 91)) (-3240 (($ $ (-1253 (-576))) 78) (($ $ (-576)) 72)) (-4053 (((-112) $) 87)) (-1816 (($ $) 105)) (-1826 (((-783) $) 104)) (-1836 (($ $) 103)) (-2895 (($ (-656 |#2|)) 53)) (-1346 (($ $) 126)) (-4255 (((-656 $) $) 90)) (-3462 (((-112) $ $) 89)) (-2492 (((-112) (-1 (-112) |#2|) $) 41)) (-3915 (((-112) $ $) 20)) (-2872 (((-783) $) 39))) -(((-685 |#1| |#2|) (-10 -8 (-15 -1346 (|#1| |#1|)) (-15 -2904 (|#1| |#1| (-576))) (-15 -1811 ((-112) |#1|)) (-15 -1821 ((-112) |#1|)) (-15 -2071 (|#2| |#1| (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576))) (-15 -3403 ((-656 |#2|) |#1|)) (-15 -3394 ((-112) (-576) |#1|)) (-15 -3385 ((-656 (-576)) |#1|)) (-15 -3365 ((-576) |#1|)) (-15 -3356 ((-576) |#1|)) (-15 -2895 (|#1| (-656 |#2|))) (-15 -2071 (|#1| |#1| (-1253 (-576)))) (-15 -3240 (|#1| |#1| (-576))) (-15 -3240 (|#1| |#1| (-1253 (-576)))) (-15 -2134 (|#1| |#2| |#1| (-576))) (-15 -2134 (|#1| |#1| |#1| (-576))) (-15 -1816 (|#1| |#1|)) (-15 -1826 ((-783) |#1|)) (-15 -1836 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3654 (|#1| |#1| (-783))) (-15 -2071 (|#2| |#1| "last")) (-15 -3654 (|#2| |#1|)) (-15 -1976 (|#1| |#1| (-783))) (-15 -2071 (|#1| |#1| "rest")) (-15 -1976 (|#1| |#1|)) (-15 -1962 (|#1| |#1| (-783))) (-15 -2071 (|#2| |#1| "first")) (-15 -1962 (|#2| |#1|)) (-15 -3452 ((-112) |#1| |#1|)) (-15 -3462 ((-112) |#1| |#1|)) (-15 -3473 ((-576) |#1| |#1|)) (-15 -4053 ((-112) |#1|)) (-15 -2071 (|#2| |#1| "value")) (-15 -4183 (|#2| |#1|)) (-15 -4306 ((-112) |#1|)) (-15 -3484 ((-656 |#1|) |#1|)) (-15 -4255 ((-656 |#1|) |#1|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -2476 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2872 ((-783) |#1|)) (-15 -2970 ((-112) |#1| (-783))) (-15 -2408 ((-112) |#1| (-783))) (-15 -2374 ((-112) |#1| (-783)))) (-686 |#2|) (-1236)) (T -685)) -NIL -(-10 -8 (-15 -1346 (|#1| |#1|)) (-15 -2904 (|#1| |#1| (-576))) (-15 -1811 ((-112) |#1|)) (-15 -1821 ((-112) |#1|)) (-15 -2071 (|#2| |#1| (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576))) (-15 -3403 ((-656 |#2|) |#1|)) (-15 -3394 ((-112) (-576) |#1|)) (-15 -3385 ((-656 (-576)) |#1|)) (-15 -3365 ((-576) |#1|)) (-15 -3356 ((-576) |#1|)) (-15 -2895 (|#1| (-656 |#2|))) (-15 -2071 (|#1| |#1| (-1253 (-576)))) (-15 -3240 (|#1| |#1| (-576))) (-15 -3240 (|#1| |#1| (-1253 (-576)))) (-15 -2134 (|#1| |#2| |#1| (-576))) (-15 -2134 (|#1| |#1| |#1| (-576))) (-15 -1816 (|#1| |#1|)) (-15 -1826 ((-783) |#1|)) (-15 -1836 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3654 (|#1| |#1| (-783))) (-15 -2071 (|#2| |#1| "last")) (-15 -3654 (|#2| |#1|)) (-15 -1976 (|#1| |#1| (-783))) (-15 -2071 (|#1| |#1| "rest")) (-15 -1976 (|#1| |#1|)) (-15 -1962 (|#1| |#1| (-783))) (-15 -2071 (|#2| |#1| "first")) (-15 -1962 (|#2| |#1|)) (-15 -3452 ((-112) |#1| |#1|)) (-15 -3462 ((-112) |#1| |#1|)) (-15 -3473 ((-576) |#1| |#1|)) (-15 -4053 ((-112) |#1|)) (-15 -2071 (|#2| |#1| "value")) (-15 -4183 (|#2| |#1|)) (-15 -4306 ((-112) |#1|)) (-15 -3484 ((-656 |#1|) |#1|)) (-15 -4255 ((-656 |#1|) |#1|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -2476 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2872 ((-783) |#1|)) (-15 -2970 ((-112) |#1| (-783))) (-15 -2408 ((-112) |#1| (-783))) (-15 -2374 ((-112) |#1| (-783)))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-4183 ((|#1| $) 49)) (-2990 ((|#1| $) 66)) (-3463 (($ $) 68)) (-3336 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-1748 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) 8)) (-3434 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-1772 (($ $ $) 57 (|has| $ (-6 -4462)))) (-1761 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1783 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 119 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) 104)) (-2978 ((|#1| $) 67)) (-2473 (($) 7 T CONST)) (-1677 (($ $) 126)) (-1976 (($ $) 74) (($ $ (-783)) 72)) (-1919 (($ $) 101 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#1| $) 102 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 105)) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2859 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) 89)) (-1811 (((-112) $) 85)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-1667 (((-783) $) 125)) (-3484 (((-656 $) $) 51)) (-3452 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-2310 (($ (-783) |#1|) 111)) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 97 (|has| (-576) (-862)))) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 96 (|has| (-576) (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2374 (((-112) $ (-783)) 10)) (-2482 (((-656 |#1|) $) 46)) (-4306 (((-112) $) 50)) (-1702 (($ $) 128)) (-1713 (((-112) $) 129)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3654 ((|#1| $) 71) (($ $ (-783)) 69)) (-2134 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3385 (((-656 (-576)) $) 94)) (-3394 (((-112) (-576) $) 93)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1689 ((|#1| $) 127)) (-1962 ((|#1| $) 77) (($ $ (-783)) 75)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3346 (($ $ |#1|) 98 (|has| $ (-6 -4462)))) (-2904 (($ $ (-576)) 124)) (-1821 (((-112) $) 86)) (-1723 (((-112) $) 130)) (-1734 (((-112) $) 131)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) 92)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1253 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3473 (((-576) $ $) 45)) (-3240 (($ $ (-1253 (-576))) 116) (($ $ (-576)) 115)) (-4053 (((-112) $) 47)) (-1816 (($ $) 63)) (-1794 (($ $) 60 (|has| $ (-6 -4462)))) (-1826 (((-783) $) 64)) (-1836 (($ $) 65)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 109)) (-1806 (($ $ $) 62 (|has| $ (-6 -4462))) (($ $ |#1|) 61 (|has| $ (-6 -4462)))) (-1514 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-1346 (($ $) 123)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) 52)) (-3462 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-686 |#1|) (-141) (-1236)) (T -686)) -((-3634 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) (-3985 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) (-1734 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-1713 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-1702 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))) (-1677 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))) (-1667 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-2904 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) (-1346 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236))))) -(-13 (-1167 |t#1|) (-10 -8 (-15 -3634 ($ (-1 (-112) |t#1|) $)) (-15 -3985 ($ (-1 (-112) |t#1|) $)) (-15 -1734 ((-112) $)) (-15 -1723 ((-112) $)) (-15 -1713 ((-112) $)) (-15 -1702 ($ $)) (-15 -1689 (|t#1| $)) (-15 -1677 ($ $)) (-15 -1667 ((-783) $)) (-15 -2904 ($ $ (-576))) (-15 -1346 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1167 |#1|) . T) ((-1236) . T) ((-1274 |#1|) . T)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1792 (($ (-783) (-783) (-783)) 53 (|has| |#1| (-1067)))) (-2970 (((-112) $ (-783)) NIL)) (-1770 ((|#1| $ (-783) (-783) (-783) |#1|) 47)) (-2473 (($) NIL T CONST)) (-3612 (($ $ $) 57 (|has| |#1| (-1067)))) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1746 (((-1286 (-783)) $) 12)) (-1758 (($ (-1195) $ $) 34)) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1781 (($ (-783)) 55 (|has| |#1| (-1067)))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-783) (-783) (-783)) 44)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-2895 (($ (-656 (-656 (-656 |#1|)))) 67)) (-2884 (($ (-974 (-974 (-974 |#1|)))) 23) (((-974 (-974 (-974 |#1|))) $) 19) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-687 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1067)) (PROGN (-15 -1792 ($ (-783) (-783) (-783))) (-15 -1781 ($ (-783))) (-15 -3612 ($ $ $))) |%noBranch|) (-15 -2895 ($ (-656 (-656 (-656 |#1|))))) (-15 -2071 (|#1| $ (-783) (-783) (-783))) (-15 -1770 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -2884 ($ (-974 (-974 (-974 |#1|))))) (-15 -2884 ((-974 (-974 (-974 |#1|))) $)) (-15 -1758 ($ (-1195) $ $)) (-15 -1746 ((-1286 (-783)) $)))) (-1118)) (T -687)) -((-1792 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1067)) (-4 *3 (-1118)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1067)) (-4 *3 (-1118)))) (-3612 (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1067)) (-4 *2 (-1118)))) (-2895 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1118)) (-5 *1 (-687 *3)))) (-2071 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1118)))) (-1770 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1118)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-974 (-974 (-974 *3)))) (-4 *3 (-1118)) (-5 *1 (-687 *3)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-974 (-974 (-974 *3)))) (-5 *1 (-687 *3)) (-4 *3 (-1118)))) (-1758 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-687 *3)) (-4 *3 (-1118)))) (-1746 (*1 *2 *1) (-12 (-5 *2 (-1286 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1118))))) -(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1067)) (PROGN (-15 -1792 ($ (-783) (-783) (-783))) (-15 -1781 ($ (-783))) (-15 -3612 ($ $ $))) |%noBranch|) (-15 -2895 ($ (-656 (-656 (-656 |#1|))))) (-15 -2071 (|#1| $ (-783) (-783) (-783))) (-15 -1770 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -2884 ($ (-974 (-974 (-974 |#1|))))) (-15 -2884 ((-974 (-974 (-974 |#1|))) $)) (-15 -1758 ($ (-1195) $ $)) (-15 -1746 ((-1286 (-783)) $)))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-4427 (((-495) $) 10)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-1789 (((-1153) $) 12)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-688) (-13 (-1101) (-10 -8 (-15 -4427 ((-495) $)) (-15 -1789 ((-1153) $))))) (T -688)) -((-4427 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-688))))) -(-13 (-1101) (-10 -8 (-15 -4427 ((-495) $)) (-15 -1789 ((-1153) $)))) -((-2862 (((-112) $ $) NIL)) (-3489 (((-656 |#1|) $) 15)) (-2436 (($ $) 19)) (-3982 (((-112) $) 20)) (-2449 (((-3 |#1| "failed") $) 23)) (-4401 ((|#1| $) 21)) (-1976 (($ $) 37)) (-3725 (($ $) 25)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-2394 (((-112) $ $) 47)) (-1840 (((-937) $) 40)) (-2419 (($ $) 18)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 ((|#1| $) 36)) (-2884 (((-874) $) 32) (($ |#1|) 24) (((-831 |#1|) $) 28)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 13)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-689 |#1|) (-13 (-862) (-1056 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2884 ((-831 |#1|) $)) (-15 -1962 (|#1| $)) (-15 -2419 ($ $)) (-15 -1840 ((-937) $)) (-15 -2394 ((-112) $ $)) (-15 -3725 ($ $)) (-15 -1976 ($ $)) (-15 -3982 ((-112) $)) (-15 -2436 ($ $)) (-15 -3489 ((-656 |#1|) $)))) (-862)) (T -689)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-1962 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2419 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-2394 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-3725 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-1976 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-2436 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862))))) -(-13 (-862) (-1056 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2884 ((-831 |#1|) $)) (-15 -1962 (|#1| $)) (-15 -2419 ($ $)) (-15 -1840 ((-937) $)) (-15 -2394 ((-112) $ $)) (-15 -3725 ($ $)) (-15 -1976 ($ $)) (-15 -3982 ((-112) $)) (-15 -2436 ($ $)) (-15 -3489 ((-656 |#1|) $)))) -((-1834 ((|#1| (-1 |#1| (-783) |#1|) (-783) |#1|) 11)) (-2587 ((|#1| (-1 |#1| |#1|) (-783) |#1|) 9))) -(((-690 |#1|) (-10 -7 (-15 -2587 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -1834 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) (-1118)) (T -690)) -((-1834 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1118)) (-5 *1 (-690 *2)))) (-2587 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1118)) (-5 *1 (-690 *2))))) -(-10 -7 (-15 -2587 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -1834 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) -((-1583 ((|#2| |#1| |#2|) 9)) (-1569 ((|#1| |#1| |#2|) 8))) -(((-691 |#1| |#2|) (-10 -7 (-15 -1569 (|#1| |#1| |#2|)) (-15 -1583 (|#2| |#1| |#2|))) (-1118) (-1118)) (T -691)) -((-1583 (*1 *2 *3 *2) (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))) (-1569 (*1 *2 *2 *3) (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))) -(-10 -7 (-15 -1569 (|#1| |#1| |#2|)) (-15 -1583 (|#2| |#1| |#2|))) -((-2001 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -2001 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1118) (-1118) (-1118)) (T -692)) -((-2001 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)) (-5 *1 (-692 *5 *6 *2))))) -(-10 -7 (-15 -2001 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2862 (((-112) $ $) NIL)) (-2940 (((-1235) $) 21)) (-2891 (((-656 (-1235)) $) 19)) (-1804 (($ (-656 (-1235)) (-1235)) 14)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 29) (($ (-1200)) NIL) (((-1200) $) NIL) (((-1235) $) 22) (($ (-1136)) 10)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-693) (-13 (-1101) (-625 (-1235)) (-10 -8 (-15 -2884 ($ (-1136))) (-15 -1804 ($ (-656 (-1235)) (-1235))) (-15 -2891 ((-656 (-1235)) $)) (-15 -2940 ((-1235) $))))) (T -693)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-693)))) (-1804 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1235))) (-5 *3 (-1235)) (-5 *1 (-693)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-693)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-693))))) -(-13 (-1101) (-625 (-1235)) (-10 -8 (-15 -2884 ($ (-1136))) (-15 -1804 ($ (-656 (-1235)) (-1235))) (-15 -2891 ((-656 (-1235)) $)) (-15 -2940 ((-1235) $)))) -((-1834 (((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)) 26)) (-1814 (((-1 |#1|) |#1|) 8)) (-2058 ((|#1| |#1|) 19)) (-1824 (((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2884 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-783)) 23))) -(((-694 |#1|) (-10 -7 (-15 -1814 ((-1 |#1|) |#1|)) (-15 -2884 ((-1 |#1|) |#1|)) (-15 -1824 (|#1| (-1 |#1| |#1|))) (-15 -1824 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -2058 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -1834 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) (-1118)) (T -694)) -((-1834 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1118)) (-5 *1 (-694 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1118)) (-5 *1 (-694 *4)))) (-2058 (*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1118)))) (-1824 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1118)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1118)))) (-2884 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1118)))) (-1814 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1118))))) -(-10 -7 (-15 -1814 ((-1 |#1|) |#1|)) (-15 -2884 ((-1 |#1|) |#1|)) (-15 -1824 (|#1| (-1 |#1| |#1|))) (-15 -1824 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -2058 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -1834 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) -((-1870 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1857 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3739 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1846 (((-1 |#2| |#1|) |#2|) 11))) -(((-695 |#1| |#2|) (-10 -7 (-15 -1846 ((-1 |#2| |#1|) |#2|)) (-15 -1857 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3739 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1870 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1118) (-1118)) (T -695)) -((-1870 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1118)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)) (-4 *4 (-1118)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))) (-1846 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1118)) (-4 *3 (-1118))))) -(-10 -7 (-15 -1846 ((-1 |#2| |#1|) |#2|)) (-15 -1857 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3739 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1870 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-1928 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1881 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1893 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1904 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1915 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -1881 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1893 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1904 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1915 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1928 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1118) (-1118) (-1118)) (T -696)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-1 *7 *5)) (-5 *1 (-696 *5 *6 *7)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1118)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1118)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1118)) (-4 *4 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) -(-10 -7 (-15 -1881 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1893 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1904 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1915 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1928 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2309 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2551 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-697 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2551 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2551 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2309 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1067) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1067) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -697)) -((-2309 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1067)) (-4 *2 (-1067)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) (-2551 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1067)) (-4 *8 (-1067)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1067)) (-4 *8 (-1067)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))) -(-10 -7 (-15 -2551 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2551 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2309 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2881 (($ (-783) (-783)) 42)) (-1991 (($ $ $) 71)) (-2899 (($ |#3|) 66) (($ $) 67)) (-1825 (((-112) $) 36)) (-1979 (($ $ (-576) (-576)) 82)) (-1965 (($ $ (-576) (-576)) 83)) (-1953 (($ $ (-576) (-576) (-576) (-576)) 88)) (-2018 (($ $) 69)) (-1847 (((-112) $) 15)) (-1940 (($ $ (-576) (-576) $) 89)) (-3055 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) 87)) (-3353 (($ (-783) |#2|) 53)) (-4317 (($ (-656 (-656 |#2|))) 51)) (-3667 (((-656 (-656 |#2|)) $) 78)) (-2005 (($ $ $) 70)) (-2852 (((-3 $ "failed") $ |#2|) 120)) (-2071 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-3344 (($ (-656 |#2|)) 54) (($ (-656 $)) 56)) (-1835 (((-112) $) 28)) (-2884 (($ |#4|) 61) (((-874) $) NIL)) (-1815 (((-112) $) 38)) (-4039 (($ $ |#2|) 122)) (-4029 (($ $ $) 93) (($ $) 96)) (-4017 (($ $ $) 91)) (** (($ $ (-783)) 109) (($ $ (-576)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-576) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) -(((-698 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2884 ((-874) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4039 (|#1| |#1| |#2|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -1940 (|#1| |#1| (-576) (-576) |#1|)) (-15 -1953 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -1965 (|#1| |#1| (-576) (-576))) (-15 -1979 (|#1| |#1| (-576) (-576))) (-15 -3055 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2071 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -3667 ((-656 (-656 |#2|)) |#1|)) (-15 -1991 (|#1| |#1| |#1|)) (-15 -2005 (|#1| |#1| |#1|)) (-15 -2018 (|#1| |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -2899 (|#1| |#3|)) (-15 -2884 (|#1| |#4|)) (-15 -3344 (|#1| (-656 |#1|))) (-15 -3344 (|#1| (-656 |#2|))) (-15 -3353 (|#1| (-783) |#2|)) (-15 -4317 (|#1| (-656 (-656 |#2|)))) (-15 -2881 (|#1| (-783) (-783))) (-15 -1815 ((-112) |#1|)) (-15 -1825 ((-112) |#1|)) (-15 -1835 ((-112) |#1|)) (-15 -1847 ((-112) |#1|)) (-15 -3055 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576) (-576)))) (-699 |#2| |#3| |#4|) (-1067) (-384 |#2|) (-384 |#2|)) (T -698)) -NIL -(-10 -8 (-15 -2884 ((-874) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4039 (|#1| |#1| |#2|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -1940 (|#1| |#1| (-576) (-576) |#1|)) (-15 -1953 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -1965 (|#1| |#1| (-576) (-576))) (-15 -1979 (|#1| |#1| (-576) (-576))) (-15 -3055 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2071 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -3667 ((-656 (-656 |#2|)) |#1|)) (-15 -1991 (|#1| |#1| |#1|)) (-15 -2005 (|#1| |#1| |#1|)) (-15 -2018 (|#1| |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -2899 (|#1| |#3|)) (-15 -2884 (|#1| |#4|)) (-15 -3344 (|#1| (-656 |#1|))) (-15 -3344 (|#1| (-656 |#2|))) (-15 -3353 (|#1| (-783) |#2|)) (-15 -4317 (|#1| (-656 (-656 |#2|)))) (-15 -2881 (|#1| (-783) (-783))) (-15 -1815 ((-112) |#1|)) (-15 -1825 ((-112) |#1|)) (-15 -1835 ((-112) |#1|)) (-15 -1847 ((-112) |#1|)) (-15 -3055 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576) (-576)))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2881 (($ (-783) (-783)) 98)) (-1991 (($ $ $) 88)) (-2899 (($ |#2|) 92) (($ $) 91)) (-1825 (((-112) $) 100)) (-1979 (($ $ (-576) (-576)) 84)) (-1965 (($ $ (-576) (-576)) 83)) (-1953 (($ $ (-576) (-576) (-576) (-576)) 82)) (-2018 (($ $) 90)) (-1847 (((-112) $) 102)) (-2970 (((-112) $ (-783)) 8)) (-1940 (($ $ (-576) (-576) $) 81)) (-3055 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-656 (-576)) (-656 (-576)) $) 85)) (-1552 (($ $ (-576) |#2|) 43)) (-3501 (($ $ (-576) |#3|) 42)) (-3353 (($ (-783) |#1|) 96)) (-2473 (($) 7 T CONST)) (-1735 (($ $) 68 (|has| |#1| (-317)))) (-1759 ((|#2| $ (-576)) 47)) (-4423 (((-783) $) 67 (|has| |#1| (-568)))) (-2859 ((|#1| $ (-576) (-576) |#1|) 44)) (-2789 ((|#1| $ (-576) (-576)) 49)) (-4001 (((-656 |#1|) $) 31)) (-1724 (((-783) $) 66 (|has| |#1| (-568)))) (-1714 (((-656 |#3|) $) 65 (|has| |#1| (-568)))) (-4244 (((-783) $) 52)) (-2310 (($ (-783) (-783) |#1|) 58)) (-4256 (((-783) $) 51)) (-2408 (((-112) $ (-783)) 9)) (-3304 ((|#1| $) 63 (|has| |#1| (-6 (-4463 "*"))))) (-1805 (((-576) $) 56)) (-1782 (((-576) $) 54)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1793 (((-576) $) 55)) (-1771 (((-576) $) 53)) (-4317 (($ (-656 (-656 |#1|))) 97)) (-2848 (($ (-1 |#1| |#1|) $) 35)) (-2551 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3667 (((-656 (-656 |#1|)) $) 87)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3633 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-2005 (($ $ $) 89)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-3346 (($ $ |#1|) 57)) (-2852 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-3344 (($ (-656 |#1|)) 95) (($ (-656 $)) 94)) (-1835 (((-112) $) 101)) (-3314 ((|#1| $) 64 (|has| |#1| (-6 (-4463 "*"))))) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-1747 ((|#3| $ (-576)) 46)) (-2884 (($ |#3|) 93) (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-1815 (((-112) $) 99)) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-4039 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-4029 (($ $ $) 79) (($ $) 78)) (-4017 (($ $ $) 80)) (** (($ $ (-783)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-699 |#1| |#2| |#3|) (-141) (-1067) (-384 |t#1|) (-384 |t#1|)) (T -699)) -((-1847 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2881 (*1 *1 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3353 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2884 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-2899 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-2899 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2018 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2005 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1991 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) (-2071 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3055 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1979 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1965 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1953 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1940 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4017 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4029 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4029 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1067)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-4039 (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-1735 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-4423 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) (-3314 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))) (-3633 (*1 *1 *1) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -1847 ((-112) $)) (-15 -1835 ((-112) $)) (-15 -1825 ((-112) $)) (-15 -1815 ((-112) $)) (-15 -2881 ($ (-783) (-783))) (-15 -4317 ($ (-656 (-656 |t#1|)))) (-15 -3353 ($ (-783) |t#1|)) (-15 -3344 ($ (-656 |t#1|))) (-15 -3344 ($ (-656 $))) (-15 -2884 ($ |t#3|)) (-15 -2899 ($ |t#2|)) (-15 -2899 ($ $)) (-15 -2018 ($ $)) (-15 -2005 ($ $ $)) (-15 -1991 ($ $ $)) (-15 -3667 ((-656 (-656 |t#1|)) $)) (-15 -2071 ($ $ (-656 (-576)) (-656 (-576)))) (-15 -3055 ($ $ (-656 (-576)) (-656 (-576)) $)) (-15 -1979 ($ $ (-576) (-576))) (-15 -1965 ($ $ (-576) (-576))) (-15 -1953 ($ $ (-576) (-576) (-576) (-576))) (-15 -1940 ($ $ (-576) (-576) $)) (-15 -4017 ($ $ $)) (-15 -4029 ($ $ $)) (-15 -4029 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-783))) (IF (|has| |t#1| (-568)) (-15 -2852 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -4039 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -1735 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -4423 ((-783) $)) (-15 -1724 ((-783) $)) (-15 -1714 ((-656 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4463 "*"))) (PROGN (-15 -3314 (|t#1| $)) (-15 -3304 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -3633 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-57 |#1| |#2| |#3|) . T) ((-1236) . T)) -((-1735 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-4423 (((-783) |#4|) 120 (|has| |#1| (-568)))) (-1724 (((-783) |#4|) 96 (|has| |#1| (-568)))) (-1714 (((-656 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-4279 (((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-3304 ((|#1| |#4|) 52)) (-2077 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-3633 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-2065 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-2041 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-2029 ((|#4| |#4| (-576) (-576)) 55)) (-2053 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-3314 ((|#1| |#4|) 98)) (-2028 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568))))) -(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3314 (|#1| |#4|)) (-15 -3304 (|#1| |#4|)) (-15 -2029 (|#4| |#4| (-576) (-576))) (-15 -2041 (|#4| |#4| |#1| (-576) (-576))) (-15 -2053 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4423 ((-783) |#4|)) (-15 -1724 ((-783) |#4|)) (-15 -1714 ((-656 |#3|) |#4|)) (-15 -2065 (|#4| |#4|)) (-15 -2077 ((-3 |#4| "failed") |#4|)) (-15 -2028 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -1735 (|#4| |#4|)) (-15 -4279 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3633 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -700)) -((-3633 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-4279 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2028 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2077 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1714 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4423 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2053 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2041 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2029 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) (-4 *2 (-699 *4 *5 *6)))) (-3304 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-3314 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))) -(-10 -7 (-15 -3314 (|#1| |#4|)) (-15 -3304 (|#1| |#4|)) (-15 -2029 (|#4| |#4| (-576) (-576))) (-15 -2041 (|#4| |#4| |#1| (-576) (-576))) (-15 -2053 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4423 ((-783) |#4|)) (-15 -1724 ((-783) |#4|)) (-15 -1714 ((-656 |#3|) |#4|)) (-15 -2065 (|#4| |#4|)) (-15 -2077 ((-3 |#4| "failed") |#4|)) (-15 -2028 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -1735 (|#4| |#4|)) (-15 -4279 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3633 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2881 (($ (-783) (-783)) 64)) (-1991 (($ $ $) NIL)) (-2899 (($ (-1286 |#1|)) NIL) (($ $) NIL)) (-1825 (((-112) $) NIL)) (-1979 (($ $ (-576) (-576)) 22)) (-1965 (($ $ (-576) (-576)) NIL)) (-1953 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2018 (($ $) NIL)) (-1847 (((-112) $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-1940 (($ $ (-576) (-576) $) NIL)) (-3055 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-1552 (($ $ (-576) (-1286 |#1|)) NIL)) (-3501 (($ $ (-576) (-1286 |#1|)) NIL)) (-3353 (($ (-783) |#1|) 37)) (-2473 (($) NIL T CONST)) (-1735 (($ $) 46 (|has| |#1| (-317)))) (-1759 (((-1286 |#1|) $ (-576)) NIL)) (-4423 (((-783) $) 48 (|has| |#1| (-568)))) (-2859 ((|#1| $ (-576) (-576) |#1|) 69)) (-2789 ((|#1| $ (-576) (-576)) NIL)) (-4001 (((-656 |#1|) $) NIL)) (-1724 (((-783) $) 50 (|has| |#1| (-568)))) (-1714 (((-656 (-1286 |#1|)) $) 53 (|has| |#1| (-568)))) (-4244 (((-783) $) 32)) (-2310 (($ (-783) (-783) |#1|) 28)) (-4256 (((-783) $) 33)) (-2408 (((-112) $ (-783)) NIL)) (-3304 ((|#1| $) 44 (|has| |#1| (-6 (-4463 "*"))))) (-1805 (((-576) $) 10)) (-1782 (((-576) $) 11)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1793 (((-576) $) 14)) (-1771 (((-576) $) 65)) (-4317 (($ (-656 (-656 |#1|))) NIL)) (-2848 (($ (-1 |#1| |#1|) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3667 (((-656 (-656 |#1|)) $) 76)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3633 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-2005 (($ $ $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3346 (($ $ |#1|) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-3344 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL) (($ (-1286 |#1|)) 70)) (-1835 (((-112) $) NIL)) (-3314 ((|#1| $) 42 (|has| |#1| (-6 (-4463 "*"))))) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-2616 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-1747 (((-1286 |#1|) $ (-576)) NIL)) (-2884 (($ (-1286 |#1|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-1815 (((-112) $) NIL)) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-783)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1286 |#1|) $ (-1286 |#1|)) NIL) (((-1286 |#1|) (-1286 |#1|) $) NIL)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-701 |#1|) (-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 -3344 ($ (-1286 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3633 ((-3 $ "failed") $)) |%noBranch|))) (-1067)) (T -701)) -((-3633 (*1 *1 *1) (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1067)))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1067)) (-5 *1 (-701 *3))))) -(-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 -3344 ($ (-1286 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3633 ((-3 $ "failed") $)) |%noBranch|))) -((-2140 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 37)) (-2129 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 32)) (-2151 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783)) 43)) (-2099 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 25)) (-2109 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 29) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 27)) (-2119 (((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|)) 31)) (-2089 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 23)) (** (((-701 |#1|) (-701 |#1|) (-783)) 46))) -(((-702 |#1|) (-10 -7 (-15 -2089 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2099 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2109 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2109 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2119 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -2129 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2140 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2151 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) (-1067)) (T -702)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1067)) (-5 *1 (-702 *4)))) (-2151 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1067)) (-5 *1 (-702 *4)))) (-2140 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-2129 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-2119 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-2109 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-2109 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-2099 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-2089 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3))))) -(-10 -7 (-15 -2089 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2099 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2109 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2109 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2119 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -2129 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2140 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2151 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) -((-2449 (((-3 |#1| "failed") $) 18)) (-4401 ((|#1| $) NIL)) (-2753 (($) 7 T CONST)) (-2163 (($ |#1|) 8)) (-2884 (($ |#1|) 16) (((-874) $) 23)) (-1985 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2753)) 11)) (-3135 ((|#1| $) 15))) -(((-703 |#1|) (-13 (-1281) (-1056 |#1|) (-625 (-874)) (-10 -8 (-15 -2163 ($ |#1|)) (-15 -1985 ((-112) $ (|[\|\|]| |#1|))) (-15 -1985 ((-112) $ (|[\|\|]| -2753))) (-15 -3135 (|#1| $)) (-15 -2753 ($) -3739))) (-625 (-874))) (T -703)) -((-2163 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-874))) (-5 *2 (-112)) (-5 *1 (-703 *4)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2753)) (-5 *2 (-112)) (-5 *1 (-703 *4)) (-4 *4 (-625 (-874))))) (-3135 (*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) (-2753 (*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874)))))) -(-13 (-1281) (-1056 |#1|) (-625 (-874)) (-10 -8 (-15 -2163 ($ |#1|)) (-15 -1985 ((-112) $ (|[\|\|]| |#1|))) (-15 -1985 ((-112) $ (|[\|\|]| -2753))) (-15 -3135 (|#1| $)) (-15 -2753 ($) -3739))) -((-2195 ((|#2| |#2| |#4|) 29)) (-2224 (((-701 |#2|) |#3| |#4|) 35)) (-2203 (((-701 |#2|) |#2| |#4|) 34)) (-2173 (((-1286 |#2|) |#2| |#4|) 16)) (-2184 ((|#2| |#3| |#4|) 28)) (-2235 (((-701 |#2|) |#3| |#4| (-783) (-783)) 47)) (-2214 (((-701 |#2|) |#2| |#4| (-783)) 46))) -(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2173 ((-1286 |#2|) |#2| |#4|)) (-15 -2184 (|#2| |#3| |#4|)) (-15 -2195 (|#2| |#2| |#4|)) (-15 -2203 ((-701 |#2|) |#2| |#4|)) (-15 -2214 ((-701 |#2|) |#2| |#4| (-783))) (-15 -2224 ((-701 |#2|) |#3| |#4|)) (-15 -2235 ((-701 |#2|) |#3| |#4| (-783) (-783)))) (-1118) (-914 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4461)))) (T -704)) -((-2235 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1118)) (-4 *7 (-914 *6)) (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461)))))) (-2224 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-4 *6 (-914 *5)) (-5 *2 (-701 *6)) (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))) (-2214 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1118)) (-4 *3 (-914 *6)) (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461)))))) (-2203 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-4 *3 (-914 *5)) (-5 *2 (-701 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))) (-2195 (*1 *2 *2 *3) (-12 (-4 *4 (-1118)) (-4 *2 (-914 *4)) (-5 *1 (-704 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4461)))))) (-2184 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-4 *2 (-914 *5)) (-5 *1 (-704 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))) (-2173 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-4 *3 (-914 *5)) (-5 *2 (-1286 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461))))))) -(-10 -7 (-15 -2173 ((-1286 |#2|) |#2| |#4|)) (-15 -2184 (|#2| |#3| |#4|)) (-15 -2195 (|#2| |#2| |#4|)) (-15 -2203 ((-701 |#2|) |#2| |#4|)) (-15 -2214 ((-701 |#2|) |#2| |#4| (-783))) (-15 -2224 ((-701 |#2|) |#3| |#4|)) (-15 -2235 ((-701 |#2|) |#3| |#4| (-783) (-783)))) -((-2615 (((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)) 20)) (-2594 ((|#1| (-701 |#2|)) 9)) (-2604 (((-701 |#1|) (-701 |#2|)) 18))) -(((-705 |#1| |#2|) (-10 -7 (-15 -2594 (|#1| (-701 |#2|))) (-15 -2604 ((-701 |#1|) (-701 |#2|))) (-15 -2615 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) (-568) (-1010 |#1|)) (T -705)) -((-2615 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) (-5 *1 (-705 *4 *5)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568)) (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-705 *2 *4))))) -(-10 -7 (-15 -2594 (|#1| (-701 |#2|))) (-15 -2604 ((-701 |#1|) (-701 |#2|))) (-15 -2615 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-4355 (((-701 (-711))) NIL) (((-701 (-711)) (-1286 $)) NIL)) (-1448 (((-711) $) NIL)) (-3924 (($ $) NIL (|has| (-711) (-1221)))) (-3787 (($ $) NIL (|has| (-711) (-1221)))) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-711) (-360)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-925))))) (-2944 (($ $) NIL (-3766 (-12 (|has| (-711) (-317)) (|has| (-711) (-925))) (|has| (-711) (-374))))) (-3986 (((-430 $) $) NIL (-3766 (-12 (|has| (-711) (-317)) (|has| (-711) (-925))) (|has| (-711) (-374))))) (-2474 (($ $) NIL (-12 (|has| (-711) (-1020)) (|has| (-711) (-1221))))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-925))))) (-2922 (((-112) $ $) NIL (|has| (-711) (-317)))) (-2416 (((-783)) NIL (|has| (-711) (-379)))) (-3898 (($ $) NIL (|has| (-711) (-1221)))) (-3762 (($ $) NIL (|has| (-711) (-1221)))) (-1522 (($ $) NIL (|has| (-711) (-1221)))) (-3808 (($ $) NIL (|has| (-711) (-1221)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL) (((-3 (-711) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-1056 (-419 (-576)))))) (-4401 (((-576) $) NIL) (((-711) $) NIL) (((-419 (-576)) $) NIL (|has| (-711) (-1056 (-419 (-576)))))) (-1339 (($ (-1286 (-711))) NIL) (($ (-1286 (-711)) (-1286 $)) NIL)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-711) (-360)))) (-2803 (($ $ $) NIL (|has| (-711) (-317)))) (-4342 (((-701 (-711)) $) NIL) (((-701 (-711)) $ (-1286 $)) NIL)) (-2613 (((-701 (-711)) (-1286 $)) NIL) (((-701 (-711)) (-701 $)) NIL) (((-2 (|:| -2869 (-701 (-711))) (|:| |vec| (-1286 (-711)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-1286 $)) NIL (|has| (-711) (-651 (-576))))) (-2309 (((-3 $ "failed") (-419 (-1191 (-711)))) NIL (|has| (-711) (-374))) (($ (-1191 (-711))) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2488 (((-711) $) 29)) (-3424 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-557)))) (-3413 (((-112) $) NIL (|has| (-711) (-557)))) (-3404 (((-419 (-576)) $) NIL (|has| (-711) (-557)))) (-4423 (((-937)) NIL)) (-2080 (($) NIL (|has| (-711) (-379)))) (-2814 (($ $ $) NIL (|has| (-711) (-317)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| (-711) (-317)))) (-2013 (($) NIL (|has| (-711) (-360)))) (-2635 (((-112) $) NIL (|has| (-711) (-360)))) (-4188 (($ $) NIL (|has| (-711) (-360))) (($ $ (-783)) NIL (|has| (-711) (-360)))) (-2463 (((-112) $) NIL (-3766 (-12 (|has| (-711) (-317)) (|has| (-711) (-925))) (|has| (-711) (-374))))) (-3015 (((-2 (|:| |r| (-711)) (|:| |phi| (-711))) $) NIL (-12 (|has| (-711) (-1078)) (|has| (-711) (-1221))))) (-1632 (($) NIL (|has| (-711) (-1221)))) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-711) (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-711) (-899 (-576))))) (-2927 (((-845 (-937)) $) NIL (|has| (-711) (-360))) (((-937) $) NIL (|has| (-711) (-360)))) (-1439 (((-112) $) NIL)) (-3298 (($ $ (-576)) NIL (-12 (|has| (-711) (-1020)) (|has| (-711) (-1221))))) (-1941 (((-711) $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| (-711) (-360)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-1922 (((-1191 (-711)) $) NIL (|has| (-711) (-374)))) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-2551 (($ (-1 (-711) (-711)) $) NIL)) (-1875 (((-937) $) NIL (|has| (-711) (-379)))) (-3464 (($ $) NIL (|has| (-711) (-1221)))) (-2297 (((-1191 (-711)) $) NIL)) (-3888 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL (|has| (-711) (-374)))) (-3475 (($) NIL (|has| (-711) (-360)) CONST)) (-4318 (($ (-937)) NIL (|has| (-711) (-379)))) (-3029 (($) NIL)) (-1972 (((-711) $) 31)) (-3914 (((-1138) $) NIL)) (-3660 (($) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-711) (-317)))) (-3928 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| (-711) (-360)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-925))))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-925))))) (-2354 (((-430 $) $) NIL (-3766 (-12 (|has| (-711) (-317)) (|has| (-711) (-925))) (|has| (-711) (-374))))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-711) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| (-711) (-317)))) (-2852 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-711)) NIL (|has| (-711) (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-2666 (($ $) NIL (|has| (-711) (-1221)))) (-3049 (($ $ (-1195) (-711)) NIL (|has| (-711) (-526 (-1195) (-711)))) (($ $ (-656 (-1195)) (-656 (-711))) NIL (|has| (-711) (-526 (-1195) (-711)))) (($ $ (-656 (-304 (-711)))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-304 (-711))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-711) (-711)) NIL (|has| (-711) (-319 (-711)))) (($ $ (-656 (-711)) (-656 (-711))) NIL (|has| (-711) (-319 (-711))))) (-2910 (((-783) $) NIL (|has| (-711) (-317)))) (-2071 (($ $ (-711)) NIL (|has| (-711) (-296 (-711) (-711))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| (-711) (-317)))) (-2790 (((-711)) NIL) (((-711) (-1286 $)) NIL)) (-4197 (((-3 (-783) "failed") $ $) NIL (|has| (-711) (-360))) (((-783) $) NIL (|has| (-711) (-360)))) (-2390 (($ $ (-1 (-711) (-711))) NIL) (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-711) (-914 (-1195)))) (($ $) NIL (|has| (-711) (-239))) (($ $ (-783)) NIL (|has| (-711) (-239)))) (-1430 (((-701 (-711)) (-1286 $) (-1 (-711) (-711))) NIL (|has| (-711) (-374)))) (-1360 (((-1191 (-711))) NIL)) (-1532 (($ $) NIL (|has| (-711) (-1221)))) (-3818 (($ $) NIL (|has| (-711) (-1221)))) (-2560 (($) NIL (|has| (-711) (-360)))) (-3938 (($ $) NIL (|has| (-711) (-1221)))) (-3798 (($ $) NIL (|has| (-711) (-1221)))) (-3910 (($ $) NIL (|has| (-711) (-1221)))) (-3775 (($ $) NIL (|has| (-711) (-1221)))) (-3629 (((-701 (-711)) (-1286 $)) NIL) (((-1286 (-711)) $) NIL) (((-701 (-711)) (-1286 $) (-1286 $)) NIL) (((-1286 (-711)) $ (-1286 $)) NIL)) (-2616 (((-548) $) NIL (|has| (-711) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-711) (-1040))) (((-171 (-390)) $) NIL (|has| (-711) (-1040))) (((-905 (-390)) $) NIL (|has| (-711) (-626 (-905 (-390))))) (((-905 (-576)) $) NIL (|has| (-711) (-626 (-905 (-576))))) (($ (-1191 (-711))) NIL) (((-1191 (-711)) $) NIL) (($ (-1286 (-711))) NIL) (((-1286 (-711)) $) NIL)) (-3276 (($ $) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-3766 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-925))) (|has| (-711) (-360))))) (-3503 (($ (-711) (-711)) 12)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-711)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-711))) 28) (($ (-171 (-713))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-3766 (|has| (-711) (-1056 (-419 (-576)))) (|has| (-711) (-374))))) (-3148 (($ $) NIL (|has| (-711) (-360))) (((-3 $ "failed") $) NIL (-3766 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-925))) (|has| (-711) (-146))))) (-1776 (((-1191 (-711)) $) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL)) (-1570 (($ $) NIL (|has| (-711) (-1221)))) (-3853 (($ $) NIL (|has| (-711) (-1221)))) (-4232 (((-112) $ $) NIL)) (-1545 (($ $) NIL (|has| (-711) (-1221)))) (-3829 (($ $) NIL (|has| (-711) (-1221)))) (-1594 (($ $) NIL (|has| (-711) (-1221)))) (-3874 (($ $) NIL (|has| (-711) (-1221)))) (-3433 (((-711) $) NIL (|has| (-711) (-1221)))) (-2915 (($ $) NIL (|has| (-711) (-1221)))) (-3886 (($ $) NIL (|has| (-711) (-1221)))) (-1584 (($ $) NIL (|has| (-711) (-1221)))) (-3864 (($ $) NIL (|has| (-711) (-1221)))) (-1555 (($ $) NIL (|has| (-711) (-1221)))) (-3840 (($ $) NIL (|has| (-711) (-1221)))) (-2610 (($ $) NIL (|has| (-711) (-1078)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-1 (-711) (-711))) NIL) (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-711) (-914 (-1195)))) (($ $) NIL (|has| (-711) (-239))) (($ $ (-783)) NIL (|has| (-711) (-239)))) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL (|has| (-711) (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| (-711) (-1221))) (($ $ (-419 (-576))) NIL (-12 (|has| (-711) (-1020)) (|has| (-711) (-1221)))) (($ $ (-576)) NIL (|has| (-711) (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-711) $) NIL) (($ $ (-711)) NIL) (($ (-419 (-576)) $) NIL (|has| (-711) (-374))) (($ $ (-419 (-576))) NIL (|has| (-711) (-374))))) -(((-706) (-13 (-399) (-167 (-711)) (-10 -8 (-15 -2884 ($ (-171 (-390)))) (-15 -2884 ($ (-171 (-576)))) (-15 -2884 ($ (-171 (-711)))) (-15 -2884 ($ (-171 (-713)))) (-15 -2884 ((-171 (-390)) $))))) (T -706)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))) -(-13 (-399) (-167 (-711)) (-10 -8 (-15 -2884 ($ (-171 (-390)))) (-15 -2884 ($ (-171 (-576)))) (-15 -2884 ($ (-171 (-711)))) (-15 -2884 ($ (-171 (-713)))) (-15 -2884 ((-171 (-390)) $)))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) 8)) (-1443 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-2257 (($ $) 63)) (-1919 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2833 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3634 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3449 ((|#1| $) 40)) (-3807 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3458 ((|#1| $) 42)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2245 (((-656 (-2 (|:| -3180 |#1|) (|:| -3926 (-783)))) $) 62)) (-1581 (($) 50) (($ (-656 |#1|)) 49)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 51)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) 43)) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-707 |#1|) (-141) (-1118)) (T -707)) -((-3807 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1118)))) (-2257 (*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1118)))) (-2245 (*1 *2 *1) (-12 (-4 *1 (-707 *3)) (-4 *3 (-1118)) (-5 *2 (-656 (-2 (|:| -3180 *3) (|:| -3926 (-783)))))))) -(-13 (-241 |t#1|) (-10 -8 (-15 -3807 ($ |t#1| $ (-783))) (-15 -2257 ($ $)) (-15 -2245 ((-656 (-2 (|:| -3180 |t#1|) (|:| -3926 (-783)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-241 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-4173 (((-656 |#1|) (-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576)))) (-576)) 65)) (-2268 ((|#1| |#1| (-576)) 62)) (-3928 ((|#1| |#1| |#1| (-576)) 46)) (-2354 (((-656 |#1|) |#1| (-576)) 49)) (-4180 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-4164 (((-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576)))) |#1| (-576)) 61))) -(((-708 |#1|) (-10 -7 (-15 -3928 (|#1| |#1| |#1| (-576))) (-15 -2268 (|#1| |#1| (-576))) (-15 -2354 ((-656 |#1|) |#1| (-576))) (-15 -4164 ((-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576)))) |#1| (-576))) (-15 -4173 ((-656 |#1|) (-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576)))) (-576))) (-15 -4180 (|#1| |#1| (-576) |#1| (-576)))) (-1262 (-576))) (T -708)) -((-4180 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3)))) (-4173 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| -2354 *5) (|:| -3813 (-576))))) (-5 *4 (-576)) (-4 *5 (-1262 *4)) (-5 *2 (-656 *5)) (-5 *1 (-708 *5)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -2354 *3) (|:| -3813 *4)))) (-5 *1 (-708 *3)) (-4 *3 (-1262 *4)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) (-4 *3 (-1262 *4)))) (-2268 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3)))) (-3928 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3))))) -(-10 -7 (-15 -3928 (|#1| |#1| |#1| (-576))) (-15 -2268 (|#1| |#1| (-576))) (-15 -2354 ((-656 |#1|) |#1| (-576))) (-15 -4164 ((-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576)))) |#1| (-576))) (-15 -4173 ((-656 |#1|) (-656 (-2 (|:| -2354 |#1|) (|:| -3813 (-576)))) (-576))) (-15 -4180 (|#1| |#1| (-576) |#1| (-576)))) -((-4218 (((-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-4190 (((-1151 (-227)) (-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270))) 53) (((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270))) 55) (((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270))) 57)) (-4209 (((-1151 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-656 (-270))) NIL)) (-4199 (((-1151 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270))) 58))) -(((-709) (-10 -7 (-15 -4190 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -4190 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -4190 ((-1151 (-227)) (-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -4199 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -4209 ((-1151 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -4218 ((-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -709)) -((-4218 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-959 (-227)) (-227) (-227))) (-5 *1 (-709)))) (-4209 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-709)))) (-4199 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-709)))) (-4190 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))) (-4190 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-227))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-709)))) (-4190 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-709))))) -(-10 -7 (-15 -4190 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -4190 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -4190 ((-1151 (-227)) (-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -4199 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -4209 ((-1151 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -4218 ((-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-2354 (((-430 (-1191 |#4|)) (-1191 |#4|)) 86) (((-430 |#4|) |#4|) 266))) -(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2354 ((-430 |#4|) |#4|)) (-15 -2354 ((-430 (-1191 |#4|)) (-1191 |#4|)))) (-862) (-805) (-360) (-965 |#3| |#2| |#1|)) (T -710)) -((-2354 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-2354 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-965 *6 *5 *4))))) -(-10 -7 (-15 -2354 ((-430 |#4|) |#4|)) (-15 -2354 ((-430 (-1191 |#4|)) (-1191 |#4|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 97)) (-1905 (((-576) $) 34)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-2916 (($ $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2474 (($ $) NIL)) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL)) (-2473 (($) NIL T CONST)) (-1882 (($ $) NIL)) (-2449 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-4401 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-2803 (($ $ $) 109)) (-1999 (((-3 $ "failed") $) 100)) (-2814 (($ $ $) 108)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1501 (((-937)) 89) (((-937) (-937)) 88)) (-1370 (((-112) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-2927 (((-576) $) NIL)) (-1439 (((-112) $) NIL)) (-3298 (($ $ (-576)) NIL)) (-1941 (($ $) NIL)) (-1379 (((-112) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4228 (((-576) (-576)) 94) (((-576)) 95)) (-1921 (($ $ $) NIL) (($) NIL (-12 (-3216 (|has| $ (-6 -4444))) (-3216 (|has| $ (-6 -4452)))))) (-4237 (((-576) (-576)) 92) (((-576)) 93)) (-4137 (($ $ $) NIL) (($) NIL (-12 (-3216 (|has| $ (-6 -4444))) (-3216 (|has| $ (-6 -4452)))))) (-3665 (((-576) $) 17)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 104)) (-4216 (((-937) (-576)) NIL (|has| $ (-6 -4452)))) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) NIL)) (-1916 (($ $) NIL)) (-1540 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-937)) NIL)) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) 105)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1359 (((-576) $) 24)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 107)) (-3527 (((-937)) NIL) (((-937) (-937)) NIL (|has| $ (-6 -4452)))) (-4207 (((-937) (-576)) NIL (|has| $ (-6 -4452)))) (-2616 (((-390) $) NIL) (((-227) $) NIL) (((-905 (-390)) $) NIL)) (-2884 (((-874) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-713)) 66)) (-1871 (((-783)) 119 T CONST)) (-3816 (($ (-576) (-576) (-937)) 54)) (-1929 (($ $) NIL)) (-4226 (((-937)) NIL) (((-937) (-937)) NIL (|has| $ (-6 -4452)))) (-3722 (((-112) $ $) NIL)) (-1549 (((-937)) 91) (((-937) (-937)) 90)) (-4232 (((-112) $ $) NIL)) (-2610 (($ $) NIL)) (-1996 (($) 37 T CONST)) (-2011 (($) 18 T CONST)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 96)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 118)) (-4039 (($ $ $) 77)) (-4029 (($ $) 115) (($ $ $) 116)) (-4017 (($ $ $) 114)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-711) (-13 (-416) (-399) (-374) (-1056 (-390)) (-1056 (-419 (-576))) (-148) (-10 -8 (-15 -1501 ((-937) (-937))) (-15 -1501 ((-937))) (-15 -1549 ((-937) (-937))) (-15 -4237 ((-576) (-576))) (-15 -4237 ((-576))) (-15 -4228 ((-576) (-576))) (-15 -4228 ((-576))) (-15 -2884 ((-390) $)) (-15 -2884 ($ (-713))) (-15 -3665 ((-576) $)) (-15 -1359 ((-576) $)) (-15 -3816 ($ (-576) (-576) (-937)))))) (T -711)) -((-1359 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-1501 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711)))) (-1549 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711)))) (-4237 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-4237 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-4228 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-4228 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) (-3816 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-937)) (-5 *1 (-711))))) -(-13 (-416) (-399) (-374) (-1056 (-390)) (-1056 (-419 (-576))) (-148) (-10 -8 (-15 -1501 ((-937) (-937))) (-15 -1501 ((-937))) (-15 -1549 ((-937) (-937))) (-15 -4237 ((-576) (-576))) (-15 -4237 ((-576))) (-15 -4228 ((-576) (-576))) (-15 -4228 ((-576))) (-15 -2884 ((-390) $)) (-15 -2884 ($ (-713))) (-15 -3665 ((-576) $)) (-15 -1359 ((-576) $)) (-15 -3816 ($ (-576) (-576) (-937))))) -((-4269 (((-701 |#1|) (-701 |#1|) |#1| |#1|) 85)) (-1735 (((-701 |#1|) (-701 |#1|) |#1|) 66)) (-4259 (((-701 |#1|) (-701 |#1|) |#1|) 86)) (-4248 (((-701 |#1|) (-701 |#1|)) 67)) (-4279 (((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|) 84))) -(((-712 |#1|) (-10 -7 (-15 -4248 ((-701 |#1|) (-701 |#1|))) (-15 -1735 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -4259 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -4269 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -4279 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|))) (-317)) (T -712)) -((-4279 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-712 *3)) (-4 *3 (-317)))) (-4269 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-4259 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-1735 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-4248 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(-10 -7 (-15 -4248 ((-701 |#1|) (-701 |#1|))) (-15 -1735 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -4259 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -4269 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -4279 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-2199 (($ $ $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2178 (($ $ $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL)) (-3626 (($ $ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) 31)) (-4401 (((-576) $) 29)) (-2803 (($ $ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-3424 (((-3 (-419 (-576)) "failed") $) NIL)) (-3413 (((-112) $) NIL)) (-3404 (((-419 (-576)) $) NIL)) (-2080 (($ $) NIL) (($) NIL)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-2156 (($ $ $ $) NIL)) (-2208 (($ $ $) NIL)) (-1370 (((-112) $) NIL)) (-2954 (($ $ $) NIL)) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1439 (((-112) $) NIL)) (-4064 (((-112) $) NIL)) (-1831 (((-3 $ "failed") $) NIL)) (-1379 (((-112) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2166 (($ $ $ $) NIL)) (-1921 (($ $ $) NIL)) (-4288 (((-937) (-937)) 10) (((-937)) 9)) (-4137 (($ $ $) NIL)) (-3537 (($ $) NIL)) (-1840 (($ $) NIL)) (-3888 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-2144 (($ $ $) NIL)) (-3475 (($) NIL T CONST)) (-3048 (($ $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2935 (($ $) NIL)) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4072 (((-112) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2390 (($ $ (-783)) NIL) (($ $) NIL)) (-3355 (($ $) NIL)) (-3079 (($ $) NIL)) (-2616 (((-227) $) NIL) (((-390) $) NIL) (((-905 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-1871 (((-783)) NIL T CONST)) (-2218 (((-112) $ $) NIL)) (-1658 (($ $ $) NIL)) (-3722 (((-112) $ $) NIL)) (-1549 (($) NIL)) (-4232 (((-112) $ $) NIL)) (-2189 (($ $ $ $) NIL)) (-2610 (($ $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-783)) NIL) (($ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-713) (-13 (-399) (-557) (-10 -8 (-15 -4288 ((-937) (-937))) (-15 -4288 ((-937))) (-15 -2884 ((-326 $) (-326 (-576))))))) (T -713)) -((-4288 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-713)))) (-4288 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-713)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713))))) -(-13 (-399) (-557) (-10 -8 (-15 -4288 ((-937) (-937))) (-15 -4288 ((-937))) (-15 -2884 ((-326 $) (-326 (-576)))))) -((-4331 (((-1 |#4| |#2| |#3|) |#1| (-1195) (-1195)) 19)) (-4299 (((-1 |#4| |#2| |#3|) (-1195)) 12))) -(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4299 ((-1 |#4| |#2| |#3|) (-1195))) (-15 -4331 ((-1 |#4| |#2| |#3|) |#1| (-1195) (-1195)))) (-626 (-548)) (-1236) (-1236) (-1236)) (T -714)) -((-4331 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *7 (-1236)))) (-4299 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *7 (-1236))))) -(-10 -7 (-15 -4299 ((-1 |#4| |#2| |#3|) (-1195))) (-15 -4331 ((-1 |#4| |#2| |#3|) |#1| (-1195) (-1195)))) -((-4309 (((-1 (-227) (-227) (-227)) |#1| (-1195) (-1195)) 43) (((-1 (-227) (-227)) |#1| (-1195)) 48))) -(((-715 |#1|) (-10 -7 (-15 -4309 ((-1 (-227) (-227)) |#1| (-1195))) (-15 -4309 ((-1 (-227) (-227) (-227)) |#1| (-1195) (-1195)))) (-626 (-548))) (T -715)) -((-4309 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))) (-4309 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -4309 ((-1 (-227) (-227)) |#1| (-1195))) (-15 -4309 ((-1 (-227) (-227) (-227)) |#1| (-1195) (-1195)))) -((-3764 (((-1195) |#1| (-1195) (-656 (-1195))) 10) (((-1195) |#1| (-1195) (-1195) (-1195)) 13) (((-1195) |#1| (-1195) (-1195)) 12) (((-1195) |#1| (-1195)) 11))) -(((-716 |#1|) (-10 -7 (-15 -3764 ((-1195) |#1| (-1195))) (-15 -3764 ((-1195) |#1| (-1195) (-1195))) (-15 -3764 ((-1195) |#1| (-1195) (-1195) (-1195))) (-15 -3764 ((-1195) |#1| (-1195) (-656 (-1195))))) (-626 (-548))) (T -716)) -((-3764 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3764 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3764 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3764 (*1 *2 *3 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -3764 ((-1195) |#1| (-1195))) (-15 -3764 ((-1195) |#1| (-1195) (-1195))) (-15 -3764 ((-1195) |#1| (-1195) (-1195) (-1195))) (-15 -3764 ((-1195) |#1| (-1195) (-656 (-1195))))) -((-4049 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-717 |#1| |#2|) (-10 -7 (-15 -4049 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1236) (-1236)) (T -717)) -((-4049 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1236)) (-4 *4 (-1236))))) -(-10 -7 (-15 -4049 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-4321 (((-1 |#3| |#2|) (-1195)) 11)) (-4331 (((-1 |#3| |#2|) |#1| (-1195)) 21))) -(((-718 |#1| |#2| |#3|) (-10 -7 (-15 -4321 ((-1 |#3| |#2|) (-1195))) (-15 -4331 ((-1 |#3| |#2|) |#1| (-1195)))) (-626 (-548)) (-1236) (-1236)) (T -718)) -((-4331 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)))) (-4321 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236))))) -(-10 -7 (-15 -4321 ((-1 |#3| |#2|) (-1195))) (-15 -4331 ((-1 |#3| |#2|) |#1| (-1195)))) -((-4369 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2746 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1286 (-656 (-1191 |#3|))) |#3|) 92)) (-4357 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|) 110)) (-4344 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1191 |#4|)) (-1286 (-656 (-1191 |#3|))) |#3|) 47))) -(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4344 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1191 |#4|)) (-1286 (-656 (-1191 |#3|))) |#3|)) (-15 -4357 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -4369 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2746 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1286 (-656 (-1191 |#3|))) |#3|))) (-805) (-862) (-317) (-965 |#3| |#1| |#2|)) (T -719)) -((-4369 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-656 (-1191 *13))) (-5 *3 (-1191 *13)) (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) (-5 *7 (-656 (-656 (-2 (|:| -2746 (-783)) (|:| |pcoef| *13))))) (-5 *8 (-656 (-783))) (-5 *9 (-1286 (-656 (-1191 *10)))) (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-965 *10 *11 *12)) (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))) (-4357 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1191 *9))) (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-965 *9 *10 *11)) (-4 *10 (-805)) (-5 *2 (-656 (-1191 *12))) (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1191 *12)))) (-4344 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-656 (-1191 *11))) (-5 *3 (-1191 *11)) (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) (-5 *7 (-1286 (-656 (-1191 *8)))) (-4 *10 (-862)) (-4 *8 (-317)) (-4 *11 (-965 *8 *9 *10)) (-4 *9 (-805)) (-5 *1 (-719 *9 *10 *8 *11))))) -(-10 -7 (-15 -4344 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1191 |#4|)) (-1286 (-656 (-1191 |#3|))) |#3|)) (-15 -4357 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -4369 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2746 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1286 (-656 (-1191 |#3|))) |#3|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-4407 (($ $) 48)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-2421 (($ |#1| (-783)) 46)) (-1864 (((-783) $) 50)) (-4383 ((|#1| $) 49)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3813 (((-783) $) 51)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-3245 ((|#1| $ (-783)) 47)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-720 |#1|) (-141) (-1067)) (T -720)) -((-3813 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1067)))) (-4407 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1067)))) (-3245 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1067)))) (-2421 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1067))))) -(-13 (-1067) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3813 ((-783) $)) (-15 -1864 ((-783) $)) (-15 -4383 (|t#1| $)) (-15 -4407 ($ $)) (-15 -3245 (|t#1| $ (-783))) (-15 -2421 ($ |t#1| (-783))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2551 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-721 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2551 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1262 |#1|) (-1262 (-419 |#2|)) (-568) (-1262 |#4|) (-1262 (-419 |#5|))) (T -721)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1262 *5)) (-4 *2 (-1262 (-419 *8))) (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1262 (-419 *6))) (-4 *8 (-1262 *7))))) -(-10 -7 (-15 -2551 (|#6| (-1 |#4| |#1|) |#3|))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-4381 (((-1177) (-874)) 38)) (-2483 (((-1291) (-1177)) 31)) (-4404 (((-1177) (-874)) 28)) (-4392 (((-1177) (-874)) 29)) (-2884 (((-874) $) NIL) (((-1177) (-874)) 27)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-722) (-13 (-1118) (-10 -7 (-15 -2884 ((-1177) (-874))) (-15 -4404 ((-1177) (-874))) (-15 -4392 ((-1177) (-874))) (-15 -4381 ((-1177) (-874))) (-15 -2483 ((-1291) (-1177)))))) (T -722)) -((-2884 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-4404 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-4392 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-4381 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-722))))) -(-13 (-1118) (-10 -7 (-15 -2884 ((-1177) (-874))) (-15 -4404 ((-1177) (-874))) (-15 -4392 ((-1177) (-874))) (-15 -4381 ((-1177) (-874))) (-15 -2483 ((-1291) (-1177))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-2803 (($ $ $) NIL)) (-2309 (($ |#1| |#2|) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1439 (((-112) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3517 ((|#2| $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1369 (((-3 $ "failed") $ $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -3517 (|#2| $)) (-15 -2884 (|#1| $)) (-15 -2309 ($ |#1| |#2|)) (-15 -1369 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723)) -((-3517 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2884 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2309 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1369 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-374) (-10 -8 (-15 -3517 (|#2| $)) (-15 -2884 (|#1| $)) (-15 -2309 ($ |#1| |#2|)) (-15 -1369 ((-3 $ "failed") $ $)))) -((-2862 (((-112) $ $) 87)) (-1389 (((-112) $) 36)) (-2896 (((-1286 |#1|) $ (-783)) NIL)) (-1607 (((-656 (-1100)) $) NIL)) (-2873 (($ (-1191 |#1|)) NIL)) (-3467 (((-1191 $) $ (-1100)) NIL) (((-1191 |#1|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 (-1100))) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2768 (($ $ $) NIL (|has| |#1| (-568)))) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2944 (($ $) NIL (|has| |#1| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2416 (((-783)) 54 (|has| |#1| (-379)))) (-2828 (($ $ (-783)) NIL)) (-2816 (($ $ (-783)) NIL)) (-1350 ((|#2| |#2|) 50)) (-2726 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-1100) "failed") $) NIL)) (-4401 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-1100) $) NIL)) (-2778 (($ $ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) 40)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2309 (($ |#2|) 48)) (-1999 (((-3 $ "failed") $) 97)) (-2080 (($) 58 (|has| |#1| (-379)))) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-2804 (($ $ $) NIL)) (-2747 (($ $ $) NIL (|has| |#1| (-568)))) (-2736 (((-2 (|:| -1755 |#1|) (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2192 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#1| (-925)))) (-4435 (((-974 $)) 89)) (-3098 (($ $ |#1| (-783) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1100) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1100) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2927 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-1170)))) (-2437 (($ (-1191 |#1|) (-1100)) NIL) (($ (-1191 $) (-1100)) NIL)) (-2962 (($ $ (-783)) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-783)) 85) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-1100)) NIL) (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-3517 ((|#2|) 51)) (-1864 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-3109 (($ (-1 (-783) (-783)) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2885 (((-1191 |#1|) $) NIL)) (-2788 (((-3 (-1100) "failed") $) NIL)) (-1875 (((-937) $) NIL (|has| |#1| (-379)))) (-2297 ((|#2| $) 47)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) 34)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3733 (((-1177) $) NIL)) (-2841 (((-2 (|:| -2770 $) (|:| -1406 $)) $ (-783)) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| (-1100)) (|:| -1359 (-783))) "failed") $) NIL)) (-1956 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3475 (($) NIL (|has| |#1| (-1170)) CONST)) (-4318 (($ (-937)) NIL (|has| |#1| (-379)))) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) NIL)) (-4359 ((|#1| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4415 (($ $) 88 (|has| |#1| (-360)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-925)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1100) |#1|) NIL) (($ $ (-656 (-1100)) (-656 |#1|)) NIL) (($ $ (-1100) $) NIL) (($ $ (-656 (-1100)) (-656 $)) NIL)) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-2071 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2863 (((-3 $ "failed") $ (-783)) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 98 (|has| |#1| (-374)))) (-2790 (($ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2390 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3813 (((-783) $) 38) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1100) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1841 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-4426 (((-974 $)) 42)) (-2758 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-2884 (((-874) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1100)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-783)) 70) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1996 (($) 25 T CONST)) (-1341 (((-1286 |#1|) $) 83)) (-1332 (($ (-1286 |#1|)) 57)) (-2011 (($) 8 T CONST)) (-3431 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1322 (((-1286 |#1|) $) NIL)) (-3915 (((-112) $ $) 76)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) 79) (($ $ $) NIL)) (-4017 (($ $ $) 39)) (** (($ $ (-937)) NIL) (($ $ (-783)) 92)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) -(((-724 |#1| |#2|) (-13 (-1262 |#1|) (-628 |#2|) (-10 -8 (-15 -1350 (|#2| |#2|)) (-15 -3517 (|#2|)) (-15 -2309 ($ |#2|)) (-15 -2297 (|#2| $)) (-15 -1341 ((-1286 |#1|) $)) (-15 -1332 ($ (-1286 |#1|))) (-15 -1322 ((-1286 |#1|) $)) (-15 -4435 ((-974 $))) (-15 -4426 ((-974 $))) (IF (|has| |#1| (-360)) (-15 -4415 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1067) (-1262 |#1|)) (T -724)) -((-1350 (*1 *2 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3)))) (-3517 (*1 *2) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1067)))) (-2309 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3)))) (-2297 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1067)))) (-1341 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-1332 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1067)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-1322 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-4435 (*1 *2) (-12 (-4 *3 (-1067)) (-5 *2 (-974 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-4426 (*1 *2) (-12 (-4 *3 (-1067)) (-5 *2 (-974 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-4415 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1067)) (-5 *1 (-724 *2 *3)) (-4 *3 (-1262 *2))))) -(-13 (-1262 |#1|) (-628 |#2|) (-10 -8 (-15 -1350 (|#2| |#2|)) (-15 -3517 (|#2|)) (-15 -2309 ($ |#2|)) (-15 -2297 (|#2| $)) (-15 -1341 ((-1286 |#1|) $)) (-15 -1332 ($ (-1286 |#1|))) (-15 -1322 ((-1286 |#1|) $)) (-15 -4435 ((-974 $))) (-15 -4426 ((-974 $))) (IF (|has| |#1| (-360)) (-15 -4415 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) -((-2862 (((-112) $ $) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-4318 ((|#1| $) 13)) (-3914 (((-1138) $) NIL)) (-1359 ((|#2| $) 12)) (-2895 (($ |#1| |#2|) 16)) (-2884 (((-874) $) NIL) (($ (-2 (|:| -4318 |#1|) (|:| -1359 |#2|))) 15) (((-2 (|:| -4318 |#1|) (|:| -1359 |#2|)) $) 14)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 11))) -(((-725 |#1| |#2| |#3|) (-13 (-862) (-502 (-2 (|:| -4318 |#1|) (|:| -1359 |#2|))) (-10 -8 (-15 -1359 (|#2| $)) (-15 -4318 (|#1| $)) (-15 -2895 ($ |#1| |#2|)))) (-862) (-1118) (-1 (-112) (-2 (|:| -4318 |#1|) (|:| -1359 |#2|)) (-2 (|:| -4318 |#1|) (|:| -1359 |#2|)))) (T -725)) -((-1359 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-862)) (-14 *4 (-1 (-112) (-2 (|:| -4318 *3) (|:| -1359 *2)) (-2 (|:| -4318 *3) (|:| -1359 *2)))))) (-4318 (*1 *2 *1) (-12 (-4 *2 (-862)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1118)) (-14 *4 (-1 (-112) (-2 (|:| -4318 *2) (|:| -1359 *3)) (-2 (|:| -4318 *2) (|:| -1359 *3)))))) (-2895 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1118)) (-14 *4 (-1 (-112) (-2 (|:| -4318 *2) (|:| -1359 *3)) (-2 (|:| -4318 *2) (|:| -1359 *3))))))) -(-13 (-862) (-502 (-2 (|:| -4318 |#1|) (|:| -1359 |#2|))) (-10 -8 (-15 -1359 (|#2| $)) (-15 -4318 (|#1| $)) (-15 -2895 ($ |#1| |#2|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 66)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-4401 ((|#1| $) NIL) (((-115) $) 39)) (-1999 (((-3 $ "failed") $) 103)) (-1978 ((|#2| (-115) |#2|) 93)) (-1439 (((-112) $) NIL)) (-1964 (($ |#1| (-372 (-115))) 14)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1990 (($ $ (-1 |#2| |#2|)) 65)) (-2003 (($ $ (-1 |#2| |#2|)) 44)) (-2071 ((|#2| $ |#2|) 33)) (-2017 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2884 (((-874) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) 37 T CONST)) (-3722 (((-112) $ $) NIL)) (-2028 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-1996 (($) 21 T CONST)) (-2011 (($) 9 T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) 48) (($ $ $) NIL)) (-4017 (($ $ $) 83)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) -(((-726 |#1| |#2|) (-13 (-1067) (-1056 |#1|) (-1056 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2028 ($ $)) (-15 -2028 ($ $ $)) (-15 -2017 (|#1| |#1|))) |%noBranch|) (-15 -2003 ($ $ (-1 |#2| |#2|))) (-15 -1990 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1978 (|#2| (-115) |#2|)) (-15 -1964 ($ |#1| (-372 (-115)))))) (-1067) (-660 |#1|)) (T -726)) -((-2028 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2028 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2017 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2003 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1067)) (-5 *1 (-726 *3 *4)))) (-1990 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1067)) (-5 *1 (-726 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1067)) (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1067)) (-5 *1 (-726 *3 *4)) (-4 *4 (-660 *3)))) (-1978 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1067)) (-5 *1 (-726 *4 *2)) (-4 *2 (-660 *4)))) (-1964 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1067)) (-5 *1 (-726 *2 *4)) (-4 *4 (-660 *2))))) -(-13 (-1067) (-1056 |#1|) (-1056 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2028 ($ $)) (-15 -2028 ($ $ $)) (-15 -2017 (|#1| |#1|))) |%noBranch|) (-15 -2003 ($ $ (-1 |#2| |#2|))) (-15 -1990 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1978 (|#2| (-115) |#2|)) (-15 -1964 ($ |#1| (-372 (-115)))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 33)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2309 (($ |#1| |#2|) 25)) (-1999 (((-3 $ "failed") $) 51)) (-1439 (((-112) $) 35)) (-3517 ((|#2| $) 12)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 52)) (-3914 (((-1138) $) NIL)) (-1369 (((-3 $ "failed") $ $) 50)) (-2884 (((-874) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-1871 (((-783)) 28 T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 16 T CONST)) (-2011 (($) 30 T CONST)) (-3915 (((-112) $ $) 41)) (-4029 (($ $) 46) (($ $ $) 40)) (-4017 (($ $ $) 43)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21) (($ $ $) 20))) -(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-1067) (-10 -8 (-15 -3517 (|#2| $)) (-15 -2884 (|#1| $)) (-15 -2309 ($ |#1| |#2|)) (-15 -1369 ((-3 $ "failed") $ $)) (-15 -1999 ((-3 $ "failed") $)) (-15 -4333 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727)) -((-1999 (*1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3517 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2884 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2309 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1369 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4333 (*1 *1 *1) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1067) (-10 -8 (-15 -3517 (|#2| $)) (-15 -2884 (|#1| $)) (-15 -2309 ($ |#1| |#2|)) (-15 -1369 ((-3 $ "failed") $ $)) (-15 -1999 ((-3 $ "failed") $)) (-15 -4333 ($ $)))) -((* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-728 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) (-729 |#2|) (-174)) (T -728)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-729 |#1|) (-141) (-174)) (T -729)) -NIL -(-13 (-111 |t#1| |t#1|) (-652 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-3626 (($ |#1|) 17) (($ $ |#1|) 20)) (-2205 (($ |#1|) 18) (($ $ |#1|) 21)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1439 (((-112) $) NIL)) (-1378 (($ |#1| |#1| |#1| |#1|) 8)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 16)) (-3914 (((-1138) $) NIL)) (-3049 ((|#1| $ |#1|) 24) (((-845 |#1|) $ (-845 |#1|)) 32)) (-3276 (($ $ $) NIL)) (-2920 (($ $ $) NIL)) (-2884 (((-874) $) 39)) (-3722 (((-112) $ $) NIL)) (-2011 (($) 9 T CONST)) (-3915 (((-112) $ $) 48)) (-4039 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14))) -(((-730 |#1|) (-13 (-485) (-10 -8 (-15 -1378 ($ |#1| |#1| |#1| |#1|)) (-15 -3626 ($ |#1|)) (-15 -2205 ($ |#1|)) (-15 -1999 ($)) (-15 -3626 ($ $ |#1|)) (-15 -2205 ($ $ |#1|)) (-15 -1999 ($ $)) (-15 -3049 (|#1| $ |#1|)) (-15 -3049 ((-845 |#1|) $ (-845 |#1|))))) (-374)) (T -730)) -((-1378 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3626 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2205 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1999 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3626 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2205 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1999 (*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3049 (*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3049 (*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3))))) -(-13 (-485) (-10 -8 (-15 -1378 ($ |#1| |#1| |#1| |#1|)) (-15 -3626 ($ |#1|)) (-15 -2205 ($ |#1|)) (-15 -1999 ($)) (-15 -3626 ($ $ |#1|)) (-15 -2205 ($ $ |#1|)) (-15 -1999 ($ $)) (-15 -3049 (|#1| $ |#1|)) (-15 -3049 ((-845 |#1|) $ (-845 |#1|))))) -((-1420 (($ $ (-937)) 19)) (-1410 (($ $ (-937)) 20)) (** (($ $ (-937)) 10))) -(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-937))) (-15 -1410 (|#1| |#1| (-937))) (-15 -1420 (|#1| |#1| (-937)))) (-732)) (T -731)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-937))) (-15 -1410 (|#1| |#1| (-937))) (-15 -1420 (|#1| |#1| (-937)))) -((-2862 (((-112) $ $) 7)) (-1420 (($ $ (-937)) 16)) (-1410 (($ $ (-937)) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6)) (** (($ $ (-937)) 14)) (* (($ $ $) 17))) -(((-732) (-141)) (T -732)) -((* (*1 *1 *1 *1) (-4 *1 (-732))) (-1420 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937)))) (-1410 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937))))) -(-13 (-1118) (-10 -8 (-15 * ($ $ $)) (-15 -1420 ($ $ (-937))) (-15 -1410 ($ $ (-937))) (-15 ** ($ $ (-937))))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-1420 (($ $ (-937)) NIL) (($ $ (-783)) 18)) (-1439 (((-112) $) 10)) (-1410 (($ $ (-937)) NIL) (($ $ (-783)) 19)) (** (($ $ (-937)) NIL) (($ $ (-783)) 16))) -(((-733 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -1410 (|#1| |#1| (-783))) (-15 -1420 (|#1| |#1| (-783))) (-15 -1439 ((-112) |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 -1410 (|#1| |#1| (-937))) (-15 -1420 (|#1| |#1| (-937)))) (-734)) (T -733)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -1410 (|#1| |#1| (-783))) (-15 -1420 (|#1| |#1| (-783))) (-15 -1439 ((-112) |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 -1410 (|#1| |#1| (-937))) (-15 -1420 (|#1| |#1| (-937)))) -((-2862 (((-112) $ $) 7)) (-1388 (((-3 $ "failed") $) 18)) (-1420 (($ $ (-937)) 16) (($ $ (-783)) 23)) (-1999 (((-3 $ "failed") $) 20)) (-1439 (((-112) $) 24)) (-1399 (((-3 $ "failed") $) 19)) (-1410 (($ $ (-937)) 15) (($ $ (-783)) 22)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2011 (($) 25 T CONST)) (-3915 (((-112) $ $) 6)) (** (($ $ (-937)) 14) (($ $ (-783)) 21)) (* (($ $ $) 17))) -(((-734) (-141)) (T -734)) -((-2011 (*1 *1) (-4 *1 (-734))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (-1420 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-1410 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-1999 (*1 *1 *1) (|partial| -4 *1 (-734))) (-1399 (*1 *1 *1) (|partial| -4 *1 (-734))) (-1388 (*1 *1 *1) (|partial| -4 *1 (-734)))) -(-13 (-732) (-10 -8 (-15 (-2011) ($) -3739) (-15 -1439 ((-112) $)) (-15 -1420 ($ $ (-783))) (-15 -1410 ($ $ (-783))) (-15 ** ($ $ (-783))) (-15 -1999 ((-3 $ "failed") $)) (-15 -1399 ((-3 $ "failed") $)) (-15 -1388 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-874)) . T) ((-732) . T) ((-1118) . T)) -((-2416 (((-783)) 39)) (-2449 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-4401 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-2309 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-1999 (((-3 $ "failed") $) 69)) (-2080 (($) 43)) (-1941 ((|#2| $) 21)) (-3660 (($) 18)) (-2390 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-1430 (((-701 |#2|) (-1286 $) (-1 |#2| |#2|)) 64)) (-2616 (((-1286 |#2|) $) NIL) (($ (-1286 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1776 ((|#3| $) 36)) (-1898 (((-1286 $)) 33))) -(((-735 |#1| |#2| |#3|) (-10 -8 (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2080 (|#1|)) (-15 -2416 ((-783))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -1430 ((-701 |#2|) (-1286 |#1|) (-1 |#2| |#2|))) (-15 -2309 ((-3 |#1| "failed") (-419 |#3|))) (-15 -2616 (|#1| |#3|)) (-15 -2309 (|#1| |#3|)) (-15 -3660 (|#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2616 (|#3| |#1|)) (-15 -2616 (|#1| (-1286 |#2|))) (-15 -2616 ((-1286 |#2|) |#1|)) (-15 -1898 ((-1286 |#1|))) (-15 -1776 (|#3| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -1999 ((-3 |#1| "failed") |#1|))) (-736 |#2| |#3|) (-174) (-1262 |#2|)) (T -735)) -((-2416 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-783)) (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5))))) -(-10 -8 (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2080 (|#1|)) (-15 -2416 ((-783))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -1430 ((-701 |#2|) (-1286 |#1|) (-1 |#2| |#2|))) (-15 -2309 ((-3 |#1| "failed") (-419 |#3|))) (-15 -2616 (|#1| |#3|)) (-15 -2309 (|#1| |#3|)) (-15 -3660 (|#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2616 (|#3| |#1|)) (-15 -2616 (|#1| (-1286 |#2|))) (-15 -2616 ((-1286 |#2|) |#1|)) (-15 -1898 ((-1286 |#1|))) (-15 -1776 (|#3| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -1999 ((-3 |#1| "failed") |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 104 (|has| |#1| (-374)))) (-4241 (($ $) 105 (|has| |#1| (-374)))) (-4221 (((-112) $) 107 (|has| |#1| (-374)))) (-4355 (((-701 |#1|) (-1286 $)) 53) (((-701 |#1|)) 68)) (-1448 ((|#1| $) 59)) (-2575 (((-1208 (-937) (-783)) (-576)) 157 (|has| |#1| (-360)))) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 124 (|has| |#1| (-374)))) (-3986 (((-430 $) $) 125 (|has| |#1| (-374)))) (-2922 (((-112) $ $) 115 (|has| |#1| (-374)))) (-2416 (((-783)) 98 (|has| |#1| (-379)))) (-2473 (($) 18 T CONST)) (-2449 (((-3 (-576) "failed") $) 182 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 180 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 177)) (-4401 (((-576) $) 181 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 179 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 178)) (-1339 (($ (-1286 |#1|) (-1286 $)) 55) (($ (-1286 |#1|)) 71)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| |#1| (-360)))) (-2803 (($ $ $) 119 (|has| |#1| (-374)))) (-4342 (((-701 |#1|) $ (-1286 $)) 60) (((-701 |#1|) $) 66)) (-2613 (((-701 (-576)) (-1286 $)) 176 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 175 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 174 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 173) (((-701 |#1|) (-701 $)) 172) (((-701 |#1|) (-1286 $)) 171)) (-2309 (($ |#2|) 168) (((-3 $ "failed") (-419 |#2|)) 165 (|has| |#1| (-374)))) (-1999 (((-3 $ "failed") $) 37)) (-4423 (((-937)) 61)) (-2080 (($) 101 (|has| |#1| (-379)))) (-2814 (($ $ $) 118 (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 113 (|has| |#1| (-374)))) (-2013 (($) 159 (|has| |#1| (-360)))) (-2635 (((-112) $) 160 (|has| |#1| (-360)))) (-4188 (($ $ (-783)) 151 (|has| |#1| (-360))) (($ $) 150 (|has| |#1| (-360)))) (-2463 (((-112) $) 126 (|has| |#1| (-374)))) (-2927 (((-937) $) 162 (|has| |#1| (-360))) (((-845 (-937)) $) 148 (|has| |#1| (-360)))) (-1439 (((-112) $) 35)) (-1941 ((|#1| $) 58)) (-1831 (((-3 $ "failed") $) 152 (|has| |#1| (-360)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 122 (|has| |#1| (-374)))) (-1922 ((|#2| $) 51 (|has| |#1| (-374)))) (-1875 (((-937) $) 100 (|has| |#1| (-379)))) (-2297 ((|#2| $) 166)) (-3888 (($ (-656 $)) 111 (|has| |#1| (-374))) (($ $ $) 110 (|has| |#1| (-374)))) (-3733 (((-1177) $) 10)) (-4333 (($ $) 127 (|has| |#1| (-374)))) (-3475 (($) 153 (|has| |#1| (-360)) CONST)) (-4318 (($ (-937)) 99 (|has| |#1| (-379)))) (-3914 (((-1138) $) 11)) (-3660 (($) 170)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 112 (|has| |#1| (-374)))) (-3928 (($ (-656 $)) 109 (|has| |#1| (-374))) (($ $ $) 108 (|has| |#1| (-374)))) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) 156 (|has| |#1| (-360)))) (-2354 (((-430 $) $) 123 (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 120 (|has| |#1| (-374)))) (-2852 (((-3 $ "failed") $ $) 103 (|has| |#1| (-374)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 114 (|has| |#1| (-374)))) (-2910 (((-783) $) 116 (|has| |#1| (-374)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 117 (|has| |#1| (-374)))) (-2790 ((|#1| (-1286 $)) 54) ((|#1|) 67)) (-4197 (((-783) $) 161 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 149 (|has| |#1| (-360)))) (-2390 (($ $ (-783)) 146 (-3766 (-3227 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 144 (-3766 (-3227 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) 140 (-3227 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195) (-783)) 139 (-3227 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-656 (-1195))) 138 (-3227 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195)) 136 (-3227 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|) (-783)) 133 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-374)))) (-1430 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) 164 (|has| |#1| (-374)))) (-1360 ((|#2|) 169)) (-2560 (($) 158 (|has| |#1| (-360)))) (-3629 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56) (((-1286 |#1|) $) 73) (((-701 |#1|) (-1286 $)) 72)) (-2616 (((-1286 |#1|) $) 70) (($ (-1286 |#1|)) 69) ((|#2| $) 183) (($ |#2|) 167)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 155 (|has| |#1| (-360)))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 102 (|has| |#1| (-374))) (($ (-419 (-576))) 97 (-3766 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576))))))) (-3148 (($ $) 154 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1776 ((|#2| $) 52)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1898 (((-1286 $)) 74)) (-4232 (((-112) $ $) 106 (|has| |#1| (-374)))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-783)) 147 (-3766 (-3227 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-3766 (-3227 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) 143 (-3227 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195) (-783)) 142 (-3227 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-656 (-1195))) 141 (-3227 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195)) 137 (-3227 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|) (-783)) 135 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374)))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ $) 131 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 128 (|has| |#1| (-374)))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 130 (|has| |#1| (-374))) (($ $ (-419 (-576))) 129 (|has| |#1| (-374))))) -(((-736 |#1| |#2|) (-141) (-174) (-1262 |t#1|)) (T -736)) -((-3660 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1262 *2)))) (-1360 (*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) (-2309 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3)))) (-2616 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) (-2309 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) (-1430 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1262 *5)) (-5 *2 (-701 *5))))) -(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -3660 ($)) (-15 -1360 (|t#2|)) (-15 -2309 ($ |t#2|)) (-15 -2616 ($ |t#2|)) (-15 -2297 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-233 |t#1|)) (-15 -2309 ((-3 $ "failed") (-419 |t#2|))) (-15 -1430 ((-701 |t#1|) (-1286 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3766 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) . T) ((-626 |#2|) . T) ((-235 $) -3766 (|has| |#1| (-360)) (-12 (|has| |#1| (-239)) (|has| |#1| (-374)))) ((-233 |#1|) |has| |#1| (-374)) ((-239) -3766 (|has| |#1| (-360)) (-12 (|has| |#1| (-239)) (|has| |#1| (-374)))) ((-238) -3766 (|has| |#1| (-360)) (-12 (|has| |#1| (-239)) (|has| |#1| (-374)))) ((-249) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -3766 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))) ((-914 #2#) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))) ((-916 #2#) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))) ((-936) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1074 #0#) -3766 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1074 |#1|) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| |#1| (-360)) ((-1236) -3766 (|has| |#1| (-360)) (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))) (-12 (|has| |#1| (-239)) (|has| |#1| (-374)))) ((-1240) -3766 (|has| |#1| (-360)) (|has| |#1| (-374)))) -((-2473 (($) 11)) (-1999 (((-3 $ "failed") $) 14)) (-1439 (((-112) $) 10)) (** (($ $ (-937)) NIL) (($ $ (-783)) 20))) -(((-737 |#1|) (-10 -8 (-15 -1999 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -1439 ((-112) |#1|)) (-15 -2473 (|#1|)) (-15 ** (|#1| |#1| (-937)))) (-738)) (T -737)) -NIL -(-10 -8 (-15 -1999 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -1439 ((-112) |#1|)) (-15 -2473 (|#1|)) (-15 ** (|#1| |#1| (-937)))) -((-2862 (((-112) $ $) 7)) (-2473 (($) 19 T CONST)) (-1999 (((-3 $ "failed") $) 16)) (-1439 (((-112) $) 18)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2011 (($) 20 T CONST)) (-3915 (((-112) $ $) 6)) (** (($ $ (-937)) 14) (($ $ (-783)) 17)) (* (($ $ $) 15))) -(((-738) (-141)) (T -738)) -((-2011 (*1 *1) (-4 *1 (-738))) (-2473 (*1 *1) (-4 *1 (-738))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) (-1999 (*1 *1 *1) (|partial| -4 *1 (-738)))) -(-13 (-1130) (-10 -8 (-15 (-2011) ($) -3739) (-15 -2473 ($) -3739) (-15 -1439 ((-112) $)) (-15 ** ($ $ (-783))) (-15 -1999 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-874)) . T) ((-1130) . T) ((-1118) . T)) -((-1450 (((-2 (|:| -1502 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-2921 (((-2 (|:| -1502 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1462 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-1754 (((-2 (|:| |poly| |#2|) (|:| -1502 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48))) -(((-739 |#1| |#2|) (-10 -7 (-15 -2921 ((-2 (|:| -1502 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1450 ((-2 (|:| -1502 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1462 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -1754 ((-2 (|:| |poly| |#2|) (|:| -1502 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1262 |#1|)) (T -739)) -((-1754 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1502 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) (-1462 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -1502 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-739 *5 *3)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -1502 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3))))) -(-10 -7 (-15 -2921 ((-2 (|:| -1502 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1450 ((-2 (|:| -1502 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1462 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -1754 ((-2 (|:| |poly| |#2|) (|:| -1502 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) -((-2505 ((|#7| (-656 |#5|) |#6|) NIL)) (-2551 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2551 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2505 (|#7| (-656 |#5|) |#6|))) (-862) (-805) (-805) (-1067) (-1067) (-965 |#4| |#2| |#1|) (-965 |#5| |#3| |#1|)) (T -740)) -((-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *9)) (-4 *9 (-1067)) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *8 (-1067)) (-4 *2 (-965 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-965 *8 *6 *5)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1067)) (-4 *9 (-1067)) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *2 (-965 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-965 *8 *6 *5))))) -(-10 -7 (-15 -2551 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2505 (|#7| (-656 |#5|) |#6|))) -((-2551 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2551 (|#7| (-1 |#2| |#1|) |#6|))) (-862) (-862) (-805) (-805) (-1067) (-965 |#5| |#3| |#1|) (-965 |#5| |#4| |#2|)) (T -741)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-805)) (-4 *9 (-1067)) (-4 *2 (-965 *9 *8 *6)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) (-4 *4 (-965 *9 *7 *5))))) -(-10 -7 (-15 -2551 (|#7| (-1 |#2| |#1|) |#6|))) -((-2354 (((-430 |#4|) |#4|) 42))) -(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2354 ((-430 |#4|) |#4|))) (-805) (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)) (-15 -1441 ((-3 $ "failed") (-1195))))) (-317) (-965 (-968 |#3|) |#1| |#2|)) (T -742)) -((-2354 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)) (-15 -1441 ((-3 $ "failed") (-1195)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-965 (-968 *6) *4 *5))))) -(-10 -7 (-15 -2354 ((-430 |#4|) |#4|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 (-876 |#1|)) $) NIL)) (-3467 (((-1191 $) $ (-876 |#1|)) NIL) (((-1191 |#2|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4241 (($ $) NIL (|has| |#2| (-568)))) (-4221 (((-112) $) NIL (|has| |#2| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2944 (($ $) NIL (|has| |#2| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4401 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-876 |#1|) $) NIL)) (-2778 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-4407 (($ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#2| (-925)))) (-3098 (($ $ |#2| (-543 (-876 |#1|)) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-2437 (($ (-1191 |#2|) (-876 |#1|)) NIL) (($ (-1191 $) (-876 |#1|)) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#2| (-543 (-876 |#1|))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-876 |#1|)) NIL)) (-1864 (((-543 (-876 |#1|)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-3109 (($ (-1 (-543 (-876 |#1|)) (-543 (-876 |#1|))) $) NIL)) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-2788 (((-3 (-876 |#1|) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3733 (((-1177) $) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -1359 (-783))) "failed") $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) NIL)) (-4359 ((|#2| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#2| (-925)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-2790 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2390 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3813 (((-543 (-876 |#1|)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1841 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-3766 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576))))))) (-1993 (((-656 |#2|) $) NIL)) (-3245 ((|#2| $ (-543 (-876 |#1|))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#2| (-568)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-743 |#1| |#2|) (-965 |#2| (-543 (-876 |#1|)) (-876 |#1|)) (-656 (-1195)) (-1067)) (T -743)) -NIL -(-965 |#2| (-543 (-876 |#1|)) (-876 |#1|)) -((-1478 (((-2 (|:| -2158 (-968 |#3|)) (|:| -4193 (-968 |#3|))) |#4|) 14)) (-3052 ((|#4| |#4| |#2|) 33)) (-1508 ((|#4| (-419 (-968 |#3|)) |#2|) 64)) (-1497 ((|#4| (-1191 (-968 |#3|)) |#2|) 77)) (-1488 ((|#4| (-1191 |#4|) |#2|) 51)) (-3038 ((|#4| |#4| |#2|) 54)) (-2354 (((-430 |#4|) |#4|) 40))) -(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1478 ((-2 (|:| -2158 (-968 |#3|)) (|:| -4193 (-968 |#3|))) |#4|)) (-15 -3038 (|#4| |#4| |#2|)) (-15 -1488 (|#4| (-1191 |#4|) |#2|)) (-15 -3052 (|#4| |#4| |#2|)) (-15 -1497 (|#4| (-1191 (-968 |#3|)) |#2|)) (-15 -1508 (|#4| (-419 (-968 |#3|)) |#2|)) (-15 -2354 ((-430 |#4|) |#4|))) (-805) (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)))) (-568) (-965 (-419 (-968 |#3|)) |#1| |#2|)) (T -744)) -((-2354 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-965 (-419 (-968 *6)) *4 *5)))) (-1508 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-965 *3 *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-968 *6))) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 (-968 *6))) (-4 *6 (-568)) (-4 *2 (-965 (-419 (-968 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))))) (-3052 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-965 (-419 (-968 *5)) *4 *3)))) (-1488 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *2)) (-4 *2 (-965 (-419 (-968 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))) (-4 *6 (-568)))) (-3038 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-965 (-419 (-968 *5)) *4 *3)))) (-1478 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -2158 (-968 *6)) (|:| -4193 (-968 *6)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-965 (-419 (-968 *6)) *4 *5))))) -(-10 -7 (-15 -1478 ((-2 (|:| -2158 (-968 |#3|)) (|:| -4193 (-968 |#3|))) |#4|)) (-15 -3038 (|#4| |#4| |#2|)) (-15 -1488 (|#4| (-1191 |#4|) |#2|)) (-15 -3052 (|#4| |#4| |#2|)) (-15 -1497 (|#4| (-1191 (-968 |#3|)) |#2|)) (-15 -1508 (|#4| (-419 (-968 |#3|)) |#2|)) (-15 -2354 ((-430 |#4|) |#4|))) -((-2354 (((-430 |#4|) |#4|) 54))) -(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2354 ((-430 |#4|) |#4|))) (-805) (-862) (-13 (-317) (-148)) (-965 (-419 |#3|) |#1| |#2|)) (T -745)) -((-2354 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-965 (-419 *6) *4 *5))))) -(-10 -7 (-15 -2354 ((-430 |#4|) |#4|))) -((-2551 (((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)) 18))) -(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -2551 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) (-1067) (-1067) (-738)) (T -746)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) (-5 *1 (-746 *5 *6 *7))))) -(-10 -7 (-15 -2551 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 36)) (-2934 (((-656 (-2 (|:| -1755 |#1|) (|:| -3694 |#2|))) $) 37)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2416 (((-783)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-4401 ((|#2| $) NIL) ((|#1| $) NIL)) (-4407 (($ $) 102 (|has| |#2| (-862)))) (-1999 (((-3 $ "failed") $) 85)) (-2080 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) 70)) (-1876 (((-656 $) $) 52)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| |#2|) 17)) (-2551 (($ (-1 |#1| |#1|) $) 68)) (-1875 (((-937) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-4371 ((|#2| $) 101 (|has| |#2| (-862)))) (-4383 ((|#1| $) 100 (|has| |#2| (-862)))) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-656 (-2 (|:| -1755 |#1|) (|:| -3694 |#2|)))) 11)) (-1993 (((-656 |#1|) $) 54)) (-3245 ((|#1| $ |#2|) 115)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 12 T CONST)) (-2011 (($) 44 T CONST)) (-3915 (((-112) $ $) 105)) (-4029 (($ $) 61) (($ $ $) NIL)) (-4017 (($ $ $) 33)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-747 |#1| |#2|) (-13 (-1067) (-1056 |#2|) (-1056 |#1|) (-10 -8 (-15 -2421 ($ |#1| |#2|)) (-15 -3245 (|#1| $ |#2|)) (-15 -2884 ($ (-656 (-2 (|:| -1755 |#1|) (|:| -3694 |#2|))))) (-15 -2934 ((-656 (-2 (|:| -1755 |#1|) (|:| -3694 |#2|))) $)) (-15 -2551 ($ (-1 |#1| |#1|) $)) (-15 -3734 ((-112) $)) (-15 -1993 ((-656 |#1|) $)) (-15 -1876 ((-656 $) $)) (-15 -1518 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -4371 (|#2| $)) (-15 -4383 (|#1| $)) (-15 -4407 ($ $))) |%noBranch|))) (-1067) (-738)) (T -747)) -((-2421 (*1 *1 *2 *3) (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-738)))) (-3245 (*1 *2 *1 *3) (-12 (-4 *2 (-1067)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -1755 *3) (|:| -3694 *4)))) (-4 *3 (-1067)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1755 *3) (|:| -3694 *4)))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738)))) (-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-747 *3 *4)) (-4 *4 (-738)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738)))) (-1876 (*1 *2 *1) (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738)))) (-4371 (*1 *2 *1) (-12 (-4 *2 (-738)) (-4 *2 (-862)) (-5 *1 (-747 *3 *2)) (-4 *3 (-1067)))) (-4383 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *3 (-738)))) (-4407 (*1 *1 *1) (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1067)) (-4 *3 (-738))))) -(-13 (-1067) (-1056 |#2|) (-1056 |#1|) (-10 -8 (-15 -2421 ($ |#1| |#2|)) (-15 -3245 (|#1| $ |#2|)) (-15 -2884 ($ (-656 (-2 (|:| -1755 |#1|) (|:| -3694 |#2|))))) (-15 -2934 ((-656 (-2 (|:| -1755 |#1|) (|:| -3694 |#2|))) $)) (-15 -2551 ($ (-1 |#1| |#1|) $)) (-15 -3734 ((-112) $)) (-15 -1993 ((-656 |#1|) $)) (-15 -1876 ((-656 $) $)) (-15 -1518 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -4371 (|#2| $)) (-15 -4383 (|#1| $)) (-15 -4407 ($ $))) |%noBranch|))) -((-2862 (((-112) $ $) 19)) (-1645 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3682 (($ $ $) 73)) (-3672 (((-112) $ $) 74)) (-2970 (((-112) $ (-783)) 8)) (-1330 (($ (-656 |#1|)) 69) (($) 68)) (-1443 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-2257 (($ $) 63)) (-1919 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2833 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3634 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3712 (((-112) $ $) 65)) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22)) (-3703 (($ $ $) 70)) (-3449 ((|#1| $) 40)) (-3807 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3914 (((-1138) $) 21)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3458 ((|#1| $) 42)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2245 (((-656 (-2 (|:| -3180 |#1|) (|:| -3926 (-783)))) $) 62)) (-3693 (($ $ |#1|) 72) (($ $ $) 71)) (-1581 (($) 50) (($ (-656 |#1|)) 49)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 51)) (-2884 (((-874) $) 18)) (-2557 (($ (-656 |#1|)) 67) (($) 66)) (-3722 (((-112) $ $) 23)) (-3541 (($ (-656 |#1|)) 43)) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20)) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-748 |#1|) (-141) (-1118)) (T -748)) -NIL -(-13 (-707 |t#1|) (-1116 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-241 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-707 |#1|) . T) ((-1116 |#1|) . T) ((-1118) . T) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-1645 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-3682 (($ $ $) 96)) (-3672 (((-112) $ $) 104)) (-2970 (((-112) $ (-783)) NIL)) (-1330 (($ (-656 |#1|)) 26) (($) 17)) (-1443 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2257 (($ $) 85)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2833 (($ |#1| $) 70 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-4001 (((-656 |#1|) $) 32 (|has| $ (-6 -4461)))) (-3712 (((-112) $ $) 103)) (-1528 (($) 15) (($ |#1|) 28) (($ (-656 |#1|)) 23)) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) 38)) (-3743 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2848 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 89)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-3703 (($ $ $) 94)) (-3449 ((|#1| $) 62)) (-3807 (($ |#1| $) 63) (($ |#1| $ (-783)) 86)) (-3914 (((-1138) $) NIL)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3458 ((|#1| $) 61)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 56)) (-1458 (($) 14)) (-2245 (((-656 (-2 (|:| -3180 |#1|) (|:| -3926 (-783)))) $) 55)) (-3693 (($ $ |#1|) NIL) (($ $ $) 95)) (-1581 (($) 16) (($ (-656 |#1|)) 25)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) 68 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) 79)) (-2616 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 22)) (-2884 (((-874) $) 49)) (-2557 (($ (-656 |#1|)) 27) (($) 18)) (-3722 (((-112) $ $) NIL)) (-3541 (($ (-656 |#1|)) 24)) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 100)) (-2872 (((-783) $) 67 (|has| $ (-6 -4461))))) -(((-749 |#1|) (-13 (-748 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -1528 ($)) (-15 -1528 ($ |#1|)) (-15 -1528 ($ (-656 |#1|))) (-15 -1496 ((-656 |#1|) $)) (-15 -3634 ($ |#1| $ (-576))) (-15 -3634 ($ (-1 (-112) |#1|) $ (-576))) (-15 -2833 ($ |#1| $ (-576))) (-15 -2833 ($ (-1 (-112) |#1|) $ (-576))))) (-1118)) (T -749)) -((-1528 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1118)))) (-1528 (*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1118)))) (-1528 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-749 *3)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1118)))) (-3634 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1118)))) (-3634 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1118)) (-5 *1 (-749 *4)))) (-2833 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1118)))) (-2833 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1118)) (-5 *1 (-749 *4))))) -(-13 (-748 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -1528 ($)) (-15 -1528 ($ |#1|)) (-15 -1528 ($ (-656 |#1|))) (-15 -1496 ((-656 |#1|) $)) (-15 -3634 ($ |#1| $ (-576))) (-15 -3634 ($ (-1 (-112) |#1|) $ (-576))) (-15 -2833 ($ |#1| $ (-576))) (-15 -2833 ($ (-1 (-112) |#1|) $ (-576))))) -((-1468 (((-1291) (-1177)) 8))) -(((-750) (-10 -7 (-15 -1468 ((-1291) (-1177))))) (T -750)) -((-1468 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-750))))) -(-10 -7 (-15 -1468 ((-1291) (-1177)))) -((-1541 (((-656 |#1|) (-656 |#1|) (-656 |#1|)) 15))) -(((-751 |#1|) (-10 -7 (-15 -1541 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) (-862)) (T -751)) -((-1541 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-751 *3))))) -(-10 -7 (-15 -1541 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1607 (((-656 |#2|) $) 149)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-4241 (($ $) 141 (|has| |#1| (-568)))) (-4221 (((-112) $) 139 (|has| |#1| (-568)))) (-3924 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) 20)) (-2474 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3898 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-1522 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) 18 T CONST)) (-4407 (($ $) 133)) (-1999 (((-3 $ "failed") $) 37)) (-2486 (((-968 |#1|) $ (-783)) 111) (((-968 |#1|) $ (-783) (-783)) 110)) (-1355 (((-112) $) 150)) (-1632 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-783) $ |#2|) 113) (((-783) $ |#2| (-783)) 112)) (-1439 (((-112) $) 35)) (-3298 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-3734 (((-112) $) 131)) (-2421 (($ $ (-656 |#2|) (-656 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-783)) 115) (($ $ (-656 |#2|) (-656 (-783))) 114)) (-2551 (($ (-1 |#1| |#1|) $) 130)) (-3464 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) 128)) (-4383 ((|#1| $) 127)) (-3733 (((-1177) $) 10)) (-1956 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-3914 (((-1138) $) 11)) (-2904 (($ $ (-783)) 116)) (-2852 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-2666 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (($ $ |#2| $) 124) (($ $ (-656 |#2|) (-656 $)) 123) (($ $ (-656 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-656 $) (-656 $)) 119)) (-2390 (($ $ (-656 |#2|) (-656 (-783))) 44) (($ $ |#2| (-783)) 43) (($ $ (-656 |#2|)) 42) (($ $ |#2|) 40)) (-3813 (((-543 |#2|) $) 129)) (-1532 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) 151)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3245 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-783)) 118) (($ $ (-656 |#2|) (-656 (-783))) 117)) (-3148 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1570 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) 140 (|has| |#1| (-568)))) (-1545 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-2915 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-656 |#2|) (-656 (-783))) 47) (($ $ |#2| (-783)) 46) (($ $ (-656 |#2|)) 45) (($ $ |#2|) 41)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125))) -(((-752 |#1| |#2|) (-141) (-1067) (-862)) (T -752)) -((-3245 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1067)) (-4 *2 (-862)))) (-3245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-862)))) (-2904 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-862)))) (-2421 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1067)) (-4 *2 (-862)))) (-2421 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-862)))) (-2927 (*1 *2 *1 *3) (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-862)) (-5 *2 (-783)))) (-2927 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-862)))) (-2486 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-862)) (-5 *2 (-968 *4)))) (-2486 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-862)) (-5 *2 (-968 *4)))) (-1956 (*1 *1 *1 *2) (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-862)) (-4 *3 (-38 (-419 (-576))))))) -(-13 (-914 |t#2|) (-991 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -3245 ($ $ |t#2| (-783))) (-15 -3245 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -2904 ($ $ (-783))) (-15 -2421 ($ $ |t#2| (-783))) (-15 -2421 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -2927 ((-783) $ |t#2|)) (-15 -2927 ((-783) $ |t#2| (-783))) (-15 -2486 ((-968 |t#1|) $ (-783))) (-15 -2486 ((-968 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ($ $ |t#2|)) (-6 (-1020)) (-6 (-1221))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ |#2|) . T) ((-914 |#2|) . T) ((-916 |#2|) . T) ((-991 |#1| #0# |#2|) . T) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1069 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T)) -((-2354 (((-430 (-1191 |#4|)) (-1191 |#4|)) 30) (((-430 |#4|) |#4|) 26))) -(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2354 ((-430 |#4|) |#4|)) (-15 -2354 ((-430 (-1191 |#4|)) (-1191 |#4|)))) (-862) (-805) (-13 (-317) (-148)) (-965 |#3| |#2| |#1|)) (T -753)) -((-2354 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-2354 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-965 *6 *5 *4))))) -(-10 -7 (-15 -2354 ((-430 |#4|) |#4|)) (-15 -2354 ((-430 (-1191 |#4|)) (-1191 |#4|)))) -((-1579 (((-430 |#4|) |#4| |#2|) 140)) (-1550 (((-430 |#4|) |#4|) NIL)) (-3986 (((-430 (-1191 |#4|)) (-1191 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-1600 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -2354 (-1191 |#4|)) (|:| -1359 (-576)))))) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 81)) (-3582 (((-1191 |#3|) (-1191 |#3|) (-576)) 166)) (-3572 (((-656 (-783)) (-1191 |#4|) (-656 |#2|) (-783)) 75)) (-2297 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-1191 |#3|) (-1191 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|)) 79)) (-1614 (((-2 (|:| |upol| (-1191 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576))))) (|:| |ctpol| |#3|)) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 27)) (-1590 (((-2 (|:| -1808 (-1191 |#4|)) (|:| |polval| (-1191 |#3|))) (-1191 |#4|) (-1191 |#3|) (-576)) 72)) (-1565 (((-576) (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576))))) 162)) (-1625 ((|#4| (-576) (-430 |#4|)) 73)) (-2339 (((-112) (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576)))) (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576))))) NIL))) -(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3986 ((-430 |#4|) |#4|)) (-15 -3986 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -1550 ((-430 |#4|) |#4|)) (-15 -1565 ((-576) (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576)))))) (-15 -1579 ((-430 |#4|) |#4| |#2|)) (-15 -1590 ((-2 (|:| -1808 (-1191 |#4|)) (|:| |polval| (-1191 |#3|))) (-1191 |#4|) (-1191 |#3|) (-576))) (-15 -1600 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -2354 (-1191 |#4|)) (|:| -1359 (-576)))))) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1614 ((-2 (|:| |upol| (-1191 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576))))) (|:| |ctpol| |#3|)) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1625 (|#4| (-576) (-430 |#4|))) (-15 -2339 ((-112) (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576)))) (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576)))))) (-15 -2297 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-1191 |#3|) (-1191 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -3572 ((-656 (-783)) (-1191 |#4|) (-656 |#2|) (-783))) (-15 -3582 ((-1191 |#3|) (-1191 |#3|) (-576)))) (-805) (-862) (-317) (-965 |#3| |#1| |#2|)) (T -754)) -((-3582 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-4 *7 (-862)) (-4 *9 (-965 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))) (-2297 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1191 *11)) (-5 *6 (-656 *10)) (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-862)) (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-965 *11 *9 *10)) (-5 *2 (-656 (-1191 *5))) (-5 *1 (-754 *9 *10 *11 *5)) (-5 *3 (-1191 *5)))) (-2339 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-2 (|:| -2354 (-1191 *6)) (|:| -1359 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-965 *7 *5 *6)) (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-317)))) (-1614 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-965 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |upol| (-1191 *8)) (|:| |Lval| (-656 *8)) (|:| |Lfact| (-656 (-2 (|:| -2354 (-1191 *8)) (|:| -1359 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-754 *6 *7 *8 *9)))) (-1600 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-965 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-656 (-2 (|:| -2354 (-1191 *9)) (|:| -1359 (-576))))))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-965 *8 *6 *7)) (-5 *2 (-2 (|:| -1808 (-1191 *9)) (|:| |polval| (-1191 *8)))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9)) (-5 *4 (-1191 *8)))) (-1579 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-965 *6 *5 *4)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2354 (-1191 *6)) (|:| -1359 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))) (-1550 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-965 *6 *4 *5)))) (-3986 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-3986 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-965 *6 *4 *5))))) -(-10 -7 (-15 -3986 ((-430 |#4|) |#4|)) (-15 -3986 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -1550 ((-430 |#4|) |#4|)) (-15 -1565 ((-576) (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576)))))) (-15 -1579 ((-430 |#4|) |#4| |#2|)) (-15 -1590 ((-2 (|:| -1808 (-1191 |#4|)) (|:| |polval| (-1191 |#3|))) (-1191 |#4|) (-1191 |#3|) (-576))) (-15 -1600 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -2354 (-1191 |#4|)) (|:| -1359 (-576)))))) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1614 ((-2 (|:| |upol| (-1191 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576))))) (|:| |ctpol| |#3|)) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1625 (|#4| (-576) (-430 |#4|))) (-15 -2339 ((-112) (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576)))) (-656 (-2 (|:| -2354 (-1191 |#3|)) (|:| -1359 (-576)))))) (-15 -2297 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-1191 |#3|) (-1191 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -3572 ((-656 (-783)) (-1191 |#4|) (-656 |#2|) (-783))) (-15 -3582 ((-1191 |#3|) (-1191 |#3|) (-576)))) -((-3593 (($ $ (-937)) 17))) -(((-755 |#1| |#2|) (-10 -8 (-15 -3593 (|#1| |#1| (-937)))) (-756 |#2|) (-174)) (T -755)) -NIL -(-10 -8 (-15 -3593 (|#1| |#1| (-937)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1420 (($ $ (-937)) 31)) (-3593 (($ $ (-937)) 38)) (-1410 (($ $ (-937)) 32)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2920 (($ $ $) 28)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2931 (($ $ $ $) 29)) (-2908 (($ $ $) 27)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 33)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-756 |#1|) (-141) (-174)) (T -756)) -((-3593 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) -(-13 (-773) (-729 |t#1|) (-10 -8 (-15 -3593 ($ $ (-937))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-773) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T)) -((-3610 (((-1053) (-701 (-227)) (-576) (-112) (-576)) 25)) (-3602 (((-1053) (-701 (-227)) (-576) (-112) (-576)) 24))) -(((-757) (-10 -7 (-15 -3602 ((-1053) (-701 (-227)) (-576) (-112) (-576))) (-15 -3610 ((-1053) (-701 (-227)) (-576) (-112) (-576))))) (T -757)) -((-3610 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1053)) (-5 *1 (-757)))) (-3602 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1053)) (-5 *1 (-757))))) -(-10 -7 (-15 -3602 ((-1053) (-701 (-227)) (-576) (-112) (-576))) (-15 -3610 ((-1053) (-701 (-227)) (-576) (-112) (-576)))) -((-3637 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-3628 (((-1053) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-3619 (((-1053) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) 32))) -(((-758) (-10 -7 (-15 -3619 ((-1053) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030))))) (-15 -3628 ((-1053) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -3637 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -758)) -((-3637 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1053)) (-5 *1 (-758)))) (-3628 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1053)) (-5 *1 (-758)))) (-3619 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) (-5 *2 (-1053)) (-5 *1 (-758))))) -(-10 -7 (-15 -3619 ((-1053) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030))))) (-15 -3628 ((-1053) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -3637 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))))) -((-3767 (((-1053) (-576) (-576) (-701 (-227)) (-576)) 34)) (-3754 (((-1053) (-576) (-576) (-701 (-227)) (-576)) 33)) (-3742 (((-1053) (-576) (-701 (-227)) (-576)) 32)) (-3732 (((-1053) (-576) (-701 (-227)) (-576)) 31)) (-3720 (((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 30)) (-3711 (((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-3702 (((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3692 (((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-3681 (((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-3671 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-3658 (((-1053) (-576) (-701 (-227)) (-576)) 22)) (-3646 (((-1053) (-576) (-701 (-227)) (-576)) 21))) -(((-759) (-10 -7 (-15 -3646 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3658 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3671 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3681 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3692 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3702 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3711 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3720 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3732 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3742 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3754 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -3767 ((-1053) (-576) (-576) (-701 (-227)) (-576))))) (T -759)) -((-3767 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3754 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3742 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3732 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3720 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3711 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3702 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3692 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3681 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3671 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3658 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3646 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759))))) -(-10 -7 (-15 -3646 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3658 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3671 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3681 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3692 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3702 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3711 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3720 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3732 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3742 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3754 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -3767 ((-1053) (-576) (-576) (-701 (-227)) (-576)))) -((-3901 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3890 (((-1053) (-701 (-227)) (-701 (-227)) (-576) (-576)) 51)) (-3878 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3867 (((-1053) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-3856 (((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-3845 (((-1053) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-3833 (((-1053) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-3822 (((-1053) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-3811 (((-1053) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) 38)) (-3801 (((-1053) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) 37)) (-3789 (((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) 33)) (-3777 (((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) 32))) -(((-760) (-10 -7 (-15 -3777 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030))))) (-15 -3789 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030))))) (-15 -3801 ((-1053) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030))))) (-15 -3811 ((-1053) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030))))) (-15 -3822 ((-1053) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3833 ((-1053) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3845 ((-1053) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3856 ((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3867 ((-1053) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -3878 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3890 ((-1053) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -3901 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -760)) -((-3901 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3890 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3878 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3867 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3856 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3845 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3833 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3822 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3811 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3801 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3789 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3777 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) (-5 *2 (-1053)) (-5 *1 (-760))))) -(-10 -7 (-15 -3777 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030))))) (-15 -3789 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030))))) (-15 -3801 ((-1053) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030))))) (-15 -3811 ((-1053) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030))))) (-15 -3822 ((-1053) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3833 ((-1053) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3845 ((-1053) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3856 ((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3867 ((-1053) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -3878 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3890 ((-1053) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -3901 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))))) -((-4006 (((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3994 (((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3981 (((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-3968 (((-1053) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-3955 (((-1053) (-227) (-576) (-576) (-1177) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3939 (((-1053) (-227) (-576) (-576) (-227) (-1177) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3929 (((-1053) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-3912 (((-1053) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-761) (-10 -7 (-15 -3912 ((-1053) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3929 ((-1053) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3939 ((-1053) (-227) (-576) (-576) (-227) (-1177) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3955 ((-1053) (-227) (-576) (-576) (-1177) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3968 ((-1053) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3981 ((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3994 ((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3994 ((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -4006 ((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -761)) -((-4006 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3994 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3994 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3981 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3968 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3955 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3939 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3929 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3912 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761))))) -(-10 -7 (-15 -3912 ((-1053) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3929 ((-1053) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3939 ((-1053) (-227) (-576) (-576) (-227) (-1177) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3955 ((-1053) (-227) (-576) (-576) (-1177) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3968 ((-1053) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3981 ((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3994 ((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3994 ((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -4006 ((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-4036 (((-1053) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)) 45)) (-4026 (((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1177) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-4014 (((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 23))) -(((-762) (-10 -7 (-15 -4014 ((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4026 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1177) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -4036 ((-1053) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))) (T -762)) -((-4036 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-762)))) (-4026 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1053)) (-5 *1 (-762)))) (-4014 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-762))))) -(-10 -7 (-15 -4014 ((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4026 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1177) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -4036 ((-1053) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)))) -((-4125 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)) 35)) (-4117 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-4107 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576)) 33)) (-4098 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-4091 (((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-4082 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576)) 27)) (-4073 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 24)) (-4065 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 23)) (-4055 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576)) 22)) (-4047 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 21))) -(((-763) (-10 -7 (-15 -4047 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4055 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4065 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4073 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4082 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -4091 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4098 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4107 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -4117 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -4125 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))) (T -763)) -((-4125 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-763)))) (-4117 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-763)))) (-4107 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-763)))) (-4098 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763)))) (-4091 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763)))) (-4082 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-763)))) (-4073 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763)))) (-4065 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763)))) (-4055 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763)))) (-4047 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763))))) -(-10 -7 (-15 -4047 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4055 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4065 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4073 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4082 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -4091 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4098 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4107 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -4117 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -4125 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)))) -((-3139 (((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 45)) (-3127 (((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576)) 44)) (-3117 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 43)) (-3106 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 42)) (-3095 (((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576)) 41)) (-3083 (((-1053) (-1177) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 40)) (-3071 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576)) 39)) (-3060 (((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576))) 38)) (-3045 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576)) 35)) (-3033 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576)) 34)) (-3019 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576)) 33)) (-3008 (((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 32)) (-2999 (((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576)) 31)) (-2988 (((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-2975 (((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-4150 (((-1053) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576)) 28)) (-4142 (((-1053) (-576) (-701 (-227)) (-227) (-576)) 24)) (-4133 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 21))) -(((-764) (-10 -7 (-15 -4133 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4142 ((-1053) (-576) (-701 (-227)) (-227) (-576))) (-15 -4150 ((-1053) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -2975 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2988 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2999 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -3008 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3019 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -3033 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -3045 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3060 ((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -3071 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -3083 ((-1053) (-1177) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3095 ((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3106 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3117 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3127 ((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3139 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))) (T -764)) -((-3139 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3127 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3117 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3106 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3095 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3083 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3071 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3060 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3045 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3033 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3019 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3008 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764)))) (-2999 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-2988 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-2975 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-4150 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-4142 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-4133 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764))))) -(-10 -7 (-15 -4133 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4142 ((-1053) (-576) (-701 (-227)) (-227) (-576))) (-15 -4150 ((-1053) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -2975 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2988 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2999 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -3008 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3019 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -3033 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -3045 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3060 ((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -3071 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -3083 ((-1053) (-1177) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3095 ((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3106 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3117 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3127 ((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3139 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)))) -((-3224 (((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)) 63)) (-3213 (((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3204 (((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-3193 (((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576)) 51)) (-3182 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3170 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3160 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3149 (((-1053) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-765) (-10 -7 (-15 -3149 ((-1053) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3160 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3170 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -3182 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -3193 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -3204 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3213 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3224 ((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))) (T -765)) -((-3224 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-765)))) (-3213 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-765)))) (-3204 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-765)))) (-3193 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *2 (-1053)) (-5 *1 (-765)))) (-3182 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1053)) (-5 *1 (-765)))) (-3170 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1053)) (-5 *1 (-765)))) (-3160 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1053)) (-5 *1 (-765)))) (-3149 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-765))))) -(-10 -7 (-15 -3149 ((-1053) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3160 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3170 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -3182 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -3193 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -3204 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3213 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3224 ((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)))) -((-3332 (((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 47)) (-3322 (((-1053) (-1177) (-1177) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576)) 46)) (-3313 (((-1053) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 45)) (-3303 (((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 40)) (-3292 (((-1053) (-1177) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576)) 39)) (-3284 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-576)) 36)) (-3271 (((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576)) 35)) (-3259 (((-1053) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576)) 34)) (-3249 (((-1053) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576)) 33)) (-3236 (((-1053) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576)) 32))) -(((-766) (-10 -7 (-15 -3236 ((-1053) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -3249 ((-1053) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -3259 ((-1053) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -3271 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -3284 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3292 ((-1053) (-1177) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -3303 ((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3313 ((-1053) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3322 ((-1053) (-1177) (-1177) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3332 ((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -766)) -((-3332 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-3322 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-3313 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-3303 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-3292 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-3284 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-3271 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-766)))) (-3259 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-766)))) (-3249 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1053)) (-5 *1 (-766)))) (-3236 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1053)) (-5 *1 (-766))))) -(-10 -7 (-15 -3236 ((-1053) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -3249 ((-1053) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -3259 ((-1053) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -3271 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -3284 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3292 ((-1053) (-1177) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -3303 ((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3313 ((-1053) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3322 ((-1053) (-1177) (-1177) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3332 ((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) -((-3478 (((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 79)) (-3466 (((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 68)) (-3456 (((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-3445 (((-1053) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 37)) (-3438 (((-1053) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576)) 33)) (-3427 (((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-3418 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-3409 (((-1053) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3400 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-3391 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576)) 26)) (-3381 (((-1053) (-576) (-576) (-701 (-227)) (-576)) 25)) (-3371 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-3362 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-3352 (((-1053) (-701 (-227)) (-576) (-576) (-576) (-576)) 22)) (-3341 (((-1053) (-576) (-576) (-701 (-227)) (-576)) 21))) -(((-767) (-10 -7 (-15 -3341 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -3352 ((-1053) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -3362 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3371 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3381 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -3391 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3400 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3409 ((-1053) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3418 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3427 ((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3438 ((-1053) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -3445 ((-1053) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3456 ((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -3456 ((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3466 ((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3478 ((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -767)) -((-3478 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3466 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3456 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3456 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3445 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3438 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3427 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3418 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3409 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3400 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3391 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3381 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3371 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3362 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3352 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3341 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767))))) -(-10 -7 (-15 -3341 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -3352 ((-1053) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -3362 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3371 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3381 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -3391 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3400 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3409 ((-1053) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3418 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3427 ((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3438 ((-1053) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -3445 ((-1053) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3456 ((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -3456 ((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3466 ((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3478 ((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) -((-2348 (((-1053) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-2338 (((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576)) 60)) (-2327 (((-1053) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3557 (((-1053) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 37)) (-3548 (((-1053) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576)) 36)) (-3538 (((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 33)) (-3528 (((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227))) 32)) (-3518 (((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576)) 28)) (-3510 (((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 27)) (-3499 (((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 26)) (-3487 (((-1053) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 22))) -(((-768) (-10 -7 (-15 -3487 ((-1053) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3499 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3510 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3518 ((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -3528 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -3538 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3548 ((-1053) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3557 ((-1053) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2327 ((-1053) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -2338 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2348 ((-1053) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -768)) -((-2348 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-2338 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-2327 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1053)) (-5 *1 (-768)))) (-3557 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-3548 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-3538 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-768)))) (-3528 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-3518 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-3510 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-768)))) (-3499 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-768)))) (-3487 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1053)) (-5 *1 (-768))))) -(-10 -7 (-15 -3487 ((-1053) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3499 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3510 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3518 ((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -3528 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -3538 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3548 ((-1053) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3557 ((-1053) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2327 ((-1053) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -2338 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2348 ((-1053) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))))) -((-2391 (((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))) 29)) (-2380 (((-1053) (-1177) (-576) (-576) (-701 (-227))) 28)) (-2368 (((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227))) 27)) (-2358 (((-1053) (-576) (-576) (-576) (-701 (-227))) 21))) -(((-769) (-10 -7 (-15 -2358 ((-1053) (-576) (-576) (-576) (-701 (-227)))) (-15 -2368 ((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -2380 ((-1053) (-1177) (-576) (-576) (-701 (-227)))) (-15 -2391 ((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))) (T -769)) -((-2391 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-769)))) (-2380 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-769)))) (-2368 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-769)))) (-2358 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-769))))) -(-10 -7 (-15 -2358 ((-1053) (-576) (-576) (-576) (-701 (-227)))) (-15 -2368 ((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -2380 ((-1053) (-1177) (-576) (-576) (-701 (-227)))) (-15 -2391 ((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))))) -((-2845 (((-1053) (-227) (-227) (-227) (-227) (-576)) 62)) (-2831 (((-1053) (-227) (-227) (-227) (-576)) 61)) (-2819 (((-1053) (-227) (-227) (-227) (-576)) 60)) (-2808 (((-1053) (-227) (-227) (-576)) 59)) (-2794 (((-1053) (-227) (-576)) 58)) (-2782 (((-1053) (-227) (-576)) 57)) (-2772 (((-1053) (-227) (-576)) 56)) (-2762 (((-1053) (-227) (-576)) 55)) (-2751 (((-1053) (-227) (-576)) 54)) (-2740 (((-1053) (-227) (-576)) 53)) (-2730 (((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576)) 52)) (-2719 (((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576)) 51)) (-2708 (((-1053) (-227) (-576)) 50)) (-2698 (((-1053) (-227) (-576)) 49)) (-2687 (((-1053) (-227) (-576)) 48)) (-2675 (((-1053) (-227) (-576)) 47)) (-2664 (((-1053) (-576) (-227) (-171 (-227)) (-576) (-1177) (-576)) 46)) (-2653 (((-1053) (-1177) (-171 (-227)) (-1177) (-576)) 45)) (-2643 (((-1053) (-1177) (-171 (-227)) (-1177) (-576)) 44)) (-2631 (((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576)) 43)) (-2620 (((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576)) 42)) (-2609 (((-1053) (-227) (-576)) 39)) (-2598 (((-1053) (-227) (-576)) 38)) (-2585 (((-1053) (-227) (-576)) 37)) (-2568 (((-1053) (-227) (-576)) 36)) (-2554 (((-1053) (-227) (-576)) 35)) (-2543 (((-1053) (-227) (-576)) 34)) (-2531 (((-1053) (-227) (-576)) 33)) (-2518 (((-1053) (-227) (-576)) 32)) (-2507 (((-1053) (-227) (-576)) 31)) (-2494 (((-1053) (-227) (-576)) 30)) (-2478 (((-1053) (-227) (-227) (-227) (-576)) 29)) (-2467 (((-1053) (-227) (-576)) 28)) (-2455 (((-1053) (-227) (-576)) 27)) (-2443 (((-1053) (-227) (-576)) 26)) (-2429 (((-1053) (-227) (-576)) 25)) (-2413 (((-1053) (-227) (-576)) 24)) (-2402 (((-1053) (-171 (-227)) (-576)) 21))) -(((-770) (-10 -7 (-15 -2402 ((-1053) (-171 (-227)) (-576))) (-15 -2413 ((-1053) (-227) (-576))) (-15 -2429 ((-1053) (-227) (-576))) (-15 -2443 ((-1053) (-227) (-576))) (-15 -2455 ((-1053) (-227) (-576))) (-15 -2467 ((-1053) (-227) (-576))) (-15 -2478 ((-1053) (-227) (-227) (-227) (-576))) (-15 -2494 ((-1053) (-227) (-576))) (-15 -2507 ((-1053) (-227) (-576))) (-15 -2518 ((-1053) (-227) (-576))) (-15 -2531 ((-1053) (-227) (-576))) (-15 -2543 ((-1053) (-227) (-576))) (-15 -2554 ((-1053) (-227) (-576))) (-15 -2568 ((-1053) (-227) (-576))) (-15 -2585 ((-1053) (-227) (-576))) (-15 -2598 ((-1053) (-227) (-576))) (-15 -2609 ((-1053) (-227) (-576))) (-15 -2620 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2631 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2643 ((-1053) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -2653 ((-1053) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -2664 ((-1053) (-576) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2675 ((-1053) (-227) (-576))) (-15 -2687 ((-1053) (-227) (-576))) (-15 -2698 ((-1053) (-227) (-576))) (-15 -2708 ((-1053) (-227) (-576))) (-15 -2719 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2730 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2740 ((-1053) (-227) (-576))) (-15 -2751 ((-1053) (-227) (-576))) (-15 -2762 ((-1053) (-227) (-576))) (-15 -2772 ((-1053) (-227) (-576))) (-15 -2782 ((-1053) (-227) (-576))) (-15 -2794 ((-1053) (-227) (-576))) (-15 -2808 ((-1053) (-227) (-227) (-576))) (-15 -2819 ((-1053) (-227) (-227) (-227) (-576))) (-15 -2831 ((-1053) (-227) (-227) (-227) (-576))) (-15 -2845 ((-1053) (-227) (-227) (-227) (-227) (-576))))) (T -770)) -((-2845 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2831 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2819 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2808 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2730 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2719 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2708 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2675 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2664 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1177)) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2653 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2643 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2631 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2620 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2609 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2598 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2568 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2554 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2518 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2478 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2455 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(-10 -7 (-15 -2402 ((-1053) (-171 (-227)) (-576))) (-15 -2413 ((-1053) (-227) (-576))) (-15 -2429 ((-1053) (-227) (-576))) (-15 -2443 ((-1053) (-227) (-576))) (-15 -2455 ((-1053) (-227) (-576))) (-15 -2467 ((-1053) (-227) (-576))) (-15 -2478 ((-1053) (-227) (-227) (-227) (-576))) (-15 -2494 ((-1053) (-227) (-576))) (-15 -2507 ((-1053) (-227) (-576))) (-15 -2518 ((-1053) (-227) (-576))) (-15 -2531 ((-1053) (-227) (-576))) (-15 -2543 ((-1053) (-227) (-576))) (-15 -2554 ((-1053) (-227) (-576))) (-15 -2568 ((-1053) (-227) (-576))) (-15 -2585 ((-1053) (-227) (-576))) (-15 -2598 ((-1053) (-227) (-576))) (-15 -2609 ((-1053) (-227) (-576))) (-15 -2620 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2631 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2643 ((-1053) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -2653 ((-1053) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -2664 ((-1053) (-576) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2675 ((-1053) (-227) (-576))) (-15 -2687 ((-1053) (-227) (-576))) (-15 -2698 ((-1053) (-227) (-576))) (-15 -2708 ((-1053) (-227) (-576))) (-15 -2719 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2730 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2740 ((-1053) (-227) (-576))) (-15 -2751 ((-1053) (-227) (-576))) (-15 -2762 ((-1053) (-227) (-576))) (-15 -2772 ((-1053) (-227) (-576))) (-15 -2782 ((-1053) (-227) (-576))) (-15 -2794 ((-1053) (-227) (-576))) (-15 -2808 ((-1053) (-227) (-227) (-576))) (-15 -2819 ((-1053) (-227) (-227) (-227) (-576))) (-15 -2831 ((-1053) (-227) (-227) (-227) (-576))) (-15 -2845 ((-1053) (-227) (-227) (-227) (-227) (-576)))) -((-2898 (((-1291)) 20)) (-2867 (((-1177)) 31)) (-2857 (((-1177)) 30)) (-2888 (((-1122) (-1195) (-701 (-576))) 45) (((-1122) (-1195) (-701 (-227))) 41)) (-1475 (((-112)) 19)) (-2877 (((-1177) (-1177)) 34))) -(((-771) (-10 -7 (-15 -2857 ((-1177))) (-15 -2867 ((-1177))) (-15 -2877 ((-1177) (-1177))) (-15 -2888 ((-1122) (-1195) (-701 (-227)))) (-15 -2888 ((-1122) (-1195) (-701 (-576)))) (-15 -1475 ((-112))) (-15 -2898 ((-1291))))) (T -771)) -((-2898 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-771)))) (-1475 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-576))) (-5 *2 (-1122)) (-5 *1 (-771)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-227))) (-5 *2 (-1122)) (-5 *1 (-771)))) (-2877 (*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771)))) (-2867 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771)))) (-2857 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771))))) -(-10 -7 (-15 -2857 ((-1177))) (-15 -2867 ((-1177))) (-15 -2877 ((-1177) (-1177))) (-15 -2888 ((-1122) (-1195) (-701 (-227)))) (-15 -2888 ((-1122) (-1195) (-701 (-576)))) (-15 -1475 ((-112))) (-15 -2898 ((-1291)))) -((-2920 (($ $ $) 10)) (-2931 (($ $ $ $) 9)) (-2908 (($ $ $) 12))) -(((-772 |#1|) (-10 -8 (-15 -2908 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|)) (-15 -2931 (|#1| |#1| |#1| |#1|))) (-773)) (T -772)) -NIL -(-10 -8 (-15 -2908 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|)) (-15 -2931 (|#1| |#1| |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1420 (($ $ (-937)) 31)) (-1410 (($ $ (-937)) 32)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2920 (($ $ $) 28)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2931 (($ $ $ $) 29)) (-2908 (($ $ $) 27)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 33)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) -(((-773) (-141)) (T -773)) -((-2931 (*1 *1 *1 *1 *1) (-4 *1 (-773))) (-2920 (*1 *1 *1 *1) (-4 *1 (-773))) (-2908 (*1 *1 *1 *1) (-4 *1 (-773)))) -(-13 (-21) (-732) (-10 -8 (-15 -2931 ($ $ $ $)) (-15 -2920 ($ $ $)) (-15 -2908 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-732) . T) ((-1118) . T)) -((-2884 (((-874) $) NIL) (($ (-576)) 10))) -(((-774 |#1|) (-10 -8 (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) (-775)) (T -774)) -NIL -(-10 -8 (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1388 (((-3 $ "failed") $) 43)) (-1420 (($ $ (-937)) 31) (($ $ (-783)) 38)) (-1999 (((-3 $ "failed") $) 41)) (-1439 (((-112) $) 37)) (-1399 (((-3 $ "failed") $) 42)) (-1410 (($ $ (-937)) 32) (($ $ (-783)) 39)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2920 (($ $ $) 28)) (-2884 (((-874) $) 12) (($ (-576)) 34)) (-1871 (((-783)) 35 T CONST)) (-3722 (((-112) $ $) 9)) (-2931 (($ $ $ $) 29)) (-2908 (($ $ $) 27)) (-1996 (($) 19 T CONST)) (-2011 (($) 36 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 33) (($ $ (-783)) 40)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) -(((-775) (-141)) (T -775)) -((-1871 (*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775))))) -(-13 (-773) (-734) (-10 -8 (-15 -1871 ((-783)) -3739) (-15 -2884 ($ (-576))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-732) . T) ((-734) . T) ((-773) . T) ((-1118) . T)) -((-2948 (((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|) 33)) (-2938 (((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|) 23)) (-1776 (((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1195)) 20) (((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576))))) 19))) -(((-776 |#1|) (-10 -7 (-15 -1776 ((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -1776 ((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1195))) (-15 -2938 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -2948 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-860))) (T -776)) -((-2948 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 *4))))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-2938 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1195)) (-5 *2 (-968 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-374) (-860))))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-968 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -1776 ((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -1776 ((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1195))) (-15 -2938 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -2948 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) -((-3536 (((-176 (-576)) |#1|) 27))) -(((-777 |#1|) (-10 -7 (-15 -3536 ((-176 (-576)) |#1|))) (-416)) (T -777)) -((-3536 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416))))) -(-10 -7 (-15 -3536 ((-176 (-576)) |#1|))) -((-4149 ((|#1| |#1| |#1|) 28)) (-4157 ((|#1| |#1| |#1|) 27)) (-2150 ((|#1| |#1| |#1|) 38)) (-4132 ((|#1| |#1| |#1|) 34)) (-4141 (((-3 |#1| "failed") |#1| |#1|) 31)) (-4181 (((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|) 26))) -(((-778 |#1| |#2|) (-10 -7 (-15 -4181 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4149 (|#1| |#1| |#1|)) (-15 -4141 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1|))) (-720 |#2|) (-374)) (T -778)) -((-2150 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4132 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4141 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4149 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4157 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4181 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4))))) -(-10 -7 (-15 -4181 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4149 (|#1| |#1| |#1|)) (-15 -4141 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1|))) -((-4236 (((-703 (-1244)) $ (-1244)) 26)) (-4247 (((-703 (-561)) $ (-561)) 25)) (-4227 (((-783) $ (-129)) 27)) (-4258 (((-703 (-130)) $ (-130)) 24)) (-1763 (((-703 (-1244)) $) 12)) (-1716 (((-703 (-1242)) $) 8)) (-1738 (((-703 (-1241)) $) 10)) (-1774 (((-703 (-561)) $) 13)) (-1727 (((-703 (-559)) $) 9)) (-1750 (((-703 (-558)) $) 11)) (-1707 (((-783) $ (-129)) 7)) (-1785 (((-703 (-130)) $) 14)) (-2957 (((-112) $) 31)) (-1683 (((-703 $) |#1| (-970)) 32)) (-1561 (($ $) 6))) -(((-779 |#1|) (-141) (-1118)) (T -779)) -((-1683 (*1 *2 *3 *4) (-12 (-5 *4 (-970)) (-4 *3 (-1118)) (-5 *2 (-703 *1)) (-4 *1 (-779 *3)))) (-2957 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1118)) (-5 *2 (-112))))) -(-13 (-588) (-10 -8 (-15 -1683 ((-703 $) |t#1| (-970))) (-15 -2957 ((-112) $)))) -(((-175) . T) ((-539) . T) ((-588) . T) ((-872) . T)) -((-1637 (((-2 (|:| -1898 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)) 71)) (-1627 (((-2 (|:| -1898 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) 69)) (-2790 (((-576)) 85))) -(((-780 |#1| |#2|) (-10 -7 (-15 -2790 ((-576))) (-15 -1627 ((-2 (|:| -1898 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -1637 ((-2 (|:| -1898 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) (-1262 (-576)) (-421 (-576) |#1|)) (T -780)) -((-1637 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1627 (*1 *2) (-12 (-4 *3 (-1262 (-576))) (-5 *2 (-2 (|:| -1898 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-2790 (*1 *2) (-12 (-4 *3 (-1262 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 *2 *3))))) -(-10 -7 (-15 -2790 ((-576))) (-15 -1627 ((-2 (|:| -1898 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -1637 ((-2 (|:| -1898 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) -((-2862 (((-112) $ $) NIL)) (-4401 (((-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 20) (($ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-781) (-13 (-1118) (-10 -8 (-15 -2884 ($ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2884 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2884 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4401 ((-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -781)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) (-4401 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781))))) -(-13 (-1118) (-10 -8 (-15 -2884 ($ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2884 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2884 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4401 ((-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) -((-2361 (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|))) 18) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195))) 17)) (-1525 (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|))) 20) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195))) 19))) -(((-782 |#1|) (-10 -7 (-15 -2361 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -2361 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|))))) (-568)) (T -782)) -((-1525 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-782 *4)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-782 *5)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-782 *4)))) (-2361 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-782 *5))))) -(-10 -7 (-15 -2361 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -2361 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2158 (($ $ $) 10)) (-1459 (((-3 $ "failed") $ $) 15)) (-3626 (($ $ (-576)) 11)) (-2473 (($) NIL T CONST)) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($ $) NIL)) (-2814 (($ $ $) NIL)) (-1439 (((-112) $) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3928 (($ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 6 T CONST)) (-2011 (($) NIL T CONST)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ $ $) NIL))) -(((-783) (-13 (-805) (-738) (-10 -8 (-15 -2814 ($ $ $)) (-15 -2803 ($ $ $)) (-15 -3928 ($ $ $)) (-15 -4350 ((-2 (|:| -2770 $) (|:| -1406 $)) $ $)) (-15 -2852 ((-3 $ "failed") $ $)) (-15 -3626 ($ $ (-576))) (-15 -2080 ($ $)) (-6 (-4463 "*"))))) (T -783)) -((-2814 (*1 *1 *1 *1) (-5 *1 (-783))) (-2803 (*1 *1 *1 *1) (-5 *1 (-783))) (-3928 (*1 *1 *1 *1) (-5 *1 (-783))) (-4350 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2770 (-783)) (|:| -1406 (-783)))) (-5 *1 (-783)))) (-2852 (*1 *1 *1 *1) (|partial| -5 *1 (-783))) (-3626 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))) (-2080 (*1 *1 *1) (-5 *1 (-783)))) -(-13 (-805) (-738) (-10 -8 (-15 -2814 ($ $ $)) (-15 -2803 ($ $ $)) (-15 -3928 ($ $ $)) (-15 -4350 ((-2 (|:| -2770 $) (|:| -1406 $)) $ $)) (-15 -2852 ((-3 $ "failed") $ $)) (-15 -3626 ($ $ (-576))) (-15 -2080 ($ $)) (-6 (-4463 "*")))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 15)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-1595 ((|#1| $) 23)) (-1920 (($ $ $) NIL (|has| |#1| (-802)))) (-1425 (($ $ $) NIL (|has| |#1| (-802)))) (-2288 (((-1176) $) 48)) (-3912 (((-1137) $) NIL)) (-1608 ((|#3| $) 24)) (-2883 (((-873) $) 43)) (-4400 (((-112) $ $) 22)) (-1996 (($) 10 T CONST)) (-3981 (((-112) $ $) NIL (|has| |#1| (-802)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-802)))) (-3914 (((-112) $ $) 20)) (-3970 (((-112) $ $) NIL (|has| |#1| (-802)))) (-3943 (((-112) $ $) 26 (|has| |#1| (-802)))) (-4038 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4028 (($ $) 17) (($ $ $) NIL)) (-4016 (($ $ $) 29)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-673 |#1| |#2| |#3|) (-13 (-728 |#2|) (-10 -8 (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) (-15 -4038 ($ $ |#3|)) (-15 -4038 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $)))) (-728 |#2|) (-174) (|SubsetCategory| (-737) |#2|)) (T -673)) +((-4038 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-673 *3 *4 *2)) (-4 *3 (-728 *4)) (-4 *2 (|SubsetCategory| (-737) *4)))) (-4038 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-673 *2 *4 *3)) (-4 *2 (-728 *4)) (-4 *3 (|SubsetCategory| (-737) *4)))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-728 *3)) (-5 *1 (-673 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-737) *3)))) (-1608 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-737) *4)) (-5 *1 (-673 *3 *4 *2)) (-4 *3 (-728 *4))))) +(-13 (-728 |#2|) (-10 -8 (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) (-15 -4038 ($ $ |#3|)) (-15 -4038 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $)))) +((-4200 (((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|)) 33))) +(((-674 |#1|) (-10 -7 (-15 -4200 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|)))) (-924)) (T -674)) +((-4200 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 *4))) (-5 *3 (-1190 *4)) (-4 *4 (-924)) (-5 *1 (-674 *4))))) +(-10 -7 (-15 -4200 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3489 (((-655 |#1|) $) 84)) (-1573 (($ $ (-782)) 94)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2724 (((-1309 |#1| |#2|) (-1309 |#1| |#2|) $) 50)) (-2449 (((-3 (-683 |#1|) "failed") $) NIL)) (-4399 (((-683 |#1|) $) NIL)) (-4406 (($ $) 93)) (-2218 (((-782) $) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-3693 (($ (-683 |#1|) |#2|) 70)) (-3061 (($ $) 89)) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-4190 (((-1309 |#1| |#2|) (-1309 |#1| |#2|) $) 49)) (-2024 (((-2 (|:| |k| (-683 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4371 (((-683 |#1|) $) NIL)) (-4383 ((|#2| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3048 (($ $ |#1| $) 32) (($ $ (-655 |#1|) (-655 $)) 34)) (-2645 (((-782) $) 91)) (-2894 (($ $ $) 20) (($ (-683 |#1|) (-683 |#1|)) 79) (($ (-683 |#1|) $) 77) (($ $ (-683 |#1|)) 78)) (-2883 (((-873) $) NIL) (($ |#1|) 76) (((-1300 |#1| |#2|) $) 60) (((-1309 |#1| |#2|) $) 43) (($ (-683 |#1|)) 27)) (-2501 (((-655 |#2|) $) NIL)) (-2012 ((|#2| $ (-683 |#1|)) NIL)) (-1754 ((|#2| (-1309 |#1| |#2|) $) 45)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 23 T CONST)) (-1913 (((-655 (-2 (|:| |k| (-683 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1974 (((-3 $ "failed") (-1300 |#1| |#2|)) 62)) (-4210 (($ (-683 |#1|)) 14)) (-3914 (((-112) $ $) 46)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4028 (($ $) 68) (($ $ $) NIL)) (-4016 (($ $ $) 31)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-683 |#1|)) NIL))) +(((-675 |#1| |#2|) (-13 (-384 |#1| |#2|) (-392 |#2| (-683 |#1|)) (-10 -8 (-15 -1974 ((-3 $ "failed") (-1300 |#1| |#2|))) (-15 -2894 ($ (-683 |#1|) (-683 |#1|))) (-15 -2894 ($ (-683 |#1|) $)) (-15 -2894 ($ $ (-683 |#1|))))) (-861) (-174)) (T -675)) +((-1974 (*1 *1 *2) (|partial| -12 (-5 *2 (-1300 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-675 *3 *4)))) (-2894 (*1 *1 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4)) (-4 *4 (-174)))) (-2894 (*1 *1 *2 *1) (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4)) (-4 *4 (-174)))) (-2894 (*1 *1 *1 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4)) (-4 *4 (-174))))) +(-13 (-384 |#1| |#2|) (-392 |#2| (-683 |#1|)) (-10 -8 (-15 -1974 ((-3 $ "failed") (-1300 |#1| |#2|))) (-15 -2894 ($ (-683 |#1|) (-683 |#1|))) (-15 -2894 ($ (-683 |#1|) $)) (-15 -2894 ($ $ (-683 |#1|))))) +((-2762 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-2119 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1999 (($ (-1 (-112) |#2|) $) 29)) (-1789 (($ $) 65)) (-1878 (($ $) 74)) (-4404 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2308 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-2632 (((-575) |#2| $ (-575)) 71) (((-575) |#2| $) NIL) (((-575) (-1 (-112) |#2|) $) 54)) (-2309 (($ (-782) |#2|) 63)) (-4174 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3794 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2550 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1684 (($ |#2|) 15)) (-3862 (($ $ $ (-575)) 42) (($ |#2| $ (-575)) 40)) (-3704 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2797 (($ $ (-1252 (-575))) 51) (($ $ (-575)) 44)) (-4005 (($ $ $ (-575)) 70)) (-3078 (($ $) 68)) (-3943 (((-112) $ $) 76))) +(((-676 |#1| |#2|) (-10 -8 (-15 -1684 (|#1| |#2|)) (-15 -2797 (|#1| |#1| (-575))) (-15 -2797 (|#1| |#1| (-1252 (-575)))) (-15 -4404 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3862 (|#1| |#2| |#1| (-575))) (-15 -3862 (|#1| |#1| |#1| (-575))) (-15 -4174 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1999 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4404 (|#1| |#2| |#1|)) (-15 -1878 (|#1| |#1|)) (-15 -4174 (|#1| |#1| |#1|)) (-15 -3794 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2762 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2632 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -2632 ((-575) |#2| |#1|)) (-15 -2632 ((-575) |#2| |#1| (-575))) (-15 -3794 (|#1| |#1| |#1|)) (-15 -2762 ((-112) |#1|)) (-15 -4005 (|#1| |#1| |#1| (-575))) (-15 -1789 (|#1| |#1|)) (-15 -2119 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2119 (|#1| |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3704 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2309 (|#1| (-782) |#2|)) (-15 -2550 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3078 (|#1| |#1|))) (-677 |#2|) (-1235)) (T -676)) +NIL +(-10 -8 (-15 -1684 (|#1| |#2|)) (-15 -2797 (|#1| |#1| (-575))) (-15 -2797 (|#1| |#1| (-1252 (-575)))) (-15 -4404 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3862 (|#1| |#2| |#1| (-575))) (-15 -3862 (|#1| |#1| |#1| (-575))) (-15 -4174 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1999 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4404 (|#1| |#2| |#1|)) (-15 -1878 (|#1| |#1|)) (-15 -4174 (|#1| |#1| |#1|)) (-15 -3794 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2762 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2632 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -2632 ((-575) |#2| |#1|)) (-15 -2632 ((-575) |#2| |#1| (-575))) (-15 -3794 (|#1| |#1| |#1|)) (-15 -2762 ((-112) |#1|)) (-15 -4005 (|#1| |#1| |#1| (-575))) (-15 -1789 (|#1| |#1|)) (-15 -2119 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2119 (|#1| |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2308 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3704 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2309 (|#1| (-782) |#2|)) (-15 -2550 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3078 (|#1| |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4182 ((|#1| $) 49)) (-2989 ((|#1| $) 66)) (-3462 (($ $) 68)) (-4161 (((-1290) $ (-575) (-575)) 99 (|has| $ (-6 -4461)))) (-1893 (($ $ (-575)) 53 (|has| $ (-6 -4461)))) (-2762 (((-112) $) 144 (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-2119 (($ $) 148 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4461)))) (-2031 (($ $) 143 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-1845 (((-112) $ (-782)) 8)) (-1915 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-3391 (($ $ $) 57 (|has| $ (-6 -4461)))) (-3602 ((|#1| $ |#1|) 55 (|has| $ (-6 -4461)))) (-1876 ((|#1| $ |#1|) 59 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4461))) (($ $ "rest" $) 56 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 119 (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) 88 (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-1999 (($ (-1 (-112) |#1|) $) 131)) (-3985 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4460)))) (-2977 ((|#1| $) 67)) (-3011 (($) 7 T CONST)) (-1789 (($ $) 146 (|has| $ (-6 -4461)))) (-4381 (($ $) 136)) (-1975 (($ $) 74) (($ $ (-782)) 72)) (-1878 (($ $) 133 (|has| |#1| (-1117)))) (-1748 (($ $) 101 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4404 (($ |#1| $) 132 (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) 127)) (-3633 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4460))) (($ |#1| $) 102 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2859 ((|#1| $ (-575) |#1|) 87 (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) 89)) (-2087 (((-112) $) 85)) (-2632 (((-575) |#1| $ (-575)) 141 (|has| |#1| (-1117))) (((-575) |#1| $) 140 (|has| |#1| (-1117))) (((-575) (-1 (-112) |#1|) $) 139)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) 51)) (-3117 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-2309 (($ (-782) |#1|) 111)) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 97 (|has| (-575) (-861)))) (-1920 (($ $ $) 149 (|has| |#1| (-861)))) (-4174 (($ $ $) 134 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-3794 (($ $ $) 142 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 96 (|has| (-575) (-861)))) (-1425 (($ $ $) 150 (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1684 (($ |#1|) 124)) (-4026 (((-112) $ (-782)) 10)) (-2482 (((-655 |#1|) $) 46)) (-1526 (((-112) $) 50)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3653 ((|#1| $) 71) (($ $ (-782)) 69)) (-3862 (($ $ $ (-575)) 129) (($ |#1| $ (-575)) 128)) (-2135 (($ $ $ (-575)) 118) (($ |#1| $ (-575)) 117)) (-4310 (((-655 (-575)) $) 94)) (-2969 (((-112) (-575) $) 93)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1961 ((|#1| $) 77) (($ $ (-782)) 75)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3954 (($ $ |#1|) 98 (|has| $ (-6 -4461)))) (-3888 (((-112) $) 86)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) 92)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1252 (-575))) 110) ((|#1| $ (-575)) 91) ((|#1| $ (-575) |#1|) 90)) (-2220 (((-575) $ $) 45)) (-2797 (($ $ (-1252 (-575))) 126) (($ $ (-575)) 125)) (-3239 (($ $ (-1252 (-575))) 116) (($ $ (-575)) 115)) (-1648 (((-112) $) 47)) (-1397 (($ $) 63)) (-1877 (($ $) 60 (|has| $ (-6 -4461)))) (-3269 (((-782) $) 64)) (-1863 (($ $) 65)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4005 (($ $ $ (-575)) 145 (|has| $ (-6 -4461)))) (-3078 (($ $) 13)) (-2615 (((-547) $) 100 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 109)) (-2774 (($ $ $) 62) (($ $ |#1|) 61)) (-1514 (($ $ $) 79) (($ |#1| $) 78) (($ (-655 $)) 113) (($ $ |#1|) 112)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) 52)) (-2781 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) 152 (|has| |#1| (-861)))) (-3956 (((-112) $ $) 153 (|has| |#1| (-861)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-3970 (((-112) $ $) 151 (|has| |#1| (-861)))) (-3943 (((-112) $ $) 154 (|has| |#1| (-861)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-677 |#1|) (-141) (-1235)) (T -677)) +((-1684 (*1 *1 *2) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1235))))) +(-13 (-1166 |t#1|) (-383 |t#1|) (-291 |t#1|) (-10 -8 (-15 -1684 ($ |t#1|)))) +(((-34) . T) ((-102) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-291 |#1|) . T) ((-383 |#1|) . T) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-861) |has| |#1| (-861)) ((-1027 |#1|) . T) ((-1117) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-1166 |#1|) . T) ((-1235) . T) ((-1273 |#1|) . T)) +((-1546 (((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|))))) (-655 (-655 |#1|)) (-655 (-1285 |#1|))) 22) (((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|))))) (-700 |#1|) (-655 (-1285 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|)))) (-655 (-655 |#1|)) (-1285 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|)) 14)) (-4422 (((-782) (-700 |#1|) (-1285 |#1|)) 30)) (-3440 (((-3 (-1285 |#1|) "failed") (-700 |#1|) (-1285 |#1|)) 24)) (-4040 (((-112) (-700 |#1|) (-1285 |#1|)) 27))) +(((-678 |#1|) (-10 -7 (-15 -1546 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|))) (-15 -1546 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|)))) (-655 (-655 |#1|)) (-1285 |#1|))) (-15 -1546 ((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|))))) (-700 |#1|) (-655 (-1285 |#1|)))) (-15 -1546 ((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|))))) (-655 (-655 |#1|)) (-655 (-1285 |#1|)))) (-15 -3440 ((-3 (-1285 |#1|) "failed") (-700 |#1|) (-1285 |#1|))) (-15 -4040 ((-112) (-700 |#1|) (-1285 |#1|))) (-15 -4422 ((-782) (-700 |#1|) (-1285 |#1|)))) (-373)) (T -678)) +((-4422 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-373)) (-5 *2 (-782)) (-5 *1 (-678 *5)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-373)) (-5 *2 (-112)) (-5 *1 (-678 *5)))) (-3440 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1285 *4)) (-5 *3 (-700 *4)) (-4 *4 (-373)) (-5 *1 (-678 *4)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-655 *5))) (-4 *5 (-373)) (-5 *2 (-655 (-2 (|:| |particular| (-3 (-1285 *5) "failed")) (|:| -1624 (-655 (-1285 *5)))))) (-5 *1 (-678 *5)) (-5 *4 (-655 (-1285 *5))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *5)) (-4 *5 (-373)) (-5 *2 (-655 (-2 (|:| |particular| (-3 (-1285 *5) "failed")) (|:| -1624 (-655 (-1285 *5)))))) (-5 *1 (-678 *5)) (-5 *4 (-655 (-1285 *5))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-655 *5))) (-4 *5 (-373)) (-5 *2 (-2 (|:| |particular| (-3 (-1285 *5) "failed")) (|:| -1624 (-655 (-1285 *5))))) (-5 *1 (-678 *5)) (-5 *4 (-1285 *5)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| |particular| (-3 (-1285 *5) "failed")) (|:| -1624 (-655 (-1285 *5))))) (-5 *1 (-678 *5)) (-5 *4 (-1285 *5))))) +(-10 -7 (-15 -1546 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|))) (-15 -1546 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|)))) (-655 (-655 |#1|)) (-1285 |#1|))) (-15 -1546 ((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|))))) (-700 |#1|) (-655 (-1285 |#1|)))) (-15 -1546 ((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|))))) (-655 (-655 |#1|)) (-655 (-1285 |#1|)))) (-15 -3440 ((-3 (-1285 |#1|) "failed") (-700 |#1|) (-1285 |#1|))) (-15 -4040 ((-112) (-700 |#1|) (-1285 |#1|))) (-15 -4422 ((-782) (-700 |#1|) (-1285 |#1|)))) +((-1546 (((-655 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1624 (-655 |#3|)))) |#4| (-655 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1624 (-655 |#3|))) |#4| |#3|) 60)) (-4422 (((-782) |#4| |#3|) 18)) (-3440 (((-3 |#3| "failed") |#4| |#3|) 21)) (-4040 (((-112) |#4| |#3|) 14))) +(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1546 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1624 (-655 |#3|))) |#4| |#3|)) (-15 -1546 ((-655 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1624 (-655 |#3|)))) |#4| (-655 |#3|))) (-15 -3440 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4040 ((-112) |#4| |#3|)) (-15 -4422 ((-782) |#4| |#3|))) (-373) (-13 (-383 |#1|) (-10 -7 (-6 -4461))) (-13 (-383 |#1|) (-10 -7 (-6 -4461))) (-698 |#1| |#2| |#3|)) (T -679)) +((-4422 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-782)) (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4)))) (-4040 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-112)) (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4)))) (-3440 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-373)) (-4 *5 (-13 (-383 *4) (-10 -7 (-6 -4461)))) (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461)))) (-5 *1 (-679 *4 *5 *2 *3)) (-4 *3 (-698 *4 *5 *2)))) (-1546 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-4 *7 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-655 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1624 (-655 *7))))) (-5 *1 (-679 *5 *6 *7 *3)) (-5 *4 (-655 *7)) (-4 *3 (-698 *5 *6 *7)))) (-1546 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4))))) +(-10 -7 (-15 -1546 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1624 (-655 |#3|))) |#4| |#3|)) (-15 -1546 ((-655 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1624 (-655 |#3|)))) |#4| (-655 |#3|))) (-15 -3440 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4040 ((-112) |#4| |#3|)) (-15 -4422 ((-782) |#4| |#3|))) +((-2575 (((-2 (|:| |particular| (-3 (-1285 (-418 |#4|)) "failed")) (|:| -1624 (-655 (-1285 (-418 |#4|))))) (-655 |#4|) (-655 |#3|)) 51))) +(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2575 ((-2 (|:| |particular| (-3 (-1285 (-418 |#4|)) "failed")) (|:| -1624 (-655 (-1285 (-418 |#4|))))) (-655 |#4|) (-655 |#3|)))) (-567) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -680)) +((-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *7)) (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-5 *2 (-2 (|:| |particular| (-3 (-1285 (-418 *8)) "failed")) (|:| -1624 (-655 (-1285 (-418 *8)))))) (-5 *1 (-680 *5 *6 *7 *8))))) +(-10 -7 (-15 -2575 ((-2 (|:| |particular| (-3 (-1285 (-418 |#4|)) "failed")) (|:| -1624 (-655 (-1285 (-418 |#4|))))) (-655 |#4|) (-655 |#3|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3800 (((-3 $ "failed")) NIL (|has| |#2| (-567)))) (-1447 ((|#2| $) NIL)) (-3158 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-4239 (((-1285 (-700 |#2|))) NIL) (((-1285 (-700 |#2|)) (-1285 $)) NIL)) (-1503 (((-112) $) NIL)) (-3355 (((-1285 $)) 42)) (-1845 (((-112) $ (-782)) NIL)) (-2271 (($ |#2|) NIL)) (-3011 (($) NIL T CONST)) (-3356 (($ $) NIL (|has| |#2| (-316)))) (-1565 (((-245 |#1| |#2|) $ (-575)) NIL)) (-1380 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) NIL (|has| |#2| (-567)))) (-4132 (((-3 $ "failed")) NIL (|has| |#2| (-567)))) (-2974 (((-700 |#2|)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-1726 ((|#2| $) NIL)) (-4093 (((-700 |#2|) $) NIL) (((-700 |#2|) $ (-1285 $)) NIL)) (-3512 (((-3 $ "failed") $) NIL (|has| |#2| (-567)))) (-2199 (((-1190 (-967 |#2|))) NIL (|has| |#2| (-373)))) (-2661 (($ $ (-936)) NIL)) (-2737 ((|#2| $) NIL)) (-1884 (((-1190 |#2|) $) NIL (|has| |#2| (-567)))) (-2263 ((|#2|) NIL) ((|#2| (-1285 $)) NIL)) (-4103 (((-1190 |#2|) $) NIL)) (-2810 (((-112)) NIL)) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 |#2| "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) ((|#2| $) NIL)) (-1385 (($ (-1285 |#2|)) NIL) (($ (-1285 |#2|) (-1285 $)) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-4422 (((-782) $) NIL (|has| |#2| (-567))) (((-936)) 43)) (-2788 ((|#2| $ (-575) (-575)) NIL)) (-4369 (((-112)) NIL)) (-3889 (($ $ (-936)) NIL)) (-4001 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1542 (((-112) $) NIL)) (-1911 (((-782) $) NIL (|has| |#2| (-567)))) (-3264 (((-655 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-567)))) (-4243 (((-782) $) NIL)) (-3289 (((-112)) NIL)) (-4255 (((-782) $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-1907 ((|#2| $) NIL (|has| |#2| (-6 (-4462 "*"))))) (-2667 (((-575) $) NIL)) (-1775 (((-575) $) NIL)) (-3955 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1776 (((-575) $) NIL)) (-3293 (((-575) $) NIL)) (-4316 (($ (-655 (-655 |#2|))) NIL)) (-2847 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3487 (((-655 (-655 |#2|)) $) NIL)) (-1742 (((-112)) NIL)) (-3577 (((-112)) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-3129 (((-3 (-2 (|:| |particular| $) (|:| -1624 (-655 $))) "failed")) NIL (|has| |#2| (-567)))) (-3387 (((-3 $ "failed")) NIL (|has| |#2| (-567)))) (-2653 (((-700 |#2|)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-1502 ((|#2| $) NIL)) (-4391 (((-700 |#2|) $) NIL) (((-700 |#2|) $ (-1285 $)) NIL)) (-3456 (((-3 $ "failed") $) NIL (|has| |#2| (-567)))) (-3498 (((-1190 (-967 |#2|))) NIL (|has| |#2| (-373)))) (-1898 (($ $ (-936)) NIL)) (-4336 ((|#2| $) NIL)) (-3649 (((-1190 |#2|) $) NIL (|has| |#2| (-567)))) (-1634 ((|#2|) NIL) ((|#2| (-1285 $)) NIL)) (-4013 (((-1190 |#2|) $) NIL)) (-4403 (((-112)) NIL)) (-2288 (((-1176) $) NIL)) (-1536 (((-112)) NIL)) (-3978 (((-112)) NIL)) (-2204 (((-112)) NIL)) (-3205 (((-3 $ "failed") $) NIL (|has| |#2| (-373)))) (-3912 (((-1137) $) NIL)) (-3074 (((-112)) NIL)) (-2851 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567)))) (-3207 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#2| $ (-575) (-575) |#2|) NIL) ((|#2| $ (-575) (-575)) 28) ((|#2| $ (-575)) NIL)) (-2389 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-3439 ((|#2| $) NIL)) (-3740 (($ (-655 |#2|)) NIL)) (-1763 (((-112) $) NIL)) (-2050 (((-245 |#1| |#2|) $) NIL)) (-3674 ((|#2| $) NIL (|has| |#2| (-6 (-4462 "*"))))) (-3925 (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3078 (($ $) NIL)) (-3962 (((-700 |#2|) (-1285 $)) NIL) (((-1285 |#2|) $) NIL) (((-700 |#2|) (-1285 $) (-1285 $)) NIL) (((-1285 |#2|) $ (-1285 $)) 31)) (-2615 (($ (-1285 |#2|)) NIL) (((-1285 |#2|) $) NIL)) (-3235 (((-655 (-967 |#2|))) NIL) (((-655 (-967 |#2|)) (-1285 $)) NIL)) (-3320 (($ $ $) NIL)) (-2328 (((-112)) NIL)) (-1792 (((-245 |#1| |#2|) $ (-575)) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#2| (-1055 (-418 (-575))))) (($ |#2|) NIL) (((-700 |#2|) $) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) 41)) (-3431 (((-655 (-1285 |#2|))) NIL (|has| |#2| (-567)))) (-1785 (($ $ $ $) NIL)) (-2761 (((-112)) NIL)) (-1949 (($ (-700 |#2|) $) NIL)) (-3771 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-4412 (((-112) $) NIL)) (-3534 (($ $ $) NIL)) (-4363 (((-112)) NIL)) (-2987 (((-112)) NIL)) (-1472 (((-112)) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#2| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-681 |#1| |#2|) (-13 (-1140 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-624 (-700 |#2|)) (-428 |#2|)) (-936) (-174)) (T -681)) +NIL +(-13 (-1140 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-624 (-700 |#2|)) (-428 |#2|)) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3469 (((-655 (-1152)) $) 10)) (-2883 (((-873) $) 16) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-682) (-13 (-1100) (-10 -8 (-15 -3469 ((-655 (-1152)) $))))) (T -682)) +((-3469 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-682))))) +(-13 (-1100) (-10 -8 (-15 -3469 ((-655 (-1152)) $)))) +((-2861 (((-112) $ $) NIL)) (-3489 (((-655 |#1|) $) NIL)) (-2435 (($ $) 62)) (-3373 (((-112) $) NIL)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2410 (((-3 $ "failed") (-830 |#1|)) 27)) (-3718 (((-112) (-830 |#1|)) 17)) (-2026 (($ (-830 |#1|)) 28)) (-2025 (((-112) $ $) 36)) (-1839 (((-936) $) 43)) (-2418 (($ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2353 (((-655 $) (-830 |#1|)) 19)) (-2883 (((-873) $) 51) (($ |#1|) 40) (((-830 |#1|) $) 47) (((-688 |#1|) $) 52)) (-4400 (((-112) $ $) NIL)) (-3853 (((-59 (-655 $)) (-655 |#1|) (-936)) 67)) (-2181 (((-655 $) (-655 |#1|) (-936)) 70)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 63)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 46))) +(((-683 |#1|) (-13 (-861) (-1055 |#1|) (-10 -8 (-15 -3373 ((-112) $)) (-15 -2418 ($ $)) (-15 -2435 ($ $)) (-15 -1839 ((-936) $)) (-15 -2025 ((-112) $ $)) (-15 -2883 ((-830 |#1|) $)) (-15 -2883 ((-688 |#1|) $)) (-15 -2353 ((-655 $) (-830 |#1|))) (-15 -3718 ((-112) (-830 |#1|))) (-15 -2026 ($ (-830 |#1|))) (-15 -2410 ((-3 $ "failed") (-830 |#1|))) (-15 -3489 ((-655 |#1|) $)) (-15 -3853 ((-59 (-655 $)) (-655 |#1|) (-936))) (-15 -2181 ((-655 $) (-655 |#1|) (-936))))) (-861)) (T -683)) +((-3373 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-2418 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-861)))) (-2435 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-861)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-2025 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-688 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-2353 (*1 *2 *3) (-12 (-5 *3 (-830 *4)) (-4 *4 (-861)) (-5 *2 (-655 (-683 *4))) (-5 *1 (-683 *4)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-830 *4)) (-4 *4 (-861)) (-5 *2 (-112)) (-5 *1 (-683 *4)))) (-2026 (*1 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *3 (-861)) (-5 *1 (-683 *3)))) (-2410 (*1 *1 *2) (|partial| -12 (-5 *2 (-830 *3)) (-4 *3 (-861)) (-5 *1 (-683 *3)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-936)) (-4 *5 (-861)) (-5 *2 (-59 (-655 (-683 *5)))) (-5 *1 (-683 *5)))) (-2181 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-936)) (-4 *5 (-861)) (-5 *2 (-655 (-683 *5))) (-5 *1 (-683 *5))))) +(-13 (-861) (-1055 |#1|) (-10 -8 (-15 -3373 ((-112) $)) (-15 -2418 ($ $)) (-15 -2435 ($ $)) (-15 -1839 ((-936) $)) (-15 -2025 ((-112) $ $)) (-15 -2883 ((-830 |#1|) $)) (-15 -2883 ((-688 |#1|) $)) (-15 -2353 ((-655 $) (-830 |#1|))) (-15 -3718 ((-112) (-830 |#1|))) (-15 -2026 ($ (-830 |#1|))) (-15 -2410 ((-3 $ "failed") (-830 |#1|))) (-15 -3489 ((-655 |#1|) $)) (-15 -3853 ((-59 (-655 $)) (-655 |#1|) (-936))) (-15 -2181 ((-655 $) (-655 |#1|) (-936))))) +((-4182 ((|#2| $) 100)) (-3462 (($ $) 121)) (-1845 (((-112) $ (-782)) 35)) (-1975 (($ $) 109) (($ $ (-782)) 112)) (-2087 (((-112) $) 122)) (-3698 (((-655 $) $) 96)) (-3117 (((-112) $ $) 92)) (-3896 (((-112) $ (-782)) 33)) (-2541 (((-575) $) 66)) (-3197 (((-575) $) 65)) (-4026 (((-112) $ (-782)) 31)) (-1526 (((-112) $) 98)) (-3653 ((|#2| $) 113) (($ $ (-782)) 117)) (-2135 (($ $ $ (-575)) 83) (($ |#2| $ (-575)) 82)) (-4310 (((-655 (-575)) $) 64)) (-2969 (((-112) (-575) $) 59)) (-1961 ((|#2| $) NIL) (($ $ (-782)) 108)) (-4276 (($ $ (-575)) 125)) (-3888 (((-112) $) 124)) (-3207 (((-112) (-1 (-112) |#2|) $) 42)) (-1691 (((-655 |#2|) $) 46)) (-2070 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1252 (-575))) 79) ((|#2| $ (-575)) 57) ((|#2| $ (-575) |#2|) 58)) (-2220 (((-575) $ $) 91)) (-3239 (($ $ (-1252 (-575))) 78) (($ $ (-575)) 72)) (-1648 (((-112) $) 87)) (-1397 (($ $) 105)) (-3269 (((-782) $) 104)) (-1863 (($ $) 103)) (-2894 (($ (-655 |#2|)) 53)) (-2972 (($ $) 126)) (-2348 (((-655 $) $) 90)) (-2781 (((-112) $ $) 89)) (-3771 (((-112) (-1 (-112) |#2|) $) 41)) (-3914 (((-112) $ $) 20)) (-2871 (((-782) $) 39))) +(((-684 |#1| |#2|) (-10 -8 (-15 -2972 (|#1| |#1|)) (-15 -4276 (|#1| |#1| (-575))) (-15 -2087 ((-112) |#1|)) (-15 -3888 ((-112) |#1|)) (-15 -2070 (|#2| |#1| (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575))) (-15 -1691 ((-655 |#2|) |#1|)) (-15 -2969 ((-112) (-575) |#1|)) (-15 -4310 ((-655 (-575)) |#1|)) (-15 -3197 ((-575) |#1|)) (-15 -2541 ((-575) |#1|)) (-15 -2894 (|#1| (-655 |#2|))) (-15 -2070 (|#1| |#1| (-1252 (-575)))) (-15 -3239 (|#1| |#1| (-575))) (-15 -3239 (|#1| |#1| (-1252 (-575)))) (-15 -2135 (|#1| |#2| |#1| (-575))) (-15 -2135 (|#1| |#1| |#1| (-575))) (-15 -1397 (|#1| |#1|)) (-15 -3269 ((-782) |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3653 (|#1| |#1| (-782))) (-15 -2070 (|#2| |#1| "last")) (-15 -3653 (|#2| |#1|)) (-15 -1975 (|#1| |#1| (-782))) (-15 -2070 (|#1| |#1| "rest")) (-15 -1975 (|#1| |#1|)) (-15 -1961 (|#1| |#1| (-782))) (-15 -2070 (|#2| |#1| "first")) (-15 -1961 (|#2| |#1|)) (-15 -3117 ((-112) |#1| |#1|)) (-15 -2781 ((-112) |#1| |#1|)) (-15 -2220 ((-575) |#1| |#1|)) (-15 -1648 ((-112) |#1|)) (-15 -2070 (|#2| |#1| "value")) (-15 -4182 (|#2| |#1|)) (-15 -1526 ((-112) |#1|)) (-15 -3698 ((-655 |#1|) |#1|)) (-15 -2348 ((-655 |#1|) |#1|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -3207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2871 ((-782) |#1|)) (-15 -1845 ((-112) |#1| (-782))) (-15 -3896 ((-112) |#1| (-782))) (-15 -4026 ((-112) |#1| (-782)))) (-685 |#2|) (-1235)) (T -684)) +NIL +(-10 -8 (-15 -2972 (|#1| |#1|)) (-15 -4276 (|#1| |#1| (-575))) (-15 -2087 ((-112) |#1|)) (-15 -3888 ((-112) |#1|)) (-15 -2070 (|#2| |#1| (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575))) (-15 -1691 ((-655 |#2|) |#1|)) (-15 -2969 ((-112) (-575) |#1|)) (-15 -4310 ((-655 (-575)) |#1|)) (-15 -3197 ((-575) |#1|)) (-15 -2541 ((-575) |#1|)) (-15 -2894 (|#1| (-655 |#2|))) (-15 -2070 (|#1| |#1| (-1252 (-575)))) (-15 -3239 (|#1| |#1| (-575))) (-15 -3239 (|#1| |#1| (-1252 (-575)))) (-15 -2135 (|#1| |#2| |#1| (-575))) (-15 -2135 (|#1| |#1| |#1| (-575))) (-15 -1397 (|#1| |#1|)) (-15 -3269 ((-782) |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3653 (|#1| |#1| (-782))) (-15 -2070 (|#2| |#1| "last")) (-15 -3653 (|#2| |#1|)) (-15 -1975 (|#1| |#1| (-782))) (-15 -2070 (|#1| |#1| "rest")) (-15 -1975 (|#1| |#1|)) (-15 -1961 (|#1| |#1| (-782))) (-15 -2070 (|#2| |#1| "first")) (-15 -1961 (|#2| |#1|)) (-15 -3117 ((-112) |#1| |#1|)) (-15 -2781 ((-112) |#1| |#1|)) (-15 -2220 ((-575) |#1| |#1|)) (-15 -1648 ((-112) |#1|)) (-15 -2070 (|#2| |#1| "value")) (-15 -4182 (|#2| |#1|)) (-15 -1526 ((-112) |#1|)) (-15 -3698 ((-655 |#1|) |#1|)) (-15 -2348 ((-655 |#1|) |#1|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -3207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2871 ((-782) |#1|)) (-15 -1845 ((-112) |#1| (-782))) (-15 -3896 ((-112) |#1| (-782))) (-15 -4026 ((-112) |#1| (-782)))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4182 ((|#1| $) 49)) (-2989 ((|#1| $) 66)) (-3462 (($ $) 68)) (-4161 (((-1290) $ (-575) (-575)) 99 (|has| $ (-6 -4461)))) (-1893 (($ $ (-575)) 53 (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) 8)) (-1915 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-3391 (($ $ $) 57 (|has| $ (-6 -4461)))) (-3602 ((|#1| $ |#1|) 55 (|has| $ (-6 -4461)))) (-1876 ((|#1| $ |#1|) 59 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4461))) (($ $ "rest" $) 56 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 119 (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) 88 (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 104)) (-2977 ((|#1| $) 67)) (-3011 (($) 7 T CONST)) (-4129 (($ $) 126)) (-1975 (($ $) 74) (($ $ (-782)) 72)) (-1748 (($ $) 101 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#1| $) 102 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 105)) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2859 ((|#1| $ (-575) |#1|) 87 (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) 89)) (-2087 (((-112) $) 85)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-1483 (((-782) $) 125)) (-3698 (((-655 $) $) 51)) (-3117 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-2309 (($ (-782) |#1|) 111)) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 97 (|has| (-575) (-861)))) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 96 (|has| (-575) (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-4026 (((-112) $ (-782)) 10)) (-2482 (((-655 |#1|) $) 46)) (-1526 (((-112) $) 50)) (-4300 (($ $) 128)) (-3165 (((-112) $) 129)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3653 ((|#1| $) 71) (($ $ (-782)) 69)) (-2135 (($ $ $ (-575)) 118) (($ |#1| $ (-575)) 117)) (-4310 (((-655 (-575)) $) 94)) (-2969 (((-112) (-575) $) 93)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-2549 ((|#1| $) 127)) (-1961 ((|#1| $) 77) (($ $ (-782)) 75)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3954 (($ $ |#1|) 98 (|has| $ (-6 -4461)))) (-4276 (($ $ (-575)) 124)) (-3888 (((-112) $) 86)) (-1954 (((-112) $) 130)) (-3274 (((-112) $) 131)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) 92)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1252 (-575))) 110) ((|#1| $ (-575)) 91) ((|#1| $ (-575) |#1|) 90)) (-2220 (((-575) $ $) 45)) (-3239 (($ $ (-1252 (-575))) 116) (($ $ (-575)) 115)) (-1648 (((-112) $) 47)) (-1397 (($ $) 63)) (-1877 (($ $) 60 (|has| $ (-6 -4461)))) (-3269 (((-782) $) 64)) (-1863 (($ $) 65)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 100 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 109)) (-2774 (($ $ $) 62 (|has| $ (-6 -4461))) (($ $ |#1|) 61 (|has| $ (-6 -4461)))) (-1514 (($ $ $) 79) (($ |#1| $) 78) (($ (-655 $)) 113) (($ $ |#1|) 112)) (-2972 (($ $) 123)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) 52)) (-2781 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-685 |#1|) (-141) (-1235)) (T -685)) +((-3633 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-685 *3)) (-4 *3 (-1235)))) (-3985 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-685 *3)) (-4 *3 (-1235)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-4300 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235)))) (-2549 (*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235)))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))) (-4276 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-685 *3)) (-4 *3 (-1235)))) (-2972 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235))))) +(-13 (-1166 |t#1|) (-10 -8 (-15 -3633 ($ (-1 (-112) |t#1|) $)) (-15 -3985 ($ (-1 (-112) |t#1|) $)) (-15 -3274 ((-112) $)) (-15 -1954 ((-112) $)) (-15 -3165 ((-112) $)) (-15 -4300 ($ $)) (-15 -2549 (|t#1| $)) (-15 -4129 ($ $)) (-15 -1483 ((-782) $)) (-15 -4276 ($ $ (-575))) (-15 -2972 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1166 |#1|) . T) ((-1235) . T) ((-1273 |#1|) . T)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2957 (($ (-782) (-782) (-782)) 53 (|has| |#1| (-1066)))) (-1845 (((-112) $ (-782)) NIL)) (-3192 ((|#1| $ (-782) (-782) (-782) |#1|) 47)) (-3011 (($) NIL T CONST)) (-3611 (($ $ $) 57 (|has| |#1| (-1066)))) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1701 (((-1285 (-782)) $) 12)) (-1461 (($ (-1194) $ $) 34)) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2956 (($ (-782)) 55 (|has| |#1| (-1066)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-782) (-782) (-782)) 44)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-2894 (($ (-655 (-655 (-655 |#1|)))) 67)) (-2883 (($ (-973 (-973 (-973 |#1|)))) 23) (((-973 (-973 (-973 |#1|))) $) 19) (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-686 |#1|) (-13 (-500 |#1|) (-10 -8 (IF (|has| |#1| (-1066)) (PROGN (-15 -2957 ($ (-782) (-782) (-782))) (-15 -2956 ($ (-782))) (-15 -3611 ($ $ $))) |%noBranch|) (-15 -2894 ($ (-655 (-655 (-655 |#1|))))) (-15 -2070 (|#1| $ (-782) (-782) (-782))) (-15 -3192 (|#1| $ (-782) (-782) (-782) |#1|)) (-15 -2883 ($ (-973 (-973 (-973 |#1|))))) (-15 -2883 ((-973 (-973 (-973 |#1|))) $)) (-15 -1461 ($ (-1194) $ $)) (-15 -1701 ((-1285 (-782)) $)))) (-1117)) (T -686)) +((-2957 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-686 *3)) (-4 *3 (-1066)) (-4 *3 (-1117)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-686 *3)) (-4 *3 (-1066)) (-4 *3 (-1117)))) (-3611 (*1 *1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1066)) (-4 *2 (-1117)))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-655 *3)))) (-4 *3 (-1117)) (-5 *1 (-686 *3)))) (-2070 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-782)) (-5 *1 (-686 *2)) (-4 *2 (-1117)))) (-3192 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-686 *2)) (-4 *2 (-1117)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-973 (-973 (-973 *3)))) (-4 *3 (-1117)) (-5 *1 (-686 *3)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-973 (-973 (-973 *3)))) (-5 *1 (-686 *3)) (-4 *3 (-1117)))) (-1461 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-686 *3)) (-4 *3 (-1117)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-1285 (-782))) (-5 *1 (-686 *3)) (-4 *3 (-1117))))) +(-13 (-500 |#1|) (-10 -8 (IF (|has| |#1| (-1066)) (PROGN (-15 -2957 ($ (-782) (-782) (-782))) (-15 -2956 ($ (-782))) (-15 -3611 ($ $ $))) |%noBranch|) (-15 -2894 ($ (-655 (-655 (-655 |#1|))))) (-15 -2070 (|#1| $ (-782) (-782) (-782))) (-15 -3192 (|#1| $ (-782) (-782) (-782) |#1|)) (-15 -2883 ($ (-973 (-973 (-973 |#1|))))) (-15 -2883 ((-973 (-973 (-973 |#1|))) $)) (-15 -1461 ($ (-1194) $ $)) (-15 -1701 ((-1285 (-782)) $)))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3283 (((-494) $) 10)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 19) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 12)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-687) (-13 (-1100) (-10 -8 (-15 -3283 ((-494) $)) (-15 -1788 ((-1152) $))))) (T -687)) +((-3283 (*1 *2 *1) (-12 (-5 *2 (-494)) (-5 *1 (-687)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-687))))) +(-13 (-1100) (-10 -8 (-15 -3283 ((-494) $)) (-15 -1788 ((-1152) $)))) +((-2861 (((-112) $ $) NIL)) (-3489 (((-655 |#1|) $) 15)) (-2435 (($ $) 19)) (-3373 (((-112) $) 20)) (-2449 (((-3 |#1| "failed") $) 23)) (-4399 ((|#1| $) 21)) (-1975 (($ $) 37)) (-3061 (($ $) 25)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2025 (((-112) $ $) 47)) (-1839 (((-936) $) 40)) (-2418 (($ $) 18)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 ((|#1| $) 36)) (-2883 (((-873) $) 32) (($ |#1|) 24) (((-830 |#1|) $) 28)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 13)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-688 |#1|) (-13 (-861) (-1055 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2883 ((-830 |#1|) $)) (-15 -1961 (|#1| $)) (-15 -2418 ($ $)) (-15 -1839 ((-936) $)) (-15 -2025 ((-112) $ $)) (-15 -3061 ($ $)) (-15 -1975 ($ $)) (-15 -3373 ((-112) $)) (-15 -2435 ($ $)) (-15 -3489 ((-655 |#1|) $)))) (-861)) (T -688)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) (-1961 (*1 *2 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-2418 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) (-2025 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) (-3061 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-1975 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) (-2435 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-688 *3)) (-4 *3 (-861))))) +(-13 (-861) (-1055 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2883 ((-830 |#1|) $)) (-15 -1961 (|#1| $)) (-15 -2418 ($ $)) (-15 -1839 ((-936) $)) (-15 -2025 ((-112) $ $)) (-15 -3061 ($ $)) (-15 -1975 ($ $)) (-15 -3373 ((-112) $)) (-15 -2435 ($ $)) (-15 -3489 ((-655 |#1|) $)))) +((-1651 ((|#1| (-1 |#1| (-782) |#1|) (-782) |#1|) 11)) (-2586 ((|#1| (-1 |#1| |#1|) (-782) |#1|) 9))) +(((-689 |#1|) (-10 -7 (-15 -2586 (|#1| (-1 |#1| |#1|) (-782) |#1|)) (-15 -1651 (|#1| (-1 |#1| (-782) |#1|) (-782) |#1|))) (-1117)) (T -689)) +((-1651 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-782) *2)) (-5 *4 (-782)) (-4 *2 (-1117)) (-5 *1 (-689 *2)))) (-2586 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-782)) (-4 *2 (-1117)) (-5 *1 (-689 *2))))) +(-10 -7 (-15 -2586 (|#1| (-1 |#1| |#1|) (-782) |#1|)) (-15 -1651 (|#1| (-1 |#1| (-782) |#1|) (-782) |#1|))) +((-1582 ((|#2| |#1| |#2|) 9)) (-1564 ((|#1| |#1| |#2|) 8))) +(((-690 |#1| |#2|) (-10 -7 (-15 -1564 (|#1| |#1| |#2|)) (-15 -1582 (|#2| |#1| |#2|))) (-1117) (-1117)) (T -690)) +((-1582 (*1 *2 *3 *2) (-12 (-5 *1 (-690 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))) (-1564 (*1 *2 *2 *3) (-12 (-5 *1 (-690 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117))))) +(-10 -7 (-15 -1564 (|#1| |#1| |#2|)) (-15 -1582 (|#2| |#1| |#2|))) +((-2000 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-691 |#1| |#2| |#3|) (-10 -7 (-15 -2000 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1117) (-1117) (-1117)) (T -691)) +((-2000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)) (-5 *1 (-691 *5 *6 *2))))) +(-10 -7 (-15 -2000 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2861 (((-112) $ $) NIL)) (-2939 (((-1234) $) 21)) (-2890 (((-655 (-1234)) $) 19)) (-2534 (($ (-655 (-1234)) (-1234)) 14)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 29) (($ (-1199)) NIL) (((-1199) $) NIL) (((-1234) $) 22) (($ (-1135)) 10)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-692) (-13 (-1100) (-624 (-1234)) (-10 -8 (-15 -2883 ($ (-1135))) (-15 -2534 ($ (-655 (-1234)) (-1234))) (-15 -2890 ((-655 (-1234)) $)) (-15 -2939 ((-1234) $))))) (T -692)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-692)))) (-2534 (*1 *1 *2 *3) (-12 (-5 *2 (-655 (-1234))) (-5 *3 (-1234)) (-5 *1 (-692)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-692)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-692))))) +(-13 (-1100) (-624 (-1234)) (-10 -8 (-15 -2883 ($ (-1135))) (-15 -2534 ($ (-655 (-1234)) (-1234))) (-15 -2890 ((-655 (-1234)) $)) (-15 -2939 ((-1234) $)))) +((-1651 (((-1 |#1| (-782) |#1|) (-1 |#1| (-782) |#1|)) 26)) (-4286 (((-1 |#1|) |#1|) 8)) (-2059 ((|#1| |#1|) 19)) (-3041 (((-655 |#1|) (-1 (-655 |#1|) (-655 |#1|)) (-575)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2883 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-782)) 23))) +(((-693 |#1|) (-10 -7 (-15 -4286 ((-1 |#1|) |#1|)) (-15 -2883 ((-1 |#1|) |#1|)) (-15 -3041 (|#1| (-1 |#1| |#1|))) (-15 -3041 ((-655 |#1|) (-1 (-655 |#1|) (-655 |#1|)) (-575))) (-15 -2059 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-782))) (-15 -1651 ((-1 |#1| (-782) |#1|) (-1 |#1| (-782) |#1|)))) (-1117)) (T -693)) +((-1651 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-782) *3)) (-4 *3 (-1117)) (-5 *1 (-693 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *4 (-1117)) (-5 *1 (-693 *4)))) (-2059 (*1 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-1117)))) (-3041 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-655 *5) (-655 *5))) (-5 *4 (-575)) (-5 *2 (-655 *5)) (-5 *1 (-693 *5)) (-4 *5 (-1117)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-693 *2)) (-4 *2 (-1117)))) (-2883 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-693 *3)) (-4 *3 (-1117)))) (-4286 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-693 *3)) (-4 *3 (-1117))))) +(-10 -7 (-15 -4286 ((-1 |#1|) |#1|)) (-15 -2883 ((-1 |#1|) |#1|)) (-15 -3041 (|#1| (-1 |#1| |#1|))) (-15 -3041 ((-655 |#1|) (-1 (-655 |#1|) (-655 |#1|)) (-575))) (-15 -2059 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-782))) (-15 -1651 ((-1 |#1| (-782) |#1|) (-1 |#1| (-782) |#1|)))) +((-3640 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1818 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3738 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1403 (((-1 |#2| |#1|) |#2|) 11))) +(((-694 |#1| |#2|) (-10 -7 (-15 -1403 ((-1 |#2| |#1|) |#2|)) (-15 -1818 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3738 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3640 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1117) (-1117)) (T -694)) +((-3640 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-5 *2 (-1 *5 *4)) (-5 *1 (-694 *4 *5)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1117)) (-5 *2 (-1 *5 *4)) (-5 *1 (-694 *4 *5)) (-4 *4 (-1117)))) (-1818 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-5 *2 (-1 *5)) (-5 *1 (-694 *4 *5)))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-694 *4 *3)) (-4 *4 (-1117)) (-4 *3 (-1117))))) +(-10 -7 (-15 -1403 ((-1 |#2| |#1|) |#2|)) (-15 -1818 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3738 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3640 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-1334 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2332 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4208 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2999 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2628 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-695 |#1| |#2| |#3|) (-10 -7 (-15 -2332 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4208 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2999 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2628 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1334 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1117) (-1117) (-1117)) (T -695)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-1 *7 *5)) (-5 *1 (-695 *5 *6 *7)))) (-1334 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-695 *4 *5 *6)))) (-2628 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-695 *4 *5 *6)) (-4 *4 (-1117)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-695 *4 *5 *6)) (-4 *5 (-1117)))) (-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-695 *4 *5 *6)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1117)) (-4 *4 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-695 *5 *4 *6))))) +(-10 -7 (-15 -2332 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4208 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2999 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2628 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1334 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2308 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2550 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-696 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2550 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2550 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2308 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1066) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|) (-1066) (-383 |#5|) (-383 |#5|) (-698 |#5| |#6| |#7|)) (T -696)) +((-2308 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1066)) (-4 *2 (-1066)) (-4 *6 (-383 *5)) (-4 *7 (-383 *5)) (-4 *8 (-383 *2)) (-4 *9 (-383 *2)) (-5 *1 (-696 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-698 *5 *6 *7)) (-4 *10 (-698 *2 *8 *9)))) (-2550 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1066)) (-4 *8 (-1066)) (-4 *6 (-383 *5)) (-4 *7 (-383 *5)) (-4 *2 (-698 *8 *9 *10)) (-5 *1 (-696 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-698 *5 *6 *7)) (-4 *9 (-383 *8)) (-4 *10 (-383 *8)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1066)) (-4 *8 (-1066)) (-4 *6 (-383 *5)) (-4 *7 (-383 *5)) (-4 *2 (-698 *8 *9 *10)) (-5 *1 (-696 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-698 *5 *6 *7)) (-4 *9 (-383 *8)) (-4 *10 (-383 *8))))) +(-10 -7 (-15 -2550 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2550 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2308 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2880 (($ (-782) (-782)) 42)) (-3544 (($ $ $) 71)) (-1926 (($ |#3|) 66) (($ $) 67)) (-3158 (((-112) $) 36)) (-3922 (($ $ (-575) (-575)) 82)) (-2905 (($ $ (-575) (-575)) 83)) (-4104 (($ $ (-575) (-575) (-575) (-575)) 88)) (-3823 (($ $) 69)) (-1503 (((-112) $) 15)) (-3383 (($ $ (-575) (-575) $) 89)) (-3054 ((|#2| $ (-575) (-575) |#2|) NIL) (($ $ (-655 (-575)) (-655 (-575)) $) 87)) (-2271 (($ (-782) |#2|) 53)) (-4316 (($ (-655 (-655 |#2|))) 51)) (-3487 (((-655 (-655 |#2|)) $) 78)) (-2054 (($ $ $) 70)) (-2851 (((-3 $ "failed") $ |#2|) 120)) (-2070 ((|#2| $ (-575) (-575)) NIL) ((|#2| $ (-575) (-575) |#2|) NIL) (($ $ (-655 (-575)) (-655 (-575))) 86)) (-3740 (($ (-655 |#2|)) 54) (($ (-655 $)) 56)) (-1763 (((-112) $) 28)) (-2883 (($ |#4|) 61) (((-873) $) NIL)) (-4412 (((-112) $) 38)) (-4038 (($ $ |#2|) 122)) (-4028 (($ $ $) 93) (($ $) 96)) (-4016 (($ $ $) 91)) (** (($ $ (-782)) 109) (($ $ (-575)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-575) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) +(((-697 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2883 ((-873) |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4038 (|#1| |#1| |#2|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-782))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4016 (|#1| |#1| |#1|)) (-15 -3383 (|#1| |#1| (-575) (-575) |#1|)) (-15 -4104 (|#1| |#1| (-575) (-575) (-575) (-575))) (-15 -2905 (|#1| |#1| (-575) (-575))) (-15 -3922 (|#1| |#1| (-575) (-575))) (-15 -3054 (|#1| |#1| (-655 (-575)) (-655 (-575)) |#1|)) (-15 -2070 (|#1| |#1| (-655 (-575)) (-655 (-575)))) (-15 -3487 ((-655 (-655 |#2|)) |#1|)) (-15 -3544 (|#1| |#1| |#1|)) (-15 -2054 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -1926 (|#1| |#1|)) (-15 -1926 (|#1| |#3|)) (-15 -2883 (|#1| |#4|)) (-15 -3740 (|#1| (-655 |#1|))) (-15 -3740 (|#1| (-655 |#2|))) (-15 -2271 (|#1| (-782) |#2|)) (-15 -4316 (|#1| (-655 (-655 |#2|)))) (-15 -2880 (|#1| (-782) (-782))) (-15 -4412 ((-112) |#1|)) (-15 -3158 ((-112) |#1|)) (-15 -1763 ((-112) |#1|)) (-15 -1503 ((-112) |#1|)) (-15 -3054 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575) (-575)))) (-698 |#2| |#3| |#4|) (-1066) (-383 |#2|) (-383 |#2|)) (T -697)) +NIL +(-10 -8 (-15 -2883 ((-873) |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4038 (|#1| |#1| |#2|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-782))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4016 (|#1| |#1| |#1|)) (-15 -3383 (|#1| |#1| (-575) (-575) |#1|)) (-15 -4104 (|#1| |#1| (-575) (-575) (-575) (-575))) (-15 -2905 (|#1| |#1| (-575) (-575))) (-15 -3922 (|#1| |#1| (-575) (-575))) (-15 -3054 (|#1| |#1| (-655 (-575)) (-655 (-575)) |#1|)) (-15 -2070 (|#1| |#1| (-655 (-575)) (-655 (-575)))) (-15 -3487 ((-655 (-655 |#2|)) |#1|)) (-15 -3544 (|#1| |#1| |#1|)) (-15 -2054 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -1926 (|#1| |#1|)) (-15 -1926 (|#1| |#3|)) (-15 -2883 (|#1| |#4|)) (-15 -3740 (|#1| (-655 |#1|))) (-15 -3740 (|#1| (-655 |#2|))) (-15 -2271 (|#1| (-782) |#2|)) (-15 -4316 (|#1| (-655 (-655 |#2|)))) (-15 -2880 (|#1| (-782) (-782))) (-15 -4412 ((-112) |#1|)) (-15 -3158 ((-112) |#1|)) (-15 -1763 ((-112) |#1|)) (-15 -1503 ((-112) |#1|)) (-15 -3054 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575) (-575)))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-2880 (($ (-782) (-782)) 98)) (-3544 (($ $ $) 88)) (-1926 (($ |#2|) 92) (($ $) 91)) (-3158 (((-112) $) 100)) (-3922 (($ $ (-575) (-575)) 84)) (-2905 (($ $ (-575) (-575)) 83)) (-4104 (($ $ (-575) (-575) (-575) (-575)) 82)) (-3823 (($ $) 90)) (-1503 (((-112) $) 102)) (-1845 (((-112) $ (-782)) 8)) (-3383 (($ $ (-575) (-575) $) 81)) (-3054 ((|#1| $ (-575) (-575) |#1|) 45) (($ $ (-655 (-575)) (-655 (-575)) $) 85)) (-3918 (($ $ (-575) |#2|) 43)) (-4188 (($ $ (-575) |#3|) 42)) (-2271 (($ (-782) |#1|) 96)) (-3011 (($) 7 T CONST)) (-3356 (($ $) 68 (|has| |#1| (-316)))) (-1565 ((|#2| $ (-575)) 47)) (-4422 (((-782) $) 67 (|has| |#1| (-567)))) (-2859 ((|#1| $ (-575) (-575) |#1|) 44)) (-2788 ((|#1| $ (-575) (-575)) 49)) (-4001 (((-655 |#1|) $) 31)) (-1911 (((-782) $) 66 (|has| |#1| (-567)))) (-3264 (((-655 |#3|) $) 65 (|has| |#1| (-567)))) (-4243 (((-782) $) 52)) (-2309 (($ (-782) (-782) |#1|) 58)) (-4255 (((-782) $) 51)) (-3896 (((-112) $ (-782)) 9)) (-1907 ((|#1| $) 63 (|has| |#1| (-6 (-4462 "*"))))) (-2667 (((-575) $) 56)) (-1775 (((-575) $) 54)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-1776 (((-575) $) 55)) (-3293 (((-575) $) 53)) (-4316 (($ (-655 (-655 |#1|))) 97)) (-2847 (($ (-1 |#1| |#1|) $) 35)) (-2550 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3487 (((-655 (-655 |#1|)) $) 87)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3205 (((-3 $ "failed") $) 62 (|has| |#1| (-373)))) (-2054 (($ $ $) 89)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3954 (($ $ |#1|) 57)) (-2851 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-567)))) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ (-575) (-575)) 50) ((|#1| $ (-575) (-575) |#1|) 48) (($ $ (-655 (-575)) (-655 (-575))) 86)) (-3740 (($ (-655 |#1|)) 95) (($ (-655 $)) 94)) (-1763 (((-112) $) 101)) (-3674 ((|#1| $) 64 (|has| |#1| (-6 (-4462 "*"))))) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-1792 ((|#3| $ (-575)) 46)) (-2883 (($ |#3|) 93) (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-4412 (((-112) $) 99)) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-4038 (($ $ |#1|) 69 (|has| |#1| (-373)))) (-4028 (($ $ $) 79) (($ $) 78)) (-4016 (($ $ $) 80)) (** (($ $ (-782)) 71) (($ $ (-575)) 61 (|has| |#1| (-373)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-575) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-698 |#1| |#2| |#3|) (-141) (-1066) (-383 |t#1|) (-383 |t#1|)) (T -698)) +((-1503 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-112)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-112)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-112)))) (-4412 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-112)))) (-2880 (*1 *1 *2 *2) (-12 (-5 *2 (-782)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2271 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2883 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *2)) (-4 *4 (-383 *3)) (-4 *2 (-383 *3)))) (-1926 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-4 *1 (-698 *3 *2 *4)) (-4 *2 (-383 *3)) (-4 *4 (-383 *3)))) (-1926 (*1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-3823 (*1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-2054 (*1 *1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-3544 (*1 *1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-655 (-655 *3))))) (-2070 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-655 (-575))) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-3054 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-655 (-575))) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-3922 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2905 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-4104 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-3383 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-4016 (*1 *1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-4028 (*1 *1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-4028 (*1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-698 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *2 (-383 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-698 *3 *2 *4)) (-4 *3 (-1066)) (-4 *2 (-383 *3)) (-4 *4 (-383 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2851 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-567)))) (-4038 (*1 *1 *1 *2) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-373)))) (-3356 (*1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-316)))) (-4422 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-782)))) (-1911 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-782)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-655 *5)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))) (-3205 (*1 *1 *1) (|partial| -12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-373)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-4 *3 (-373))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4461) (-6 -4460) (-15 -1503 ((-112) $)) (-15 -1763 ((-112) $)) (-15 -3158 ((-112) $)) (-15 -4412 ((-112) $)) (-15 -2880 ($ (-782) (-782))) (-15 -4316 ($ (-655 (-655 |t#1|)))) (-15 -2271 ($ (-782) |t#1|)) (-15 -3740 ($ (-655 |t#1|))) (-15 -3740 ($ (-655 $))) (-15 -2883 ($ |t#3|)) (-15 -1926 ($ |t#2|)) (-15 -1926 ($ $)) (-15 -3823 ($ $)) (-15 -2054 ($ $ $)) (-15 -3544 ($ $ $)) (-15 -3487 ((-655 (-655 |t#1|)) $)) (-15 -2070 ($ $ (-655 (-575)) (-655 (-575)))) (-15 -3054 ($ $ (-655 (-575)) (-655 (-575)) $)) (-15 -3922 ($ $ (-575) (-575))) (-15 -2905 ($ $ (-575) (-575))) (-15 -4104 ($ $ (-575) (-575) (-575) (-575))) (-15 -3383 ($ $ (-575) (-575) $)) (-15 -4016 ($ $ $)) (-15 -4028 ($ $ $)) (-15 -4028 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-575) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-782))) (IF (|has| |t#1| (-567)) (-15 -2851 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-373)) (-15 -4038 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-316)) (-15 -3356 ($ $)) |%noBranch|) (IF (|has| |t#1| (-567)) (PROGN (-15 -4422 ((-782) $)) (-15 -1911 ((-782) $)) (-15 -3264 ((-655 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4462 "*"))) (PROGN (-15 -3674 (|t#1| $)) (-15 -1907 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-373)) (PROGN (-15 -3205 ((-3 $ "failed") $)) (-15 ** ($ $ (-575)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-57 |#1| |#2| |#3|) . T) ((-1235) . T)) +((-3356 ((|#4| |#4|) 92 (|has| |#1| (-316)))) (-4422 (((-782) |#4|) 120 (|has| |#1| (-567)))) (-1911 (((-782) |#4|) 96 (|has| |#1| (-567)))) (-3264 (((-655 |#3|) |#4|) 103 (|has| |#1| (-567)))) (-3745 (((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|) 135 (|has| |#1| (-316)))) (-1907 ((|#1| |#4|) 52)) (-3969 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-567)))) (-3205 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-373)))) (-4164 ((|#4| |#4|) 88 (|has| |#1| (-567)))) (-3267 ((|#4| |#4| |#1| (-575) (-575)) 60)) (-2535 ((|#4| |#4| (-575) (-575)) 55)) (-2481 ((|#4| |#4| |#1| (-575) (-575)) 65)) (-3674 ((|#1| |#4|) 98)) (-3541 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-567))))) +(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3674 (|#1| |#4|)) (-15 -1907 (|#1| |#4|)) (-15 -2535 (|#4| |#4| (-575) (-575))) (-15 -3267 (|#4| |#4| |#1| (-575) (-575))) (-15 -2481 (|#4| |#4| |#1| (-575) (-575))) (IF (|has| |#1| (-567)) (PROGN (-15 -4422 ((-782) |#4|)) (-15 -1911 ((-782) |#4|)) (-15 -3264 ((-655 |#3|) |#4|)) (-15 -4164 (|#4| |#4|)) (-15 -3969 ((-3 |#4| "failed") |#4|)) (-15 -3541 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-316)) (PROGN (-15 -3356 (|#4| |#4|)) (-15 -3745 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -3205 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|)) (T -699)) +((-3205 (*1 *2 *2) (|partial| -12 (-4 *3 (-373)) (-4 *3 (-174)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-3745 (*1 *2 *3 *3) (-12 (-4 *3 (-316)) (-4 *3 (-174)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-699 *3 *4 *5 *6)) (-4 *6 (-698 *3 *4 *5)))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-316)) (-4 *3 (-174)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-3541 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-3969 (*1 *2 *2) (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-567)) (-4 *3 (-174)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-3264 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-655 *6)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-1911 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-4422 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-2481 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-575)) (-4 *3 (-174)) (-4 *5 (-383 *3)) (-4 *6 (-383 *3)) (-5 *1 (-699 *3 *5 *6 *2)) (-4 *2 (-698 *3 *5 *6)))) (-3267 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-575)) (-4 *3 (-174)) (-4 *5 (-383 *3)) (-4 *6 (-383 *3)) (-5 *1 (-699 *3 *5 *6 *2)) (-4 *2 (-698 *3 *5 *6)))) (-2535 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-575)) (-4 *4 (-174)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *1 (-699 *4 *5 *6 *2)) (-4 *2 (-698 *4 *5 *6)))) (-1907 (*1 *2 *3) (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-174)) (-5 *1 (-699 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5)))) (-3674 (*1 *2 *3) (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-174)) (-5 *1 (-699 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5))))) +(-10 -7 (-15 -3674 (|#1| |#4|)) (-15 -1907 (|#1| |#4|)) (-15 -2535 (|#4| |#4| (-575) (-575))) (-15 -3267 (|#4| |#4| |#1| (-575) (-575))) (-15 -2481 (|#4| |#4| |#1| (-575) (-575))) (IF (|has| |#1| (-567)) (PROGN (-15 -4422 ((-782) |#4|)) (-15 -1911 ((-782) |#4|)) (-15 -3264 ((-655 |#3|) |#4|)) (-15 -4164 (|#4| |#4|)) (-15 -3969 ((-3 |#4| "failed") |#4|)) (-15 -3541 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-316)) (PROGN (-15 -3356 (|#4| |#4|)) (-15 -3745 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -3205 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2880 (($ (-782) (-782)) 64)) (-3544 (($ $ $) NIL)) (-1926 (($ (-1285 |#1|)) NIL) (($ $) NIL)) (-3158 (((-112) $) NIL)) (-3922 (($ $ (-575) (-575)) 22)) (-2905 (($ $ (-575) (-575)) NIL)) (-4104 (($ $ (-575) (-575) (-575) (-575)) NIL)) (-3823 (($ $) NIL)) (-1503 (((-112) $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3383 (($ $ (-575) (-575) $) NIL)) (-3054 ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575)) $) NIL)) (-3918 (($ $ (-575) (-1285 |#1|)) NIL)) (-4188 (($ $ (-575) (-1285 |#1|)) NIL)) (-2271 (($ (-782) |#1|) 37)) (-3011 (($) NIL T CONST)) (-3356 (($ $) 46 (|has| |#1| (-316)))) (-1565 (((-1285 |#1|) $ (-575)) NIL)) (-4422 (((-782) $) 48 (|has| |#1| (-567)))) (-2859 ((|#1| $ (-575) (-575) |#1|) 69)) (-2788 ((|#1| $ (-575) (-575)) NIL)) (-4001 (((-655 |#1|) $) NIL)) (-1911 (((-782) $) 50 (|has| |#1| (-567)))) (-3264 (((-655 (-1285 |#1|)) $) 53 (|has| |#1| (-567)))) (-4243 (((-782) $) 32)) (-2309 (($ (-782) (-782) |#1|) 28)) (-4255 (((-782) $) 33)) (-3896 (((-112) $ (-782)) NIL)) (-1907 ((|#1| $) 44 (|has| |#1| (-6 (-4462 "*"))))) (-2667 (((-575) $) 10)) (-1775 (((-575) $) 11)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1776 (((-575) $) 14)) (-3293 (((-575) $) 65)) (-4316 (($ (-655 (-655 |#1|))) NIL)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3487 (((-655 (-655 |#1|)) $) 76)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3205 (((-3 $ "failed") $) 60 (|has| |#1| (-373)))) (-2054 (($ $ $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3954 (($ $ |#1|) NIL)) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-575) (-575)) NIL) ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575))) NIL)) (-3740 (($ (-655 |#1|)) NIL) (($ (-655 $)) NIL) (($ (-1285 |#1|)) 70)) (-1763 (((-112) $) NIL)) (-3674 ((|#1| $) 42 (|has| |#1| (-6 (-4462 "*"))))) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-2615 (((-547) $) 80 (|has| |#1| (-625 (-547))))) (-1792 (((-1285 |#1|) $ (-575)) NIL)) (-2883 (($ (-1285 |#1|)) NIL) (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-4412 (((-112) $) NIL)) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $ $) NIL) (($ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-782)) 38) (($ $ (-575)) 62 (|has| |#1| (-373)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-575) $) NIL) (((-1285 |#1|) $ (-1285 |#1|)) NIL) (((-1285 |#1|) (-1285 |#1|) $) NIL)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-700 |#1|) (-13 (-698 |#1| (-1285 |#1|) (-1285 |#1|)) (-10 -8 (-15 -3740 ($ (-1285 |#1|))) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -3205 ((-3 $ "failed") $)) |%noBranch|))) (-1066)) (T -700)) +((-3205 (*1 *1 *1) (|partial| -12 (-5 *1 (-700 *2)) (-4 *2 (-373)) (-4 *2 (-1066)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1066)) (-5 *1 (-700 *3))))) +(-13 (-698 |#1| (-1285 |#1|) (-1285 |#1|)) (-10 -8 (-15 -3740 ($ (-1285 |#1|))) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -3205 ((-3 $ "failed") $)) |%noBranch|))) +((-2388 (((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|)) 37)) (-3719 (((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|) 32)) (-2228 (((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-782)) 43)) (-2273 (((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|)) 25)) (-2230 (((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|)) 29) (((-700 |#1|) (-700 |#1|) (-700 |#1|)) 27)) (-1890 (((-700 |#1|) (-700 |#1|) |#1| (-700 |#1|)) 31)) (-2503 (((-700 |#1|) (-700 |#1|) (-700 |#1|)) 23)) (** (((-700 |#1|) (-700 |#1|) (-782)) 46))) +(((-701 |#1|) (-10 -7 (-15 -2503 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2273 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2230 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2230 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -1890 ((-700 |#1|) (-700 |#1|) |#1| (-700 |#1|))) (-15 -3719 ((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|)) (-15 -2388 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2228 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-782))) (-15 ** ((-700 |#1|) (-700 |#1|) (-782)))) (-1066)) (T -701)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-700 *4)) (-5 *3 (-782)) (-4 *4 (-1066)) (-5 *1 (-701 *4)))) (-2228 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-700 *4)) (-5 *3 (-782)) (-4 *4 (-1066)) (-5 *1 (-701 *4)))) (-2388 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-3719 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-1890 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-2230 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-2230 (*1 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-2273 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-2503 (*1 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3))))) +(-10 -7 (-15 -2503 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2273 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2230 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2230 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -1890 ((-700 |#1|) (-700 |#1|) |#1| (-700 |#1|))) (-15 -3719 ((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|)) (-15 -2388 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2228 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-782))) (-15 ** ((-700 |#1|) (-700 |#1|) (-782)))) +((-2449 (((-3 |#1| "failed") $) 18)) (-4399 ((|#1| $) NIL)) (-2752 (($) 7 T CONST)) (-4050 (($ |#1|) 8)) (-2883 (($ |#1|) 16) (((-873) $) 23)) (-1984 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2752)) 11)) (-3134 ((|#1| $) 15))) +(((-702 |#1|) (-13 (-1280) (-1055 |#1|) (-624 (-873)) (-10 -8 (-15 -4050 ($ |#1|)) (-15 -1984 ((-112) $ (|[\|\|]| |#1|))) (-15 -1984 ((-112) $ (|[\|\|]| -2752))) (-15 -3134 (|#1| $)) (-15 -2752 ($) -3738))) (-624 (-873))) (T -702)) +((-4050 (*1 *1 *2) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873))))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-624 (-873))) (-5 *2 (-112)) (-5 *1 (-702 *4)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2752)) (-5 *2 (-112)) (-5 *1 (-702 *4)) (-4 *4 (-624 (-873))))) (-3134 (*1 *2 *1) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873))))) (-2752 (*1 *1) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873)))))) +(-13 (-1280) (-1055 |#1|) (-624 (-873)) (-10 -8 (-15 -4050 ($ |#1|)) (-15 -1984 ((-112) $ (|[\|\|]| |#1|))) (-15 -1984 ((-112) $ (|[\|\|]| -2752))) (-15 -3134 (|#1| $)) (-15 -2752 ($) -3738))) +((-2183 ((|#2| |#2| |#4|) 29)) (-1816 (((-700 |#2|) |#3| |#4|) 35)) (-3720 (((-700 |#2|) |#2| |#4|) 34)) (-1468 (((-1285 |#2|) |#2| |#4|) 16)) (-3422 ((|#2| |#3| |#4|) 28)) (-3558 (((-700 |#2|) |#3| |#4| (-782) (-782)) 47)) (-2368 (((-700 |#2|) |#2| |#4| (-782)) 46))) +(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1468 ((-1285 |#2|) |#2| |#4|)) (-15 -3422 (|#2| |#3| |#4|)) (-15 -2183 (|#2| |#2| |#4|)) (-15 -3720 ((-700 |#2|) |#2| |#4|)) (-15 -2368 ((-700 |#2|) |#2| |#4| (-782))) (-15 -1816 ((-700 |#2|) |#3| |#4|)) (-15 -3558 ((-700 |#2|) |#3| |#4| (-782) (-782)))) (-1117) (-913 |#1|) (-383 |#2|) (-13 (-383 |#1|) (-10 -7 (-6 -4460)))) (T -703)) +((-3558 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-782)) (-4 *6 (-1117)) (-4 *7 (-913 *6)) (-5 *2 (-700 *7)) (-5 *1 (-703 *6 *7 *3 *4)) (-4 *3 (-383 *7)) (-4 *4 (-13 (-383 *6) (-10 -7 (-6 -4460)))))) (-1816 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-4 *6 (-913 *5)) (-5 *2 (-700 *6)) (-5 *1 (-703 *5 *6 *3 *4)) (-4 *3 (-383 *6)) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460)))))) (-2368 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-782)) (-4 *6 (-1117)) (-4 *3 (-913 *6)) (-5 *2 (-700 *3)) (-5 *1 (-703 *6 *3 *7 *4)) (-4 *7 (-383 *3)) (-4 *4 (-13 (-383 *6) (-10 -7 (-6 -4460)))))) (-3720 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-4 *3 (-913 *5)) (-5 *2 (-700 *3)) (-5 *1 (-703 *5 *3 *6 *4)) (-4 *6 (-383 *3)) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460)))))) (-2183 (*1 *2 *2 *3) (-12 (-4 *4 (-1117)) (-4 *2 (-913 *4)) (-5 *1 (-703 *4 *2 *5 *3)) (-4 *5 (-383 *2)) (-4 *3 (-13 (-383 *4) (-10 -7 (-6 -4460)))))) (-3422 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-4 *2 (-913 *5)) (-5 *1 (-703 *5 *2 *3 *4)) (-4 *3 (-383 *2)) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460)))))) (-1468 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-4 *3 (-913 *5)) (-5 *2 (-1285 *3)) (-5 *1 (-703 *5 *3 *6 *4)) (-4 *6 (-383 *3)) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460))))))) +(-10 -7 (-15 -1468 ((-1285 |#2|) |#2| |#4|)) (-15 -3422 (|#2| |#3| |#4|)) (-15 -2183 (|#2| |#2| |#4|)) (-15 -3720 ((-700 |#2|) |#2| |#4|)) (-15 -2368 ((-700 |#2|) |#2| |#4| (-782))) (-15 -1816 ((-700 |#2|) |#3| |#4|)) (-15 -3558 ((-700 |#2|) |#3| |#4| (-782) (-782)))) +((-1958 (((-2 (|:| |num| (-700 |#1|)) (|:| |den| |#1|)) (-700 |#2|)) 20)) (-1516 ((|#1| (-700 |#2|)) 9)) (-3369 (((-700 |#1|) (-700 |#2|)) 18))) +(((-704 |#1| |#2|) (-10 -7 (-15 -1516 (|#1| (-700 |#2|))) (-15 -3369 ((-700 |#1|) (-700 |#2|))) (-15 -1958 ((-2 (|:| |num| (-700 |#1|)) (|:| |den| |#1|)) (-700 |#2|)))) (-567) (-1009 |#1|)) (T -704)) +((-1958 (*1 *2 *3) (-12 (-5 *3 (-700 *5)) (-4 *5 (-1009 *4)) (-4 *4 (-567)) (-5 *2 (-2 (|:| |num| (-700 *4)) (|:| |den| *4))) (-5 *1 (-704 *4 *5)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-700 *5)) (-4 *5 (-1009 *4)) (-4 *4 (-567)) (-5 *2 (-700 *4)) (-5 *1 (-704 *4 *5)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-700 *4)) (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-704 *2 *4))))) +(-10 -7 (-15 -1516 (|#1| (-700 |#2|))) (-15 -3369 ((-700 |#1|) (-700 |#2|))) (-15 -1958 ((-2 (|:| |num| (-700 |#1|)) (|:| |den| |#1|)) (-700 |#2|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1389 (((-700 (-710))) NIL) (((-700 (-710)) (-1285 $)) NIL)) (-1447 (((-710) $) NIL)) (-3923 (($ $) NIL (|has| (-710) (-1220)))) (-3786 (($ $) NIL (|has| (-710) (-1220)))) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-710) (-359)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-710) (-316)) (|has| (-710) (-924))))) (-2058 (($ $) NIL (-3765 (-12 (|has| (-710) (-316)) (|has| (-710) (-924))) (|has| (-710) (-373))))) (-2330 (((-429 $) $) NIL (-3765 (-12 (|has| (-710) (-316)) (|has| (-710) (-924))) (|has| (-710) (-373))))) (-2473 (($ $) NIL (-12 (|has| (-710) (-1019)) (|has| (-710) (-1220))))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-710) (-316)) (|has| (-710) (-924))))) (-2279 (((-112) $ $) NIL (|has| (-710) (-316)))) (-2415 (((-782)) NIL (|has| (-710) (-378)))) (-3897 (($ $) NIL (|has| (-710) (-1220)))) (-3761 (($ $) NIL (|has| (-710) (-1220)))) (-1521 (($ $) NIL (|has| (-710) (-1220)))) (-3807 (($ $) NIL (|has| (-710) (-1220)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL) (((-3 (-710) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-710) (-1055 (-418 (-575)))))) (-4399 (((-575) $) NIL) (((-710) $) NIL) (((-418 (-575)) $) NIL (|has| (-710) (-1055 (-418 (-575)))))) (-1385 (($ (-1285 (-710))) NIL) (($ (-1285 (-710)) (-1285 $)) NIL)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-710) (-359)))) (-2802 (($ $ $) NIL (|has| (-710) (-316)))) (-2746 (((-700 (-710)) $) NIL) (((-700 (-710)) $ (-1285 $)) NIL)) (-1749 (((-700 (-710)) (-1285 $)) NIL) (((-700 (-710)) (-700 $)) NIL) (((-2 (|:| -2412 (-700 (-710))) (|:| |vec| (-1285 (-710)))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-710) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-710) (-650 (-575)))) (((-700 (-575)) (-1285 $)) NIL (|has| (-710) (-650 (-575))))) (-2308 (((-3 $ "failed") (-418 (-1190 (-710)))) NIL (|has| (-710) (-373))) (($ (-1190 (-710))) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2487 (((-710) $) 29)) (-2446 (((-3 (-418 (-575)) "failed") $) NIL (|has| (-710) (-556)))) (-3405 (((-112) $) NIL (|has| (-710) (-556)))) (-3100 (((-418 (-575)) $) NIL (|has| (-710) (-556)))) (-4422 (((-936)) NIL)) (-2079 (($) NIL (|has| (-710) (-378)))) (-2813 (($ $ $) NIL (|has| (-710) (-316)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| (-710) (-316)))) (-1360 (($) NIL (|has| (-710) (-359)))) (-1980 (((-112) $) NIL (|has| (-710) (-359)))) (-4374 (($ $) NIL (|has| (-710) (-359))) (($ $ (-782)) NIL (|has| (-710) (-359)))) (-1336 (((-112) $) NIL (-3765 (-12 (|has| (-710) (-316)) (|has| (-710) (-924))) (|has| (-710) (-373))))) (-3713 (((-2 (|:| |r| (-710)) (|:| |phi| (-710))) $) NIL (-12 (|has| (-710) (-1077)) (|has| (-710) (-1220))))) (-1631 (($) NIL (|has| (-710) (-1220)))) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-710) (-898 (-389)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-710) (-898 (-575))))) (-2673 (((-844 (-936)) $) NIL (|has| (-710) (-359))) (((-936) $) NIL (|has| (-710) (-359)))) (-1542 (((-112) $) NIL)) (-2931 (($ $ (-575)) NIL (-12 (|has| (-710) (-1019)) (|has| (-710) (-1220))))) (-2255 (((-710) $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| (-710) (-359)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-710) (-316)))) (-1943 (((-1190 (-710)) $) NIL (|has| (-710) (-373)))) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2550 (($ (-1 (-710) (-710)) $) NIL)) (-4084 (((-936) $) NIL (|has| (-710) (-378)))) (-3463 (($ $) NIL (|has| (-710) (-1220)))) (-2295 (((-1190 (-710)) $) NIL)) (-3887 (($ (-655 $)) NIL (|has| (-710) (-316))) (($ $ $) NIL (|has| (-710) (-316)))) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| (-710) (-373)))) (-3474 (($) NIL (|has| (-710) (-359)) CONST)) (-4317 (($ (-936)) NIL (|has| (-710) (-378)))) (-2468 (($) NIL)) (-1972 (((-710) $) 31)) (-3912 (((-1137) $) NIL)) (-3659 (($) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| (-710) (-316)))) (-3926 (($ (-655 $)) NIL (|has| (-710) (-316))) (($ $ $) NIL (|has| (-710) (-316)))) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| (-710) (-359)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-710) (-316)) (|has| (-710) (-924))))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-710) (-316)) (|has| (-710) (-924))))) (-2353 (((-429 $) $) NIL (-3765 (-12 (|has| (-710) (-316)) (|has| (-710) (-924))) (|has| (-710) (-373))))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-710) (-316))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| (-710) (-316)))) (-2851 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-710)) NIL (|has| (-710) (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-710) (-316)))) (-2665 (($ $) NIL (|has| (-710) (-1220)))) (-3048 (($ $ (-1194) (-710)) NIL (|has| (-710) (-525 (-1194) (-710)))) (($ $ (-655 (-1194)) (-655 (-710))) NIL (|has| (-710) (-525 (-1194) (-710)))) (($ $ (-655 (-303 (-710)))) NIL (|has| (-710) (-318 (-710)))) (($ $ (-303 (-710))) NIL (|has| (-710) (-318 (-710)))) (($ $ (-710) (-710)) NIL (|has| (-710) (-318 (-710)))) (($ $ (-655 (-710)) (-655 (-710))) NIL (|has| (-710) (-318 (-710))))) (-3708 (((-782) $) NIL (|has| (-710) (-316)))) (-2070 (($ $ (-710)) NIL (|has| (-710) (-295 (-710) (-710))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| (-710) (-316)))) (-4060 (((-710)) NIL) (((-710) (-1285 $)) NIL)) (-3905 (((-3 (-782) "failed") $ $) NIL (|has| (-710) (-359))) (((-782) $) NIL (|has| (-710) (-359)))) (-2389 (($ $ (-1 (-710) (-710)) (-782)) NIL) (($ $ (-1 (-710) (-710))) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-782)) NIL (-3765 (-12 (|has| (-710) (-238)) (|has| (-710) (-373))) (|has| (-710) (-237)))) (($ $) NIL (-3765 (-12 (|has| (-710) (-238)) (|has| (-710) (-373))) (|has| (-710) (-237))))) (-3792 (((-700 (-710)) (-1285 $) (-1 (-710) (-710))) NIL (|has| (-710) (-373)))) (-2552 (((-1190 (-710))) NIL)) (-1530 (($ $) NIL (|has| (-710) (-1220)))) (-3817 (($ $) NIL (|has| (-710) (-1220)))) (-3500 (($) NIL (|has| (-710) (-359)))) (-3937 (($ $) NIL (|has| (-710) (-1220)))) (-3797 (($ $) NIL (|has| (-710) (-1220)))) (-3909 (($ $) NIL (|has| (-710) (-1220)))) (-3774 (($ $) NIL (|has| (-710) (-1220)))) (-3962 (((-700 (-710)) (-1285 $)) NIL) (((-1285 (-710)) $) NIL) (((-700 (-710)) (-1285 $) (-1285 $)) NIL) (((-1285 (-710)) $ (-1285 $)) NIL)) (-2615 (((-547) $) NIL (|has| (-710) (-625 (-547)))) (((-171 (-227)) $) NIL (|has| (-710) (-1039))) (((-171 (-389)) $) NIL (|has| (-710) (-1039))) (((-904 (-389)) $) NIL (|has| (-710) (-625 (-904 (-389))))) (((-904 (-575)) $) NIL (|has| (-710) (-625 (-904 (-575))))) (($ (-1190 (-710))) NIL) (((-1190 (-710)) $) NIL) (($ (-1285 (-710))) NIL) (((-1285 (-710)) $) NIL)) (-4258 (($ $) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-3765 (-12 (|has| (-710) (-316)) (|has| $ (-146)) (|has| (-710) (-924))) (|has| (-710) (-359))))) (-3502 (($ (-710) (-710)) 12)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-575)) NIL) (($ (-710)) NIL) (($ (-171 (-389))) 13) (($ (-171 (-575))) 19) (($ (-171 (-710))) 28) (($ (-171 (-712))) 25) (((-171 (-389)) $) 33) (($ (-418 (-575))) NIL (-3765 (|has| (-710) (-1055 (-418 (-575)))) (|has| (-710) (-373))))) (-1518 (($ $) NIL (|has| (-710) (-359))) (((-3 $ "failed") $) NIL (-3765 (-12 (|has| (-710) (-316)) (|has| $ (-146)) (|has| (-710) (-924))) (|has| (-710) (-146))))) (-2551 (((-1190 (-710)) $) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL)) (-1568 (($ $) NIL (|has| (-710) (-1220)))) (-3852 (($ $) NIL (|has| (-710) (-1220)))) (-1780 (((-112) $ $) NIL)) (-1544 (($ $) NIL (|has| (-710) (-1220)))) (-3828 (($ $) NIL (|has| (-710) (-1220)))) (-1592 (($ $) NIL (|has| (-710) (-1220)))) (-3873 (($ $) NIL (|has| (-710) (-1220)))) (-1803 (((-710) $) NIL (|has| (-710) (-1220)))) (-2914 (($ $) NIL (|has| (-710) (-1220)))) (-3885 (($ $) NIL (|has| (-710) (-1220)))) (-1583 (($ $) NIL (|has| (-710) (-1220)))) (-3863 (($ $) NIL (|has| (-710) (-1220)))) (-1554 (($ $) NIL (|has| (-710) (-1220)))) (-3839 (($ $) NIL (|has| (-710) (-1220)))) (-2705 (($ $) NIL (|has| (-710) (-1077)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1 (-710) (-710)) (-782)) NIL) (($ $ (-1 (-710) (-710))) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-782)) NIL (-3765 (-12 (|has| (-710) (-238)) (|has| (-710) (-373))) (|has| (-710) (-237)))) (($ $) NIL (-3765 (-12 (|has| (-710) (-238)) (|has| (-710) (-373))) (|has| (-710) (-237))))) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL (|has| (-710) (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ $) NIL (|has| (-710) (-1220))) (($ $ (-418 (-575))) NIL (-12 (|has| (-710) (-1019)) (|has| (-710) (-1220)))) (($ $ (-575)) NIL (|has| (-710) (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ (-710) $) NIL) (($ $ (-710)) NIL) (($ (-418 (-575)) $) NIL (|has| (-710) (-373))) (($ $ (-418 (-575))) NIL (|has| (-710) (-373))))) +(((-705) (-13 (-398) (-167 (-710)) (-10 -8 (-15 -2883 ($ (-171 (-389)))) (-15 -2883 ($ (-171 (-575)))) (-15 -2883 ($ (-171 (-710)))) (-15 -2883 ($ (-171 (-712)))) (-15 -2883 ((-171 (-389)) $))))) (T -705)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-171 (-389))) (-5 *1 (-705)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-171 (-575))) (-5 *1 (-705)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-171 (-710))) (-5 *1 (-705)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-171 (-712))) (-5 *1 (-705)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-171 (-389))) (-5 *1 (-705))))) +(-13 (-398) (-167 (-710)) (-10 -8 (-15 -2883 ($ (-171 (-389)))) (-15 -2883 ($ (-171 (-575)))) (-15 -2883 ($ (-171 (-710)))) (-15 -2883 ($ (-171 (-712)))) (-15 -2883 ((-171 (-389)) $)))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) 8)) (-1999 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1878 (($ $) 63)) (-1748 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4404 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3633 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4012 ((|#1| $) 40)) (-3862 (($ |#1| $) 41) (($ |#1| $ (-782)) 64)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2454 ((|#1| $) 42)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3240 (((-655 (-2 (|:| -3179 |#1|) (|:| -3925 (-782)))) $) 62)) (-3601 (($) 50) (($ (-655 |#1|)) 49)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 51)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) 43)) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-706 |#1|) (-141) (-1117)) (T -706)) +((-3862 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-706 *2)) (-4 *2 (-1117)))) (-1878 (*1 *1 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1117)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-706 *3)) (-4 *3 (-1117)) (-5 *2 (-655 (-2 (|:| -3179 *3) (|:| -3925 (-782)))))))) +(-13 (-240 |t#1|) (-10 -8 (-15 -3862 ($ |t#1| $ (-782))) (-15 -1878 ($ $)) (-15 -3240 ((-655 (-2 (|:| -3179 |t#1|) (|:| -3925 (-782)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-240 |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-2355 (((-655 |#1|) (-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575)))) (-575)) 65)) (-3729 ((|#1| |#1| (-575)) 62)) (-3926 ((|#1| |#1| |#1| (-575)) 46)) (-2353 (((-655 |#1|) |#1| (-575)) 49)) (-1897 ((|#1| |#1| (-575) |#1| (-575)) 40)) (-3938 (((-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575)))) |#1| (-575)) 61))) +(((-707 |#1|) (-10 -7 (-15 -3926 (|#1| |#1| |#1| (-575))) (-15 -3729 (|#1| |#1| (-575))) (-15 -2353 ((-655 |#1|) |#1| (-575))) (-15 -3938 ((-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575)))) |#1| (-575))) (-15 -2355 ((-655 |#1|) (-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575)))) (-575))) (-15 -1897 (|#1| |#1| (-575) |#1| (-575)))) (-1261 (-575))) (T -707)) +((-1897 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-2 (|:| -2353 *5) (|:| -2645 (-575))))) (-5 *4 (-575)) (-4 *5 (-1261 *4)) (-5 *2 (-655 *5)) (-5 *1 (-707 *5)))) (-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-5 *2 (-655 (-2 (|:| -2353 *3) (|:| -2645 *4)))) (-5 *1 (-707 *3)) (-4 *3 (-1261 *4)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-5 *2 (-655 *3)) (-5 *1 (-707 *3)) (-4 *3 (-1261 *4)))) (-3729 (*1 *2 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3)))) (-3926 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3))))) +(-10 -7 (-15 -3926 (|#1| |#1| |#1| (-575))) (-15 -3729 (|#1| |#1| (-575))) (-15 -2353 ((-655 |#1|) |#1| (-575))) (-15 -3938 ((-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575)))) |#1| (-575))) (-15 -2355 ((-655 |#1|) (-655 (-2 (|:| -2353 |#1|) (|:| -2645 (-575)))) (-575))) (-15 -1897 (|#1| |#1| (-575) |#1| (-575)))) +((-4120 (((-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-1433 (((-1150 (-227)) (-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269))) 53) (((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269))) 55) (((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269))) 57)) (-2384 (((-1150 (-227)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-655 (-269))) NIL)) (-4110 (((-1150 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269))) 58))) +(((-708) (-10 -7 (-15 -1433 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1433 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1433 ((-1150 (-227)) (-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -4110 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -2384 ((-1150 (-227)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -4120 ((-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -708)) +((-4120 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-958 (-227)) (-227) (-227))) (-5 *1 (-708)))) (-2384 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-708)))) (-4110 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-708)))) (-1433 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-227))) (-5 *5 (-655 (-269))) (-5 *1 (-708)))) (-1433 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-227))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-708)))) (-1433 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-708))))) +(-10 -7 (-15 -1433 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1433 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1433 ((-1150 (-227)) (-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -4110 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -2384 ((-1150 (-227)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -4120 ((-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-2353 (((-429 (-1190 |#4|)) (-1190 |#4|)) 86) (((-429 |#4|) |#4|) 266))) +(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2353 ((-429 |#4|) |#4|)) (-15 -2353 ((-429 (-1190 |#4|)) (-1190 |#4|)))) (-861) (-804) (-359) (-964 |#3| |#2| |#1|)) (T -709)) +((-2353 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-359)) (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-709 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-359)) (-5 *2 (-429 *3)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-964 *6 *5 *4))))) +(-10 -7 (-15 -2353 ((-429 |#4|) |#4|)) (-15 -2353 ((-429 (-1190 |#4|)) (-1190 |#4|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 97)) (-3127 (((-575) $) 34)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4080 (($ $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2473 (($ $) NIL)) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL)) (-3011 (($) NIL T CONST)) (-2447 (($ $) NIL)) (-2449 (((-3 (-575) "failed") $) 85) (((-3 (-418 (-575)) "failed") $) 28) (((-3 (-389) "failed") $) 82)) (-4399 (((-575) $) 87) (((-418 (-575)) $) 79) (((-389) $) 80)) (-2802 (($ $ $) 109)) (-1747 (((-3 $ "failed") $) 100)) (-2813 (($ $ $) 108)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-1499 (((-936)) 89) (((-936) (-936)) 88)) (-4075 (((-112) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL)) (-2673 (((-575) $) NIL)) (-1542 (((-112) $) NIL)) (-2931 (($ $ (-575)) NIL)) (-2255 (($ $) NIL)) (-4087 (((-112) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2601 (((-575) (-575)) 94) (((-575)) 95)) (-1920 (($ $ $) NIL) (($) NIL (-12 (-3215 (|has| $ (-6 -4443))) (-3215 (|has| $ (-6 -4451)))))) (-4237 (((-575) (-575)) 92) (((-575)) 93)) (-1425 (($ $ $) NIL) (($) NIL (-12 (-3215 (|has| $ (-6 -4443))) (-3215 (|has| $ (-6 -4451)))))) (-3662 (((-575) $) 17)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 104)) (-3906 (((-936) (-575)) NIL (|has| $ (-6 -4451)))) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) NIL)) (-2736 (($ $) NIL)) (-1539 (($ (-575) (-575)) NIL) (($ (-575) (-575) (-936)) NIL)) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) 105)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2398 (((-575) $) 24)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 107)) (-1874 (((-936)) NIL) (((-936) (-936)) NIL (|has| $ (-6 -4451)))) (-3450 (((-936) (-575)) NIL (|has| $ (-6 -4451)))) (-2615 (((-389) $) NIL) (((-227) $) NIL) (((-904 (-389)) $) NIL)) (-2883 (((-873) $) 63) (($ (-575)) 75) (($ $) NIL) (($ (-418 (-575))) 78) (($ (-575)) 75) (($ (-418 (-575))) 78) (($ (-389)) 72) (((-389) $) 61) (($ (-712)) 66)) (-3759 (((-782)) 119 T CONST)) (-1687 (($ (-575) (-575) (-936)) 54)) (-1432 (($ $) NIL)) (-2351 (((-936)) NIL) (((-936) (-936)) NIL (|has| $ (-6 -4451)))) (-4400 (((-112) $ $) NIL)) (-1548 (((-936)) 91) (((-936) (-936)) 90)) (-1780 (((-112) $ $) NIL)) (-2705 (($ $) NIL)) (-1996 (($) 37 T CONST)) (-2009 (($) 18 T CONST)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 96)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 118)) (-4038 (($ $ $) 77)) (-4028 (($ $) 115) (($ $ $) 116)) (-4016 (($ $ $) 114)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL) (($ $ (-418 (-575))) 103)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 110) (($ $ $) 101) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL))) +(((-710) (-13 (-415) (-398) (-373) (-1055 (-389)) (-1055 (-418 (-575))) (-148) (-10 -8 (-15 -1499 ((-936) (-936))) (-15 -1499 ((-936))) (-15 -1548 ((-936) (-936))) (-15 -4237 ((-575) (-575))) (-15 -4237 ((-575))) (-15 -2601 ((-575) (-575))) (-15 -2601 ((-575))) (-15 -2883 ((-389) $)) (-15 -2883 ($ (-712))) (-15 -3662 ((-575) $)) (-15 -2398 ((-575) $)) (-15 -1687 ($ (-575) (-575) (-936)))))) (T -710)) +((-2398 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-1499 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710)))) (-1548 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710)))) (-4237 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-4237 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-2601 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-389)) (-5 *1 (-710)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-710)))) (-1687 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-936)) (-5 *1 (-710))))) +(-13 (-415) (-398) (-373) (-1055 (-389)) (-1055 (-418 (-575))) (-148) (-10 -8 (-15 -1499 ((-936) (-936))) (-15 -1499 ((-936))) (-15 -1548 ((-936) (-936))) (-15 -4237 ((-575) (-575))) (-15 -4237 ((-575))) (-15 -2601 ((-575) (-575))) (-15 -2601 ((-575))) (-15 -2883 ((-389) $)) (-15 -2883 ($ (-712))) (-15 -3662 ((-575) $)) (-15 -2398 ((-575) $)) (-15 -1687 ($ (-575) (-575) (-936))))) +((-2265 (((-700 |#1|) (-700 |#1|) |#1| |#1|) 85)) (-3356 (((-700 |#1|) (-700 |#1|) |#1|) 66)) (-2698 (((-700 |#1|) (-700 |#1|) |#1|) 86)) (-4033 (((-700 |#1|) (-700 |#1|)) 67)) (-3745 (((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|) 84))) +(((-711 |#1|) (-10 -7 (-15 -4033 ((-700 |#1|) (-700 |#1|))) (-15 -3356 ((-700 |#1|) (-700 |#1|) |#1|)) (-15 -2698 ((-700 |#1|) (-700 |#1|) |#1|)) (-15 -2265 ((-700 |#1|) (-700 |#1|) |#1| |#1|)) (-15 -3745 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|))) (-316)) (T -711)) +((-3745 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-711 *3)) (-4 *3 (-316)))) (-2265 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3)))) (-2698 (*1 *2 *2 *3) (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3)))) (-3356 (*1 *2 *2 *3) (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3)))) (-4033 (*1 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3))))) +(-10 -7 (-15 -4033 ((-700 |#1|) (-700 |#1|))) (-15 -3356 ((-700 |#1|) (-700 |#1|) |#1|)) (-15 -2698 ((-700 |#1|) (-700 |#1|) |#1|)) (-15 -2265 ((-700 |#1|) (-700 |#1|) |#1| |#1|)) (-15 -3745 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1349 (($ $ $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3949 (($ $ $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL)) (-3624 (($ $ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) 31)) (-4399 (((-575) $) 29)) (-2802 (($ $ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2446 (((-3 (-418 (-575)) "failed") $) NIL)) (-3405 (((-112) $) NIL)) (-3100 (((-418 (-575)) $) NIL)) (-2079 (($ $) NIL) (($) NIL)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-1455 (($ $ $ $) NIL)) (-4149 (($ $ $) NIL)) (-4075 (((-112) $) NIL)) (-3747 (($ $ $) NIL)) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL)) (-1542 (((-112) $) NIL)) (-2437 (((-112) $) NIL)) (-2607 (((-3 $ "failed") $) NIL)) (-4087 (((-112) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1993 (($ $ $ $) NIL)) (-1920 (($ $ $) NIL)) (-2276 (((-936) (-936)) 10) (((-936)) 9)) (-1425 (($ $ $) NIL)) (-3537 (($ $) NIL)) (-1839 (($ $) NIL)) (-3887 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-1619 (($ $ $) NIL)) (-3474 (($) NIL T CONST)) (-3047 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2217 (($ $) NIL)) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2185 (((-112) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2389 (($ $ (-782)) NIL) (($ $) NIL)) (-3353 (($ $) NIL)) (-3078 (($ $) NIL)) (-2615 (((-227) $) NIL) (((-389) $) NIL) (((-904 (-575)) $) NIL) (((-547) $) NIL) (((-575) $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) 28) (($ $) NIL) (($ (-575)) 28) (((-325 $) (-325 (-575))) 18)) (-3759 (((-782)) NIL T CONST)) (-2830 (((-112) $ $) NIL)) (-3820 (($ $ $) NIL)) (-4400 (((-112) $ $) NIL)) (-1548 (($) NIL)) (-1780 (((-112) $ $) NIL)) (-2755 (($ $ $ $) NIL)) (-2705 (($ $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-782)) NIL) (($ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL))) +(((-712) (-13 (-398) (-556) (-10 -8 (-15 -2276 ((-936) (-936))) (-15 -2276 ((-936))) (-15 -2883 ((-325 $) (-325 (-575))))))) (T -712)) +((-2276 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-712)))) (-2276 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-712)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-325 (-575))) (-5 *2 (-325 (-712))) (-5 *1 (-712))))) +(-13 (-398) (-556) (-10 -8 (-15 -2276 ((-936) (-936))) (-15 -2276 ((-936))) (-15 -2883 ((-325 $) (-325 (-575)))))) +((-2177 (((-1 |#4| |#2| |#3|) |#1| (-1194) (-1194)) 19)) (-2138 (((-1 |#4| |#2| |#3|) (-1194)) 12))) +(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2138 ((-1 |#4| |#2| |#3|) (-1194))) (-15 -2177 ((-1 |#4| |#2| |#3|) |#1| (-1194) (-1194)))) (-625 (-547)) (-1235) (-1235) (-1235)) (T -713)) +((-2177 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1194)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-713 *3 *5 *6 *7)) (-4 *3 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235)) (-4 *7 (-1235)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-713 *4 *5 *6 *7)) (-4 *4 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235)) (-4 *7 (-1235))))) +(-10 -7 (-15 -2138 ((-1 |#4| |#2| |#3|) (-1194))) (-15 -2177 ((-1 |#4| |#2| |#3|) |#1| (-1194) (-1194)))) +((-3808 (((-1 (-227) (-227) (-227)) |#1| (-1194) (-1194)) 43) (((-1 (-227) (-227)) |#1| (-1194)) 48))) +(((-714 |#1|) (-10 -7 (-15 -3808 ((-1 (-227) (-227)) |#1| (-1194))) (-15 -3808 ((-1 (-227) (-227) (-227)) |#1| (-1194) (-1194)))) (-625 (-547))) (T -714)) +((-3808 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1194)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-714 *3)) (-4 *3 (-625 (-547))))) (-3808 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-714 *3)) (-4 *3 (-625 (-547)))))) +(-10 -7 (-15 -3808 ((-1 (-227) (-227)) |#1| (-1194))) (-15 -3808 ((-1 (-227) (-227) (-227)) |#1| (-1194) (-1194)))) +((-3763 (((-1194) |#1| (-1194) (-655 (-1194))) 10) (((-1194) |#1| (-1194) (-1194) (-1194)) 13) (((-1194) |#1| (-1194) (-1194)) 12) (((-1194) |#1| (-1194)) 11))) +(((-715 |#1|) (-10 -7 (-15 -3763 ((-1194) |#1| (-1194))) (-15 -3763 ((-1194) |#1| (-1194) (-1194))) (-15 -3763 ((-1194) |#1| (-1194) (-1194) (-1194))) (-15 -3763 ((-1194) |#1| (-1194) (-655 (-1194))))) (-625 (-547))) (T -715)) +((-3763 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-655 (-1194))) (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547))))) (-3763 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547))))) (-3763 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547))))) (-3763 (*1 *2 *3 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547)))))) +(-10 -7 (-15 -3763 ((-1194) |#1| (-1194))) (-15 -3763 ((-1194) |#1| (-1194) (-1194))) (-15 -3763 ((-1194) |#1| (-1194) (-1194) (-1194))) (-15 -3763 ((-1194) |#1| (-1194) (-655 (-1194))))) +((-4048 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-716 |#1| |#2|) (-10 -7 (-15 -4048 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1235) (-1235)) (T -716)) +((-4048 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1235)) (-4 *4 (-1235))))) +(-10 -7 (-15 -4048 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2356 (((-1 |#3| |#2|) (-1194)) 11)) (-2177 (((-1 |#3| |#2|) |#1| (-1194)) 21))) +(((-717 |#1| |#2| |#3|) (-10 -7 (-15 -2356 ((-1 |#3| |#2|) (-1194))) (-15 -2177 ((-1 |#3| |#2|) |#1| (-1194)))) (-625 (-547)) (-1235) (-1235)) (T -717)) +((-2177 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-5 *2 (-1 *6 *5)) (-5 *1 (-717 *3 *5 *6)) (-4 *3 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235)))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1 *6 *5)) (-5 *1 (-717 *4 *5 *6)) (-4 *4 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235))))) +(-10 -7 (-15 -2356 ((-1 |#3| |#2|) (-1194))) (-15 -2177 ((-1 |#3| |#2|) |#1| (-1194)))) +((-3490 (((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#4|)) (-655 |#3|) (-655 |#4|) (-655 (-655 (-2 (|:| -1925 (-782)) (|:| |pcoef| |#4|)))) (-655 (-782)) (-1285 (-655 (-1190 |#3|))) |#3|) 92)) (-1601 (((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#3|)) (-655 |#3|) (-655 |#4|) (-655 (-782)) |#3|) 110)) (-2961 (((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 |#3|) (-655 (-782)) (-655 (-1190 |#4|)) (-1285 (-655 (-1190 |#3|))) |#3|) 47))) +(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2961 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 |#3|) (-655 (-782)) (-655 (-1190 |#4|)) (-1285 (-655 (-1190 |#3|))) |#3|)) (-15 -1601 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#3|)) (-655 |#3|) (-655 |#4|) (-655 (-782)) |#3|)) (-15 -3490 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#4|)) (-655 |#3|) (-655 |#4|) (-655 (-655 (-2 (|:| -1925 (-782)) (|:| |pcoef| |#4|)))) (-655 (-782)) (-1285 (-655 (-1190 |#3|))) |#3|))) (-804) (-861) (-316) (-964 |#3| |#1| |#2|)) (T -718)) +((-3490 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-655 (-1190 *13))) (-5 *3 (-1190 *13)) (-5 *4 (-655 *12)) (-5 *5 (-655 *10)) (-5 *6 (-655 *13)) (-5 *7 (-655 (-655 (-2 (|:| -1925 (-782)) (|:| |pcoef| *13))))) (-5 *8 (-655 (-782))) (-5 *9 (-1285 (-655 (-1190 *10)))) (-4 *12 (-861)) (-4 *10 (-316)) (-4 *13 (-964 *10 *11 *12)) (-4 *11 (-804)) (-5 *1 (-718 *11 *12 *10 *13)))) (-1601 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-655 *11)) (-5 *5 (-655 (-1190 *9))) (-5 *6 (-655 *9)) (-5 *7 (-655 *12)) (-5 *8 (-655 (-782))) (-4 *11 (-861)) (-4 *9 (-316)) (-4 *12 (-964 *9 *10 *11)) (-4 *10 (-804)) (-5 *2 (-655 (-1190 *12))) (-5 *1 (-718 *10 *11 *9 *12)) (-5 *3 (-1190 *12)))) (-2961 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-655 (-1190 *11))) (-5 *3 (-1190 *11)) (-5 *4 (-655 *10)) (-5 *5 (-655 *8)) (-5 *6 (-655 (-782))) (-5 *7 (-1285 (-655 (-1190 *8)))) (-4 *10 (-861)) (-4 *8 (-316)) (-4 *11 (-964 *8 *9 *10)) (-4 *9 (-804)) (-5 *1 (-718 *9 *10 *8 *11))))) +(-10 -7 (-15 -2961 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 |#3|) (-655 (-782)) (-655 (-1190 |#4|)) (-1285 (-655 (-1190 |#3|))) |#3|)) (-15 -1601 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#3|)) (-655 |#3|) (-655 |#4|) (-655 (-782)) |#3|)) (-15 -3490 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#4|)) (-655 |#3|) (-655 |#4|) (-655 (-655 (-2 (|:| -1925 (-782)) (|:| |pcoef| |#4|)))) (-655 (-782)) (-1285 (-655 (-1190 |#3|))) |#3|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-4406 (($ $) 48)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2417 (($ |#1| (-782)) 46)) (-4337 (((-782) $) 50)) (-4383 ((|#1| $) 49)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2645 (((-782) $) 51)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-2012 ((|#1| $ (-782)) 47)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-719 |#1|) (-141) (-1066)) (T -719)) +((-2645 (*1 *2 *1) (-12 (-4 *1 (-719 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-4337 (*1 *2 *1) (-12 (-4 *1 (-719 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-1066)))) (-4406 (*1 *1 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-1066)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-719 *2)) (-4 *2 (-1066)))) (-2417 (*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-719 *2)) (-4 *2 (-1066))))) +(-13 (-1066) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2645 ((-782) $)) (-15 -4337 ((-782) $)) (-15 -4383 (|t#1| $)) (-15 -4406 ($ $)) (-15 -2012 (|t#1| $ (-782))) (-15 -2417 ($ |t#1| (-782))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) |has| |#1| (-174)) ((-728 |#1|) |has| |#1| (-174)) ((-737) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2550 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-720 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2550 (|#6| (-1 |#4| |#1|) |#3|))) (-567) (-1261 |#1|) (-1261 (-418 |#2|)) (-567) (-1261 |#4|) (-1261 (-418 |#5|))) (T -720)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-567)) (-4 *7 (-567)) (-4 *6 (-1261 *5)) (-4 *2 (-1261 (-418 *8))) (-5 *1 (-720 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1261 (-418 *6))) (-4 *8 (-1261 *7))))) +(-10 -7 (-15 -2550 (|#6| (-1 |#4| |#1|) |#3|))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2885 (((-1176) (-873)) 38)) (-2484 (((-1290) (-1176)) 31)) (-4261 (((-1176) (-873)) 28)) (-2694 (((-1176) (-873)) 29)) (-2883 (((-873) $) NIL) (((-1176) (-873)) 27)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-721) (-13 (-1117) (-10 -7 (-15 -2883 ((-1176) (-873))) (-15 -4261 ((-1176) (-873))) (-15 -2694 ((-1176) (-873))) (-15 -2885 ((-1176) (-873))) (-15 -2484 ((-1290) (-1176)))))) (T -721)) +((-2883 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))) (-4261 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-721))))) +(-13 (-1117) (-10 -7 (-15 -2883 ((-1176) (-873))) (-15 -4261 ((-1176) (-873))) (-15 -2694 ((-1176) (-873))) (-15 -2885 ((-1176) (-873))) (-15 -2484 ((-1290) (-1176))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-2802 (($ $ $) NIL)) (-2308 (($ |#1| |#2|) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-1542 (((-112) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3486 ((|#2| $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1692 (((-3 $ "failed") $ $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) ((|#1| $) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL))) +(((-722 |#1| |#2| |#3| |#4| |#5|) (-13 (-373) (-10 -8 (-15 -3486 (|#2| $)) (-15 -2883 (|#1| $)) (-15 -2308 ($ |#1| |#2|)) (-15 -1692 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -722)) +((-3486 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-722 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2883 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2308 (*1 *1 *2 *3) (-12 (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1692 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-373) (-10 -8 (-15 -3486 (|#2| $)) (-15 -2883 (|#1| $)) (-15 -2308 ($ |#1| |#2|)) (-15 -1692 ((-3 $ "failed") $ $)))) +((-2861 (((-112) $ $) 87)) (-3799 (((-112) $) 36)) (-2836 (((-1285 |#1|) $ (-782)) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-4437 (($ (-1190 |#1|)) NIL)) (-3466 (((-1190 $) $ (-1099)) NIL) (((-1190 |#1|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 (-1099))) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2583 (($ $ $) NIL (|has| |#1| (-567)))) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2058 (($ $) NIL (|has| |#1| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-2415 (((-782)) 54 (|has| |#1| (-378)))) (-1965 (($ $ (-782)) NIL)) (-3441 (($ $ (-782)) NIL)) (-3407 ((|#2| |#2|) 50)) (-4265 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-463)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-1099) "failed") $) NIL)) (-4399 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-1099) $) NIL)) (-4232 (($ $ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) 40)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-2308 (($ |#2|) 48)) (-1747 (((-3 $ "failed") $) 97)) (-2079 (($) 58 (|has| |#1| (-378)))) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-3551 (($ $ $) NIL)) (-2062 (($ $ $) NIL (|has| |#1| (-567)))) (-3965 (((-2 (|:| -1754 |#1|) (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-567)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1824 (($ $) NIL (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#1| (-924)))) (-2856 (((-973 $)) 89)) (-3703 (($ $ |#1| (-782) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1099) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1099) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-2673 (((-782) $ $) NIL (|has| |#1| (-567)))) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-1169)))) (-2433 (($ (-1190 |#1|) (-1099)) NIL) (($ (-1190 $) (-1099)) NIL)) (-3461 (($ $ (-782)) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-782)) 85) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-1099)) NIL) (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3486 ((|#2|) 51)) (-4337 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2520 (($ (-1 (-782) (-782)) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3049 (((-1190 |#1|) $) NIL)) (-3976 (((-3 (-1099) "failed") $) NIL)) (-4084 (((-936) $) NIL (|has| |#1| (-378)))) (-2295 ((|#2| $) 47)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) 34)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-2288 (((-1176) $) NIL)) (-3742 (((-2 (|:| -2829 $) (|:| -1635 $)) $ (-782)) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| (-1099)) (|:| -2398 (-782))) "failed") $) NIL)) (-4413 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3474 (($) NIL (|has| |#1| (-1169)) CONST)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1450 (($ $) 88 (|has| |#1| (-359)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1099) |#1|) NIL) (($ $ (-655 (-1099)) (-655 |#1|)) NIL) (($ $ (-1099) $) NIL) (($ $ (-655 (-1099)) (-655 $)) NIL)) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2070 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-418 $) (-418 $) (-418 $)) NIL (|has| |#1| (-567))) ((|#1| (-418 $) |#1|) NIL (|has| |#1| (-373))) (((-418 $) $ (-418 $)) NIL (|has| |#1| (-567)))) (-1947 (((-3 $ "failed") $ (-782)) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 98 (|has| |#1| (-373)))) (-4060 (($ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2389 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-2645 (((-782) $) 38) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1099) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-2178 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-3181 (((-973 $)) 42)) (-3875 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567))) (((-3 (-418 $) "failed") (-418 $) $) NIL (|has| |#1| (-567)))) (-2883 (((-873) $) 68) (($ (-575)) NIL) (($ |#1|) 65) (($ (-1099)) NIL) (($ |#2|) 75) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-782)) 70) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1996 (($) 25 T CONST)) (-3590 (((-1285 |#1|) $) 83)) (-1868 (($ (-1285 |#1|)) 57)) (-2009 (($) 8 T CONST)) (-3430 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-3748 (((-1285 |#1|) $) NIL)) (-3914 (((-112) $ $) 76)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) 79) (($ $ $) NIL)) (-4016 (($ $ $) 39)) (** (($ $ (-936)) NIL) (($ $ (-782)) 92)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 64) (($ $ $) 82) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) +(((-723 |#1| |#2|) (-13 (-1261 |#1|) (-627 |#2|) (-10 -8 (-15 -3407 (|#2| |#2|)) (-15 -3486 (|#2|)) (-15 -2308 ($ |#2|)) (-15 -2295 (|#2| $)) (-15 -3590 ((-1285 |#1|) $)) (-15 -1868 ($ (-1285 |#1|))) (-15 -3748 ((-1285 |#1|) $)) (-15 -2856 ((-973 $))) (-15 -3181 ((-973 $))) (IF (|has| |#1| (-359)) (-15 -1450 ($ $)) |%noBranch|) (IF (|has| |#1| (-378)) (-6 (-378)) |%noBranch|))) (-1066) (-1261 |#1|)) (T -723)) +((-3407 (*1 *2 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-723 *3 *2)) (-4 *2 (-1261 *3)))) (-3486 (*1 *2) (-12 (-4 *2 (-1261 *3)) (-5 *1 (-723 *3 *2)) (-4 *3 (-1066)))) (-2308 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-723 *3 *2)) (-4 *2 (-1261 *3)))) (-2295 (*1 *2 *1) (-12 (-4 *2 (-1261 *3)) (-5 *1 (-723 *3 *2)) (-4 *3 (-1066)))) (-3590 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-5 *2 (-1285 *3)) (-5 *1 (-723 *3 *4)) (-4 *4 (-1261 *3)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1066)) (-5 *1 (-723 *3 *4)) (-4 *4 (-1261 *3)))) (-3748 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-5 *2 (-1285 *3)) (-5 *1 (-723 *3 *4)) (-4 *4 (-1261 *3)))) (-2856 (*1 *2) (-12 (-4 *3 (-1066)) (-5 *2 (-973 (-723 *3 *4))) (-5 *1 (-723 *3 *4)) (-4 *4 (-1261 *3)))) (-3181 (*1 *2) (-12 (-4 *3 (-1066)) (-5 *2 (-973 (-723 *3 *4))) (-5 *1 (-723 *3 *4)) (-4 *4 (-1261 *3)))) (-1450 (*1 *1 *1) (-12 (-4 *2 (-359)) (-4 *2 (-1066)) (-5 *1 (-723 *2 *3)) (-4 *3 (-1261 *2))))) +(-13 (-1261 |#1|) (-627 |#2|) (-10 -8 (-15 -3407 (|#2| |#2|)) (-15 -3486 (|#2|)) (-15 -2308 ($ |#2|)) (-15 -2295 (|#2| $)) (-15 -3590 ((-1285 |#1|) $)) (-15 -1868 ($ (-1285 |#1|))) (-15 -3748 ((-1285 |#1|) $)) (-15 -2856 ((-973 $))) (-15 -3181 ((-973 $))) (IF (|has| |#1| (-359)) (-15 -1450 ($ $)) |%noBranch|) (IF (|has| |#1| (-378)) (-6 (-378)) |%noBranch|))) +((-2861 (((-112) $ $) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-4317 ((|#1| $) 13)) (-3912 (((-1137) $) NIL)) (-2398 ((|#2| $) 12)) (-2894 (($ |#1| |#2|) 16)) (-2883 (((-873) $) NIL) (($ (-2 (|:| -4317 |#1|) (|:| -2398 |#2|))) 15) (((-2 (|:| -4317 |#1|) (|:| -2398 |#2|)) $) 14)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 11))) +(((-724 |#1| |#2| |#3|) (-13 (-861) (-501 (-2 (|:| -4317 |#1|) (|:| -2398 |#2|))) (-10 -8 (-15 -2398 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -2894 ($ |#1| |#2|)))) (-861) (-1117) (-1 (-112) (-2 (|:| -4317 |#1|) (|:| -2398 |#2|)) (-2 (|:| -4317 |#1|) (|:| -2398 |#2|)))) (T -724)) +((-2398 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-724 *3 *2 *4)) (-4 *3 (-861)) (-14 *4 (-1 (-112) (-2 (|:| -4317 *3) (|:| -2398 *2)) (-2 (|:| -4317 *3) (|:| -2398 *2)))))) (-4317 (*1 *2 *1) (-12 (-4 *2 (-861)) (-5 *1 (-724 *2 *3 *4)) (-4 *3 (-1117)) (-14 *4 (-1 (-112) (-2 (|:| -4317 *2) (|:| -2398 *3)) (-2 (|:| -4317 *2) (|:| -2398 *3)))))) (-2894 (*1 *1 *2 *3) (-12 (-5 *1 (-724 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1117)) (-14 *4 (-1 (-112) (-2 (|:| -4317 *2) (|:| -2398 *3)) (-2 (|:| -4317 *2) (|:| -2398 *3))))))) +(-13 (-861) (-501 (-2 (|:| -4317 |#1|) (|:| -2398 |#2|))) (-10 -8 (-15 -2398 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -2894 ($ |#1| |#2|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 66)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-4399 ((|#1| $) NIL) (((-115) $) 39)) (-1747 (((-3 $ "failed") $) 103)) (-3827 ((|#2| (-115) |#2|) 93)) (-1542 (((-112) $) NIL)) (-4014 (($ |#1| (-371 (-115))) 14)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3473 (($ $ (-1 |#2| |#2|)) 65)) (-1955 (($ $ (-1 |#2| |#2|)) 44)) (-2070 ((|#2| $ |#2|) 33)) (-3712 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2883 (((-873) $) 73) (($ (-575)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) 37 T CONST)) (-4400 (((-112) $ $) NIL)) (-3541 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-1996 (($) 21 T CONST)) (-2009 (($) 9 T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) 48) (($ $ $) NIL)) (-4016 (($ $ $) 83)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ (-115) (-575)) NIL) (($ $ (-575)) 64)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) +(((-725 |#1| |#2|) (-13 (-1066) (-1055 |#1|) (-1055 (-115)) (-295 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3541 ($ $)) (-15 -3541 ($ $ $)) (-15 -3712 (|#1| |#1|))) |%noBranch|) (-15 -1955 ($ $ (-1 |#2| |#2|))) (-15 -3473 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-575))) (-15 ** ($ $ (-575))) (-15 -3827 (|#2| (-115) |#2|)) (-15 -4014 ($ |#1| (-371 (-115)))))) (-1066) (-659 |#1|)) (T -725)) +((-3541 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3)) (-4 *3 (-659 *2)))) (-3541 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3)) (-4 *3 (-659 *2)))) (-3712 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3)) (-4 *3 (-659 *2)))) (-1955 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-659 *3)) (-4 *3 (-1066)) (-5 *1 (-725 *3 *4)))) (-3473 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-659 *3)) (-4 *3 (-1066)) (-5 *1 (-725 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-575)) (-4 *4 (-1066)) (-5 *1 (-725 *4 *5)) (-4 *5 (-659 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *3 (-1066)) (-5 *1 (-725 *3 *4)) (-4 *4 (-659 *3)))) (-3827 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1066)) (-5 *1 (-725 *4 *2)) (-4 *2 (-659 *4)))) (-4014 (*1 *1 *2 *3) (-12 (-5 *3 (-371 (-115))) (-4 *2 (-1066)) (-5 *1 (-725 *2 *4)) (-4 *4 (-659 *2))))) +(-13 (-1066) (-1055 |#1|) (-1055 (-115)) (-295 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3541 ($ $)) (-15 -3541 ($ $ $)) (-15 -3712 (|#1| |#1|))) |%noBranch|) (-15 -1955 ($ $ (-1 |#2| |#2|))) (-15 -3473 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-575))) (-15 ** ($ $ (-575))) (-15 -3827 (|#2| (-115) |#2|)) (-15 -4014 ($ |#1| (-371 (-115)))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 33)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2308 (($ |#1| |#2|) 25)) (-1747 (((-3 $ "failed") $) 51)) (-1542 (((-112) $) 35)) (-3486 ((|#2| $) 12)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 52)) (-3912 (((-1137) $) NIL)) (-1692 (((-3 $ "failed") $ $) 50)) (-2883 (((-873) $) 24) (($ (-575)) 19) ((|#1| $) 13)) (-3759 (((-782)) 28 T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 16 T CONST)) (-2009 (($) 30 T CONST)) (-3914 (((-112) $ $) 41)) (-4028 (($ $) 46) (($ $ $) 40)) (-4016 (($ $ $) 43)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 21) (($ $ $) 20))) +(((-726 |#1| |#2| |#3| |#4| |#5|) (-13 (-1066) (-10 -8 (-15 -3486 (|#2| $)) (-15 -2883 (|#1| $)) (-15 -2308 ($ |#1| |#2|)) (-15 -1692 ((-3 $ "failed") $ $)) (-15 -1747 ((-3 $ "failed") $)) (-15 -4332 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -726)) +((-1747 (*1 *1 *1) (|partial| -12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3486 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-726 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2883 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2308 (*1 *1 *2 *3) (-12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1692 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4332 (*1 *1 *1) (-12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1066) (-10 -8 (-15 -3486 (|#2| $)) (-15 -2883 (|#1| $)) (-15 -2308 ($ |#1| |#2|)) (-15 -1692 ((-3 $ "failed") $ $)) (-15 -1747 ((-3 $ "failed") $)) (-15 -4332 ($ $)))) +((* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-727 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) (-728 |#2|) (-174)) (T -727)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-728 |#1|) (-141) (-174)) (T -728)) +NIL +(-13 (-111 |t#1| |t#1|) (-651 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3624 (($ |#1|) 17) (($ $ |#1|) 20)) (-3957 (($ |#1|) 18) (($ $ |#1|) 21)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1542 (((-112) $) NIL)) (-4000 (($ |#1| |#1| |#1| |#1|) 8)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 16)) (-3912 (((-1137) $) NIL)) (-3048 ((|#1| $ |#1|) 24) (((-844 |#1|) $ (-844 |#1|)) 32)) (-4258 (($ $ $) NIL)) (-3320 (($ $ $) NIL)) (-2883 (((-873) $) 39)) (-4400 (((-112) $ $) NIL)) (-2009 (($) 9 T CONST)) (-3914 (((-112) $ $) 48)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ $ $) 14))) +(((-729 |#1|) (-13 (-484) (-10 -8 (-15 -4000 ($ |#1| |#1| |#1| |#1|)) (-15 -3624 ($ |#1|)) (-15 -3957 ($ |#1|)) (-15 -1747 ($)) (-15 -3624 ($ $ |#1|)) (-15 -3957 ($ $ |#1|)) (-15 -1747 ($ $)) (-15 -3048 (|#1| $ |#1|)) (-15 -3048 ((-844 |#1|) $ (-844 |#1|))))) (-373)) (T -729)) +((-4000 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-3624 (*1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-3957 (*1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-1747 (*1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-3957 (*1 *1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-1747 (*1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-3048 (*1 *2 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-3048 (*1 *2 *1 *2) (-12 (-5 *2 (-844 *3)) (-4 *3 (-373)) (-5 *1 (-729 *3))))) +(-13 (-484) (-10 -8 (-15 -4000 ($ |#1| |#1| |#1| |#1|)) (-15 -3624 ($ |#1|)) (-15 -3957 ($ |#1|)) (-15 -1747 ($)) (-15 -3624 ($ $ |#1|)) (-15 -3957 ($ $ |#1|)) (-15 -1747 ($ $)) (-15 -3048 (|#1| $ |#1|)) (-15 -3048 ((-844 |#1|) $ (-844 |#1|))))) +((-2661 (($ $ (-936)) 19)) (-1898 (($ $ (-936)) 20)) (** (($ $ (-936)) 10))) +(((-730 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-936))) (-15 -1898 (|#1| |#1| (-936))) (-15 -2661 (|#1| |#1| (-936)))) (-731)) (T -730)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-936))) (-15 -1898 (|#1| |#1| (-936))) (-15 -2661 (|#1| |#1| (-936)))) +((-2861 (((-112) $ $) 7)) (-2661 (($ $ (-936)) 16)) (-1898 (($ $ (-936)) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6)) (** (($ $ (-936)) 14)) (* (($ $ $) 17))) +(((-731) (-141)) (T -731)) +((* (*1 *1 *1 *1) (-4 *1 (-731))) (-2661 (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936)))) (-1898 (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936))))) +(-13 (-1117) (-10 -8 (-15 * ($ $ $)) (-15 -2661 ($ $ (-936))) (-15 -1898 ($ $ (-936))) (-15 ** ($ $ (-936))))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2661 (($ $ (-936)) NIL) (($ $ (-782)) 18)) (-1542 (((-112) $) 10)) (-1898 (($ $ (-936)) NIL) (($ $ (-782)) 19)) (** (($ $ (-936)) NIL) (($ $ (-782)) 16))) +(((-732 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-782))) (-15 -1898 (|#1| |#1| (-782))) (-15 -2661 (|#1| |#1| (-782))) (-15 -1542 ((-112) |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 -1898 (|#1| |#1| (-936))) (-15 -2661 (|#1| |#1| (-936)))) (-733)) (T -732)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-782))) (-15 -1898 (|#1| |#1| (-782))) (-15 -2661 (|#1| |#1| (-782))) (-15 -1542 ((-112) |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 -1898 (|#1| |#1| (-936))) (-15 -2661 (|#1| |#1| (-936)))) +((-2861 (((-112) $ $) 7)) (-3512 (((-3 $ "failed") $) 18)) (-2661 (($ $ (-936)) 16) (($ $ (-782)) 23)) (-1747 (((-3 $ "failed") $) 20)) (-1542 (((-112) $) 24)) (-3456 (((-3 $ "failed") $) 19)) (-1898 (($ $ (-936)) 15) (($ $ (-782)) 22)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-2009 (($) 25 T CONST)) (-3914 (((-112) $ $) 6)) (** (($ $ (-936)) 14) (($ $ (-782)) 21)) (* (($ $ $) 17))) +(((-733) (-141)) (T -733)) +((-2009 (*1 *1) (-4 *1 (-733))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-733)) (-5 *2 (-112)))) (-2661 (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782)))) (-1898 (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782)))) (-1747 (*1 *1 *1) (|partial| -4 *1 (-733))) (-3456 (*1 *1 *1) (|partial| -4 *1 (-733))) (-3512 (*1 *1 *1) (|partial| -4 *1 (-733)))) +(-13 (-731) (-10 -8 (-15 (-2009) ($) -3738) (-15 -1542 ((-112) $)) (-15 -2661 ($ $ (-782))) (-15 -1898 ($ $ (-782))) (-15 ** ($ $ (-782))) (-15 -1747 ((-3 $ "failed") $)) (-15 -3456 ((-3 $ "failed") $)) (-15 -3512 ((-3 $ "failed") $)))) +(((-102) . T) ((-624 (-873)) . T) ((-731) . T) ((-1117) . T)) +((-2415 (((-782)) 39)) (-2449 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-4399 (((-575) $) NIL) (((-418 (-575)) $) NIL) ((|#2| $) 23)) (-2308 (($ |#3|) NIL) (((-3 $ "failed") (-418 |#3|)) 49)) (-1747 (((-3 $ "failed") $) 69)) (-2079 (($) 43)) (-2255 ((|#2| $) 21)) (-3659 (($) 18)) (-2389 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL) (($ $ (-782)) NIL) (($ $) NIL)) (-3792 (((-700 |#2|) (-1285 $) (-1 |#2| |#2|)) 64)) (-2615 (((-1285 |#2|) $) NIL) (($ (-1285 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2551 ((|#3| $) 36)) (-1624 (((-1285 $)) 33))) +(((-734 |#1| |#2| |#3|) (-10 -8 (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2079 (|#1|)) (-15 -2415 ((-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3792 ((-700 |#2|) (-1285 |#1|) (-1 |#2| |#2|))) (-15 -2308 ((-3 |#1| "failed") (-418 |#3|))) (-15 -2615 (|#1| |#3|)) (-15 -2308 (|#1| |#3|)) (-15 -3659 (|#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2615 (|#3| |#1|)) (-15 -2615 (|#1| (-1285 |#2|))) (-15 -2615 ((-1285 |#2|) |#1|)) (-15 -1624 ((-1285 |#1|))) (-15 -2551 (|#3| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -1747 ((-3 |#1| "failed") |#1|))) (-735 |#2| |#3|) (-174) (-1261 |#2|)) (T -734)) +((-2415 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-782)) (-5 *1 (-734 *3 *4 *5)) (-4 *3 (-735 *4 *5))))) +(-10 -8 (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2079 (|#1|)) (-15 -2415 ((-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3792 ((-700 |#2|) (-1285 |#1|) (-1 |#2| |#2|))) (-15 -2308 ((-3 |#1| "failed") (-418 |#3|))) (-15 -2615 (|#1| |#3|)) (-15 -2308 (|#1| |#3|)) (-15 -3659 (|#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2615 (|#3| |#1|)) (-15 -2615 (|#1| (-1285 |#2|))) (-15 -2615 ((-1285 |#2|) |#1|)) (-15 -1624 ((-1285 |#1|))) (-15 -2551 (|#3| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -1747 ((-3 |#1| "failed") |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 105 (|has| |#1| (-373)))) (-1540 (($ $) 106 (|has| |#1| (-373)))) (-3286 (((-112) $) 108 (|has| |#1| (-373)))) (-1389 (((-700 |#1|) (-1285 $)) 53) (((-700 |#1|)) 68)) (-1447 ((|#1| $) 59)) (-2243 (((-1207 (-936) (-782)) (-575)) 158 (|has| |#1| (-359)))) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 125 (|has| |#1| (-373)))) (-2330 (((-429 $) $) 126 (|has| |#1| (-373)))) (-2279 (((-112) $ $) 116 (|has| |#1| (-373)))) (-2415 (((-782)) 99 (|has| |#1| (-378)))) (-3011 (($) 18 T CONST)) (-2449 (((-3 (-575) "failed") $) 183 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 181 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 178)) (-4399 (((-575) $) 182 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 180 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 179)) (-1385 (($ (-1285 |#1|) (-1285 $)) 55) (($ (-1285 |#1|)) 71)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-359)))) (-2802 (($ $ $) 120 (|has| |#1| (-373)))) (-2746 (((-700 |#1|) $ (-1285 $)) 60) (((-700 |#1|) $) 66)) (-1749 (((-700 (-575)) (-1285 $)) 177 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 176 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 175 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 174) (((-700 |#1|) (-700 $)) 173) (((-700 |#1|) (-1285 $)) 172)) (-2308 (($ |#2|) 169) (((-3 $ "failed") (-418 |#2|)) 166 (|has| |#1| (-373)))) (-1747 (((-3 $ "failed") $) 37)) (-4422 (((-936)) 61)) (-2079 (($) 102 (|has| |#1| (-378)))) (-2813 (($ $ $) 119 (|has| |#1| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 114 (|has| |#1| (-373)))) (-1360 (($) 160 (|has| |#1| (-359)))) (-1980 (((-112) $) 161 (|has| |#1| (-359)))) (-4374 (($ $ (-782)) 152 (|has| |#1| (-359))) (($ $) 151 (|has| |#1| (-359)))) (-1336 (((-112) $) 127 (|has| |#1| (-373)))) (-2673 (((-936) $) 163 (|has| |#1| (-359))) (((-844 (-936)) $) 149 (|has| |#1| (-359)))) (-1542 (((-112) $) 35)) (-2255 ((|#1| $) 58)) (-2607 (((-3 $ "failed") $) 153 (|has| |#1| (-359)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 123 (|has| |#1| (-373)))) (-1943 ((|#2| $) 51 (|has| |#1| (-373)))) (-4084 (((-936) $) 101 (|has| |#1| (-378)))) (-2295 ((|#2| $) 167)) (-3887 (($ (-655 $)) 112 (|has| |#1| (-373))) (($ $ $) 111 (|has| |#1| (-373)))) (-2288 (((-1176) $) 10)) (-4332 (($ $) 128 (|has| |#1| (-373)))) (-3474 (($) 154 (|has| |#1| (-359)) CONST)) (-4317 (($ (-936)) 100 (|has| |#1| (-378)))) (-3912 (((-1137) $) 11)) (-3659 (($) 171)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 113 (|has| |#1| (-373)))) (-3926 (($ (-655 $)) 110 (|has| |#1| (-373))) (($ $ $) 109 (|has| |#1| (-373)))) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) 157 (|has| |#1| (-359)))) (-2353 (((-429 $) $) 124 (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 121 (|has| |#1| (-373)))) (-2851 (((-3 $ "failed") $ $) 104 (|has| |#1| (-373)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 115 (|has| |#1| (-373)))) (-3708 (((-782) $) 117 (|has| |#1| (-373)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 118 (|has| |#1| (-373)))) (-4060 ((|#1| (-1285 $)) 54) ((|#1|) 67)) (-3905 (((-782) $) 162 (|has| |#1| (-359))) (((-3 (-782) "failed") $ $) 150 (|has| |#1| (-359)))) (-2389 (($ $ (-782)) 147 (-3765 (-3226 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $) 145 (-3765 (-3226 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $ (-655 (-1194)) (-655 (-782))) 141 (-3226 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1194) (-782)) 140 (-3226 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-655 (-1194))) 139 (-3226 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1194)) 137 (-3226 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-373))) (($ $ (-1 |#1| |#1|) (-782)) 135 (|has| |#1| (-373)))) (-3792 (((-700 |#1|) (-1285 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-373)))) (-2552 ((|#2|) 170)) (-3500 (($) 159 (|has| |#1| (-359)))) (-3962 (((-1285 |#1|) $ (-1285 $)) 57) (((-700 |#1|) (-1285 $) (-1285 $)) 56) (((-1285 |#1|) $) 73) (((-700 |#1|) (-1285 $)) 72)) (-2615 (((-1285 |#1|) $) 70) (($ (-1285 |#1|)) 69) ((|#2| $) 184) (($ |#2|) 168)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 156 (|has| |#1| (-359)))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-373))) (($ (-418 (-575))) 98 (-3765 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575))))))) (-1518 (($ $) 155 (|has| |#1| (-359))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2551 ((|#2| $) 52)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1624 (((-1285 $)) 74)) (-1780 (((-112) $ $) 107 (|has| |#1| (-373)))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-782)) 148 (-3765 (-3226 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $) 146 (-3765 (-3226 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $ (-655 (-1194)) (-655 (-782))) 144 (-3226 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1194) (-782)) 143 (-3226 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-655 (-1194))) 142 (-3226 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1194)) 138 (-3226 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-373))) (($ $ (-1 |#1| |#1|) (-782)) 133 (|has| |#1| (-373)))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ $) 132 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 129 (|has| |#1| (-373)))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-418 (-575)) $) 131 (|has| |#1| (-373))) (($ $ (-418 (-575))) 130 (|has| |#1| (-373))))) +(((-735 |#1| |#2|) (-141) (-174) (-1261 |t#1|)) (T -735)) +((-3659 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-735 *2 *3)) (-4 *3 (-1261 *2)))) (-2552 (*1 *2) (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3)))) (-2308 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-735 *3 *2)) (-4 *2 (-1261 *3)))) (-2615 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-735 *3 *2)) (-4 *2 (-1261 *3)))) (-2295 (*1 *2 *1) (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3)))) (-2308 (*1 *1 *2) (|partial| -12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-373)) (-4 *3 (-174)) (-4 *1 (-735 *3 *4)))) (-3792 (*1 *2 *3 *4) (-12 (-5 *3 (-1285 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-373)) (-4 *1 (-735 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1261 *5)) (-5 *2 (-700 *5))))) +(-13 (-420 |t#1| |t#2|) (-174) (-625 |t#2|) (-422 |t#1|) (-387 |t#1|) (-10 -8 (-15 -3659 ($)) (-15 -2552 (|t#2|)) (-15 -2308 ($ |t#2|)) (-15 -2615 ($ |t#2|)) (-15 -2295 (|t#2| $)) (IF (|has| |t#1| (-378)) (-6 (-378)) |%noBranch|) (IF (|has| |t#1| (-373)) (PROGN (-6 (-373)) (-6 (-232 |t#1|)) (-15 -2308 ((-3 $ "failed") (-418 |t#2|))) (-15 -3792 ((-700 |t#1|) (-1285 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-359)) (-6 (-359)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-38 |#1|) . T) ((-38 $) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-102) . T) ((-111 #0# #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3765 (|has| |#1| (-359)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-627 #0#) -3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-359)) (|has| |#1| (-373))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 $) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) . T) ((-625 |#2|) . T) ((-234 $) -3765 (|has| |#1| (-359)) (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (-12 (|has| |#1| (-238)) (|has| |#1| (-373)))) ((-232 |#1|) |has| |#1| (-373)) ((-238) -3765 (|has| |#1| (-359)) (-12 (|has| |#1| (-238)) (|has| |#1| (-373)))) ((-237) -3765 (|has| |#1| (-359)) (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (-12 (|has| |#1| (-238)) (|has| |#1| (-373)))) ((-271 |#1|) |has| |#1| (-373)) ((-248) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-299) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-316) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-373) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-413) |has| |#1| (-359)) ((-378) -3765 (|has| |#1| (-378)) (|has| |#1| (-359))) ((-359) |has| |#1| (-359)) ((-380 |#1| |#2|) . T) ((-420 |#1| |#2|) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-463) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-567) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-657 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-659 #1=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-651 |#1|) . T) ((-651 $) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-650 #1#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-728 |#1|) . T) ((-728 $) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-737) . T) ((-908 $ #2=(-1194)) -3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))))) ((-913 (-1194)) -12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) ((-915 #2#) -3765 (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))))) ((-935) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1073 #0#) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| |#1| (-359)) ((-1235) -3765 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1239) -3765 (|has| |#1| (-359)) (|has| |#1| (-373)))) +((-3011 (($) 11)) (-1747 (((-3 $ "failed") $) 14)) (-1542 (((-112) $) 10)) (** (($ $ (-936)) NIL) (($ $ (-782)) 20))) +(((-736 |#1|) (-10 -8 (-15 -1747 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 -1542 ((-112) |#1|)) (-15 -3011 (|#1|)) (-15 ** (|#1| |#1| (-936)))) (-737)) (T -736)) +NIL +(-10 -8 (-15 -1747 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 -1542 ((-112) |#1|)) (-15 -3011 (|#1|)) (-15 ** (|#1| |#1| (-936)))) +((-2861 (((-112) $ $) 7)) (-3011 (($) 19 T CONST)) (-1747 (((-3 $ "failed") $) 16)) (-1542 (((-112) $) 18)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-2009 (($) 20 T CONST)) (-3914 (((-112) $ $) 6)) (** (($ $ (-936)) 14) (($ $ (-782)) 17)) (* (($ $ $) 15))) +(((-737) (-141)) (T -737)) +((-2009 (*1 *1) (-4 *1 (-737))) (-3011 (*1 *1) (-4 *1 (-737))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-737)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-737)) (-5 *2 (-782)))) (-1747 (*1 *1 *1) (|partial| -4 *1 (-737)))) +(-13 (-1129) (-10 -8 (-15 (-2009) ($) -3738) (-15 -3011 ($) -3738) (-15 -1542 ((-112) $)) (-15 ** ($ $ (-782))) (-15 -1747 ((-3 $ "failed") $)))) +(((-102) . T) ((-624 (-873)) . T) ((-1129) . T) ((-1117) . T)) +((-2074 (((-2 (|:| -1500 (-429 |#2|)) (|:| |special| (-429 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3436 (((-2 (|:| -1500 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2908 ((|#2| (-418 |#2|) (-1 |#2| |#2|)) 13)) (-4299 (((-2 (|:| |poly| |#2|) (|:| -1500 (-418 |#2|)) (|:| |special| (-418 |#2|))) (-418 |#2|) (-1 |#2| |#2|)) 48))) +(((-738 |#1| |#2|) (-10 -7 (-15 -3436 ((-2 (|:| -1500 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2074 ((-2 (|:| -1500 (-429 |#2|)) (|:| |special| (-429 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2908 (|#2| (-418 |#2|) (-1 |#2| |#2|))) (-15 -4299 ((-2 (|:| |poly| |#2|) (|:| -1500 (-418 |#2|)) (|:| |special| (-418 |#2|))) (-418 |#2|) (-1 |#2| |#2|)))) (-373) (-1261 |#1|)) (T -738)) +((-4299 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1500 (-418 *6)) (|:| |special| (-418 *6)))) (-5 *1 (-738 *5 *6)) (-5 *3 (-418 *6)))) (-2908 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1261 *5)) (-5 *1 (-738 *5 *2)) (-4 *5 (-373)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| -1500 (-429 *3)) (|:| |special| (-429 *3)))) (-5 *1 (-738 *5 *3)))) (-3436 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| -1500 *3) (|:| |special| *3))) (-5 *1 (-738 *5 *3))))) +(-10 -7 (-15 -3436 ((-2 (|:| -1500 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2074 ((-2 (|:| -1500 (-429 |#2|)) (|:| |special| (-429 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2908 (|#2| (-418 |#2|) (-1 |#2| |#2|))) (-15 -4299 ((-2 (|:| |poly| |#2|) (|:| -1500 (-418 |#2|)) (|:| |special| (-418 |#2|))) (-418 |#2|) (-1 |#2| |#2|)))) +((-2506 ((|#7| (-655 |#5|) |#6|) NIL)) (-2550 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-739 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2550 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2506 (|#7| (-655 |#5|) |#6|))) (-861) (-804) (-804) (-1066) (-1066) (-964 |#4| |#2| |#1|) (-964 |#5| |#3| |#1|)) (T -739)) +((-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *9)) (-4 *9 (-1066)) (-4 *5 (-861)) (-4 *6 (-804)) (-4 *8 (-1066)) (-4 *2 (-964 *9 *7 *5)) (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-804)) (-4 *4 (-964 *8 *6 *5)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1066)) (-4 *9 (-1066)) (-4 *5 (-861)) (-4 *6 (-804)) (-4 *2 (-964 *9 *7 *5)) (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-804)) (-4 *4 (-964 *8 *6 *5))))) +(-10 -7 (-15 -2550 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2506 (|#7| (-655 |#5|) |#6|))) +((-2550 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2550 (|#7| (-1 |#2| |#1|) |#6|))) (-861) (-861) (-804) (-804) (-1066) (-964 |#5| |#3| |#1|) (-964 |#5| |#4| |#2|)) (T -740)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-804)) (-4 *9 (-1066)) (-4 *2 (-964 *9 *8 *6)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-804)) (-4 *4 (-964 *9 *7 *5))))) +(-10 -7 (-15 -2550 (|#7| (-1 |#2| |#1|) |#6|))) +((-2353 (((-429 |#4|) |#4|) 42))) +(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2353 ((-429 |#4|) |#4|))) (-804) (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194))))) (-316) (-964 (-967 |#3|) |#1| |#2|)) (T -741)) +((-2353 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-4 *6 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-964 (-967 *6) *4 *5))))) +(-10 -7 (-15 -2353 ((-429 |#4|) |#4|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 (-875 |#1|)) $) NIL)) (-3466 (((-1190 $) $ (-875 |#1|)) NIL) (((-1190 |#2|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-567)))) (-1540 (($ $) NIL (|has| |#2| (-567)))) (-3286 (((-112) $) NIL (|has| |#2| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 (-875 |#1|))) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2058 (($ $) NIL (|has| |#2| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#2| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-875 |#1|) "failed") $) NIL)) (-4399 ((|#2| $) NIL) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-875 |#1|) $) NIL)) (-4232 (($ $ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-4406 (($ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#2| (-924)))) (-3703 (($ $ |#2| (-542 (-875 |#1|)) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-2433 (($ (-1190 |#2|) (-875 |#1|)) NIL) (($ (-1190 $) (-875 |#1|)) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#2| (-542 (-875 |#1|))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-875 |#1|)) NIL)) (-4337 (((-542 (-875 |#1|)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-2520 (($ (-1 (-542 (-875 |#1|)) (-542 (-875 |#1|))) $) NIL)) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-3976 (((-3 (-875 |#1|) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-2288 (((-1176) $) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| (-875 |#1|)) (|:| -2398 (-782))) "failed") $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) NIL)) (-4353 ((|#2| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#2| (-924)))) (-2851 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-567)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-875 |#1|) |#2|) NIL) (($ $ (-655 (-875 |#1|)) (-655 |#2|)) NIL) (($ $ (-875 |#1|) $) NIL) (($ $ (-655 (-875 |#1|)) (-655 $)) NIL)) (-4060 (($ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-2389 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-2645 (((-542 (-875 |#1|)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-875 |#1|) (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-2178 ((|#2| $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-875 |#1|)) NIL) (($ $) NIL (|has| |#2| (-567))) (($ (-418 (-575))) NIL (-3765 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575))))))) (-2501 (((-655 |#2|) $) NIL)) (-2012 ((|#2| $ (-542 (-875 |#1|))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#2| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#2| (-567)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#2| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#2| (-38 (-418 (-575))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-742 |#1| |#2|) (-964 |#2| (-542 (-875 |#1|)) (-875 |#1|)) (-655 (-1194)) (-1066)) (T -742)) +NIL +(-964 |#2| (-542 (-875 |#1|)) (-875 |#1|)) +((-2600 (((-2 (|:| -3605 (-967 |#3|)) (|:| -3650 (-967 |#3|))) |#4|) 14)) (-2917 ((|#4| |#4| |#2|) 33)) (-2684 ((|#4| (-418 (-967 |#3|)) |#2|) 64)) (-4079 ((|#4| (-1190 (-967 |#3|)) |#2|) 77)) (-4235 ((|#4| (-1190 |#4|) |#2|) 51)) (-4114 ((|#4| |#4| |#2|) 54)) (-2353 (((-429 |#4|) |#4|) 40))) +(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2600 ((-2 (|:| -3605 (-967 |#3|)) (|:| -3650 (-967 |#3|))) |#4|)) (-15 -4114 (|#4| |#4| |#2|)) (-15 -4235 (|#4| (-1190 |#4|) |#2|)) (-15 -2917 (|#4| |#4| |#2|)) (-15 -4079 (|#4| (-1190 (-967 |#3|)) |#2|)) (-15 -2684 (|#4| (-418 (-967 |#3|)) |#2|)) (-15 -2353 ((-429 |#4|) |#4|))) (-804) (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)))) (-567) (-964 (-418 (-967 |#3|)) |#1| |#2|)) (T -743)) +((-2353 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))) (-4 *6 (-567)) (-5 *2 (-429 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-964 (-418 (-967 *6)) *4 *5)))) (-2684 (*1 *2 *3 *4) (-12 (-4 *6 (-567)) (-4 *2 (-964 *3 *5 *4)) (-5 *1 (-743 *5 *4 *6 *2)) (-5 *3 (-418 (-967 *6))) (-4 *5 (-804)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))))) (-4079 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 (-967 *6))) (-4 *6 (-567)) (-4 *2 (-964 (-418 (-967 *6)) *5 *4)) (-5 *1 (-743 *5 *4 *6 *2)) (-4 *5 (-804)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))))) (-2917 (*1 *2 *2 *3) (-12 (-4 *4 (-804)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))) (-4 *5 (-567)) (-5 *1 (-743 *4 *3 *5 *2)) (-4 *2 (-964 (-418 (-967 *5)) *4 *3)))) (-4235 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *2)) (-4 *2 (-964 (-418 (-967 *6)) *5 *4)) (-5 *1 (-743 *5 *4 *6 *2)) (-4 *5 (-804)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))) (-4 *6 (-567)))) (-4114 (*1 *2 *2 *3) (-12 (-4 *4 (-804)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))) (-4 *5 (-567)) (-5 *1 (-743 *4 *3 *5 *2)) (-4 *2 (-964 (-418 (-967 *5)) *4 *3)))) (-2600 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))) (-4 *6 (-567)) (-5 *2 (-2 (|:| -3605 (-967 *6)) (|:| -3650 (-967 *6)))) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-964 (-418 (-967 *6)) *4 *5))))) +(-10 -7 (-15 -2600 ((-2 (|:| -3605 (-967 |#3|)) (|:| -3650 (-967 |#3|))) |#4|)) (-15 -4114 (|#4| |#4| |#2|)) (-15 -4235 (|#4| (-1190 |#4|) |#2|)) (-15 -2917 (|#4| |#4| |#2|)) (-15 -4079 (|#4| (-1190 (-967 |#3|)) |#2|)) (-15 -2684 (|#4| (-418 (-967 |#3|)) |#2|)) (-15 -2353 ((-429 |#4|) |#4|))) +((-2353 (((-429 |#4|) |#4|) 54))) +(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2353 ((-429 |#4|) |#4|))) (-804) (-861) (-13 (-316) (-148)) (-964 (-418 |#3|) |#1| |#2|)) (T -744)) +((-2353 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-13 (-316) (-148))) (-5 *2 (-429 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-964 (-418 *6) *4 *5))))) +(-10 -7 (-15 -2353 ((-429 |#4|) |#4|))) +((-2550 (((-746 |#2| |#3|) (-1 |#2| |#1|) (-746 |#1| |#3|)) 18))) +(((-745 |#1| |#2| |#3|) (-10 -7 (-15 -2550 ((-746 |#2| |#3|) (-1 |#2| |#1|) (-746 |#1| |#3|)))) (-1066) (-1066) (-737)) (T -745)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-746 *5 *7)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-737)) (-5 *2 (-746 *6 *7)) (-5 *1 (-745 *5 *6 *7))))) +(-10 -7 (-15 -2550 ((-746 |#2| |#3|) (-1 |#2| |#1|) (-746 |#1| |#3|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 36)) (-2144 (((-655 (-2 (|:| -1754 |#1|) (|:| -3693 |#2|))) $) 37)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2415 (((-782)) 22 (-12 (|has| |#2| (-378)) (|has| |#1| (-378))))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-4399 ((|#2| $) NIL) ((|#1| $) NIL)) (-4406 (($ $) 102 (|has| |#2| (-861)))) (-1747 (((-3 $ "failed") $) 85)) (-2079 (($) 48 (-12 (|has| |#2| (-378)) (|has| |#1| (-378))))) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) 70)) (-3010 (((-655 $) $) 52)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| |#2|) 17)) (-2550 (($ (-1 |#1| |#1|) $) 68)) (-4084 (((-936) $) 43 (-12 (|has| |#2| (-378)) (|has| |#1| (-378))))) (-4371 ((|#2| $) 101 (|has| |#2| (-861)))) (-4383 ((|#1| $) 100 (|has| |#2| (-861)))) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) 35 (-12 (|has| |#2| (-378)) (|has| |#1| (-378))))) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 99) (($ (-575)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-655 (-2 (|:| -1754 |#1|) (|:| -3693 |#2|)))) 11)) (-2501 (((-655 |#1|) $) 54)) (-2012 ((|#1| $ |#2|) 115)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 12 T CONST)) (-2009 (($) 44 T CONST)) (-3914 (((-112) $ $) 105)) (-4028 (($ $) 61) (($ $ $) NIL)) (-4016 (($ $ $) 33)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-746 |#1| |#2|) (-13 (-1066) (-1055 |#2|) (-1055 |#1|) (-10 -8 (-15 -2417 ($ |#1| |#2|)) (-15 -2012 (|#1| $ |#2|)) (-15 -2883 ($ (-655 (-2 (|:| -1754 |#1|) (|:| -3693 |#2|))))) (-15 -2144 ((-655 (-2 (|:| -1754 |#1|) (|:| -3693 |#2|))) $)) (-15 -2550 ($ (-1 |#1| |#1|) $)) (-15 -2376 ((-112) $)) (-15 -2501 ((-655 |#1|) $)) (-15 -3010 ((-655 $) $)) (-15 -2218 ((-782) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-378)) (IF (|has| |#2| (-378)) (-6 (-378)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -4371 (|#2| $)) (-15 -4383 (|#1| $)) (-15 -4406 ($ $))) |%noBranch|))) (-1066) (-737)) (T -746)) +((-2417 (*1 *1 *2 *3) (-12 (-5 *1 (-746 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-737)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *2 (-1066)) (-5 *1 (-746 *2 *3)) (-4 *3 (-737)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -1754 *3) (|:| -3693 *4)))) (-4 *3 (-1066)) (-4 *4 (-737)) (-5 *1 (-746 *3 *4)))) (-2144 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| -1754 *3) (|:| -3693 *4)))) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737)))) (-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-746 *3 *4)) (-4 *4 (-737)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-655 (-746 *3 *4))) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737)))) (-2218 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737)))) (-4371 (*1 *2 *1) (-12 (-4 *2 (-737)) (-4 *2 (-861)) (-5 *1 (-746 *3 *2)) (-4 *3 (-1066)))) (-4383 (*1 *2 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-746 *2 *3)) (-4 *3 (-861)) (-4 *3 (-737)))) (-4406 (*1 *1 *1) (-12 (-5 *1 (-746 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1066)) (-4 *3 (-737))))) +(-13 (-1066) (-1055 |#2|) (-1055 |#1|) (-10 -8 (-15 -2417 ($ |#1| |#2|)) (-15 -2012 (|#1| $ |#2|)) (-15 -2883 ($ (-655 (-2 (|:| -1754 |#1|) (|:| -3693 |#2|))))) (-15 -2144 ((-655 (-2 (|:| -1754 |#1|) (|:| -3693 |#2|))) $)) (-15 -2550 ($ (-1 |#1| |#1|) $)) (-15 -2376 ((-112) $)) (-15 -2501 ((-655 |#1|) $)) (-15 -3010 ((-655 $) $)) (-15 -2218 ((-782) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-378)) (IF (|has| |#2| (-378)) (-6 (-378)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -4371 (|#2| $)) (-15 -4383 (|#1| $)) (-15 -4406 ($ $))) |%noBranch|))) +((-2861 (((-112) $ $) 19)) (-1644 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3404 (($ $ $) 73)) (-2696 (((-112) $ $) 74)) (-1845 (((-112) $ (-782)) 8)) (-1329 (($ (-655 |#1|)) 69) (($) 68)) (-1999 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1878 (($ $) 63)) (-1748 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4404 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3633 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3244 (((-112) $ $) 65)) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22)) (-1479 (($ $ $) 70)) (-4012 ((|#1| $) 40)) (-3862 (($ |#1| $) 41) (($ |#1| $ (-782)) 64)) (-3912 (((-1137) $) 21)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2454 ((|#1| $) 42)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3240 (((-655 (-2 (|:| -3179 |#1|) (|:| -3925 (-782)))) $) 62)) (-1771 (($ $ |#1|) 72) (($ $ $) 71)) (-3601 (($) 50) (($ (-655 |#1|)) 49)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 51)) (-2883 (((-873) $) 18)) (-2556 (($ (-655 |#1|)) 67) (($) 66)) (-4400 (((-112) $ $) 23)) (-1511 (($ (-655 |#1|)) 43)) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20)) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-747 |#1|) (-141) (-1117)) (T -747)) +NIL +(-13 (-706 |t#1|) (-1115 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-624 (-873)) . T) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-240 |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-706 |#1|) . T) ((-1115 |#1|) . T) ((-1117) . T) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-1644 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-3404 (($ $ $) 96)) (-2696 (((-112) $ $) 104)) (-1845 (((-112) $ (-782)) NIL)) (-1329 (($ (-655 |#1|)) 26) (($) 17)) (-1999 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1878 (($ $) 85)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4404 (($ |#1| $) 70 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460))) (($ |#1| $ (-575)) 75) (($ (-1 (-112) |#1|) $ (-575)) 78)) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (($ |#1| $ (-575)) 80) (($ (-1 (-112) |#1|) $ (-575)) 81)) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-4001 (((-655 |#1|) $) 32 (|has| $ (-6 -4460)))) (-3244 (((-112) $ $) 103)) (-2641 (($) 15) (($ |#1|) 28) (($ (-655 |#1|)) 23)) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) 38)) (-2625 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2847 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 89)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-1479 (($ $ $) 94)) (-4012 ((|#1| $) 62)) (-3862 (($ |#1| $) 63) (($ |#1| $ (-782)) 86)) (-3912 (((-1137) $) NIL)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2454 ((|#1| $) 61)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 56)) (-1938 (($) 14)) (-3240 (((-655 (-2 (|:| -3179 |#1|) (|:| -3925 (-782)))) $) 55)) (-1771 (($ $ |#1|) NIL) (($ $ $) 95)) (-3601 (($) 16) (($ (-655 |#1|)) 25)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) 68 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) 79)) (-2615 (((-547) $) 36 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 22)) (-2883 (((-873) $) 49)) (-2556 (($ (-655 |#1|)) 27) (($) 18)) (-4400 (((-112) $ $) NIL)) (-1511 (($ (-655 |#1|)) 24)) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 100)) (-2871 (((-782) $) 67 (|has| $ (-6 -4460))))) +(((-748 |#1|) (-13 (-747 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -2641 ($)) (-15 -2641 ($ |#1|)) (-15 -2641 ($ (-655 |#1|))) (-15 -3955 ((-655 |#1|) $)) (-15 -3633 ($ |#1| $ (-575))) (-15 -3633 ($ (-1 (-112) |#1|) $ (-575))) (-15 -4404 ($ |#1| $ (-575))) (-15 -4404 ($ (-1 (-112) |#1|) $ (-575))))) (-1117)) (T -748)) +((-2641 (*1 *1) (-12 (-5 *1 (-748 *2)) (-4 *2 (-1117)))) (-2641 (*1 *1 *2) (-12 (-5 *1 (-748 *2)) (-4 *2 (-1117)))) (-2641 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-748 *3)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-748 *3)) (-4 *3 (-1117)))) (-3633 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-748 *2)) (-4 *2 (-1117)))) (-3633 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-575)) (-4 *4 (-1117)) (-5 *1 (-748 *4)))) (-4404 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-748 *2)) (-4 *2 (-1117)))) (-4404 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-575)) (-4 *4 (-1117)) (-5 *1 (-748 *4))))) +(-13 (-747 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -2641 ($)) (-15 -2641 ($ |#1|)) (-15 -2641 ($ (-655 |#1|))) (-15 -3955 ((-655 |#1|) $)) (-15 -3633 ($ |#1| $ (-575))) (-15 -3633 ($ (-1 (-112) |#1|) $ (-575))) (-15 -4404 ($ |#1| $ (-575))) (-15 -4404 ($ (-1 (-112) |#1|) $ (-575))))) +((-1466 (((-1290) (-1176)) 8))) +(((-749) (-10 -7 (-15 -1466 ((-1290) (-1176))))) (T -749)) +((-1466 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-749))))) +(-10 -7 (-15 -1466 ((-1290) (-1176)))) +((-4175 (((-655 |#1|) (-655 |#1|) (-655 |#1|)) 15))) +(((-750 |#1|) (-10 -7 (-15 -4175 ((-655 |#1|) (-655 |#1|) (-655 |#1|)))) (-861)) (T -750)) +((-4175 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-750 *3))))) +(-10 -7 (-15 -4175 ((-655 |#1|) (-655 |#1|) (-655 |#1|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1606 (((-655 |#2|) $) 149)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 142 (|has| |#1| (-567)))) (-1540 (($ $) 141 (|has| |#1| (-567)))) (-3286 (((-112) $) 139 (|has| |#1| (-567)))) (-3923 (($ $) 98 (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) 81 (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) 20)) (-2473 (($ $) 80 (|has| |#1| (-38 (-418 (-575)))))) (-3897 (($ $) 97 (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) 82 (|has| |#1| (-38 (-418 (-575)))))) (-1521 (($ $) 96 (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) 83 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) 18 T CONST)) (-4406 (($ $) 133)) (-1747 (((-3 $ "failed") $) 37)) (-2485 (((-967 |#1|) $ (-782)) 111) (((-967 |#1|) $ (-782) (-782)) 110)) (-2789 (((-112) $) 150)) (-1631 (($) 108 (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-782) $ |#2|) 113) (((-782) $ |#2| (-782)) 112)) (-1542 (((-112) $) 35)) (-2931 (($ $ (-575)) 79 (|has| |#1| (-38 (-418 (-575)))))) (-2376 (((-112) $) 131)) (-2417 (($ $ (-655 |#2|) (-655 (-542 |#2|))) 148) (($ $ |#2| (-542 |#2|)) 147) (($ |#1| (-542 |#2|)) 132) (($ $ |#2| (-782)) 115) (($ $ (-655 |#2|) (-655 (-782))) 114)) (-2550 (($ (-1 |#1| |#1|) $) 130)) (-3463 (($ $) 105 (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) 128)) (-4383 ((|#1| $) 127)) (-2288 (((-1176) $) 10)) (-4413 (($ $ |#2|) 109 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) 11)) (-4276 (($ $ (-782)) 116)) (-2851 (((-3 $ "failed") $ $) 143 (|has| |#1| (-567)))) (-2665 (($ $) 106 (|has| |#1| (-38 (-418 (-575)))))) (-3048 (($ $ |#2| $) 124) (($ $ (-655 |#2|) (-655 $)) 123) (($ $ (-655 (-303 $))) 122) (($ $ (-303 $)) 121) (($ $ $ $) 120) (($ $ (-655 $) (-655 $)) 119)) (-2389 (($ $ (-655 |#2|) (-655 (-782))) 44) (($ $ |#2| (-782)) 43) (($ $ (-655 |#2|)) 42) (($ $ |#2|) 40)) (-2645 (((-542 |#2|) $) 129)) (-1530 (($ $) 95 (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) 84 (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) 94 (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) 85 (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) 93 (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) 86 (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) 151)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-567))) (($ (-418 (-575))) 136 (|has| |#1| (-38 (-418 (-575)))))) (-2012 ((|#1| $ (-542 |#2|)) 134) (($ $ |#2| (-782)) 118) (($ $ (-655 |#2|) (-655 (-782))) 117)) (-1518 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1568 (($ $) 104 (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) 92 (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) 140 (|has| |#1| (-567)))) (-1544 (($ $) 103 (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) 91 (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) 102 (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) 90 (|has| |#1| (-38 (-418 (-575)))))) (-2914 (($ $) 101 (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) 89 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 100 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 88 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 99 (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) 87 (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-655 |#2|) (-655 (-782))) 47) (($ $ |#2| (-782)) 46) (($ $ (-655 |#2|)) 45) (($ $ |#2|) 41)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 135 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ $) 107 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 78 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 138 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 137 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 126) (($ $ |#1|) 125))) +(((-751 |#1| |#2|) (-141) (-1066) (-861)) (T -751)) +((-2012 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *2)) (-4 *4 (-1066)) (-4 *2 (-861)))) (-2012 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *5)) (-5 *3 (-655 (-782))) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-861)))) (-4276 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-751 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-861)))) (-2417 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *2)) (-4 *4 (-1066)) (-4 *2 (-861)))) (-2417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *5)) (-5 *3 (-655 (-782))) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-861)))) (-2673 (*1 *2 *1 *3) (-12 (-4 *1 (-751 *4 *3)) (-4 *4 (-1066)) (-4 *3 (-861)) (-5 *2 (-782)))) (-2673 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-782)) (-4 *1 (-751 *4 *3)) (-4 *4 (-1066)) (-4 *3 (-861)))) (-2485 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-861)) (-5 *2 (-967 *4)))) (-2485 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-861)) (-5 *2 (-967 *4)))) (-4413 (*1 *1 *1 *2) (-12 (-4 *1 (-751 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-861)) (-4 *3 (-38 (-418 (-575))))))) +(-13 (-913 |t#2|) (-990 |t#1| (-542 |t#2|) |t#2|) (-525 |t#2| $) (-318 $) (-10 -8 (-15 -2012 ($ $ |t#2| (-782))) (-15 -2012 ($ $ (-655 |t#2|) (-655 (-782)))) (-15 -4276 ($ $ (-782))) (-15 -2417 ($ $ |t#2| (-782))) (-15 -2417 ($ $ (-655 |t#2|) (-655 (-782)))) (-15 -2673 ((-782) $ |t#2|)) (-15 -2673 ((-782) $ |t#2| (-782))) (-15 -2485 ((-967 |t#1|) $ (-782))) (-15 -2485 ((-967 |t#1|) $ (-782) (-782))) (IF (|has| |t#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ($ $ |t#2|)) (-6 (-1019)) (-6 (-1220))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-542 |#2|)) . T) ((-25) . T) ((-38 #1=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) |has| |#1| (-38 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-299) |has| |#1| (-567)) ((-318 $) . T) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-525 |#2| $) . T) ((-525 $ $) . T) ((-567) |has| |#1| (-567)) ((-657 #1#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #1#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-908 $ |#2|) . T) ((-913 |#2|) . T) ((-915 |#2|) . T) ((-990 |#1| #0# |#2|) . T) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1068 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T)) +((-2353 (((-429 (-1190 |#4|)) (-1190 |#4|)) 30) (((-429 |#4|) |#4|) 26))) +(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2353 ((-429 |#4|) |#4|)) (-15 -2353 ((-429 (-1190 |#4|)) (-1190 |#4|)))) (-861) (-804) (-13 (-316) (-148)) (-964 |#3| |#2| |#1|)) (T -752)) +((-2353 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-13 (-316) (-148))) (-5 *2 (-429 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-964 *6 *5 *4))))) +(-10 -7 (-15 -2353 ((-429 |#4|) |#4|)) (-15 -2353 ((-429 (-1190 |#4|)) (-1190 |#4|)))) +((-1438 (((-429 |#4|) |#4| |#2|) 140)) (-3697 (((-429 |#4|) |#4|) NIL)) (-2330 (((-429 (-1190 |#4|)) (-1190 |#4|)) 127) (((-429 |#4|) |#4|) 52)) (-2409 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-655 (-2 (|:| -2353 (-1190 |#4|)) (|:| -2398 (-575)))))) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|))) 81)) (-2244 (((-1190 |#3|) (-1190 |#3|) (-575)) 166)) (-2457 (((-655 (-782)) (-1190 |#4|) (-655 |#2|) (-782)) 75)) (-2295 (((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-1190 |#3|) (-1190 |#3|) |#4| (-655 |#2|) (-655 (-782)) (-655 |#3|)) 79)) (-4165 (((-2 (|:| |upol| (-1190 |#3|)) (|:| |Lval| (-655 |#3|)) (|:| |Lfact| (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575))))) (|:| |ctpol| |#3|)) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|))) 27)) (-3169 (((-2 (|:| -1699 (-1190 |#4|)) (|:| |polval| (-1190 |#3|))) (-1190 |#4|) (-1190 |#3|) (-575)) 72)) (-2734 (((-575) (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575))))) 162)) (-3869 ((|#4| (-575) (-429 |#4|)) 73)) (-3135 (((-112) (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575)))) (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575))))) NIL))) +(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2330 ((-429 |#4|) |#4|)) (-15 -2330 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -3697 ((-429 |#4|) |#4|)) (-15 -2734 ((-575) (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575)))))) (-15 -1438 ((-429 |#4|) |#4| |#2|)) (-15 -3169 ((-2 (|:| -1699 (-1190 |#4|)) (|:| |polval| (-1190 |#3|))) (-1190 |#4|) (-1190 |#3|) (-575))) (-15 -2409 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-655 (-2 (|:| -2353 (-1190 |#4|)) (|:| -2398 (-575)))))) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|)))) (-15 -4165 ((-2 (|:| |upol| (-1190 |#3|)) (|:| |Lval| (-655 |#3|)) (|:| |Lfact| (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575))))) (|:| |ctpol| |#3|)) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|)))) (-15 -3869 (|#4| (-575) (-429 |#4|))) (-15 -3135 ((-112) (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575)))) (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575)))))) (-15 -2295 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-1190 |#3|) (-1190 |#3|) |#4| (-655 |#2|) (-655 (-782)) (-655 |#3|))) (-15 -2457 ((-655 (-782)) (-1190 |#4|) (-655 |#2|) (-782))) (-15 -2244 ((-1190 |#3|) (-1190 |#3|) (-575)))) (-804) (-861) (-316) (-964 |#3| |#1| |#2|)) (T -753)) +((-2244 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 *6)) (-5 *3 (-575)) (-4 *6 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))) (-2457 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-4 *7 (-861)) (-4 *9 (-964 *8 *6 *7)) (-4 *6 (-804)) (-4 *8 (-316)) (-5 *2 (-655 (-782))) (-5 *1 (-753 *6 *7 *8 *9)) (-5 *5 (-782)))) (-2295 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1190 *11)) (-5 *6 (-655 *10)) (-5 *7 (-655 (-782))) (-5 *8 (-655 *11)) (-4 *10 (-861)) (-4 *11 (-316)) (-4 *9 (-804)) (-4 *5 (-964 *11 *9 *10)) (-5 *2 (-655 (-1190 *5))) (-5 *1 (-753 *9 *10 *11 *5)) (-5 *3 (-1190 *5)))) (-3135 (*1 *2 *3 *3) (-12 (-5 *3 (-655 (-2 (|:| -2353 (-1190 *6)) (|:| -2398 (-575))))) (-4 *6 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *3 (-575)) (-5 *4 (-429 *2)) (-4 *2 (-964 *7 *5 *6)) (-5 *1 (-753 *5 *6 *7 *2)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-316)))) (-4165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-5 *5 (-655 (-655 *8))) (-4 *7 (-861)) (-4 *8 (-316)) (-4 *9 (-964 *8 *6 *7)) (-4 *6 (-804)) (-5 *2 (-2 (|:| |upol| (-1190 *8)) (|:| |Lval| (-655 *8)) (|:| |Lfact| (-655 (-2 (|:| -2353 (-1190 *8)) (|:| -2398 (-575))))) (|:| |ctpol| *8))) (-5 *1 (-753 *6 *7 *8 *9)))) (-2409 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-655 *7)) (-5 *5 (-655 (-655 *8))) (-4 *7 (-861)) (-4 *8 (-316)) (-4 *6 (-804)) (-4 *9 (-964 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-655 (-2 (|:| -2353 (-1190 *9)) (|:| -2398 (-575))))))) (-5 *1 (-753 *6 *7 *8 *9)) (-5 *3 (-1190 *9)))) (-3169 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-575)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-316)) (-4 *9 (-964 *8 *6 *7)) (-5 *2 (-2 (|:| -1699 (-1190 *9)) (|:| |polval| (-1190 *8)))) (-5 *1 (-753 *6 *7 *8 *9)) (-5 *3 (-1190 *9)) (-5 *4 (-1190 *8)))) (-1438 (*1 *2 *3 *4) (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-753 *5 *4 *6 *3)) (-4 *3 (-964 *6 *5 *4)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -2353 (-1190 *6)) (|:| -2398 (-575))))) (-4 *6 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-575)) (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))) (-3697 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-964 *6 *4 *5)))) (-2330 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-2330 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-964 *6 *4 *5))))) +(-10 -7 (-15 -2330 ((-429 |#4|) |#4|)) (-15 -2330 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -3697 ((-429 |#4|) |#4|)) (-15 -2734 ((-575) (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575)))))) (-15 -1438 ((-429 |#4|) |#4| |#2|)) (-15 -3169 ((-2 (|:| -1699 (-1190 |#4|)) (|:| |polval| (-1190 |#3|))) (-1190 |#4|) (-1190 |#3|) (-575))) (-15 -2409 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-655 (-2 (|:| -2353 (-1190 |#4|)) (|:| -2398 (-575)))))) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|)))) (-15 -4165 ((-2 (|:| |upol| (-1190 |#3|)) (|:| |Lval| (-655 |#3|)) (|:| |Lfact| (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575))))) (|:| |ctpol| |#3|)) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|)))) (-15 -3869 (|#4| (-575) (-429 |#4|))) (-15 -3135 ((-112) (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575)))) (-655 (-2 (|:| -2353 (-1190 |#3|)) (|:| -2398 (-575)))))) (-15 -2295 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-1190 |#3|) (-1190 |#3|) |#4| (-655 |#2|) (-655 (-782)) (-655 |#3|))) (-15 -2457 ((-655 (-782)) (-1190 |#4|) (-655 |#2|) (-782))) (-15 -2244 ((-1190 |#3|) (-1190 |#3|) (-575)))) +((-3889 (($ $ (-936)) 17))) +(((-754 |#1| |#2|) (-10 -8 (-15 -3889 (|#1| |#1| (-936)))) (-755 |#2|) (-174)) (T -754)) +NIL +(-10 -8 (-15 -3889 (|#1| |#1| (-936)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2661 (($ $ (-936)) 31)) (-3889 (($ $ (-936)) 38)) (-1898 (($ $ (-936)) 32)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3320 (($ $ $) 28)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1785 (($ $ $ $) 29)) (-3534 (($ $ $) 27)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 33)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-755 |#1|) (-141) (-174)) (T -755)) +((-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-755 *3)) (-4 *3 (-174))))) +(-13 (-772) (-728 |t#1|) (-10 -8 (-15 -3889 ($ $ (-936))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-731) . T) ((-772) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T)) +((-1786 (((-1052) (-700 (-227)) (-575) (-112) (-575)) 25)) (-3465 (((-1052) (-700 (-227)) (-575) (-112) (-575)) 24))) +(((-756) (-10 -7 (-15 -3465 ((-1052) (-700 (-227)) (-575) (-112) (-575))) (-15 -1786 ((-1052) (-700 (-227)) (-575) (-112) (-575))))) (T -756)) +((-1786 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-112)) (-5 *2 (-1052)) (-5 *1 (-756)))) (-3465 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-112)) (-5 *2 (-1052)) (-5 *1 (-756))))) +(-10 -7 (-15 -3465 ((-1052) (-700 (-227)) (-575) (-112) (-575))) (-15 -1786 ((-1052) (-700 (-227)) (-575) (-112) (-575)))) +((-2266 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-74 FCN)))) 43)) (-3835 (((-1052) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-81 FCN)))) 39)) (-4151 (((-1052) (-227) (-227) (-227) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) 32))) +(((-757) (-10 -7 (-15 -4151 ((-1052) (-227) (-227) (-227) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029))))) (-15 -3835 ((-1052) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-81 FCN))))) (-15 -2266 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-74 FCN))))))) (T -757)) +((-2266 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1052)) (-5 *1 (-757)))) (-3835 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1052)) (-5 *1 (-757)))) (-4151 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) (-5 *2 (-1052)) (-5 *1 (-757))))) +(-10 -7 (-15 -4151 ((-1052) (-227) (-227) (-227) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029))))) (-15 -3835 ((-1052) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-81 FCN))))) (-15 -2266 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-74 FCN)))))) +((-3670 (((-1052) (-575) (-575) (-700 (-227)) (-575)) 34)) (-2089 (((-1052) (-575) (-575) (-700 (-227)) (-575)) 33)) (-2497 (((-1052) (-575) (-700 (-227)) (-575)) 32)) (-2197 (((-1052) (-575) (-700 (-227)) (-575)) 31)) (-3278 (((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 30)) (-3143 (((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 29)) (-1379 (((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575)) 28)) (-2943 (((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575)) 27)) (-3317 (((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 24)) (-2604 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575)) 23)) (-3898 (((-1052) (-575) (-700 (-227)) (-575)) 22)) (-2106 (((-1052) (-575) (-700 (-227)) (-575)) 21))) +(((-758) (-10 -7 (-15 -2106 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -3898 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -2604 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3317 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2943 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1379 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3143 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3278 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2197 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -2497 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -2089 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -3670 ((-1052) (-575) (-575) (-700 (-227)) (-575))))) (T -758)) +((-3670 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-2089 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-2497 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-2197 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-3278 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-3143 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-1379 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-2943 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-3317 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-2604 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-3898 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-2106 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758))))) +(-10 -7 (-15 -2106 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -3898 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -2604 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3317 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2943 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1379 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3143 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3278 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2197 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -2497 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -2089 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -3670 ((-1052) (-575) (-575) (-700 (-227)) (-575)))) +((-2646 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN)))) 52)) (-4067 (((-1052) (-700 (-227)) (-700 (-227)) (-575) (-575)) 51)) (-3493 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3870 (((-1052) (-227) (-227) (-575) (-575) (-575) (-575)) 46)) (-4145 (((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) 45)) (-2411 (((-1052) (-227) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) 44)) (-3864 (((-1052) (-227) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) 43)) (-2182 (((-1052) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) 42)) (-4121 (((-1052) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) 38)) (-1384 (((-1052) (-227) (-227) (-575) (-700 (-227)) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) 37)) (-2930 (((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) 33)) (-3258 (((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) 32))) +(((-759) (-10 -7 (-15 -3258 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029))))) (-15 -2930 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029))))) (-15 -1384 ((-1052) (-227) (-227) (-575) (-700 (-227)) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029))))) (-15 -4121 ((-1052) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029))))) (-15 -2182 ((-1052) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -3864 ((-1052) (-227) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -2411 ((-1052) (-227) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -4145 ((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -3870 ((-1052) (-227) (-227) (-575) (-575) (-575) (-575))) (-15 -3493 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN))))) (-15 -4067 ((-1052) (-700 (-227)) (-700 (-227)) (-575) (-575))) (-15 -2646 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN))))))) (T -759)) +((-2646 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-4067 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-759)))) (-3493 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-3870 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-759)))) (-4145 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-2411 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-3864 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-2182 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-4121 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-1384 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-759)))) (-2930 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-3258 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) (-5 *2 (-1052)) (-5 *1 (-759))))) +(-10 -7 (-15 -3258 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029))))) (-15 -2930 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029))))) (-15 -1384 ((-1052) (-227) (-227) (-575) (-700 (-227)) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029))))) (-15 -4121 ((-1052) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029))))) (-15 -2182 ((-1052) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -3864 ((-1052) (-227) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -2411 ((-1052) (-227) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -4145 ((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -3870 ((-1052) (-227) (-227) (-575) (-575) (-575) (-575))) (-15 -3493 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN))))) (-15 -4067 ((-1052) (-700 (-227)) (-700 (-227)) (-575) (-575))) (-15 -2646 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN)))))) +((-3865 (((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-399)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2075 (((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))) (-399) (-399)) 69) (((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3273 (((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-85 FCNG)))) 57)) (-3480 (((-1052) (-700 (-227)) (-700 (-227)) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) 50)) (-2158 (((-1052) (-227) (-575) (-575) (-1176) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2518 (((-1052) (-227) (-575) (-575) (-227) (-1176) (-227) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) 45)) (-4072 (((-1052) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) 42)) (-4178 (((-1052) (-227) (-575) (-575) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-760) (-10 -7 (-15 -4178 ((-1052) (-227) (-575) (-575) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -4072 ((-1052) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))))) (-15 -2518 ((-1052) (-227) (-575) (-575) (-227) (-1176) (-227) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -2158 ((-1052) (-227) (-575) (-575) (-1176) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -3480 ((-1052) (-700 (-227)) (-700 (-227)) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))))) (-15 -3273 ((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-85 FCNG))))) (-15 -2075 ((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))))) (-15 -2075 ((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))) (-399) (-399))) (-15 -3865 ((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-399)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -760)) +((-3865 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-2075 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-399)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-2075 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1052)) (-5 *1 (-760)))) (-3273 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-3480 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1052)) (-5 *1 (-760)))) (-2158 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-575)) (-5 *5 (-1176)) (-5 *6 (-700 (-227))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-2518 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-575)) (-5 *5 (-1176)) (-5 *6 (-700 (-227))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-4072 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-4178 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760))))) +(-10 -7 (-15 -4178 ((-1052) (-227) (-575) (-575) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -4072 ((-1052) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))))) (-15 -2518 ((-1052) (-227) (-575) (-575) (-227) (-1176) (-227) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -2158 ((-1052) (-227) (-575) (-575) (-1176) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -3480 ((-1052) (-700 (-227)) (-700 (-227)) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))))) (-15 -3273 ((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-85 FCNG))))) (-15 -2075 ((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))))) (-15 -2075 ((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))) (-399) (-399))) (-15 -3865 ((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-399)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-2693 (((-1052) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-686 (-227)) (-575)) 45)) (-2133 (((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-1176) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-83 BNDY)))) 41)) (-2289 (((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 23))) +(((-761) (-10 -7 (-15 -2289 ((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2133 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-1176) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-83 BNDY))))) (-15 -2693 ((-1052) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-686 (-227)) (-575))))) (T -761)) +((-2693 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-686 (-227))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-761)))) (-2133 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-1176)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1052)) (-5 *1 (-761)))) (-2289 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-761))))) +(-10 -7 (-15 -2289 ((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2133 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-1176) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-83 BNDY))))) (-15 -2693 ((-1052) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-686 (-227)) (-575)))) +((-2897 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-700 (-227)) (-227) (-227) (-575)) 35)) (-3332 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-227) (-227) (-575)) 34)) (-3627 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-700 (-227)) (-227) (-227) (-575)) 33)) (-2040 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 29)) (-2132 (((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 28)) (-2451 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575)) 27)) (-1944 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575)) 24)) (-3448 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575)) 23)) (-3802 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575)) 22)) (-2343 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575)) 21))) +(((-762) (-10 -7 (-15 -2343 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575))) (-15 -3802 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3448 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -1944 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -2451 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575))) (-15 -2132 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2040 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3627 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-700 (-227)) (-227) (-227) (-575))) (-15 -3332 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-227) (-227) (-575))) (-15 -2897 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-700 (-227)) (-227) (-227) (-575))))) (T -762)) +((-2897 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-762)))) (-3332 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-762)))) (-3627 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *6 (-227)) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-762)))) (-2040 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762)))) (-2132 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762)))) (-2451 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-762)))) (-1944 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762)))) (-3448 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762)))) (-3802 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762)))) (-2343 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762))))) +(-10 -7 (-15 -2343 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575))) (-15 -3802 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3448 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -1944 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -2451 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575))) (-15 -2132 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2040 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3627 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-700 (-227)) (-227) (-227) (-575))) (-15 -3332 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-227) (-227) (-575))) (-15 -2897 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-700 (-227)) (-227) (-227) (-575)))) +((-1833 (((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575)) 45)) (-3472 (((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-575)) 44)) (-3067 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575)) 43)) (-1404 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 42)) (-1440 (((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575)) 41)) (-2926 (((-1052) (-1176) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575)) 40)) (-3231 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575) (-575) (-575) (-227) (-700 (-227)) (-575)) 39)) (-2315 (((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575))) 38)) (-3545 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575)) 35)) (-2848 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575)) 34)) (-4049 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575)) 33)) (-4134 (((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 32)) (-2639 (((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575)) 31)) (-3116 (((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-575)) 30)) (-4298 (((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-575) (-575) (-575)) 29)) (-3307 (((-1052) (-575) (-575) (-575) (-227) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-575)) (-575) (-575) (-575)) 28)) (-3806 (((-1052) (-575) (-700 (-227)) (-227) (-575)) 24)) (-4213 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 21))) +(((-763) (-10 -7 (-15 -4213 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3806 ((-1052) (-575) (-700 (-227)) (-227) (-575))) (-15 -3307 ((-1052) (-575) (-575) (-575) (-227) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-575)) (-575) (-575) (-575))) (-15 -4298 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-575) (-575) (-575))) (-15 -3116 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-575))) (-15 -2639 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575))) (-15 -4134 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4049 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575))) (-15 -2848 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575))) (-15 -3545 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2315 ((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575)))) (-15 -3231 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575) (-575) (-575) (-227) (-700 (-227)) (-575))) (-15 -2926 ((-1052) (-1176) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575))) (-15 -1440 ((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1404 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3067 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575))) (-15 -3472 ((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1833 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575))))) (T -763)) +((-1833 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3472 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3067 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763)))) (-1404 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763)))) (-1440 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-2926 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-227)) (-5 *7 (-700 (-575))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3231 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *6 (-227)) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-2315 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-227)) (-5 *7 (-700 (-575))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3545 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763)))) (-2848 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-4049 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-4134 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763)))) (-2639 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3116 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-4298 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3307 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-700 (-227))) (-5 *6 (-700 (-575))) (-5 *3 (-575)) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3806 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-4213 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763))))) +(-10 -7 (-15 -4213 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3806 ((-1052) (-575) (-700 (-227)) (-227) (-575))) (-15 -3307 ((-1052) (-575) (-575) (-575) (-227) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-575)) (-575) (-575) (-575))) (-15 -4298 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-575) (-575) (-575))) (-15 -3116 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-575))) (-15 -2639 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575))) (-15 -4134 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4049 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575))) (-15 -2848 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575))) (-15 -3545 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2315 ((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575)))) (-15 -3231 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575) (-575) (-575) (-227) (-700 (-227)) (-575))) (-15 -2926 ((-1052) (-1176) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575))) (-15 -1440 ((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1404 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3067 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575))) (-15 -3472 ((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1833 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575)))) +((-2057 (((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-575) (-700 (-227)) (-575)) 63)) (-3445 (((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-112) (-227) (-575) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-575) (-575) (-575) (-575) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3616 (((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-112) (-112) (-575) (-575) (-700 (-227)) (-700 (-575)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-65 QPHESS)))) 58)) (-1767 (((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-575) (-575) (-700 (-227)) (-575)) 51)) (-2036 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-66 FUNCT1)))) 50)) (-1935 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3438 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1614 (((-1052) (-575) (-227) (-227) (-575) (-227) (-112) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-764) (-10 -7 (-15 -1614 ((-1052) (-575) (-227) (-227) (-575) (-227) (-112) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN))))) (-15 -3438 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-79 LSFUN1))))) (-15 -1935 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-63 LSFUN2))))) (-15 -2036 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-66 FUNCT1))))) (-15 -1767 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-575) (-575) (-700 (-227)) (-575))) (-15 -3616 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-112) (-112) (-575) (-575) (-700 (-227)) (-700 (-575)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-65 QPHESS))))) (-15 -3445 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-112) (-227) (-575) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-575) (-575) (-575) (-575) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN))))) (-15 -2057 ((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-575) (-700 (-227)) (-575))))) (T -764)) +((-2057 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-764)))) (-3445 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-700 (-575))) (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-764)))) (-3616 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-700 (-227))) (-5 *6 (-112)) (-5 *7 (-700 (-575))) (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-575)) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-764)))) (-1767 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-112)) (-5 *2 (-1052)) (-5 *1 (-764)))) (-2036 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1052)) (-5 *1 (-764)))) (-1935 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1052)) (-5 *1 (-764)))) (-3438 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1052)) (-5 *1 (-764)))) (-1614 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-575)) (-5 *5 (-112)) (-5 *6 (-700 (-227))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-764))))) +(-10 -7 (-15 -1614 ((-1052) (-575) (-227) (-227) (-575) (-227) (-112) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN))))) (-15 -3438 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-79 LSFUN1))))) (-15 -1935 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-63 LSFUN2))))) (-15 -2036 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-66 FUNCT1))))) (-15 -1767 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-575) (-575) (-700 (-227)) (-575))) (-15 -3616 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-112) (-112) (-575) (-575) (-700 (-227)) (-700 (-575)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-65 QPHESS))))) (-15 -3445 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-112) (-227) (-575) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-575) (-575) (-575) (-575) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN))))) (-15 -2057 ((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-575) (-700 (-227)) (-575)))) +((-1901 (((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575)) 47)) (-3334 (((-1052) (-1176) (-1176) (-575) (-575) (-700 (-171 (-227))) (-575) (-700 (-171 (-227))) (-575) (-575) (-700 (-171 (-227))) (-575)) 46)) (-3564 (((-1052) (-575) (-575) (-575) (-700 (-171 (-227))) (-575)) 45)) (-1826 (((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 40)) (-2380 (((-1052) (-1176) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-700 (-227)) (-575)) 39)) (-3942 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-575)) 36)) (-1813 (((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575)) 35)) (-2960 (((-1052) (-575) (-575) (-575) (-575) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-227) (-227) (-575)) 34)) (-4294 (((-1052) (-575) (-575) (-575) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-112) (-227) (-112) (-700 (-575)) (-700 (-227)) (-575)) 33)) (-3664 (((-1052) (-575) (-575) (-575) (-575) (-227) (-112) (-112) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-575)) 32))) +(((-765) (-10 -7 (-15 -3664 ((-1052) (-575) (-575) (-575) (-575) (-227) (-112) (-112) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-575))) (-15 -4294 ((-1052) (-575) (-575) (-575) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-112) (-227) (-112) (-700 (-575)) (-700 (-227)) (-575))) (-15 -2960 ((-1052) (-575) (-575) (-575) (-575) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-227) (-227) (-575))) (-15 -1813 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575))) (-15 -3942 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-575))) (-15 -2380 ((-1052) (-1176) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-700 (-227)) (-575))) (-15 -1826 ((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3564 ((-1052) (-575) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -3334 ((-1052) (-1176) (-1176) (-575) (-575) (-700 (-171 (-227))) (-575) (-700 (-171 (-227))) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -1901 ((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575))))) (T -765)) +((-1901 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-171 (-227)))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-3334 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-171 (-227)))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-3564 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-171 (-227)))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-1826 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-2380 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-3942 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-1813 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-765)))) (-2960 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-655 (-112))) (-5 *5 (-700 (-227))) (-5 *6 (-700 (-575))) (-5 *7 (-227)) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-765)))) (-4294 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-700 (-575))) (-5 *5 (-112)) (-5 *7 (-700 (-227))) (-5 *3 (-575)) (-5 *6 (-227)) (-5 *2 (-1052)) (-5 *1 (-765)))) (-3664 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-655 (-112))) (-5 *7 (-700 (-227))) (-5 *8 (-700 (-575))) (-5 *3 (-575)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1052)) (-5 *1 (-765))))) +(-10 -7 (-15 -3664 ((-1052) (-575) (-575) (-575) (-575) (-227) (-112) (-112) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-575))) (-15 -4294 ((-1052) (-575) (-575) (-575) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-112) (-227) (-112) (-700 (-575)) (-700 (-227)) (-575))) (-15 -2960 ((-1052) (-575) (-575) (-575) (-575) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-227) (-227) (-575))) (-15 -1813 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575))) (-15 -3942 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-575))) (-15 -2380 ((-1052) (-1176) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-700 (-227)) (-575))) (-15 -1826 ((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3564 ((-1052) (-575) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -3334 ((-1052) (-1176) (-1176) (-575) (-575) (-700 (-171 (-227))) (-575) (-700 (-171 (-227))) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -1901 ((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575)))) +((-1337 (((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575)) 79)) (-1683 (((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575)) 68)) (-3499 (((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE))) (-399)) 56) (((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE)))) 55)) (-3701 (((-1052) (-575) (-575) (-575) (-227) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575)) 37)) (-4217 (((-1052) (-575) (-575) (-227) (-227) (-575) (-575) (-700 (-227)) (-575)) 33)) (-2756 (((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575) (-575)) 30)) (-2704 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 29)) (-3015 (((-1052) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 28)) (-1733 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 27)) (-3781 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575)) 26)) (-2120 (((-1052) (-575) (-575) (-700 (-227)) (-575)) 25)) (-2462 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 24)) (-4137 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 23)) (-3416 (((-1052) (-700 (-227)) (-575) (-575) (-575) (-575)) 22)) (-3516 (((-1052) (-575) (-575) (-700 (-227)) (-575)) 21))) +(((-766) (-10 -7 (-15 -3516 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -3416 ((-1052) (-700 (-227)) (-575) (-575) (-575) (-575))) (-15 -4137 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2462 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2120 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -3781 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575))) (-15 -1733 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3015 ((-1052) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2704 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2756 ((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575) (-575))) (-15 -4217 ((-1052) (-575) (-575) (-227) (-227) (-575) (-575) (-700 (-227)) (-575))) (-15 -3701 ((-1052) (-575) (-575) (-575) (-227) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3499 ((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE))))) (-15 -3499 ((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE))) (-399))) (-15 -1683 ((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1337 ((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575))))) (T -766)) +((-1337 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-112)) (-5 *5 (-700 (-171 (-227)))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-1683 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-112)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3499 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-399)) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3499 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3701 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-575)) (-5 *5 (-112)) (-5 *6 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-4217 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-2756 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-2704 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3015 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-1733 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3781 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-2120 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-2462 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-4137 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3416 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3516 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766))))) +(-10 -7 (-15 -3516 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -3416 ((-1052) (-700 (-227)) (-575) (-575) (-575) (-575))) (-15 -4137 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2462 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2120 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -3781 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575))) (-15 -1733 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3015 ((-1052) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2704 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2756 ((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575) (-575))) (-15 -4217 ((-1052) (-575) (-575) (-227) (-227) (-575) (-575) (-700 (-227)) (-575))) (-15 -3701 ((-1052) (-575) (-575) (-575) (-227) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3499 ((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE))))) (-15 -3499 ((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE))) (-399))) (-15 -1683 ((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1337 ((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575)))) +((-3432 (((-1052) (-575) (-575) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-70 APROD)))) 64)) (-3028 (((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575)) 60)) (-3861 (((-1052) (-575) (-700 (-227)) (-112) (-227) (-575) (-575) (-575) (-575) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-399)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1414 (((-1052) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575)) 37)) (-4094 (((-1052) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-575)) 36)) (-1325 (((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 33)) (-1982 (((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227))) 32)) (-2336 (((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575)) 28)) (-3899 (((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575)) 27)) (-2096 (((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575)) 26)) (-2254 (((-1052) (-575) (-700 (-171 (-227))) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-575)) 22))) +(((-767) (-10 -7 (-15 -2254 ((-1052) (-575) (-700 (-171 (-227))) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -2096 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -3899 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -2336 ((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575))) (-15 -1982 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227)))) (-15 -1325 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4094 ((-1052) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1414 ((-1052) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575))) (-15 -3861 ((-1052) (-575) (-700 (-227)) (-112) (-227) (-575) (-575) (-575) (-575) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-399)) (|:| |fp| (-73 MSOLVE))))) (-15 -3028 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575))) (-15 -3432 ((-1052) (-575) (-575) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-70 APROD))))))) (T -767)) +((-3432 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-3028 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-3861 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1052)) (-5 *1 (-767)))) (-1414 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-4094 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-1325 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-767)))) (-1982 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-2336 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-3899 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-767)))) (-2096 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-767)))) (-2254 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-171 (-227)))) (-5 *2 (-1052)) (-5 *1 (-767))))) +(-10 -7 (-15 -2254 ((-1052) (-575) (-700 (-171 (-227))) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -2096 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -3899 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -2336 ((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575))) (-15 -1982 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227)))) (-15 -1325 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4094 ((-1052) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1414 ((-1052) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575))) (-15 -3861 ((-1052) (-575) (-700 (-227)) (-112) (-227) (-575) (-575) (-575) (-575) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-399)) (|:| |fp| (-73 MSOLVE))))) (-15 -3028 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575))) (-15 -3432 ((-1052) (-575) (-575) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-70 APROD)))))) +((-1696 (((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-575) (-700 (-227))) 29)) (-3204 (((-1052) (-1176) (-575) (-575) (-700 (-227))) 28)) (-1478 (((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-227))) 27)) (-1722 (((-1052) (-575) (-575) (-575) (-700 (-227))) 21))) +(((-768) (-10 -7 (-15 -1722 ((-1052) (-575) (-575) (-575) (-700 (-227)))) (-15 -1478 ((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-227)))) (-15 -3204 ((-1052) (-1176) (-575) (-575) (-700 (-227)))) (-15 -1696 ((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-575) (-700 (-227)))))) (T -768)) +((-1696 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-768)))) (-3204 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-768)))) (-1478 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-700 (-575))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-768)))) (-1722 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-768))))) +(-10 -7 (-15 -1722 ((-1052) (-575) (-575) (-575) (-700 (-227)))) (-15 -1478 ((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-227)))) (-15 -3204 ((-1052) (-1176) (-575) (-575) (-700 (-227)))) (-15 -1696 ((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-575) (-700 (-227))))) +((-2975 (((-1052) (-227) (-227) (-227) (-227) (-575)) 62)) (-4189 (((-1052) (-227) (-227) (-227) (-575)) 61)) (-2405 (((-1052) (-227) (-227) (-227) (-575)) 60)) (-3961 (((-1052) (-227) (-227) (-575)) 59)) (-3251 (((-1052) (-227) (-575)) 58)) (-1482 (((-1052) (-227) (-575)) 57)) (-1738 (((-1052) (-227) (-575)) 56)) (-3147 (((-1052) (-227) (-575)) 55)) (-4390 (((-1052) (-227) (-575)) 54)) (-2634 (((-1052) (-227) (-575)) 53)) (-1457 (((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575)) 52)) (-1728 (((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575)) 51)) (-3271 (((-1052) (-227) (-575)) 50)) (-1541 (((-1052) (-227) (-575)) 49)) (-1769 (((-1052) (-227) (-575)) 48)) (-2758 (((-1052) (-227) (-575)) 47)) (-2984 (((-1052) (-575) (-227) (-171 (-227)) (-575) (-1176) (-575)) 46)) (-3479 (((-1052) (-1176) (-171 (-227)) (-1176) (-575)) 45)) (-1581 (((-1052) (-1176) (-171 (-227)) (-1176) (-575)) 44)) (-2952 (((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575)) 43)) (-3347 (((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575)) 42)) (-2618 (((-1052) (-227) (-575)) 39)) (-3910 (((-1052) (-227) (-575)) 38)) (-1976 (((-1052) (-227) (-575)) 37)) (-3085 (((-1052) (-227) (-575)) 36)) (-4360 (((-1052) (-227) (-575)) 35)) (-1887 (((-1052) (-227) (-575)) 34)) (-3259 (((-1052) (-227) (-575)) 33)) (-1322 (((-1052) (-227) (-575)) 32)) (-2712 (((-1052) (-227) (-575)) 31)) (-4019 (((-1052) (-227) (-575)) 30)) (-4152 (((-1052) (-227) (-227) (-227) (-575)) 29)) (-3641 (((-1052) (-227) (-575)) 28)) (-1995 (((-1052) (-227) (-575)) 27)) (-3281 (((-1052) (-227) (-575)) 26)) (-4432 (((-1052) (-227) (-575)) 25)) (-2689 (((-1052) (-227) (-575)) 24)) (-1406 (((-1052) (-171 (-227)) (-575)) 21))) +(((-769) (-10 -7 (-15 -1406 ((-1052) (-171 (-227)) (-575))) (-15 -2689 ((-1052) (-227) (-575))) (-15 -4432 ((-1052) (-227) (-575))) (-15 -3281 ((-1052) (-227) (-575))) (-15 -1995 ((-1052) (-227) (-575))) (-15 -3641 ((-1052) (-227) (-575))) (-15 -4152 ((-1052) (-227) (-227) (-227) (-575))) (-15 -4019 ((-1052) (-227) (-575))) (-15 -2712 ((-1052) (-227) (-575))) (-15 -1322 ((-1052) (-227) (-575))) (-15 -3259 ((-1052) (-227) (-575))) (-15 -1887 ((-1052) (-227) (-575))) (-15 -4360 ((-1052) (-227) (-575))) (-15 -3085 ((-1052) (-227) (-575))) (-15 -1976 ((-1052) (-227) (-575))) (-15 -3910 ((-1052) (-227) (-575))) (-15 -2618 ((-1052) (-227) (-575))) (-15 -3347 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -2952 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -1581 ((-1052) (-1176) (-171 (-227)) (-1176) (-575))) (-15 -3479 ((-1052) (-1176) (-171 (-227)) (-1176) (-575))) (-15 -2984 ((-1052) (-575) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -2758 ((-1052) (-227) (-575))) (-15 -1769 ((-1052) (-227) (-575))) (-15 -1541 ((-1052) (-227) (-575))) (-15 -3271 ((-1052) (-227) (-575))) (-15 -1728 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -1457 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -2634 ((-1052) (-227) (-575))) (-15 -4390 ((-1052) (-227) (-575))) (-15 -3147 ((-1052) (-227) (-575))) (-15 -1738 ((-1052) (-227) (-575))) (-15 -1482 ((-1052) (-227) (-575))) (-15 -3251 ((-1052) (-227) (-575))) (-15 -3961 ((-1052) (-227) (-227) (-575))) (-15 -2405 ((-1052) (-227) (-227) (-227) (-575))) (-15 -4189 ((-1052) (-227) (-227) (-227) (-575))) (-15 -2975 ((-1052) (-227) (-227) (-227) (-227) (-575))))) (T -769)) +((-2975 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4189 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2405 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3961 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3251 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1738 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3147 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1457 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1728 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3271 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1769 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2984 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-575)) (-5 *5 (-171 (-227))) (-5 *6 (-1176)) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3479 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1176)) (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1581 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1176)) (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2952 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3347 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3910 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4360 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1887 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3259 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1322 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4152 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1406 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(-10 -7 (-15 -1406 ((-1052) (-171 (-227)) (-575))) (-15 -2689 ((-1052) (-227) (-575))) (-15 -4432 ((-1052) (-227) (-575))) (-15 -3281 ((-1052) (-227) (-575))) (-15 -1995 ((-1052) (-227) (-575))) (-15 -3641 ((-1052) (-227) (-575))) (-15 -4152 ((-1052) (-227) (-227) (-227) (-575))) (-15 -4019 ((-1052) (-227) (-575))) (-15 -2712 ((-1052) (-227) (-575))) (-15 -1322 ((-1052) (-227) (-575))) (-15 -3259 ((-1052) (-227) (-575))) (-15 -1887 ((-1052) (-227) (-575))) (-15 -4360 ((-1052) (-227) (-575))) (-15 -3085 ((-1052) (-227) (-575))) (-15 -1976 ((-1052) (-227) (-575))) (-15 -3910 ((-1052) (-227) (-575))) (-15 -2618 ((-1052) (-227) (-575))) (-15 -3347 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -2952 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -1581 ((-1052) (-1176) (-171 (-227)) (-1176) (-575))) (-15 -3479 ((-1052) (-1176) (-171 (-227)) (-1176) (-575))) (-15 -2984 ((-1052) (-575) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -2758 ((-1052) (-227) (-575))) (-15 -1769 ((-1052) (-227) (-575))) (-15 -1541 ((-1052) (-227) (-575))) (-15 -3271 ((-1052) (-227) (-575))) (-15 -1728 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -1457 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -2634 ((-1052) (-227) (-575))) (-15 -4390 ((-1052) (-227) (-575))) (-15 -3147 ((-1052) (-227) (-575))) (-15 -1738 ((-1052) (-227) (-575))) (-15 -1482 ((-1052) (-227) (-575))) (-15 -3251 ((-1052) (-227) (-575))) (-15 -3961 ((-1052) (-227) (-227) (-575))) (-15 -2405 ((-1052) (-227) (-227) (-227) (-575))) (-15 -4189 ((-1052) (-227) (-227) (-227) (-575))) (-15 -2975 ((-1052) (-227) (-227) (-227) (-227) (-575)))) +((-1801 (((-1290)) 20)) (-2211 (((-1176)) 31)) (-2857 (((-1176)) 30)) (-3363 (((-1121) (-1194) (-700 (-575))) 45) (((-1121) (-1194) (-700 (-227))) 41)) (-1474 (((-112)) 19)) (-3683 (((-1176) (-1176)) 34))) +(((-770) (-10 -7 (-15 -2857 ((-1176))) (-15 -2211 ((-1176))) (-15 -3683 ((-1176) (-1176))) (-15 -3363 ((-1121) (-1194) (-700 (-227)))) (-15 -3363 ((-1121) (-1194) (-700 (-575)))) (-15 -1474 ((-112))) (-15 -1801 ((-1290))))) (T -770)) +((-1801 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-770)))) (-1474 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-770)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-700 (-575))) (-5 *2 (-1121)) (-5 *1 (-770)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-700 (-227))) (-5 *2 (-1121)) (-5 *1 (-770)))) (-3683 (*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770)))) (-2211 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770)))) (-2857 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770))))) +(-10 -7 (-15 -2857 ((-1176))) (-15 -2211 ((-1176))) (-15 -3683 ((-1176) (-1176))) (-15 -3363 ((-1121) (-1194) (-700 (-227)))) (-15 -3363 ((-1121) (-1194) (-700 (-575)))) (-15 -1474 ((-112))) (-15 -1801 ((-1290)))) +((-3320 (($ $ $) 10)) (-1785 (($ $ $ $) 9)) (-3534 (($ $ $) 12))) +(((-771 |#1|) (-10 -8 (-15 -3534 (|#1| |#1| |#1|)) (-15 -3320 (|#1| |#1| |#1|)) (-15 -1785 (|#1| |#1| |#1| |#1|))) (-772)) (T -771)) +NIL +(-10 -8 (-15 -3534 (|#1| |#1| |#1|)) (-15 -3320 (|#1| |#1| |#1|)) (-15 -1785 (|#1| |#1| |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2661 (($ $ (-936)) 31)) (-1898 (($ $ (-936)) 32)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3320 (($ $ $) 28)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1785 (($ $ $ $) 29)) (-3534 (($ $ $) 27)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 33)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 30))) +(((-772) (-141)) (T -772)) +((-1785 (*1 *1 *1 *1 *1) (-4 *1 (-772))) (-3320 (*1 *1 *1 *1) (-4 *1 (-772))) (-3534 (*1 *1 *1 *1) (-4 *1 (-772)))) +(-13 (-21) (-731) (-10 -8 (-15 -1785 ($ $ $ $)) (-15 -3320 ($ $ $)) (-15 -3534 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-731) . T) ((-1117) . T)) +((-2883 (((-873) $) NIL) (($ (-575)) 10))) +(((-773 |#1|) (-10 -8 (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) (-774)) (T -773)) +NIL +(-10 -8 (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-3512 (((-3 $ "failed") $) 43)) (-2661 (($ $ (-936)) 31) (($ $ (-782)) 38)) (-1747 (((-3 $ "failed") $) 41)) (-1542 (((-112) $) 37)) (-3456 (((-3 $ "failed") $) 42)) (-1898 (($ $ (-936)) 32) (($ $ (-782)) 39)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3320 (($ $ $) 28)) (-2883 (((-873) $) 12) (($ (-575)) 34)) (-3759 (((-782)) 35 T CONST)) (-4400 (((-112) $ $) 9)) (-1785 (($ $ $ $) 29)) (-3534 (($ $ $) 27)) (-1996 (($) 19 T CONST)) (-2009 (($) 36 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 33) (($ $ (-782)) 40)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 30))) +(((-774) (-141)) (T -774)) +((-3759 (*1 *2) (-12 (-4 *1 (-774)) (-5 *2 (-782)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-774))))) +(-13 (-772) (-733) (-10 -8 (-15 -3759 ((-782)) -3738) (-15 -2883 ($ (-575))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-731) . T) ((-733) . T) ((-772) . T) ((-1117) . T)) +((-4324 (((-655 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 (-171 |#1|)))))) (-700 (-171 (-418 (-575)))) |#1|) 33)) (-2780 (((-655 (-171 |#1|)) (-700 (-171 (-418 (-575)))) |#1|) 23)) (-2551 (((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575)))) (-1194)) 20) (((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575))))) 19))) +(((-775 |#1|) (-10 -7 (-15 -2551 ((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575)))))) (-15 -2551 ((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575)))) (-1194))) (-15 -2780 ((-655 (-171 |#1|)) (-700 (-171 (-418 (-575)))) |#1|)) (-15 -4324 ((-655 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 (-171 |#1|)))))) (-700 (-171 (-418 (-575)))) |#1|))) (-13 (-373) (-859))) (T -775)) +((-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *2 (-655 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 (-171 *4))))))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-373) (-859))))) (-2780 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *2 (-655 (-171 *4))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-373) (-859))))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *4 (-1194)) (-5 *2 (-967 (-171 (-418 (-575))))) (-5 *1 (-775 *5)) (-4 *5 (-13 (-373) (-859))))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *2 (-967 (-171 (-418 (-575))))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-373) (-859)))))) +(-10 -7 (-15 -2551 ((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575)))))) (-15 -2551 ((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575)))) (-1194))) (-15 -2780 ((-655 (-171 |#1|)) (-700 (-171 (-418 (-575)))) |#1|)) (-15 -4324 ((-655 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 (-171 |#1|)))))) (-700 (-171 (-418 (-575)))) |#1|))) +((-4349 (((-176 (-575)) |#1|) 27))) +(((-776 |#1|) (-10 -7 (-15 -4349 ((-176 (-575)) |#1|))) (-415)) (T -776)) +((-4349 (*1 *2 *3) (-12 (-5 *2 (-176 (-575))) (-5 *1 (-776 *3)) (-4 *3 (-415))))) +(-10 -7 (-15 -4349 ((-176 (-575)) |#1|))) +((-3220 ((|#1| |#1| |#1|) 28)) (-4329 ((|#1| |#1| |#1|) 27)) (-2134 ((|#1| |#1| |#1|) 38)) (-2239 ((|#1| |#1| |#1|) 34)) (-3707 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2011 (((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|) 26))) +(((-777 |#1| |#2|) (-10 -7 (-15 -2011 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -4329 (|#1| |#1| |#1|)) (-15 -3220 (|#1| |#1| |#1|)) (-15 -3707 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2239 (|#1| |#1| |#1|)) (-15 -2134 (|#1| |#1| |#1|))) (-719 |#2|) (-373)) (T -777)) +((-2134 (*1 *2 *2 *2) (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) (-2239 (*1 *2 *2 *2) (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) (-3707 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) (-3220 (*1 *2 *2 *2) (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) (-4329 (*1 *2 *2 *2) (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) (-2011 (*1 *2 *3 *3) (-12 (-4 *4 (-373)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-777 *3 *4)) (-4 *3 (-719 *4))))) +(-10 -7 (-15 -2011 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -4329 (|#1| |#1| |#1|)) (-15 -3220 (|#1| |#1| |#1|)) (-15 -3707 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2239 (|#1| |#1| |#1|)) (-15 -2134 (|#1| |#1| |#1|))) +((-2256 (((-702 (-1243)) $ (-1243)) 26)) (-3913 (((-702 (-560)) $ (-560)) 25)) (-2471 (((-782) $ (-129)) 27)) (-2584 (((-702 (-130)) $ (-130)) 24)) (-3787 (((-702 (-1243)) $) 12)) (-3850 (((-702 (-1241)) $) 8)) (-2352 (((-702 (-1240)) $) 10)) (-2337 (((-702 (-560)) $) 13)) (-3113 (((-702 (-558)) $) 9)) (-2139 (((-702 (-557)) $) 11)) (-3647 (((-782) $ (-129)) 7)) (-2114 (((-702 (-130)) $) 14)) (-4095 (((-112) $) 31)) (-3424 (((-702 $) |#1| (-969)) 32)) (-3504 (($ $) 6))) +(((-778 |#1|) (-141) (-1117)) (T -778)) +((-3424 (*1 *2 *3 *4) (-12 (-5 *4 (-969)) (-4 *3 (-1117)) (-5 *2 (-702 *1)) (-4 *1 (-778 *3)))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-778 *3)) (-4 *3 (-1117)) (-5 *2 (-112))))) +(-13 (-587) (-10 -8 (-15 -3424 ((-702 $) |t#1| (-969))) (-15 -4095 ((-112) $)))) +(((-175) . T) ((-538) . T) ((-587) . T) ((-871) . T)) +((-2393 (((-2 (|:| -1624 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575)))) (-575)) 71)) (-2899 (((-2 (|:| -1624 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575))))) 69)) (-4060 (((-575)) 85))) +(((-779 |#1| |#2|) (-10 -7 (-15 -4060 ((-575))) (-15 -2899 ((-2 (|:| -1624 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575)))))) (-15 -2393 ((-2 (|:| -1624 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575)))) (-575)))) (-1261 (-575)) (-420 (-575) |#1|)) (T -779)) +((-2393 (*1 *2 *3) (-12 (-5 *3 (-575)) (-4 *4 (-1261 *3)) (-5 *2 (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-5 *1 (-779 *4 *5)) (-4 *5 (-420 *3 *4)))) (-2899 (*1 *2) (-12 (-4 *3 (-1261 (-575))) (-5 *2 (-2 (|:| -1624 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575))))) (-5 *1 (-779 *3 *4)) (-4 *4 (-420 (-575) *3)))) (-4060 (*1 *2) (-12 (-4 *3 (-1261 *2)) (-5 *2 (-575)) (-5 *1 (-779 *3 *4)) (-4 *4 (-420 *2 *3))))) +(-10 -7 (-15 -4060 ((-575))) (-15 -2899 ((-2 (|:| -1624 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575)))))) (-15 -2393 ((-2 (|:| -1624 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575)))) (-575)))) +((-2861 (((-112) $ $) NIL)) (-4399 (((-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 20) (($ (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-780) (-13 (-1117) (-10 -8 (-15 -2883 ($ (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2883 ($ (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2883 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4399 ((-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -780)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-780)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-780)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-780)))) (-4399 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-780))))) +(-13 (-1117) (-10 -8 (-15 -2883 ($ (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2883 ($ (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2883 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4399 ((-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) +((-2017 (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|))) 18) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194))) 17)) (-1546 (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|))) 20) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194))) 19))) +(((-781 |#1|) (-10 -7 (-15 -2017 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -2017 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|))))) (-567)) (T -781)) +((-1546 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-781 *4)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-781 *5)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-781 *4)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-781 *5))))) +(-10 -7 (-15 -2017 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -2017 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3605 (($ $ $) 10)) (-2597 (((-3 $ "failed") $ $) 15)) (-3624 (($ $ (-575)) 11)) (-3011 (($) NIL T CONST)) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($ $) NIL)) (-2813 (($ $ $) NIL)) (-1542 (((-112) $) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3926 (($ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 6 T CONST)) (-2009 (($) NIL T CONST)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ $ $) NIL))) +(((-782) (-13 (-804) (-737) (-10 -8 (-15 -2813 ($ $ $)) (-15 -2802 ($ $ $)) (-15 -3926 ($ $ $)) (-15 -2196 ((-2 (|:| -2829 $) (|:| -1635 $)) $ $)) (-15 -2851 ((-3 $ "failed") $ $)) (-15 -3624 ($ $ (-575))) (-15 -2079 ($ $)) (-6 (-4462 "*"))))) (T -782)) +((-2813 (*1 *1 *1 *1) (-5 *1 (-782))) (-2802 (*1 *1 *1 *1) (-5 *1 (-782))) (-3926 (*1 *1 *1 *1) (-5 *1 (-782))) (-2196 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2829 (-782)) (|:| -1635 (-782)))) (-5 *1 (-782)))) (-2851 (*1 *1 *1 *1) (|partial| -5 *1 (-782))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-782)))) (-2079 (*1 *1 *1) (-5 *1 (-782)))) +(-13 (-804) (-737) (-10 -8 (-15 -2813 ($ $ $)) (-15 -2802 ($ $ $)) (-15 -3926 ($ $ $)) (-15 -2196 ((-2 (|:| -2829 $) (|:| -1635 $)) $ $)) (-15 -2851 ((-3 $ "failed") $ $)) (-15 -3624 ($ $ (-575))) (-15 -2079 ($ $)) (-6 (-4462 "*")))) ((|Integer|) (|%ige| |#1| 0)) -((-1525 (((-3 |#2| "failed") |#2| |#2| (-115) (-1195)) 37))) -(((-784 |#1| |#2|) (-10 -7 (-15 -1525 ((-3 |#2| "failed") |#2| |#2| (-115) (-1195)))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-975))) (T -784)) -((-1525 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1221) (-975)))))) -(-10 -7 (-15 -1525 ((-3 |#2| "failed") |#2| |#2| (-115) (-1195)))) -((-2884 (((-786) |#1|) 8))) -(((-785 |#1|) (-10 -7 (-15 -2884 ((-786) |#1|))) (-1236)) (T -785)) -((-2884 (*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1236))))) -(-10 -7 (-15 -2884 ((-786) |#1|))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 7)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 9))) -(((-786) (-1118)) (T -786)) -NIL -(-1118) -((-1941 ((|#2| |#4|) 35))) -(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1941 (|#2| |#4|))) (-464) (-1262 |#1|) (-736 |#1| |#2|) (-1262 |#3|)) (T -787)) -((-1941 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1262 *5))))) -(-10 -7 (-15 -1941 (|#2| |#4|))) -((-1999 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1718 (((-1291) (-1177) (-1177) |#4| |#5|) 33)) (-1697 ((|#4| |#4| |#5|) 74)) (-1709 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#5|) 79)) (-1729 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|) 16))) -(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1999 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1697 (|#4| |#4| |#5|)) (-15 -1709 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#5|)) (-15 -1718 ((-1291) (-1177) (-1177) |#4| |#5|)) (-15 -1729 ((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -788)) -((-1729 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1718 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1177)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *4 (-1083 *6 *7 *8)) (-5 *2 (-1291)) (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1089 *6 *7 *8 *4)))) (-1709 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1697 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *2 (-1083 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) (-4 *3 (-1089 *4 *5 *6 *2)))) (-1999 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(-10 -7 (-15 -1999 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1697 (|#4| |#4| |#5|)) (-15 -1709 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#5|)) (-15 -1718 ((-1291) (-1177) (-1177) |#4| |#5|)) (-15 -1729 ((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|))) -((-2449 (((-3 (-1191 (-1191 |#1|)) "failed") |#4|) 51)) (-1740 (((-656 |#4|) |#4|) 22)) (-3649 ((|#4| |#4|) 17))) -(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1740 ((-656 |#4|) |#4|)) (-15 -2449 ((-3 (-1191 (-1191 |#1|)) "failed") |#4|)) (-15 -3649 (|#4| |#4|))) (-360) (-339 |#1|) (-1262 |#2|) (-1262 |#3|) (-937)) (T -789)) -((-3649 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1262 *4)) (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1262 *5)) (-14 *6 (-937)))) (-2449 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5)) (-5 *2 (-1191 (-1191 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) (-14 *7 (-937)))) (-1740 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5)) (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) (-14 *7 (-937))))) -(-10 -7 (-15 -1740 ((-656 |#4|) |#4|)) (-15 -2449 ((-3 (-1191 (-1191 |#1|)) "failed") |#4|)) (-15 -3649 (|#4| |#4|))) -((-1753 (((-2 (|:| |deter| (-656 (-1191 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2746 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1191 |#5|) (-656 |#1|) (-656 |#5|)) 72)) (-1764 (((-656 (-783)) |#1|) 20))) -(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1753 ((-2 (|:| |deter| (-656 (-1191 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2746 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1191 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -1764 ((-656 (-783)) |#1|))) (-1262 |#4|) (-805) (-862) (-317) (-965 |#4| |#2| |#3|)) (T -790)) -((-1764 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *6)) (-4 *7 (-965 *6 *4 *5)))) (-1753 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1262 *9)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-317)) (-4 *10 (-965 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-656 (-1191 *10))) (|:| |dterm| (-656 (-656 (-2 (|:| -2746 (-783)) (|:| |pcoef| *10))))) (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1191 *10)) (-5 *4 (-656 *6)) (-5 *5 (-656 *10))))) -(-10 -7 (-15 -1753 ((-2 (|:| |deter| (-656 (-1191 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2746 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1191 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -1764 ((-656 (-783)) |#1|))) -((-1799 (((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|) 31)) (-1787 (((-656 |#1|) (-701 (-419 (-576))) |#1|) 21)) (-1776 (((-968 (-419 (-576))) (-701 (-419 (-576))) (-1195)) 18) (((-968 (-419 (-576))) (-701 (-419 (-576)))) 17))) -(((-791 |#1|) (-10 -7 (-15 -1776 ((-968 (-419 (-576))) (-701 (-419 (-576))))) (-15 -1776 ((-968 (-419 (-576))) (-701 (-419 (-576))) (-1195))) (-15 -1787 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -1799 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) (-13 (-374) (-860))) (T -791)) -((-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *4)))))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1195)) (-5 *2 (-968 (-419 (-576)))) (-5 *1 (-791 *5)) (-4 *5 (-13 (-374) (-860))))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-968 (-419 (-576)))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -1776 ((-968 (-419 (-576))) (-701 (-419 (-576))))) (-15 -1776 ((-968 (-419 (-576))) (-701 (-419 (-576))) (-1195))) (-15 -1787 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -1799 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 36)) (-1607 (((-656 |#2|) $) NIL)) (-3467 (((-1191 $) $ |#2|) NIL) (((-1191 |#1|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 |#2|)) NIL)) (-3463 (($ $) 30)) (-4300 (((-112) $ $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2768 (($ $ $) 110 (|has| |#1| (-568)))) (-2258 (((-656 $) $ $) 123 (|has| |#1| (-568)))) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2944 (($ $) NIL (|has| |#1| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-968 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))))) (((-3 $ "failed") (-968 (-576))) NIL (-3766 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-3216 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195)))))) (((-3 $ "failed") (-968 |#1|)) NIL (-3766 (-12 (|has| |#2| (-626 (-1195))) (-3216 (|has| |#1| (-38 (-419 (-576))))) (-3216 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-3216 (|has| |#1| (-38 (-419 (-576))))) (-3216 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))) (-3216 (|has| |#1| (-1010 (-576))))))) (((-3 (-1143 |#1| |#2|) "failed") $) 21)) (-4401 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) ((|#2| $) NIL) (($ (-968 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))))) (($ (-968 (-576))) NIL (-3766 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-3216 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195)))))) (($ (-968 |#1|)) NIL (-3766 (-12 (|has| |#2| (-626 (-1195))) (-3216 (|has| |#1| (-38 (-419 (-576))))) (-3216 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-3216 (|has| |#1| (-38 (-419 (-576))))) (-3216 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))) (-3216 (|has| |#1| (-1010 (-576))))))) (((-1143 |#1| |#2|) $) NIL)) (-2778 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-4407 (($ $) NIL) (($ $ |#2|) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-3414 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-4370 (((-112) $) NIL)) (-2736 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 81)) (-2215 (($ $) 136 (|has| |#1| (-464)))) (-2192 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#1| (-925)))) (-4200 (($ $) NIL (|has| |#1| (-568)))) (-4210 (($ $) NIL (|has| |#1| (-568)))) (-4289 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-4280 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3098 (($ $ |#1| (-543 |#2|) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1439 (((-112) $) 57)) (-1518 (((-783) $) NIL)) (-3425 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-2225 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-1323 ((|#2| $) 22)) (-2437 (($ (-1191 |#1|) |#2|) NIL) (($ (-1191 $) |#2|) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-4229 (($ $ $) 63)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ |#2|) NIL)) (-4382 (((-112) $) NIL)) (-1864 (((-543 |#2|) $) NIL) (((-783) $ |#2|) NIL) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-4436 (((-783) $) 23)) (-3109 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2788 (((-3 |#2| "failed") $) NIL)) (-2185 (($ $) NIL (|has| |#1| (-464)))) (-2196 (($ $) NIL (|has| |#1| (-464)))) (-4322 (((-656 $) $) NIL)) (-4358 (($ $) 39)) (-2204 (($ $) NIL (|has| |#1| (-464)))) (-4332 (((-656 $) $) 43)) (-4345 (($ $) 41)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4219 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2147 (-783))) $ $) 96)) (-4238 (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -2770 $) (|:| -1406 $)) $ $) 78) (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -2770 $) (|:| -1406 $)) $ $ |#2|) NIL)) (-4249 (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -1406 $)) $ $) NIL) (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -1406 $)) $ $ |#2|) NIL)) (-4270 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-4260 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3733 (((-1177) $) NIL)) (-1411 (($ $ $) 125 (|has| |#1| (-568)))) (-4405 (((-656 $) $) 32)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| |#2|) (|:| -1359 (-783))) "failed") $) NIL)) (-3387 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3338 (($ $ $) NIL)) (-3475 (($ $) 24)) (-3461 (((-112) $ $) NIL)) (-3396 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3348 (($ $ $) NIL)) (-4427 (($ $) 26)) (-3914 (((-1138) $) NIL)) (-2269 (((-2 (|:| -3928 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-4165 (((-2 (|:| -3928 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-4346 (((-112) $) 56)) (-4359 ((|#1| $) 58)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3928 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-925)))) (-4174 (((-2 (|:| -3928 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-4182 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-4191 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-656 |#2|) (-656 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-656 |#2|) (-656 $)) NIL)) (-2790 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2390 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3813 (((-543 |#2|) $) NIL) (((-783) $ |#2|) 45) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-4416 (($ $) NIL)) (-4393 (($ $) 35)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-968 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))))) (($ (-968 (-576))) NIL (-3766 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-3216 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195)))))) (($ (-968 |#1|)) NIL (|has| |#2| (-626 (-1195)))) (((-1177) $) NIL (-12 (|has| |#1| (-1056 (-576))) (|has| |#2| (-626 (-1195))))) (((-968 |#1|) $) NIL (|has| |#2| (-626 (-1195))))) (-1841 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-968 |#1|) $) NIL (|has| |#2| (-626 (-1195)))) (((-1143 |#1| |#2|) $) 18) (($ (-1143 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) 47) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1996 (($) 13 T CONST)) (-4310 (((-3 (-112) "failed") $ $) NIL)) (-2011 (($) 37 T CONST)) (-2236 (($ $ $ $ (-783)) 105 (|has| |#1| (-568)))) (-2247 (($ $ $ (-783)) 104 (|has| |#1| (-568)))) (-3431 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) 75)) (-4017 (($ $ $) 85)) (** (($ $ (-937)) NIL) (($ $ (-783)) 70)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-792 |#1| |#2|) (-13 (-1083 |#1| (-543 |#2|) |#2|) (-625 (-1143 |#1| |#2|)) (-1056 (-1143 |#1| |#2|))) (-1067) (-862)) (T -792)) -NIL -(-13 (-1083 |#1| (-543 |#2|) |#2|) (-625 (-1143 |#1| |#2|)) (-1056 (-1143 |#1| |#2|))) -((-2551 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 13))) -(((-793 |#1| |#2|) (-10 -7 (-15 -2551 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1067) (-1067)) (T -793)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))) -(-10 -7 (-15 -2551 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 12)) (-2896 (((-1286 |#1|) $ (-783)) NIL)) (-1607 (((-656 (-1100)) $) NIL)) (-2873 (($ (-1191 |#1|)) NIL)) (-3467 (((-1191 $) $ (-1100)) NIL) (((-1191 |#1|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 (-1100))) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-1842 (((-656 $) $ $) 54 (|has| |#1| (-568)))) (-2768 (($ $ $) 50 (|has| |#1| (-568)))) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2944 (($ $) NIL (|has| |#1| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2828 (($ $ (-783)) NIL)) (-2816 (($ $ (-783)) NIL)) (-2726 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-1100) "failed") $) NIL) (((-3 (-1191 |#1|) "failed") $) 10)) (-4401 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-1100) $) NIL) (((-1191 |#1|) $) NIL)) (-2778 (($ $ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-2804 (($ $ $) NIL)) (-2747 (($ $ $) 87 (|has| |#1| (-568)))) (-2736 (((-2 (|:| -1755 |#1|) (|:| -2770 $) (|:| -1406 $)) $ $) 86 (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2192 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#1| (-925)))) (-3098 (($ $ |#1| (-783) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1100) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1100) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2927 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-1170)))) (-2437 (($ (-1191 |#1|) (-1100)) NIL) (($ (-1191 $) (-1100)) NIL)) (-2962 (($ $ (-783)) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-783)) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-4229 (($ $ $) 27)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-1100)) NIL) (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-1864 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-3109 (($ (-1 (-783) (-783)) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2885 (((-1191 |#1|) $) NIL)) (-2788 (((-3 (-1100) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4219 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2147 (-783))) $ $) 37)) (-1865 (($ $ $) 41)) (-1854 (($ $ $) 47)) (-4238 (((-2 (|:| -1755 |#1|) (|:| |gap| (-783)) (|:| -2770 $) (|:| -1406 $)) $ $) 46)) (-3733 (((-1177) $) NIL)) (-1411 (($ $ $) 56 (|has| |#1| (-568)))) (-2841 (((-2 (|:| -2770 $) (|:| -1406 $)) $ (-783)) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| (-1100)) (|:| -1359 (-783))) "failed") $) NIL)) (-1956 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3475 (($) NIL (|has| |#1| (-1170)) CONST)) (-3914 (((-1138) $) NIL)) (-2269 (((-2 (|:| -3928 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-4165 (((-2 (|:| -3928 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-1810 (((-2 (|:| -2778 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-1820 (((-2 (|:| -2778 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-4346 (((-112) $) 13)) (-4359 ((|#1| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2581 (($ $ (-783) |#1| $) 26)) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-925)))) (-4174 (((-2 (|:| -3928 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-1830 (((-2 (|:| -2778 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1100) |#1|) NIL) (($ $ (-656 (-1100)) (-656 |#1|)) NIL) (($ $ (-1100) $) NIL) (($ $ (-656 (-1100)) (-656 $)) NIL)) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-2071 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2863 (((-3 $ "failed") $ (-783)) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2790 (($ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2390 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3813 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1100) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1841 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2758 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1100)) NIL) (((-1191 |#1|) $) 7) (($ (-1191 |#1|)) 8) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-783)) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1996 (($) 28 T CONST)) (-2011 (($) 32 T CONST)) (-3431 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) 40) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-794 |#1|) (-13 (-1262 |#1|) (-625 (-1191 |#1|)) (-1056 (-1191 |#1|)) (-10 -8 (-15 -2581 ($ $ (-783) |#1| $)) (-15 -4229 ($ $ $)) (-15 -4219 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2147 (-783))) $ $)) (-15 -1865 ($ $ $)) (-15 -4238 ((-2 (|:| -1755 |#1|) (|:| |gap| (-783)) (|:| -2770 $) (|:| -1406 $)) $ $)) (-15 -1854 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -1842 ((-656 $) $ $)) (-15 -1411 ($ $ $)) (-15 -4174 ((-2 (|:| -3928 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4165 ((-2 (|:| -3928 $) (|:| |coef1| $)) $ $)) (-15 -2269 ((-2 (|:| -3928 $) (|:| |coef2| $)) $ $)) (-15 -1830 ((-2 (|:| -2778 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1820 ((-2 (|:| -2778 |#1|) (|:| |coef1| $)) $ $)) (-15 -1810 ((-2 (|:| -2778 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1067)) (T -794)) -((-2581 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1067)))) (-4229 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067)))) (-4219 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -2147 (-783)))) (-5 *1 (-794 *3)) (-4 *3 (-1067)))) (-1865 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067)))) (-4238 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1755 *3) (|:| |gap| (-783)) (|:| -2770 (-794 *3)) (|:| -1406 (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1067)))) (-1854 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067)))) (-1842 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-1411 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1067)))) (-4174 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3928 (-794 *3)) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-4165 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3928 (-794 *3)) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-2269 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3928 (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-1830 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2778 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-1820 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2778 *3) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-1810 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2778 *3) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067))))) -(-13 (-1262 |#1|) (-625 (-1191 |#1|)) (-1056 (-1191 |#1|)) (-10 -8 (-15 -2581 ($ $ (-783) |#1| $)) (-15 -4229 ($ $ $)) (-15 -4219 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2147 (-783))) $ $)) (-15 -1865 ($ $ $)) (-15 -4238 ((-2 (|:| -1755 |#1|) (|:| |gap| (-783)) (|:| -2770 $) (|:| -1406 $)) $ $)) (-15 -1854 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -1842 ((-656 $) $ $)) (-15 -1411 ($ $ $)) (-15 -4174 ((-2 (|:| -3928 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4165 ((-2 (|:| -3928 $) (|:| |coef1| $)) $ $)) (-15 -2269 ((-2 (|:| -3928 $) (|:| |coef2| $)) $ $)) (-15 -1830 ((-2 (|:| -2778 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1820 ((-2 (|:| -2778 |#1|) (|:| |coef1| $)) $ $)) (-15 -1810 ((-2 (|:| -2778 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-1888 ((|#1| (-783) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-1663 ((|#1| (-783) |#1|) 23)) (-1877 ((|#1| (-783) |#1|) 35 (|has| |#1| (-38 (-419 (-576))))))) -(((-795 |#1|) (-10 -7 (-15 -1663 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1877 (|#1| (-783) |#1|)) (-15 -1888 (|#1| (-783) |#1|))) |%noBranch|)) (-174)) (T -795)) -((-1888 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-1877 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-1663 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -1663 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1877 (|#1| (-783) |#1|)) (-15 -1888 (|#1| (-783) |#1|))) |%noBranch|)) -((-2862 (((-112) $ $) 7)) (-3289 (((-656 (-2 (|:| -2459 $) (|:| -2980 (-656 |#4|)))) (-656 |#4|)) 86)) (-3299 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1607 (((-656 |#3|) $) 34)) (-1470 (((-112) $) 27)) (-1374 (((-112) $) 18 (|has| |#1| (-568)))) (-3405 (((-112) |#4| $) 102) (((-112) $) 98)) (-3358 ((|#4| |#4| $) 93)) (-2944 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| $) 127)) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#3|) 28)) (-2970 (((-112) $ (-783)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-2473 (($) 46 T CONST)) (-1425 (((-112) $) 23 (|has| |#1| (-568)))) (-1445 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1435 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1457 (((-112) $) 26 (|has| |#1| (-568)))) (-3367 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1384 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1394 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 |#4|)) 37)) (-4401 (($ (-656 |#4|)) 36)) (-1976 (((-3 $ "failed") $) 83)) (-3328 ((|#4| |#4| $) 90)) (-1919 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3414 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3308 ((|#4| |#4| $) 88)) (-2309 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3435 (((-2 (|:| -2459 (-656 |#4|)) (|:| -2980 (-656 |#4|))) $) 106)) (-1489 (((-112) |#4| $) 137)) (-1463 (((-112) |#4| $) 134)) (-1498 (((-112) |#4| $) 138) (((-112) $) 135)) (-4001 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-3425 (((-112) |#4| $) 105) (((-112) $) 104)) (-1323 ((|#3| $) 35)) (-2408 (((-112) $ (-783)) 44)) (-1496 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) 48)) (-1524 (((-656 |#3|) $) 33)) (-1513 (((-112) |#3| $) 32)) (-2374 (((-112) $ (-783)) 43)) (-3733 (((-1177) $) 10)) (-1421 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1411 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| |#4| $) 128)) (-3654 (((-3 |#4| "failed") $) 84)) (-1431 (((-656 $) |#4| $) 130)) (-1451 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1440 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3703 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1800 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3443 (((-656 |#4|) $) 108)) (-3387 (((-112) |#4| $) 100) (((-112) $) 96)) (-3338 ((|#4| |#4| $) 91)) (-3461 (((-112) $ $) 111)) (-1415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3396 (((-112) |#4| $) 101) (((-112) $) 97)) (-3348 ((|#4| |#4| $) 92)) (-3914 (((-1138) $) 11)) (-1962 (((-3 |#4| "failed") $) 85)) (-1932 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3266 (((-3 $ "failed") $ |#4|) 79)) (-2904 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-2476 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) 39)) (-2809 (((-112) $) 42)) (-1458 (($) 41)) (-3813 (((-783) $) 107)) (-3926 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3079 (($ $) 40)) (-2616 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2895 (($ (-656 |#4|)) 61)) (-1483 (($ $ |#3|) 29)) (-1504 (($ $ |#3|) 31)) (-3318 (($ $) 89)) (-1493 (($ $ |#3|) 30)) (-2884 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3255 (((-783) $) 77 (|has| |#3| (-379)))) (-3722 (((-112) $ $) 9)) (-3453 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3377 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1400 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2492 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-3278 (((-656 |#3|) $) 82)) (-1479 (((-112) |#4| $) 136)) (-3704 (((-112) |#3| $) 81)) (-3915 (((-112) $ $) 6)) (-2872 (((-783) $) 47 (|has| $ (-6 -4461))))) -(((-796 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -796)) -NIL -(-13 (-1089 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1089 |#1| |#2| |#3| |#4|) . T) ((-1118) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) -((-1900 (((-3 (-390) "failed") (-326 |#1|) (-937)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-419 (-968 |#1|)) (-937)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-968 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-968 |#1|) (-937)) 31 (|has| |#1| (-1067))) (((-3 (-390) "failed") (-968 |#1|)) 30 (|has| |#1| (-1067)))) (-2681 (((-390) (-326 |#1|) (-937)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-419 (-968 |#1|)) (-937)) 91 (|has| |#1| (-568))) (((-390) (-419 (-968 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-968 |#1|) (-937)) 86 (|has| |#1| (-1067))) (((-390) (-968 |#1|)) 85 (|has| |#1| (-1067))) (((-390) |#1| (-937)) 76) (((-390) |#1|) 22)) (-1911 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-937)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-937)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|))) (-937)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-968 |#1|)) (-937)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-968 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-968 |#1|) (-937)) 28 (|has| |#1| (-1067))) (((-3 (-171 (-390)) "failed") (-968 |#1|)) 26 (|has| |#1| (-1067))) (((-3 (-171 (-390)) "failed") (-968 (-171 |#1|)) (-937)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-968 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-1686 (((-171 (-390)) (-326 (-171 |#1|)) (-937)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|) (-937)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-419 (-968 (-171 |#1|))) (-937)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-968 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-968 |#1|)) (-937)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-968 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-968 |#1|) (-937)) 84 (|has| |#1| (-1067))) (((-171 (-390)) (-968 |#1|)) 83 (|has| |#1| (-1067))) (((-171 (-390)) (-968 (-171 |#1|)) (-937)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-968 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-937)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-937)) 27) (((-171 (-390)) |#1|) 25))) -(((-797 |#1|) (-10 -7 (-15 -2681 ((-390) |#1|)) (-15 -2681 ((-390) |#1| (-937))) (-15 -1686 ((-171 (-390)) |#1|)) (-15 -1686 ((-171 (-390)) |#1| (-937))) (IF (|has| |#1| (-174)) (PROGN (-15 -1686 ((-171 (-390)) (-171 |#1|))) (-15 -1686 ((-171 (-390)) (-171 |#1|) (-937))) (-15 -1686 ((-171 (-390)) (-968 (-171 |#1|)))) (-15 -1686 ((-171 (-390)) (-968 (-171 |#1|)) (-937)))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-15 -2681 ((-390) (-968 |#1|))) (-15 -2681 ((-390) (-968 |#1|) (-937))) (-15 -1686 ((-171 (-390)) (-968 |#1|))) (-15 -1686 ((-171 (-390)) (-968 |#1|) (-937)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2681 ((-390) (-419 (-968 |#1|)))) (-15 -2681 ((-390) (-419 (-968 |#1|)) (-937))) (-15 -1686 ((-171 (-390)) (-419 (-968 |#1|)))) (-15 -1686 ((-171 (-390)) (-419 (-968 |#1|)) (-937))) (-15 -1686 ((-171 (-390)) (-419 (-968 (-171 |#1|))))) (-15 -1686 ((-171 (-390)) (-419 (-968 (-171 |#1|))) (-937))) (IF (|has| |#1| (-862)) (PROGN (-15 -2681 ((-390) (-326 |#1|))) (-15 -2681 ((-390) (-326 |#1|) (-937))) (-15 -1686 ((-171 (-390)) (-326 |#1|))) (-15 -1686 ((-171 (-390)) (-326 |#1|) (-937))) (-15 -1686 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -1686 ((-171 (-390)) (-326 (-171 |#1|)) (-937)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1911 ((-3 (-171 (-390)) "failed") (-968 (-171 |#1|)))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-968 (-171 |#1|)) (-937)))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-15 -1900 ((-3 (-390) "failed") (-968 |#1|))) (-15 -1900 ((-3 (-390) "failed") (-968 |#1|) (-937))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-968 |#1|))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-968 |#1|) (-937)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1900 ((-3 (-390) "failed") (-419 (-968 |#1|)))) (-15 -1900 ((-3 (-390) "failed") (-419 (-968 |#1|)) (-937))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-419 (-968 |#1|)))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-419 (-968 |#1|)) (-937))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|))))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|))) (-937))) (IF (|has| |#1| (-862)) (PROGN (-15 -1900 ((-3 (-390) "failed") (-326 |#1|))) (-15 -1900 ((-3 (-390) "failed") (-326 |#1|) (-937))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-937))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-937)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -797)) -((-1911 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1911 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1911 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1911 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1900 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1911 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-968 (-171 *5)))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1911 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-968 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1911 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1911 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1900 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1911 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1911 (*1 *2 *3) (|partial| -12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1900 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1911 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-968 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1911 (*1 *2 *3) (|partial| -12 (-5 *3 (-968 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2681 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 (-171 *5)))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2681 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2681 (*1 *2 *3 *4) (-12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-968 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-968 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-937)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-1686 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-2681 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) (-2681 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2))))) -(-10 -7 (-15 -2681 ((-390) |#1|)) (-15 -2681 ((-390) |#1| (-937))) (-15 -1686 ((-171 (-390)) |#1|)) (-15 -1686 ((-171 (-390)) |#1| (-937))) (IF (|has| |#1| (-174)) (PROGN (-15 -1686 ((-171 (-390)) (-171 |#1|))) (-15 -1686 ((-171 (-390)) (-171 |#1|) (-937))) (-15 -1686 ((-171 (-390)) (-968 (-171 |#1|)))) (-15 -1686 ((-171 (-390)) (-968 (-171 |#1|)) (-937)))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-15 -2681 ((-390) (-968 |#1|))) (-15 -2681 ((-390) (-968 |#1|) (-937))) (-15 -1686 ((-171 (-390)) (-968 |#1|))) (-15 -1686 ((-171 (-390)) (-968 |#1|) (-937)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2681 ((-390) (-419 (-968 |#1|)))) (-15 -2681 ((-390) (-419 (-968 |#1|)) (-937))) (-15 -1686 ((-171 (-390)) (-419 (-968 |#1|)))) (-15 -1686 ((-171 (-390)) (-419 (-968 |#1|)) (-937))) (-15 -1686 ((-171 (-390)) (-419 (-968 (-171 |#1|))))) (-15 -1686 ((-171 (-390)) (-419 (-968 (-171 |#1|))) (-937))) (IF (|has| |#1| (-862)) (PROGN (-15 -2681 ((-390) (-326 |#1|))) (-15 -2681 ((-390) (-326 |#1|) (-937))) (-15 -1686 ((-171 (-390)) (-326 |#1|))) (-15 -1686 ((-171 (-390)) (-326 |#1|) (-937))) (-15 -1686 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -1686 ((-171 (-390)) (-326 (-171 |#1|)) (-937)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1911 ((-3 (-171 (-390)) "failed") (-968 (-171 |#1|)))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-968 (-171 |#1|)) (-937)))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-15 -1900 ((-3 (-390) "failed") (-968 |#1|))) (-15 -1900 ((-3 (-390) "failed") (-968 |#1|) (-937))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-968 |#1|))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-968 |#1|) (-937)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1900 ((-3 (-390) "failed") (-419 (-968 |#1|)))) (-15 -1900 ((-3 (-390) "failed") (-419 (-968 |#1|)) (-937))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-419 (-968 |#1|)))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-419 (-968 |#1|)) (-937))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|))))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|))) (-937))) (IF (|has| |#1| (-862)) (PROGN (-15 -1900 ((-3 (-390) "failed") (-326 |#1|))) (-15 -1900 ((-3 (-390) "failed") (-326 |#1|) (-937))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-937))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -1911 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-937)))) |%noBranch|)) |%noBranch|)) -((-1960 (((-937) (-1177)) 89)) (-1987 (((-3 (-390) "failed") (-1177)) 36)) (-1974 (((-390) (-1177)) 34)) (-1936 (((-937) (-1177)) 63)) (-1947 (((-1177) (-937)) 73)) (-1924 (((-1177) (-937)) 62))) -(((-798) (-10 -7 (-15 -1924 ((-1177) (-937))) (-15 -1936 ((-937) (-1177))) (-15 -1947 ((-1177) (-937))) (-15 -1960 ((-937) (-1177))) (-15 -1974 ((-390) (-1177))) (-15 -1987 ((-3 (-390) "failed") (-1177))))) (T -798)) -((-1987 (*1 *2 *3) (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-937)) (-5 *1 (-798)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1177)) (-5 *1 (-798)))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-937)) (-5 *1 (-798)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1177)) (-5 *1 (-798))))) -(-10 -7 (-15 -1924 ((-1177) (-937))) (-15 -1936 ((-937) (-1177))) (-15 -1947 ((-1177) (-937))) (-15 -1960 ((-937) (-1177))) (-15 -1974 ((-390) (-1177))) (-15 -1987 ((-3 (-390) "failed") (-1177)))) -((-2862 (((-112) $ $) 7)) (-1998 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 16) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 14)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-799) (-141)) (T -799)) -((-4037 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053)))))) (-1998 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1053)) (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-4037 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053)))))) (-1998 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1053)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(-13 (-1118) (-10 -7 (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1998 ((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1998 ((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053))))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2037 (((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2086 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390))) 55) (((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2086 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 52)) (-2048 (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 61)) (-2025 (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 50)) (-2014 (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390))) 63) (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 62))) -(((-800) (-10 -7 (-15 -2014 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -2014 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -2025 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -2037 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2086 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -2037 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2086 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -2048 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))))) (T -800)) -((-2048 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-2037 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2086 (-390)))) (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-2037 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2086 (-390)))) (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-2025 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-2014 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-2014 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800))))) -(-10 -7 (-15 -2014 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -2014 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -2025 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -2037 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2086 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -2037 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2086 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -2048 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))))) -((-2146 (((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-2115 (((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-2136 (((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-2105 (((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-2125 (((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-2095 (((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-2084 (((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-2070 (((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-2060 (((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37))) -(((-801) (-10 -7 (-15 -2060 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2070 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2084 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2095 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2105 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2115 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2125 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2136 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2146 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -801)) -((-2146 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2136 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2125 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2115 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2105 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2095 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2084 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2070 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2060 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) -(-10 -7 (-15 -2060 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2070 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2084 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2095 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2105 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2115 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2125 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2136 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2146 ((-2 (|:| -4183 (-390)) (|:| -3085 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)))) -((-3524 (((-1231 |#1|) |#1| (-227) (-576)) 69))) -(((-802 |#1|) (-10 -7 (-15 -3524 ((-1231 |#1|) |#1| (-227) (-576)))) (-992)) (T -802)) -((-3524 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1231 *3)) (-5 *1 (-802 *3)) (-4 *3 (-992))))) -(-10 -7 (-15 -3524 ((-1231 |#1|) |#1| (-227) (-576)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 25)) (-1459 (((-3 $ "failed") $ $) 27)) (-2473 (($) 24 T CONST)) (-1921 (($ $ $) 14)) (-4137 (($ $ $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 23 T CONST)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4029 (($ $ $) 31) (($ $) 30)) (-4017 (($ $ $) 21)) (* (($ (-937) $) 22) (($ (-783) $) 26) (($ (-576) $) 29))) +((-1546 (((-3 |#2| "failed") |#2| |#2| (-115) (-1194)) 37))) +(((-783 |#1| |#2|) (-10 -7 (-15 -1546 ((-3 |#2| "failed") |#2| |#2| (-115) (-1194)))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)) (-13 (-29 |#1|) (-1220) (-974))) (T -783)) +((-1546 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *1 (-783 *5 *2)) (-4 *2 (-13 (-29 *5) (-1220) (-974)))))) +(-10 -7 (-15 -1546 ((-3 |#2| "failed") |#2| |#2| (-115) (-1194)))) +((-2883 (((-785) |#1|) 8))) +(((-784 |#1|) (-10 -7 (-15 -2883 ((-785) |#1|))) (-1235)) (T -784)) +((-2883 (*1 *2 *3) (-12 (-5 *2 (-785)) (-5 *1 (-784 *3)) (-4 *3 (-1235))))) +(-10 -7 (-15 -2883 ((-785) |#1|))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 7)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 9))) +(((-785) (-1117)) (T -785)) +NIL +(-1117) +((-2255 ((|#2| |#4|) 35))) +(((-786 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2255 (|#2| |#4|))) (-463) (-1261 |#1|) (-735 |#1| |#2|) (-1261 |#3|)) (T -786)) +((-2255 (*1 *2 *3) (-12 (-4 *4 (-463)) (-4 *5 (-735 *4 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-786 *4 *2 *5 *3)) (-4 *3 (-1261 *5))))) +(-10 -7 (-15 -2255 (|#2| |#4|))) +((-1747 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2579 (((-1290) (-1176) (-1176) |#4| |#5|) 33)) (-2006 ((|#4| |#4| |#5|) 74)) (-3868 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|) 79)) (-3998 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|) 16))) +(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1747 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2006 (|#4| |#4| |#5|)) (-15 -3868 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -2579 ((-1290) (-1176) (-1176) |#4| |#5|)) (-15 -3998 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -787)) +((-3998 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2579 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1176)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *4 (-1082 *6 *7 *8)) (-5 *2 (-1290)) (-5 *1 (-787 *6 *7 *8 *4 *5)) (-4 *5 (-1088 *6 *7 *8 *4)))) (-3868 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2006 (*1 *2 *2 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *2 (-1082 *4 *5 *6)) (-5 *1 (-787 *4 *5 *6 *2 *3)) (-4 *3 (-1088 *4 *5 *6 *2)))) (-1747 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(-10 -7 (-15 -1747 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2006 (|#4| |#4| |#5|)) (-15 -3868 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -2579 ((-1290) (-1176) (-1176) |#4| |#5|)) (-15 -3998 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|))) +((-2449 (((-3 (-1190 (-1190 |#1|)) "failed") |#4|) 51)) (-2536 (((-655 |#4|) |#4|) 22)) (-4216 ((|#4| |#4|) 17))) +(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2536 ((-655 |#4|) |#4|)) (-15 -2449 ((-3 (-1190 (-1190 |#1|)) "failed") |#4|)) (-15 -4216 (|#4| |#4|))) (-359) (-338 |#1|) (-1261 |#2|) (-1261 |#3|) (-936)) (T -788)) +((-4216 (*1 *2 *2) (-12 (-4 *3 (-359)) (-4 *4 (-338 *3)) (-4 *5 (-1261 *4)) (-5 *1 (-788 *3 *4 *5 *2 *6)) (-4 *2 (-1261 *5)) (-14 *6 (-936)))) (-2449 (*1 *2 *3) (|partial| -12 (-4 *4 (-359)) (-4 *5 (-338 *4)) (-4 *6 (-1261 *5)) (-5 *2 (-1190 (-1190 *4))) (-5 *1 (-788 *4 *5 *6 *3 *7)) (-4 *3 (-1261 *6)) (-14 *7 (-936)))) (-2536 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *5 (-338 *4)) (-4 *6 (-1261 *5)) (-5 *2 (-655 *3)) (-5 *1 (-788 *4 *5 *6 *3 *7)) (-4 *3 (-1261 *6)) (-14 *7 (-936))))) +(-10 -7 (-15 -2536 ((-655 |#4|) |#4|)) (-15 -2449 ((-3 (-1190 (-1190 |#1|)) "failed") |#4|)) (-15 -4216 (|#4| |#4|))) +((-4209 (((-2 (|:| |deter| (-655 (-1190 |#5|))) (|:| |dterm| (-655 (-655 (-2 (|:| -1925 (-782)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-655 |#1|)) (|:| |nlead| (-655 |#5|))) (-1190 |#5|) (-655 |#1|) (-655 |#5|)) 72)) (-3890 (((-655 (-782)) |#1|) 20))) +(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4209 ((-2 (|:| |deter| (-655 (-1190 |#5|))) (|:| |dterm| (-655 (-655 (-2 (|:| -1925 (-782)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-655 |#1|)) (|:| |nlead| (-655 |#5|))) (-1190 |#5|) (-655 |#1|) (-655 |#5|))) (-15 -3890 ((-655 (-782)) |#1|))) (-1261 |#4|) (-804) (-861) (-316) (-964 |#4| |#2| |#3|)) (T -789)) +((-3890 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-655 (-782))) (-5 *1 (-789 *3 *4 *5 *6 *7)) (-4 *3 (-1261 *6)) (-4 *7 (-964 *6 *4 *5)))) (-4209 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1261 *9)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-316)) (-4 *10 (-964 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-655 (-1190 *10))) (|:| |dterm| (-655 (-655 (-2 (|:| -1925 (-782)) (|:| |pcoef| *10))))) (|:| |nfacts| (-655 *6)) (|:| |nlead| (-655 *10)))) (-5 *1 (-789 *6 *7 *8 *9 *10)) (-5 *3 (-1190 *10)) (-5 *4 (-655 *6)) (-5 *5 (-655 *10))))) +(-10 -7 (-15 -4209 ((-2 (|:| |deter| (-655 (-1190 |#5|))) (|:| |dterm| (-655 (-655 (-2 (|:| -1925 (-782)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-655 |#1|)) (|:| |nlead| (-655 |#5|))) (-1190 |#5|) (-655 |#1|) (-655 |#5|))) (-15 -3890 ((-655 (-782)) |#1|))) +((-2264 (((-655 (-2 (|:| |outval| |#1|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#1|))))) (-700 (-418 (-575))) |#1|) 31)) (-2304 (((-655 |#1|) (-700 (-418 (-575))) |#1|) 21)) (-2551 (((-967 (-418 (-575))) (-700 (-418 (-575))) (-1194)) 18) (((-967 (-418 (-575))) (-700 (-418 (-575)))) 17))) +(((-790 |#1|) (-10 -7 (-15 -2551 ((-967 (-418 (-575))) (-700 (-418 (-575))))) (-15 -2551 ((-967 (-418 (-575))) (-700 (-418 (-575))) (-1194))) (-15 -2304 ((-655 |#1|) (-700 (-418 (-575))) |#1|)) (-15 -2264 ((-655 (-2 (|:| |outval| |#1|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#1|))))) (-700 (-418 (-575))) |#1|))) (-13 (-373) (-859))) (T -790)) +((-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *2 (-655 (-2 (|:| |outval| *4) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 *4)))))) (-5 *1 (-790 *4)) (-4 *4 (-13 (-373) (-859))))) (-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *2 (-655 *4)) (-5 *1 (-790 *4)) (-4 *4 (-13 (-373) (-859))))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *4 (-1194)) (-5 *2 (-967 (-418 (-575)))) (-5 *1 (-790 *5)) (-4 *5 (-13 (-373) (-859))))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *2 (-967 (-418 (-575)))) (-5 *1 (-790 *4)) (-4 *4 (-13 (-373) (-859)))))) +(-10 -7 (-15 -2551 ((-967 (-418 (-575))) (-700 (-418 (-575))))) (-15 -2551 ((-967 (-418 (-575))) (-700 (-418 (-575))) (-1194))) (-15 -2304 ((-655 |#1|) (-700 (-418 (-575))) |#1|)) (-15 -2264 ((-655 (-2 (|:| |outval| |#1|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#1|))))) (-700 (-418 (-575))) |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 36)) (-1606 (((-655 |#2|) $) NIL)) (-3466 (((-1190 $) $ |#2|) NIL) (((-1190 |#1|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 |#2|)) NIL)) (-3462 (($ $) 30)) (-4139 (((-112) $ $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2583 (($ $ $) 110 (|has| |#1| (-567)))) (-2039 (((-655 $) $ $) 123 (|has| |#1| (-567)))) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2058 (($ $) NIL (|has| |#1| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-967 (-418 (-575)))) NIL (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194))))) (((-3 $ "failed") (-967 (-575))) NIL (-3765 (-12 (|has| |#1| (-38 (-575))) (|has| |#2| (-625 (-1194))) (-3215 (|has| |#1| (-38 (-418 (-575)))))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194)))))) (((-3 $ "failed") (-967 |#1|)) NIL (-3765 (-12 (|has| |#2| (-625 (-1194))) (-3215 (|has| |#1| (-38 (-418 (-575))))) (-3215 (|has| |#1| (-38 (-575))))) (-12 (|has| |#1| (-38 (-575))) (|has| |#2| (-625 (-1194))) (-3215 (|has| |#1| (-38 (-418 (-575))))) (-3215 (|has| |#1| (-556)))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194))) (-3215 (|has| |#1| (-1009 (-575))))))) (((-3 (-1142 |#1| |#2|) "failed") $) 21)) (-4399 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) ((|#2| $) NIL) (($ (-967 (-418 (-575)))) NIL (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194))))) (($ (-967 (-575))) NIL (-3765 (-12 (|has| |#1| (-38 (-575))) (|has| |#2| (-625 (-1194))) (-3215 (|has| |#1| (-38 (-418 (-575)))))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194)))))) (($ (-967 |#1|)) NIL (-3765 (-12 (|has| |#2| (-625 (-1194))) (-3215 (|has| |#1| (-38 (-418 (-575))))) (-3215 (|has| |#1| (-38 (-575))))) (-12 (|has| |#1| (-38 (-575))) (|has| |#2| (-625 (-1194))) (-3215 (|has| |#1| (-38 (-418 (-575))))) (-3215 (|has| |#1| (-556)))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194))) (-3215 (|has| |#1| (-1009 (-575))))))) (((-1142 |#1| |#2|) $) NIL)) (-4232 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-567)))) (-4406 (($ $) NIL) (($ $ |#2|) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-2249 (((-112) $ $) NIL) (((-112) $ (-655 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-4327 (((-112) $) NIL)) (-3965 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 81)) (-2507 (($ $) 136 (|has| |#1| (-463)))) (-1824 (($ $) NIL (|has| |#1| (-463))) (($ $ |#2|) NIL (|has| |#1| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#1| (-924)))) (-3024 (($ $) NIL (|has| |#1| (-567)))) (-2460 (($ $) NIL (|has| |#1| (-567)))) (-2382 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3858 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3703 (($ $ |#1| (-542 |#2|) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| |#1| (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| |#1| (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-1542 (((-112) $) 57)) (-2218 (((-782) $) NIL)) (-2548 (((-112) $ $) NIL) (((-112) $ (-655 $)) NIL)) (-1896 (($ $ $ $ $) 107 (|has| |#1| (-567)))) (-3838 ((|#2| $) 22)) (-2433 (($ (-1190 |#1|) |#2|) NIL) (($ (-1190 $) |#2|) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-542 |#2|)) NIL) (($ $ |#2| (-782)) 38) (($ $ (-655 |#2|) (-655 (-782))) NIL)) (-2723 (($ $ $) 63)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ |#2|) NIL)) (-2995 (((-112) $) NIL)) (-4337 (((-542 |#2|) $) NIL) (((-782) $ |#2|) NIL) (((-655 (-782)) $ (-655 |#2|)) NIL)) (-2947 (((-782) $) 23)) (-2520 (($ (-1 (-542 |#2|) (-542 |#2|)) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3976 (((-3 |#2| "failed") $) NIL)) (-3522 (($ $) NIL (|has| |#1| (-463)))) (-4173 (($ $) NIL (|has| |#1| (-463)))) (-2492 (((-655 $) $) NIL)) (-3638 (($ $) 39)) (-3833 (($ $) NIL (|has| |#1| (-463)))) (-4167 (((-655 $) $) 43)) (-1782 (($ $) 41)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-3051 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1934 (-782))) $ $) 96)) (-4343 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -2829 $) (|:| -1635 $)) $ $) 78) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -2829 $) (|:| -1635 $)) $ $ |#2|) NIL)) (-4125 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -1635 $)) $ $) NIL) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -1635 $)) $ $ |#2|) NIL)) (-2360 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2808 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2288 (((-1176) $) NIL)) (-2896 (($ $ $) 125 (|has| |#1| (-567)))) (-4372 (((-655 $) $) 32)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| |#2|) (|:| -2398 (-782))) "failed") $) NIL)) (-1411 (((-112) $ $) NIL) (((-112) $ (-655 $)) NIL)) (-4367 (($ $ $) NIL)) (-3474 (($ $) 24)) (-2687 (((-112) $ $) NIL)) (-3188 (((-112) $ $) NIL) (((-112) $ (-655 $)) NIL)) (-2973 (($ $ $) NIL)) (-3283 (($ $) 26)) (-3912 (((-1137) $) NIL)) (-3842 (((-2 (|:| -3926 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-567)))) (-4063 (((-2 (|:| -3926 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-567)))) (-4345 (((-112) $) 56)) (-4353 ((|#1| $) 58)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3926 ((|#1| |#1| $) 133 (|has| |#1| (-463))) (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2504 (((-2 (|:| -3926 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-567)))) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-567)))) (-2113 (($ $ |#1|) 129 (|has| |#1| (-567))) (($ $ $) NIL (|has| |#1| (-567)))) (-1533 (($ $ |#1|) 128 (|has| |#1| (-567))) (($ $ $) NIL (|has| |#1| (-567)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-655 |#2|) (-655 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-655 |#2|) (-655 $)) NIL)) (-4060 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2389 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) NIL)) (-2645 (((-542 |#2|) $) NIL) (((-782) $ |#2|) 45) (((-655 (-782)) $ (-655 |#2|)) NIL)) (-1549 (($ $) NIL)) (-2778 (($ $) 35)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| |#1| (-625 (-547))) (|has| |#2| (-625 (-547))))) (($ (-967 (-418 (-575)))) NIL (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194))))) (($ (-967 (-575))) NIL (-3765 (-12 (|has| |#1| (-38 (-575))) (|has| |#2| (-625 (-1194))) (-3215 (|has| |#1| (-38 (-418 (-575)))))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194)))))) (($ (-967 |#1|)) NIL (|has| |#2| (-625 (-1194)))) (((-1176) $) NIL (-12 (|has| |#1| (-1055 (-575))) (|has| |#2| (-625 (-1194))))) (((-967 |#1|) $) NIL (|has| |#2| (-625 (-1194))))) (-2178 ((|#1| $) 132 (|has| |#1| (-463))) (($ $ |#2|) NIL (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-967 |#1|) $) NIL (|has| |#2| (-625 (-1194)))) (((-1142 |#1| |#2|) $) 18) (($ (-1142 |#1| |#2|)) 19) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-542 |#2|)) NIL) (($ $ |#2| (-782)) 47) (($ $ (-655 |#2|) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1996 (($) 13 T CONST)) (-3927 (((-3 (-112) "failed") $ $) NIL)) (-2009 (($) 37 T CONST)) (-3663 (($ $ $ $ (-782)) 105 (|has| |#1| (-567)))) (-3354 (($ $ $ (-782)) 104 (|has| |#1| (-567)))) (-3430 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) NIL)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) 75)) (-4016 (($ $ $) 85)) (** (($ $ (-936)) NIL) (($ $ (-782)) 70)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 62) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-791 |#1| |#2|) (-13 (-1082 |#1| (-542 |#2|) |#2|) (-624 (-1142 |#1| |#2|)) (-1055 (-1142 |#1| |#2|))) (-1066) (-861)) (T -791)) +NIL +(-13 (-1082 |#1| (-542 |#2|) |#2|) (-624 (-1142 |#1| |#2|)) (-1055 (-1142 |#1| |#2|))) +((-2550 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 13))) +(((-792 |#1| |#2|) (-10 -7 (-15 -2550 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1066) (-1066)) (T -792)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))) +(-10 -7 (-15 -2550 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 12)) (-2836 (((-1285 |#1|) $ (-782)) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-4437 (($ (-1190 |#1|)) NIL)) (-3466 (((-1190 $) $ (-1099)) NIL) (((-1190 |#1|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 (-1099))) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-4158 (((-655 $) $ $) 54 (|has| |#1| (-567)))) (-2583 (($ $ $) 50 (|has| |#1| (-567)))) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2058 (($ $) NIL (|has| |#1| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-1965 (($ $ (-782)) NIL)) (-3441 (($ $ (-782)) NIL)) (-4265 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-463)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-1099) "failed") $) NIL) (((-3 (-1190 |#1|) "failed") $) 10)) (-4399 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-1099) $) NIL) (((-1190 |#1|) $) NIL)) (-4232 (($ $ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-3551 (($ $ $) NIL)) (-2062 (($ $ $) 87 (|has| |#1| (-567)))) (-3965 (((-2 (|:| -1754 |#1|) (|:| -2829 $) (|:| -1635 $)) $ $) 86 (|has| |#1| (-567)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1824 (($ $) NIL (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#1| (-924)))) (-3703 (($ $ |#1| (-782) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1099) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1099) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-2673 (((-782) $ $) NIL (|has| |#1| (-567)))) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-1169)))) (-2433 (($ (-1190 |#1|) (-1099)) NIL) (($ (-1190 $) (-1099)) NIL)) (-3461 (($ $ (-782)) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-782)) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-2723 (($ $ $) 27)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-1099)) NIL) (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-4337 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2520 (($ (-1 (-782) (-782)) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3049 (((-1190 |#1|) $) NIL)) (-3976 (((-3 (-1099) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-3051 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1934 (-782))) $ $) 37)) (-4419 (($ $ $) 41)) (-2791 (($ $ $) 47)) (-4343 (((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -2829 $) (|:| -1635 $)) $ $) 46)) (-2288 (((-1176) $) NIL)) (-2896 (($ $ $) 56 (|has| |#1| (-567)))) (-3742 (((-2 (|:| -2829 $) (|:| -1635 $)) $ (-782)) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| (-1099)) (|:| -2398 (-782))) "failed") $) NIL)) (-4413 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3474 (($) NIL (|has| |#1| (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-3842 (((-2 (|:| -3926 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-567)))) (-4063 (((-2 (|:| -3926 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-567)))) (-1951 (((-2 (|:| -4232 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-567)))) (-3764 (((-2 (|:| -4232 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-567)))) (-4345 (((-112) $) 13)) (-4353 ((|#1| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-2754 (($ $ (-782) |#1| $) 26)) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2504 (((-2 (|:| -3926 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-567)))) (-2452 (((-2 (|:| -4232 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-567)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1099) |#1|) NIL) (($ $ (-655 (-1099)) (-655 |#1|)) NIL) (($ $ (-1099) $) NIL) (($ $ (-655 (-1099)) (-655 $)) NIL)) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2070 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-418 $) (-418 $) (-418 $)) NIL (|has| |#1| (-567))) ((|#1| (-418 $) |#1|) NIL (|has| |#1| (-373))) (((-418 $) $ (-418 $)) NIL (|has| |#1| (-567)))) (-1947 (((-3 $ "failed") $ (-782)) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-4060 (($ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2389 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-2645 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1099) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-2178 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-3875 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567))) (((-3 (-418 $) "failed") (-418 $) $) NIL (|has| |#1| (-567)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-1099)) NIL) (((-1190 |#1|) $) 7) (($ (-1190 |#1|)) 8) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-782)) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1996 (($) 28 T CONST)) (-2009 (($) 32 T CONST)) (-3430 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) 40) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-793 |#1|) (-13 (-1261 |#1|) (-624 (-1190 |#1|)) (-1055 (-1190 |#1|)) (-10 -8 (-15 -2754 ($ $ (-782) |#1| $)) (-15 -2723 ($ $ $)) (-15 -3051 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1934 (-782))) $ $)) (-15 -4419 ($ $ $)) (-15 -4343 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -2829 $) (|:| -1635 $)) $ $)) (-15 -2791 ($ $ $)) (IF (|has| |#1| (-567)) (PROGN (-15 -4158 ((-655 $) $ $)) (-15 -2896 ($ $ $)) (-15 -2504 ((-2 (|:| -3926 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4063 ((-2 (|:| -3926 $) (|:| |coef1| $)) $ $)) (-15 -3842 ((-2 (|:| -3926 $) (|:| |coef2| $)) $ $)) (-15 -2452 ((-2 (|:| -4232 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3764 ((-2 (|:| -4232 |#1|) (|:| |coef1| $)) $ $)) (-15 -1951 ((-2 (|:| -4232 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1066)) (T -793)) +((-2754 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-782)) (-5 *1 (-793 *3)) (-4 *3 (-1066)))) (-2723 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066)))) (-3051 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-793 *3)) (|:| |polden| *3) (|:| -1934 (-782)))) (-5 *1 (-793 *3)) (-4 *3 (-1066)))) (-4419 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066)))) (-4343 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1754 *3) (|:| |gap| (-782)) (|:| -2829 (-793 *3)) (|:| -1635 (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-1066)))) (-2791 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066)))) (-4158 (*1 *2 *1 *1) (-12 (-5 *2 (-655 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-2896 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-567)) (-4 *2 (-1066)))) (-2504 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3926 (-793 *3)) (|:| |coef1| (-793 *3)) (|:| |coef2| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-4063 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3926 (-793 *3)) (|:| |coef1| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-3842 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3926 (-793 *3)) (|:| |coef2| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-2452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4232 *3) (|:| |coef1| (-793 *3)) (|:| |coef2| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-3764 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4232 *3) (|:| |coef1| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-1951 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4232 *3) (|:| |coef2| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066))))) +(-13 (-1261 |#1|) (-624 (-1190 |#1|)) (-1055 (-1190 |#1|)) (-10 -8 (-15 -2754 ($ $ (-782) |#1| $)) (-15 -2723 ($ $ $)) (-15 -3051 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1934 (-782))) $ $)) (-15 -4419 ($ $ $)) (-15 -4343 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -2829 $) (|:| -1635 $)) $ $)) (-15 -2791 ($ $ $)) (IF (|has| |#1| (-567)) (PROGN (-15 -4158 ((-655 $) $ $)) (-15 -2896 ($ $ $)) (-15 -2504 ((-2 (|:| -3926 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4063 ((-2 (|:| -3926 $) (|:| |coef1| $)) $ $)) (-15 -3842 ((-2 (|:| -3926 $) (|:| |coef2| $)) $ $)) (-15 -2452 ((-2 (|:| -4232 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3764 ((-2 (|:| -4232 |#1|) (|:| |coef1| $)) $ $)) (-15 -1951 ((-2 (|:| -4232 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-1858 ((|#1| (-782) |#1|) 33 (|has| |#1| (-38 (-418 (-575)))))) (-3069 ((|#1| (-782) |#1|) 23)) (-3151 ((|#1| (-782) |#1|) 35 (|has| |#1| (-38 (-418 (-575))))))) +(((-794 |#1|) (-10 -7 (-15 -3069 (|#1| (-782) |#1|)) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -3151 (|#1| (-782) |#1|)) (-15 -1858 (|#1| (-782) |#1|))) |%noBranch|)) (-174)) (T -794)) +((-1858 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-174)))) (-3151 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-174)))) (-3069 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -3069 (|#1| (-782) |#1|)) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -3151 (|#1| (-782) |#1|)) (-15 -1858 (|#1| (-782) |#1|))) |%noBranch|)) +((-2861 (((-112) $ $) 7)) (-3303 (((-655 (-2 (|:| -2458 $) (|:| -2978 (-655 |#4|)))) (-655 |#4|)) 86)) (-1740 (((-655 $) (-655 |#4|)) 87) (((-655 $) (-655 |#4|) (-112)) 112)) (-1606 (((-655 |#3|) $) 34)) (-2210 (((-112) $) 27)) (-3036 (((-112) $) 18 (|has| |#1| (-567)))) (-3309 (((-112) |#4| $) 102) (((-112) $) 98)) (-2749 ((|#4| |#4| $) 93)) (-2058 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 127)) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#3|) 28)) (-1845 (((-112) $ (-782)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 80)) (-3011 (($) 46 T CONST)) (-1437 (((-112) $) 23 (|has| |#1| (-567)))) (-2365 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4289 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1812 (((-112) $) 26 (|has| |#1| (-567)))) (-3376 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3629 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-3563 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 |#4|)) 37)) (-4399 (($ (-655 |#4|)) 36)) (-1975 (((-3 $ "failed") $) 83)) (-2690 ((|#4| |#4| $) 90)) (-1748 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-2249 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4183 ((|#4| |#4| $) 88)) (-2308 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2029 (((-2 (|:| -2458 (-655 |#4|)) (|:| -2978 (-655 |#4|))) $) 106)) (-4355 (((-112) |#4| $) 137)) (-1718 (((-112) |#4| $) 134)) (-2986 (((-112) |#4| $) 138) (((-112) $) 135)) (-4001 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-2548 (((-112) |#4| $) 105) (((-112) $) 104)) (-3838 ((|#3| $) 35)) (-3896 (((-112) $ (-782)) 44)) (-3955 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) 48)) (-1444 (((-655 |#3|) $) 33)) (-1808 (((-112) |#3| $) 32)) (-4026 (((-112) $ (-782)) 43)) (-2288 (((-1176) $) 10)) (-2053 (((-3 |#4| (-655 $)) |#4| |#4| $) 129)) (-2896 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 128)) (-3653 (((-3 |#4| "failed") $) 84)) (-2463 (((-655 $) |#4| $) 130)) (-2192 (((-3 (-112) (-655 $)) |#4| $) 133)) (-1658 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1479 (((-655 $) |#4| $) 126) (((-655 $) (-655 |#4|) $) 125) (((-655 $) (-655 |#4|) (-655 $)) 124) (((-655 $) |#4| (-655 $)) 123)) (-2233 (($ |#4| $) 118) (($ (-655 |#4|) $) 117)) (-1590 (((-655 |#4|) $) 108)) (-1411 (((-112) |#4| $) 100) (((-112) $) 96)) (-4367 ((|#4| |#4| $) 91)) (-2687 (((-112) $ $) 111)) (-4395 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-3188 (((-112) |#4| $) 101) (((-112) $) 97)) (-2973 ((|#4| |#4| $) 92)) (-3912 (((-1137) $) 11)) (-1961 (((-3 |#4| "failed") $) 85)) (-3704 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2500 (((-3 $ "failed") $ |#4|) 79)) (-4276 (($ $ |#4|) 78) (((-655 $) |#4| $) 116) (((-655 $) |#4| (-655 $)) 115) (((-655 $) (-655 |#4|) $) 114) (((-655 $) (-655 |#4|) (-655 $)) 113)) (-3207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) 39)) (-4076 (((-112) $) 42)) (-1938 (($) 41)) (-2645 (((-782) $) 107)) (-3925 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3078 (($ $) 40)) (-2615 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2894 (($ (-655 |#4|)) 61)) (-1879 (($ $ |#3|) 29)) (-3427 (($ $ |#3|) 31)) (-2921 (($ $) 89)) (-3608 (($ $ |#3|) 30)) (-2883 (((-873) $) 12) (((-655 |#4|) $) 38)) (-3706 (((-782) $) 77 (|has| |#3| (-378)))) (-4400 (((-112) $ $) 9)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2994 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) 99)) (-3556 (((-655 $) |#4| $) 122) (((-655 $) |#4| (-655 $)) 121) (((-655 $) (-655 |#4|) $) 120) (((-655 $) (-655 |#4|) (-655 $)) 119)) (-3771 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-1359 (((-655 |#3|) $) 82)) (-2722 (((-112) |#4| $) 136)) (-1591 (((-112) |#3| $) 81)) (-3914 (((-112) $ $) 6)) (-2871 (((-782) $) 47 (|has| $ (-6 -4460))))) +(((-795 |#1| |#2| |#3| |#4|) (-141) (-463) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -795)) +NIL +(-13 (-1088 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-993 |#1| |#2| |#3| |#4|) . T) ((-1088 |#1| |#2| |#3| |#4|) . T) ((-1117) . T) ((-1228 |#1| |#2| |#3| |#4|) . T) ((-1235) . T)) +((-3766 (((-3 (-389) "failed") (-325 |#1|) (-936)) 62 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-389) "failed") (-325 |#1|)) 54 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-389) "failed") (-418 (-967 |#1|)) (-936)) 41 (|has| |#1| (-567))) (((-3 (-389) "failed") (-418 (-967 |#1|))) 40 (|has| |#1| (-567))) (((-3 (-389) "failed") (-967 |#1|) (-936)) 31 (|has| |#1| (-1066))) (((-3 (-389) "failed") (-967 |#1|)) 30 (|has| |#1| (-1066)))) (-2681 (((-389) (-325 |#1|) (-936)) 99 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-389) (-325 |#1|)) 94 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-389) (-418 (-967 |#1|)) (-936)) 91 (|has| |#1| (-567))) (((-389) (-418 (-967 |#1|))) 90 (|has| |#1| (-567))) (((-389) (-967 |#1|) (-936)) 86 (|has| |#1| (-1066))) (((-389) (-967 |#1|)) 85 (|has| |#1| (-1066))) (((-389) |#1| (-936)) 76) (((-389) |#1|) 22)) (-2542 (((-3 (-171 (-389)) "failed") (-325 (-171 |#1|)) (-936)) 71 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-171 (-389)) "failed") (-325 (-171 |#1|))) 70 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-171 (-389)) "failed") (-325 |#1|) (-936)) 63 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-171 (-389)) "failed") (-325 |#1|)) 61 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|))) (-936)) 46 (|has| |#1| (-567))) (((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|)))) 45 (|has| |#1| (-567))) (((-3 (-171 (-389)) "failed") (-418 (-967 |#1|)) (-936)) 39 (|has| |#1| (-567))) (((-3 (-171 (-389)) "failed") (-418 (-967 |#1|))) 38 (|has| |#1| (-567))) (((-3 (-171 (-389)) "failed") (-967 |#1|) (-936)) 28 (|has| |#1| (-1066))) (((-3 (-171 (-389)) "failed") (-967 |#1|)) 26 (|has| |#1| (-1066))) (((-3 (-171 (-389)) "failed") (-967 (-171 |#1|)) (-936)) 18 (|has| |#1| (-174))) (((-3 (-171 (-389)) "failed") (-967 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-1685 (((-171 (-389)) (-325 (-171 |#1|)) (-936)) 102 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-171 (-389)) (-325 (-171 |#1|))) 101 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-171 (-389)) (-325 |#1|) (-936)) 100 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-171 (-389)) (-325 |#1|)) 98 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-171 (-389)) (-418 (-967 (-171 |#1|))) (-936)) 93 (|has| |#1| (-567))) (((-171 (-389)) (-418 (-967 (-171 |#1|)))) 92 (|has| |#1| (-567))) (((-171 (-389)) (-418 (-967 |#1|)) (-936)) 89 (|has| |#1| (-567))) (((-171 (-389)) (-418 (-967 |#1|))) 88 (|has| |#1| (-567))) (((-171 (-389)) (-967 |#1|) (-936)) 84 (|has| |#1| (-1066))) (((-171 (-389)) (-967 |#1|)) 83 (|has| |#1| (-1066))) (((-171 (-389)) (-967 (-171 |#1|)) (-936)) 78 (|has| |#1| (-174))) (((-171 (-389)) (-967 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-389)) (-171 |#1|) (-936)) 80 (|has| |#1| (-174))) (((-171 (-389)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-389)) |#1| (-936)) 27) (((-171 (-389)) |#1|) 25))) +(((-796 |#1|) (-10 -7 (-15 -2681 ((-389) |#1|)) (-15 -2681 ((-389) |#1| (-936))) (-15 -1685 ((-171 (-389)) |#1|)) (-15 -1685 ((-171 (-389)) |#1| (-936))) (IF (|has| |#1| (-174)) (PROGN (-15 -1685 ((-171 (-389)) (-171 |#1|))) (-15 -1685 ((-171 (-389)) (-171 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-967 (-171 |#1|)))) (-15 -1685 ((-171 (-389)) (-967 (-171 |#1|)) (-936)))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-15 -2681 ((-389) (-967 |#1|))) (-15 -2681 ((-389) (-967 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-967 |#1|))) (-15 -1685 ((-171 (-389)) (-967 |#1|) (-936)))) |%noBranch|) (IF (|has| |#1| (-567)) (PROGN (-15 -2681 ((-389) (-418 (-967 |#1|)))) (-15 -2681 ((-389) (-418 (-967 |#1|)) (-936))) (-15 -1685 ((-171 (-389)) (-418 (-967 |#1|)))) (-15 -1685 ((-171 (-389)) (-418 (-967 |#1|)) (-936))) (-15 -1685 ((-171 (-389)) (-418 (-967 (-171 |#1|))))) (-15 -1685 ((-171 (-389)) (-418 (-967 (-171 |#1|))) (-936))) (IF (|has| |#1| (-861)) (PROGN (-15 -2681 ((-389) (-325 |#1|))) (-15 -2681 ((-389) (-325 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-325 |#1|))) (-15 -1685 ((-171 (-389)) (-325 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-325 (-171 |#1|)))) (-15 -1685 ((-171 (-389)) (-325 (-171 |#1|)) (-936)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2542 ((-3 (-171 (-389)) "failed") (-967 (-171 |#1|)))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-967 (-171 |#1|)) (-936)))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-15 -3766 ((-3 (-389) "failed") (-967 |#1|))) (-15 -3766 ((-3 (-389) "failed") (-967 |#1|) (-936))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-967 |#1|))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-967 |#1|) (-936)))) |%noBranch|) (IF (|has| |#1| (-567)) (PROGN (-15 -3766 ((-3 (-389) "failed") (-418 (-967 |#1|)))) (-15 -3766 ((-3 (-389) "failed") (-418 (-967 |#1|)) (-936))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-418 (-967 |#1|)))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-418 (-967 |#1|)) (-936))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|))))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|))) (-936))) (IF (|has| |#1| (-861)) (PROGN (-15 -3766 ((-3 (-389) "failed") (-325 |#1|))) (-15 -3766 ((-3 (-389) "failed") (-325 |#1|) (-936))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-325 |#1|))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-325 |#1|) (-936))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-325 (-171 |#1|)))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-325 (-171 |#1|)) (-936)))) |%noBranch|)) |%noBranch|)) (-625 (-389))) (T -796)) +((-2542 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-325 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2542 (*1 *2 *3) (|partial| -12 (-5 *3 (-325 (-171 *4))) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-2542 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2542 (*1 *2 *3) (|partial| -12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-3766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-3766 (*1 *2 *3) (|partial| -12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-2542 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-418 (-967 (-171 *5)))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2542 (*1 *2 *3) (|partial| -12 (-5 *3 (-418 (-967 (-171 *4)))) (-4 *4 (-567)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-2542 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2542 (*1 *2 *3) (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-3766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-3766 (*1 *2 *3) (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-2542 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2542 (*1 *2 *3) (|partial| -12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-3766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-3766 (*1 *2 *3) (|partial| -12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-2542 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-967 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-174)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2542 (*1 *2 *3) (|partial| -12 (-5 *3 (-967 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-325 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-325 (-171 *4))) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-2681 (*1 *2 *3 *4) (-12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 (-171 *5)))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 (-171 *4)))) (-4 *4 (-567)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-2681 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-2681 (*1 *2 *3 *4) (-12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-967 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-174)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-967 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-936)) (-4 *5 (-174)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-171 (-389))) (-5 *1 (-796 *3)) (-4 *3 (-625 (-389))))) (-1685 (*1 *2 *3) (-12 (-5 *2 (-171 (-389))) (-5 *1 (-796 *3)) (-4 *3 (-625 (-389))))) (-2681 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-389)) (-5 *1 (-796 *3)) (-4 *3 (-625 *2)))) (-2681 (*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-796 *3)) (-4 *3 (-625 *2))))) +(-10 -7 (-15 -2681 ((-389) |#1|)) (-15 -2681 ((-389) |#1| (-936))) (-15 -1685 ((-171 (-389)) |#1|)) (-15 -1685 ((-171 (-389)) |#1| (-936))) (IF (|has| |#1| (-174)) (PROGN (-15 -1685 ((-171 (-389)) (-171 |#1|))) (-15 -1685 ((-171 (-389)) (-171 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-967 (-171 |#1|)))) (-15 -1685 ((-171 (-389)) (-967 (-171 |#1|)) (-936)))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-15 -2681 ((-389) (-967 |#1|))) (-15 -2681 ((-389) (-967 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-967 |#1|))) (-15 -1685 ((-171 (-389)) (-967 |#1|) (-936)))) |%noBranch|) (IF (|has| |#1| (-567)) (PROGN (-15 -2681 ((-389) (-418 (-967 |#1|)))) (-15 -2681 ((-389) (-418 (-967 |#1|)) (-936))) (-15 -1685 ((-171 (-389)) (-418 (-967 |#1|)))) (-15 -1685 ((-171 (-389)) (-418 (-967 |#1|)) (-936))) (-15 -1685 ((-171 (-389)) (-418 (-967 (-171 |#1|))))) (-15 -1685 ((-171 (-389)) (-418 (-967 (-171 |#1|))) (-936))) (IF (|has| |#1| (-861)) (PROGN (-15 -2681 ((-389) (-325 |#1|))) (-15 -2681 ((-389) (-325 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-325 |#1|))) (-15 -1685 ((-171 (-389)) (-325 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-325 (-171 |#1|)))) (-15 -1685 ((-171 (-389)) (-325 (-171 |#1|)) (-936)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2542 ((-3 (-171 (-389)) "failed") (-967 (-171 |#1|)))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-967 (-171 |#1|)) (-936)))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-15 -3766 ((-3 (-389) "failed") (-967 |#1|))) (-15 -3766 ((-3 (-389) "failed") (-967 |#1|) (-936))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-967 |#1|))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-967 |#1|) (-936)))) |%noBranch|) (IF (|has| |#1| (-567)) (PROGN (-15 -3766 ((-3 (-389) "failed") (-418 (-967 |#1|)))) (-15 -3766 ((-3 (-389) "failed") (-418 (-967 |#1|)) (-936))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-418 (-967 |#1|)))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-418 (-967 |#1|)) (-936))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|))))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|))) (-936))) (IF (|has| |#1| (-861)) (PROGN (-15 -3766 ((-3 (-389) "failed") (-325 |#1|))) (-15 -3766 ((-3 (-389) "failed") (-325 |#1|) (-936))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-325 |#1|))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-325 |#1|) (-936))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-325 (-171 |#1|)))) (-15 -2542 ((-3 (-171 (-389)) "failed") (-325 (-171 |#1|)) (-936)))) |%noBranch|)) |%noBranch|)) +((-3644 (((-936) (-1176)) 89)) (-3243 (((-3 (-389) "failed") (-1176)) 36)) (-2441 (((-389) (-1176)) 34)) (-2958 (((-936) (-1176)) 63)) (-1686 (((-1176) (-936)) 73)) (-2142 (((-1176) (-936)) 62))) +(((-797) (-10 -7 (-15 -2142 ((-1176) (-936))) (-15 -2958 ((-936) (-1176))) (-15 -1686 ((-1176) (-936))) (-15 -3644 ((-936) (-1176))) (-15 -2441 ((-389) (-1176))) (-15 -3243 ((-3 (-389) "failed") (-1176))))) (T -797)) +((-3243 (*1 *2 *3) (|partial| -12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-797)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-797)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-936)) (-5 *1 (-797)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1176)) (-5 *1 (-797)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-936)) (-5 *1 (-797)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1176)) (-5 *1 (-797))))) +(-10 -7 (-15 -2142 ((-1176) (-936))) (-15 -2958 ((-936) (-1176))) (-15 -1686 ((-1176) (-936))) (-15 -3644 ((-936) (-1176))) (-15 -2441 ((-389) (-1176))) (-15 -3243 ((-3 (-389) "failed") (-1176)))) +((-2861 (((-112) $ $) 7)) (-2933 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 16) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 14)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-798) (-141)) (T -798)) +((-2803 (*1 *2 *3 *4) (-12 (-4 *1 (-798)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052)))))) (-2933 (*1 *2 *3 *2) (-12 (-4 *1 (-798)) (-5 *2 (-1052)) (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-2803 (*1 *2 *3 *4) (-12 (-4 *1 (-798)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052)))))) (-2933 (*1 *2 *3 *2) (-12 (-4 *1 (-798)) (-5 *2 (-1052)) (-5 *3 (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(-13 (-1117) (-10 -7 (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2933 ((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2933 ((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052))))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2853 (((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2085 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389))) 55) (((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2085 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389))) 52)) (-3325 (((-1290) (-1285 (-389)) (-575) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389))) 61)) (-3492 (((-1290) (-1285 (-389)) (-575) (-389) (-389) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389))) 50)) (-1451 (((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389))) 63) (((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389))) 62))) +(((-799) (-10 -7 (-15 -1451 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -1451 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)))) (-15 -3492 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -2853 ((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2085 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -2853 ((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2085 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)))) (-15 -3325 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))))) (T -799)) +((-3325 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799)))) (-2853 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-575)) (-5 *6 (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2085 (-389)))) (-5 *7 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799)))) (-2853 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-575)) (-5 *6 (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2085 (-389)))) (-5 *7 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799)))) (-3492 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799)))) (-1451 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799)))) (-1451 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799))))) +(-10 -7 (-15 -1451 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -1451 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)))) (-15 -3492 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -2853 ((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2085 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -2853 ((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2085 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)))) (-15 -3325 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389))))) +((-1828 (((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 64)) (-2742 (((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 40)) (-3246 (((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 63)) (-1547 (((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 38)) (-1357 (((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 62)) (-1819 (((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 24)) (-3342 (((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575)) 41)) (-1508 (((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575)) 39)) (-1743 (((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575)) 37))) +(((-800) (-10 -7 (-15 -1743 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -1508 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -3342 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -1819 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -1547 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -2742 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -1357 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -3246 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -1828 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))))) (T -800)) +((-1828 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-3246 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-1357 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-2742 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-1547 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-1819 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-3342 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-1508 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-1743 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575))))) +(-10 -7 (-15 -1743 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -1508 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -3342 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -1819 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -1547 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -2742 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -1357 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -3246 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -1828 ((-2 (|:| -4182 (-389)) (|:| -3084 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)))) +((-1671 (((-1230 |#1|) |#1| (-227) (-575)) 69))) +(((-801 |#1|) (-10 -7 (-15 -1671 ((-1230 |#1|) |#1| (-227) (-575)))) (-991)) (T -801)) +((-1671 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-575)) (-5 *2 (-1230 *3)) (-5 *1 (-801 *3)) (-4 *3 (-991))))) +(-10 -7 (-15 -1671 ((-1230 |#1|) |#1| (-227) (-575)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 25)) (-2597 (((-3 $ "failed") $ $) 27)) (-3011 (($) 24 T CONST)) (-1920 (($ $ $) 14)) (-1425 (($ $ $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 23 T CONST)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4028 (($ $ $) 31) (($ $) 30)) (-4016 (($ $ $) 21)) (* (($ (-936) $) 22) (($ (-782) $) 26) (($ (-575) $) 29))) +(((-802) (-141)) (T -802)) +NIL +(-13 (-806) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-861) . T) ((-1117) . T)) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 25)) (-3011 (($) 24 T CONST)) (-1920 (($ $ $) 14)) (-1425 (($ $ $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 23 T CONST)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4016 (($ $ $) 21)) (* (($ (-936) $) 22) (($ (-782) $) 26))) (((-803) (-141)) (T -803)) NIL -(-13 (-807) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1118) . T)) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 25)) (-2473 (($) 24 T CONST)) (-1921 (($ $ $) 14)) (-4137 (($ $ $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 23 T CONST)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4017 (($ $ $) 21)) (* (($ (-937) $) 22) (($ (-783) $) 26))) +(-13 (-805) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-805) . T) ((-861) . T) ((-1117) . T)) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 25)) (-3605 (($ $ $) 28)) (-2597 (((-3 $ "failed") $ $) 27)) (-3011 (($) 24 T CONST)) (-1920 (($ $ $) 14)) (-1425 (($ $ $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 23 T CONST)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4016 (($ $ $) 21)) (* (($ (-936) $) 22) (($ (-782) $) 26))) (((-804) (-141)) (T -804)) -NIL -(-13 (-806) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-806) . T) ((-862) . T) ((-1118) . T)) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 25)) (-2158 (($ $ $) 28)) (-1459 (((-3 $ "failed") $ $) 27)) (-2473 (($) 24 T CONST)) (-1921 (($ $ $) 14)) (-4137 (($ $ $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 23 T CONST)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4017 (($ $ $) 21)) (* (($ (-937) $) 22) (($ (-783) $) 26))) +((-3605 (*1 *1 *1 *1) (-4 *1 (-804)))) +(-13 (-806) (-10 -8 (-15 -3605 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-861) . T) ((-1117) . T)) +((-2861 (((-112) $ $) 7)) (-1920 (($ $ $) 14)) (-1425 (($ $ $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4016 (($ $ $) 21)) (* (($ (-936) $) 22))) (((-805) (-141)) (T -805)) -((-2158 (*1 *1 *1 *1) (-4 *1 (-805)))) -(-13 (-807) (-10 -8 (-15 -2158 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1118) . T)) -((-2862 (((-112) $ $) 7)) (-1921 (($ $ $) 14)) (-4137 (($ $ $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4017 (($ $ $) 21)) (* (($ (-937) $) 22))) +NIL +(-13 (-861) (-25)) +(((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-861) . T) ((-1117) . T)) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 25)) (-2597 (((-3 $ "failed") $ $) 27)) (-3011 (($) 24 T CONST)) (-1920 (($ $ $) 14)) (-1425 (($ $ $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 23 T CONST)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4016 (($ $ $) 21)) (* (($ (-936) $) 22) (($ (-782) $) 26))) (((-806) (-141)) (T -806)) NIL -(-13 (-862) (-25)) -(((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-862) . T) ((-1118) . T)) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 25)) (-1459 (((-3 $ "failed") $ $) 27)) (-2473 (($) 24 T CONST)) (-1921 (($ $ $) 14)) (-4137 (($ $ $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 23 T CONST)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4017 (($ $ $) 21)) (* (($ (-937) $) 22) (($ (-783) $) 26))) -(((-807) (-141)) (T -807)) -NIL -(-13 (-804) (-132)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-804) . T) ((-806) . T) ((-862) . T) ((-1118) . T)) -((-1389 (((-112) $) 42)) (-2449 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-4401 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-3424 (((-3 (-419 (-576)) "failed") $) 78)) (-3413 (((-112) $) 72)) (-3404 (((-419 (-576)) $) 76)) (-1941 ((|#2| $) 26)) (-2551 (($ (-1 |#2| |#2|) $) 23)) (-4333 (($ $) 58)) (-2616 (((-548) $) 67)) (-3276 (($ $) 21)) (-2884 (((-874) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-1871 (((-783)) 10)) (-2610 ((|#2| $) 71)) (-3915 (((-112) $ $) 30)) (-3943 (((-112) $ $) 69)) (-4029 (($ $) 32) (($ $ $) NIL)) (-4017 (($ $ $) 31)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-808 |#1| |#2|) (-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -4333 (|#1| |#1|)) (-15 -3424 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3404 ((-419 (-576)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -2610 (|#2| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2884 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1871 ((-783))) (-15 -2884 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1389 ((-112) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) (-809 |#2|) (-174)) (T -808)) -((-1871 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) (-4 *3 (-809 *4))))) -(-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -4333 (|#1| |#1|)) (-15 -3424 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3404 ((-419 (-576)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -2610 (|#2| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2884 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1871 ((-783))) (-15 -2884 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1389 ((-112) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2416 (((-783)) 58 (|has| |#1| (-379)))) (-2473 (($) 18 T CONST)) (-2449 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 97 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 94)) (-4401 (((-576) $) 99 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 96 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 95)) (-1999 (((-3 $ "failed") $) 37)) (-2488 ((|#1| $) 84)) (-3424 (((-3 (-419 (-576)) "failed") $) 71 (|has| |#1| (-557)))) (-3413 (((-112) $) 73 (|has| |#1| (-557)))) (-3404 (((-419 (-576)) $) 72 (|has| |#1| (-557)))) (-2080 (($) 61 (|has| |#1| (-379)))) (-1439 (((-112) $) 35)) (-2210 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-1941 ((|#1| $) 76)) (-1921 (($ $ $) 67 (|has| |#1| (-862)))) (-4137 (($ $ $) 66 (|has| |#1| (-862)))) (-2551 (($ (-1 |#1| |#1|) $) 86)) (-1875 (((-937) $) 60 (|has| |#1| (-379)))) (-3733 (((-1177) $) 10)) (-4333 (($ $) 70 (|has| |#1| (-374)))) (-4318 (($ (-937)) 59 (|has| |#1| (-379)))) (-2180 ((|#1| $) 81)) (-2191 ((|#1| $) 82)) (-2201 ((|#1| $) 83)) (-3243 ((|#1| $) 77)) (-3253 ((|#1| $) 78)) (-3264 ((|#1| $) 79)) (-2168 ((|#1| $) 80)) (-3914 (((-1138) $) 11)) (-3049 (($ $ (-656 |#1|) (-656 |#1|)) 92 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 90 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 89 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 88 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 87 (|has| |#1| (-526 (-1195) |#1|)))) (-2071 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|)))) (-2616 (((-548) $) 68 (|has| |#1| (-626 (-548))))) (-3276 (($ $) 85)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (|has| |#1| (-1056 (-419 (-576)))))) (-3148 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-2610 ((|#1| $) 74 (|has| |#1| (-1078)))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3983 (((-112) $ $) 64 (|has| |#1| (-862)))) (-3957 (((-112) $ $) 63 (|has| |#1| (-862)))) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 65 (|has| |#1| (-862)))) (-3943 (((-112) $ $) 62 (|has| |#1| (-862)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-809 |#1|) (-141) (-174)) (T -809)) -((-3276 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2191 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2180 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1941 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2210 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1078)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3424 (*1 *2 *1) (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-4333 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -3276 ($ $)) (-15 -2488 (|t#1| $)) (-15 -2201 (|t#1| $)) (-15 -2191 (|t#1| $)) (-15 -2180 (|t#1| $)) (-15 -2168 (|t#1| $)) (-15 -3264 (|t#1| $)) (-15 -3253 (|t#1| $)) (-15 -3243 (|t#1| $)) (-15 -1941 (|t#1| $)) (-15 -2210 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1078)) (-15 -2610 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3413 ((-112) $)) (-15 -3404 ((-419 (-576)) $)) (-15 -3424 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -4333 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0=(-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-379) |has| |#1| (-379)) ((-349 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-1056 #0#) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) |has| |#1| (-296 |#1| |#1|))) -((-2551 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2551 (|#3| (-1 |#4| |#2|) |#1|))) (-809 |#2|) (-174) (-809 |#4|) (-174)) (T -810)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5))))) -(-10 -7 (-15 -2551 (|#3| (-1 |#4| |#2|) |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2416 (((-783)) NIL (|has| |#1| (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-1017 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-3766 (|has| (-1017 |#1|) (-1056 (-576))) (|has| |#1| (-1056 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-3766 (|has| (-1017 |#1|) (-1056 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-4401 ((|#1| $) NIL) (((-1017 |#1|) $) 33) (((-576) $) NIL (-3766 (|has| (-1017 |#1|) (-1056 (-576))) (|has| |#1| (-1056 (-576))))) (((-419 (-576)) $) NIL (-3766 (|has| (-1017 |#1|) (-1056 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-1999 (((-3 $ "failed") $) NIL)) (-2488 ((|#1| $) 16)) (-3424 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3413 (((-112) $) NIL (|has| |#1| (-557)))) (-3404 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-2080 (($) NIL (|has| |#1| (-379)))) (-1439 (((-112) $) NIL)) (-2210 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1017 |#1|) (-1017 |#1|)) 29)) (-1941 ((|#1| $) NIL)) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-1875 (((-937) $) NIL (|has| |#1| (-379)))) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL (|has| |#1| (-374)))) (-4318 (($ (-937)) NIL (|has| |#1| (-379)))) (-2180 ((|#1| $) 22)) (-2191 ((|#1| $) 20)) (-2201 ((|#1| $) 18)) (-3243 ((|#1| $) 26)) (-3253 ((|#1| $) 25)) (-3264 ((|#1| $) 24)) (-2168 ((|#1| $) 23)) (-3914 (((-1138) $) NIL)) (-3049 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-2071 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3276 (($ $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1017 |#1|)) 30) (($ (-419 (-576))) NIL (-3766 (|has| (-1017 |#1|) (-1056 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-2610 ((|#1| $) NIL (|has| |#1| (-1078)))) (-1996 (($) 8 T CONST)) (-2011 (($) 12 T CONST)) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-811 |#1|) (-13 (-809 |#1|) (-423 (-1017 |#1|)) (-10 -8 (-15 -2210 ($ (-1017 |#1|) (-1017 |#1|))))) (-174)) (T -811)) -((-2210 (*1 *1 *2 *2) (-12 (-5 *2 (-1017 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) -(-13 (-809 |#1|) (-423 (-1017 |#1|)) (-10 -8 (-15 -2210 ($ (-1017 |#1|) (-1017 |#1|))))) -((-2862 (((-112) $ $) 7)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2220 (((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-3915 (((-112) $ $) 6))) -(((-812) (-141)) (T -812)) -((-4037 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)))))) (-2220 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1053))))) -(-13 (-1118) (-10 -7 (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2220 ((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2231 (((-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) |#3| |#2| (-1195)) 19))) -(((-813 |#1| |#2| |#3|) (-10 -7 (-15 -2231 ((-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) |#3| |#2| (-1195)))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-975)) (-668 |#2|)) (T -813)) -((-2231 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1195)) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1221) (-975))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1898 (-656 *4)))) (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -2231 ((-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) |#3| |#2| (-1195)))) -((-1525 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1195)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1195)) 18) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -1898 (-656 (-1286 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1195)) 24) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -1898 (-656 (-1286 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1195)) 26) (((-3 (-656 (-1286 |#2|)) "failed") (-701 |#2|) (-1195)) 37) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -1898 (-656 (-1286 |#2|)))) "failed") (-701 |#2|) (-1286 |#2|) (-1195)) 35))) -(((-814 |#1| |#2|) (-10 -7 (-15 -1525 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -1898 (-656 (-1286 |#2|)))) "failed") (-701 |#2|) (-1286 |#2|) (-1195))) (-15 -1525 ((-3 (-656 (-1286 |#2|)) "failed") (-701 |#2|) (-1195))) (-15 -1525 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -1898 (-656 (-1286 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1195))) (-15 -1525 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -1898 (-656 (-1286 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1195))) (-15 -1525 ((-3 (-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1195))) (-15 -1525 ((-3 (-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1195))) (-15 -1525 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -1525 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-975))) (T -814)) -((-1525 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *1 (-814 *6 *2)))) (-1525 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1221) (-975))) (-5 *1 (-814 *6 *2)) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))))) (-1525 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1195)) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1898 (-656 *3))) *3 "failed")) (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1221) (-975))))) (-1525 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1898 (-656 *7))) *7 "failed")) (-5 *1 (-814 *6 *7)))) (-1525 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -1898 (-656 (-1286 *7))))) (-5 *1 (-814 *6 *7)))) (-1525 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -1898 (-656 (-1286 *7))))) (-5 *1 (-814 *6 *7)))) (-1525 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1195)) (-4 *6 (-13 (-29 *5) (-1221) (-975))) (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-1286 *6))) (-5 *1 (-814 *5 *6)))) (-1525 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -1898 (-656 (-1286 *7))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1286 *7))))) -(-10 -7 (-15 -1525 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -1898 (-656 (-1286 |#2|)))) "failed") (-701 |#2|) (-1286 |#2|) (-1195))) (-15 -1525 ((-3 (-656 (-1286 |#2|)) "failed") (-701 |#2|) (-1195))) (-15 -1525 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -1898 (-656 (-1286 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1195))) (-15 -1525 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -1898 (-656 (-1286 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1195))) (-15 -1525 ((-3 (-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1195))) (-15 -1525 ((-3 (-2 (|:| |particular| |#2|) (|:| -1898 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1195))) (-15 -1525 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -1525 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) -((-2240 (($) 9)) (-2274 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-2002 (((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-3807 (($ (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-2264 (($ (-656 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-2253 (((-1291)) 11))) -(((-815) (-10 -8 (-15 -2240 ($)) (-15 -2253 ((-1291))) (-15 -2002 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2264 ($ (-656 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -3807 ($ (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -2274 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -815)) -((-2274 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-815)))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-815)))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-815)))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-815)))) (-2253 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-815)))) (-2240 (*1 *1) (-5 *1 (-815)))) -(-10 -8 (-15 -2240 ($)) (-15 -2253 ((-1291))) (-15 -2002 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2264 ($ (-656 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -3807 ($ (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3180 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -2274 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-2523 ((|#2| |#2| (-1195)) 17)) (-2282 ((|#2| |#2| (-1195)) 56)) (-2293 (((-1 |#2| |#2|) (-1195)) 11))) -(((-816 |#1| |#2|) (-10 -7 (-15 -2523 (|#2| |#2| (-1195))) (-15 -2282 (|#2| |#2| (-1195))) (-15 -2293 ((-1 |#2| |#2|) (-1195)))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-975))) (T -816)) -((-2293 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) (-4 *5 (-13 (-29 *4) (-1221) (-975))))) (-2282 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-975))))) (-2523 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-975)))))) -(-10 -7 (-15 -2523 (|#2| |#2| (-1195))) (-15 -2282 (|#2| |#2| (-1195))) (-15 -2293 ((-1 |#2| |#2|) (-1195)))) -((-1525 (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390)) 128) (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390)) 129) (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390)) 131) (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390)) 133) (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390)) 134) (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390))) 136) (((-1053) (-820) (-1081)) 120) (((-1053) (-820)) 121)) (-4037 (((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820) (-1081)) 80) (((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820)) 82))) -(((-817) (-10 -7 (-15 -1525 ((-1053) (-820))) (-15 -1525 ((-1053) (-820) (-1081))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820) (-1081))))) (T -817)) -((-4037 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1081)) (-5 *2 (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-817)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-817)))) (-1525 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-1525 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-1525 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-1525 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-1525 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-1525 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1053)) (-5 *1 (-817))))) -(-10 -7 (-15 -1525 ((-1053) (-820))) (-15 -1525 ((-1053) (-820) (-1081))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -1525 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820) (-1081)))) -((-2305 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1898 (-656 |#4|))) (-665 |#4|) |#4|) 33))) -(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2305 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1898 (-656 |#4|))) (-665 |#4|) |#4|))) (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -818)) -((-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) (-5 *1 (-818 *5 *6 *7 *4))))) -(-10 -7 (-15 -2305 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1898 (-656 |#4|))) (-665 |#4|) |#4|))) -((-2615 (((-2 (|:| -2572 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))) 53)) (-2223 (((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#4| |#2|) 62) (((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#4|) 61) (((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#3| |#2|) 20) (((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#3|) 21)) (-2234 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2213 ((|#2| |#3| (-656 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2213 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -2213 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -2223 ((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#3|)) (-15 -2223 ((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#3| |#2|)) (-15 -2234 (|#2| |#3| |#1|)) (-15 -2223 ((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#4|)) (-15 -2223 ((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#4| |#2|)) (-15 -2234 (|#2| |#4| |#1|)) (-15 -2615 ((-2 (|:| -2572 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1056 (-419 (-576)))) (-1262 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -819)) -((-2615 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-2 (|:| -2572 *7) (|:| |rh| (-656 (-419 *6))))) (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) (-2234 (*1 *2 *3 *4) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-668 *2)) (-4 *3 (-668 (-419 *2))))) (-2223 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -1752 *4) (|:| -2677 *4)))) (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) (-4 *3 (-668 (-419 *4))))) (-2223 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -1752 *5) (|:| -2677 *5)))) (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 (-419 *5))))) (-2234 (*1 *2 *3 *4) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))) (-2223 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -1752 *4) (|:| -2677 *4)))) (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) (-4 *6 (-668 (-419 *4))))) (-2223 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -1752 *5) (|:| -2677 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1262 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 (-419 *2))))) (-2213 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 *4))))) -(-10 -7 (-15 -2213 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -2213 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -2223 ((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#3|)) (-15 -2223 ((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#3| |#2|)) (-15 -2234 (|#2| |#3| |#1|)) (-15 -2223 ((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#4|)) (-15 -2223 ((-656 (-2 (|:| -1752 |#2|) (|:| -2677 |#2|))) |#4| |#2|)) (-15 -2234 (|#2| |#4| |#1|)) (-15 -2615 ((-2 (|:| -2572 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) -((-2862 (((-112) $ $) NIL)) (-4401 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-820) (-13 (-1118) (-10 -8 (-15 -2884 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4401 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -820)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))) (-4401 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820))))) -(-13 (-1118) (-10 -8 (-15 -2884 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4401 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) -((-2319 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2572 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1191 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-2331 (((-656 (-2 (|:| |poly| |#2|) (|:| -2572 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 52)) (-2256 (((-656 (-2 (|:| |deg| (-783)) (|:| -2572 |#2|))) |#3|) 122)) (-2244 ((|#2| |#3|) 42)) (-2267 (((-656 (-2 (|:| -3739 |#1|) (|:| -2572 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 99)) (-2277 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96))) -(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2244 (|#2| |#3|)) (-15 -2256 ((-656 (-2 (|:| |deg| (-783)) (|:| -2572 |#2|))) |#3|)) (-15 -2267 ((-656 (-2 (|:| -3739 |#1|) (|:| -2572 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2331 ((-656 (-2 (|:| |poly| |#2|) (|:| -2572 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2319 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2572 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1191 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2277 (|#3| |#3| |#2|)) (-15 -2277 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1056 (-419 (-576)))) (-1262 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -821)) -((-2277 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))) (-2277 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-1262 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) (-4 *5 (-668 (-419 *3))))) (-2319 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-656 *7) *7 (-1191 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -2572 *3)))) (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) (-4 *8 (-668 (-419 *7))))) (-2331 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -2572 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-2267 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -3739 *5) (|:| -2572 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-2256 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -2572 *5)))) (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-2244 (*1 *2 *3) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-821 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2)))))) -(-10 -7 (-15 -2244 (|#2| |#3|)) (-15 -2256 ((-656 (-2 (|:| |deg| (-783)) (|:| -2572 |#2|))) |#3|)) (-15 -2267 ((-656 (-2 (|:| -3739 |#1|) (|:| -2572 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2331 ((-656 (-2 (|:| |poly| |#2|) (|:| -2572 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2319 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2572 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1191 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2277 (|#3| |#3| |#2|)) (-15 -2277 (|#3| |#3| (-419 |#2|)))) -((-2285 (((-2 (|:| -1898 (-656 (-419 |#2|))) (|:| -2869 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|))) 147) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1898 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|)) 146) (((-2 (|:| -1898 (-656 (-419 |#2|))) (|:| -2869 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|))) 141) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1898 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|)) 139)) (-2296 ((|#2| (-666 |#2| (-419 |#2|))) 88) ((|#2| (-665 (-419 |#2|))) 91))) -(((-822 |#1| |#2|) (-10 -7 (-15 -2285 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1898 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2285 ((-2 (|:| -1898 (-656 (-419 |#2|))) (|:| -2869 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2285 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1898 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2285 ((-2 (|:| -1898 (-656 (-419 |#2|))) (|:| -2869 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2296 (|#2| (-665 (-419 |#2|)))) (-15 -2296 (|#2| (-666 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))) (-1262 |#1|)) (T -822)) -((-2296 (*1 *2 *3) (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))))) (-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-2 (|:| -1898 (-656 (-419 *6))) (|:| -2869 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) (-5 *1 (-822 *5 *6)))) (-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-2 (|:| -1898 (-656 (-419 *6))) (|:| -2869 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) (-5 *1 (-822 *5 *6))))) -(-10 -7 (-15 -2285 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1898 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2285 ((-2 (|:| -1898 (-656 (-419 |#2|))) (|:| -2869 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2285 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1898 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2285 ((-2 (|:| -1898 (-656 (-419 |#2|))) (|:| -2869 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2296 (|#2| (-665 (-419 |#2|)))) (-15 -2296 (|#2| (-666 |#2| (-419 |#2|))))) -((-2308 (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) |#5| |#4|) 49))) -(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2308 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) |#5| |#4|))) (-374) (-668 |#1|) (-1262 |#1|) (-736 |#1| |#3|) (-668 |#4|)) (T -823)) -((-2308 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1262 *5)) (-4 *4 (-736 *5 *7)) (-5 *2 (-2 (|:| -2869 (-701 *6)) (|:| |vec| (-1286 *5)))) (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -2308 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) |#5| |#4|))) -((-2319 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2572 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-2341 (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 39) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 37)) (-2331 (((-656 (-2 (|:| |poly| |#2|) (|:| -2572 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 96))) -(((-824 |#1| |#2|) (-10 -7 (-15 -2341 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2341 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2341 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2341 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2319 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2572 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2331 ((-656 (-2 (|:| |poly| |#2|) (|:| -2572 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2341 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -2341 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2341 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -2341 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))) (-1262 |#1|)) (T -824)) -((-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -2572 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-2319 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *6)) (|:| -2572 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-2341 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-2341 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) -(-10 -7 (-15 -2341 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2341 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2341 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -2341 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2319 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2572 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2331 ((-656 (-2 (|:| |poly| |#2|) (|:| -2572 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2341 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -2341 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2341 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -2341 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) -((-2351 (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) (-701 |#2|) (-1286 |#1|)) 110) (((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)) (|:| -2572 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1286 |#1|)) 15)) (-2361 (((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|)))) (-701 |#2|) (-1286 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1898 (-656 |#1|))) |#2| |#1|)) 116)) (-1525 (((-3 (-2 (|:| |particular| (-1286 |#1|)) (|:| -1898 (-701 |#1|))) "failed") (-701 |#1|) (-1286 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1898 (-656 |#1|))) "failed") |#2| |#1|)) 54))) -(((-825 |#1| |#2|) (-10 -7 (-15 -2351 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)) (|:| -2572 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1286 |#1|))) (-15 -2351 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) (-701 |#2|) (-1286 |#1|))) (-15 -1525 ((-3 (-2 (|:| |particular| (-1286 |#1|)) (|:| -1898 (-701 |#1|))) "failed") (-701 |#1|) (-1286 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1898 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -2361 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|)))) (-701 |#2|) (-1286 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1898 (-656 |#1|))) |#2| |#1|)))) (-374) (-668 |#1|)) (T -825)) -((-2361 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1898 (-656 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *6) "failed")) (|:| -1898 (-656 (-1286 *6))))) (-5 *1 (-825 *6 *7)) (-5 *4 (-1286 *6)))) (-1525 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1898 (-656 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-1286 *6)) (|:| -1898 (-701 *6)))) (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *6)))) (-2351 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) (-5 *2 (-2 (|:| -2869 (-701 *6)) (|:| |vec| (-1286 *5)))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *5)))) (-2351 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-701 *5)) (|:| |eqs| (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5)) (|:| -2572 *6) (|:| |rh| *5)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *6 (-668 *5))))) -(-10 -7 (-15 -2351 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)) (|:| -2572 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1286 |#1|))) (-15 -2351 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) (-701 |#2|) (-1286 |#1|))) (-15 -1525 ((-3 (-2 (|:| |particular| (-1286 |#1|)) (|:| -1898 (-701 |#1|))) "failed") (-701 |#1|) (-1286 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1898 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -2361 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -1898 (-656 (-1286 |#1|)))) (-701 |#2|) (-1286 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1898 (-656 |#1|))) |#2| |#1|)))) -((-2371 (((-701 |#1|) (-656 |#1|) (-783)) 14) (((-701 |#1|) (-656 |#1|)) 15)) (-2383 (((-3 (-1286 |#1|) "failed") |#2| |#1| (-656 |#1|)) 39)) (-3419 (((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)) 46))) -(((-826 |#1| |#2|) (-10 -7 (-15 -2371 ((-701 |#1|) (-656 |#1|))) (-15 -2371 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2383 ((-3 (-1286 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -3419 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -826)) -((-3419 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) (-2383 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1286 *4)) (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4))))) -(-10 -7 (-15 -2371 ((-701 |#1|) (-656 |#1|))) (-15 -2371 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2383 ((-3 (-1286 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -3419 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) -((-2862 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-1389 (((-112) $) NIL (-3766 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-3533 (($ (-937)) NIL (|has| |#2| (-1067)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2158 (($ $ $) NIL (|has| |#2| (-805)))) (-1459 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2970 (((-112) $ (-783)) NIL)) (-2416 (((-783)) NIL (|has| |#2| (-379)))) (-3055 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1118)))) (-4401 (((-576) $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) ((|#2| $) NIL (|has| |#2| (-1118)))) (-2613 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-1286 $)) NIL (|has| |#2| (-1067)))) (-1999 (((-3 $ "failed") $) NIL (|has| |#2| (-1067)))) (-2080 (($) NIL (|has| |#2| (-379)))) (-2859 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#2| $ (-576)) NIL)) (-4001 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-1439 (((-112) $) NIL (|has| |#2| (-1067)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#2| (-862)))) (-1496 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#2| (-862)))) (-2848 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-1875 (((-937) $) NIL (|has| |#2| (-379)))) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#2| (-1118)))) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-4318 (($ (-937)) NIL (|has| |#2| (-379)))) (-3914 (((-1138) $) NIL (|has| |#2| (-1118)))) (-1962 ((|#2| $) NIL (|has| (-576) (-862)))) (-3346 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-2165 ((|#2| $ $) NIL (|has| |#2| (-1067)))) (-1982 (($ (-1286 |#2|)) NIL)) (-1543 (((-135)) NIL (|has| |#2| (-374)))) (-2390 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3926 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-1286 |#2|) $) NIL) (($ (-576)) NIL (-3766 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (($ |#2|) NIL (|has| |#2| (-1118))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-1871 (((-783)) NIL (|has| |#2| (-1067)) CONST)) (-3722 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-2492 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1996 (($) NIL (-3766 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2011 (($) NIL (|has| |#2| (-1067)) CONST)) (-3431 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3983 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3943 (((-112) $ $) 11 (|has| |#2| (-862)))) (-4039 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4029 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4017 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1067))) (($ $ (-937)) NIL (|has| |#2| (-1067)))) (* (($ $ $) NIL (|has| |#2| (-1067))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-937) $) NIL (|has| |#2| (-25)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-827 |#1| |#2| |#3|) (-244 |#1| |#2|) (-783) (-805) (-1 (-112) (-1286 |#2|) (-1286 |#2|))) (T -827)) -NIL -(-244 |#1| |#2|) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1726 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1195)) NIL)) (-2092 (((-783) $) NIL) (((-783) $ (-1195)) NIL)) (-1607 (((-656 (-830 (-1195))) $) NIL)) (-3467 (((-1191 $) $ (-830 (-1195))) NIL) (((-1191 |#1|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 (-830 (-1195)))) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2944 (($ $) NIL (|has| |#1| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-1706 (($ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-830 (-1195)) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL) (((-3 (-1143 |#1| (-1195)) "failed") $) NIL)) (-4401 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-830 (-1195)) $) NIL) (((-1195) $) NIL) (((-1143 |#1| (-1195)) $) NIL)) (-2778 (($ $ $ (-830 (-1195))) NIL (|has| |#1| (-174)))) (-4407 (($ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1195))) NIL (|has| |#1| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#1| (-925)))) (-3098 (($ $ |#1| (-543 (-830 (-1195))) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-830 (-1195)) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-830 (-1195)) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2927 (((-783) $ (-1195)) NIL) (((-783) $) NIL)) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-2437 (($ (-1191 |#1|) (-830 (-1195))) NIL) (($ (-1191 $) (-830 (-1195))) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-543 (-830 (-1195)))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-830 (-1195))) NIL)) (-1864 (((-543 (-830 (-1195))) $) NIL) (((-783) $ (-830 (-1195))) NIL) (((-656 (-783)) $ (-656 (-830 (-1195)))) NIL)) (-3109 (($ (-1 (-543 (-830 (-1195))) (-543 (-830 (-1195)))) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2102 (((-1 $ (-783)) (-1195)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-239)))) (-2788 (((-3 (-830 (-1195)) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2148 (((-830 (-1195)) $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3733 (((-1177) $) NIL)) (-1715 (((-112) $) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| (-830 (-1195))) (|:| -1359 (-783))) "failed") $) NIL)) (-2817 (($ $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) NIL)) (-4359 ((|#1| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-925)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-830 (-1195)) |#1|) NIL) (($ $ (-656 (-830 (-1195))) (-656 |#1|)) NIL) (($ $ (-830 (-1195)) $) NIL) (($ $ (-656 (-830 (-1195))) (-656 $)) NIL) (($ $ (-1195) $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 $)) NIL (|has| |#1| (-239))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-239)))) (-2790 (($ $ (-830 (-1195))) NIL (|has| |#1| (-174)))) (-2390 (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195)))) NIL) (($ $ (-830 (-1195))) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1737 (((-656 (-1195)) $) NIL)) (-3813 (((-543 (-830 (-1195))) $) NIL) (((-783) $ (-830 (-1195))) NIL) (((-656 (-783)) $ (-656 (-830 (-1195)))) NIL) (((-783) $ (-1195)) NIL)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| (-830 (-1195)) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-830 (-1195)) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-830 (-1195)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1841 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1195))) NIL (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-830 (-1195))) NIL) (($ (-1195)) NIL) (($ (-1143 |#1| (-1195))) NIL) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-543 (-830 (-1195)))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195)))) NIL) (($ $ (-830 (-1195))) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-828 |#1|) (-13 (-260 |#1| (-1195) (-830 (-1195)) (-543 (-830 (-1195)))) (-1056 (-1143 |#1| (-1195)))) (-1067)) (T -828)) -NIL -(-13 (-260 |#1| (-1195) (-830 (-1195)) (-543 (-830 (-1195)))) (-1056 (-1143 |#1| (-1195)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-4241 (($ $) NIL (|has| |#2| (-374)))) (-4221 (((-112) $) NIL (|has| |#2| (-374)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL (|has| |#2| (-374)))) (-3986 (((-430 $) $) NIL (|has| |#2| (-374)))) (-2922 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2473 (($) NIL T CONST)) (-2803 (($ $ $) NIL (|has| |#2| (-374)))) (-1999 (((-3 $ "failed") $) NIL)) (-2814 (($ $ $) NIL (|has| |#2| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-2463 (((-112) $) NIL (|has| |#2| (-374)))) (-1439 (((-112) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3888 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 20 (|has| |#2| (-374)))) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-374)))) (-3928 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-2354 (((-430 $) $) NIL (|has| |#2| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#2| (-374)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2910 (((-783) $) NIL (|has| |#2| (-374)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#2| (-374)))) (-2390 (($ $) 13) (($ $ (-783)) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#2| (-374)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $) NIL) (($ $ (-783)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) 15 (|has| |#2| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374))))) -(((-829 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) (-1118) (-914 |#1|) |#1|) (T -829)) -NIL -(-13 (-111 $ $) (-239) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) -((-2862 (((-112) $ $) NIL)) (-2092 (((-783) $) NIL)) (-1441 ((|#1| $) 10)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-2927 (((-783) $) 11)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-2102 (($ |#1| (-783)) 9)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2390 (($ $ (-783)) NIL) (($ $) NIL)) (-2884 (((-874) $) NIL) (($ |#1|) NIL)) (-3722 (((-112) $ $) NIL)) (-3431 (($ $ (-783)) NIL) (($ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) -(((-830 |#1|) (-275 |#1|) (-862)) (T -830)) -NIL -(-275 |#1|) -((-2862 (((-112) $ $) NIL)) (-3489 (((-656 |#1|) $) 38)) (-2416 (((-783) $) NIL)) (-2473 (($) NIL T CONST)) (-3745 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-1976 (($ $) 42)) (-1999 (((-3 $ "failed") $) NIL)) (-2117 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1439 (((-112) $) NIL)) (-2756 ((|#1| $ (-576)) NIL)) (-2766 (((-783) $ (-576)) NIL)) (-3725 (($ $) 54)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-2679 (($ (-1 |#1| |#1|) $) NIL)) (-2692 (($ (-1 (-783) (-783)) $) NIL)) (-3757 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2394 (((-112) $ $) 51)) (-1840 (((-783) $) 34)) (-3733 (((-1177) $) NIL)) (-2127 (($ $ $) NIL)) (-2138 (($ $ $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 ((|#1| $) 41)) (-4319 (((-656 (-2 (|:| |gen| |#1|) (|:| -2666 (-783)))) $) NIL)) (-4350 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2839 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2884 (((-874) $) NIL) (($ |#1|) NIL)) (-3722 (((-112) $ $) NIL)) (-2011 (($) 20 T CONST)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 53)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-831 |#1|) (-13 (-397 |#1|) (-858) (-10 -8 (-15 -1962 (|#1| $)) (-15 -1976 ($ $)) (-15 -3725 ($ $)) (-15 -2394 ((-112) $ $)) (-15 -3757 ((-3 $ "failed") $ |#1|)) (-15 -3745 ((-3 $ "failed") $ |#1|)) (-15 -2839 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1840 ((-783) $)) (-15 -3489 ((-656 |#1|) $)))) (-862)) (T -831)) -((-1962 (*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-1976 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-3725 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2394 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-3757 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-3745 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2839 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-862))))) -(-13 (-397 |#1|) (-858) (-10 -8 (-15 -1962 (|#1| $)) (-15 -1976 ($ $)) (-15 -3725 ($ $)) (-15 -2394 ((-112) $ $)) (-15 -3757 ((-3 $ "failed") $ |#1|)) (-15 -3745 ((-3 $ "failed") $ |#1|)) (-15 -2839 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1840 ((-783) $)) (-15 -3489 ((-656 |#1|) $)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-3966 (((-576) $) 59)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1370 (((-112) $) 57)) (-1439 (((-112) $) 35)) (-1379 (((-112) $) 58)) (-1921 (($ $ $) 56)) (-4137 (($ $ $) 55)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2852 (((-3 $ "failed") $ $) 48)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-2610 (($ $) 60)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3983 (((-112) $ $) 53)) (-3957 (((-112) $ $) 52)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 54)) (-3943 (((-112) $ $) 51)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-832) (-141)) (T -832)) -NIL -(-13 (-568) (-860)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2405 (($ (-1138)) 7)) (-2460 (((-112) $ (-1177) (-1138)) 15)) (-2446 (((-834) $) 12)) (-2435 (((-834) $) 11)) (-2418 (((-1291) $) 9)) (-2470 (((-112) $ (-1138)) 16))) -(((-833) (-10 -8 (-15 -2405 ($ (-1138))) (-15 -2418 ((-1291) $)) (-15 -2435 ((-834) $)) (-15 -2446 ((-834) $)) (-15 -2460 ((-112) $ (-1177) (-1138))) (-15 -2470 ((-112) $ (-1138))))) (T -833)) -((-2470 (*1 *2 *1 *3) (-12 (-5 *3 (-1138)) (-5 *2 (-112)) (-5 *1 (-833)))) (-2460 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-1138)) (-5 *2 (-112)) (-5 *1 (-833)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-833)))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-833))))) -(-10 -8 (-15 -2405 ($ (-1138))) (-15 -2418 ((-1291) $)) (-15 -2435 ((-834) $)) (-15 -2446 ((-834) $)) (-15 -2460 ((-112) $ (-1177) (-1138))) (-15 -2470 ((-112) $ (-1138)))) -((-2522 (((-1291) $ (-835)) 12)) (-2723 (((-1291) $ (-1195)) 32)) (-2743 (((-1291) $ (-1177) (-1177)) 34)) (-2733 (((-1291) $ (-1177)) 33)) (-2612 (((-1291) $) 19)) (-2701 (((-1291) $ (-576)) 28)) (-2711 (((-1291) $ (-227)) 30)) (-2601 (((-1291) $) 18)) (-2691 (((-1291) $) 26)) (-2680 (((-1291) $) 25)) (-2656 (((-1291) $) 23)) (-2668 (((-1291) $) 24)) (-2646 (((-1291) $) 22)) (-2636 (((-1291) $) 21)) (-2624 (((-1291) $) 20)) (-2576 (((-1291) $) 16)) (-2590 (((-1291) $) 17)) (-2562 (((-1291) $) 15)) (-2547 (((-1291) $) 14)) (-2536 (((-1291) $) 13)) (-2499 (($ (-1177) (-835)) 9)) (-2484 (($ (-1177) (-1177) (-835)) 8)) (-1644 (((-1195) $) 51)) (-1676 (((-1195) $) 55)) (-1666 (((-2 (|:| |cd| (-1177)) (|:| -1778 (-1177))) $) 54)) (-1656 (((-1177) $) 52)) (-2825 (((-1291) $) 41)) (-1624 (((-576) $) 49)) (-1636 (((-227) $) 50)) (-2813 (((-1291) $) 40)) (-1611 (((-1291) $) 48)) (-1598 (((-1291) $) 47)) (-1576 (((-1291) $) 45)) (-1589 (((-1291) $) 46)) (-1562 (((-1291) $) 44)) (-2850 (((-1291) $) 43)) (-2838 (((-1291) $) 42)) (-2787 (((-1291) $) 38)) (-2801 (((-1291) $) 39)) (-2775 (((-1291) $) 37)) (-2765 (((-1291) $) 36)) (-2755 (((-1291) $) 35)) (-2510 (((-1291) $) 11))) -(((-834) (-10 -8 (-15 -2484 ($ (-1177) (-1177) (-835))) (-15 -2499 ($ (-1177) (-835))) (-15 -2510 ((-1291) $)) (-15 -2522 ((-1291) $ (-835))) (-15 -2536 ((-1291) $)) (-15 -2547 ((-1291) $)) (-15 -2562 ((-1291) $)) (-15 -2576 ((-1291) $)) (-15 -2590 ((-1291) $)) (-15 -2601 ((-1291) $)) (-15 -2612 ((-1291) $)) (-15 -2624 ((-1291) $)) (-15 -2636 ((-1291) $)) (-15 -2646 ((-1291) $)) (-15 -2656 ((-1291) $)) (-15 -2668 ((-1291) $)) (-15 -2680 ((-1291) $)) (-15 -2691 ((-1291) $)) (-15 -2701 ((-1291) $ (-576))) (-15 -2711 ((-1291) $ (-227))) (-15 -2723 ((-1291) $ (-1195))) (-15 -2733 ((-1291) $ (-1177))) (-15 -2743 ((-1291) $ (-1177) (-1177))) (-15 -2755 ((-1291) $)) (-15 -2765 ((-1291) $)) (-15 -2775 ((-1291) $)) (-15 -2787 ((-1291) $)) (-15 -2801 ((-1291) $)) (-15 -2813 ((-1291) $)) (-15 -2825 ((-1291) $)) (-15 -2838 ((-1291) $)) (-15 -2850 ((-1291) $)) (-15 -1562 ((-1291) $)) (-15 -1576 ((-1291) $)) (-15 -1589 ((-1291) $)) (-15 -1598 ((-1291) $)) (-15 -1611 ((-1291) $)) (-15 -1624 ((-576) $)) (-15 -1636 ((-227) $)) (-15 -1644 ((-1195) $)) (-15 -1656 ((-1177) $)) (-15 -1666 ((-2 (|:| |cd| (-1177)) (|:| -1778 (-1177))) $)) (-15 -1676 ((-1195) $)))) (T -834)) -((-1676 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1177)) (|:| -1778 (-1177)))) (-5 *1 (-834)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-834)))) (-1644 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2825 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2765 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2743 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-2733 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-2723 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-2711 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-2701 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2522 (*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2499 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834)))) (-2484 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834))))) -(-10 -8 (-15 -2484 ($ (-1177) (-1177) (-835))) (-15 -2499 ($ (-1177) (-835))) (-15 -2510 ((-1291) $)) (-15 -2522 ((-1291) $ (-835))) (-15 -2536 ((-1291) $)) (-15 -2547 ((-1291) $)) (-15 -2562 ((-1291) $)) (-15 -2576 ((-1291) $)) (-15 -2590 ((-1291) $)) (-15 -2601 ((-1291) $)) (-15 -2612 ((-1291) $)) (-15 -2624 ((-1291) $)) (-15 -2636 ((-1291) $)) (-15 -2646 ((-1291) $)) (-15 -2656 ((-1291) $)) (-15 -2668 ((-1291) $)) (-15 -2680 ((-1291) $)) (-15 -2691 ((-1291) $)) (-15 -2701 ((-1291) $ (-576))) (-15 -2711 ((-1291) $ (-227))) (-15 -2723 ((-1291) $ (-1195))) (-15 -2733 ((-1291) $ (-1177))) (-15 -2743 ((-1291) $ (-1177) (-1177))) (-15 -2755 ((-1291) $)) (-15 -2765 ((-1291) $)) (-15 -2775 ((-1291) $)) (-15 -2787 ((-1291) $)) (-15 -2801 ((-1291) $)) (-15 -2813 ((-1291) $)) (-15 -2825 ((-1291) $)) (-15 -2838 ((-1291) $)) (-15 -2850 ((-1291) $)) (-15 -1562 ((-1291) $)) (-15 -1576 ((-1291) $)) (-15 -1589 ((-1291) $)) (-15 -1598 ((-1291) $)) (-15 -1611 ((-1291) $)) (-15 -1624 ((-576) $)) (-15 -1636 ((-227) $)) (-15 -1644 ((-1195) $)) (-15 -1656 ((-1177) $)) (-15 -1666 ((-2 (|:| |cd| (-1177)) (|:| -1778 (-1177))) $)) (-15 -1676 ((-1195) $))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 13)) (-3722 (((-112) $ $) NIL)) (-1712 (($) 16)) (-1722 (($) 14)) (-1701 (($) 17)) (-1688 (($) 15)) (-3915 (((-112) $ $) 9))) -(((-835) (-13 (-1118) (-10 -8 (-15 -1722 ($)) (-15 -1712 ($)) (-15 -1701 ($)) (-15 -1688 ($))))) (T -835)) -((-1722 (*1 *1) (-5 *1 (-835))) (-1712 (*1 *1) (-5 *1 (-835))) (-1701 (*1 *1) (-5 *1 (-835))) (-1688 (*1 *1) (-5 *1 (-835)))) -(-13 (-1118) (-10 -8 (-15 -1722 ($)) (-15 -1712 ($)) (-15 -1701 ($)) (-15 -1688 ($)))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 23) (($ (-1195)) 19)) (-3722 (((-112) $ $) NIL)) (-1780 (((-112) $) 10)) (-1791 (((-112) $) 9)) (-1769 (((-112) $) 11)) (-1803 (((-112) $) 8)) (-3915 (((-112) $ $) 21))) -(((-836) (-13 (-1118) (-10 -8 (-15 -2884 ($ (-1195))) (-15 -1803 ((-112) $)) (-15 -1791 ((-112) $)) (-15 -1780 ((-112) $)) (-15 -1769 ((-112) $))))) (T -836)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-836)))) (-1803 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-1791 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(-13 (-1118) (-10 -8 (-15 -2884 ($ (-1195))) (-15 -1803 ((-112) $)) (-15 -1791 ((-112) $)) (-15 -1780 ((-112) $)) (-15 -1769 ((-112) $)))) -((-2862 (((-112) $ $) NIL)) (-1733 (($ (-836) (-656 (-1195))) 32)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1757 (((-836) $) 33)) (-1745 (((-656 (-1195)) $) 34)) (-2884 (((-874) $) 31)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-837) (-13 (-1118) (-10 -8 (-15 -1757 ((-836) $)) (-15 -1745 ((-656 (-1195)) $)) (-15 -1733 ($ (-836) (-656 (-1195))))))) (T -837)) -((-1757 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-837)))) (-1733 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1195))) (-5 *1 (-837))))) -(-13 (-1118) (-10 -8 (-15 -1757 ((-836) $)) (-15 -1745 ((-656 (-1195)) $)) (-15 -1733 ($ (-836) (-656 (-1195)))))) -((-1813 (((-1291) (-834) (-326 |#1|) (-112)) 23) (((-1291) (-834) (-326 |#1|)) 89) (((-1177) (-326 |#1|) (-112)) 88) (((-1177) (-326 |#1|)) 87))) -(((-838 |#1|) (-10 -7 (-15 -1813 ((-1177) (-326 |#1|))) (-15 -1813 ((-1177) (-326 |#1|) (-112))) (-15 -1813 ((-1291) (-834) (-326 |#1|))) (-15 -1813 ((-1291) (-834) (-326 |#1|) (-112)))) (-13 (-840) (-1067))) (T -838)) -((-1813 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-840) (-1067))) (-5 *2 (-1291)) (-5 *1 (-838 *6)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1067))) (-5 *2 (-1291)) (-5 *1 (-838 *5)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1067))) (-5 *2 (-1177)) (-5 *1 (-838 *5)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1067))) (-5 *2 (-1177)) (-5 *1 (-838 *4))))) -(-10 -7 (-15 -1813 ((-1177) (-326 |#1|))) (-15 -1813 ((-1177) (-326 |#1|) (-112))) (-15 -1813 ((-1291) (-834) (-326 |#1|))) (-15 -1813 ((-1291) (-834) (-326 |#1|) (-112)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-1823 ((|#1| $) 10)) (-1577 (($ |#1|) 9)) (-1439 (((-112) $) NIL)) (-2421 (($ |#2| (-783)) NIL)) (-1864 (((-783) $) NIL)) (-4383 ((|#2| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2390 (($ $) NIL (|has| |#1| (-239))) (($ $ (-783)) NIL (|has| |#1| (-239)))) (-3813 (((-783) $) NIL)) (-2884 (((-874) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-3245 ((|#2| $ (-783)) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $) NIL (|has| |#1| (-239))) (($ $ (-783)) NIL (|has| |#1| (-239)))) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-839 |#1| |#2|) (-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -1577 ($ |#1|)) (-15 -1823 (|#1| $)))) (-720 |#2|) (-1067)) (T -839)) -((-1577 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))) (-1823 (*1 *2 *1) (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1067))))) -(-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -1577 ($ |#1|)) (-15 -1823 (|#1| $)))) -((-1813 (((-1291) (-834) $ (-112)) 9) (((-1291) (-834) $) 8) (((-1177) $ (-112)) 7) (((-1177) $) 6))) -(((-840) (-141)) (T -840)) -((-1813 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1291)))) (-1813 (*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1291)))) (-1813 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1177)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1177))))) -(-13 (-10 -8 (-15 -1813 ((-1177) $)) (-15 -1813 ((-1177) $ (-112))) (-15 -1813 ((-1291) (-834) $)) (-15 -1813 ((-1291) (-834) $ (-112))))) -((-1914 (((-322) (-1177) (-1177)) 12)) (-1903 (((-112) (-1177) (-1177)) 34)) (-1892 (((-112) (-1177)) 33)) (-1858 (((-52) (-1177)) 25)) (-1845 (((-52) (-1177)) 23)) (-1833 (((-52) (-834)) 17)) (-1880 (((-656 (-1177)) (-1177)) 28)) (-1869 (((-656 (-1177))) 27))) -(((-841) (-10 -7 (-15 -1833 ((-52) (-834))) (-15 -1845 ((-52) (-1177))) (-15 -1858 ((-52) (-1177))) (-15 -1869 ((-656 (-1177)))) (-15 -1880 ((-656 (-1177)) (-1177))) (-15 -1892 ((-112) (-1177))) (-15 -1903 ((-112) (-1177) (-1177))) (-15 -1914 ((-322) (-1177) (-1177))))) (T -841)) -((-1914 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-841)))) (-1903 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841)))) (-1880 (*1 *2 *3) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841)) (-5 *3 (-1177)))) (-1869 (*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) -(-10 -7 (-15 -1833 ((-52) (-834))) (-15 -1845 ((-52) (-1177))) (-15 -1858 ((-52) (-1177))) (-15 -1869 ((-656 (-1177)))) (-15 -1880 ((-656 (-1177)) (-1177))) (-15 -1892 ((-112) (-1177))) (-15 -1903 ((-112) (-1177) (-1177))) (-15 -1914 ((-322) (-1177) (-1177)))) -((-2862 (((-112) $ $) 19)) (-1645 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3682 (($ $ $) 73)) (-3672 (((-112) $ $) 74)) (-2970 (((-112) $ (-783)) 8)) (-1330 (($ (-656 |#1|)) 69) (($) 68)) (-1443 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-2257 (($ $) 63)) (-1919 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2833 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3634 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3712 (((-112) $ $) 65)) (-2408 (((-112) $ (-783)) 9)) (-1921 ((|#1| $) 79)) (-2230 (($ $ $) 82)) (-4214 (($ $ $) 81)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-4137 ((|#1| $) 80)) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22)) (-3703 (($ $ $) 70)) (-3449 ((|#1| $) 40)) (-3807 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3914 (((-1138) $) 21)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3458 ((|#1| $) 42)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2245 (((-656 (-2 (|:| -3180 |#1|) (|:| -3926 (-783)))) $) 62)) (-3693 (($ $ |#1|) 72) (($ $ $) 71)) (-1581 (($) 50) (($ (-656 |#1|)) 49)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 51)) (-2884 (((-874) $) 18)) (-2557 (($ (-656 |#1|)) 67) (($) 66)) (-3722 (((-112) $ $) 23)) (-3541 (($ (-656 |#1|)) 43)) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20)) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-842 |#1|) (-141) (-862)) (T -842)) -((-1921 (*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-862))))) -(-13 (-748 |t#1|) (-986 |t#1|) (-10 -8 (-15 -1921 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-241 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-707 |#1|) . T) ((-748 |#1|) . T) ((-986 |#1|) . T) ((-1116 |#1|) . T) ((-1118) . T) ((-1236) . T)) -((-1952 (((-1291) (-1138) (-1138)) 48)) (-1939 (((-1291) (-833) (-52)) 45)) (-1927 (((-52) (-833)) 16))) -(((-843) (-10 -7 (-15 -1927 ((-52) (-833))) (-15 -1939 ((-1291) (-833) (-52))) (-15 -1952 ((-1291) (-1138) (-1138))))) (T -843)) -((-1952 (*1 *2 *3 *3) (-12 (-5 *3 (-1138)) (-5 *2 (-1291)) (-5 *1 (-843)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1291)) (-5 *1 (-843)))) (-1927 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) -(-10 -7 (-15 -1927 ((-52) (-833))) (-15 -1939 ((-1291) (-833) (-52))) (-15 -1952 ((-1291) (-1138) (-1138)))) -((-2551 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)) 12) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 13))) -(((-844 |#1| |#2|) (-10 -7 (-15 -2551 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -2551 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) (-1118) (-1118)) (T -844)) -((-2551 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *1 (-844 *5 *6)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))) -(-10 -7 (-15 -2551 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -2551 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL (|has| |#1| (-21)))) (-1459 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3966 (((-576) $) NIL (|has| |#1| (-860)))) (-2473 (($) NIL (|has| |#1| (-21)) CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 9)) (-1999 (((-3 $ "failed") $) 42 (|has| |#1| (-860)))) (-3424 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-3413 (((-112) $) 46 (|has| |#1| (-557)))) (-3404 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-1370 (((-112) $) NIL (|has| |#1| (-860)))) (-1439 (((-112) $) NIL (|has| |#1| (-860)))) (-1379 (((-112) $) NIL (|has| |#1| (-860)))) (-1921 (($ $ $) NIL (|has| |#1| (-860)))) (-4137 (($ $ $) NIL (|has| |#1| (-860)))) (-3733 (((-1177) $) NIL)) (-1641 (($) 13)) (-2098 (((-112) $) 12)) (-3914 (((-1138) $) NIL)) (-2108 (((-112) $) 11)) (-2884 (((-874) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-3766 (|has| |#1| (-860)) (|has| |#1| (-1056 (-576)))))) (-1871 (((-783)) 36 (|has| |#1| (-860)) CONST)) (-3722 (((-112) $ $) 54)) (-2610 (($ $) NIL (|has| |#1| (-860)))) (-1996 (($) 23 (|has| |#1| (-21)) CONST)) (-2011 (($) 33 (|has| |#1| (-860)) CONST)) (-3983 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3915 (((-112) $ $) 21)) (-3970 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3943 (((-112) $ $) 45 (|has| |#1| (-860)))) (-4029 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-4017 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-937)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 39 (|has| |#1| (-860))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-937) $) NIL (|has| |#1| (-21))))) -(((-845 |#1|) (-13 (-1118) (-423 |#1|) (-10 -8 (-15 -1641 ($)) (-15 -2108 ((-112) $)) (-15 -2098 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3413 ((-112) $)) (-15 -3404 ((-419 (-576)) $)) (-15 -3424 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1118)) (T -845)) -((-1641 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1118)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1118)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1118)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))) (-3424 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1118))))) -(-13 (-1118) (-423 |#1|) (-10 -8 (-15 -1641 ($)) (-15 -2108 ((-112) $)) (-15 -2098 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3413 ((-112) $)) (-15 -3404 ((-419 (-576)) $)) (-15 -3424 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-3657 (((-112) $ |#2|) 14)) (-2884 (((-874) $) 11))) -(((-846 |#1| |#2|) (-10 -8 (-15 -3657 ((-112) |#1| |#2|)) (-15 -2884 ((-874) |#1|))) (-847 |#2|) (-1118)) (T -846)) -NIL -(-10 -8 (-15 -3657 ((-112) |#1| |#2|)) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1778 ((|#1| $) 16)) (-3733 (((-1177) $) 10)) (-3657 (((-112) $ |#1|) 14)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2040 (((-55) $) 15)) (-3915 (((-112) $ $) 6))) -(((-847 |#1|) (-141) (-1118)) (T -847)) -((-1778 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1118)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1118)) (-5 *2 (-55)))) (-3657 (*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1118)) (-5 *2 (-112))))) -(-13 (-1118) (-10 -8 (-15 -1778 (|t#1| $)) (-15 -2040 ((-55) $)) (-15 -3657 ((-112) $ |t#1|)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-4401 ((|#1| $) NIL) (((-115) $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-1978 ((|#1| (-115) |#1|) NIL)) (-1439 (((-112) $) NIL)) (-1964 (($ |#1| (-372 (-115))) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1990 (($ $ (-1 |#1| |#1|)) NIL)) (-2003 (($ $ (-1 |#1| |#1|)) NIL)) (-2071 ((|#1| $ |#1|) NIL)) (-2017 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-2028 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-848 |#1|) (-13 (-1067) (-1056 |#1|) (-1056 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2028 ($ $)) (-15 -2028 ($ $ $)) (-15 -2017 (|#1| |#1|))) |%noBranch|) (-15 -2003 ($ $ (-1 |#1| |#1|))) (-15 -1990 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1978 (|#1| (-115) |#1|)) (-15 -1964 ($ |#1| (-372 (-115)))))) (-1067)) (T -848)) -((-2028 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067)))) (-2028 (*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067)))) (-2017 (*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067)))) (-2003 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-848 *3)))) (-1990 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-848 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1067)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1067)))) (-1978 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1067)))) (-1964 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1067))))) -(-13 (-1067) (-1056 |#1|) (-1056 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2028 ($ $)) (-15 -2028 ($ $ $)) (-15 -2017 (|#1| |#1|))) |%noBranch|) (-15 -2003 ($ $ (-1 |#1| |#1|))) (-15 -1990 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1978 (|#1| (-115) |#1|)) (-15 -1964 ($ |#1| (-372 (-115)))))) -((-2052 (((-216 (-514)) (-1177)) 9))) -(((-849) (-10 -7 (-15 -2052 ((-216 (-514)) (-1177))))) (T -849)) -((-2052 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) -(-10 -7 (-15 -2052 ((-216 (-514)) (-1177)))) -((-2862 (((-112) $ $) NIL)) (-1382 (((-1136) $) 10)) (-1778 (((-518) $) 9)) (-3733 (((-1177) $) NIL)) (-3657 (((-112) $ (-518)) NIL)) (-3914 (((-1138) $) NIL)) (-2895 (($ (-518) (-1136)) 8)) (-2884 (((-874) $) 25)) (-3722 (((-112) $ $) NIL)) (-2040 (((-55) $) 20)) (-3915 (((-112) $ $) 12))) -(((-850) (-13 (-847 (-518)) (-10 -8 (-15 -1382 ((-1136) $)) (-15 -2895 ($ (-518) (-1136)))))) (T -850)) -((-1382 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-850)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-850))))) -(-13 (-847 (-518)) (-10 -8 (-15 -1382 ((-1136) $)) (-15 -2895 ($ (-518) (-1136))))) -((-2862 (((-112) $ $) 7)) (-2064 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) 15) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 17) (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) 16)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-851) (-141)) (T -851)) -((-4037 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)))))) (-4037 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) (-5 *2 (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)))))) (-2064 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) (-5 *2 (-1053)))) (-2064 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-1053))))) -(-13 (-1118) (-10 -7 (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))) (-15 -2064 ((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))) (-15 -2064 ((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2589 (((-1053) (-656 (-326 (-390))) (-656 (-390))) 166) (((-1053) (-326 (-390)) (-656 (-390))) 164) (((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390)))) 162) (((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390)))) 160) (((-1053) (-853)) 125) (((-1053) (-853) (-1081)) 124)) (-4037 (((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853) (-1081)) 85) (((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853)) 87)) (-2076 (((-1053) (-656 (-326 (-390))) (-656 (-390))) 167) (((-1053) (-853)) 150))) -(((-852) (-10 -7 (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853) (-1081))) (-15 -2589 ((-1053) (-853) (-1081))) (-15 -2589 ((-1053) (-853))) (-15 -2076 ((-1053) (-853))) (-15 -2589 ((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -2589 ((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -2589 ((-1053) (-326 (-390)) (-656 (-390)))) (-15 -2589 ((-1053) (-656 (-326 (-390))) (-656 (-390)))) (-15 -2076 ((-1053) (-656 (-326 (-390))) (-656 (-390)))))) (T -852)) -((-2076 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2589 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2589 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-852)))) (-4037 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1081)) (-5 *2 (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-852)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-852))))) -(-10 -7 (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853) (-1081))) (-15 -2589 ((-1053) (-853) (-1081))) (-15 -2589 ((-1053) (-853))) (-15 -2076 ((-1053) (-853))) (-15 -2589 ((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -2589 ((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -2589 ((-1053) (-326 (-390)) (-656 (-390)))) (-15 -2589 ((-1053) (-656 (-326 (-390))) (-656 (-390)))) (-15 -2076 ((-1053) (-656 (-326 (-390))) (-656 (-390))))) -((-2862 (((-112) $ $) NIL)) (-4401 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))) $) 21)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14) (($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))))) 18)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-853) (-13 (-1118) (-10 -8 (-15 -2884 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2884 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))) (-15 -2884 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))))) (-15 -4401 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))) $))))) (T -853)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) (-5 *1 (-853)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))))) (-5 *1 (-853)))) (-4401 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))))) (-5 *1 (-853))))) -(-13 (-1118) (-10 -8 (-15 -2884 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2884 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))) (-15 -2884 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))))) (-15 -4401 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227)))))) $)))) -((-2551 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)) 13) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14))) -(((-854 |#1| |#2|) (-10 -7 (-15 -2551 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -2551 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) (-1118) (-1118)) (T -854)) -((-2551 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *1 (-854 *5 *6)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) -(-10 -7 (-15 -2551 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -2551 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL (|has| |#1| (-21)))) (-2088 (((-1138) $) 31)) (-1459 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3966 (((-576) $) NIL (|has| |#1| (-860)))) (-2473 (($) NIL (|has| |#1| (-21)) CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 9)) (-1999 (((-3 $ "failed") $) 58 (|has| |#1| (-860)))) (-3424 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-3413 (((-112) $) 60 (|has| |#1| (-557)))) (-3404 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-1370 (((-112) $) NIL (|has| |#1| (-860)))) (-2033 (($) 14)) (-1439 (((-112) $) NIL (|has| |#1| (-860)))) (-1379 (((-112) $) NIL (|has| |#1| (-860)))) (-2044 (($) 16)) (-1921 (($ $ $) NIL (|has| |#1| (-860)))) (-4137 (($ $ $) NIL (|has| |#1| (-860)))) (-3733 (((-1177) $) NIL)) (-2098 (((-112) $) 12)) (-3914 (((-1138) $) NIL)) (-2108 (((-112) $) 11)) (-2884 (((-874) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-3766 (|has| |#1| (-860)) (|has| |#1| (-1056 (-576)))))) (-1871 (((-783)) 51 (|has| |#1| (-860)) CONST)) (-3722 (((-112) $ $) NIL)) (-2610 (($ $) NIL (|has| |#1| (-860)))) (-1996 (($) 37 (|has| |#1| (-21)) CONST)) (-2011 (($) 48 (|has| |#1| (-860)) CONST)) (-3983 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3915 (((-112) $ $) 35)) (-3970 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3943 (((-112) $ $) 59 (|has| |#1| (-860)))) (-4029 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-4017 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-937)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 55 (|has| |#1| (-860))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-937) $) NIL (|has| |#1| (-21))))) -(((-855 |#1|) (-13 (-1118) (-423 |#1|) (-10 -8 (-15 -2033 ($)) (-15 -2044 ($)) (-15 -2108 ((-112) $)) (-15 -2098 ((-112) $)) (-15 -2088 ((-1138) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3413 ((-112) $)) (-15 -3404 ((-419 (-576)) $)) (-15 -3424 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1118)) (T -855)) -((-2033 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1118)))) (-2044 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1118)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1118)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1118)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-855 *3)) (-4 *3 (-1118)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))) (-3424 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1118))))) -(-13 (-1118) (-423 |#1|) (-10 -8 (-15 -2033 ($)) (-15 -2044 ($)) (-15 -2108 ((-112) $)) (-15 -2098 ((-112) $)) (-15 -2088 ((-1138) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3413 ((-112) $)) (-15 -3404 ((-419 (-576)) $)) (-15 -3424 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-2862 (((-112) $ $) 7)) (-2416 (((-783)) 23)) (-2080 (($) 26)) (-1921 (($ $ $) 14) (($) 22 T CONST)) (-4137 (($ $ $) 15) (($) 21 T CONST)) (-1875 (((-937) $) 25)) (-3733 (((-1177) $) 10)) (-4318 (($ (-937)) 24)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19))) -(((-856) (-141)) (T -856)) -((-1921 (*1 *1) (-4 *1 (-856))) (-4137 (*1 *1) (-4 *1 (-856)))) -(-13 (-862) (-379) (-10 -8 (-15 -1921 ($) -3739) (-15 -4137 ($) -3739))) -(((-102) . T) ((-625 (-874)) . T) ((-379) . T) ((-862) . T) ((-1118) . T)) -((-2128 (((-112) (-1286 |#2|) (-1286 |#2|)) 19)) (-2139 (((-112) (-1286 |#2|) (-1286 |#2|)) 20)) (-2118 (((-112) (-1286 |#2|) (-1286 |#2|)) 16))) -(((-857 |#1| |#2|) (-10 -7 (-15 -2118 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -2128 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -2139 ((-112) (-1286 |#2|) (-1286 |#2|)))) (-783) (-804)) (T -857)) -((-2139 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-2128 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-2118 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(-10 -7 (-15 -2118 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -2128 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -2139 ((-112) (-1286 |#2|) (-1286 |#2|)))) -((-2862 (((-112) $ $) 7)) (-2473 (($) 24 T CONST)) (-1999 (((-3 $ "failed") $) 27)) (-1439 (((-112) $) 25)) (-1921 (($ $ $) 14)) (-4137 (($ $ $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2011 (($) 23 T CONST)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (** (($ $ (-937)) 22) (($ $ (-783)) 26)) (* (($ $ $) 21))) -(((-858) (-141)) (T -858)) -NIL -(-13 (-869) (-738)) -(((-102) . T) ((-625 (-874)) . T) ((-738) . T) ((-869) . T) ((-862) . T) ((-1130) . T) ((-1118) . T)) -((-3966 (((-576) $) 21)) (-1370 (((-112) $) 10)) (-1379 (((-112) $) 12)) (-2610 (($ $) 23))) -(((-859 |#1|) (-10 -8 (-15 -2610 (|#1| |#1|)) (-15 -3966 ((-576) |#1|)) (-15 -1379 ((-112) |#1|)) (-15 -1370 ((-112) |#1|))) (-860)) (T -859)) -NIL -(-10 -8 (-15 -2610 (|#1| |#1|)) (-15 -3966 ((-576) |#1|)) (-15 -1379 ((-112) |#1|)) (-15 -1370 ((-112) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 25)) (-1459 (((-3 $ "failed") $ $) 27)) (-3966 (((-576) $) 37)) (-2473 (($) 24 T CONST)) (-1999 (((-3 $ "failed") $) 42)) (-1370 (((-112) $) 39)) (-1439 (((-112) $) 44)) (-1379 (((-112) $) 38)) (-1921 (($ $ $) 14)) (-4137 (($ $ $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-576)) 46)) (-1871 (((-783)) 47 T CONST)) (-3722 (((-112) $ $) 9)) (-2610 (($ $) 36)) (-1996 (($) 23 T CONST)) (-2011 (($) 45 T CONST)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4029 (($ $ $) 31) (($ $) 30)) (-4017 (($ $ $) 21)) (** (($ $ (-783)) 43) (($ $ (-937)) 40)) (* (($ (-937) $) 22) (($ (-783) $) 26) (($ (-576) $) 29) (($ $ $) 41))) -(((-860) (-141)) (T -860)) -((-1370 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) (-2610 (*1 *1 *1) (-4 *1 (-860)))) -(-13 (-803) (-1067) (-738) (-10 -8 (-15 -1370 ((-112) $)) (-15 -1379 ((-112) $)) (-15 -3966 ((-576) $)) (-15 -2610 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-1921 (($ $ $) 12)) (-4137 (($ $ $) 11)) (-3722 (((-112) $ $) 9)) (-3983 (((-112) $ $) 15)) (-3957 (((-112) $ $) 13)) (-3970 (((-112) $ $) 16))) -(((-861 |#1|) (-10 -8 (-15 -1921 (|#1| |#1| |#1|)) (-15 -4137 (|#1| |#1| |#1|)) (-15 -3970 ((-112) |#1| |#1|)) (-15 -3983 ((-112) |#1| |#1|)) (-15 -3957 ((-112) |#1| |#1|)) (-15 -3722 ((-112) |#1| |#1|))) (-862)) (T -861)) -NIL -(-10 -8 (-15 -1921 (|#1| |#1| |#1|)) (-15 -4137 (|#1| |#1| |#1|)) (-15 -3970 ((-112) |#1| |#1|)) (-15 -3983 ((-112) |#1| |#1|)) (-15 -3957 ((-112) |#1| |#1|)) (-15 -3722 ((-112) |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1921 (($ $ $) 14)) (-4137 (($ $ $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19))) -(((-862) (-141)) (T -862)) -((-3943 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3957 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3983 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3970 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-4137 (*1 *1 *1 *1) (-4 *1 (-862))) (-1921 (*1 *1 *1 *1) (-4 *1 (-862)))) -(-13 (-1118) (-10 -8 (-15 -3943 ((-112) $ $)) (-15 -3957 ((-112) $ $)) (-15 -3983 ((-112) $ $)) (-15 -3970 ((-112) $ $)) (-15 -4137 ($ $ $)) (-15 -1921 ($ $ $)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2194 (($ $ $) 49)) (-4105 (($ $ $) 48)) (-4115 (($ $ $) 46)) (-2172 (($ $ $) 55)) (-2162 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 50)) (-2183 (((-3 $ "failed") $ $) 53)) (-2449 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2192 (($ $) 39)) (-4149 (($ $ $) 43)) (-4157 (($ $ $) 42)) (-2150 (($ $ $) 51)) (-4132 (($ $ $) 57)) (-4124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 45)) (-4141 (((-3 $ "failed") $ $) 52)) (-2852 (((-3 $ "failed") $ |#2|) 32)) (-1841 ((|#2| $) 36)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-1993 (((-656 |#2|) $) 21)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-863 |#1| |#2|) (-10 -8 (-15 -2150 (|#1| |#1| |#1|)) (-15 -2162 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3660 |#1|)) |#1| |#1|)) (-15 -2172 (|#1| |#1| |#1|)) (-15 -2183 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -4105 (|#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| |#1|)) (-15 -4124 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3660 |#1|)) |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4141 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4149 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -1841 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1993 ((-656 |#2|) |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2884 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -2884 ((-874) |#1|))) (-864 |#2|) (-1067)) (T -863)) -NIL -(-10 -8 (-15 -2150 (|#1| |#1| |#1|)) (-15 -2162 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3660 |#1|)) |#1| |#1|)) (-15 -2172 (|#1| |#1| |#1|)) (-15 -2183 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -4105 (|#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| |#1|)) (-15 -4124 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3660 |#1|)) |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4141 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4149 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -1841 (|#2| |#1|)) (-15 -2852 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1993 ((-656 |#2|) |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2884 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-2194 (($ $ $) 50 (|has| |#1| (-374)))) (-4105 (($ $ $) 51 (|has| |#1| (-374)))) (-4115 (($ $ $) 53 (|has| |#1| (-374)))) (-2172 (($ $ $) 48 (|has| |#1| (-374)))) (-2162 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 47 (|has| |#1| (-374)))) (-2183 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-4189 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 52 (|has| |#1| (-374)))) (-2449 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-4401 (((-576) $) 79 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 75)) (-4407 (($ $) 69)) (-1999 (((-3 $ "failed") $) 37)) (-2192 (($ $) 60 (|has| |#1| (-464)))) (-1439 (((-112) $) 35)) (-2421 (($ |#1| (-783)) 67)) (-4172 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 62 (|has| |#1| (-568)))) (-4163 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63 (|has| |#1| (-568)))) (-1864 (((-783) $) 71)) (-4149 (($ $ $) 57 (|has| |#1| (-374)))) (-4157 (($ $ $) 58 (|has| |#1| (-374)))) (-2150 (($ $ $) 46 (|has| |#1| (-374)))) (-4132 (($ $ $) 55 (|has| |#1| (-374)))) (-4124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 54 (|has| |#1| (-374)))) (-4141 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-4181 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 59 (|has| |#1| (-374)))) (-4383 ((|#1| $) 70)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2852 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-3813 (((-783) $) 72)) (-1841 ((|#1| $) 61 (|has| |#1| (-464)))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) 73)) (-1993 (((-656 |#1|) $) 66)) (-3245 ((|#1| $ (-783)) 68)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1950 ((|#1| $ |#1| |#1|) 65)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-864 |#1|) (-141) (-1067)) (T -864)) -((-3813 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)))) (-4407 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)))) (-3245 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1067)))) (-2421 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1067)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-656 *3)))) (-1950 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))) (-4163 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-864 *3)))) (-4172 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-864 *3)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-464)))) (-2192 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-464)))) (-4181 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-864 *3)))) (-4157 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-4149 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-4141 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-4132 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-4124 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3660 *1))) (-4 *1 (-864 *3)))) (-4115 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-4189 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-864 *3)))) (-4105 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2194 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2183 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2172 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2162 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3660 *1))) (-4 *1 (-864 *3)))) (-2150 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(-13 (-1067) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -3813 ((-783) $)) (-15 -1864 ((-783) $)) (-15 -4383 (|t#1| $)) (-15 -4407 ($ $)) (-15 -3245 (|t#1| $ (-783))) (-15 -2421 ($ |t#1| (-783))) (-15 -1993 ((-656 |t#1|) $)) (-15 -1950 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -2852 ((-3 $ "failed") $ |t#1|)) (-15 -4163 ((-2 (|:| -2770 $) (|:| -1406 $)) $ $)) (-15 -4172 ((-2 (|:| -2770 $) (|:| -1406 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -1841 (|t#1| $)) (-15 -2192 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -4181 ((-2 (|:| -2770 $) (|:| -1406 $)) $ $)) (-15 -4157 ($ $ $)) (-15 -4149 ($ $ $)) (-15 -4141 ((-3 $ "failed") $ $)) (-15 -4132 ($ $ $)) (-15 -4124 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $)) (-15 -4115 ($ $ $)) (-15 -4189 ((-2 (|:| -2770 $) (|:| -1406 $)) $ $)) (-15 -4105 ($ $ $)) (-15 -2194 ($ $ $)) (-15 -2183 ((-3 $ "failed") $ $)) (-15 -2172 ($ $ $)) (-15 -2162 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $)) (-15 -2150 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1056 #0#) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-3648 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-4189 (((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-4172 (((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-4163 (((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-4181 (((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-1950 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) -(((-865 |#1| |#2|) (-10 -7 (-15 -3648 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1950 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -4163 ((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4172 ((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -4181 ((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4189 ((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1067) (-864 |#1|)) (T -865)) -((-4189 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1067)) (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-4181 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1067)) (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-4172 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1067)) (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-4163 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1067)) (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-1950 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-865 *2 *3)) (-4 *3 (-864 *2)))) (-3648 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1067)) (-5 *1 (-865 *5 *2)) (-4 *2 (-864 *5))))) -(-10 -7 (-15 -3648 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1950 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -4163 ((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4172 ((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -4181 ((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4189 ((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2194 (($ $ $) NIL (|has| |#1| (-374)))) (-4105 (($ $ $) NIL (|has| |#1| (-374)))) (-4115 (($ $ $) NIL (|has| |#1| (-374)))) (-2172 (($ $ $) NIL (|has| |#1| (-374)))) (-2162 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2183 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4189 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 34 (|has| |#1| (-374)))) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-464)))) (-4316 (((-874) $ (-874)) NIL)) (-1439 (((-112) $) NIL)) (-2421 (($ |#1| (-783)) NIL)) (-4172 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 30 (|has| |#1| (-568)))) (-4163 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 28 (|has| |#1| (-568)))) (-1864 (((-783) $) NIL)) (-4149 (($ $ $) NIL (|has| |#1| (-374)))) (-4157 (($ $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $ $) NIL (|has| |#1| (-374)))) (-4132 (($ $ $) NIL (|has| |#1| (-374)))) (-4124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-4141 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4181 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 32 (|has| |#1| (-374)))) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3813 (((-783) $) NIL)) (-1841 ((|#1| $) NIL (|has| |#1| (-464)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) NIL)) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-783)) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1950 ((|#1| $ |#1| |#1|) 15)) (-1996 (($) NIL T CONST)) (-2011 (($) 23 T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) 19) (($ $ (-783)) 24)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-866 |#1| |#2| |#3|) (-13 (-864 |#1|) (-10 -8 (-15 -4316 ((-874) $ (-874))))) (-1067) (-99 |#1|) (-1 |#1| |#1|)) (T -866)) -((-4316 (*1 *2 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-864 |#1|) (-10 -8 (-15 -4316 ((-874) $ (-874))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2194 (($ $ $) NIL (|has| |#2| (-374)))) (-4105 (($ $ $) NIL (|has| |#2| (-374)))) (-4115 (($ $ $) NIL (|has| |#2| (-374)))) (-2172 (($ $ $) NIL (|has| |#2| (-374)))) (-2162 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#2| (-374)))) (-2183 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-4189 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#2| (-374)))) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) ((|#2| $) NIL)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#2| (-464)))) (-1439 (((-112) $) NIL)) (-2421 (($ |#2| (-783)) 17)) (-4172 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#2| (-568)))) (-4163 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#2| (-568)))) (-1864 (((-783) $) NIL)) (-4149 (($ $ $) NIL (|has| |#2| (-374)))) (-4157 (($ $ $) NIL (|has| |#2| (-374)))) (-2150 (($ $ $) NIL (|has| |#2| (-374)))) (-4132 (($ $ $) NIL (|has| |#2| (-374)))) (-4124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#2| (-374)))) (-4141 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-4181 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#2| (-374)))) (-4383 ((|#2| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3813 (((-783) $) NIL)) (-1841 ((|#2| $) NIL (|has| |#2| (-464)))) (-2884 (((-874) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1056 (-419 (-576))))) (($ |#2|) NIL) (($ (-1282 |#1|)) 19)) (-1993 (((-656 |#2|) $) NIL)) (-3245 ((|#2| $ (-783)) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1950 ((|#2| $ |#2| |#2|) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) 13 T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-867 |#1| |#2| |#3| |#4|) (-13 (-864 |#2|) (-628 (-1282 |#1|))) (-1195) (-1067) (-99 |#2|) (-1 |#2| |#2|)) (T -867)) -NIL -(-13 (-864 |#2|) (-628 (-1282 |#1|))) -((-4217 ((|#1| (-783) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-4208 ((|#1| (-783) (-783) |#1|) 36) ((|#1| (-783) |#1|) 24)) (-4198 ((|#1| (-783) |#1|) 40)) (-1653 ((|#1| (-783) |#1|) 38)) (-1640 ((|#1| (-783) |#1|) 37))) -(((-868 |#1|) (-10 -7 (-15 -1640 (|#1| (-783) |#1|)) (-15 -1653 (|#1| (-783) |#1|)) (-15 -4198 (|#1| (-783) |#1|)) (-15 -4208 (|#1| (-783) |#1|)) (-15 -4208 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4217 (|#1| (-783) |#1|)) |%noBranch|)) (-174)) (T -868)) -((-4217 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-4208 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-4208 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-4198 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-1653 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-1640 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -1640 (|#1| (-783) |#1|)) (-15 -1653 (|#1| (-783) |#1|)) (-15 -4198 (|#1| (-783) |#1|)) (-15 -4208 (|#1| (-783) |#1|)) (-15 -4208 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4217 (|#1| (-783) |#1|)) |%noBranch|)) -((-2862 (((-112) $ $) 7)) (-1921 (($ $ $) 14)) (-4137 (($ $ $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3983 (((-112) $ $) 17)) (-3957 (((-112) $ $) 18)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (** (($ $ (-937)) 22)) (* (($ $ $) 21))) -(((-869) (-141)) (T -869)) -NIL -(-13 (-862) (-1130)) -(((-102) . T) ((-625 (-874)) . T) ((-862) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-4183 (((-576) $) 14)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 20) (($ (-576)) 13)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 9)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 11))) -(((-870) (-13 (-862) (-10 -8 (-15 -2884 ($ (-576))) (-15 -4183 ((-576) $))))) (T -870)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-870)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-870))))) -(-13 (-862) (-10 -8 (-15 -2884 ($ (-576))) (-15 -4183 ((-576) $)))) -((-4236 (((-703 (-1244)) $ (-1244)) 15)) (-4247 (((-703 (-561)) $ (-561)) 12)) (-4227 (((-783) $ (-129)) 30))) -(((-871 |#1|) (-10 -8 (-15 -4227 ((-783) |#1| (-129))) (-15 -4236 ((-703 (-1244)) |#1| (-1244))) (-15 -4247 ((-703 (-561)) |#1| (-561)))) (-872)) (T -871)) -NIL -(-10 -8 (-15 -4227 ((-783) |#1| (-129))) (-15 -4236 ((-703 (-1244)) |#1| (-1244))) (-15 -4247 ((-703 (-561)) |#1| (-561)))) -((-4236 (((-703 (-1244)) $ (-1244)) 8)) (-4247 (((-703 (-561)) $ (-561)) 9)) (-4227 (((-783) $ (-129)) 7)) (-4258 (((-703 (-130)) $ (-130)) 10)) (-1561 (($ $) 6))) -(((-872) (-141)) (T -872)) -((-4258 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))) (-4247 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))) (-4236 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-1244))) (-5 *3 (-1244)))) (-4227 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *3 (-129)) (-5 *2 (-783))))) -(-13 (-175) (-10 -8 (-15 -4258 ((-703 (-130)) $ (-130))) (-15 -4247 ((-703 (-561)) $ (-561))) (-15 -4236 ((-703 (-1244)) $ (-1244))) (-15 -4227 ((-783) $ (-129))))) +(-13 (-803) (-132)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-803) . T) ((-805) . T) ((-861) . T) ((-1117) . T)) +((-3799 (((-112) $) 42)) (-2449 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-4399 (((-575) $) NIL) (((-418 (-575)) $) NIL) ((|#2| $) 43)) (-2446 (((-3 (-418 (-575)) "failed") $) 78)) (-3405 (((-112) $) 72)) (-3100 (((-418 (-575)) $) 76)) (-2255 ((|#2| $) 26)) (-2550 (($ (-1 |#2| |#2|) $) 23)) (-4332 (($ $) 58)) (-2615 (((-547) $) 67)) (-4258 (($ $) 21)) (-2883 (((-873) $) 53) (($ (-575)) 40) (($ |#2|) 38) (($ (-418 (-575))) NIL)) (-3759 (((-782)) 10)) (-2705 ((|#2| $) 71)) (-3914 (((-112) $ $) 30)) (-3943 (((-112) $ $) 69)) (-4028 (($ $) 32) (($ $ $) NIL)) (-4016 (($ $ $) 31)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-807 |#1| |#2|) (-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -2446 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -3100 ((-418 (-575)) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -2705 (|#2| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -4258 (|#1| |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2883 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3759 ((-782))) (-15 -2883 (|#1| (-575))) (-15 * (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 -3799 ((-112) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4016 (|#1| |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) (-808 |#2|) (-174)) (T -807)) +((-3759 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-807 *3 *4)) (-4 *3 (-808 *4))))) +(-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -2446 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -3100 ((-418 (-575)) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -2705 (|#2| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -4258 (|#1| |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2883 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3759 ((-782))) (-15 -2883 (|#1| (-575))) (-15 * (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 -3799 ((-112) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4016 (|#1| |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-2415 (((-782)) 58 (|has| |#1| (-378)))) (-3011 (($) 18 T CONST)) (-2449 (((-3 (-575) "failed") $) 100 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 97 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 94)) (-4399 (((-575) $) 99 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 96 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 95)) (-1747 (((-3 $ "failed") $) 37)) (-2487 ((|#1| $) 84)) (-2446 (((-3 (-418 (-575)) "failed") $) 71 (|has| |#1| (-556)))) (-3405 (((-112) $) 73 (|has| |#1| (-556)))) (-3100 (((-418 (-575)) $) 72 (|has| |#1| (-556)))) (-2079 (($) 61 (|has| |#1| (-378)))) (-1542 (((-112) $) 35)) (-3182 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2255 ((|#1| $) 76)) (-1920 (($ $ $) 67 (|has| |#1| (-861)))) (-1425 (($ $ $) 66 (|has| |#1| (-861)))) (-2550 (($ (-1 |#1| |#1|) $) 86)) (-4084 (((-936) $) 60 (|has| |#1| (-378)))) (-2288 (((-1176) $) 10)) (-4332 (($ $) 70 (|has| |#1| (-373)))) (-4317 (($ (-936)) 59 (|has| |#1| (-378)))) (-2967 ((|#1| $) 81)) (-1702 ((|#1| $) 82)) (-1578 ((|#1| $) 83)) (-2942 ((|#1| $) 77)) (-1571 ((|#1| $) 78)) (-3513 ((|#1| $) 79)) (-2208 ((|#1| $) 80)) (-3912 (((-1137) $) 11)) (-3048 (($ $ (-655 |#1|) (-655 |#1|)) 92 (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) 90 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) 89 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 88 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) 87 (|has| |#1| (-525 (-1194) |#1|)))) (-2070 (($ $ |#1|) 93 (|has| |#1| (-295 |#1| |#1|)))) (-2615 (((-547) $) 68 (|has| |#1| (-625 (-547))))) (-4258 (($ $) 85)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44) (($ (-418 (-575))) 98 (|has| |#1| (-1055 (-418 (-575)))))) (-1518 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-2705 ((|#1| $) 74 (|has| |#1| (-1077)))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3981 (((-112) $ $) 64 (|has| |#1| (-861)))) (-3956 (((-112) $ $) 63 (|has| |#1| (-861)))) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 65 (|has| |#1| (-861)))) (-3943 (((-112) $ $) 62 (|has| |#1| (-861)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-808 |#1|) (-141) (-174)) (T -808)) +((-4258 (*1 *1 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-2967 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-1571 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-3182 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-2705 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)) (-4 *2 (-1077)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575))))) (-2446 (*1 *2 *1) (|partial| -12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575))))) (-4332 (*1 *1 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)) (-4 *2 (-373))))) +(-13 (-38 |t#1|) (-422 |t#1|) (-348 |t#1|) (-10 -8 (-15 -4258 ($ $)) (-15 -2487 (|t#1| $)) (-15 -1578 (|t#1| $)) (-15 -1702 (|t#1| $)) (-15 -2967 (|t#1| $)) (-15 -2208 (|t#1| $)) (-15 -3513 (|t#1| $)) (-15 -1571 (|t#1| $)) (-15 -2942 (|t#1| $)) (-15 -2255 (|t#1| $)) (-15 -3182 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-378)) (-6 (-378)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1077)) (-15 -2705 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3405 ((-112) $)) (-15 -3100 ((-418 (-575)) $)) (-15 -2446 ((-3 (-418 (-575)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-373)) (-15 -4332 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0=(-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 |#1| $) |has| |#1| (-295 |#1| |#1|)) ((-318 |#1|) |has| |#1| (-318 |#1|)) ((-378) |has| |#1| (-378)) ((-348 |#1|) . T) ((-422 |#1|) . T) ((-525 (-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((-525 |#1| |#1|) |has| |#1| (-318 |#1|)) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-737) . T) ((-861) |has| |#1| (-861)) ((-1055 #0#) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) |has| |#1| (-295 |#1| |#1|))) +((-2550 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-809 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 (|#3| (-1 |#4| |#2|) |#1|))) (-808 |#2|) (-174) (-808 |#4|) (-174)) (T -809)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-808 *6)) (-5 *1 (-809 *4 *5 *2 *6)) (-4 *4 (-808 *5))))) +(-10 -7 (-15 -2550 (|#3| (-1 |#4| |#2|) |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2415 (((-782)) NIL (|has| |#1| (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-1016 |#1|) "failed") $) 35) (((-3 (-575) "failed") $) NIL (-3765 (|has| (-1016 |#1|) (-1055 (-575))) (|has| |#1| (-1055 (-575))))) (((-3 (-418 (-575)) "failed") $) NIL (-3765 (|has| (-1016 |#1|) (-1055 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-4399 ((|#1| $) NIL) (((-1016 |#1|) $) 33) (((-575) $) NIL (-3765 (|has| (-1016 |#1|) (-1055 (-575))) (|has| |#1| (-1055 (-575))))) (((-418 (-575)) $) NIL (-3765 (|has| (-1016 |#1|) (-1055 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-1747 (((-3 $ "failed") $) NIL)) (-2487 ((|#1| $) 16)) (-2446 (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-556)))) (-3405 (((-112) $) NIL (|has| |#1| (-556)))) (-3100 (((-418 (-575)) $) NIL (|has| |#1| (-556)))) (-2079 (($) NIL (|has| |#1| (-378)))) (-1542 (((-112) $) NIL)) (-3182 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1016 |#1|) (-1016 |#1|)) 29)) (-2255 ((|#1| $) NIL)) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4084 (((-936) $) NIL (|has| |#1| (-378)))) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-2967 ((|#1| $) 22)) (-1702 ((|#1| $) 20)) (-1578 ((|#1| $) 18)) (-2942 ((|#1| $) 26)) (-1571 ((|#1| $) 25)) (-3513 ((|#1| $) 24)) (-2208 ((|#1| $) 23)) (-3912 (((-1137) $) NIL)) (-3048 (($ $ (-655 |#1|) (-655 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-525 (-1194) |#1|)))) (-2070 (($ $ |#1|) NIL (|has| |#1| (-295 |#1| |#1|)))) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-4258 (($ $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-1016 |#1|)) 30) (($ (-418 (-575))) NIL (-3765 (|has| (-1016 |#1|) (-1055 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-2705 ((|#1| $) NIL (|has| |#1| (-1077)))) (-1996 (($) 8 T CONST)) (-2009 (($) 12 T CONST)) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-810 |#1|) (-13 (-808 |#1|) (-422 (-1016 |#1|)) (-10 -8 (-15 -3182 ($ (-1016 |#1|) (-1016 |#1|))))) (-174)) (T -810)) +((-3182 (*1 *1 *2 *2) (-12 (-5 *2 (-1016 *3)) (-4 *3 (-174)) (-5 *1 (-810 *3))))) +(-13 (-808 |#1|) (-422 (-1016 |#1|)) (-10 -8 (-15 -3182 ($ (-1016 |#1|) (-1016 |#1|))))) +((-2861 (((-112) $ $) 7)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1729 (((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-3914 (((-112) $ $) 6))) +(((-811) (-141)) (T -811)) +((-2803 (*1 *2 *3 *4) (-12 (-4 *1 (-811)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)))))) (-1729 (*1 *2 *3) (-12 (-4 *1 (-811)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1052))))) +(-13 (-1117) (-10 -7 (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1729 ((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-4292 (((-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) |#3| |#2| (-1194)) 19))) +(((-812 |#1| |#2| |#3|) (-10 -7 (-15 -4292 ((-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) |#3| |#2| (-1194)))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)) (-13 (-29 |#1|) (-1220) (-974)) (-667 |#2|)) (T -812)) +((-4292 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1194)) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-4 *4 (-13 (-29 *6) (-1220) (-974))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1624 (-655 *4)))) (-5 *1 (-812 *6 *4 *3)) (-4 *3 (-667 *4))))) +(-10 -7 (-15 -4292 ((-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) |#3| |#2| (-1194)))) +((-1546 (((-3 |#2| "failed") |#2| (-115) (-303 |#2|) (-655 |#2|)) 28) (((-3 |#2| "failed") (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) |#2| "failed") |#2| (-115) (-1194)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) |#2| "failed") (-303 |#2|) (-115) (-1194)) 18) (((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -1624 (-655 (-1285 |#2|)))) "failed") (-655 |#2|) (-655 (-115)) (-1194)) 24) (((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -1624 (-655 (-1285 |#2|)))) "failed") (-655 (-303 |#2|)) (-655 (-115)) (-1194)) 26) (((-3 (-655 (-1285 |#2|)) "failed") (-700 |#2|) (-1194)) 37) (((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -1624 (-655 (-1285 |#2|)))) "failed") (-700 |#2|) (-1285 |#2|) (-1194)) 35))) +(((-813 |#1| |#2|) (-10 -7 (-15 -1546 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -1624 (-655 (-1285 |#2|)))) "failed") (-700 |#2|) (-1285 |#2|) (-1194))) (-15 -1546 ((-3 (-655 (-1285 |#2|)) "failed") (-700 |#2|) (-1194))) (-15 -1546 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -1624 (-655 (-1285 |#2|)))) "failed") (-655 (-303 |#2|)) (-655 (-115)) (-1194))) (-15 -1546 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -1624 (-655 (-1285 |#2|)))) "failed") (-655 |#2|) (-655 (-115)) (-1194))) (-15 -1546 ((-3 (-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) |#2| "failed") (-303 |#2|) (-115) (-1194))) (-15 -1546 ((-3 (-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) |#2| "failed") |#2| (-115) (-1194))) (-15 -1546 ((-3 |#2| "failed") (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|))) (-15 -1546 ((-3 |#2| "failed") |#2| (-115) (-303 |#2|) (-655 |#2|)))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)) (-13 (-29 |#1|) (-1220) (-974))) (T -813)) +((-1546 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-303 *2)) (-5 *5 (-655 *2)) (-4 *2 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *1 (-813 *6 *2)))) (-1546 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-303 *2)) (-5 *4 (-115)) (-5 *5 (-655 *2)) (-4 *2 (-13 (-29 *6) (-1220) (-974))) (-5 *1 (-813 *6 *2)) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))))) (-1546 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1194)) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1624 (-655 *3))) *3 "failed")) (-5 *1 (-813 *6 *3)) (-4 *3 (-13 (-29 *6) (-1220) (-974))))) (-1546 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-303 *7)) (-5 *4 (-115)) (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1624 (-655 *7))) *7 "failed")) (-5 *1 (-813 *6 *7)))) (-1546 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-655 *7)) (-5 *4 (-655 (-115))) (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-2 (|:| |particular| (-1285 *7)) (|:| -1624 (-655 (-1285 *7))))) (-5 *1 (-813 *6 *7)))) (-1546 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-655 (-303 *7))) (-5 *4 (-655 (-115))) (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-2 (|:| |particular| (-1285 *7)) (|:| -1624 (-655 (-1285 *7))))) (-5 *1 (-813 *6 *7)))) (-1546 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-700 *6)) (-5 *4 (-1194)) (-4 *6 (-13 (-29 *5) (-1220) (-974))) (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-1285 *6))) (-5 *1 (-813 *5 *6)))) (-1546 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-700 *7)) (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-2 (|:| |particular| (-1285 *7)) (|:| -1624 (-655 (-1285 *7))))) (-5 *1 (-813 *6 *7)) (-5 *4 (-1285 *7))))) +(-10 -7 (-15 -1546 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -1624 (-655 (-1285 |#2|)))) "failed") (-700 |#2|) (-1285 |#2|) (-1194))) (-15 -1546 ((-3 (-655 (-1285 |#2|)) "failed") (-700 |#2|) (-1194))) (-15 -1546 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -1624 (-655 (-1285 |#2|)))) "failed") (-655 (-303 |#2|)) (-655 (-115)) (-1194))) (-15 -1546 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -1624 (-655 (-1285 |#2|)))) "failed") (-655 |#2|) (-655 (-115)) (-1194))) (-15 -1546 ((-3 (-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) |#2| "failed") (-303 |#2|) (-115) (-1194))) (-15 -1546 ((-3 (-2 (|:| |particular| |#2|) (|:| -1624 (-655 |#2|))) |#2| "failed") |#2| (-115) (-1194))) (-15 -1546 ((-3 |#2| "failed") (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|))) (-15 -1546 ((-3 |#2| "failed") |#2| (-115) (-303 |#2|) (-655 |#2|)))) +((-4008 (($) 9)) (-3201 (((-3 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-2001 (((-655 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-3862 (($ (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))))) 24)) (-1348 (($ (-655 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))))) 22)) (-2679 (((-1290)) 11))) +(((-814) (-10 -8 (-15 -4008 ($)) (-15 -2679 ((-1290))) (-15 -2001 ((-655 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1348 ($ (-655 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))))))) (-15 -3862 ($ (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))))) (-15 -3201 ((-3 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -814)) +((-3201 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))) (-5 *1 (-814)))) (-3862 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))))) (-5 *1 (-814)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))))) (-5 *1 (-814)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-814)))) (-2679 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-814)))) (-4008 (*1 *1) (-5 *1 (-814)))) +(-10 -8 (-15 -4008 ($)) (-15 -2679 ((-1290))) (-15 -2001 ((-655 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1348 ($ (-655 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))))))) (-15 -3862 ($ (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))))) (-15 -3201 ((-3 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-2521 ((|#2| |#2| (-1194)) 17)) (-2864 ((|#2| |#2| (-1194)) 56)) (-3523 (((-1 |#2| |#2|) (-1194)) 11))) +(((-815 |#1| |#2|) (-10 -7 (-15 -2521 (|#2| |#2| (-1194))) (-15 -2864 (|#2| |#2| (-1194))) (-15 -3523 ((-1 |#2| |#2|) (-1194)))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)) (-13 (-29 |#1|) (-1220) (-974))) (T -815)) +((-3523 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-815 *4 *5)) (-4 *5 (-13 (-29 *4) (-1220) (-974))))) (-2864 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *1 (-815 *4 *2)) (-4 *2 (-13 (-29 *4) (-1220) (-974))))) (-2521 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *1 (-815 *4 *2)) (-4 *2 (-13 (-29 *4) (-1220) (-974)))))) +(-10 -7 (-15 -2521 (|#2| |#2| (-1194))) (-15 -2864 (|#2| |#2| (-1194))) (-15 -3523 ((-1 |#2| |#2|) (-1194)))) +((-1546 (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389) (-389)) 128) (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389)) 129) (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-655 (-389)) (-389)) 131) (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-389)) 133) (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-389)) 134) (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389))) 136) (((-1052) (-819) (-1080)) 120) (((-1052) (-819)) 121)) (-2803 (((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819) (-1080)) 80) (((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819)) 82))) +(((-816) (-10 -7 (-15 -1546 ((-1052) (-819))) (-15 -1546 ((-1052) (-819) (-1080))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-389))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-389))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-655 (-389)) (-389))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389) (-389))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819) (-1080))))) (T -816)) +((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-819)) (-5 *4 (-1080)) (-5 *2 (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-816)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-816)))) (-1546 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389))) (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-1546 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389))) (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-1546 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-1546 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389))) (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-1546 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-1546 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-819)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1052)) (-5 *1 (-816))))) +(-10 -7 (-15 -1546 ((-1052) (-819))) (-15 -1546 ((-1052) (-819) (-1080))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-389))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-389))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-655 (-389)) (-389))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389))) (-15 -1546 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389) (-389))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819) (-1080)))) +((-2019 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1624 (-655 |#4|))) (-664 |#4|) |#4|) 33))) +(((-817 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2019 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1624 (-655 |#4|))) (-664 |#4|) |#4|))) (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -817)) +((-2019 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *4)) (-4 *4 (-352 *5 *6 *7)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) (-5 *1 (-817 *5 *6 *7 *4))))) +(-10 -7 (-15 -2019 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1624 (-655 |#4|))) (-664 |#4|) |#4|))) +((-1958 (((-2 (|:| -2571 |#3|) (|:| |rh| (-655 (-418 |#2|)))) |#4| (-655 (-418 |#2|))) 53)) (-1714 (((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#4| |#2|) 62) (((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#4|) 61) (((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#3| |#2|) 20) (((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#3|) 21)) (-1490 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3509 ((|#2| |#3| (-655 (-418 |#2|))) 109) (((-3 |#2| "failed") |#3| (-418 |#2|)) 105))) +(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3509 ((-3 |#2| "failed") |#3| (-418 |#2|))) (-15 -3509 (|#2| |#3| (-655 (-418 |#2|)))) (-15 -1714 ((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#3|)) (-15 -1714 ((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#3| |#2|)) (-15 -1490 (|#2| |#3| |#1|)) (-15 -1714 ((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#4|)) (-15 -1714 ((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#4| |#2|)) (-15 -1490 (|#2| |#4| |#1|)) (-15 -1958 ((-2 (|:| -2571 |#3|) (|:| |rh| (-655 (-418 |#2|)))) |#4| (-655 (-418 |#2|))))) (-13 (-373) (-148) (-1055 (-418 (-575)))) (-1261 |#1|) (-667 |#2|) (-667 (-418 |#2|))) (T -818)) +((-1958 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-2 (|:| -2571 *7) (|:| |rh| (-655 (-418 *6))))) (-5 *1 (-818 *5 *6 *7 *3)) (-5 *4 (-655 (-418 *6))) (-4 *7 (-667 *6)) (-4 *3 (-667 (-418 *6))))) (-1490 (*1 *2 *3 *4) (-12 (-4 *2 (-1261 *4)) (-5 *1 (-818 *4 *2 *5 *3)) (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-667 *2)) (-4 *3 (-667 (-418 *2))))) (-1714 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *4 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -1751 *4) (|:| -2676 *4)))) (-5 *1 (-818 *5 *4 *6 *3)) (-4 *6 (-667 *4)) (-4 *3 (-667 (-418 *4))))) (-1714 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-2 (|:| -1751 *5) (|:| -2676 *5)))) (-5 *1 (-818 *4 *5 *6 *3)) (-4 *6 (-667 *5)) (-4 *3 (-667 (-418 *5))))) (-1490 (*1 *2 *3 *4) (-12 (-4 *2 (-1261 *4)) (-5 *1 (-818 *4 *2 *3 *5)) (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2)) (-4 *5 (-667 (-418 *2))))) (-1714 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *4 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -1751 *4) (|:| -2676 *4)))) (-5 *1 (-818 *5 *4 *3 *6)) (-4 *3 (-667 *4)) (-4 *6 (-667 (-418 *4))))) (-1714 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-2 (|:| -1751 *5) (|:| -2676 *5)))) (-5 *1 (-818 *4 *5 *3 *6)) (-4 *3 (-667 *5)) (-4 *6 (-667 (-418 *5))))) (-3509 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-418 *2))) (-4 *2 (-1261 *5)) (-5 *1 (-818 *5 *2 *3 *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2)) (-4 *6 (-667 (-418 *2))))) (-3509 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-418 *2)) (-4 *2 (-1261 *5)) (-5 *1 (-818 *5 *2 *3 *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2)) (-4 *6 (-667 *4))))) +(-10 -7 (-15 -3509 ((-3 |#2| "failed") |#3| (-418 |#2|))) (-15 -3509 (|#2| |#3| (-655 (-418 |#2|)))) (-15 -1714 ((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#3|)) (-15 -1714 ((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#3| |#2|)) (-15 -1490 (|#2| |#3| |#1|)) (-15 -1714 ((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#4|)) (-15 -1714 ((-655 (-2 (|:| -1751 |#2|) (|:| -2676 |#2|))) |#4| |#2|)) (-15 -1490 (|#2| |#4| |#1|)) (-15 -1958 ((-2 (|:| -2571 |#3|) (|:| |rh| (-655 (-418 |#2|)))) |#4| (-655 (-418 |#2|))))) +((-2861 (((-112) $ $) NIL)) (-4399 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-819) (-13 (-1117) (-10 -8 (-15 -2883 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4399 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -819)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-819)))) (-4399 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-819))))) +(-13 (-1117) (-10 -8 (-15 -2883 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4399 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) +((-3879 (((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2571 |#3|))) |#3| (-1 (-655 |#2|) |#2| (-1190 |#2|)) (-1 (-429 |#2|) |#2|)) 154)) (-1705 (((-655 (-2 (|:| |poly| |#2|) (|:| -2571 |#3|))) |#3| (-1 (-655 |#1|) |#2|)) 52)) (-1778 (((-655 (-2 (|:| |deg| (-782)) (|:| -2571 |#2|))) |#3|) 122)) (-3140 ((|#2| |#3|) 42)) (-3617 (((-655 (-2 (|:| -3738 |#1|) (|:| -2571 |#3|))) |#3| (-1 (-655 |#1|) |#2|)) 99)) (-2261 ((|#3| |#3| (-418 |#2|)) 72) ((|#3| |#3| |#2|) 96))) +(((-820 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3140 (|#2| |#3|)) (-15 -1778 ((-655 (-2 (|:| |deg| (-782)) (|:| -2571 |#2|))) |#3|)) (-15 -3617 ((-655 (-2 (|:| -3738 |#1|) (|:| -2571 |#3|))) |#3| (-1 (-655 |#1|) |#2|))) (-15 -1705 ((-655 (-2 (|:| |poly| |#2|) (|:| -2571 |#3|))) |#3| (-1 (-655 |#1|) |#2|))) (-15 -3879 ((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2571 |#3|))) |#3| (-1 (-655 |#2|) |#2| (-1190 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -2261 (|#3| |#3| |#2|)) (-15 -2261 (|#3| |#3| (-418 |#2|)))) (-13 (-373) (-148) (-1055 (-418 (-575)))) (-1261 |#1|) (-667 |#2|) (-667 (-418 |#2|))) (T -820)) +((-2261 (*1 *2 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *1 (-820 *4 *5 *2 *6)) (-4 *2 (-667 *5)) (-4 *6 (-667 *3)))) (-2261 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-1261 *4)) (-5 *1 (-820 *4 *3 *2 *5)) (-4 *2 (-667 *3)) (-4 *5 (-667 (-418 *3))))) (-3879 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-655 *7) *7 (-1190 *7))) (-5 *5 (-1 (-429 *7) *7)) (-4 *7 (-1261 *6)) (-4 *6 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-5 *2 (-655 (-2 (|:| |frac| (-418 *7)) (|:| -2571 *3)))) (-5 *1 (-820 *6 *7 *3 *8)) (-4 *3 (-667 *7)) (-4 *8 (-667 (-418 *7))))) (-1705 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-2 (|:| |poly| *6) (|:| -2571 *3)))) (-5 *1 (-820 *5 *6 *3 *7)) (-4 *3 (-667 *6)) (-4 *7 (-667 (-418 *6))))) (-3617 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -3738 *5) (|:| -2571 *3)))) (-5 *1 (-820 *5 *6 *3 *7)) (-4 *3 (-667 *6)) (-4 *7 (-667 (-418 *6))))) (-1778 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-2 (|:| |deg| (-782)) (|:| -2571 *5)))) (-5 *1 (-820 *4 *5 *3 *6)) (-4 *3 (-667 *5)) (-4 *6 (-667 (-418 *5))))) (-3140 (*1 *2 *3) (-12 (-4 *2 (-1261 *4)) (-5 *1 (-820 *4 *2 *3 *5)) (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2)) (-4 *5 (-667 (-418 *2)))))) +(-10 -7 (-15 -3140 (|#2| |#3|)) (-15 -1778 ((-655 (-2 (|:| |deg| (-782)) (|:| -2571 |#2|))) |#3|)) (-15 -3617 ((-655 (-2 (|:| -3738 |#1|) (|:| -2571 |#3|))) |#3| (-1 (-655 |#1|) |#2|))) (-15 -1705 ((-655 (-2 (|:| |poly| |#2|) (|:| -2571 |#3|))) |#3| (-1 (-655 |#1|) |#2|))) (-15 -3879 ((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2571 |#3|))) |#3| (-1 (-655 |#2|) |#2| (-1190 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -2261 (|#3| |#3| |#2|)) (-15 -2261 (|#3| |#3| (-418 |#2|)))) +((-4146 (((-2 (|:| -1624 (-655 (-418 |#2|))) (|:| -2412 (-700 |#1|))) (-665 |#2| (-418 |#2|)) (-655 (-418 |#2|))) 147) (((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -1624 (-655 (-418 |#2|)))) (-665 |#2| (-418 |#2|)) (-418 |#2|)) 146) (((-2 (|:| -1624 (-655 (-418 |#2|))) (|:| -2412 (-700 |#1|))) (-664 (-418 |#2|)) (-655 (-418 |#2|))) 141) (((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -1624 (-655 (-418 |#2|)))) (-664 (-418 |#2|)) (-418 |#2|)) 139)) (-2564 ((|#2| (-665 |#2| (-418 |#2|))) 88) ((|#2| (-664 (-418 |#2|))) 91))) +(((-821 |#1| |#2|) (-10 -7 (-15 -4146 ((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -1624 (-655 (-418 |#2|)))) (-664 (-418 |#2|)) (-418 |#2|))) (-15 -4146 ((-2 (|:| -1624 (-655 (-418 |#2|))) (|:| -2412 (-700 |#1|))) (-664 (-418 |#2|)) (-655 (-418 |#2|)))) (-15 -4146 ((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -1624 (-655 (-418 |#2|)))) (-665 |#2| (-418 |#2|)) (-418 |#2|))) (-15 -4146 ((-2 (|:| -1624 (-655 (-418 |#2|))) (|:| -2412 (-700 |#1|))) (-665 |#2| (-418 |#2|)) (-655 (-418 |#2|)))) (-15 -2564 (|#2| (-664 (-418 |#2|)))) (-15 -2564 (|#2| (-665 |#2| (-418 |#2|))))) (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))) (-1261 |#1|)) (T -821)) +((-2564 (*1 *2 *3) (-12 (-5 *3 (-665 *2 (-418 *2))) (-4 *2 (-1261 *4)) (-5 *1 (-821 *4 *2)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-664 (-418 *2))) (-4 *2 (-1261 *4)) (-5 *1 (-821 *4 *2)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))))) (-4146 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6 (-418 *6))) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-2 (|:| -1624 (-655 (-418 *6))) (|:| -2412 (-700 *5)))) (-5 *1 (-821 *5 *6)) (-5 *4 (-655 (-418 *6))))) (-4146 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-418 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) (-5 *1 (-821 *5 *6)))) (-4146 (*1 *2 *3 *4) (-12 (-5 *3 (-664 (-418 *6))) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-2 (|:| -1624 (-655 (-418 *6))) (|:| -2412 (-700 *5)))) (-5 *1 (-821 *5 *6)) (-5 *4 (-655 (-418 *6))))) (-4146 (*1 *2 *3 *4) (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-418 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) (-5 *1 (-821 *5 *6))))) +(-10 -7 (-15 -4146 ((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -1624 (-655 (-418 |#2|)))) (-664 (-418 |#2|)) (-418 |#2|))) (-15 -4146 ((-2 (|:| -1624 (-655 (-418 |#2|))) (|:| -2412 (-700 |#1|))) (-664 (-418 |#2|)) (-655 (-418 |#2|)))) (-15 -4146 ((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -1624 (-655 (-418 |#2|)))) (-665 |#2| (-418 |#2|)) (-418 |#2|))) (-15 -4146 ((-2 (|:| -1624 (-655 (-418 |#2|))) (|:| -2412 (-700 |#1|))) (-665 |#2| (-418 |#2|)) (-655 (-418 |#2|)))) (-15 -2564 (|#2| (-664 (-418 |#2|)))) (-15 -2564 (|#2| (-665 |#2| (-418 |#2|))))) +((-2333 (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) |#5| |#4|) 49))) +(((-822 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2333 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) |#5| |#4|))) (-373) (-667 |#1|) (-1261 |#1|) (-735 |#1| |#3|) (-667 |#4|)) (T -822)) +((-2333 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *7 (-1261 *5)) (-4 *4 (-735 *5 *7)) (-5 *2 (-2 (|:| -2412 (-700 *6)) (|:| |vec| (-1285 *5)))) (-5 *1 (-822 *5 *6 *7 *4 *3)) (-4 *6 (-667 *5)) (-4 *3 (-667 *4))))) +(-10 -7 (-15 -2333 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) |#5| |#4|))) +((-3879 (((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2571 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|)) 47)) (-3318 (((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|))) 164 (|has| |#1| (-27))) (((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-429 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-655 (-418 |#2|)) (-664 (-418 |#2|))) 166 (|has| |#1| (-27))) (((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|)) 38) (((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|)) 39) (((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|)) 36) (((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|)) 37)) (-1705 (((-655 (-2 (|:| |poly| |#2|) (|:| -2571 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|)) 96))) +(((-823 |#1| |#2|) (-10 -7 (-15 -3318 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (-15 -3318 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|))) (-15 -3318 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (-15 -3318 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|))) (-15 -3879 ((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2571 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -1705 ((-655 (-2 (|:| |poly| |#2|) (|:| -2571 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3318 ((-655 (-418 |#2|)) (-664 (-418 |#2|)))) (-15 -3318 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -3318 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)))) (-15 -3318 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|)))) |%noBranch|)) (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))) (-1261 |#1|)) (T -823)) +((-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-665 *5 (-418 *5))) (-4 *5 (-1261 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-655 (-418 *5))) (-5 *1 (-823 *4 *5)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-664 (-418 *5))) (-4 *5 (-1261 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-655 (-418 *5))) (-5 *1 (-823 *4 *5)))) (-1705 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-2 (|:| |poly| *6) (|:| -2571 (-665 *6 (-418 *6)))))) (-5 *1 (-823 *5 *6)) (-5 *3 (-665 *6 (-418 *6))))) (-3879 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-655 (-2 (|:| |frac| (-418 *6)) (|:| -2571 (-665 *6 (-418 *6)))))) (-5 *1 (-823 *5 *6)) (-5 *3 (-665 *6 (-418 *6))))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *7 (-418 *7))) (-5 *4 (-1 (-655 *6) *7)) (-5 *5 (-1 (-429 *7) *7)) (-4 *6 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *7 (-1261 *6)) (-5 *2 (-655 (-418 *7))) (-5 *1 (-823 *6 *7)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-664 (-418 *7))) (-5 *4 (-1 (-655 *6) *7)) (-5 *5 (-1 (-429 *7) *7)) (-4 *6 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *7 (-1261 *6)) (-5 *2 (-655 (-418 *7))) (-5 *1 (-823 *6 *7)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6))))) +(-10 -7 (-15 -3318 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (-15 -3318 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|))) (-15 -3318 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (-15 -3318 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|))) (-15 -3879 ((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2571 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -1705 ((-655 (-2 (|:| |poly| |#2|) (|:| -2571 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3318 ((-655 (-418 |#2|)) (-664 (-418 |#2|)))) (-15 -3318 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -3318 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)))) (-15 -3318 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|)))) |%noBranch|)) +((-2436 (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) (-700 |#2|) (-1285 |#1|)) 110) (((-2 (|:| A (-700 |#1|)) (|:| |eqs| (-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)) (|:| -2571 |#2|) (|:| |rh| |#1|))))) (-700 |#1|) (-1285 |#1|)) 15)) (-2017 (((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|)))) (-700 |#2|) (-1285 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1624 (-655 |#1|))) |#2| |#1|)) 116)) (-1546 (((-3 (-2 (|:| |particular| (-1285 |#1|)) (|:| -1624 (-700 |#1|))) "failed") (-700 |#1|) (-1285 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1624 (-655 |#1|))) "failed") |#2| |#1|)) 54))) +(((-824 |#1| |#2|) (-10 -7 (-15 -2436 ((-2 (|:| A (-700 |#1|)) (|:| |eqs| (-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)) (|:| -2571 |#2|) (|:| |rh| |#1|))))) (-700 |#1|) (-1285 |#1|))) (-15 -2436 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) (-700 |#2|) (-1285 |#1|))) (-15 -1546 ((-3 (-2 (|:| |particular| (-1285 |#1|)) (|:| -1624 (-700 |#1|))) "failed") (-700 |#1|) (-1285 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1624 (-655 |#1|))) "failed") |#2| |#1|))) (-15 -2017 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|)))) (-700 |#2|) (-1285 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1624 (-655 |#1|))) |#2| |#1|)))) (-373) (-667 |#1|)) (T -824)) +((-2017 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1624 (-655 *6))) *7 *6)) (-4 *6 (-373)) (-4 *7 (-667 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1285 *6) "failed")) (|:| -1624 (-655 (-1285 *6))))) (-5 *1 (-824 *6 *7)) (-5 *4 (-1285 *6)))) (-1546 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1624 (-655 *6))) "failed") *7 *6)) (-4 *6 (-373)) (-4 *7 (-667 *6)) (-5 *2 (-2 (|:| |particular| (-1285 *6)) (|:| -1624 (-700 *6)))) (-5 *1 (-824 *6 *7)) (-5 *3 (-700 *6)) (-5 *4 (-1285 *6)))) (-2436 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *6 (-667 *5)) (-5 *2 (-2 (|:| -2412 (-700 *6)) (|:| |vec| (-1285 *5)))) (-5 *1 (-824 *5 *6)) (-5 *3 (-700 *6)) (-5 *4 (-1285 *5)))) (-2436 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-5 *2 (-2 (|:| A (-700 *5)) (|:| |eqs| (-655 (-2 (|:| C (-700 *5)) (|:| |g| (-1285 *5)) (|:| -2571 *6) (|:| |rh| *5)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)) (-4 *6 (-667 *5))))) +(-10 -7 (-15 -2436 ((-2 (|:| A (-700 |#1|)) (|:| |eqs| (-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)) (|:| -2571 |#2|) (|:| |rh| |#1|))))) (-700 |#1|) (-1285 |#1|))) (-15 -2436 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) (-700 |#2|) (-1285 |#1|))) (-15 -1546 ((-3 (-2 (|:| |particular| (-1285 |#1|)) (|:| -1624 (-700 |#1|))) "failed") (-700 |#1|) (-1285 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1624 (-655 |#1|))) "failed") |#2| |#1|))) (-15 -2017 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -1624 (-655 (-1285 |#1|)))) (-700 |#2|) (-1285 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1624 (-655 |#1|))) |#2| |#1|)))) +((-3711 (((-700 |#1|) (-655 |#1|) (-782)) 14) (((-700 |#1|) (-655 |#1|)) 15)) (-3510 (((-3 (-1285 |#1|) "failed") |#2| |#1| (-655 |#1|)) 39)) (-3440 (((-3 |#1| "failed") |#2| |#1| (-655 |#1|) (-1 |#1| |#1|)) 46))) +(((-825 |#1| |#2|) (-10 -7 (-15 -3711 ((-700 |#1|) (-655 |#1|))) (-15 -3711 ((-700 |#1|) (-655 |#1|) (-782))) (-15 -3510 ((-3 (-1285 |#1|) "failed") |#2| |#1| (-655 |#1|))) (-15 -3440 ((-3 |#1| "failed") |#2| |#1| (-655 |#1|) (-1 |#1| |#1|)))) (-373) (-667 |#1|)) (T -825)) +((-3440 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-655 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-373)) (-5 *1 (-825 *2 *3)) (-4 *3 (-667 *2)))) (-3510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-655 *4)) (-4 *4 (-373)) (-5 *2 (-1285 *4)) (-5 *1 (-825 *4 *3)) (-4 *3 (-667 *4)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-782)) (-4 *5 (-373)) (-5 *2 (-700 *5)) (-5 *1 (-825 *5 *6)) (-4 *6 (-667 *5)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-373)) (-5 *2 (-700 *4)) (-5 *1 (-825 *4 *5)) (-4 *5 (-667 *4))))) +(-10 -7 (-15 -3711 ((-700 |#1|) (-655 |#1|))) (-15 -3711 ((-700 |#1|) (-655 |#1|) (-782))) (-15 -3510 ((-3 (-1285 |#1|) "failed") |#2| |#1| (-655 |#1|))) (-15 -3440 ((-3 |#1| "failed") |#2| |#1| (-655 |#1|) (-1 |#1| |#1|)))) +((-2861 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-3799 (((-112) $) NIL (-3765 (|has| |#2| (-23)) (|has| |#2| (-737))))) (-4176 (($ (-936)) NIL (|has| |#2| (-1066)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3605 (($ $ $) NIL (|has| |#2| (-804)))) (-2597 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-1845 (((-112) $ (-782)) NIL)) (-2415 (((-782)) NIL (|has| |#2| (-378)))) (-3054 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1117)))) (-4399 (((-575) $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) ((|#2| $) NIL (|has| |#2| (-1117)))) (-1749 (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-700 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-1285 $)) NIL (|has| |#2| (-1066)))) (-1747 (((-3 $ "failed") $) NIL (|has| |#2| (-1066)))) (-2079 (($) NIL (|has| |#2| (-378)))) (-2859 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#2| $ (-575)) NIL)) (-4001 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1542 (((-112) $) NIL (|has| |#2| (-1066)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#2| (-861)))) (-3955 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#2| (-861)))) (-2847 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-4084 (((-936) $) NIL (|has| |#2| (-378)))) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#2| (-1117)))) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#2| (-378)))) (-3912 (((-1137) $) NIL (|has| |#2| (-1117)))) (-1961 ((|#2| $) NIL (|has| (-575) (-861)))) (-3954 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#2| $ (-575) |#2|) NIL) ((|#2| $ (-575)) NIL)) (-1886 ((|#2| $ $) NIL (|has| |#2| (-1066)))) (-1981 (($ (-1285 |#2|)) NIL)) (-4386 (((-135)) NIL (|has| |#2| (-373)))) (-2389 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3925 (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-1285 |#2|) $) NIL) (($ (-575)) NIL (-3765 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (($ |#2|) NIL (|has| |#2| (-1117))) (((-873) $) NIL (|has| |#2| (-624 (-873))))) (-3759 (((-782)) NIL (|has| |#2| (-1066)) CONST)) (-4400 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-3771 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-1996 (($) NIL (-3765 (|has| |#2| (-23)) (|has| |#2| (-737))) CONST)) (-2009 (($) NIL (|has| |#2| (-1066)) CONST)) (-3430 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3981 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3943 (((-112) $ $) 11 (|has| |#2| (-861)))) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4028 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4016 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-782)) NIL (|has| |#2| (-1066))) (($ $ (-936)) NIL (|has| |#2| (-1066)))) (* (($ $ $) NIL (|has| |#2| (-1066))) (($ $ |#2|) NIL (|has| |#2| (-737))) (($ |#2| $) NIL (|has| |#2| (-737))) (($ (-575) $) NIL (|has| |#2| (-21))) (($ (-782) $) NIL (|has| |#2| (-23))) (($ (-936) $) NIL (|has| |#2| (-25)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-826 |#1| |#2| |#3|) (-243 |#1| |#2|) (-782) (-804) (-1 (-112) (-1285 |#2|) (-1285 |#2|))) (T -826)) +NIL +(-243 |#1| |#2|) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3004 (((-655 (-782)) $) NIL) (((-655 (-782)) $ (-1194)) NIL)) (-2807 (((-782) $) NIL) (((-782) $ (-1194)) NIL)) (-1606 (((-655 (-829 (-1194))) $) NIL)) (-3466 (((-1190 $) $ (-829 (-1194))) NIL) (((-1190 |#1|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 (-829 (-1194)))) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2058 (($ $) NIL (|has| |#1| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-1611 (($ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-829 (-1194)) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL) (((-3 (-1142 |#1| (-1194)) "failed") $) NIL)) (-4399 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-829 (-1194)) $) NIL) (((-1194) $) NIL) (((-1142 |#1| (-1194)) $) NIL)) (-4232 (($ $ $ (-829 (-1194))) NIL (|has| |#1| (-174)))) (-4406 (($ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#1| (-463))) (($ $ (-829 (-1194))) NIL (|has| |#1| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#1| (-924)))) (-3703 (($ $ |#1| (-542 (-829 (-1194))) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-829 (-1194)) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-829 (-1194)) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-2673 (((-782) $ (-1194)) NIL) (((-782) $) NIL)) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-2433 (($ (-1190 |#1|) (-829 (-1194))) NIL) (($ (-1190 $) (-829 (-1194))) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-542 (-829 (-1194)))) NIL) (($ $ (-829 (-1194)) (-782)) NIL) (($ $ (-655 (-829 (-1194))) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-829 (-1194))) NIL)) (-4337 (((-542 (-829 (-1194))) $) NIL) (((-782) $ (-829 (-1194))) NIL) (((-655 (-782)) $ (-655 (-829 (-1194)))) NIL)) (-2520 (($ (-1 (-542 (-829 (-1194))) (-542 (-829 (-1194)))) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4420 (((-1 $ (-782)) (-1194)) NIL) (((-1 $ (-782)) $) NIL (|has| |#1| (-238)))) (-3976 (((-3 (-829 (-1194)) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2147 (((-829 (-1194)) $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-2288 (((-1176) $) NIL)) (-2976 (((-112) $) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| (-829 (-1194))) (|:| -2398 (-782))) "failed") $) NIL)) (-2816 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-829 (-1194)) |#1|) NIL) (($ $ (-655 (-829 (-1194))) (-655 |#1|)) NIL) (($ $ (-829 (-1194)) $) NIL) (($ $ (-655 (-829 (-1194))) (-655 $)) NIL) (($ $ (-1194) $) NIL (|has| |#1| (-238))) (($ $ (-655 (-1194)) (-655 $)) NIL (|has| |#1| (-238))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-238))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-238)))) (-4060 (($ $ (-829 (-1194))) NIL (|has| |#1| (-174)))) (-2389 (($ $ (-655 (-829 (-1194))) (-655 (-782))) NIL) (($ $ (-829 (-1194)) (-782)) NIL) (($ $ (-655 (-829 (-1194)))) NIL) (($ $ (-829 (-1194))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-3503 (((-655 (-1194)) $) NIL)) (-2645 (((-542 (-829 (-1194))) $) NIL) (((-782) $ (-829 (-1194))) NIL) (((-655 (-782)) $ (-655 (-829 (-1194)))) NIL) (((-782) $ (-1194)) NIL)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| (-829 (-1194)) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-829 (-1194)) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-829 (-1194)) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-2178 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ (-829 (-1194))) NIL (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-829 (-1194))) NIL) (($ (-1194)) NIL) (($ (-1142 |#1| (-1194))) NIL) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-542 (-829 (-1194)))) NIL) (($ $ (-829 (-1194)) (-782)) NIL) (($ $ (-655 (-829 (-1194))) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-655 (-829 (-1194))) (-655 (-782))) NIL) (($ $ (-829 (-1194)) (-782)) NIL) (($ $ (-655 (-829 (-1194)))) NIL) (($ $ (-829 (-1194))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-827 |#1|) (-13 (-259 |#1| (-1194) (-829 (-1194)) (-542 (-829 (-1194)))) (-1055 (-1142 |#1| (-1194)))) (-1066)) (T -827)) +NIL +(-13 (-259 |#1| (-1194) (-829 (-1194)) (-542 (-829 (-1194)))) (-1055 (-1142 |#1| (-1194)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-373)))) (-1540 (($ $) NIL (|has| |#2| (-373)))) (-3286 (((-112) $) NIL (|has| |#2| (-373)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL (|has| |#2| (-373)))) (-2330 (((-429 $) $) NIL (|has| |#2| (-373)))) (-2279 (((-112) $ $) NIL (|has| |#2| (-373)))) (-3011 (($) NIL T CONST)) (-2802 (($ $ $) NIL (|has| |#2| (-373)))) (-1747 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#2| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#2| (-373)))) (-1336 (((-112) $) NIL (|has| |#2| (-373)))) (-1542 (((-112) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#2| (-373)))) (-3887 (($ (-655 $)) NIL (|has| |#2| (-373))) (($ $ $) NIL (|has| |#2| (-373)))) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 20 (|has| |#2| (-373)))) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-373)))) (-3926 (($ (-655 $)) NIL (|has| |#2| (-373))) (($ $ $) NIL (|has| |#2| (-373)))) (-2353 (((-429 $) $) NIL (|has| |#2| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#2| (-373)))) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#2| (-373)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#2| (-373)))) (-3708 (((-782) $) NIL (|has| |#2| (-373)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#2| (-373)))) (-2389 (($ $) 13) (($ $ (-782)) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-418 (-575))) NIL (|has| |#2| (-373))) (($ $) NIL (|has| |#2| (-373)))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#2| (-373)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $) NIL) (($ $ (-782)) NIL)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) 15 (|has| |#2| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL) (($ $ (-575)) 18 (|has| |#2| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-418 (-575)) $) NIL (|has| |#2| (-373))) (($ $ (-418 (-575))) NIL (|has| |#2| (-373))))) +(((-828 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-501 |#2|) (-10 -7 (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|))) (-1117) (-913 |#1|) |#1|) (T -828)) +NIL +(-13 (-111 $ $) (-238) (-501 |#2|) (-10 -7 (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|))) +((-2861 (((-112) $ $) NIL)) (-2807 (((-782) $) NIL)) (-1441 ((|#1| $) 10)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-2673 (((-782) $) 11)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-4420 (($ |#1| (-782)) 9)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2389 (($ $ (-782)) NIL) (($ $) NIL)) (-2883 (((-873) $) NIL) (($ |#1|) NIL)) (-4400 (((-112) $ $) NIL)) (-3430 (($ $ (-782)) NIL) (($ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) +(((-829 |#1|) (-274 |#1|) (-861)) (T -829)) +NIL +(-274 |#1|) +((-2861 (((-112) $ $) NIL)) (-3489 (((-655 |#1|) $) 38)) (-2415 (((-782) $) NIL)) (-3011 (($) NIL T CONST)) (-2724 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-1975 (($ $) 42)) (-1747 (((-3 $ "failed") $) NIL)) (-1654 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1542 (((-112) $) NIL)) (-3643 ((|#1| $ (-575)) NIL)) (-2302 (((-782) $ (-575)) NIL)) (-3061 (($ $) 54)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-1772 (($ (-1 |#1| |#1|) $) NIL)) (-2195 (($ (-1 (-782) (-782)) $) NIL)) (-4190 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2025 (((-112) $ $) 51)) (-1839 (((-782) $) 34)) (-2288 (((-1176) $) NIL)) (-3526 (($ $ $) NIL)) (-3415 (($ $ $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 ((|#1| $) 41)) (-3378 (((-655 (-2 (|:| |gen| |#1|) (|:| -2665 (-782)))) $) NIL)) (-2196 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2838 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2883 (((-873) $) NIL) (($ |#1|) NIL)) (-4400 (((-112) $ $) NIL)) (-2009 (($) 20 T CONST)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 53)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ |#1| (-782)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-830 |#1|) (-13 (-396 |#1|) (-857) (-10 -8 (-15 -1961 (|#1| $)) (-15 -1975 ($ $)) (-15 -3061 ($ $)) (-15 -2025 ((-112) $ $)) (-15 -4190 ((-3 $ "failed") $ |#1|)) (-15 -2724 ((-3 $ "failed") $ |#1|)) (-15 -2838 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1839 ((-782) $)) (-15 -3489 ((-655 |#1|) $)))) (-861)) (T -830)) +((-1961 (*1 *2 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) (-1975 (*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) (-3061 (*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) (-2025 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-861)))) (-4190 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) (-2724 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) (-2838 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-830 *3)) (|:| |rm| (-830 *3)))) (-5 *1 (-830 *3)) (-4 *3 (-861)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-830 *3)) (-4 *3 (-861)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-830 *3)) (-4 *3 (-861))))) +(-13 (-396 |#1|) (-857) (-10 -8 (-15 -1961 (|#1| $)) (-15 -1975 ($ $)) (-15 -3061 ($ $)) (-15 -2025 ((-112) $ $)) (-15 -4190 ((-3 $ "failed") $ |#1|)) (-15 -2724 ((-3 $ "failed") $ |#1|)) (-15 -2838 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1839 ((-782) $)) (-15 -3489 ((-655 |#1|) $)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-4428 (((-575) $) 59)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-4075 (((-112) $) 57)) (-1542 (((-112) $) 35)) (-4087 (((-112) $) 58)) (-1920 (($ $ $) 56)) (-1425 (($ $ $) 55)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2851 (((-3 $ "failed") $ $) 48)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-2705 (($ $) 60)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3981 (((-112) $ $) 53)) (-3956 (((-112) $ $) 52)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 54)) (-3943 (((-112) $ $) 51)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-831) (-141)) (T -831)) +NIL +(-13 (-567) (-859)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-859) . T) ((-861) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-3632 (($ (-1137)) 7)) (-4262 (((-112) $ (-1176) (-1137)) 15)) (-2346 (((-833) $) 12)) (-3776 (((-833) $) 11)) (-1844 (((-1290) $) 9)) (-3934 (((-112) $ (-1137)) 16))) +(((-832) (-10 -8 (-15 -3632 ($ (-1137))) (-15 -1844 ((-1290) $)) (-15 -3776 ((-833) $)) (-15 -2346 ((-833) $)) (-15 -4262 ((-112) $ (-1176) (-1137))) (-15 -3934 ((-112) $ (-1137))))) (T -832)) +((-3934 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-112)) (-5 *1 (-832)))) (-4262 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-1137)) (-5 *2 (-112)) (-5 *1 (-832)))) (-2346 (*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-832)))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-832)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-832)))) (-3632 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-832))))) +(-10 -8 (-15 -3632 ($ (-1137))) (-15 -1844 ((-1290) $)) (-15 -3776 ((-833) $)) (-15 -2346 ((-833) $)) (-15 -4262 ((-112) $ (-1176) (-1137))) (-15 -3934 ((-112) $ (-1137)))) +((-3681 (((-1290) $ (-834)) 12)) (-2095 (((-1290) $ (-1194)) 32)) (-1675 (((-1290) $ (-1176) (-1176)) 34)) (-3666 (((-1290) $ (-1176)) 33)) (-1638 (((-1290) $) 19)) (-3754 (((-1290) $ (-575)) 28)) (-3548 (((-1290) $ (-227)) 30)) (-3042 (((-1290) $) 18)) (-2098 (((-1290) $) 26)) (-2510 (((-1290) $) 25)) (-2785 (((-1290) $) 23)) (-3290 (((-1290) $) 24)) (-3834 (((-1290) $) 22)) (-2090 (((-1290) $) 21)) (-3567 (((-1290) $) 20)) (-2359 (((-1290) $) 16)) (-4207 (((-1290) $) 17)) (-3620 (((-1290) $) 15)) (-2179 (((-1290) $) 14)) (-2442 (((-1290) $) 13)) (-3262 (($ (-1176) (-834)) 9)) (-1423 (($ (-1176) (-1176) (-834)) 8)) (-1891 (((-1194) $) 51)) (-4052 (((-1194) $) 55)) (-3398 (((-2 (|:| |cd| (-1176)) (|:| -1777 (-1176))) $) 54)) (-3607 (((-1176) $) 52)) (-1723 (((-1290) $) 41)) (-3770 (((-575) $) 49)) (-2284 (((-227) $) 50)) (-3345 (((-1290) $) 40)) (-1994 (((-1290) $) 48)) (-2226 (((-1290) $) 47)) (-4356 (((-1290) $) 45)) (-3060 (((-1290) $) 46)) (-2372 (((-1290) $) 44)) (-3408 (((-1290) $) 43)) (-3628 (((-1290) $) 42)) (-3882 (((-1290) $) 38)) (-1373 (((-1290) $) 39)) (-2071 (((-1290) $) 37)) (-3454 (((-1290) $) 36)) (-3546 (((-1290) $) 35)) (-1757 (((-1290) $) 11))) +(((-833) (-10 -8 (-15 -1423 ($ (-1176) (-1176) (-834))) (-15 -3262 ($ (-1176) (-834))) (-15 -1757 ((-1290) $)) (-15 -3681 ((-1290) $ (-834))) (-15 -2442 ((-1290) $)) (-15 -2179 ((-1290) $)) (-15 -3620 ((-1290) $)) (-15 -2359 ((-1290) $)) (-15 -4207 ((-1290) $)) (-15 -3042 ((-1290) $)) (-15 -1638 ((-1290) $)) (-15 -3567 ((-1290) $)) (-15 -2090 ((-1290) $)) (-15 -3834 ((-1290) $)) (-15 -2785 ((-1290) $)) (-15 -3290 ((-1290) $)) (-15 -2510 ((-1290) $)) (-15 -2098 ((-1290) $)) (-15 -3754 ((-1290) $ (-575))) (-15 -3548 ((-1290) $ (-227))) (-15 -2095 ((-1290) $ (-1194))) (-15 -3666 ((-1290) $ (-1176))) (-15 -1675 ((-1290) $ (-1176) (-1176))) (-15 -3546 ((-1290) $)) (-15 -3454 ((-1290) $)) (-15 -2071 ((-1290) $)) (-15 -3882 ((-1290) $)) (-15 -1373 ((-1290) $)) (-15 -3345 ((-1290) $)) (-15 -1723 ((-1290) $)) (-15 -3628 ((-1290) $)) (-15 -3408 ((-1290) $)) (-15 -2372 ((-1290) $)) (-15 -4356 ((-1290) $)) (-15 -3060 ((-1290) $)) (-15 -2226 ((-1290) $)) (-15 -1994 ((-1290) $)) (-15 -3770 ((-575) $)) (-15 -2284 ((-227) $)) (-15 -1891 ((-1194) $)) (-15 -3607 ((-1176) $)) (-15 -3398 ((-2 (|:| |cd| (-1176)) (|:| -1777 (-1176))) $)) (-15 -4052 ((-1194) $)))) (T -833)) +((-4052 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-833)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1176)) (|:| -1777 (-1176)))) (-5 *1 (-833)))) (-3607 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-833)))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-833)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-833)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-833)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2226 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-4356 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2372 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-1675 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-3666 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-2095 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-3754 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3681 (*1 *2 *1 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3262 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-834)) (-5 *1 (-833)))) (-1423 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-834)) (-5 *1 (-833))))) +(-10 -8 (-15 -1423 ($ (-1176) (-1176) (-834))) (-15 -3262 ($ (-1176) (-834))) (-15 -1757 ((-1290) $)) (-15 -3681 ((-1290) $ (-834))) (-15 -2442 ((-1290) $)) (-15 -2179 ((-1290) $)) (-15 -3620 ((-1290) $)) (-15 -2359 ((-1290) $)) (-15 -4207 ((-1290) $)) (-15 -3042 ((-1290) $)) (-15 -1638 ((-1290) $)) (-15 -3567 ((-1290) $)) (-15 -2090 ((-1290) $)) (-15 -3834 ((-1290) $)) (-15 -2785 ((-1290) $)) (-15 -3290 ((-1290) $)) (-15 -2510 ((-1290) $)) (-15 -2098 ((-1290) $)) (-15 -3754 ((-1290) $ (-575))) (-15 -3548 ((-1290) $ (-227))) (-15 -2095 ((-1290) $ (-1194))) (-15 -3666 ((-1290) $ (-1176))) (-15 -1675 ((-1290) $ (-1176) (-1176))) (-15 -3546 ((-1290) $)) (-15 -3454 ((-1290) $)) (-15 -2071 ((-1290) $)) (-15 -3882 ((-1290) $)) (-15 -1373 ((-1290) $)) (-15 -3345 ((-1290) $)) (-15 -1723 ((-1290) $)) (-15 -3628 ((-1290) $)) (-15 -3408 ((-1290) $)) (-15 -2372 ((-1290) $)) (-15 -4356 ((-1290) $)) (-15 -3060 ((-1290) $)) (-15 -2226 ((-1290) $)) (-15 -1994 ((-1290) $)) (-15 -3770 ((-575) $)) (-15 -2284 ((-227) $)) (-15 -1891 ((-1194) $)) (-15 -3607 ((-1176) $)) (-15 -3398 ((-2 (|:| |cd| (-1176)) (|:| -1777 (-1176))) $)) (-15 -4052 ((-1194) $))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 13)) (-4400 (((-112) $ $) NIL)) (-3065 (($) 16)) (-3280 (($) 14)) (-2312 (($) 17)) (-2448 (($) 15)) (-3914 (((-112) $ $) 9))) +(((-834) (-13 (-1117) (-10 -8 (-15 -3280 ($)) (-15 -3065 ($)) (-15 -2312 ($)) (-15 -2448 ($))))) (T -834)) +((-3280 (*1 *1) (-5 *1 (-834))) (-3065 (*1 *1) (-5 *1 (-834))) (-2312 (*1 *1) (-5 *1 (-834))) (-2448 (*1 *1) (-5 *1 (-834)))) +(-13 (-1117) (-10 -8 (-15 -3280 ($)) (-15 -3065 ($)) (-15 -2312 ($)) (-15 -2448 ($)))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 23) (($ (-1194)) 19)) (-4400 (((-112) $ $) NIL)) (-2877 (((-112) $) 10)) (-1327 (((-112) $) 9)) (-3094 (((-112) $) 11)) (-2434 (((-112) $) 8)) (-3914 (((-112) $ $) 21))) +(((-835) (-13 (-1117) (-10 -8 (-15 -2883 ($ (-1194))) (-15 -2434 ((-112) $)) (-15 -1327 ((-112) $)) (-15 -2877 ((-112) $)) (-15 -3094 ((-112) $))))) (T -835)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-835)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835))))) +(-13 (-1117) (-10 -8 (-15 -2883 ($ (-1194))) (-15 -2434 ((-112) $)) (-15 -1327 ((-112) $)) (-15 -2877 ((-112) $)) (-15 -3094 ((-112) $)))) +((-2861 (((-112) $ $) NIL)) (-3185 (($ (-835) (-655 (-1194))) 32)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1369 (((-835) $) 33)) (-2901 (((-655 (-1194)) $) 34)) (-2883 (((-873) $) 31)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-836) (-13 (-1117) (-10 -8 (-15 -1369 ((-835) $)) (-15 -2901 ((-655 (-1194)) $)) (-15 -3185 ($ (-835) (-655 (-1194))))))) (T -836)) +((-1369 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-836)))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-836)))) (-3185 (*1 *1 *2 *3) (-12 (-5 *2 (-835)) (-5 *3 (-655 (-1194))) (-5 *1 (-836))))) +(-13 (-1117) (-10 -8 (-15 -1369 ((-835) $)) (-15 -2901 ((-655 (-1194)) $)) (-15 -3185 ($ (-835) (-655 (-1194)))))) +((-4196 (((-1290) (-833) (-325 |#1|) (-112)) 23) (((-1290) (-833) (-325 |#1|)) 89) (((-1176) (-325 |#1|) (-112)) 88) (((-1176) (-325 |#1|)) 87))) +(((-837 |#1|) (-10 -7 (-15 -4196 ((-1176) (-325 |#1|))) (-15 -4196 ((-1176) (-325 |#1|) (-112))) (-15 -4196 ((-1290) (-833) (-325 |#1|))) (-15 -4196 ((-1290) (-833) (-325 |#1|) (-112)))) (-13 (-839) (-1066))) (T -837)) +((-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-833)) (-5 *4 (-325 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-839) (-1066))) (-5 *2 (-1290)) (-5 *1 (-837 *6)))) (-4196 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-325 *5)) (-4 *5 (-13 (-839) (-1066))) (-5 *2 (-1290)) (-5 *1 (-837 *5)))) (-4196 (*1 *2 *3 *4) (-12 (-5 *3 (-325 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-1066))) (-5 *2 (-1176)) (-5 *1 (-837 *5)))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-325 *4)) (-4 *4 (-13 (-839) (-1066))) (-5 *2 (-1176)) (-5 *1 (-837 *4))))) +(-10 -7 (-15 -4196 ((-1176) (-325 |#1|))) (-15 -4196 ((-1176) (-325 |#1|) (-112))) (-15 -4196 ((-1290) (-833) (-325 |#1|))) (-15 -4196 ((-1290) (-833) (-325 |#1|) (-112)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2935 ((|#1| $) 10)) (-1576 (($ |#1|) 9)) (-1542 (((-112) $) NIL)) (-2417 (($ |#2| (-782)) NIL)) (-4337 (((-782) $) NIL)) (-4383 ((|#2| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2389 (($ $) NIL (|has| |#1| (-238))) (($ $ (-782)) NIL (|has| |#1| (-238)))) (-2645 (((-782) $) NIL)) (-2883 (((-873) $) 17) (($ (-575)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-2012 ((|#2| $ (-782)) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $) NIL (|has| |#1| (-238))) (($ $ (-782)) NIL (|has| |#1| (-238)))) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-838 |#1| |#2|) (-13 (-719 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1576 ($ |#1|)) (-15 -2935 (|#1| $)))) (-719 |#2|) (-1066)) (T -838)) +((-1576 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-838 *2 *3)) (-4 *2 (-719 *3)))) (-2935 (*1 *2 *1) (-12 (-4 *2 (-719 *3)) (-5 *1 (-838 *2 *3)) (-4 *3 (-1066))))) +(-13 (-719 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1576 ($ |#1|)) (-15 -2935 (|#1| $)))) +((-4196 (((-1290) (-833) $ (-112)) 9) (((-1290) (-833) $) 8) (((-1176) $ (-112)) 7) (((-1176) $) 6))) +(((-839) (-141)) (T -839)) +((-4196 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-839)) (-5 *3 (-833)) (-5 *4 (-112)) (-5 *2 (-1290)))) (-4196 (*1 *2 *3 *1) (-12 (-4 *1 (-839)) (-5 *3 (-833)) (-5 *2 (-1290)))) (-4196 (*1 *2 *1 *3) (-12 (-4 *1 (-839)) (-5 *3 (-112)) (-5 *2 (-1176)))) (-4196 (*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-1176))))) +(-13 (-10 -8 (-15 -4196 ((-1176) $)) (-15 -4196 ((-1176) $ (-112))) (-15 -4196 ((-1290) (-833) $)) (-15 -4196 ((-1290) (-833) $ (-112))))) +((-2474 (((-321) (-1176) (-1176)) 12)) (-4098 (((-112) (-1176) (-1176)) 34)) (-2224 (((-112) (-1176)) 33)) (-1922 (((-52) (-1176)) 25)) (-4439 (((-52) (-1176)) 23)) (-2842 (((-52) (-833)) 17)) (-3451 (((-655 (-1176)) (-1176)) 28)) (-3560 (((-655 (-1176))) 27))) +(((-840) (-10 -7 (-15 -2842 ((-52) (-833))) (-15 -4439 ((-52) (-1176))) (-15 -1922 ((-52) (-1176))) (-15 -3560 ((-655 (-1176)))) (-15 -3451 ((-655 (-1176)) (-1176))) (-15 -2224 ((-112) (-1176))) (-15 -4098 ((-112) (-1176) (-1176))) (-15 -2474 ((-321) (-1176) (-1176))))) (T -840)) +((-2474 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-840)))) (-4098 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-112)) (-5 *1 (-840)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-112)) (-5 *1 (-840)))) (-3451 (*1 *2 *3) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-840)) (-5 *3 (-1176)))) (-3560 (*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-840)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-840)))) (-4439 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-840)))) (-2842 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-840))))) +(-10 -7 (-15 -2842 ((-52) (-833))) (-15 -4439 ((-52) (-1176))) (-15 -1922 ((-52) (-1176))) (-15 -3560 ((-655 (-1176)))) (-15 -3451 ((-655 (-1176)) (-1176))) (-15 -2224 ((-112) (-1176))) (-15 -4098 ((-112) (-1176) (-1176))) (-15 -2474 ((-321) (-1176) (-1176)))) +((-2861 (((-112) $ $) 19)) (-1644 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3404 (($ $ $) 73)) (-2696 (((-112) $ $) 74)) (-1845 (((-112) $ (-782)) 8)) (-1329 (($ (-655 |#1|)) 69) (($) 68)) (-1999 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1878 (($ $) 63)) (-1748 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4404 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3633 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3244 (((-112) $ $) 65)) (-3896 (((-112) $ (-782)) 9)) (-1920 ((|#1| $) 79)) (-4174 (($ $ $) 82)) (-3794 (($ $ $) 81)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-1425 ((|#1| $) 80)) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22)) (-1479 (($ $ $) 70)) (-4012 ((|#1| $) 40)) (-3862 (($ |#1| $) 41) (($ |#1| $ (-782)) 64)) (-3912 (((-1137) $) 21)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2454 ((|#1| $) 42)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3240 (((-655 (-2 (|:| -3179 |#1|) (|:| -3925 (-782)))) $) 62)) (-1771 (($ $ |#1|) 72) (($ $ $) 71)) (-3601 (($) 50) (($ (-655 |#1|)) 49)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 51)) (-2883 (((-873) $) 18)) (-2556 (($ (-655 |#1|)) 67) (($) 66)) (-4400 (((-112) $ $) 23)) (-1511 (($ (-655 |#1|)) 43)) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20)) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-841 |#1|) (-141) (-861)) (T -841)) +((-1920 (*1 *2 *1) (-12 (-4 *1 (-841 *2)) (-4 *2 (-861))))) +(-13 (-747 |t#1|) (-985 |t#1|) (-10 -8 (-15 -1920 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-624 (-873)) . T) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-240 |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-706 |#1|) . T) ((-747 |#1|) . T) ((-985 |#1|) . T) ((-1115 |#1|) . T) ((-1117) . T) ((-1235) . T)) +((-2097 (((-1290) (-1137) (-1137)) 48)) (-3295 (((-1290) (-832) (-52)) 45)) (-4335 (((-52) (-832)) 16))) +(((-842) (-10 -7 (-15 -4335 ((-52) (-832))) (-15 -3295 ((-1290) (-832) (-52))) (-15 -2097 ((-1290) (-1137) (-1137))))) (T -842)) +((-2097 (*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1290)) (-5 *1 (-842)))) (-3295 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-52)) (-5 *2 (-1290)) (-5 *1 (-842)))) (-4335 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-842))))) +(-10 -7 (-15 -4335 ((-52) (-832))) (-15 -3295 ((-1290) (-832) (-52))) (-15 -2097 ((-1290) (-1137) (-1137)))) +((-2550 (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|)) 12) (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|)) 13))) +(((-843 |#1| |#2|) (-10 -7 (-15 -2550 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -2550 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|)))) (-1117) (-1117)) (T -843)) +((-2550 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *1 (-843 *5 *6)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6))))) +(-10 -7 (-15 -2550 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -2550 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL (|has| |#1| (-21)))) (-2597 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4428 (((-575) $) NIL (|has| |#1| (-859)))) (-3011 (($) NIL (|has| |#1| (-21)) CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 15)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 9)) (-1747 (((-3 $ "failed") $) 42 (|has| |#1| (-859)))) (-2446 (((-3 (-418 (-575)) "failed") $) 52 (|has| |#1| (-556)))) (-3405 (((-112) $) 46 (|has| |#1| (-556)))) (-3100 (((-418 (-575)) $) 49 (|has| |#1| (-556)))) (-4075 (((-112) $) NIL (|has| |#1| (-859)))) (-1542 (((-112) $) NIL (|has| |#1| (-859)))) (-4087 (((-112) $) NIL (|has| |#1| (-859)))) (-1920 (($ $ $) NIL (|has| |#1| (-859)))) (-1425 (($ $ $) NIL (|has| |#1| (-859)))) (-2288 (((-1176) $) NIL)) (-1640 (($) 13)) (-2180 (((-112) $) 12)) (-3912 (((-1137) $) NIL)) (-2125 (((-112) $) 11)) (-2883 (((-873) $) 18) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) 8) (($ (-575)) NIL (-3765 (|has| |#1| (-859)) (|has| |#1| (-1055 (-575)))))) (-3759 (((-782)) 36 (|has| |#1| (-859)) CONST)) (-4400 (((-112) $ $) 54)) (-2705 (($ $) NIL (|has| |#1| (-859)))) (-1996 (($) 23 (|has| |#1| (-21)) CONST)) (-2009 (($) 33 (|has| |#1| (-859)) CONST)) (-3981 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3914 (((-112) $ $) 21)) (-3970 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3943 (((-112) $ $) 45 (|has| |#1| (-859)))) (-4028 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-4016 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-936)) NIL (|has| |#1| (-859))) (($ $ (-782)) NIL (|has| |#1| (-859)))) (* (($ $ $) 39 (|has| |#1| (-859))) (($ (-575) $) 27 (|has| |#1| (-21))) (($ (-782) $) NIL (|has| |#1| (-21))) (($ (-936) $) NIL (|has| |#1| (-21))))) +(((-844 |#1|) (-13 (-1117) (-422 |#1|) (-10 -8 (-15 -1640 ($)) (-15 -2125 ((-112) $)) (-15 -2180 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3405 ((-112) $)) (-15 -3100 ((-418 (-575)) $)) (-15 -2446 ((-3 (-418 (-575)) "failed") $))) |%noBranch|))) (-1117)) (T -844)) +((-1640 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1117)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1117)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1117)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-844 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))) (-2446 (*1 *2 *1) (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-844 *3)) (-4 *3 (-556)) (-4 *3 (-1117))))) +(-13 (-1117) (-422 |#1|) (-10 -8 (-15 -1640 ($)) (-15 -2125 ((-112) $)) (-15 -2180 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3405 ((-112) $)) (-15 -3100 ((-418 (-575)) $)) (-15 -2446 ((-3 (-418 (-575)) "failed") $))) |%noBranch|))) +((-3789 (((-112) $ |#2|) 14)) (-2883 (((-873) $) 11))) +(((-845 |#1| |#2|) (-10 -8 (-15 -3789 ((-112) |#1| |#2|)) (-15 -2883 ((-873) |#1|))) (-846 |#2|) (-1117)) (T -845)) +NIL +(-10 -8 (-15 -3789 ((-112) |#1| |#2|)) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-1777 ((|#1| $) 16)) (-2288 (((-1176) $) 10)) (-3789 (((-112) $ |#1|) 14)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3156 (((-55) $) 15)) (-3914 (((-112) $ $) 6))) +(((-846 |#1|) (-141) (-1117)) (T -846)) +((-1777 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1117)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1117)) (-5 *2 (-55)))) (-3789 (*1 *2 *1 *3) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1117)) (-5 *2 (-112))))) +(-13 (-1117) (-10 -8 (-15 -1777 (|t#1| $)) (-15 -3156 ((-55) $)) (-15 -3789 ((-112) $ |t#1|)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-4399 ((|#1| $) NIL) (((-115) $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-3827 ((|#1| (-115) |#1|) NIL)) (-1542 (((-112) $) NIL)) (-4014 (($ |#1| (-371 (-115))) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3473 (($ $ (-1 |#1| |#1|)) NIL)) (-1955 (($ $ (-1 |#1| |#1|)) NIL)) (-2070 ((|#1| $ |#1|) NIL)) (-3712 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-3541 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ (-115) (-575)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-847 |#1|) (-13 (-1066) (-1055 |#1|) (-1055 (-115)) (-295 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3541 ($ $)) (-15 -3541 ($ $ $)) (-15 -3712 (|#1| |#1|))) |%noBranch|) (-15 -1955 ($ $ (-1 |#1| |#1|))) (-15 -3473 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-575))) (-15 ** ($ $ (-575))) (-15 -3827 (|#1| (-115) |#1|)) (-15 -4014 ($ |#1| (-371 (-115)))))) (-1066)) (T -847)) +((-3541 (*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066)))) (-3541 (*1 *1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066)))) (-3712 (*1 *2 *2) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066)))) (-1955 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-847 *3)))) (-3473 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-847 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-575)) (-5 *1 (-847 *4)) (-4 *4 (-1066)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-847 *3)) (-4 *3 (-1066)))) (-3827 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-847 *2)) (-4 *2 (-1066)))) (-4014 (*1 *1 *2 *3) (-12 (-5 *3 (-371 (-115))) (-5 *1 (-847 *2)) (-4 *2 (-1066))))) +(-13 (-1066) (-1055 |#1|) (-1055 (-115)) (-295 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3541 ($ $)) (-15 -3541 ($ $ $)) (-15 -3712 (|#1| |#1|))) |%noBranch|) (-15 -1955 ($ $ (-1 |#1| |#1|))) (-15 -3473 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-575))) (-15 ** ($ $ (-575))) (-15 -3827 (|#1| (-115) |#1|)) (-15 -4014 ($ |#1| (-371 (-115)))))) +((-2406 (((-216 (-513)) (-1176)) 9))) +(((-848) (-10 -7 (-15 -2406 ((-216 (-513)) (-1176))))) (T -848)) +((-2406 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-216 (-513))) (-5 *1 (-848))))) +(-10 -7 (-15 -2406 ((-216 (-513)) (-1176)))) +((-2861 (((-112) $ $) NIL)) (-1381 (((-1135) $) 10)) (-1777 (((-517) $) 9)) (-2288 (((-1176) $) NIL)) (-3789 (((-112) $ (-517)) NIL)) (-3912 (((-1137) $) NIL)) (-2894 (($ (-517) (-1135)) 8)) (-2883 (((-873) $) 25)) (-4400 (((-112) $ $) NIL)) (-3156 (((-55) $) 20)) (-3914 (((-112) $ $) 12))) +(((-849) (-13 (-846 (-517)) (-10 -8 (-15 -1381 ((-1135) $)) (-15 -2894 ($ (-517) (-1135)))))) (T -849)) +((-1381 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-849)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1135)) (-5 *1 (-849))))) +(-13 (-846 (-517)) (-10 -8 (-15 -1381 ((-1135) $)) (-15 -2894 ($ (-517) (-1135))))) +((-2861 (((-112) $ $) 7)) (-2184 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) 15) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 14)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 17) (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) 16)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-850) (-141)) (T -850)) +((-2803 (*1 *2 *3 *4) (-12 (-4 *1 (-850)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (-5 *2 (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)))))) (-2803 (*1 *2 *3 *4) (-12 (-4 *1 (-850)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) (-5 *2 (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)))))) (-2184 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *3 (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) (-5 *2 (-1052)))) (-2184 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *3 (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (-5 *2 (-1052))))) +(-13 (-1117) (-10 -7 (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))) (-15 -2184 ((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))) (-15 -2184 ((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))))))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2588 (((-1052) (-655 (-325 (-389))) (-655 (-389))) 166) (((-1052) (-325 (-389)) (-655 (-389))) 164) (((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-854 (-389)))) 162) (((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-325 (-389))) (-655 (-854 (-389)))) 160) (((-1052) (-852)) 125) (((-1052) (-852) (-1080)) 124)) (-2803 (((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852) (-1080)) 85) (((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852)) 87)) (-3856 (((-1052) (-655 (-325 (-389))) (-655 (-389))) 167) (((-1052) (-852)) 150))) +(((-851) (-10 -7 (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852) (-1080))) (-15 -2588 ((-1052) (-852) (-1080))) (-15 -2588 ((-1052) (-852))) (-15 -3856 ((-1052) (-852))) (-15 -2588 ((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-325 (-389))) (-655 (-854 (-389))))) (-15 -2588 ((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-854 (-389))))) (-15 -2588 ((-1052) (-325 (-389)) (-655 (-389)))) (-15 -2588 ((-1052) (-655 (-325 (-389))) (-655 (-389)))) (-15 -3856 ((-1052) (-655 (-325 (-389))) (-655 (-389)))))) (T -851)) +((-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-325 (-389)))) (-5 *4 (-655 (-389))) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-325 (-389)))) (-5 *4 (-655 (-389))) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-389))) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2588 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-389))) (-5 *5 (-655 (-854 (-389)))) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2588 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-655 (-389))) (-5 *5 (-655 (-854 (-389)))) (-5 *6 (-655 (-325 (-389)))) (-5 *3 (-325 (-389))) (-5 *2 (-1052)) (-5 *1 (-851)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1080)) (-5 *2 (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-851)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-851))))) +(-10 -7 (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852) (-1080))) (-15 -2588 ((-1052) (-852) (-1080))) (-15 -2588 ((-1052) (-852))) (-15 -3856 ((-1052) (-852))) (-15 -2588 ((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-325 (-389))) (-655 (-854 (-389))))) (-15 -2588 ((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-854 (-389))))) (-15 -2588 ((-1052) (-325 (-389)) (-655 (-389)))) (-15 -2588 ((-1052) (-655 (-325 (-389))) (-655 (-389)))) (-15 -3856 ((-1052) (-655 (-325 (-389))) (-655 (-389))))) +((-2861 (((-112) $ $) NIL)) (-4399 (((-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))) $) 21)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 20) (($ (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 14) (($ (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))))) 18)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-852) (-13 (-1117) (-10 -8 (-15 -2883 ($ (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))))) (-15 -2883 ($ (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))) (-15 -2883 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))))) (-15 -4399 ((-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))) $))))) (T -852)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (-5 *1 (-852)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) (-5 *1 (-852)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))))) (-5 *1 (-852)))) (-4399 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))))) (-5 *1 (-852))))) +(-13 (-1117) (-10 -8 (-15 -2883 ($ (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))))) (-15 -2883 ($ (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))) (-15 -2883 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))))) (-15 -4399 ((-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227)))))) $)))) +((-2550 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|) (-854 |#2|)) 13) (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 14))) +(((-853 |#1| |#2|) (-10 -7 (-15 -2550 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -2550 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|) (-854 |#2|)))) (-1117) (-1117)) (T -853)) +((-2550 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *1 (-853 *5 *6)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-854 *6)) (-5 *1 (-853 *5 *6))))) +(-10 -7 (-15 -2550 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -2550 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|) (-854 |#2|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL (|has| |#1| (-21)))) (-2391 (((-1137) $) 31)) (-2597 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4428 (((-575) $) NIL (|has| |#1| (-859)))) (-3011 (($) NIL (|has| |#1| (-21)) CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 18)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 9)) (-1747 (((-3 $ "failed") $) 58 (|has| |#1| (-859)))) (-2446 (((-3 (-418 (-575)) "failed") $) 65 (|has| |#1| (-556)))) (-3405 (((-112) $) 60 (|has| |#1| (-556)))) (-3100 (((-418 (-575)) $) 63 (|has| |#1| (-556)))) (-4075 (((-112) $) NIL (|has| |#1| (-859)))) (-2032 (($) 14)) (-1542 (((-112) $) NIL (|has| |#1| (-859)))) (-4087 (((-112) $) NIL (|has| |#1| (-859)))) (-2043 (($) 16)) (-1920 (($ $ $) NIL (|has| |#1| (-859)))) (-1425 (($ $ $) NIL (|has| |#1| (-859)))) (-2288 (((-1176) $) NIL)) (-2180 (((-112) $) 12)) (-3912 (((-1137) $) NIL)) (-2125 (((-112) $) 11)) (-2883 (((-873) $) 24) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) 8) (($ (-575)) NIL (-3765 (|has| |#1| (-859)) (|has| |#1| (-1055 (-575)))))) (-3759 (((-782)) 51 (|has| |#1| (-859)) CONST)) (-4400 (((-112) $ $) NIL)) (-2705 (($ $) NIL (|has| |#1| (-859)))) (-1996 (($) 37 (|has| |#1| (-21)) CONST)) (-2009 (($) 48 (|has| |#1| (-859)) CONST)) (-3981 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3914 (((-112) $ $) 35)) (-3970 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3943 (((-112) $ $) 59 (|has| |#1| (-859)))) (-4028 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-4016 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-936)) NIL (|has| |#1| (-859))) (($ $ (-782)) NIL (|has| |#1| (-859)))) (* (($ $ $) 55 (|has| |#1| (-859))) (($ (-575) $) 42 (|has| |#1| (-21))) (($ (-782) $) NIL (|has| |#1| (-21))) (($ (-936) $) NIL (|has| |#1| (-21))))) +(((-854 |#1|) (-13 (-1117) (-422 |#1|) (-10 -8 (-15 -2032 ($)) (-15 -2043 ($)) (-15 -2125 ((-112) $)) (-15 -2180 ((-112) $)) (-15 -2391 ((-1137) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3405 ((-112) $)) (-15 -3100 ((-418 (-575)) $)) (-15 -2446 ((-3 (-418 (-575)) "failed") $))) |%noBranch|))) (-1117)) (T -854)) +((-2032 (*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1117)))) (-2043 (*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1117)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1117)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1117)))) (-2391 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-854 *3)) (-4 *3 (-1117)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-854 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))) (-2446 (*1 *2 *1) (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-854 *3)) (-4 *3 (-556)) (-4 *3 (-1117))))) +(-13 (-1117) (-422 |#1|) (-10 -8 (-15 -2032 ($)) (-15 -2043 ($)) (-15 -2125 ((-112) $)) (-15 -2180 ((-112) $)) (-15 -2391 ((-1137) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3405 ((-112) $)) (-15 -3100 ((-418 (-575)) $)) (-15 -2446 ((-3 (-418 (-575)) "failed") $))) |%noBranch|))) +((-2861 (((-112) $ $) 7)) (-2415 (((-782)) 23)) (-2079 (($) 26)) (-1920 (($ $ $) 14) (($) 22 T CONST)) (-1425 (($ $ $) 15) (($) 21 T CONST)) (-4084 (((-936) $) 25)) (-2288 (((-1176) $) 10)) (-4317 (($ (-936)) 24)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19))) +(((-855) (-141)) (T -855)) +((-1920 (*1 *1) (-4 *1 (-855))) (-1425 (*1 *1) (-4 *1 (-855)))) +(-13 (-861) (-378) (-10 -8 (-15 -1920 ($) -3738) (-15 -1425 ($) -3738))) +(((-102) . T) ((-624 (-873)) . T) ((-378) . T) ((-861) . T) ((-1117) . T)) +((-3625 (((-112) (-1285 |#2|) (-1285 |#2|)) 19)) (-2280 (((-112) (-1285 |#2|) (-1285 |#2|)) 20)) (-1779 (((-112) (-1285 |#2|) (-1285 |#2|)) 16))) +(((-856 |#1| |#2|) (-10 -7 (-15 -1779 ((-112) (-1285 |#2|) (-1285 |#2|))) (-15 -3625 ((-112) (-1285 |#2|) (-1285 |#2|))) (-15 -2280 ((-112) (-1285 |#2|) (-1285 |#2|)))) (-782) (-803)) (T -856)) +((-2280 (*1 *2 *3 *3) (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-856 *4 *5)) (-14 *4 (-782)))) (-3625 (*1 *2 *3 *3) (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-856 *4 *5)) (-14 *4 (-782)))) (-1779 (*1 *2 *3 *3) (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-856 *4 *5)) (-14 *4 (-782))))) +(-10 -7 (-15 -1779 ((-112) (-1285 |#2|) (-1285 |#2|))) (-15 -3625 ((-112) (-1285 |#2|) (-1285 |#2|))) (-15 -2280 ((-112) (-1285 |#2|) (-1285 |#2|)))) +((-2861 (((-112) $ $) 7)) (-3011 (($) 24 T CONST)) (-1747 (((-3 $ "failed") $) 27)) (-1542 (((-112) $) 25)) (-1920 (($ $ $) 14)) (-1425 (($ $ $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-2009 (($) 23 T CONST)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (** (($ $ (-936)) 22) (($ $ (-782)) 26)) (* (($ $ $) 21))) +(((-857) (-141)) (T -857)) +NIL +(-13 (-868) (-737)) +(((-102) . T) ((-624 (-873)) . T) ((-737) . T) ((-868) . T) ((-861) . T) ((-1129) . T) ((-1117) . T)) +((-4428 (((-575) $) 21)) (-4075 (((-112) $) 10)) (-4087 (((-112) $) 12)) (-2705 (($ $) 23))) +(((-858 |#1|) (-10 -8 (-15 -2705 (|#1| |#1|)) (-15 -4428 ((-575) |#1|)) (-15 -4087 ((-112) |#1|)) (-15 -4075 ((-112) |#1|))) (-859)) (T -858)) +NIL +(-10 -8 (-15 -2705 (|#1| |#1|)) (-15 -4428 ((-575) |#1|)) (-15 -4087 ((-112) |#1|)) (-15 -4075 ((-112) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 25)) (-2597 (((-3 $ "failed") $ $) 27)) (-4428 (((-575) $) 37)) (-3011 (($) 24 T CONST)) (-1747 (((-3 $ "failed") $) 42)) (-4075 (((-112) $) 39)) (-1542 (((-112) $) 44)) (-4087 (((-112) $) 38)) (-1920 (($ $ $) 14)) (-1425 (($ $ $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-575)) 46)) (-3759 (((-782)) 47 T CONST)) (-4400 (((-112) $ $) 9)) (-2705 (($ $) 36)) (-1996 (($) 23 T CONST)) (-2009 (($) 45 T CONST)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4028 (($ $ $) 31) (($ $) 30)) (-4016 (($ $ $) 21)) (** (($ $ (-782)) 43) (($ $ (-936)) 40)) (* (($ (-936) $) 22) (($ (-782) $) 26) (($ (-575) $) 29) (($ $ $) 41))) +(((-859) (-141)) (T -859)) +((-4075 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-4428 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-575)))) (-2705 (*1 *1 *1) (-4 *1 (-859)))) +(-13 (-802) (-1066) (-737) (-10 -8 (-15 -4075 ((-112) $)) (-15 -4087 ((-112) $)) (-15 -4428 ((-575) $)) (-15 -2705 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-861) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-1920 (($ $ $) 12)) (-1425 (($ $ $) 11)) (-4400 (((-112) $ $) 9)) (-3981 (((-112) $ $) 15)) (-3956 (((-112) $ $) 13)) (-3970 (((-112) $ $) 16))) +(((-860 |#1|) (-10 -8 (-15 -1920 (|#1| |#1| |#1|)) (-15 -1425 (|#1| |#1| |#1|)) (-15 -3970 ((-112) |#1| |#1|)) (-15 -3981 ((-112) |#1| |#1|)) (-15 -3956 ((-112) |#1| |#1|)) (-15 -4400 ((-112) |#1| |#1|))) (-861)) (T -860)) +NIL +(-10 -8 (-15 -1920 (|#1| |#1| |#1|)) (-15 -1425 (|#1| |#1| |#1|)) (-15 -3970 ((-112) |#1| |#1|)) (-15 -3981 ((-112) |#1| |#1|)) (-15 -3956 ((-112) |#1| |#1|)) (-15 -4400 ((-112) |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-1920 (($ $ $) 14)) (-1425 (($ $ $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19))) +(((-861) (-141)) (T -861)) +((-3943 (*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-3956 (*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-3981 (*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-3970 (*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-1425 (*1 *1 *1 *1) (-4 *1 (-861))) (-1920 (*1 *1 *1 *1) (-4 *1 (-861)))) +(-13 (-1117) (-10 -8 (-15 -3943 ((-112) $ $)) (-15 -3956 ((-112) $ $)) (-15 -3981 ((-112) $ $)) (-15 -3970 ((-112) $ $)) (-15 -1425 ($ $ $)) (-15 -1920 ($ $ $)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2077 (($ $ $) 49)) (-1497 (($ $ $) 48)) (-3126 (($ $ $) 46)) (-1363 (($ $ $) 55)) (-3963 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 50)) (-3326 (((-3 $ "failed") $ $) 53)) (-2449 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1824 (($ $) 39)) (-3220 (($ $ $) 43)) (-4329 (($ $ $) 42)) (-2134 (($ $ $) 51)) (-2239 (($ $ $) 57)) (-2793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 45)) (-3707 (((-3 $ "failed") $ $) 52)) (-2851 (((-3 $ "failed") $ |#2|) 32)) (-2178 ((|#2| $) 36)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL) (($ |#2|) 13)) (-2501 (((-655 |#2|) $) 21)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-862 |#1| |#2|) (-10 -8 (-15 -2134 (|#1| |#1| |#1|)) (-15 -3963 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3659 |#1|)) |#1| |#1|)) (-15 -1363 (|#1| |#1| |#1|)) (-15 -3326 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2077 (|#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| |#1|)) (-15 -3126 (|#1| |#1| |#1|)) (-15 -2793 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3659 |#1|)) |#1| |#1|)) (-15 -2239 (|#1| |#1| |#1|)) (-15 -3707 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3220 (|#1| |#1| |#1|)) (-15 -4329 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -2178 (|#2| |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2501 ((-655 |#2|) |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2883 (|#1| (-575))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -2883 ((-873) |#1|))) (-863 |#2|) (-1066)) (T -862)) +NIL +(-10 -8 (-15 -2134 (|#1| |#1| |#1|)) (-15 -3963 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3659 |#1|)) |#1| |#1|)) (-15 -1363 (|#1| |#1| |#1|)) (-15 -3326 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2077 (|#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| |#1|)) (-15 -3126 (|#1| |#1| |#1|)) (-15 -2793 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3659 |#1|)) |#1| |#1|)) (-15 -2239 (|#1| |#1| |#1|)) (-15 -3707 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3220 (|#1| |#1| |#1|)) (-15 -4329 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -2178 (|#2| |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2501 ((-655 |#2|) |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2883 (|#1| (-575))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2077 (($ $ $) 50 (|has| |#1| (-373)))) (-1497 (($ $ $) 51 (|has| |#1| (-373)))) (-3126 (($ $ $) 53 (|has| |#1| (-373)))) (-1363 (($ $ $) 48 (|has| |#1| (-373)))) (-3963 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 47 (|has| |#1| (-373)))) (-3326 (((-3 $ "failed") $ $) 49 (|has| |#1| (-373)))) (-1345 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 52 (|has| |#1| (-373)))) (-2449 (((-3 (-575) "failed") $) 80 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 77 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 74)) (-4399 (((-575) $) 79 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 76 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 75)) (-4406 (($ $) 69)) (-1747 (((-3 $ "failed") $) 37)) (-1824 (($ $) 60 (|has| |#1| (-463)))) (-1542 (((-112) $) 35)) (-2417 (($ |#1| (-782)) 67)) (-2262 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 62 (|has| |#1| (-567)))) (-3819 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63 (|has| |#1| (-567)))) (-4337 (((-782) $) 71)) (-3220 (($ $ $) 57 (|has| |#1| (-373)))) (-4329 (($ $ $) 58 (|has| |#1| (-373)))) (-2134 (($ $ $) 46 (|has| |#1| (-373)))) (-2239 (($ $ $) 55 (|has| |#1| (-373)))) (-2793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 54 (|has| |#1| (-373)))) (-3707 (((-3 $ "failed") $ $) 56 (|has| |#1| (-373)))) (-2011 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 59 (|has| |#1| (-373)))) (-4383 ((|#1| $) 70)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2851 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-567)))) (-2645 (((-782) $) 72)) (-2178 ((|#1| $) 61 (|has| |#1| (-463)))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 78 (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) 73)) (-2501 (((-655 |#1|) $) 66)) (-2012 ((|#1| $ (-782)) 68)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1949 ((|#1| $ |#1| |#1|) 65)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-863 |#1|) (-141) (-1066)) (T -863)) +((-2645 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-4337 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)))) (-4406 (*1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-863 *2)) (-4 *2 (-1066)))) (-2417 (*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-863 *2)) (-4 *2 (-1066)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-655 *3)))) (-1949 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)))) (-2851 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))) (-3819 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-863 *3)))) (-2262 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-863 *3)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-463)))) (-1824 (*1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-463)))) (-2011 (*1 *2 *1 *1) (-12 (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-863 *3)))) (-4329 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-3220 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-3707 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-2239 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-2793 (*1 *2 *1 *1) (-12 (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3659 *1))) (-4 *1 (-863 *3)))) (-3126 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-1345 (*1 *2 *1 *1) (-12 (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-863 *3)))) (-1497 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-2077 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-3326 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-1363 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-3963 (*1 *2 *1 *1) (-12 (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3659 *1))) (-4 *1 (-863 *3)))) (-2134 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) +(-13 (-1066) (-111 |t#1| |t#1|) (-422 |t#1|) (-10 -8 (-15 -2645 ((-782) $)) (-15 -4337 ((-782) $)) (-15 -4383 (|t#1| $)) (-15 -4406 ($ $)) (-15 -2012 (|t#1| $ (-782))) (-15 -2417 ($ |t#1| (-782))) (-15 -2501 ((-655 |t#1|) $)) (-15 -1949 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-567)) (PROGN (-15 -2851 ((-3 $ "failed") $ |t#1|)) (-15 -3819 ((-2 (|:| -2829 $) (|:| -1635 $)) $ $)) (-15 -2262 ((-2 (|:| -2829 $) (|:| -1635 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-463)) (PROGN (-15 -2178 (|t#1| $)) (-15 -1824 ($ $))) |%noBranch|) (IF (|has| |t#1| (-373)) (PROGN (-15 -2011 ((-2 (|:| -2829 $) (|:| -1635 $)) $ $)) (-15 -4329 ($ $ $)) (-15 -3220 ($ $ $)) (-15 -3707 ((-3 $ "failed") $ $)) (-15 -2239 ($ $ $)) (-15 -2793 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $)) (-15 -3126 ($ $ $)) (-15 -1345 ((-2 (|:| -2829 $) (|:| -1635 $)) $ $)) (-15 -1497 ($ $ $)) (-15 -2077 ($ $ $)) (-15 -3326 ((-3 $ "failed") $ $)) (-15 -1363 ($ $ $)) (-15 -3963 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $)) (-15 -2134 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 #0=(-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-422 |#1|) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) |has| |#1| (-174)) ((-728 |#1|) |has| |#1| (-174)) ((-737) . T) ((-1055 #0#) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-3648 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-1345 (((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-373)))) (-2262 (((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-567)))) (-3819 (((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-567)))) (-2011 (((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-373)))) (-1949 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) +(((-864 |#1| |#2|) (-10 -7 (-15 -3648 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1949 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-567)) (PROGN (-15 -3819 ((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2262 ((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -2011 ((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1345 ((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1066) (-863 |#1|)) (T -864)) +((-1345 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-373)) (-4 *5 (-1066)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-864 *5 *3)) (-4 *3 (-863 *5)))) (-2011 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-373)) (-4 *5 (-1066)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-864 *5 *3)) (-4 *3 (-863 *5)))) (-2262 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-567)) (-4 *5 (-1066)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-864 *5 *3)) (-4 *3 (-863 *5)))) (-3819 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-567)) (-4 *5 (-1066)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-864 *5 *3)) (-4 *3 (-863 *5)))) (-1949 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1066)) (-5 *1 (-864 *2 *3)) (-4 *3 (-863 *2)))) (-3648 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1066)) (-5 *1 (-864 *5 *2)) (-4 *2 (-863 *5))))) +(-10 -7 (-15 -3648 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1949 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-567)) (PROGN (-15 -3819 ((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2262 ((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -2011 ((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1345 ((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2077 (($ $ $) NIL (|has| |#1| (-373)))) (-1497 (($ $ $) NIL (|has| |#1| (-373)))) (-3126 (($ $ $) NIL (|has| |#1| (-373)))) (-1363 (($ $ $) NIL (|has| |#1| (-373)))) (-3963 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-3326 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-1345 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 34 (|has| |#1| (-373)))) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#1| (-463)))) (-3282 (((-873) $ (-873)) NIL)) (-1542 (((-112) $) NIL)) (-2417 (($ |#1| (-782)) NIL)) (-2262 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 30 (|has| |#1| (-567)))) (-3819 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 28 (|has| |#1| (-567)))) (-4337 (((-782) $) NIL)) (-3220 (($ $ $) NIL (|has| |#1| (-373)))) (-4329 (($ $ $) NIL (|has| |#1| (-373)))) (-2134 (($ $ $) NIL (|has| |#1| (-373)))) (-2239 (($ $ $) NIL (|has| |#1| (-373)))) (-2793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-3707 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-2011 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 32 (|has| |#1| (-373)))) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-2645 (((-782) $) NIL)) (-2178 ((|#1| $) NIL (|has| |#1| (-463)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) NIL)) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-782)) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1949 ((|#1| $ |#1| |#1|) 15)) (-1996 (($) NIL T CONST)) (-2009 (($) 23 T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) 19) (($ $ (-782)) 24)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-865 |#1| |#2| |#3|) (-13 (-863 |#1|) (-10 -8 (-15 -3282 ((-873) $ (-873))))) (-1066) (-99 |#1|) (-1 |#1| |#1|)) (T -865)) +((-3282 (*1 *2 *1 *2) (-12 (-5 *2 (-873)) (-5 *1 (-865 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-863 |#1|) (-10 -8 (-15 -3282 ((-873) $ (-873))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2077 (($ $ $) NIL (|has| |#2| (-373)))) (-1497 (($ $ $) NIL (|has| |#2| (-373)))) (-3126 (($ $ $) NIL (|has| |#2| (-373)))) (-1363 (($ $ $) NIL (|has| |#2| (-373)))) (-3963 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#2| (-373)))) (-3326 (((-3 $ "failed") $ $) NIL (|has| |#2| (-373)))) (-1345 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#2| (-373)))) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 |#2| "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) ((|#2| $) NIL)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#2| (-463)))) (-1542 (((-112) $) NIL)) (-2417 (($ |#2| (-782)) 17)) (-2262 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#2| (-567)))) (-3819 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#2| (-567)))) (-4337 (((-782) $) NIL)) (-3220 (($ $ $) NIL (|has| |#2| (-373)))) (-4329 (($ $ $) NIL (|has| |#2| (-373)))) (-2134 (($ $ $) NIL (|has| |#2| (-373)))) (-2239 (($ $ $) NIL (|has| |#2| (-373)))) (-2793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#2| (-373)))) (-3707 (((-3 $ "failed") $ $) NIL (|has| |#2| (-373)))) (-2011 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#2| (-373)))) (-4383 ((|#2| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2851 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567)))) (-2645 (((-782) $) NIL)) (-2178 ((|#2| $) NIL (|has| |#2| (-463)))) (-2883 (((-873) $) 24) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#2| (-1055 (-418 (-575))))) (($ |#2|) NIL) (($ (-1281 |#1|)) 19)) (-2501 (((-655 |#2|) $) NIL)) (-2012 ((|#2| $ (-782)) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1949 ((|#2| $ |#2| |#2|) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) 13 T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-866 |#1| |#2| |#3| |#4|) (-13 (-863 |#2|) (-627 (-1281 |#1|))) (-1194) (-1066) (-99 |#2|) (-1 |#2| |#2|)) (T -866)) +NIL +(-13 (-863 |#2|) (-627 (-1281 |#1|))) +((-4031 ((|#1| (-782) |#1|) 45 (|has| |#1| (-38 (-418 (-575)))))) (-2298 ((|#1| (-782) (-782) |#1|) 36) ((|#1| (-782) |#1|) 24)) (-4030 ((|#1| (-782) |#1|) 40)) (-1338 ((|#1| (-782) |#1|) 38)) (-2786 ((|#1| (-782) |#1|) 37))) +(((-867 |#1|) (-10 -7 (-15 -2786 (|#1| (-782) |#1|)) (-15 -1338 (|#1| (-782) |#1|)) (-15 -4030 (|#1| (-782) |#1|)) (-15 -2298 (|#1| (-782) |#1|)) (-15 -2298 (|#1| (-782) (-782) |#1|)) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4031 (|#1| (-782) |#1|)) |%noBranch|)) (-174)) (T -867)) +((-4031 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-174)))) (-2298 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))) (-2298 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))) (-4030 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))) (-1338 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))) (-2786 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -2786 (|#1| (-782) |#1|)) (-15 -1338 (|#1| (-782) |#1|)) (-15 -4030 (|#1| (-782) |#1|)) (-15 -2298 (|#1| (-782) |#1|)) (-15 -2298 (|#1| (-782) (-782) |#1|)) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4031 (|#1| (-782) |#1|)) |%noBranch|)) +((-2861 (((-112) $ $) 7)) (-1920 (($ $ $) 14)) (-1425 (($ $ $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3981 (((-112) $ $) 17)) (-3956 (((-112) $ $) 18)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (** (($ $ (-936)) 22)) (* (($ $ $) 21))) +(((-868) (-141)) (T -868)) +NIL +(-13 (-861) (-1129)) +(((-102) . T) ((-624 (-873)) . T) ((-861) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-4182 (((-575) $) 14)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 20) (($ (-575)) 13)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 9)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 11))) +(((-869) (-13 (-861) (-10 -8 (-15 -2883 ($ (-575))) (-15 -4182 ((-575) $))))) (T -869)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-869)))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-869))))) +(-13 (-861) (-10 -8 (-15 -2883 ($ (-575))) (-15 -4182 ((-575) $)))) +((-2256 (((-702 (-1243)) $ (-1243)) 15)) (-3913 (((-702 (-560)) $ (-560)) 12)) (-2471 (((-782) $ (-129)) 30))) +(((-870 |#1|) (-10 -8 (-15 -2471 ((-782) |#1| (-129))) (-15 -2256 ((-702 (-1243)) |#1| (-1243))) (-15 -3913 ((-702 (-560)) |#1| (-560)))) (-871)) (T -870)) +NIL +(-10 -8 (-15 -2471 ((-782) |#1| (-129))) (-15 -2256 ((-702 (-1243)) |#1| (-1243))) (-15 -3913 ((-702 (-560)) |#1| (-560)))) +((-2256 (((-702 (-1243)) $ (-1243)) 8)) (-3913 (((-702 (-560)) $ (-560)) 9)) (-2471 (((-782) $ (-129)) 7)) (-2584 (((-702 (-130)) $ (-130)) 10)) (-3504 (($ $) 6))) +(((-871) (-141)) (T -871)) +((-2584 (*1 *2 *1 *3) (-12 (-4 *1 (-871)) (-5 *2 (-702 (-130))) (-5 *3 (-130)))) (-3913 (*1 *2 *1 *3) (-12 (-4 *1 (-871)) (-5 *2 (-702 (-560))) (-5 *3 (-560)))) (-2256 (*1 *2 *1 *3) (-12 (-4 *1 (-871)) (-5 *2 (-702 (-1243))) (-5 *3 (-1243)))) (-2471 (*1 *2 *1 *3) (-12 (-4 *1 (-871)) (-5 *3 (-129)) (-5 *2 (-782))))) +(-13 (-175) (-10 -8 (-15 -2584 ((-702 (-130)) $ (-130))) (-15 -3913 ((-702 (-560)) $ (-560))) (-15 -2256 ((-702 (-1243)) $ (-1243))) (-15 -2471 ((-782) $ (-129))))) (((-175) . T)) -((-4236 (((-703 (-1244)) $ (-1244)) NIL)) (-4247 (((-703 (-561)) $ (-561)) NIL)) (-4227 (((-783) $ (-129)) NIL)) (-4258 (((-703 (-130)) $ (-130)) 22)) (-4278 (($ (-400)) 12) (($ (-1177)) 14)) (-4268 (((-112) $) 19)) (-2884 (((-874) $) 26)) (-1561 (($ $) 23))) -(((-873) (-13 (-872) (-625 (-874)) (-10 -8 (-15 -4278 ($ (-400))) (-15 -4278 ($ (-1177))) (-15 -4268 ((-112) $))))) (T -873)) -((-4278 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-873)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-873)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873))))) -(-13 (-872) (-625 (-874)) (-10 -8 (-15 -4278 ($ (-400))) (-15 -4278 ($ (-1177))) (-15 -4268 ((-112) $)))) -((-2862 (((-112) $ $) NIL) (($ $ $) 85)) (-1368 (($ $ $) 125)) (-2241 (((-576) $) 31) (((-576)) 36)) (-1429 (($ (-576)) 53)) (-1398 (($ $ $) 54) (($ (-656 $)) 84)) (-4414 (($ $ (-656 $)) 82)) (-1449 (((-576) $) 34)) (-2246 (($ $ $) 73)) (-4377 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-1461 (((-576) $) 33)) (-1321 (($ $ $) 72)) (-1651 (($ $) 114)) (-1349 (($ $ $) 129)) (-4298 (($ (-656 $)) 61)) (-1852 (($ $ (-656 $)) 79)) (-1419 (($ (-576) (-576)) 55)) (-1527 (($ $) 126) (($ $ $) 127)) (-2436 (($ $ (-576)) 43) (($ $) 46)) (-2803 (($ $ $) 97)) (-1331 (($ $ $) 132)) (-4403 (($ $) 115)) (-2814 (($ $ $) 98)) (-4356 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3521 (((-1291) $) 10)) (-4391 (($ $) 118) (($ $ (-783)) 122)) (-4425 (($ $ $) 75)) (-4434 (($ $ $) 74)) (-2500 (($ $ (-656 $)) 110)) (-1377 (($ $ $) 113)) (-4320 (($ (-656 $)) 59)) (-4330 (($ $) 70) (($ (-656 $)) 71)) (-4368 (($ $ $) 123)) (-4380 (($ $) 116)) (-1358 (($ $ $) 128)) (-4316 (($ (-576)) 21) (($ (-1195)) 23) (($ (-1177)) 30) (($ (-227)) 25)) (-3239 (($ $ $) 101)) (-3216 (($ $) 102)) (-1487 (((-1291) (-1177)) 15)) (-3978 (($ (-1177)) 14)) (-4317 (($ (-656 (-656 $))) 58)) (-2419 (($ $ (-576)) 42) (($ $) 45)) (-3733 (((-1177) $) NIL)) (-1767 (($ $ $) 131)) (-2523 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3529 (((-112) $) 108)) (-1387 (($ $ (-656 $)) 111) (($ $ $ $) 112)) (-1438 (($ (-576)) 39)) (-3343 (((-576) $) 32) (((-576)) 35)) (-1409 (($ $ $) 40) (($ (-656 $)) 83)) (-3914 (((-1138) $) NIL)) (-2852 (($ $ $) 99)) (-1458 (($) 13)) (-2071 (($ $ (-656 $)) 109)) (-1477 (((-1177) (-1177)) 8)) (-2165 (($ $) 117) (($ $ (-783)) 121)) (-2839 (($ $ $) 96)) (-2390 (($ $ (-783)) 139)) (-4308 (($ (-656 $)) 60)) (-2884 (((-874) $) 19)) (-1752 (($ $ (-576)) 41) (($ $) 44)) (-4343 (($ $) 68) (($ (-656 $)) 69)) (-2557 (($ $) 66) (($ (-656 $)) 67)) (-2377 (($ $) 124)) (-4287 (($ (-656 $)) 65)) (-1658 (($ $ $) 105)) (-3722 (((-112) $ $) NIL)) (-1340 (($ $ $) 130)) (-3227 (($ $ $) 100)) (-1860 (($ $ $) 103) (($ $) 104)) (-3983 (($ $ $) 89)) (-3957 (($ $ $) 87)) (-3915 (((-112) $ $) 16) (($ $ $) 17)) (-3970 (($ $ $) 88)) (-3943 (($ $ $) 86)) (-4039 (($ $ $) 94)) (-4029 (($ $ $) 91) (($ $) 92)) (-4017 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-874) (-13 (-1118) (-10 -8 (-15 -3521 ((-1291) $)) (-15 -3978 ($ (-1177))) (-15 -1487 ((-1291) (-1177))) (-15 -4316 ($ (-576))) (-15 -4316 ($ (-1195))) (-15 -4316 ($ (-1177))) (-15 -4316 ($ (-227))) (-15 -1458 ($)) (-15 -1477 ((-1177) (-1177))) (-15 -2241 ((-576) $)) (-15 -3343 ((-576) $)) (-15 -2241 ((-576))) (-15 -3343 ((-576))) (-15 -1461 ((-576) $)) (-15 -1449 ((-576) $)) (-15 -1438 ($ (-576))) (-15 -1429 ($ (-576))) (-15 -1419 ($ (-576) (-576))) (-15 -2419 ($ $ (-576))) (-15 -2436 ($ $ (-576))) (-15 -1752 ($ $ (-576))) (-15 -2419 ($ $)) (-15 -2436 ($ $)) (-15 -1752 ($ $)) (-15 -1409 ($ $ $)) (-15 -1398 ($ $ $)) (-15 -1409 ($ (-656 $))) (-15 -1398 ($ (-656 $))) (-15 -2500 ($ $ (-656 $))) (-15 -1387 ($ $ (-656 $))) (-15 -1387 ($ $ $ $)) (-15 -1377 ($ $ $)) (-15 -3529 ((-112) $)) (-15 -2071 ($ $ (-656 $))) (-15 -1651 ($ $)) (-15 -1767 ($ $ $)) (-15 -2377 ($ $)) (-15 -4317 ($ (-656 (-656 $)))) (-15 -1368 ($ $ $)) (-15 -1527 ($ $)) (-15 -1527 ($ $ $)) (-15 -1358 ($ $ $)) (-15 -1349 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -1331 ($ $ $)) (-15 -2390 ($ $ (-783))) (-15 -1658 ($ $ $)) (-15 -1321 ($ $ $)) (-15 -2246 ($ $ $)) (-15 -4434 ($ $ $)) (-15 -4425 ($ $ $)) (-15 -1852 ($ $ (-656 $))) (-15 -4414 ($ $ (-656 $))) (-15 -4403 ($ $)) (-15 -2165 ($ $)) (-15 -2165 ($ $ (-783))) (-15 -4391 ($ $)) (-15 -4391 ($ $ (-783))) (-15 -4380 ($ $)) (-15 -4368 ($ $ $)) (-15 -4377 ($ $)) (-15 -4377 ($ $ $)) (-15 -4377 ($ $ $ $)) (-15 -4356 ($ $)) (-15 -4356 ($ $ $)) (-15 -4356 ($ $ $ $)) (-15 -2523 ($ $)) (-15 -2523 ($ $ $)) (-15 -2523 ($ $ $ $)) (-15 -2557 ($ $)) (-15 -2557 ($ (-656 $))) (-15 -4343 ($ $)) (-15 -4343 ($ (-656 $))) (-15 -4330 ($ $)) (-15 -4330 ($ (-656 $))) (-15 -4320 ($ (-656 $))) (-15 -4308 ($ (-656 $))) (-15 -4298 ($ (-656 $))) (-15 -4287 ($ (-656 $))) (-15 -3915 ($ $ $)) (-15 -2862 ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3957 ($ $ $)) (-15 -3970 ($ $ $)) (-15 -3983 ($ $ $)) (-15 -4017 ($ $ $)) (-15 -4029 ($ $ $)) (-15 -4029 ($ $)) (-15 * ($ $ $)) (-15 -4039 ($ $ $)) (-15 ** ($ $ $)) (-15 -2839 ($ $ $)) (-15 -2803 ($ $ $)) (-15 -2814 ($ $ $)) (-15 -2852 ($ $ $)) (-15 -3227 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3216 ($ $)) (-15 -1860 ($ $ $)) (-15 -1860 ($ $))))) (T -874)) -((-3521 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-874)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-874)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-874)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-874)))) (-1458 (*1 *1) (-5 *1 (-874))) (-1477 (*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))) (-2241 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2241 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3343 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1419 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2419 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1752 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2419 (*1 *1 *1) (-5 *1 (-874))) (-2436 (*1 *1 *1) (-5 *1 (-874))) (-1752 (*1 *1 *1) (-5 *1 (-874))) (-1409 (*1 *1 *1 *1) (-5 *1 (-874))) (-1398 (*1 *1 *1 *1) (-5 *1 (-874))) (-1409 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1398 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2500 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1387 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1387 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-1377 (*1 *1 *1 *1) (-5 *1 (-874))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874)))) (-2071 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1651 (*1 *1 *1) (-5 *1 (-874))) (-1767 (*1 *1 *1 *1) (-5 *1 (-874))) (-2377 (*1 *1 *1) (-5 *1 (-874))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-874)))) (-1368 (*1 *1 *1 *1) (-5 *1 (-874))) (-1527 (*1 *1 *1) (-5 *1 (-874))) (-1527 (*1 *1 *1 *1) (-5 *1 (-874))) (-1358 (*1 *1 *1 *1) (-5 *1 (-874))) (-1349 (*1 *1 *1 *1) (-5 *1 (-874))) (-1340 (*1 *1 *1 *1) (-5 *1 (-874))) (-1331 (*1 *1 *1 *1) (-5 *1 (-874))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-1658 (*1 *1 *1 *1) (-5 *1 (-874))) (-1321 (*1 *1 *1 *1) (-5 *1 (-874))) (-2246 (*1 *1 *1 *1) (-5 *1 (-874))) (-4434 (*1 *1 *1 *1) (-5 *1 (-874))) (-4425 (*1 *1 *1 *1) (-5 *1 (-874))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4414 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4403 (*1 *1 *1) (-5 *1 (-874))) (-2165 (*1 *1 *1) (-5 *1 (-874))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-4391 (*1 *1 *1) (-5 *1 (-874))) (-4391 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-4380 (*1 *1 *1) (-5 *1 (-874))) (-4368 (*1 *1 *1 *1) (-5 *1 (-874))) (-4377 (*1 *1 *1) (-5 *1 (-874))) (-4377 (*1 *1 *1 *1) (-5 *1 (-874))) (-4377 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-4356 (*1 *1 *1) (-5 *1 (-874))) (-4356 (*1 *1 *1 *1) (-5 *1 (-874))) (-4356 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-2523 (*1 *1 *1) (-5 *1 (-874))) (-2523 (*1 *1 *1 *1) (-5 *1 (-874))) (-2523 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-2557 (*1 *1 *1) (-5 *1 (-874))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4343 (*1 *1 *1) (-5 *1 (-874))) (-4343 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4330 (*1 *1 *1) (-5 *1 (-874))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4320 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4308 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4298 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3915 (*1 *1 *1 *1) (-5 *1 (-874))) (-2862 (*1 *1 *1 *1) (-5 *1 (-874))) (-3943 (*1 *1 *1 *1) (-5 *1 (-874))) (-3957 (*1 *1 *1 *1) (-5 *1 (-874))) (-3970 (*1 *1 *1 *1) (-5 *1 (-874))) (-3983 (*1 *1 *1 *1) (-5 *1 (-874))) (-4017 (*1 *1 *1 *1) (-5 *1 (-874))) (-4029 (*1 *1 *1 *1) (-5 *1 (-874))) (-4029 (*1 *1 *1) (-5 *1 (-874))) (* (*1 *1 *1 *1) (-5 *1 (-874))) (-4039 (*1 *1 *1 *1) (-5 *1 (-874))) (** (*1 *1 *1 *1) (-5 *1 (-874))) (-2839 (*1 *1 *1 *1) (-5 *1 (-874))) (-2803 (*1 *1 *1 *1) (-5 *1 (-874))) (-2814 (*1 *1 *1 *1) (-5 *1 (-874))) (-2852 (*1 *1 *1 *1) (-5 *1 (-874))) (-3227 (*1 *1 *1 *1) (-5 *1 (-874))) (-3239 (*1 *1 *1 *1) (-5 *1 (-874))) (-3216 (*1 *1 *1) (-5 *1 (-874))) (-1860 (*1 *1 *1 *1) (-5 *1 (-874))) (-1860 (*1 *1 *1) (-5 *1 (-874)))) -(-13 (-1118) (-10 -8 (-15 -3521 ((-1291) $)) (-15 -3978 ($ (-1177))) (-15 -1487 ((-1291) (-1177))) (-15 -4316 ($ (-576))) (-15 -4316 ($ (-1195))) (-15 -4316 ($ (-1177))) (-15 -4316 ($ (-227))) (-15 -1458 ($)) (-15 -1477 ((-1177) (-1177))) (-15 -2241 ((-576) $)) (-15 -3343 ((-576) $)) (-15 -2241 ((-576))) (-15 -3343 ((-576))) (-15 -1461 ((-576) $)) (-15 -1449 ((-576) $)) (-15 -1438 ($ (-576))) (-15 -1429 ($ (-576))) (-15 -1419 ($ (-576) (-576))) (-15 -2419 ($ $ (-576))) (-15 -2436 ($ $ (-576))) (-15 -1752 ($ $ (-576))) (-15 -2419 ($ $)) (-15 -2436 ($ $)) (-15 -1752 ($ $)) (-15 -1409 ($ $ $)) (-15 -1398 ($ $ $)) (-15 -1409 ($ (-656 $))) (-15 -1398 ($ (-656 $))) (-15 -2500 ($ $ (-656 $))) (-15 -1387 ($ $ (-656 $))) (-15 -1387 ($ $ $ $)) (-15 -1377 ($ $ $)) (-15 -3529 ((-112) $)) (-15 -2071 ($ $ (-656 $))) (-15 -1651 ($ $)) (-15 -1767 ($ $ $)) (-15 -2377 ($ $)) (-15 -4317 ($ (-656 (-656 $)))) (-15 -1368 ($ $ $)) (-15 -1527 ($ $)) (-15 -1527 ($ $ $)) (-15 -1358 ($ $ $)) (-15 -1349 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -1331 ($ $ $)) (-15 -2390 ($ $ (-783))) (-15 -1658 ($ $ $)) (-15 -1321 ($ $ $)) (-15 -2246 ($ $ $)) (-15 -4434 ($ $ $)) (-15 -4425 ($ $ $)) (-15 -1852 ($ $ (-656 $))) (-15 -4414 ($ $ (-656 $))) (-15 -4403 ($ $)) (-15 -2165 ($ $)) (-15 -2165 ($ $ (-783))) (-15 -4391 ($ $)) (-15 -4391 ($ $ (-783))) (-15 -4380 ($ $)) (-15 -4368 ($ $ $)) (-15 -4377 ($ $)) (-15 -4377 ($ $ $)) (-15 -4377 ($ $ $ $)) (-15 -4356 ($ $)) (-15 -4356 ($ $ $)) (-15 -4356 ($ $ $ $)) (-15 -2523 ($ $)) (-15 -2523 ($ $ $)) (-15 -2523 ($ $ $ $)) (-15 -2557 ($ $)) (-15 -2557 ($ (-656 $))) (-15 -4343 ($ $)) (-15 -4343 ($ (-656 $))) (-15 -4330 ($ $)) (-15 -4330 ($ (-656 $))) (-15 -4320 ($ (-656 $))) (-15 -4308 ($ (-656 $))) (-15 -4298 ($ (-656 $))) (-15 -4287 ($ (-656 $))) (-15 -3915 ($ $ $)) (-15 -2862 ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3957 ($ $ $)) (-15 -3970 ($ $ $)) (-15 -3983 ($ $ $)) (-15 -4017 ($ $ $)) (-15 -4029 ($ $ $)) (-15 -4029 ($ $)) (-15 * ($ $ $)) (-15 -4039 ($ $ $)) (-15 ** ($ $ $)) (-15 -2839 ($ $ $)) (-15 -2803 ($ $ $)) (-15 -2814 ($ $ $)) (-15 -2852 ($ $ $)) (-15 -3227 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3216 ($ $)) (-15 -1860 ($ $ $)) (-15 -1860 ($ $)))) -((-1417 (((-1291) (-656 (-52))) 23)) (-3723 (((-1291) (-1177) (-874)) 13) (((-1291) (-874)) 8) (((-1291) (-1177)) 10))) -(((-875) (-10 -7 (-15 -3723 ((-1291) (-1177))) (-15 -3723 ((-1291) (-874))) (-15 -3723 ((-1291) (-1177) (-874))) (-15 -1417 ((-1291) (-656 (-52)))))) (T -875)) -((-1417 (*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1291)) (-5 *1 (-875)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-875)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-875)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-875))))) -(-10 -7 (-15 -3723 ((-1291) (-1177))) (-15 -3723 ((-1291) (-874))) (-15 -3723 ((-1291) (-1177) (-874))) (-15 -1417 ((-1291) (-656 (-52))))) -((-2862 (((-112) $ $) NIL)) (-1441 (((-3 $ "failed") (-1195)) 36)) (-2416 (((-783)) 32)) (-2080 (($) NIL)) (-1921 (($ $ $) NIL) (($) NIL T CONST)) (-4137 (($ $ $) NIL) (($) NIL T CONST)) (-1875 (((-937) $) 29)) (-3733 (((-1177) $) 43)) (-4318 (($ (-937)) 28)) (-3914 (((-1138) $) NIL)) (-2616 (((-1195) $) 13) (((-548) $) 19) (((-905 (-390)) $) 26) (((-905 (-576)) $) 22)) (-2884 (((-874) $) 16)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 40)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 38))) -(((-876 |#1|) (-13 (-856) (-626 (-1195)) (-626 (-548)) (-626 (-905 (-390))) (-626 (-905 (-576))) (-10 -8 (-15 -1441 ((-3 $ "failed") (-1195))))) (-656 (-1195))) (T -876)) -((-1441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-876 *3)) (-14 *3 (-656 *2))))) -(-13 (-856) (-626 (-1195)) (-626 (-548)) (-626 (-905 (-390))) (-626 (-905 (-576))) (-10 -8 (-15 -1441 ((-3 $ "failed") (-1195))))) -((-2862 (((-112) $ $) NIL)) (-1778 (((-518) $) 9)) (-1496 (((-656 (-451)) $) 13)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 21)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 16))) -(((-877) (-13 (-1118) (-10 -8 (-15 -1778 ((-518) $)) (-15 -1496 ((-656 (-451)) $))))) (T -877)) -((-1778 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-877))))) -(-13 (-1118) (-10 -8 (-15 -1778 ((-518) $)) (-15 -1496 ((-656 (-451)) $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ (-968 |#1|)) NIL) (((-968 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-1871 (((-783)) NIL T CONST)) (-1669 (((-1291) (-783)) NIL)) (-3722 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4039 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-878 |#1| |#2| |#3| |#4|) (-13 (-1067) (-502 (-968 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4039 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1669 ((-1291) (-783))))) (-1067) (-656 (-1195)) (-656 (-783)) (-783)) (T -878)) -((-4039 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-878 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1067)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-783))) (-14 *5 (-783)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-878 *4 *5 *6 *7)) (-4 *4 (-1067)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 *3)) (-14 *7 *3)))) -(-13 (-1067) (-502 (-968 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4039 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1669 ((-1291) (-783))))) -((-1507 (((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|) 38)) (-1517 (((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|) 29))) -(((-879 |#1| |#2| |#3|) (-10 -7 (-15 -1517 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -1507 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) (-374) (-1277 |#1|) (-1262 |#1|)) (T -879)) -((-1507 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5)))) (-1517 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5))))) -(-10 -7 (-15 -1517 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -1507 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) -((-1517 (((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) 28))) -(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -1517 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (-15 -1517 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|)))) (-374) (-1195) |#1|) (T -880)) -((-1517 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5))) (-5 *1 (-880 *5 *6 *7)))) (-1517 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5))) (-5 *1 (-880 *5 *6 *7))))) -(-10 -7 (-15 -1517 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (-15 -1517 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-2474 (($ $ (-576)) 68)) (-2922 (((-112) $ $) 65)) (-2473 (($) 18 T CONST)) (-1527 (($ (-1191 (-576)) (-576)) 67)) (-2803 (($ $ $) 61)) (-1999 (((-3 $ "failed") $) 37)) (-1539 (($ $) 70)) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-2927 (((-783) $) 75)) (-1439 (((-112) $) 35)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3517 (((-576)) 72)) (-3509 (((-576) $) 71)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2904 (($ $ (-576)) 74)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2910 (((-783) $) 64)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-3527 (((-1175 (-576)) $) 76)) (-1346 (($ $) 73)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-3495 (((-576) $ (-576)) 69)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-881 |#1|) (-141) (-576)) (T -881)) -((-3527 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-1175 (-576))))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-783)))) (-2904 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-1346 (*1 *1 *1) (-4 *1 (-881 *2))) (-3517 (*1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-1539 (*1 *1 *1) (-4 *1 (-881 *2))) (-3495 (*1 *2 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-2474 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-1527 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *3 (-576)) (-4 *1 (-881 *4))))) -(-13 (-317) (-148) (-10 -8 (-15 -3527 ((-1175 (-576)) $)) (-15 -2927 ((-783) $)) (-15 -2904 ($ $ (-576))) (-15 -1346 ($ $)) (-15 -3517 ((-576))) (-15 -3509 ((-576) $)) (-15 -1539 ($ $)) (-15 -3495 ((-576) $ (-576))) (-15 -2474 ($ $ (-576))) (-15 -1527 ($ (-1191 (-576)) (-576))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $ (-576)) NIL)) (-2922 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-1527 (($ (-1191 (-576)) (-576)) NIL)) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-1539 (($ $) NIL)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2927 (((-783) $) NIL)) (-1439 (((-112) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3517 (((-576)) NIL)) (-3509 (((-576) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2904 (($ $ (-576)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-3527 (((-1175 (-576)) $) NIL)) (-1346 (($ $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-3495 (((-576) $ (-576)) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-882 |#1|) (-881 |#1|) (-576)) (T -882)) -NIL -(-881 |#1|) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1905 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-317)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-925)))) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-925)))) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL (|has| (-882 |#1|) (-832)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-882 |#1|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-882 |#1|) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-882 |#1|) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-882 |#1|) (-1056 (-576))))) (-4401 (((-882 |#1|) $) NIL) (((-1195) $) NIL (|has| (-882 |#1|) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-882 |#1|) (-1056 (-576)))) (((-576) $) NIL (|has| (-882 |#1|) (-1056 (-576))))) (-2514 (($ $) NIL) (($ (-576) $) NIL)) (-2803 (($ $ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-882 |#1|))) (|:| |vec| (-1286 (-882 |#1|)))) (-701 $) (-1286 $)) NIL) (((-701 (-882 |#1|)) (-701 $)) NIL) (((-701 (-882 |#1|)) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| (-882 |#1|) (-557)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1370 (((-112) $) NIL (|has| (-882 |#1|) (-832)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-882 |#1|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-882 |#1|) (-899 (-390))))) (-1439 (((-112) $) NIL)) (-3154 (($ $) NIL)) (-1595 (((-882 |#1|) $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| (-882 |#1|) (-1170)))) (-1379 (((-112) $) NIL (|has| (-882 |#1|) (-832)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) NIL (|has| (-882 |#1|) (-862)))) (-4137 (($ $ $) NIL (|has| (-882 |#1|) (-862)))) (-2551 (($ (-1 (-882 |#1|) (-882 |#1|)) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| (-882 |#1|) (-1170)) CONST)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) NIL (|has| (-882 |#1|) (-317)))) (-1916 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-925)))) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3049 (($ $ (-656 (-882 |#1|)) (-656 (-882 |#1|))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-882 |#1|) (-882 |#1|)) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-304 (-882 |#1|))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-656 (-304 (-882 |#1|)))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-656 (-1195)) (-656 (-882 |#1|))) NIL (|has| (-882 |#1|) (-526 (-1195) (-882 |#1|)))) (($ $ (-1195) (-882 |#1|)) NIL (|has| (-882 |#1|) (-526 (-1195) (-882 |#1|))))) (-2910 (((-783) $) NIL)) (-2071 (($ $ (-882 |#1|)) NIL (|has| (-882 |#1|) (-296 (-882 |#1|) (-882 |#1|))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2390 (($ $ (-783)) NIL (|has| (-882 |#1|) (-239))) (($ $) NIL (|has| (-882 |#1|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-783)) NIL) (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL)) (-3143 (($ $) NIL)) (-1608 (((-882 |#1|) $) NIL)) (-2616 (((-905 (-576)) $) NIL (|has| (-882 |#1|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-882 |#1|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-882 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-882 |#1|) (-1040))) (((-227) $) NIL (|has| (-882 |#1|) (-1040)))) (-3536 (((-176 (-419 (-576))) $) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-882 |#1|) (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-882 |#1|)) NIL) (($ (-1195)) NIL (|has| (-882 |#1|) (-1056 (-1195))))) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| (-882 |#1|) (-925))) (|has| (-882 |#1|) (-146))))) (-1871 (((-783)) NIL T CONST)) (-1929 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-3495 (((-419 (-576)) $ (-576)) NIL)) (-2610 (($ $) NIL (|has| (-882 |#1|) (-832)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-783)) NIL (|has| (-882 |#1|) (-239))) (($ $) NIL (|has| (-882 |#1|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-783)) NIL) (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL)) (-3983 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3957 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3943 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-4039 (($ $ $) NIL) (($ (-882 |#1|) (-882 |#1|)) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-882 |#1|) $) NIL) (($ $ (-882 |#1|)) NIL))) -(((-883 |#1|) (-13 (-1010 (-882 |#1|)) (-10 -8 (-15 -3495 ((-419 (-576)) $ (-576))) (-15 -3536 ((-176 (-419 (-576))) $)) (-15 -2514 ($ $)) (-15 -2514 ($ (-576) $)))) (-576)) (T -883)) -((-3495 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-883 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-883 *3)) (-14 *3 (-576)))) (-2514 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-576)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-883 *3)) (-14 *3 *2)))) -(-13 (-1010 (-882 |#1|)) (-10 -8 (-15 -3495 ((-419 (-576)) $ (-576))) (-15 -3536 ((-176 (-419 (-576))) $)) (-15 -2514 ($ $)) (-15 -2514 ($ (-576) $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1905 ((|#2| $) NIL (|has| |#2| (-317)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL (|has| |#2| (-832)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| |#2| (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576))))) (-4401 ((|#2| $) NIL) (((-1195) $) NIL (|has| |#2| (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-576)))) (((-576) $) NIL (|has| |#2| (-1056 (-576))))) (-2514 (($ $) 35) (($ (-576) $) 38)) (-2803 (($ $ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) 64)) (-2080 (($) NIL (|has| |#2| (-557)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1370 (((-112) $) NIL (|has| |#2| (-832)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#2| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#2| (-899 (-390))))) (-1439 (((-112) $) NIL)) (-3154 (($ $) NIL)) (-1595 ((|#2| $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| |#2| (-1170)))) (-1379 (((-112) $) NIL (|has| |#2| (-832)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) NIL (|has| |#2| (-862)))) (-4137 (($ $ $) NIL (|has| |#2| (-862)))) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 60)) (-3475 (($) NIL (|has| |#2| (-1170)) CONST)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) NIL (|has| |#2| (-317)))) (-1916 ((|#2| $) NIL (|has| |#2| (-557)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3049 (($ $ (-656 |#2|) (-656 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-1195)) (-656 |#2|)) NIL (|has| |#2| (-526 (-1195) |#2|))) (($ $ (-1195) |#2|) NIL (|has| |#2| (-526 (-1195) |#2|)))) (-2910 (((-783) $) NIL)) (-2071 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2390 (($ $ (-783)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3143 (($ $) NIL)) (-1608 ((|#2| $) NIL)) (-2616 (((-905 (-576)) $) NIL (|has| |#2| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#2| (-626 (-905 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1040))) (((-227) $) NIL (|has| |#2| (-1040)))) (-3536 (((-176 (-419 (-576))) $) 78)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-2884 (((-874) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1195)) NIL (|has| |#2| (-1056 (-1195))))) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-1871 (((-783)) NIL T CONST)) (-1929 ((|#2| $) NIL (|has| |#2| (-557)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-3495 (((-419 (-576)) $ (-576)) 71)) (-2610 (($ $) NIL (|has| |#2| (-832)))) (-1996 (($) 15 T CONST)) (-2011 (($) 17 T CONST)) (-3431 (($ $ (-783)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3983 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3915 (((-112) $ $) 46)) (-3970 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#2| (-862)))) (-4039 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4029 (($ $) 50) (($ $ $) 52)) (-4017 (($ $ $) 48)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 61)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-884 |#1| |#2|) (-13 (-1010 |#2|) (-10 -8 (-15 -3495 ((-419 (-576)) $ (-576))) (-15 -3536 ((-176 (-419 (-576))) $)) (-15 -2514 ($ $)) (-15 -2514 ($ (-576) $)))) (-576) (-881 |#1|)) (T -884)) -((-3495 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-884 *4 *5)) (-5 *3 (-576)) (-4 *5 (-881 *4)))) (-3536 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3)))) (-2514 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-884 *2 *3)) (-4 *3 (-881 *2)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3))))) -(-13 (-1010 |#2|) (-10 -8 (-15 -3495 ((-419 (-576)) $ (-576))) (-15 -3536 ((-176 (-419 (-576))) $)) (-15 -2514 ($ $)) (-15 -2514 ($ (-576) $)))) -((-2862 (((-112) $ $) NIL (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))))) (-2978 ((|#2| $) 12)) (-4352 (($ |#1| |#2|) 9)) (-3733 (((-1177) $) NIL (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))))) (-3914 (((-1138) $) NIL (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))))) (-1962 ((|#1| $) 11)) (-2895 (($ |#1| |#2|) 10)) (-2884 (((-874) $) 18 (-3766 (-12 (|has| |#1| (-625 (-874))) (|has| |#2| (-625 (-874)))) (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118)))))) (-3722 (((-112) $ $) NIL (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))))) (-3915 (((-112) $ $) 23 (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118)))))) -(((-885 |#1| |#2|) (-13 (-1236) (-10 -8 (IF (|has| |#1| (-625 (-874))) (IF (|has| |#2| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1118)) (IF (|has| |#2| (-1118)) (-6 (-1118)) |%noBranch|) |%noBranch|) (-15 -4352 ($ |#1| |#2|)) (-15 -2895 ($ |#1| |#2|)) (-15 -1962 (|#1| $)) (-15 -2978 (|#2| $)))) (-1236) (-1236)) (T -885)) -((-4352 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))) (-1962 (*1 *2 *1) (-12 (-4 *2 (-1236)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1236)))) (-2978 (*1 *2 *1) (-12 (-4 *2 (-1236)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1236))))) -(-13 (-1236) (-10 -8 (IF (|has| |#1| (-625 (-874))) (IF (|has| |#2| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1118)) (IF (|has| |#2| (-1118)) (-6 (-1118)) |%noBranch|) |%noBranch|) (-15 -4352 ($ |#1| |#2|)) (-15 -2895 ($ |#1| |#2|)) (-15 -1962 (|#1| $)) (-15 -2978 (|#2| $)))) -((-2862 (((-112) $ $) NIL)) (-3935 (((-576) $) 16)) (-3556 (($ (-158)) 13)) (-3547 (($ (-158)) 14)) (-3733 (((-1177) $) NIL)) (-3921 (((-158) $) 15)) (-3914 (((-1138) $) NIL)) (-2834 (($ (-158)) 11)) (-3564 (($ (-158)) 10)) (-2884 (((-874) $) 24) (($ (-158)) 17)) (-3022 (($ (-158)) 12)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-886) (-13 (-1118) (-10 -8 (-15 -3564 ($ (-158))) (-15 -2834 ($ (-158))) (-15 -3022 ($ (-158))) (-15 -3556 ($ (-158))) (-15 -3547 ($ (-158))) (-15 -3921 ((-158) $)) (-15 -3935 ((-576) $)) (-15 -2884 ($ (-158)))))) (T -886)) -((-3564 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-2834 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3022 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3556 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3547 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) -(-13 (-1118) (-10 -8 (-15 -3564 ($ (-158))) (-15 -2834 ($ (-158))) (-15 -3022 ($ (-158))) (-15 -3556 ($ (-158))) (-15 -3547 ($ (-158))) (-15 -3921 ((-158) $)) (-15 -3935 ((-576) $)) (-15 -2884 ($ (-158))))) -((-2884 (((-326 (-576)) (-419 (-968 (-48)))) 23) (((-326 (-576)) (-968 (-48))) 18))) -(((-887) (-10 -7 (-15 -2884 ((-326 (-576)) (-968 (-48)))) (-15 -2884 ((-326 (-576)) (-419 (-968 (-48))))))) (T -887)) -((-2884 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-887)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-968 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-887))))) -(-10 -7 (-15 -2884 ((-326 (-576)) (-968 (-48)))) (-15 -2884 ((-326 (-576)) (-419 (-968 (-48)))))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 18) (($ (-1200)) NIL) (((-1200) $) NIL)) (-1985 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1177))) 13)) (-3722 (((-112) $ $) NIL)) (-3135 (((-518) $) 10) (((-1177) $) 14)) (-3915 (((-112) $ $) 15))) -(((-888) (-13 (-1101) (-1281) (-10 -8 (-15 -1985 ((-112) $ (|[\|\|]| (-518)))) (-15 -3135 ((-518) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1177)))) (-15 -3135 ((-1177) $))))) (T -888)) -((-1985 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-888)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-888)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-888))))) -(-13 (-1101) (-1281) (-10 -8 (-15 -1985 ((-112) $ (|[\|\|]| (-518)))) (-15 -3135 ((-518) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1177)))) (-15 -3135 ((-1177) $)))) -((-2551 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15))) -(((-889 |#1| |#2|) (-10 -7 (-15 -2551 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1236) (-1236)) (T -889)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))) -(-10 -7 (-15 -2551 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) -((-2479 (($ |#1| |#1|) 8)) (-3591 ((|#1| $ (-783)) 15))) -(((-890 |#1|) (-10 -8 (-15 -2479 ($ |#1| |#1|)) (-15 -3591 (|#1| $ (-783)))) (-1236)) (T -890)) -((-3591 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-890 *2)) (-4 *2 (-1236)))) (-2479 (*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1236))))) -(-10 -8 (-15 -2479 ($ |#1| |#1|)) (-15 -3591 (|#1| $ (-783)))) -((-2551 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15))) -(((-891 |#1| |#2|) (-10 -7 (-15 -2551 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1236) (-1236)) (T -891)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) -(-10 -7 (-15 -2551 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) -((-2479 (($ |#1| |#1| |#1|) 8)) (-3591 ((|#1| $ (-783)) 15))) -(((-892 |#1|) (-10 -8 (-15 -2479 ($ |#1| |#1| |#1|)) (-15 -3591 (|#1| $ (-783)))) (-1236)) (T -892)) -((-3591 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1236)))) (-2479 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1236))))) -(-10 -8 (-15 -2479 ($ |#1| |#1| |#1|)) (-15 -3591 (|#1| $ (-783)))) -((-3570 (((-656 (-1200)) (-1177)) 9))) -(((-893) (-10 -7 (-15 -3570 ((-656 (-1200)) (-1177))))) (T -893)) -((-3570 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-893))))) -(-10 -7 (-15 -3570 ((-656 (-1200)) (-1177)))) -((-2551 (((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)) 15))) -(((-894 |#1| |#2|) (-10 -7 (-15 -2551 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) (-1236) (-1236)) (T -894)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6))))) -(-10 -7 (-15 -2551 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) -((-3580 (($ |#1| |#1| |#1|) 8)) (-3591 ((|#1| $ (-783)) 15))) -(((-895 |#1|) (-10 -8 (-15 -3580 ($ |#1| |#1| |#1|)) (-15 -3591 (|#1| $ (-783)))) (-1236)) (T -895)) -((-3591 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-895 *2)) (-4 *2 (-1236)))) (-3580 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1236))))) -(-10 -8 (-15 -3580 ($ |#1| |#1| |#1|)) (-15 -3591 (|#1| $ (-783)))) -((-3618 (((-1175 (-656 (-576))) (-656 (-576)) (-1175 (-656 (-576)))) 41)) (-3609 (((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576))) 31)) (-3627 (((-1175 (-656 (-576))) (-656 (-576))) 53) (((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576))) 50)) (-3636 (((-1175 (-656 (-576))) (-576)) 55)) (-3600 (((-1175 (-656 (-937))) (-1175 (-656 (-937)))) 22)) (-3276 (((-656 (-937)) (-656 (-937))) 18))) -(((-896) (-10 -7 (-15 -3276 ((-656 (-937)) (-656 (-937)))) (-15 -3600 ((-1175 (-656 (-937))) (-1175 (-656 (-937))))) (-15 -3609 ((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3618 ((-1175 (-656 (-576))) (-656 (-576)) (-1175 (-656 (-576))))) (-15 -3627 ((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3627 ((-1175 (-656 (-576))) (-656 (-576)))) (-15 -3636 ((-1175 (-656 (-576))) (-576))))) (T -896)) -((-3636 (*1 *2 *3) (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-576)))) (-3627 (*1 *2 *3) (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-3627 (*1 *2 *3 *3) (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-3618 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *3 (-656 (-576))) (-5 *1 (-896)))) (-3609 (*1 *2 *3 *3) (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-3600 (*1 *2 *2) (-12 (-5 *2 (-1175 (-656 (-937)))) (-5 *1 (-896)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-896))))) -(-10 -7 (-15 -3276 ((-656 (-937)) (-656 (-937)))) (-15 -3600 ((-1175 (-656 (-937))) (-1175 (-656 (-937))))) (-15 -3609 ((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3618 ((-1175 (-656 (-576))) (-656 (-576)) (-1175 (-656 (-576))))) (-15 -3627 ((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3627 ((-1175 (-656 (-576))) (-656 (-576)))) (-15 -3636 ((-1175 (-656 (-576))) (-576)))) -((-2616 (((-905 (-390)) $) 9 (|has| |#1| (-626 (-905 (-390))))) (((-905 (-576)) $) 8 (|has| |#1| (-626 (-905 (-576))))))) -(((-897 |#1|) (-141) (-1236)) (T -897)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-626 (-905 (-576)))) (-6 (-626 (-905 (-576)))) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-390)))) (-6 (-626 (-905 (-390)))) |%noBranch|))) -(((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576))))) -((-2862 (((-112) $ $) NIL)) (-2310 (($) 14)) (-3645 (($ (-902 |#1| |#2|) (-902 |#1| |#3|)) 28)) (-1366 (((-902 |#1| |#3|) $) 16)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3721 (((-112) $) 22)) (-3422 (($) 19)) (-2884 (((-874) $) 31)) (-3722 (((-112) $ $) NIL)) (-2190 (((-902 |#1| |#2|) $) 15)) (-3915 (((-112) $ $) 26))) -(((-898 |#1| |#2| |#3|) (-13 (-1118) (-10 -8 (-15 -3721 ((-112) $)) (-15 -3422 ($)) (-15 -2310 ($)) (-15 -3645 ($ (-902 |#1| |#2|) (-902 |#1| |#3|))) (-15 -2190 ((-902 |#1| |#2|) $)) (-15 -1366 ((-902 |#1| |#3|) $)))) (-1118) (-1118) (-678 |#2|)) (T -898)) -((-3721 (*1 *2 *1) (-12 (-4 *4 (-1118)) (-5 *2 (-112)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1118)) (-4 *5 (-678 *4)))) (-3422 (*1 *1) (-12 (-4 *3 (-1118)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1118)) (-4 *4 (-678 *3)))) (-2310 (*1 *1) (-12 (-4 *3 (-1118)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1118)) (-4 *4 (-678 *3)))) (-3645 (*1 *1 *2 *3) (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-678 *5)) (-5 *1 (-898 *4 *5 *6)))) (-2190 (*1 *2 *1) (-12 (-4 *4 (-1118)) (-5 *2 (-902 *3 *4)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1118)) (-4 *5 (-678 *4)))) (-1366 (*1 *2 *1) (-12 (-4 *4 (-1118)) (-5 *2 (-902 *3 *5)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1118)) (-4 *5 (-678 *4))))) -(-13 (-1118) (-10 -8 (-15 -3721 ((-112) $)) (-15 -3422 ($)) (-15 -2310 ($)) (-15 -3645 ($ (-902 |#1| |#2|) (-902 |#1| |#3|))) (-15 -2190 ((-902 |#1| |#2|) $)) (-15 -1366 ((-902 |#1| |#3|) $)))) -((-2862 (((-112) $ $) 7)) (-1606 (((-902 |#1| $) $ (-905 |#1|) (-902 |#1| $)) 14)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-899 |#1|) (-141) (-1118)) (T -899)) -((-1606 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-899 *4)) (-4 *4 (-1118))))) -(-13 (-1118) (-10 -8 (-15 -1606 ((-902 |t#1| $) $ (-905 |t#1|) (-902 |t#1| $))))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-3657 (((-112) (-656 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3670 (((-902 |#1| |#2|) |#2| |#3|) 45 (-12 (-3216 (|has| |#2| (-1056 (-1195)))) (-3216 (|has| |#2| (-1067))))) (((-656 (-304 (-968 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1067)) (-3216 (|has| |#2| (-1056 (-1195)))))) (((-656 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1056 (-1195)))) (((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|) 21))) -(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -3657 ((-112) |#2| |#3|)) (-15 -3657 ((-112) (-656 |#2|) |#3|)) (-15 -3670 ((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1056 (-1195))) (-15 -3670 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1067)) (-15 -3670 ((-656 (-304 (-968 |#2|))) |#2| |#3|)) (-15 -3670 ((-902 |#1| |#2|) |#2| |#3|))))) (-1118) (-899 |#1|) (-626 (-905 |#1|))) (T -900)) -((-3670 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-5 *2 (-902 *5 *3)) (-5 *1 (-900 *5 *3 *4)) (-3216 (-4 *3 (-1056 (-1195)))) (-3216 (-4 *3 (-1067))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3670 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-5 *2 (-656 (-304 (-968 *3)))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1067)) (-3216 (-4 *3 (-1056 (-1195)))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3670 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1056 (-1195))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3670 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-656 *6))) (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-905 *5))))) (-3657 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1118)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-626 (-905 *5))))) (-3657 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5)))))) -(-10 -7 (-15 -3657 ((-112) |#2| |#3|)) (-15 -3657 ((-112) (-656 |#2|) |#3|)) (-15 -3670 ((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1056 (-1195))) (-15 -3670 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1067)) (-15 -3670 ((-656 (-304 (-968 |#2|))) |#2| |#3|)) (-15 -3670 ((-902 |#1| |#2|) |#2| |#3|))))) -((-2551 (((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)) 22))) -(((-901 |#1| |#2| |#3|) (-10 -7 (-15 -2551 ((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)))) (-1118) (-1118) (-1118)) (T -901)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-902 *5 *6)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-902 *5 *7)) (-5 *1 (-901 *5 *6 *7))))) -(-10 -7 (-15 -2551 ((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)))) -((-2862 (((-112) $ $) NIL)) (-1645 (($ $ $) 40)) (-3940 (((-3 (-112) "failed") $ (-905 |#1|)) 37)) (-2310 (($) 12)) (-3733 (((-1177) $) NIL)) (-3691 (($ (-905 |#1|) |#2| $) 20)) (-3914 (((-1138) $) NIL)) (-3710 (((-3 |#2| "failed") (-905 |#1|) $) 51)) (-3721 (((-112) $) 15)) (-3422 (($) 13)) (-3844 (((-656 (-2 (|:| -4169 (-1195)) (|:| -3180 |#2|))) $) 25)) (-2895 (($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 |#2|)))) 23)) (-2884 (((-874) $) 45)) (-3722 (((-112) $ $) NIL)) (-3680 (($ (-905 |#1|) |#2| $ |#2|) 49)) (-3701 (($ (-905 |#1|) |#2| $) 48)) (-3915 (((-112) $ $) 42))) -(((-902 |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -3721 ((-112) $)) (-15 -3422 ($)) (-15 -2310 ($)) (-15 -1645 ($ $ $)) (-15 -3710 ((-3 |#2| "failed") (-905 |#1|) $)) (-15 -3701 ($ (-905 |#1|) |#2| $)) (-15 -3691 ($ (-905 |#1|) |#2| $)) (-15 -3680 ($ (-905 |#1|) |#2| $ |#2|)) (-15 -3844 ((-656 (-2 (|:| -4169 (-1195)) (|:| -3180 |#2|))) $)) (-15 -2895 ($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 |#2|))))) (-15 -3940 ((-3 (-112) "failed") $ (-905 |#1|))))) (-1118) (-1118)) (T -902)) -((-3721 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-3422 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-2310 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-1645 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-3710 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-4 *2 (-1118)) (-5 *1 (-902 *4 *2)))) (-3701 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1118)))) (-3691 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1118)))) (-3680 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1118)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 *4)))) (-5 *1 (-902 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-2895 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 *4)))) (-4 *4 (-1118)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1118)))) (-3940 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-112)) (-5 *1 (-902 *4 *5)) (-4 *5 (-1118))))) -(-13 (-1118) (-10 -8 (-15 -3721 ((-112) $)) (-15 -3422 ($)) (-15 -2310 ($)) (-15 -1645 ($ $ $)) (-15 -3710 ((-3 |#2| "failed") (-905 |#1|) $)) (-15 -3701 ($ (-905 |#1|) |#2| $)) (-15 -3691 ($ (-905 |#1|) |#2| $)) (-15 -3680 ($ (-905 |#1|) |#2| $ |#2|)) (-15 -3844 ((-656 (-2 (|:| -4169 (-1195)) (|:| -3180 |#2|))) $)) (-15 -2895 ($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 |#2|))))) (-15 -3940 ((-3 (-112) "failed") $ (-905 |#1|))))) -((-1694 (((-905 |#1|) (-905 |#1|) (-656 (-1195)) (-1 (-112) (-656 |#2|))) 32) (((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|))) 46) (((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|)) 35)) (-3940 (((-112) (-656 |#2|) (-905 |#1|)) 42) (((-112) |#2| (-905 |#1|)) 36)) (-2398 (((-1 (-112) |#2|) (-905 |#1|)) 16)) (-3969 (((-656 |#2|) (-905 |#1|)) 24)) (-3956 (((-905 |#1|) (-905 |#1|) |#2|) 20))) -(((-903 |#1| |#2|) (-10 -7 (-15 -1694 ((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|))) (-15 -1694 ((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -1694 ((-905 |#1|) (-905 |#1|) (-656 (-1195)) (-1 (-112) (-656 |#2|)))) (-15 -2398 ((-1 (-112) |#2|) (-905 |#1|))) (-15 -3940 ((-112) |#2| (-905 |#1|))) (-15 -3940 ((-112) (-656 |#2|) (-905 |#1|))) (-15 -3956 ((-905 |#1|) (-905 |#1|) |#2|)) (-15 -3969 ((-656 |#2|) (-905 |#1|)))) (-1118) (-1236)) (T -903)) -((-3969 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-656 *5)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1236)))) (-3956 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1236)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-4 *6 (-1236)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-5 *2 (-112)) (-5 *1 (-903 *5 *3)) (-4 *3 (-1236)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1236)))) (-1694 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-905 *5)) (-5 *3 (-656 (-1195))) (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1118)) (-4 *6 (-1236)) (-5 *1 (-903 *5 *6)))) (-1694 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1118)) (-4 *5 (-1236)) (-5 *1 (-903 *4 *5)))) (-1694 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1118)) (-4 *5 (-1236)) (-5 *1 (-903 *4 *5))))) -(-10 -7 (-15 -1694 ((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|))) (-15 -1694 ((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -1694 ((-905 |#1|) (-905 |#1|) (-656 (-1195)) (-1 (-112) (-656 |#2|)))) (-15 -2398 ((-1 (-112) |#2|) (-905 |#1|))) (-15 -3940 ((-112) |#2| (-905 |#1|))) (-15 -3940 ((-112) (-656 |#2|) (-905 |#1|))) (-15 -3956 ((-905 |#1|) (-905 |#1|) |#2|)) (-15 -3969 ((-656 |#2|) (-905 |#1|)))) -((-2551 (((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)) 19))) -(((-904 |#1| |#2|) (-10 -7 (-15 -2551 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) (-1118) (-1118)) (T -904)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-905 *6)) (-5 *1 (-904 *5 *6))))) -(-10 -7 (-15 -2551 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) -((-2862 (((-112) $ $) NIL)) (-3810 (($ $ (-656 (-52))) 74)) (-1607 (((-656 $) $) 139)) (-3778 (((-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52))) $) 30)) (-3857 (((-112) $) 35)) (-3790 (($ $ (-656 (-1195)) (-52)) 31)) (-3821 (($ $ (-656 (-52))) 73)) (-2449 (((-3 |#1| "failed") $) 71) (((-3 (-1195) "failed") $) 164)) (-4401 ((|#1| $) 68) (((-1195) $) NIL)) (-3752 (($ $) 126)) (-3889 (((-112) $) 55)) (-3832 (((-656 (-52)) $) 50)) (-3800 (($ (-1195) (-112) (-112) (-112)) 75)) (-3731 (((-3 (-656 $) "failed") (-656 $)) 82)) (-3855 (((-112) $) 58)) (-3866 (((-112) $) 57)) (-3733 (((-1177) $) NIL)) (-1899 (((-3 (-656 $) "failed") $) 41)) (-3294 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1923 (((-3 (-2 (|:| |val| $) (|:| -1359 $)) "failed") $) 97)) (-1887 (((-3 (-656 $) "failed") $) 40)) (-3927 (((-3 (-656 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1577 (-115)) (|:| |arg| (-656 $))) "failed") $) 107)) (-3913 (((-3 (-656 $) "failed") $) 42)) (-1910 (((-3 (-2 (|:| |val| $) (|:| -1359 (-783))) "failed") $) 45)) (-3900 (((-112) $) 34)) (-3914 (((-1138) $) NIL)) (-3765 (((-112) $) 28)) (-3843 (((-112) $) 52)) (-3741 (((-656 (-52)) $) 130)) (-3876 (((-112) $) 56)) (-2071 (($ (-115) (-656 $)) 104)) (-3324 (((-783) $) 33)) (-3079 (($ $) 72)) (-2616 (($ (-656 $)) 69)) (-3847 (((-112) $) 32)) (-2884 (((-874) $) 63) (($ |#1|) 23) (($ (-1195)) 76)) (-3722 (((-112) $ $) NIL)) (-3956 (($ $ (-52)) 129)) (-1996 (($) 103 T CONST)) (-2011 (($) 83 T CONST)) (-3915 (((-112) $ $) 93)) (-4039 (($ $ $) 117)) (-4017 (($ $ $) 121)) (** (($ $ (-783)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-905 |#1|) (-13 (-1118) (-1056 |#1|) (-1056 (-1195)) (-10 -8 (-15 0 ($) -3739) (-15 1 ($) -3739) (-15 -1887 ((-3 (-656 $) "failed") $)) (-15 -1899 ((-3 (-656 $) "failed") $)) (-15 -3927 ((-3 (-656 $) "failed") $ (-115))) (-15 -3927 ((-3 (-2 (|:| -1577 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -1910 ((-3 (-2 (|:| |val| $) (|:| -1359 (-783))) "failed") $)) (-15 -3294 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3913 ((-3 (-656 $) "failed") $)) (-15 -1923 ((-3 (-2 (|:| |val| $) (|:| -1359 $)) "failed") $)) (-15 -2071 ($ (-115) (-656 $))) (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -4039 ($ $ $)) (-15 -3324 ((-783) $)) (-15 -2616 ($ (-656 $))) (-15 -3079 ($ $)) (-15 -3900 ((-112) $)) (-15 -3889 ((-112) $)) (-15 -3857 ((-112) $)) (-15 -3847 ((-112) $)) (-15 -3876 ((-112) $)) (-15 -3866 ((-112) $)) (-15 -3855 ((-112) $)) (-15 -3843 ((-112) $)) (-15 -3832 ((-656 (-52)) $)) (-15 -3821 ($ $ (-656 (-52)))) (-15 -3810 ($ $ (-656 (-52)))) (-15 -3800 ($ (-1195) (-112) (-112) (-112))) (-15 -3790 ($ $ (-656 (-1195)) (-52))) (-15 -3778 ((-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52))) $)) (-15 -3765 ((-112) $)) (-15 -3752 ($ $)) (-15 -3956 ($ $ (-52))) (-15 -3741 ((-656 (-52)) $)) (-15 -1607 ((-656 $) $)) (-15 -3731 ((-3 (-656 $) "failed") (-656 $))))) (-1118)) (T -905)) -((-1996 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-2011 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-1887 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-1899 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3927 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1118)))) (-3927 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1577 (-115)) (|:| |arg| (-656 (-905 *3))))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-1910 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -1359 (-783)))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3294 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3913 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-1923 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -1359 (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-2071 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1118)))) (-4017 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-4039 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3079 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3821 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3800 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-112)) (-5 *1 (-905 *4)) (-4 *4 (-1118)))) (-3790 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-52)) (-5 *1 (-905 *4)) (-4 *4 (-1118)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52)))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3752 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-3956 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-1607 (*1 *2 *1) (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3731 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(-13 (-1118) (-1056 |#1|) (-1056 (-1195)) (-10 -8 (-15 (-1996) ($) -3739) (-15 (-2011) ($) -3739) (-15 -1887 ((-3 (-656 $) "failed") $)) (-15 -1899 ((-3 (-656 $) "failed") $)) (-15 -3927 ((-3 (-656 $) "failed") $ (-115))) (-15 -3927 ((-3 (-2 (|:| -1577 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -1910 ((-3 (-2 (|:| |val| $) (|:| -1359 (-783))) "failed") $)) (-15 -3294 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3913 ((-3 (-656 $) "failed") $)) (-15 -1923 ((-3 (-2 (|:| |val| $) (|:| -1359 $)) "failed") $)) (-15 -2071 ($ (-115) (-656 $))) (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -4039 ($ $ $)) (-15 -3324 ((-783) $)) (-15 -2616 ($ (-656 $))) (-15 -3079 ($ $)) (-15 -3900 ((-112) $)) (-15 -3889 ((-112) $)) (-15 -3857 ((-112) $)) (-15 -3847 ((-112) $)) (-15 -3876 ((-112) $)) (-15 -3866 ((-112) $)) (-15 -3855 ((-112) $)) (-15 -3843 ((-112) $)) (-15 -3832 ((-656 (-52)) $)) (-15 -3821 ($ $ (-656 (-52)))) (-15 -3810 ($ $ (-656 (-52)))) (-15 -3800 ($ (-1195) (-112) (-112) (-112))) (-15 -3790 ($ $ (-656 (-1195)) (-52))) (-15 -3778 ((-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52))) $)) (-15 -3765 ((-112) $)) (-15 -3752 ($ $)) (-15 -3956 ($ $ (-52))) (-15 -3741 ((-656 (-52)) $)) (-15 -1607 ((-656 $) $)) (-15 -3731 ((-3 (-656 $) "failed") (-656 $))))) -((-2862 (((-112) $ $) NIL)) (-3489 (((-656 |#1|) $) 19)) (-3982 (((-112) $) 49)) (-2449 (((-3 (-684 |#1|) "failed") $) 56)) (-4401 (((-684 |#1|) $) 54)) (-1976 (($ $) 23)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-1840 (((-783) $) 61)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 (((-684 |#1|) $) 21)) (-2884 (((-874) $) 47) (($ (-684 |#1|)) 26) (((-831 |#1|) $) 36) (($ |#1|) 25)) (-3722 (((-112) $ $) NIL)) (-2011 (($) 9 T CONST)) (-3993 (((-656 (-684 |#1|)) $) 28)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 12)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 67))) -(((-906 |#1|) (-13 (-862) (-1056 (-684 |#1|)) (-10 -8 (-15 1 ($) -3739) (-15 -2884 ((-831 |#1|) $)) (-15 -2884 ($ |#1|)) (-15 -1962 ((-684 |#1|) $)) (-15 -1840 ((-783) $)) (-15 -3993 ((-656 (-684 |#1|)) $)) (-15 -1976 ($ $)) (-15 -3982 ((-112) $)) (-15 -3489 ((-656 |#1|) $)))) (-862)) (T -906)) -((-2011 (*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-2884 (*1 *1 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-1976 (*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862))))) -(-13 (-862) (-1056 (-684 |#1|)) (-10 -8 (-15 (-2011) ($) -3739) (-15 -2884 ((-831 |#1|) $)) (-15 -2884 ($ |#1|)) (-15 -1962 ((-684 |#1|) $)) (-15 -1840 ((-783) $)) (-15 -3993 ((-656 (-684 |#1|)) $)) (-15 -1976 ($ $)) (-15 -3982 ((-112) $)) (-15 -3489 ((-656 |#1|) $)))) -((-2074 ((|#1| |#1| |#1|) 19))) -(((-907 |#1| |#2|) (-10 -7 (-15 -2074 (|#1| |#1| |#1|))) (-1262 |#2|) (-1067)) (T -907)) -((-2074 (*1 *2 *2 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1262 *3))))) -(-10 -7 (-15 -2074 (|#1| |#1| |#1|))) -((-3431 ((|#2| $ |#3|) 10))) -(((-908 |#1| |#2| |#3|) (-10 -8 (-15 -3431 (|#2| |#1| |#3|))) (-909 |#2| |#3|) (-1236) (-1236)) (T -908)) -NIL -(-10 -8 (-15 -3431 (|#2| |#1| |#3|))) -((-2390 ((|#1| $ |#2|) 7)) (-3431 ((|#1| $ |#2|) 6))) -(((-909 |#1| |#2|) (-141) (-1236) (-1236)) (T -909)) -((-2390 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236)))) (-3431 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236))))) -(-13 (-1236) (-10 -8 (-15 -2390 (|t#1| $ |t#2|)) (-15 -3431 (|t#1| $ |t#2|)))) -(((-1236) . T)) -((-2862 (((-112) $ $) 7)) (-4037 (((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-4005 (((-1053) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 14)) (-3915 (((-112) $ $) 6))) -(((-910) (-141)) (T -910)) -((-4037 (*1 *2 *3 *4) (-12 (-4 *1 (-910)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)))))) (-4005 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *2 (-1053))))) -(-13 (-1118) (-10 -7 (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))) (-15 -4005 ((-1053) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-4027 ((|#1| |#1| (-783)) 27)) (-4015 (((-3 |#1| "failed") |#1| |#1|) 24)) (-1754 (((-3 (-2 (|:| -2419 |#1|) (|:| -2436 |#1|)) "failed") |#1| (-783) (-783)) 30) (((-656 |#1|) |#1|) 38))) -(((-911 |#1| |#2|) (-10 -7 (-15 -1754 ((-656 |#1|) |#1|)) (-15 -1754 ((-3 (-2 (|:| -2419 |#1|) (|:| -2436 |#1|)) "failed") |#1| (-783) (-783))) (-15 -4015 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4027 (|#1| |#1| (-783)))) (-1262 |#2|) (-374)) (T -911)) -((-4027 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-911 *2 *4)) (-4 *2 (-1262 *4)))) (-4015 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-911 *2 *3)) (-4 *2 (-1262 *3)))) (-1754 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2419 *3) (|:| -2436 *3))) (-5 *1 (-911 *3 *5)) (-4 *3 (-1262 *5)))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-911 *3 *4)) (-4 *3 (-1262 *4))))) -(-10 -7 (-15 -1754 ((-656 |#1|) |#1|)) (-15 -1754 ((-3 (-2 (|:| -2419 |#1|) (|:| -2436 |#1|)) "failed") |#1| (-783) (-783))) (-15 -4015 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4027 (|#1| |#1| (-783)))) -((-1525 (((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177)) 104) (((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177) (-227)) 100) (((-1053) (-913) (-1081)) 92) (((-1053) (-913)) 93)) (-4037 (((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913) (-1081)) 62) (((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913)) 64))) -(((-912) (-10 -7 (-15 -1525 ((-1053) (-913))) (-15 -1525 ((-1053) (-913) (-1081))) (-15 -1525 ((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177) (-227))) (-15 -1525 ((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913) (-1081))))) (T -912)) -((-4037 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1081)) (-5 *2 (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-912)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-912)))) (-1525 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1053)) (-5 *1 (-912)))) (-1525 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177)) (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1053)) (-5 *1 (-912)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-912)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1053)) (-5 *1 (-912))))) -(-10 -7 (-15 -1525 ((-1053) (-913))) (-15 -1525 ((-1053) (-913) (-1081))) (-15 -1525 ((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177) (-227))) (-15 -1525 ((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913))) (-15 -4037 ((-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913) (-1081)))) -((-2862 (((-112) $ $) NIL)) (-4401 (((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))) $) 19)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 21) (($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 18)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-913) (-13 (-1118) (-10 -8 (-15 -2884 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))) (-15 -4401 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))) $))))) (T -913)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *1 (-913)))) (-4401 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *1 (-913))))) -(-13 (-1118) (-10 -8 (-15 -2884 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))) (-15 -4401 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))) $)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2390 (($ $ (-656 |#1|) (-656 (-783))) 44) (($ $ |#1| (-783)) 43) (($ $ (-656 |#1|)) 42) (($ $ |#1|) 40)) (-2884 (((-874) $) 12) (($ (-576)) 33)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-656 |#1|) (-656 (-783))) 47) (($ $ |#1| (-783)) 46) (($ $ (-656 |#1|)) 45) (($ $ |#1|) 41)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-914 |#1|) (-141) (-1118)) (T -914)) -NIL -(-13 (-1067) (-916 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-909 $ |#1|) . T) ((-916 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T)) -((-2390 (($ $ |#2|) NIL) (($ $ (-656 |#2|)) 10) (($ $ |#2| (-783)) 12) (($ $ (-656 |#2|) (-656 (-783))) 15)) (-3431 (($ $ |#2|) 16) (($ $ (-656 |#2|)) 18) (($ $ |#2| (-783)) 19) (($ $ (-656 |#2|) (-656 (-783))) 21))) -(((-915 |#1| |#2|) (-10 -8 (-15 -3431 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3431 (|#1| |#1| |#2| (-783))) (-15 -3431 (|#1| |#1| (-656 |#2|))) (-15 -2390 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2390 (|#1| |#1| |#2| (-783))) (-15 -2390 (|#1| |#1| (-656 |#2|))) (-15 -3431 (|#1| |#1| |#2|)) (-15 -2390 (|#1| |#1| |#2|))) (-916 |#2|) (-1118)) (T -915)) -NIL -(-10 -8 (-15 -3431 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3431 (|#1| |#1| |#2| (-783))) (-15 -3431 (|#1| |#1| (-656 |#2|))) (-15 -2390 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2390 (|#1| |#1| |#2| (-783))) (-15 -2390 (|#1| |#1| (-656 |#2|))) (-15 -3431 (|#1| |#1| |#2|)) (-15 -2390 (|#1| |#1| |#2|))) -((-2390 (($ $ |#1|) 7) (($ $ (-656 |#1|)) 15) (($ $ |#1| (-783)) 14) (($ $ (-656 |#1|) (-656 (-783))) 13)) (-3431 (($ $ |#1|) 6) (($ $ (-656 |#1|)) 12) (($ $ |#1| (-783)) 11) (($ $ (-656 |#1|) (-656 (-783))) 10))) -(((-916 |#1|) (-141) (-1118)) (T -916)) -((-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-916 *3)) (-4 *3 (-1118)))) (-2390 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-916 *2)) (-4 *2 (-1118)))) (-2390 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-916 *4)) (-4 *4 (-1118)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-916 *3)) (-4 *3 (-1118)))) (-3431 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-916 *2)) (-4 *2 (-1118)))) (-3431 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-916 *4)) (-4 *4 (-1118))))) -(-13 (-909 $ |t#1|) (-10 -8 (-15 -2390 ($ $ (-656 |t#1|))) (-15 -2390 ($ $ |t#1| (-783))) (-15 -2390 ($ $ (-656 |t#1|) (-656 (-783)))) (-15 -3431 ($ $ (-656 |t#1|))) (-15 -3431 ($ $ |t#1| (-783))) (-15 -3431 ($ $ (-656 |t#1|) (-656 (-783)))))) -(((-909 $ |#1|) . T) ((-1236) . T)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4183 ((|#1| $) 26)) (-2970 (((-112) $ (-783)) NIL)) (-3434 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3662 (($ $ $) NIL (|has| $ (-6 -4462)))) (-3674 (($ $ $) NIL (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-2436 (($ $) 25)) (-3951 (($ |#1|) 12) (($ $ $) 17)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) NIL)) (-3452 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-2419 (($ $) 23)) (-2482 (((-656 |#1|) $) NIL)) (-4306 (((-112) $) 20)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3473 (((-576) $ $) NIL)) (-4053 (((-112) $) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-1222 |#1|) $) 9) (((-874) $) 29 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) NIL)) (-3462 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 21 (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-917 |#1|) (-13 (-120 |#1|) (-625 (-1222 |#1|)) (-10 -8 (-15 -3951 ($ |#1|)) (-15 -3951 ($ $ $)))) (-1118)) (T -917)) -((-3951 (*1 *1 *2) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1118)))) (-3951 (*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1118))))) -(-13 (-120 |#1|) (-625 (-1222 |#1|)) (-10 -8 (-15 -3951 ($ |#1|)) (-15 -3951 ($ $ $)))) -((-2937 ((|#2| (-1160 |#1| |#2|)) 48))) -(((-918 |#1| |#2|) (-10 -7 (-15 -2937 (|#2| (-1160 |#1| |#2|)))) (-937) (-13 (-1067) (-10 -7 (-6 (-4463 "*"))))) (T -918)) -((-2937 (*1 *2 *3) (-12 (-5 *3 (-1160 *4 *2)) (-14 *4 (-937)) (-4 *2 (-13 (-1067) (-10 -7 (-6 (-4463 "*"))))) (-5 *1 (-918 *4 *2))))) -(-10 -7 (-15 -2937 (|#2| (-1160 |#1| |#2|)))) -((-2862 (((-112) $ $) 7)) (-2974 (((-1120 |#1|) $) 35)) (-2473 (($) 19 T CONST)) (-1999 (((-3 $ "failed") $) 16)) (-3017 (((-1120 |#1|) $ |#1|) 34)) (-1439 (((-112) $) 18)) (-1921 (($ $ $) 32 (-3766 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-4137 (($ $ $) 31 (-3766 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3733 (((-1177) $) 10)) (-4333 (($ $) 25)) (-3914 (((-1138) $) 11)) (-2071 ((|#1| $ |#1|) 38)) (-2947 (($ (-656 (-656 |#1|))) 36)) (-2956 (($ (-656 |#1|)) 37)) (-3276 (($ $ $) 22)) (-2920 (($ $ $) 21)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2011 (($) 20 T CONST)) (-3983 (((-112) $ $) 29 (-3766 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3957 (((-112) $ $) 28 (-3766 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 30 (-3766 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3943 (((-112) $ $) 33)) (-4039 (($ $ $) 24)) (** (($ $ (-937)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) -(((-919 |#1|) (-141) (-1118)) (T -919)) -((-2956 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-919 *3)))) (-2947 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-4 *1 (-919 *3)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-1120 *3)))) (-3017 (*1 *2 *1 *3) (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-1120 *3)))) (-3943 (*1 *2 *1 *1) (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-112))))) -(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -2956 ($ (-656 |t#1|))) (-15 -2947 ($ (-656 (-656 |t#1|)))) (-15 -2974 ((-1120 |t#1|) $)) (-15 -3017 ((-1120 |t#1|) $ |t#1|)) (-15 -3943 ((-112) $ $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-862)) |%noBranch|))) -(((-102) . T) ((-625 (-874)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-738) . T) ((-862) -3766 (|has| |#1| (-862)) (|has| |#1| (-379))) ((-1130) . T) ((-1118) . T) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-3043 (((-656 (-656 (-783))) $) 160)) (-2998 (((-656 (-783)) (-921 |#1|) $) 188)) (-2987 (((-656 (-783)) (-921 |#1|) $) 189)) (-2974 (((-1120 |#1|) $) 152)) (-3059 (((-656 (-921 |#1|)) $) 149)) (-2080 (((-921 |#1|) $ (-576)) 154) (((-921 |#1|) $) 155)) (-3032 (($ (-656 (-921 |#1|))) 162)) (-2927 (((-783) $) 156)) (-3007 (((-1120 (-1120 |#1|)) $) 186)) (-3017 (((-1120 |#1|) $ |#1|) 177) (((-1120 (-1120 |#1|)) $ (-1120 |#1|)) 197) (((-1120 (-656 |#1|)) $ (-656 |#1|)) 200)) (-3743 (((-112) (-921 |#1|) $) 137)) (-3733 (((-1177) $) NIL)) (-2965 (((-1291) $) 142) (((-1291) $ (-576) (-576)) 201)) (-3914 (((-1138) $) NIL)) (-3070 (((-656 (-921 |#1|)) $) 143)) (-2071 (((-921 |#1|) $ (-783)) 150)) (-3813 (((-783) $) 157)) (-2884 (((-874) $) 174) (((-656 (-921 |#1|)) $) 28) (($ (-656 (-921 |#1|))) 161)) (-3722 (((-112) $ $) NIL)) (-1549 (((-656 |#1|) $) 159)) (-3915 (((-112) $ $) 194)) (-3970 (((-112) $ $) 192)) (-3943 (((-112) $ $) 191))) -(((-920 |#1|) (-13 (-1118) (-10 -8 (-15 -2884 ((-656 (-921 |#1|)) $)) (-15 -3070 ((-656 (-921 |#1|)) $)) (-15 -2071 ((-921 |#1|) $ (-783))) (-15 -2080 ((-921 |#1|) $ (-576))) (-15 -2080 ((-921 |#1|) $)) (-15 -2927 ((-783) $)) (-15 -3813 ((-783) $)) (-15 -1549 ((-656 |#1|) $)) (-15 -3059 ((-656 (-921 |#1|)) $)) (-15 -3043 ((-656 (-656 (-783))) $)) (-15 -2884 ($ (-656 (-921 |#1|)))) (-15 -3032 ($ (-656 (-921 |#1|)))) (-15 -3017 ((-1120 |#1|) $ |#1|)) (-15 -3007 ((-1120 (-1120 |#1|)) $)) (-15 -3017 ((-1120 (-1120 |#1|)) $ (-1120 |#1|))) (-15 -3017 ((-1120 (-656 |#1|)) $ (-656 |#1|))) (-15 -3743 ((-112) (-921 |#1|) $)) (-15 -2998 ((-656 (-783)) (-921 |#1|) $)) (-15 -2987 ((-656 (-783)) (-921 |#1|) $)) (-15 -2974 ((-1120 |#1|) $)) (-15 -3943 ((-112) $ $)) (-15 -3970 ((-112) $ $)) (-15 -2965 ((-1291) $)) (-15 -2965 ((-1291) $ (-576) (-576))))) (-1118)) (T -920)) -((-2884 (*1 *2 *1) (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-2071 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-921 *4)) (-5 *1 (-920 *4)) (-4 *4 (-1118)))) (-2080 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-921 *4)) (-5 *1 (-920 *4)) (-4 *4 (-1118)))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-921 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-921 *3))) (-4 *3 (-1118)) (-5 *1 (-920 *3)))) (-3032 (*1 *1 *2) (-12 (-5 *2 (-656 (-921 *3))) (-4 *3 (-1118)) (-5 *1 (-920 *3)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *2 (-1120 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1120 (-1120 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3017 (*1 *2 *1 *3) (-12 (-4 *4 (-1118)) (-5 *2 (-1120 (-1120 *4))) (-5 *1 (-920 *4)) (-5 *3 (-1120 *4)))) (-3017 (*1 *2 *1 *3) (-12 (-4 *4 (-1118)) (-5 *2 (-1120 (-656 *4))) (-5 *1 (-920 *4)) (-5 *3 (-656 *4)))) (-3743 (*1 *2 *3 *1) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-112)) (-5 *1 (-920 *4)))) (-2998 (*1 *2 *3 *1) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-656 (-783))) (-5 *1 (-920 *4)))) (-2987 (*1 *2 *3 *1) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-656 (-783))) (-5 *1 (-920 *4)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-1120 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3943 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3970 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-2965 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-920 *4)) (-4 *4 (-1118))))) -(-13 (-1118) (-10 -8 (-15 -2884 ((-656 (-921 |#1|)) $)) (-15 -3070 ((-656 (-921 |#1|)) $)) (-15 -2071 ((-921 |#1|) $ (-783))) (-15 -2080 ((-921 |#1|) $ (-576))) (-15 -2080 ((-921 |#1|) $)) (-15 -2927 ((-783) $)) (-15 -3813 ((-783) $)) (-15 -1549 ((-656 |#1|) $)) (-15 -3059 ((-656 (-921 |#1|)) $)) (-15 -3043 ((-656 (-656 (-783))) $)) (-15 -2884 ($ (-656 (-921 |#1|)))) (-15 -3032 ($ (-656 (-921 |#1|)))) (-15 -3017 ((-1120 |#1|) $ |#1|)) (-15 -3007 ((-1120 (-1120 |#1|)) $)) (-15 -3017 ((-1120 (-1120 |#1|)) $ (-1120 |#1|))) (-15 -3017 ((-1120 (-656 |#1|)) $ (-656 |#1|))) (-15 -3743 ((-112) (-921 |#1|) $)) (-15 -2998 ((-656 (-783)) (-921 |#1|) $)) (-15 -2987 ((-656 (-783)) (-921 |#1|) $)) (-15 -2974 ((-1120 |#1|) $)) (-15 -3943 ((-112) $ $)) (-15 -3970 ((-112) $ $)) (-15 -2965 ((-1291) $)) (-15 -2965 ((-1291) $ (-576) (-576))))) -((-2862 (((-112) $ $) NIL)) (-2974 (((-1120 |#1|) $) 60)) (-2032 (((-656 $) (-656 $)) 103)) (-3966 (((-576) $) 83)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) NIL)) (-2927 (((-783) $) 80)) (-3017 (((-1120 |#1|) $ |#1|) 70)) (-1439 (((-112) $) NIL)) (-4064 (((-112) $) 88)) (-4081 (((-783) $) 84)) (-1921 (($ $ $) NIL (-3766 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-4137 (($ $ $) NIL (-3766 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2930 (((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $) 55)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 130)) (-3914 (((-1138) $) NIL)) (-4056 (((-1120 |#1|) $) 136 (|has| |#1| (-379)))) (-4072 (((-112) $) 81)) (-2071 ((|#1| $ |#1|) 68)) (-3813 (((-783) $) 62)) (-2947 (($ (-656 (-656 |#1|))) 118)) (-4090 (((-989) $) 74)) (-2956 (($ (-656 |#1|)) 32)) (-3276 (($ $ $) NIL)) (-2920 (($ $ $) NIL)) (-2919 (($ (-656 (-656 |#1|))) 57)) (-2907 (($ (-656 (-656 |#1|))) 123)) (-4046 (($ (-656 |#1|)) 132)) (-2884 (((-874) $) 117) (($ (-656 (-656 |#1|))) 91) (($ (-656 |#1|)) 92)) (-3722 (((-112) $ $) NIL)) (-2011 (($) 24 T CONST)) (-3983 (((-112) $ $) NIL (-3766 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3957 (((-112) $ $) NIL (-3766 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3915 (((-112) $ $) 66)) (-3970 (((-112) $ $) NIL (-3766 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3943 (((-112) $ $) 90)) (-4039 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33))) -(((-921 |#1|) (-13 (-919 |#1|) (-10 -8 (-15 -2930 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -2919 ($ (-656 (-656 |#1|)))) (-15 -2884 ($ (-656 (-656 |#1|)))) (-15 -2884 ($ (-656 |#1|))) (-15 -2907 ($ (-656 (-656 |#1|)))) (-15 -3813 ((-783) $)) (-15 -4090 ((-989) $)) (-15 -2927 ((-783) $)) (-15 -4081 ((-783) $)) (-15 -3966 ((-576) $)) (-15 -4072 ((-112) $)) (-15 -4064 ((-112) $)) (-15 -2032 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -4056 ((-1120 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -4046 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -4046 ($ (-656 |#1|))) |%noBranch|)))) (-1118)) (T -921)) -((-2930 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-921 *3)))) (-2907 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-989)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-4081 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-2032 (*1 *2 *2) (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-1120 *3)) (-5 *1 (-921 *3)) (-4 *3 (-379)) (-4 *3 (-1118)))) (-4046 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-921 *3))))) -(-13 (-919 |#1|) (-10 -8 (-15 -2930 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -2919 ($ (-656 (-656 |#1|)))) (-15 -2884 ($ (-656 (-656 |#1|)))) (-15 -2884 ($ (-656 |#1|))) (-15 -2907 ($ (-656 (-656 |#1|)))) (-15 -3813 ((-783) $)) (-15 -4090 ((-989) $)) (-15 -2927 ((-783) $)) (-15 -4081 ((-783) $)) (-15 -3966 ((-576) $)) (-15 -4072 ((-112) $)) (-15 -4064 ((-112) $)) (-15 -2032 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -4056 ((-1120 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -4046 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -4046 ($ (-656 |#1|))) |%noBranch|)))) -((-3093 (((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|)) 160)) (-3126 ((|#1|) 97)) (-3116 (((-430 (-1191 |#4|)) (-1191 |#4|)) 169)) (-3138 (((-430 (-1191 |#4|)) (-656 |#3|) (-1191 |#4|)) 84)) (-3105 (((-430 (-1191 |#4|)) (-1191 |#4|)) 179)) (-3082 (((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|) |#3|) 113))) -(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3093 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|))) (-15 -3105 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -3116 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -3126 (|#1|)) (-15 -3082 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|) |#3|)) (-15 -3138 ((-430 (-1191 |#4|)) (-656 |#3|) (-1191 |#4|)))) (-925) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -922)) -((-3138 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *7)) (-4 *7 (-862)) (-4 *5 (-925)) (-4 *6 (-805)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-430 (-1191 *8))) (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-1191 *8)))) (-3082 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7)) (-4 *7 (-965 *5 *6 *4)) (-4 *5 (-925)) (-4 *6 (-805)) (-4 *4 (-862)) (-5 *1 (-922 *5 *6 *4 *7)))) (-3126 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-925)) (-5 *1 (-922 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-3116 (*1 *2 *3) (-12 (-4 *4 (-925)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-3105 (*1 *2 *3) (-12 (-4 *4 (-925)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-3093 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-925)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-922 *4 *5 *6 *7))))) -(-10 -7 (-15 -3093 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|))) (-15 -3105 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -3116 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -3126 (|#1|)) (-15 -3082 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|) |#3|)) (-15 -3138 ((-430 (-1191 |#4|)) (-656 |#3|) (-1191 |#4|)))) -((-3093 (((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|)) 39)) (-3126 ((|#1|) 72)) (-3116 (((-430 (-1191 |#2|)) (-1191 |#2|)) 121)) (-3138 (((-430 (-1191 |#2|)) (-1191 |#2|)) 105)) (-3105 (((-430 (-1191 |#2|)) (-1191 |#2|)) 132))) -(((-923 |#1| |#2|) (-10 -7 (-15 -3093 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|))) (-15 -3105 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -3116 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -3126 (|#1|)) (-15 -3138 ((-430 (-1191 |#2|)) (-1191 |#2|)))) (-925) (-1262 |#1|)) (T -923)) -((-3138 (*1 *2 *3) (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5)))) (-3126 (*1 *2) (-12 (-4 *2 (-925)) (-5 *1 (-923 *2 *3)) (-4 *3 (-1262 *2)))) (-3116 (*1 *2 *3) (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5)))) (-3105 (*1 *2 *3) (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5)))) (-3093 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-925)) (-5 *1 (-923 *4 *5))))) -(-10 -7 (-15 -3093 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|))) (-15 -3105 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -3116 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -3126 (|#1|)) (-15 -3138 ((-430 (-1191 |#2|)) (-1191 |#2|)))) -((-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 42)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 18)) (-3148 (((-3 $ "failed") $) 36))) -(((-924 |#1|) (-10 -8 (-15 -3148 ((-3 |#1| "failed") |#1|)) (-15 -3169 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3214 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) (-925)) (T -924)) -NIL -(-10 -8 (-15 -3148 ((-3 |#1| "failed") |#1|)) (-15 -3169 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3214 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-3203 (((-430 (-1191 $)) (-1191 $)) 66)) (-2944 (($ $) 57)) (-3986 (((-430 $) $) 58)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 63)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-2463 (((-112) $) 59)) (-1439 (((-112) $) 35)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-3181 (((-430 (-1191 $)) (-1191 $)) 64)) (-3192 (((-430 (-1191 $)) (-1191 $)) 65)) (-2354 (((-430 $) $) 56)) (-2852 (((-3 $ "failed") $ $) 48)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 62 (|has| $ (-146)))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-3148 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-925) (-141)) (T -925)) -((-3214 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-925)))) (-3203 (*1 *2 *3) (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))) (-3192 (*1 *2 *3) (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))) (-3181 (*1 *2 *3) (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))) (-3169 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *1))) (-5 *3 (-1191 *1)) (-4 *1 (-925)))) (-3159 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-925)) (-5 *2 (-1286 *1)))) (-3148 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-925))))) -(-13 (-1240) (-10 -8 (-15 -3203 ((-430 (-1191 $)) (-1191 $))) (-15 -3192 ((-430 (-1191 $)) (-1191 $))) (-15 -3181 ((-430 (-1191 $)) (-1191 $))) (-15 -3214 ((-1191 $) (-1191 $) (-1191 $))) (-15 -3169 ((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $))) (IF (|has| $ (-146)) (PROGN (-15 -3159 ((-3 (-1286 $) "failed") (-701 $))) (-15 -3148 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-3695 (((-112) $) NIL)) (-3661 (((-783)) NIL)) (-1448 (($ $ (-937)) NIL (|has| $ (-379))) (($ $) NIL)) (-2575 (((-1208 (-937) (-783)) (-576)) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 $ "failed") $) NIL)) (-4401 (($ $) NIL)) (-1339 (($ (-1286 $)) NIL)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2013 (($) NIL)) (-2635 (((-112) $) NIL)) (-4188 (($ $) NIL) (($ $ (-783)) NIL)) (-2463 (((-112) $) NIL)) (-2927 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-1439 (((-112) $) NIL)) (-1909 (($) NIL (|has| $ (-379)))) (-1886 (((-112) $) NIL (|has| $ (-379)))) (-1941 (($ $ (-937)) NIL (|has| $ (-379))) (($ $) NIL)) (-1831 (((-3 $ "failed") $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1922 (((-1191 $) $ (-937)) NIL (|has| $ (-379))) (((-1191 $) $) NIL)) (-1875 (((-937) $) NIL)) (-3130 (((-1191 $) $) NIL (|has| $ (-379)))) (-3119 (((-3 (-1191 $) "failed") $ $) NIL (|has| $ (-379))) (((-1191 $) $) NIL (|has| $ (-379)))) (-3141 (($ $ (-1191 $)) NIL (|has| $ (-379)))) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL T CONST)) (-4318 (($ (-937)) NIL)) (-3683 (((-112) $) NIL)) (-3914 (((-1138) $) NIL)) (-3660 (($) NIL (|has| $ (-379)))) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL)) (-2354 (((-430 $) $) NIL)) (-3673 (((-937)) NIL) (((-845 (-937))) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-4197 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-1543 (((-135)) NIL)) (-2390 (($ $) NIL) (($ $ (-783)) NIL)) (-3813 (((-937) $) NIL) (((-845 (-937)) $) NIL)) (-1360 (((-1191 $)) NIL)) (-2560 (($) NIL)) (-3152 (($) NIL (|has| $ (-379)))) (-3629 (((-701 $) (-1286 $)) NIL) (((-1286 $) $) NIL)) (-2616 (((-576) $) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3148 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $) (-937)) NIL) (((-1286 $)) NIL)) (-4232 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3649 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-3431 (($ $) NIL) (($ $ (-783)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-926 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-937)) (T -926)) -NIL -(-13 (-360) (-339 $) (-626 (-576))) -((-3237 (((-3 (-2 (|:| -2927 (-783)) (|:| -3764 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-3225 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-2927 (((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|)) 15))) -(((-927 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2927 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3225 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -3237 ((-3 (-2 (|:| -2927 (-783)) (|:| -3764 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1056 (-576))) (-442 |#1|) (-1262 |#2|) (-1262 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -927)) -((-3237 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-2 (|:| -2927 (-783)) (|:| -3764 *8))) (-5 *1 (-927 *4 *5 *6 *7 *8)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-112)) (-5 *1 (-927 *4 *5 *6 *7 *8)))) (-2927 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-783)) (-5 *1 (-927 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2927 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3225 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -3237 ((-3 (-2 (|:| -2927 (-783)) (|:| -3764 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) -((-3237 (((-3 (-2 (|:| -2927 (-783)) (|:| -3764 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-3225 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-2927 (((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14))) -(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -2927 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3225 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3237 ((-3 (-2 (|:| -2927 (-783)) (|:| -3764 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1262 (-419 (-576))) (-1262 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -928)) -((-3237 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -2927 (-783)) (|:| -3764 *6))) (-5 *1 (-928 *4 *5 *6)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-928 *4 *5 *6)))) (-2927 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) (-5 *1 (-928 *4 *5 *6))))) -(-10 -7 (-15 -2927 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3225 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3237 ((-3 (-2 (|:| -2927 (-783)) (|:| -3764 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) -((-3293 ((|#2| |#2|) 26)) (-3270 (((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-3248 (((-937) (-576)) 38)) (-3283 (((-576) |#2|) 45)) (-3258 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20))) -(((-929 |#1| |#2|) (-10 -7 (-15 -3248 ((-937) (-576))) (-15 -3258 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3258 ((-576) |#2|)) (-15 -3270 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -3283 ((-576) |#2|)) (-15 -3293 (|#2| |#2|))) (-1262 (-419 (-576))) (-1262 (-419 |#1|))) (T -929)) -((-3293 (*1 *2 *2) (-12 (-4 *3 (-1262 (-419 (-576)))) (-5 *1 (-929 *3 *2)) (-4 *2 (-1262 (-419 *3))))) (-3283 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-3270 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *5)) (-4 *5 (-1262 (-419 *4))))) (-3258 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-3258 (*1 *2 *3) (-12 (-4 *3 (-1262 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-929 *3 *4)) (-4 *4 (-1262 (-419 *3))))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1262 (-419 *3))) (-5 *2 (-937)) (-5 *1 (-929 *4 *5)) (-4 *5 (-1262 (-419 *4)))))) -(-10 -7 (-15 -3248 ((-937) (-576))) (-15 -3258 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3258 ((-576) |#2|)) (-15 -3270 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -3283 ((-576) |#2|)) (-15 -3293 (|#2| |#2|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1905 ((|#1| $) 100)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-2803 (($ $ $) NIL)) (-1999 (((-3 $ "failed") $) 94)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-3370 (($ |#1| (-430 |#1|)) 92)) (-3312 (((-1191 |#1|) |#1| |#1|) 53)) (-3302 (($ $) 61)) (-1439 (((-112) $) NIL)) (-3321 (((-576) $) 97)) (-3331 (($ $ (-576)) 99)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3342 ((|#1| $) 96)) (-3351 (((-430 |#1|) $) 95)) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) 93)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-3361 (($ $) 50)) (-2884 (((-874) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-1871 (((-783)) 71 T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-1996 (($) 26 T CONST)) (-2011 (($) 15 T CONST)) (-3915 (((-112) $ $) 87)) (-4039 (($ $ $) NIL)) (-4029 (($ $) 108) (($ $ $) NIL)) (-4017 (($ $ $) 49)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-930 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -2884 ((-419 |#1|) $)) (-15 -2884 ($ (-419 (-430 |#1|)))) (-15 -3361 ($ $)) (-15 -3351 ((-430 |#1|) $)) (-15 -3342 (|#1| $)) (-15 -3331 ($ $ (-576))) (-15 -3321 ((-576) $)) (-15 -3312 ((-1191 |#1|) |#1| |#1|)) (-15 -3302 ($ $)) (-15 -3370 ($ |#1| (-430 |#1|))) (-15 -1905 (|#1| $)))) (-317)) (T -930)) -((-2884 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-930 *3)))) (-3361 (*1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317)))) (-3342 (*1 *2 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317)))) (-3331 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-930 *3)) (-4 *3 (-317)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-930 *3)) (-4 *3 (-317)))) (-3312 (*1 *2 *3 *3) (-12 (-5 *2 (-1191 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317)))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317)))) (-3370 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-930 *2)))) (-1905 (*1 *2 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317))))) -(-13 (-374) (-38 |#1|) (-10 -8 (-15 -2884 ((-419 |#1|) $)) (-15 -2884 ($ (-419 (-430 |#1|)))) (-15 -3361 ($ $)) (-15 -3351 ((-430 |#1|) $)) (-15 -3342 (|#1| $)) (-15 -3331 ($ $ (-576))) (-15 -3321 ((-576) $)) (-15 -3312 ((-1191 |#1|) |#1| |#1|)) (-15 -3302 ($ $)) (-15 -3370 ($ |#1| (-430 |#1|))) (-15 -1905 (|#1| $)))) -((-3370 (((-52) (-968 |#1|) (-430 (-968 |#1|)) (-1195)) 17) (((-52) (-419 (-968 |#1|)) (-1195)) 18))) -(((-931 |#1|) (-10 -7 (-15 -3370 ((-52) (-419 (-968 |#1|)) (-1195))) (-15 -3370 ((-52) (-968 |#1|) (-430 (-968 |#1|)) (-1195)))) (-13 (-317) (-148))) (T -931)) -((-3370 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-968 *6))) (-5 *5 (-1195)) (-5 *3 (-968 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-931 *6)))) (-3370 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-931 *5))))) -(-10 -7 (-15 -3370 ((-52) (-419 (-968 |#1|)) (-1195))) (-15 -3370 ((-52) (-968 |#1|) (-430 (-968 |#1|)) (-1195)))) -((-3380 ((|#4| (-656 |#4|)) 147) (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3928 (((-1191 |#4|) (-656 (-1191 |#4|))) 140) (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 61) ((|#4| (-656 |#4|)) 69) ((|#4| |#4| |#4|) 107))) -(((-932 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3928 (|#4| |#4| |#4|)) (-15 -3928 (|#4| (-656 |#4|))) (-15 -3928 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -3928 ((-1191 |#4|) (-656 (-1191 |#4|)))) (-15 -3380 (|#4| |#4| |#4|)) (-15 -3380 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -3380 (|#4| (-656 |#4|)))) (-805) (-862) (-317) (-965 |#3| |#1| |#2|)) (T -932)) -((-3380 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *6 *4 *5)) (-5 *1 (-932 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)))) (-3380 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *6)))) (-3380 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *2)) (-4 *2 (-965 *5 *3 *4)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-656 (-1191 *7))) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-1191 *7)) (-5 *1 (-932 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))) (-3928 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *6)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *6 *4 *5)) (-5 *1 (-932 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)))) (-3928 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *2)) (-4 *2 (-965 *5 *3 *4))))) -(-10 -7 (-15 -3928 (|#4| |#4| |#4|)) (-15 -3928 (|#4| (-656 |#4|))) (-15 -3928 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -3928 ((-1191 |#4|) (-656 (-1191 |#4|)))) (-15 -3380 (|#4| |#4| |#4|)) (-15 -3380 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -3380 (|#4| (-656 |#4|)))) -((-2263 (((-920 (-576)) (-989)) 38) (((-920 (-576)) (-656 (-576))) 34)) (-3390 (((-920 (-576)) (-656 (-576))) 67) (((-920 (-576)) (-937)) 68)) (-2252 (((-920 (-576))) 39)) (-3477 (((-920 (-576))) 53) (((-920 (-576)) (-656 (-576))) 52)) (-3468 (((-920 (-576))) 51) (((-920 (-576)) (-656 (-576))) 50)) (-3455 (((-920 (-576))) 49) (((-920 (-576)) (-656 (-576))) 48)) (-3446 (((-920 (-576))) 47) (((-920 (-576)) (-656 (-576))) 46)) (-3437 (((-920 (-576))) 45) (((-920 (-576)) (-656 (-576))) 44)) (-3488 (((-920 (-576))) 55) (((-920 (-576)) (-656 (-576))) 54)) (-3428 (((-920 (-576)) (-656 (-576))) 72) (((-920 (-576)) (-937)) 74)) (-3417 (((-920 (-576)) (-656 (-576))) 69) (((-920 (-576)) (-937)) 70)) (-3399 (((-920 (-576)) (-656 (-576))) 65) (((-920 (-576)) (-937)) 66)) (-3408 (((-920 (-576)) (-656 (-937))) 57))) -(((-933) (-10 -7 (-15 -3390 ((-920 (-576)) (-937))) (-15 -3390 ((-920 (-576)) (-656 (-576)))) (-15 -3399 ((-920 (-576)) (-937))) (-15 -3399 ((-920 (-576)) (-656 (-576)))) (-15 -3408 ((-920 (-576)) (-656 (-937)))) (-15 -3417 ((-920 (-576)) (-937))) (-15 -3417 ((-920 (-576)) (-656 (-576)))) (-15 -3428 ((-920 (-576)) (-937))) (-15 -3428 ((-920 (-576)) (-656 (-576)))) (-15 -3437 ((-920 (-576)) (-656 (-576)))) (-15 -3437 ((-920 (-576)))) (-15 -3446 ((-920 (-576)) (-656 (-576)))) (-15 -3446 ((-920 (-576)))) (-15 -3455 ((-920 (-576)) (-656 (-576)))) (-15 -3455 ((-920 (-576)))) (-15 -3468 ((-920 (-576)) (-656 (-576)))) (-15 -3468 ((-920 (-576)))) (-15 -3477 ((-920 (-576)) (-656 (-576)))) (-15 -3477 ((-920 (-576)))) (-15 -3488 ((-920 (-576)) (-656 (-576)))) (-15 -3488 ((-920 (-576)))) (-15 -2252 ((-920 (-576)))) (-15 -2263 ((-920 (-576)) (-656 (-576)))) (-15 -2263 ((-920 (-576)) (-989))))) (T -933)) -((-2263 (*1 *2 *3) (-12 (-5 *3 (-989)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-2252 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3488 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3477 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3468 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3455 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3446 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3437 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933))))) -(-10 -7 (-15 -3390 ((-920 (-576)) (-937))) (-15 -3390 ((-920 (-576)) (-656 (-576)))) (-15 -3399 ((-920 (-576)) (-937))) (-15 -3399 ((-920 (-576)) (-656 (-576)))) (-15 -3408 ((-920 (-576)) (-656 (-937)))) (-15 -3417 ((-920 (-576)) (-937))) (-15 -3417 ((-920 (-576)) (-656 (-576)))) (-15 -3428 ((-920 (-576)) (-937))) (-15 -3428 ((-920 (-576)) (-656 (-576)))) (-15 -3437 ((-920 (-576)) (-656 (-576)))) (-15 -3437 ((-920 (-576)))) (-15 -3446 ((-920 (-576)) (-656 (-576)))) (-15 -3446 ((-920 (-576)))) (-15 -3455 ((-920 (-576)) (-656 (-576)))) (-15 -3455 ((-920 (-576)))) (-15 -3468 ((-920 (-576)) (-656 (-576)))) (-15 -3468 ((-920 (-576)))) (-15 -3477 ((-920 (-576)) (-656 (-576)))) (-15 -3477 ((-920 (-576)))) (-15 -3488 ((-920 (-576)) (-656 (-576)))) (-15 -3488 ((-920 (-576)))) (-15 -2252 ((-920 (-576)))) (-15 -2263 ((-920 (-576)) (-656 (-576)))) (-15 -2263 ((-920 (-576)) (-989)))) -((-2281 (((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195))) 14)) (-2273 (((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195))) 13))) -(((-934 |#1|) (-10 -7 (-15 -2273 ((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -2281 ((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195))))) (-464)) (T -934)) -((-2281 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-968 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464)) (-5 *1 (-934 *4)))) (-2273 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-968 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464)) (-5 *1 (-934 *4))))) -(-10 -7 (-15 -2273 ((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -2281 ((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195))))) -((-2884 (((-326 |#1|) (-489)) 16))) -(((-935 |#1|) (-10 -7 (-15 -2884 ((-326 |#1|) (-489)))) (-568)) (T -935)) -((-2884 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-935 *4)) (-4 *4 (-568))))) -(-10 -7 (-15 -2884 ((-326 |#1|) (-489)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-1439 (((-112) $) 35)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-936) (-141)) (T -936)) -((-2304 (*1 *2 *3) (-12 (-4 *1 (-936)) (-5 *2 (-2 (|:| -1755 (-656 *1)) (|:| -3660 *1))) (-5 *3 (-656 *1)))) (-2291 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-936))))) -(-13 (-464) (-10 -8 (-15 -2304 ((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $))) (-15 -2291 ((-3 (-656 $) "failed") (-656 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3928 (($ $ $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-2011 (($) NIL T CONST)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ $ $) NIL))) -(((-937) (-13 (-806) (-738) (-10 -8 (-15 -3928 ($ $ $)) (-6 (-4463 "*"))))) (T -937)) -((-3928 (*1 *1 *1 *1) (-5 *1 (-937)))) -(-13 (-806) (-738) (-10 -8 (-15 -3928 ($ $ $)) (-6 (-4463 "*")))) +((-2256 (((-702 (-1243)) $ (-1243)) NIL)) (-3913 (((-702 (-560)) $ (-560)) NIL)) (-2471 (((-782) $ (-129)) NIL)) (-2584 (((-702 (-130)) $ (-130)) 22)) (-3639 (($ (-399)) 12) (($ (-1176)) 14)) (-2274 (((-112) $) 19)) (-2883 (((-873) $) 26)) (-3504 (($ $) 23))) +(((-872) (-13 (-871) (-624 (-873)) (-10 -8 (-15 -3639 ($ (-399))) (-15 -3639 ($ (-1176))) (-15 -2274 ((-112) $))))) (T -872)) +((-3639 (*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-872)))) (-3639 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-872)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872))))) +(-13 (-871) (-624 (-873)) (-10 -8 (-15 -3639 ($ (-399))) (-15 -3639 ($ (-1176))) (-15 -2274 ((-112) $)))) +((-2861 (((-112) $ $) NIL) (($ $ $) 85)) (-1604 (($ $ $) 125)) (-2240 (((-575) $) 31) (((-575)) 36)) (-3694 (($ (-575)) 53)) (-2825 (($ $ $) 54) (($ (-655 $)) 84)) (-1358 (($ $ (-655 $)) 82)) (-1937 (((-575) $) 34)) (-2245 (($ $ $) 73)) (-4376 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2820 (((-575) $) 33)) (-4242 (($ $ $) 72)) (-1650 (($ $) 114)) (-3300 (($ $ $) 129)) (-2016 (($ (-655 $)) 61)) (-1851 (($ $ (-655 $)) 79)) (-2515 (($ (-575) (-575)) 55)) (-2516 (($ $) 126) (($ $ $) 127)) (-2435 (($ $ (-575)) 43) (($ $) 46)) (-2802 (($ $ $) 97)) (-1731 (($ $ $) 132)) (-4157 (($ $) 115)) (-2813 (($ $ $) 98)) (-1489 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3520 (((-1290) $) 10)) (-2539 (($ $) 118) (($ $ (-782)) 122)) (-3082 (($ $ $) 75)) (-2750 (($ $ $) 74)) (-2499 (($ $ (-655 $)) 110)) (-1621 (($ $ $) 113)) (-2250 (($ (-655 $)) 59)) (-2092 (($ $) 70) (($ (-655 $)) 71)) (-2965 (($ $ $) 123)) (-1888 (($ $) 116)) (-3086 (($ $ $) 128)) (-3282 (($ (-575)) 21) (($ (-1194)) 23) (($ (-1176)) 30) (($ (-227)) 25)) (-3238 (($ $ $) 101)) (-3215 (($ $) 102)) (-4148 (((-1290) (-1176)) 15)) (-3977 (($ (-1176)) 14)) (-4316 (($ (-655 (-655 $))) 58)) (-2418 (($ $ (-575)) 42) (($ $) 45)) (-2288 (((-1176) $) NIL)) (-1766 (($ $ $) 131)) (-2521 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3528 (((-112) $) 108)) (-3423 (($ $ (-655 $)) 111) (($ $ $ $) 112)) (-2060 (($ (-575)) 39)) (-3343 (((-575) $) 32) (((-575)) 35)) (-2303 (($ $ $) 40) (($ (-655 $)) 83)) (-3912 (((-1137) $) NIL)) (-2851 (($ $ $) 99)) (-1938 (($) 13)) (-2070 (($ $ (-655 $)) 109)) (-2483 (((-1176) (-1176)) 8)) (-1886 (($ $) 117) (($ $ (-782)) 121)) (-2838 (($ $ $) 96)) (-2389 (($ $ (-782)) 139)) (-3699 (($ (-655 $)) 60)) (-2883 (((-873) $) 19)) (-1751 (($ $ (-575)) 41) (($ $) 44)) (-2862 (($ $) 68) (($ (-655 $)) 69)) (-2556 (($ $) 66) (($ (-655 $)) 67)) (-2377 (($ $) 124)) (-3421 (($ (-655 $)) 65)) (-3820 (($ $ $) 105)) (-4400 (((-112) $ $) NIL)) (-1538 (($ $ $) 130)) (-3226 (($ $ $) 100)) (-1859 (($ $ $) 103) (($ $) 104)) (-3981 (($ $ $) 89)) (-3956 (($ $ $) 87)) (-3914 (((-112) $ $) 16) (($ $ $) 17)) (-3970 (($ $ $) 88)) (-3943 (($ $ $) 86)) (-4038 (($ $ $) 94)) (-4028 (($ $ $) 91) (($ $) 92)) (-4016 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-873) (-13 (-1117) (-10 -8 (-15 -3520 ((-1290) $)) (-15 -3977 ($ (-1176))) (-15 -4148 ((-1290) (-1176))) (-15 -3282 ($ (-575))) (-15 -3282 ($ (-1194))) (-15 -3282 ($ (-1176))) (-15 -3282 ($ (-227))) (-15 -1938 ($)) (-15 -2483 ((-1176) (-1176))) (-15 -2240 ((-575) $)) (-15 -3343 ((-575) $)) (-15 -2240 ((-575))) (-15 -3343 ((-575))) (-15 -2820 ((-575) $)) (-15 -1937 ((-575) $)) (-15 -2060 ($ (-575))) (-15 -3694 ($ (-575))) (-15 -2515 ($ (-575) (-575))) (-15 -2418 ($ $ (-575))) (-15 -2435 ($ $ (-575))) (-15 -1751 ($ $ (-575))) (-15 -2418 ($ $)) (-15 -2435 ($ $)) (-15 -1751 ($ $)) (-15 -2303 ($ $ $)) (-15 -2825 ($ $ $)) (-15 -2303 ($ (-655 $))) (-15 -2825 ($ (-655 $))) (-15 -2499 ($ $ (-655 $))) (-15 -3423 ($ $ (-655 $))) (-15 -3423 ($ $ $ $)) (-15 -1621 ($ $ $)) (-15 -3528 ((-112) $)) (-15 -2070 ($ $ (-655 $))) (-15 -1650 ($ $)) (-15 -1766 ($ $ $)) (-15 -2377 ($ $)) (-15 -4316 ($ (-655 (-655 $)))) (-15 -1604 ($ $ $)) (-15 -2516 ($ $)) (-15 -2516 ($ $ $)) (-15 -3086 ($ $ $)) (-15 -3300 ($ $ $)) (-15 -1538 ($ $ $)) (-15 -1731 ($ $ $)) (-15 -2389 ($ $ (-782))) (-15 -3820 ($ $ $)) (-15 -4242 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2750 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -1851 ($ $ (-655 $))) (-15 -1358 ($ $ (-655 $))) (-15 -4157 ($ $)) (-15 -1886 ($ $)) (-15 -1886 ($ $ (-782))) (-15 -2539 ($ $)) (-15 -2539 ($ $ (-782))) (-15 -1888 ($ $)) (-15 -2965 ($ $ $)) (-15 -4376 ($ $)) (-15 -4376 ($ $ $)) (-15 -4376 ($ $ $ $)) (-15 -1489 ($ $)) (-15 -1489 ($ $ $)) (-15 -1489 ($ $ $ $)) (-15 -2521 ($ $)) (-15 -2521 ($ $ $)) (-15 -2521 ($ $ $ $)) (-15 -2556 ($ $)) (-15 -2556 ($ (-655 $))) (-15 -2862 ($ $)) (-15 -2862 ($ (-655 $))) (-15 -2092 ($ $)) (-15 -2092 ($ (-655 $))) (-15 -2250 ($ (-655 $))) (-15 -3699 ($ (-655 $))) (-15 -2016 ($ (-655 $))) (-15 -3421 ($ (-655 $))) (-15 -3914 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3956 ($ $ $)) (-15 -3970 ($ $ $)) (-15 -3981 ($ $ $)) (-15 -4016 ($ $ $)) (-15 -4028 ($ $ $)) (-15 -4028 ($ $)) (-15 * ($ $ $)) (-15 -4038 ($ $ $)) (-15 ** ($ $ $)) (-15 -2838 ($ $ $)) (-15 -2802 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -3226 ($ $ $)) (-15 -3238 ($ $ $)) (-15 -3215 ($ $)) (-15 -1859 ($ $ $)) (-15 -1859 ($ $))))) (T -873)) +((-3520 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-873)))) (-3977 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-873)))) (-3282 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-3282 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-873)))) (-3282 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873)))) (-3282 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-873)))) (-1938 (*1 *1) (-5 *1 (-873))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2240 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-3343 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2060 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2515 (*1 *1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2418 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2418 (*1 *1 *1) (-5 *1 (-873))) (-2435 (*1 *1 *1) (-5 *1 (-873))) (-1751 (*1 *1 *1) (-5 *1 (-873))) (-2303 (*1 *1 *1 *1) (-5 *1 (-873))) (-2825 (*1 *1 *1 *1) (-5 *1 (-873))) (-2303 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-2825 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-2499 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-3423 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-3423 (*1 *1 *1 *1 *1) (-5 *1 (-873))) (-1621 (*1 *1 *1 *1) (-5 *1 (-873))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873)))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-1650 (*1 *1 *1) (-5 *1 (-873))) (-1766 (*1 *1 *1 *1) (-5 *1 (-873))) (-2377 (*1 *1 *1) (-5 *1 (-873))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-873)))) (-5 *1 (-873)))) (-1604 (*1 *1 *1 *1) (-5 *1 (-873))) (-2516 (*1 *1 *1) (-5 *1 (-873))) (-2516 (*1 *1 *1 *1) (-5 *1 (-873))) (-3086 (*1 *1 *1 *1) (-5 *1 (-873))) (-3300 (*1 *1 *1 *1) (-5 *1 (-873))) (-1538 (*1 *1 *1 *1) (-5 *1 (-873))) (-1731 (*1 *1 *1 *1) (-5 *1 (-873))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873)))) (-3820 (*1 *1 *1 *1) (-5 *1 (-873))) (-4242 (*1 *1 *1 *1) (-5 *1 (-873))) (-2245 (*1 *1 *1 *1) (-5 *1 (-873))) (-2750 (*1 *1 *1 *1) (-5 *1 (-873))) (-3082 (*1 *1 *1 *1) (-5 *1 (-873))) (-1851 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-1358 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-4157 (*1 *1 *1) (-5 *1 (-873))) (-1886 (*1 *1 *1) (-5 *1 (-873))) (-1886 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873)))) (-2539 (*1 *1 *1) (-5 *1 (-873))) (-2539 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873)))) (-1888 (*1 *1 *1) (-5 *1 (-873))) (-2965 (*1 *1 *1 *1) (-5 *1 (-873))) (-4376 (*1 *1 *1) (-5 *1 (-873))) (-4376 (*1 *1 *1 *1) (-5 *1 (-873))) (-4376 (*1 *1 *1 *1 *1) (-5 *1 (-873))) (-1489 (*1 *1 *1) (-5 *1 (-873))) (-1489 (*1 *1 *1 *1) (-5 *1 (-873))) (-1489 (*1 *1 *1 *1 *1) (-5 *1 (-873))) (-2521 (*1 *1 *1) (-5 *1 (-873))) (-2521 (*1 *1 *1 *1) (-5 *1 (-873))) (-2521 (*1 *1 *1 *1 *1) (-5 *1 (-873))) (-2556 (*1 *1 *1) (-5 *1 (-873))) (-2556 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-2862 (*1 *1 *1) (-5 *1 (-873))) (-2862 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-2092 (*1 *1 *1) (-5 *1 (-873))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-2250 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-2016 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-3421 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-3914 (*1 *1 *1 *1) (-5 *1 (-873))) (-2861 (*1 *1 *1 *1) (-5 *1 (-873))) (-3943 (*1 *1 *1 *1) (-5 *1 (-873))) (-3956 (*1 *1 *1 *1) (-5 *1 (-873))) (-3970 (*1 *1 *1 *1) (-5 *1 (-873))) (-3981 (*1 *1 *1 *1) (-5 *1 (-873))) (-4016 (*1 *1 *1 *1) (-5 *1 (-873))) (-4028 (*1 *1 *1 *1) (-5 *1 (-873))) (-4028 (*1 *1 *1) (-5 *1 (-873))) (* (*1 *1 *1 *1) (-5 *1 (-873))) (-4038 (*1 *1 *1 *1) (-5 *1 (-873))) (** (*1 *1 *1 *1) (-5 *1 (-873))) (-2838 (*1 *1 *1 *1) (-5 *1 (-873))) (-2802 (*1 *1 *1 *1) (-5 *1 (-873))) (-2813 (*1 *1 *1 *1) (-5 *1 (-873))) (-2851 (*1 *1 *1 *1) (-5 *1 (-873))) (-3226 (*1 *1 *1 *1) (-5 *1 (-873))) (-3238 (*1 *1 *1 *1) (-5 *1 (-873))) (-3215 (*1 *1 *1) (-5 *1 (-873))) (-1859 (*1 *1 *1 *1) (-5 *1 (-873))) (-1859 (*1 *1 *1) (-5 *1 (-873)))) +(-13 (-1117) (-10 -8 (-15 -3520 ((-1290) $)) (-15 -3977 ($ (-1176))) (-15 -4148 ((-1290) (-1176))) (-15 -3282 ($ (-575))) (-15 -3282 ($ (-1194))) (-15 -3282 ($ (-1176))) (-15 -3282 ($ (-227))) (-15 -1938 ($)) (-15 -2483 ((-1176) (-1176))) (-15 -2240 ((-575) $)) (-15 -3343 ((-575) $)) (-15 -2240 ((-575))) (-15 -3343 ((-575))) (-15 -2820 ((-575) $)) (-15 -1937 ((-575) $)) (-15 -2060 ($ (-575))) (-15 -3694 ($ (-575))) (-15 -2515 ($ (-575) (-575))) (-15 -2418 ($ $ (-575))) (-15 -2435 ($ $ (-575))) (-15 -1751 ($ $ (-575))) (-15 -2418 ($ $)) (-15 -2435 ($ $)) (-15 -1751 ($ $)) (-15 -2303 ($ $ $)) (-15 -2825 ($ $ $)) (-15 -2303 ($ (-655 $))) (-15 -2825 ($ (-655 $))) (-15 -2499 ($ $ (-655 $))) (-15 -3423 ($ $ (-655 $))) (-15 -3423 ($ $ $ $)) (-15 -1621 ($ $ $)) (-15 -3528 ((-112) $)) (-15 -2070 ($ $ (-655 $))) (-15 -1650 ($ $)) (-15 -1766 ($ $ $)) (-15 -2377 ($ $)) (-15 -4316 ($ (-655 (-655 $)))) (-15 -1604 ($ $ $)) (-15 -2516 ($ $)) (-15 -2516 ($ $ $)) (-15 -3086 ($ $ $)) (-15 -3300 ($ $ $)) (-15 -1538 ($ $ $)) (-15 -1731 ($ $ $)) (-15 -2389 ($ $ (-782))) (-15 -3820 ($ $ $)) (-15 -4242 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2750 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -1851 ($ $ (-655 $))) (-15 -1358 ($ $ (-655 $))) (-15 -4157 ($ $)) (-15 -1886 ($ $)) (-15 -1886 ($ $ (-782))) (-15 -2539 ($ $)) (-15 -2539 ($ $ (-782))) (-15 -1888 ($ $)) (-15 -2965 ($ $ $)) (-15 -4376 ($ $)) (-15 -4376 ($ $ $)) (-15 -4376 ($ $ $ $)) (-15 -1489 ($ $)) (-15 -1489 ($ $ $)) (-15 -1489 ($ $ $ $)) (-15 -2521 ($ $)) (-15 -2521 ($ $ $)) (-15 -2521 ($ $ $ $)) (-15 -2556 ($ $)) (-15 -2556 ($ (-655 $))) (-15 -2862 ($ $)) (-15 -2862 ($ (-655 $))) (-15 -2092 ($ $)) (-15 -2092 ($ (-655 $))) (-15 -2250 ($ (-655 $))) (-15 -3699 ($ (-655 $))) (-15 -2016 ($ (-655 $))) (-15 -3421 ($ (-655 $))) (-15 -3914 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3956 ($ $ $)) (-15 -3970 ($ $ $)) (-15 -3981 ($ $ $)) (-15 -4016 ($ $ $)) (-15 -4028 ($ $ $)) (-15 -4028 ($ $)) (-15 * ($ $ $)) (-15 -4038 ($ $ $)) (-15 ** ($ $ $)) (-15 -2838 ($ $ $)) (-15 -2802 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -3226 ($ $ $)) (-15 -3238 ($ $ $)) (-15 -3215 ($ $)) (-15 -1859 ($ $ $)) (-15 -1859 ($ $)))) +((-1416 (((-1290) (-655 (-52))) 23)) (-3722 (((-1290) (-1176) (-873)) 13) (((-1290) (-873)) 8) (((-1290) (-1176)) 10))) +(((-874) (-10 -7 (-15 -3722 ((-1290) (-1176))) (-15 -3722 ((-1290) (-873))) (-15 -3722 ((-1290) (-1176) (-873))) (-15 -1416 ((-1290) (-655 (-52)))))) (T -874)) +((-1416 (*1 *2 *3) (-12 (-5 *3 (-655 (-52))) (-5 *2 (-1290)) (-5 *1 (-874)))) (-3722 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-873)) (-5 *2 (-1290)) (-5 *1 (-874)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-874)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-874))))) +(-10 -7 (-15 -3722 ((-1290) (-1176))) (-15 -3722 ((-1290) (-873))) (-15 -3722 ((-1290) (-1176) (-873))) (-15 -1416 ((-1290) (-655 (-52))))) +((-2861 (((-112) $ $) NIL)) (-1441 (((-3 $ "failed") (-1194)) 36)) (-2415 (((-782)) 32)) (-2079 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-1425 (($ $ $) NIL) (($) NIL T CONST)) (-4084 (((-936) $) 29)) (-2288 (((-1176) $) 43)) (-4317 (($ (-936)) 28)) (-3912 (((-1137) $) NIL)) (-2615 (((-1194) $) 13) (((-547) $) 19) (((-904 (-389)) $) 26) (((-904 (-575)) $) 22)) (-2883 (((-873) $) 16)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 40)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 38))) +(((-875 |#1|) (-13 (-855) (-625 (-1194)) (-625 (-547)) (-625 (-904 (-389))) (-625 (-904 (-575))) (-10 -8 (-15 -1441 ((-3 $ "failed") (-1194))))) (-655 (-1194))) (T -875)) +((-1441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-875 *3)) (-14 *3 (-655 *2))))) +(-13 (-855) (-625 (-1194)) (-625 (-547)) (-625 (-904 (-389))) (-625 (-904 (-575))) (-10 -8 (-15 -1441 ((-3 $ "failed") (-1194))))) +((-2861 (((-112) $ $) NIL)) (-1777 (((-517) $) 9)) (-3955 (((-655 (-450)) $) 13)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 21)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 16))) +(((-876) (-13 (-1117) (-10 -8 (-15 -1777 ((-517) $)) (-15 -3955 ((-655 (-450)) $))))) (T -876)) +((-1777 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-876)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-655 (-450))) (-5 *1 (-876))))) +(-13 (-1117) (-10 -8 (-15 -1777 ((-517) $)) (-15 -3955 ((-655 (-450)) $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ (-967 |#1|)) NIL) (((-967 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-3759 (((-782)) NIL T CONST)) (-3615 (((-1290) (-782)) NIL)) (-4400 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-877 |#1| |#2| |#3| |#4|) (-13 (-1066) (-501 (-967 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -4038 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3615 ((-1290) (-782))))) (-1066) (-655 (-1194)) (-655 (-782)) (-782)) (T -877)) +((-4038 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-877 *2 *3 *4 *5)) (-4 *2 (-373)) (-4 *2 (-1066)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-782))) (-14 *5 (-782)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-877 *4 *5 *6 *7)) (-4 *4 (-1066)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 *3)) (-14 *7 *3)))) +(-13 (-1066) (-501 (-967 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -4038 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3615 ((-1290) (-782))))) +((-2529 (((-3 (-176 |#3|) "failed") (-782) (-782) |#2| |#2|) 38)) (-2122 (((-3 (-418 |#3|) "failed") (-782) (-782) |#2| |#2|) 29))) +(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -2122 ((-3 (-418 |#3|) "failed") (-782) (-782) |#2| |#2|)) (-15 -2529 ((-3 (-176 |#3|) "failed") (-782) (-782) |#2| |#2|))) (-373) (-1276 |#1|) (-1261 |#1|)) (T -878)) +((-2529 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-782)) (-4 *5 (-373)) (-5 *2 (-176 *6)) (-5 *1 (-878 *5 *4 *6)) (-4 *4 (-1276 *5)) (-4 *6 (-1261 *5)))) (-2122 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-782)) (-4 *5 (-373)) (-5 *2 (-418 *6)) (-5 *1 (-878 *5 *4 *6)) (-4 *4 (-1276 *5)) (-4 *6 (-1261 *5))))) +(-10 -7 (-15 -2122 ((-3 (-418 |#3|) "failed") (-782) (-782) |#2| |#2|)) (-15 -2529 ((-3 (-176 |#3|) "failed") (-782) (-782) |#2| |#2|))) +((-2122 (((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|)) 30) (((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) 28))) +(((-879 |#1| |#2| |#3|) (-10 -7 (-15 -2122 ((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) (-15 -2122 ((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|)))) (-373) (-1194) |#1|) (T -879)) +((-2122 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-782)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-373)) (-14 *6 (-1194)) (-14 *7 *5) (-5 *2 (-418 (-1258 *6 *5))) (-5 *1 (-879 *5 *6 *7)))) (-2122 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-782)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-373)) (-14 *6 (-1194)) (-14 *7 *5) (-5 *2 (-418 (-1258 *6 *5))) (-5 *1 (-879 *5 *6 *7))))) +(-10 -7 (-15 -2122 ((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) (-15 -2122 ((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-2473 (($ $ (-575)) 68)) (-2279 (((-112) $ $) 65)) (-3011 (($) 18 T CONST)) (-2516 (($ (-1190 (-575)) (-575)) 67)) (-2802 (($ $ $) 61)) (-1747 (((-3 $ "failed") $) 37)) (-2189 (($ $) 70)) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-2673 (((-782) $) 75)) (-1542 (((-112) $) 35)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3486 (((-575)) 72)) (-3788 (((-575) $) 71)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-4276 (($ $ (-575)) 74)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3708 (((-782) $) 64)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-1874 (((-1174 (-575)) $) 76)) (-2972 (($ $) 73)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-3494 (((-575) $ (-575)) 69)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-880 |#1|) (-141) (-575)) (T -880)) +((-1874 (*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-1174 (-575))))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-782)))) (-4276 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) (-2972 (*1 *1 *1) (-4 *1 (-880 *2))) (-3486 (*1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) (-2189 (*1 *1 *1) (-4 *1 (-880 *2))) (-3494 (*1 *2 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) (-2473 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) (-2516 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *3 (-575)) (-4 *1 (-880 *4))))) +(-13 (-316) (-148) (-10 -8 (-15 -1874 ((-1174 (-575)) $)) (-15 -2673 ((-782) $)) (-15 -4276 ($ $ (-575))) (-15 -2972 ($ $)) (-15 -3486 ((-575))) (-15 -3788 ((-575) $)) (-15 -2189 ($ $)) (-15 -3494 ((-575) $ (-575))) (-15 -2473 ($ $ (-575))) (-15 -2516 ($ (-1190 (-575)) (-575))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-316) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2473 (($ $ (-575)) NIL)) (-2279 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-2516 (($ (-1190 (-575)) (-575)) NIL)) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2189 (($ $) NIL)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-2673 (((-782) $) NIL)) (-1542 (((-112) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3486 (((-575)) NIL)) (-3788 (((-575) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4276 (($ $ (-575)) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-1874 (((-1174 (-575)) $) NIL)) (-2972 (($ $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-3494 (((-575) $ (-575)) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL))) +(((-881 |#1|) (-880 |#1|) (-575)) (T -881)) +NIL +(-880 |#1|) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3127 (((-881 |#1|) $) NIL (|has| (-881 |#1|) (-316)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-924)))) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-924)))) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL (|has| (-881 |#1|) (-831)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-881 |#1|) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-881 |#1|) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-881 |#1|) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-881 |#1|) (-1055 (-575))))) (-4399 (((-881 |#1|) $) NIL) (((-1194) $) NIL (|has| (-881 |#1|) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-881 |#1|) (-1055 (-575)))) (((-575) $) NIL (|has| (-881 |#1|) (-1055 (-575))))) (-2140 (($ $) NIL) (($ (-575) $) NIL)) (-2802 (($ $ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| (-881 |#1|) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-881 |#1|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-881 |#1|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-881 |#1|))) (|:| |vec| (-1285 (-881 |#1|)))) (-700 $) (-1285 $)) NIL) (((-700 (-881 |#1|)) (-700 $)) NIL) (((-700 (-881 |#1|)) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| (-881 |#1|) (-556)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-4075 (((-112) $) NIL (|has| (-881 |#1|) (-831)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-881 |#1|) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-881 |#1|) (-898 (-389))))) (-1542 (((-112) $) NIL)) (-4046 (($ $) NIL)) (-1595 (((-881 |#1|) $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| (-881 |#1|) (-1169)))) (-4087 (((-112) $) NIL (|has| (-881 |#1|) (-831)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-881 |#1|) (-861)))) (-1425 (($ $ $) NIL (|has| (-881 |#1|) (-861)))) (-2550 (($ (-1 (-881 |#1|) (-881 |#1|)) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| (-881 |#1|) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) NIL (|has| (-881 |#1|) (-316)))) (-2736 (((-881 |#1|) $) NIL (|has| (-881 |#1|) (-556)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-924)))) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3048 (($ $ (-655 (-881 |#1|)) (-655 (-881 |#1|))) NIL (|has| (-881 |#1|) (-318 (-881 |#1|)))) (($ $ (-881 |#1|) (-881 |#1|)) NIL (|has| (-881 |#1|) (-318 (-881 |#1|)))) (($ $ (-303 (-881 |#1|))) NIL (|has| (-881 |#1|) (-318 (-881 |#1|)))) (($ $ (-655 (-303 (-881 |#1|)))) NIL (|has| (-881 |#1|) (-318 (-881 |#1|)))) (($ $ (-655 (-1194)) (-655 (-881 |#1|))) NIL (|has| (-881 |#1|) (-525 (-1194) (-881 |#1|)))) (($ $ (-1194) (-881 |#1|)) NIL (|has| (-881 |#1|) (-525 (-1194) (-881 |#1|))))) (-3708 (((-782) $) NIL)) (-2070 (($ $ (-881 |#1|)) NIL (|has| (-881 |#1|) (-295 (-881 |#1|) (-881 |#1|))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2389 (($ $ (-1 (-881 |#1|) (-881 |#1|))) NIL) (($ $ (-1 (-881 |#1|) (-881 |#1|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $) NIL (|has| (-881 |#1|) (-237))) (($ $ (-782)) NIL (|has| (-881 |#1|) (-237)))) (-4172 (($ $) NIL)) (-1608 (((-881 |#1|) $) NIL)) (-2615 (((-904 (-575)) $) NIL (|has| (-881 |#1|) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-881 |#1|) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-881 |#1|) (-625 (-547)))) (((-389) $) NIL (|has| (-881 |#1|) (-1039))) (((-227) $) NIL (|has| (-881 |#1|) (-1039)))) (-4349 (((-176 (-418 (-575))) $) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-881 |#1|) (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-881 |#1|)) NIL) (($ (-1194)) NIL (|has| (-881 |#1|) (-1055 (-1194))))) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-881 |#1|) (-924))) (|has| (-881 |#1|) (-146))))) (-3759 (((-782)) NIL T CONST)) (-1432 (((-881 |#1|) $) NIL (|has| (-881 |#1|) (-556)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-3494 (((-418 (-575)) $ (-575)) NIL)) (-2705 (($ $) NIL (|has| (-881 |#1|) (-831)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1 (-881 |#1|) (-881 |#1|))) NIL) (($ $ (-1 (-881 |#1|) (-881 |#1|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $) NIL (|has| (-881 |#1|) (-237))) (($ $ (-782)) NIL (|has| (-881 |#1|) (-237)))) (-3981 (((-112) $ $) NIL (|has| (-881 |#1|) (-861)))) (-3956 (((-112) $ $) NIL (|has| (-881 |#1|) (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-881 |#1|) (-861)))) (-3943 (((-112) $ $) NIL (|has| (-881 |#1|) (-861)))) (-4038 (($ $ $) NIL) (($ (-881 |#1|) (-881 |#1|)) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-881 |#1|) $) NIL) (($ $ (-881 |#1|)) NIL))) +(((-882 |#1|) (-13 (-1009 (-881 |#1|)) (-10 -8 (-15 -3494 ((-418 (-575)) $ (-575))) (-15 -4349 ((-176 (-418 (-575))) $)) (-15 -2140 ($ $)) (-15 -2140 ($ (-575) $)))) (-575)) (T -882)) +((-3494 (*1 *2 *1 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-882 *4)) (-14 *4 *3) (-5 *3 (-575)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-176 (-418 (-575)))) (-5 *1 (-882 *3)) (-14 *3 (-575)))) (-2140 (*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-14 *2 (-575)))) (-2140 (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-882 *3)) (-14 *3 *2)))) +(-13 (-1009 (-881 |#1|)) (-10 -8 (-15 -3494 ((-418 (-575)) $ (-575))) (-15 -4349 ((-176 (-418 (-575))) $)) (-15 -2140 ($ $)) (-15 -2140 ($ (-575) $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3127 ((|#2| $) NIL (|has| |#2| (-316)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL (|has| |#2| (-831)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| |#2| (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575))))) (-4399 ((|#2| $) NIL) (((-1194) $) NIL (|has| |#2| (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-575)))) (((-575) $) NIL (|has| |#2| (-1055 (-575))))) (-2140 (($ $) 35) (($ (-575) $) 38)) (-2802 (($ $ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) 64)) (-2079 (($) NIL (|has| |#2| (-556)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-4075 (((-112) $) NIL (|has| |#2| (-831)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| |#2| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| |#2| (-898 (-389))))) (-1542 (((-112) $) NIL)) (-4046 (($ $) NIL)) (-1595 ((|#2| $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| |#2| (-1169)))) (-4087 (((-112) $) NIL (|has| |#2| (-831)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) NIL (|has| |#2| (-861)))) (-1425 (($ $ $) NIL (|has| |#2| (-861)))) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 60)) (-3474 (($) NIL (|has| |#2| (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) NIL (|has| |#2| (-316)))) (-2736 ((|#2| $) NIL (|has| |#2| (-556)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3048 (($ $ (-655 |#2|) (-655 |#2|)) NIL (|has| |#2| (-318 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-318 |#2|))) (($ $ (-303 |#2|)) NIL (|has| |#2| (-318 |#2|))) (($ $ (-655 (-303 |#2|))) NIL (|has| |#2| (-318 |#2|))) (($ $ (-655 (-1194)) (-655 |#2|)) NIL (|has| |#2| (-525 (-1194) |#2|))) (($ $ (-1194) |#2|) NIL (|has| |#2| (-525 (-1194) |#2|)))) (-3708 (((-782) $) NIL)) (-2070 (($ $ |#2|) NIL (|has| |#2| (-295 |#2| |#2|)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2389 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237)))) (-4172 (($ $) NIL)) (-1608 ((|#2| $) NIL)) (-2615 (((-904 (-575)) $) NIL (|has| |#2| (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| |#2| (-625 (-904 (-389))))) (((-547) $) NIL (|has| |#2| (-625 (-547)))) (((-389) $) NIL (|has| |#2| (-1039))) (((-227) $) NIL (|has| |#2| (-1039)))) (-4349 (((-176 (-418 (-575))) $) 78)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-2883 (((-873) $) 106) (($ (-575)) 20) (($ $) NIL) (($ (-418 (-575))) 25) (($ |#2|) 19) (($ (-1194)) NIL (|has| |#2| (-1055 (-1194))))) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1432 ((|#2| $) NIL (|has| |#2| (-556)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-3494 (((-418 (-575)) $ (-575)) 71)) (-2705 (($ $) NIL (|has| |#2| (-831)))) (-1996 (($) 15 T CONST)) (-2009 (($) 17 T CONST)) (-3430 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237)))) (-3981 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3914 (((-112) $ $) 46)) (-3970 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#2| (-861)))) (-4038 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4028 (($ $) 50) (($ $ $) 52)) (-4016 (($ $ $) 48)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 61)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 53) (($ $ $) 55) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-883 |#1| |#2|) (-13 (-1009 |#2|) (-10 -8 (-15 -3494 ((-418 (-575)) $ (-575))) (-15 -4349 ((-176 (-418 (-575))) $)) (-15 -2140 ($ $)) (-15 -2140 ($ (-575) $)))) (-575) (-880 |#1|)) (T -883)) +((-3494 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-418 (-575))) (-5 *1 (-883 *4 *5)) (-5 *3 (-575)) (-4 *5 (-880 *4)))) (-4349 (*1 *2 *1) (-12 (-14 *3 (-575)) (-5 *2 (-176 (-418 (-575)))) (-5 *1 (-883 *3 *4)) (-4 *4 (-880 *3)))) (-2140 (*1 *1 *1) (-12 (-14 *2 (-575)) (-5 *1 (-883 *2 *3)) (-4 *3 (-880 *2)))) (-2140 (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-14 *3 *2) (-5 *1 (-883 *3 *4)) (-4 *4 (-880 *3))))) +(-13 (-1009 |#2|) (-10 -8 (-15 -3494 ((-418 (-575)) $ (-575))) (-15 -4349 ((-176 (-418 (-575))) $)) (-15 -2140 ($ $)) (-15 -2140 ($ (-575) $)))) +((-2861 (((-112) $ $) NIL (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))))) (-2977 ((|#2| $) 12)) (-4351 (($ |#1| |#2|) 9)) (-2288 (((-1176) $) NIL (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))))) (-3912 (((-1137) $) NIL (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))))) (-1961 ((|#1| $) 11)) (-2894 (($ |#1| |#2|) 10)) (-2883 (((-873) $) 18 (-3765 (-12 (|has| |#1| (-624 (-873))) (|has| |#2| (-624 (-873)))) (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117)))))) (-4400 (((-112) $ $) NIL (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))))) (-3914 (((-112) $ $) 23 (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117)))))) +(((-884 |#1| |#2|) (-13 (-1235) (-10 -8 (IF (|has| |#1| (-624 (-873))) (IF (|has| |#2| (-624 (-873))) (-6 (-624 (-873))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1117)) (IF (|has| |#2| (-1117)) (-6 (-1117)) |%noBranch|) |%noBranch|) (-15 -4351 ($ |#1| |#2|)) (-15 -2894 ($ |#1| |#2|)) (-15 -1961 (|#1| $)) (-15 -2977 (|#2| $)))) (-1235) (-1235)) (T -884)) +((-4351 (*1 *1 *2 *3) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1235)) (-4 *3 (-1235)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1235)) (-4 *3 (-1235)))) (-1961 (*1 *2 *1) (-12 (-4 *2 (-1235)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1235)))) (-2977 (*1 *2 *1) (-12 (-4 *2 (-1235)) (-5 *1 (-884 *3 *2)) (-4 *3 (-1235))))) +(-13 (-1235) (-10 -8 (IF (|has| |#1| (-624 (-873))) (IF (|has| |#2| (-624 (-873))) (-6 (-624 (-873))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1117)) (IF (|has| |#2| (-1117)) (-6 (-1117)) |%noBranch|) |%noBranch|) (-15 -4351 ($ |#1| |#2|)) (-15 -2894 ($ |#1| |#2|)) (-15 -1961 (|#1| $)) (-15 -2977 (|#2| $)))) +((-2861 (((-112) $ $) NIL)) (-3418 (((-575) $) 16)) (-1326 (($ (-158)) 13)) (-4020 (($ (-158)) 14)) (-2288 (((-1176) $) NIL)) (-3636 (((-158) $) 15)) (-3912 (((-1137) $) NIL)) (-2833 (($ (-158)) 11)) (-4100 (($ (-158)) 10)) (-2883 (((-873) $) 24) (($ (-158)) 17)) (-3021 (($ (-158)) 12)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-885) (-13 (-1117) (-10 -8 (-15 -4100 ($ (-158))) (-15 -2833 ($ (-158))) (-15 -3021 ($ (-158))) (-15 -1326 ($ (-158))) (-15 -4020 ($ (-158))) (-15 -3636 ((-158) $)) (-15 -3418 ((-575) $)) (-15 -2883 ($ (-158)))))) (T -885)) +((-4100 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-2833 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-3021 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-1326 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-4020 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-885)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885))))) +(-13 (-1117) (-10 -8 (-15 -4100 ($ (-158))) (-15 -2833 ($ (-158))) (-15 -3021 ($ (-158))) (-15 -1326 ($ (-158))) (-15 -4020 ($ (-158))) (-15 -3636 ((-158) $)) (-15 -3418 ((-575) $)) (-15 -2883 ($ (-158))))) +((-2883 (((-325 (-575)) (-418 (-967 (-48)))) 23) (((-325 (-575)) (-967 (-48))) 18))) +(((-886) (-10 -7 (-15 -2883 ((-325 (-575)) (-967 (-48)))) (-15 -2883 ((-325 (-575)) (-418 (-967 (-48))))))) (T -886)) +((-2883 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 (-48)))) (-5 *2 (-325 (-575))) (-5 *1 (-886)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-967 (-48))) (-5 *2 (-325 (-575))) (-5 *1 (-886))))) +(-10 -7 (-15 -2883 ((-325 (-575)) (-967 (-48)))) (-15 -2883 ((-325 (-575)) (-418 (-967 (-48)))))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 18) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1984 (((-112) $ (|[\|\|]| (-517))) 9) (((-112) $ (|[\|\|]| (-1176))) 13)) (-4400 (((-112) $ $) NIL)) (-3134 (((-517) $) 10) (((-1176) $) 14)) (-3914 (((-112) $ $) 15))) +(((-887) (-13 (-1100) (-1280) (-10 -8 (-15 -1984 ((-112) $ (|[\|\|]| (-517)))) (-15 -3134 ((-517) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1176)))) (-15 -3134 ((-1176) $))))) (T -887)) +((-1984 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)) (-5 *1 (-887)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-887)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)) (-5 *1 (-887)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-887))))) +(-13 (-1100) (-1280) (-10 -8 (-15 -1984 ((-112) $ (|[\|\|]| (-517)))) (-15 -3134 ((-517) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1176)))) (-15 -3134 ((-1176) $)))) +((-2550 (((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)) 15))) +(((-888 |#1| |#2|) (-10 -7 (-15 -2550 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) (-1235) (-1235)) (T -888)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6))))) +(-10 -7 (-15 -2550 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) +((-4240 (($ |#1| |#1|) 8)) (-3790 ((|#1| $ (-782)) 15))) +(((-889 |#1|) (-10 -8 (-15 -4240 ($ |#1| |#1|)) (-15 -3790 (|#1| $ (-782)))) (-1235)) (T -889)) +((-3790 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-889 *2)) (-4 *2 (-1235)))) (-4240 (*1 *1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1235))))) +(-10 -8 (-15 -4240 ($ |#1| |#1|)) (-15 -3790 (|#1| $ (-782)))) +((-2550 (((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)) 15))) +(((-890 |#1| |#2|) (-10 -7 (-15 -2550 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) (-1235) (-1235)) (T -890)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6))))) +(-10 -7 (-15 -2550 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) +((-4240 (($ |#1| |#1| |#1|) 8)) (-3790 ((|#1| $ (-782)) 15))) +(((-891 |#1|) (-10 -8 (-15 -4240 ($ |#1| |#1| |#1|)) (-15 -3790 (|#1| $ (-782)))) (-1235)) (T -891)) +((-3790 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-891 *2)) (-4 *2 (-1235)))) (-4240 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1235))))) +(-10 -8 (-15 -4240 ($ |#1| |#1| |#1|)) (-15 -3790 (|#1| $ (-782)))) +((-2341 (((-655 (-1199)) (-1176)) 9))) +(((-892) (-10 -7 (-15 -2341 ((-655 (-1199)) (-1176))))) (T -892)) +((-2341 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-1199))) (-5 *1 (-892))))) +(-10 -7 (-15 -2341 ((-655 (-1199)) (-1176)))) +((-2550 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 15))) +(((-893 |#1| |#2|) (-10 -7 (-15 -2550 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1235) (-1235)) (T -893)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6))))) +(-10 -7 (-15 -2550 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) +((-2129 (($ |#1| |#1| |#1|) 8)) (-3790 ((|#1| $ (-782)) 15))) +(((-894 |#1|) (-10 -8 (-15 -2129 ($ |#1| |#1| |#1|)) (-15 -3790 (|#1| $ (-782)))) (-1235)) (T -894)) +((-3790 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-894 *2)) (-4 *2 (-1235)))) (-2129 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1235))))) +(-10 -8 (-15 -2129 ($ |#1| |#1| |#1|)) (-15 -3790 (|#1| $ (-782)))) +((-4074 (((-1174 (-655 (-575))) (-655 (-575)) (-1174 (-655 (-575)))) 41)) (-1697 (((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575))) 31)) (-3734 (((-1174 (-655 (-575))) (-655 (-575))) 53) (((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575))) 50)) (-3410 (((-1174 (-655 (-575))) (-575)) 55)) (-3351 (((-1174 (-655 (-936))) (-1174 (-655 (-936)))) 22)) (-4258 (((-655 (-936)) (-655 (-936))) 18))) +(((-895) (-10 -7 (-15 -4258 ((-655 (-936)) (-655 (-936)))) (-15 -3351 ((-1174 (-655 (-936))) (-1174 (-655 (-936))))) (-15 -1697 ((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575)))) (-15 -4074 ((-1174 (-655 (-575))) (-655 (-575)) (-1174 (-655 (-575))))) (-15 -3734 ((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575)))) (-15 -3734 ((-1174 (-655 (-575))) (-655 (-575)))) (-15 -3410 ((-1174 (-655 (-575))) (-575))))) (T -895)) +((-3410 (*1 *2 *3) (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) (-5 *3 (-575)))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) (-5 *3 (-655 (-575))))) (-3734 (*1 *2 *3 *3) (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) (-5 *3 (-655 (-575))))) (-4074 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *3 (-655 (-575))) (-5 *1 (-895)))) (-1697 (*1 *2 *3 *3) (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) (-5 *3 (-655 (-575))))) (-3351 (*1 *2 *2) (-12 (-5 *2 (-1174 (-655 (-936)))) (-5 *1 (-895)))) (-4258 (*1 *2 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-895))))) +(-10 -7 (-15 -4258 ((-655 (-936)) (-655 (-936)))) (-15 -3351 ((-1174 (-655 (-936))) (-1174 (-655 (-936))))) (-15 -1697 ((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575)))) (-15 -4074 ((-1174 (-655 (-575))) (-655 (-575)) (-1174 (-655 (-575))))) (-15 -3734 ((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575)))) (-15 -3734 ((-1174 (-655 (-575))) (-655 (-575)))) (-15 -3410 ((-1174 (-655 (-575))) (-575)))) +((-2615 (((-904 (-389)) $) 9 (|has| |#1| (-625 (-904 (-389))))) (((-904 (-575)) $) 8 (|has| |#1| (-625 (-904 (-575))))))) +(((-896 |#1|) (-141) (-1235)) (T -896)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-625 (-904 (-575)))) (-6 (-625 (-904 (-575)))) |%noBranch|) (IF (|has| |t#1| (-625 (-904 (-389)))) (-6 (-625 (-904 (-389)))) |%noBranch|))) +(((-625 (-904 (-389))) |has| |#1| (-625 (-904 (-389)))) ((-625 (-904 (-575))) |has| |#1| (-625 (-904 (-575))))) +((-2861 (((-112) $ $) NIL)) (-2309 (($) 14)) (-1989 (($ (-901 |#1| |#2|) (-901 |#1| |#3|)) 28)) (-1365 (((-901 |#1| |#3|) $) 16)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4421 (((-112) $) 22)) (-3420 (($) 19)) (-2883 (((-873) $) 31)) (-4400 (((-112) $ $) NIL)) (-2882 (((-901 |#1| |#2|) $) 15)) (-3914 (((-112) $ $) 26))) +(((-897 |#1| |#2| |#3|) (-13 (-1117) (-10 -8 (-15 -4421 ((-112) $)) (-15 -3420 ($)) (-15 -2309 ($)) (-15 -1989 ($ (-901 |#1| |#2|) (-901 |#1| |#3|))) (-15 -2882 ((-901 |#1| |#2|) $)) (-15 -1365 ((-901 |#1| |#3|) $)))) (-1117) (-1117) (-677 |#2|)) (T -897)) +((-4421 (*1 *2 *1) (-12 (-4 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-897 *3 *4 *5)) (-4 *3 (-1117)) (-4 *5 (-677 *4)))) (-3420 (*1 *1) (-12 (-4 *3 (-1117)) (-5 *1 (-897 *2 *3 *4)) (-4 *2 (-1117)) (-4 *4 (-677 *3)))) (-2309 (*1 *1) (-12 (-4 *3 (-1117)) (-5 *1 (-897 *2 *3 *4)) (-4 *2 (-1117)) (-4 *4 (-677 *3)))) (-1989 (*1 *1 *2 *3) (-12 (-5 *2 (-901 *4 *5)) (-5 *3 (-901 *4 *6)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-677 *5)) (-5 *1 (-897 *4 *5 *6)))) (-2882 (*1 *2 *1) (-12 (-4 *4 (-1117)) (-5 *2 (-901 *3 *4)) (-5 *1 (-897 *3 *4 *5)) (-4 *3 (-1117)) (-4 *5 (-677 *4)))) (-1365 (*1 *2 *1) (-12 (-4 *4 (-1117)) (-5 *2 (-901 *3 *5)) (-5 *1 (-897 *3 *4 *5)) (-4 *3 (-1117)) (-4 *5 (-677 *4))))) +(-13 (-1117) (-10 -8 (-15 -4421 ((-112) $)) (-15 -3420 ($)) (-15 -2309 ($)) (-15 -1989 ($ (-901 |#1| |#2|) (-901 |#1| |#3|))) (-15 -2882 ((-901 |#1| |#2|) $)) (-15 -1365 ((-901 |#1| |#3|) $)))) +((-2861 (((-112) $ $) 7)) (-1704 (((-901 |#1| $) $ (-904 |#1|) (-901 |#1| $)) 14)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-898 |#1|) (-141) (-1117)) (T -898)) +((-1704 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-901 *4 *1)) (-5 *3 (-904 *4)) (-4 *1 (-898 *4)) (-4 *4 (-1117))))) +(-13 (-1117) (-10 -8 (-15 -1704 ((-901 |t#1| $) $ (-904 |t#1|) (-901 |t#1| $))))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-3789 (((-112) (-655 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2465 (((-901 |#1| |#2|) |#2| |#3|) 45 (-12 (-3215 (|has| |#2| (-1055 (-1194)))) (-3215 (|has| |#2| (-1066))))) (((-655 (-303 (-967 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1066)) (-3215 (|has| |#2| (-1055 (-1194)))))) (((-655 (-303 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1055 (-1194)))) (((-897 |#1| |#2| (-655 |#2|)) (-655 |#2|) |#3|) 21))) +(((-899 |#1| |#2| |#3|) (-10 -7 (-15 -3789 ((-112) |#2| |#3|)) (-15 -3789 ((-112) (-655 |#2|) |#3|)) (-15 -2465 ((-897 |#1| |#2| (-655 |#2|)) (-655 |#2|) |#3|)) (IF (|has| |#2| (-1055 (-1194))) (-15 -2465 ((-655 (-303 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1066)) (-15 -2465 ((-655 (-303 (-967 |#2|))) |#2| |#3|)) (-15 -2465 ((-901 |#1| |#2|) |#2| |#3|))))) (-1117) (-898 |#1|) (-625 (-904 |#1|))) (T -899)) +((-2465 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-5 *2 (-901 *5 *3)) (-5 *1 (-899 *5 *3 *4)) (-3215 (-4 *3 (-1055 (-1194)))) (-3215 (-4 *3 (-1066))) (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5))))) (-2465 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-5 *2 (-655 (-303 (-967 *3)))) (-5 *1 (-899 *5 *3 *4)) (-4 *3 (-1066)) (-3215 (-4 *3 (-1055 (-1194)))) (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5))))) (-2465 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-5 *2 (-655 (-303 *3))) (-5 *1 (-899 *5 *3 *4)) (-4 *3 (-1055 (-1194))) (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5))))) (-2465 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-4 *6 (-898 *5)) (-5 *2 (-897 *5 *6 (-655 *6))) (-5 *1 (-899 *5 *6 *4)) (-5 *3 (-655 *6)) (-4 *4 (-625 (-904 *5))))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6)) (-4 *6 (-898 *5)) (-4 *5 (-1117)) (-5 *2 (-112)) (-5 *1 (-899 *5 *6 *4)) (-4 *4 (-625 (-904 *5))))) (-3789 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-5 *2 (-112)) (-5 *1 (-899 *5 *3 *4)) (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5)))))) +(-10 -7 (-15 -3789 ((-112) |#2| |#3|)) (-15 -3789 ((-112) (-655 |#2|) |#3|)) (-15 -2465 ((-897 |#1| |#2| (-655 |#2|)) (-655 |#2|) |#3|)) (IF (|has| |#2| (-1055 (-1194))) (-15 -2465 ((-655 (-303 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1066)) (-15 -2465 ((-655 (-303 (-967 |#2|))) |#2| |#3|)) (-15 -2465 ((-901 |#1| |#2|) |#2| |#3|))))) +((-2550 (((-901 |#1| |#3|) (-1 |#3| |#2|) (-901 |#1| |#2|)) 22))) +(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -2550 ((-901 |#1| |#3|) (-1 |#3| |#2|) (-901 |#1| |#2|)))) (-1117) (-1117) (-1117)) (T -900)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-901 *5 *6)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-901 *5 *7)) (-5 *1 (-900 *5 *6 *7))))) +(-10 -7 (-15 -2550 ((-901 |#1| |#3|) (-1 |#3| |#2|) (-901 |#1| |#2|)))) +((-2861 (((-112) $ $) NIL)) (-1644 (($ $ $) 40)) (-2642 (((-3 (-112) "failed") $ (-904 |#1|)) 37)) (-2309 (($) 12)) (-2288 (((-1176) $) NIL)) (-2852 (($ (-904 |#1|) |#2| $) 20)) (-3912 (((-1137) $) NIL)) (-3026 (((-3 |#2| "failed") (-904 |#1|) $) 51)) (-4421 (((-112) $) 15)) (-3420 (($) 13)) (-3843 (((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|))) $) 25)) (-2894 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|)))) 23)) (-2883 (((-873) $) 45)) (-4400 (((-112) $ $) NIL)) (-3254 (($ (-904 |#1|) |#2| $ |#2|) 49)) (-4393 (($ (-904 |#1|) |#2| $) 48)) (-3914 (((-112) $ $) 42))) +(((-901 |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -4421 ((-112) $)) (-15 -3420 ($)) (-15 -2309 ($)) (-15 -1644 ($ $ $)) (-15 -3026 ((-3 |#2| "failed") (-904 |#1|) $)) (-15 -4393 ($ (-904 |#1|) |#2| $)) (-15 -2852 ($ (-904 |#1|) |#2| $)) (-15 -3254 ($ (-904 |#1|) |#2| $ |#2|)) (-15 -3843 ((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|))) $)) (-15 -2894 ($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|))))) (-15 -2642 ((-3 (-112) "failed") $ (-904 |#1|))))) (-1117) (-1117)) (T -901)) +((-4421 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-3420 (*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-2309 (*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-1644 (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-3026 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-4 *2 (-1117)) (-5 *1 (-901 *4 *2)))) (-4393 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1117)))) (-2852 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1117)))) (-3254 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1117)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 *4)))) (-5 *1 (-901 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 *4)))) (-4 *4 (-1117)) (-5 *1 (-901 *3 *4)) (-4 *3 (-1117)))) (-2642 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1117))))) +(-13 (-1117) (-10 -8 (-15 -4421 ((-112) $)) (-15 -3420 ($)) (-15 -2309 ($)) (-15 -1644 ($ $ $)) (-15 -3026 ((-3 |#2| "failed") (-904 |#1|) $)) (-15 -4393 ($ (-904 |#1|) |#2| $)) (-15 -2852 ($ (-904 |#1|) |#2| $)) (-15 -3254 ($ (-904 |#1|) |#2| $ |#2|)) (-15 -3843 ((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|))) $)) (-15 -2894 ($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|))))) (-15 -2642 ((-3 (-112) "failed") $ (-904 |#1|))))) +((-1693 (((-904 |#1|) (-904 |#1|) (-655 (-1194)) (-1 (-112) (-655 |#2|))) 32) (((-904 |#1|) (-904 |#1|) (-655 (-1 (-112) |#2|))) 46) (((-904 |#1|) (-904 |#1|) (-1 (-112) |#2|)) 35)) (-2642 (((-112) (-655 |#2|) (-904 |#1|)) 42) (((-112) |#2| (-904 |#1|)) 36)) (-2397 (((-1 (-112) |#2|) (-904 |#1|)) 16)) (-3574 (((-655 |#2|) (-904 |#1|)) 24)) (-2241 (((-904 |#1|) (-904 |#1|) |#2|) 20))) +(((-902 |#1| |#2|) (-10 -7 (-15 -1693 ((-904 |#1|) (-904 |#1|) (-1 (-112) |#2|))) (-15 -1693 ((-904 |#1|) (-904 |#1|) (-655 (-1 (-112) |#2|)))) (-15 -1693 ((-904 |#1|) (-904 |#1|) (-655 (-1194)) (-1 (-112) (-655 |#2|)))) (-15 -2397 ((-1 (-112) |#2|) (-904 |#1|))) (-15 -2642 ((-112) |#2| (-904 |#1|))) (-15 -2642 ((-112) (-655 |#2|) (-904 |#1|))) (-15 -2241 ((-904 |#1|) (-904 |#1|) |#2|)) (-15 -3574 ((-655 |#2|) (-904 |#1|)))) (-1117) (-1235)) (T -902)) +((-3574 (*1 *2 *3) (-12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-655 *5)) (-5 *1 (-902 *4 *5)) (-4 *5 (-1235)))) (-2241 (*1 *2 *2 *3) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1235)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-4 *6 (-1235)) (-5 *2 (-112)) (-5 *1 (-902 *5 *6)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-5 *2 (-112)) (-5 *1 (-902 *5 *3)) (-4 *3 (-1235)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-902 *4 *5)) (-4 *5 (-1235)))) (-1693 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-904 *5)) (-5 *3 (-655 (-1194))) (-5 *4 (-1 (-112) (-655 *6))) (-4 *5 (-1117)) (-4 *6 (-1235)) (-5 *1 (-902 *5 *6)))) (-1693 (*1 *2 *2 *3) (-12 (-5 *2 (-904 *4)) (-5 *3 (-655 (-1 (-112) *5))) (-4 *4 (-1117)) (-4 *5 (-1235)) (-5 *1 (-902 *4 *5)))) (-1693 (*1 *2 *2 *3) (-12 (-5 *2 (-904 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1117)) (-4 *5 (-1235)) (-5 *1 (-902 *4 *5))))) +(-10 -7 (-15 -1693 ((-904 |#1|) (-904 |#1|) (-1 (-112) |#2|))) (-15 -1693 ((-904 |#1|) (-904 |#1|) (-655 (-1 (-112) |#2|)))) (-15 -1693 ((-904 |#1|) (-904 |#1|) (-655 (-1194)) (-1 (-112) (-655 |#2|)))) (-15 -2397 ((-1 (-112) |#2|) (-904 |#1|))) (-15 -2642 ((-112) |#2| (-904 |#1|))) (-15 -2642 ((-112) (-655 |#2|) (-904 |#1|))) (-15 -2241 ((-904 |#1|) (-904 |#1|) |#2|)) (-15 -3574 ((-655 |#2|) (-904 |#1|)))) +((-2550 (((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)) 19))) +(((-903 |#1| |#2|) (-10 -7 (-15 -2550 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)))) (-1117) (-1117)) (T -903)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-904 *6)) (-5 *1 (-903 *5 *6))))) +(-10 -7 (-15 -2550 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)))) +((-2861 (((-112) $ $) NIL)) (-4043 (($ $ (-655 (-52))) 74)) (-1606 (((-655 $) $) 139)) (-3361 (((-2 (|:| |var| (-655 (-1194))) (|:| |pred| (-52))) $) 30)) (-4221 (((-112) $) 35)) (-1753 (($ $ (-655 (-1194)) (-52)) 31)) (-2049 (($ $ (-655 (-52))) 73)) (-2449 (((-3 |#1| "failed") $) 71) (((-3 (-1194) "failed") $) 164)) (-4399 ((|#1| $) 68) (((-1194) $) NIL)) (-1978 (($ $) 126)) (-3975 (((-112) $) 55)) (-3739 (((-655 (-52)) $) 50)) (-4440 (($ (-1194) (-112) (-112) (-112)) 75)) (-3367 (((-3 (-655 $) "failed") (-655 $)) 82)) (-2165 (((-112) $) 58)) (-3783 (((-112) $) 57)) (-2288 (((-1176) $) NIL)) (-3658 (((-3 (-655 $) "failed") $) 41)) (-3291 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2056 (((-3 (-2 (|:| |val| $) (|:| -2398 $)) "failed") $) 97)) (-1734 (((-3 (-655 $) "failed") $) 40)) (-3982 (((-3 (-655 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1576 (-115)) (|:| |arg| (-655 $))) "failed") $) 107)) (-4278 (((-3 (-655 $) "failed") $) 42)) (-2455 (((-3 (-2 (|:| |val| $) (|:| -2398 (-782))) "failed") $) 45)) (-2524 (((-112) $) 34)) (-3912 (((-1137) $) NIL)) (-3572 (((-112) $) 28)) (-2316 (((-112) $) 52)) (-1783 (((-655 (-52)) $) 130)) (-3402 (((-112) $) 56)) (-2070 (($ (-115) (-655 $)) 104)) (-3323 (((-782) $) 33)) (-3078 (($ $) 72)) (-2615 (($ (-655 $)) 69)) (-2728 (((-112) $) 32)) (-2883 (((-873) $) 63) (($ |#1|) 23) (($ (-1194)) 76)) (-4400 (((-112) $ $) NIL)) (-2241 (($ $ (-52)) 129)) (-1996 (($) 103 T CONST)) (-2009 (($) 83 T CONST)) (-3914 (((-112) $ $) 93)) (-4038 (($ $ $) 117)) (-4016 (($ $ $) 121)) (** (($ $ (-782)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-904 |#1|) (-13 (-1117) (-1055 |#1|) (-1055 (-1194)) (-10 -8 (-15 0 ($) -3738) (-15 1 ($) -3738) (-15 -1734 ((-3 (-655 $) "failed") $)) (-15 -3658 ((-3 (-655 $) "failed") $)) (-15 -3982 ((-3 (-655 $) "failed") $ (-115))) (-15 -3982 ((-3 (-2 (|:| -1576 (-115)) (|:| |arg| (-655 $))) "failed") $)) (-15 -2455 ((-3 (-2 (|:| |val| $) (|:| -2398 (-782))) "failed") $)) (-15 -3291 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4278 ((-3 (-655 $) "failed") $)) (-15 -2056 ((-3 (-2 (|:| |val| $) (|:| -2398 $)) "failed") $)) (-15 -2070 ($ (-115) (-655 $))) (-15 -4016 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-782))) (-15 ** ($ $ $)) (-15 -4038 ($ $ $)) (-15 -3323 ((-782) $)) (-15 -2615 ($ (-655 $))) (-15 -3078 ($ $)) (-15 -2524 ((-112) $)) (-15 -3975 ((-112) $)) (-15 -4221 ((-112) $)) (-15 -2728 ((-112) $)) (-15 -3402 ((-112) $)) (-15 -3783 ((-112) $)) (-15 -2165 ((-112) $)) (-15 -2316 ((-112) $)) (-15 -3739 ((-655 (-52)) $)) (-15 -2049 ($ $ (-655 (-52)))) (-15 -4043 ($ $ (-655 (-52)))) (-15 -4440 ($ (-1194) (-112) (-112) (-112))) (-15 -1753 ($ $ (-655 (-1194)) (-52))) (-15 -3361 ((-2 (|:| |var| (-655 (-1194))) (|:| |pred| (-52))) $)) (-15 -3572 ((-112) $)) (-15 -1978 ($ $)) (-15 -2241 ($ $ (-52))) (-15 -1783 ((-655 (-52)) $)) (-15 -1606 ((-655 $) $)) (-15 -3367 ((-3 (-655 $) "failed") (-655 $))))) (-1117)) (T -904)) +((-1996 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-2009 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-1734 (*1 *2 *1) (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3658 (*1 *2 *1) (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3982 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-655 (-904 *4))) (-5 *1 (-904 *4)) (-4 *4 (-1117)))) (-3982 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1576 (-115)) (|:| |arg| (-655 (-904 *3))))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2455 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -2398 (-782)))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3291 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-904 *3)) (|:| |den| (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-4278 (*1 *2 *1) (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2056 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -2398 (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2070 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 (-904 *4))) (-5 *1 (-904 *4)) (-4 *4 (-1117)))) (-4016 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-4038 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3078 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2049 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-4043 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-4440 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-112)) (-5 *1 (-904 *4)) (-4 *4 (-1117)))) (-1753 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-52)) (-5 *1 (-904 *4)) (-4 *4 (-1117)))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-655 (-1194))) (|:| |pred| (-52)))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-1978 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-2241 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3367 (*1 *2 *2) (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(-13 (-1117) (-1055 |#1|) (-1055 (-1194)) (-10 -8 (-15 (-1996) ($) -3738) (-15 (-2009) ($) -3738) (-15 -1734 ((-3 (-655 $) "failed") $)) (-15 -3658 ((-3 (-655 $) "failed") $)) (-15 -3982 ((-3 (-655 $) "failed") $ (-115))) (-15 -3982 ((-3 (-2 (|:| -1576 (-115)) (|:| |arg| (-655 $))) "failed") $)) (-15 -2455 ((-3 (-2 (|:| |val| $) (|:| -2398 (-782))) "failed") $)) (-15 -3291 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4278 ((-3 (-655 $) "failed") $)) (-15 -2056 ((-3 (-2 (|:| |val| $) (|:| -2398 $)) "failed") $)) (-15 -2070 ($ (-115) (-655 $))) (-15 -4016 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-782))) (-15 ** ($ $ $)) (-15 -4038 ($ $ $)) (-15 -3323 ((-782) $)) (-15 -2615 ($ (-655 $))) (-15 -3078 ($ $)) (-15 -2524 ((-112) $)) (-15 -3975 ((-112) $)) (-15 -4221 ((-112) $)) (-15 -2728 ((-112) $)) (-15 -3402 ((-112) $)) (-15 -3783 ((-112) $)) (-15 -2165 ((-112) $)) (-15 -2316 ((-112) $)) (-15 -3739 ((-655 (-52)) $)) (-15 -2049 ($ $ (-655 (-52)))) (-15 -4043 ($ $ (-655 (-52)))) (-15 -4440 ($ (-1194) (-112) (-112) (-112))) (-15 -1753 ($ $ (-655 (-1194)) (-52))) (-15 -3361 ((-2 (|:| |var| (-655 (-1194))) (|:| |pred| (-52))) $)) (-15 -3572 ((-112) $)) (-15 -1978 ($ $)) (-15 -2241 ($ $ (-52))) (-15 -1783 ((-655 (-52)) $)) (-15 -1606 ((-655 $) $)) (-15 -3367 ((-3 (-655 $) "failed") (-655 $))))) +((-2861 (((-112) $ $) NIL)) (-3489 (((-655 |#1|) $) 19)) (-3373 (((-112) $) 49)) (-2449 (((-3 (-683 |#1|) "failed") $) 56)) (-4399 (((-683 |#1|) $) 54)) (-1975 (($ $) 23)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-1839 (((-782) $) 61)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 (((-683 |#1|) $) 21)) (-2883 (((-873) $) 47) (($ (-683 |#1|)) 26) (((-830 |#1|) $) 36) (($ |#1|) 25)) (-4400 (((-112) $ $) NIL)) (-2009 (($) 9 T CONST)) (-1913 (((-655 (-683 |#1|)) $) 28)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 12)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 67))) +(((-905 |#1|) (-13 (-861) (-1055 (-683 |#1|)) (-10 -8 (-15 1 ($) -3738) (-15 -2883 ((-830 |#1|) $)) (-15 -2883 ($ |#1|)) (-15 -1961 ((-683 |#1|) $)) (-15 -1839 ((-782) $)) (-15 -1913 ((-655 (-683 |#1|)) $)) (-15 -1975 ($ $)) (-15 -3373 ((-112) $)) (-15 -3489 ((-655 |#1|) $)))) (-861)) (T -905)) +((-2009 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) (-2883 (*1 *1 *2) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-683 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) (-1913 (*1 *2 *1) (-12 (-5 *2 (-655 (-683 *3))) (-5 *1 (-905 *3)) (-4 *3 (-861)))) (-1975 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861))))) +(-13 (-861) (-1055 (-683 |#1|)) (-10 -8 (-15 (-2009) ($) -3738) (-15 -2883 ((-830 |#1|) $)) (-15 -2883 ($ |#1|)) (-15 -1961 ((-683 |#1|) $)) (-15 -1839 ((-782) $)) (-15 -1913 ((-655 (-683 |#1|)) $)) (-15 -1975 ($ $)) (-15 -3373 ((-112) $)) (-15 -3489 ((-655 |#1|) $)))) +((-3646 ((|#1| |#1| |#1|) 19))) +(((-906 |#1| |#2|) (-10 -7 (-15 -3646 (|#1| |#1| |#1|))) (-1261 |#2|) (-1066)) (T -906)) +((-3646 (*1 *2 *2 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-906 *2 *3)) (-4 *2 (-1261 *3))))) +(-10 -7 (-15 -3646 (|#1| |#1| |#1|))) +((-3430 ((|#2| $ |#3|) 10))) +(((-907 |#1| |#2| |#3|) (-10 -8 (-15 -3430 (|#2| |#1| |#3|))) (-908 |#2| |#3|) (-1235) (-1235)) (T -907)) +NIL +(-10 -8 (-15 -3430 (|#2| |#1| |#3|))) +((-2389 ((|#1| $ |#2|) 7)) (-3430 ((|#1| $ |#2|) 6))) +(((-908 |#1| |#2|) (-141) (-1235) (-1235)) (T -908)) +((-2389 (*1 *2 *1 *3) (-12 (-4 *1 (-908 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1235)))) (-3430 (*1 *2 *1 *3) (-12 (-4 *1 (-908 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1235))))) +(-13 (-1235) (-10 -8 (-15 -2389 (|t#1| $ |t#2|)) (-15 -3430 (|t#1| $ |t#2|)))) +(((-1235) . T)) +((-2861 (((-112) $ $) 7)) (-2803 (((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3750 (((-1052) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 14)) (-3914 (((-112) $ $) 6))) +(((-909) (-141)) (T -909)) +((-2803 (*1 *2 *3 *4) (-12 (-4 *1 (-909)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)))))) (-3750 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *3 (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) (-5 *2 (-1052))))) +(-13 (-1117) (-10 -7 (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))))) (-15 -3750 ((-1052) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))))))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2229 ((|#1| |#1| (-782)) 27)) (-2426 (((-3 |#1| "failed") |#1| |#1|) 24)) (-4299 (((-3 (-2 (|:| -2418 |#1|) (|:| -2435 |#1|)) "failed") |#1| (-782) (-782)) 30) (((-655 |#1|) |#1|) 38))) +(((-910 |#1| |#2|) (-10 -7 (-15 -4299 ((-655 |#1|) |#1|)) (-15 -4299 ((-3 (-2 (|:| -2418 |#1|) (|:| -2435 |#1|)) "failed") |#1| (-782) (-782))) (-15 -2426 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2229 (|#1| |#1| (-782)))) (-1261 |#2|) (-373)) (T -910)) +((-2229 (*1 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-373)) (-5 *1 (-910 *2 *4)) (-4 *2 (-1261 *4)))) (-2426 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-373)) (-5 *1 (-910 *2 *3)) (-4 *2 (-1261 *3)))) (-4299 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-782)) (-4 *5 (-373)) (-5 *2 (-2 (|:| -2418 *3) (|:| -2435 *3))) (-5 *1 (-910 *3 *5)) (-4 *3 (-1261 *5)))) (-4299 (*1 *2 *3) (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-910 *3 *4)) (-4 *3 (-1261 *4))))) +(-10 -7 (-15 -4299 ((-655 |#1|) |#1|)) (-15 -4299 ((-3 (-2 (|:| -2418 |#1|) (|:| -2435 |#1|)) "failed") |#1| (-782) (-782))) (-15 -2426 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2229 (|#1| |#1| (-782)))) +((-1546 (((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176)) 104) (((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176) (-227)) 100) (((-1052) (-912) (-1080)) 92) (((-1052) (-912)) 93)) (-2803 (((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912) (-1080)) 62) (((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912)) 64))) +(((-911) (-10 -7 (-15 -1546 ((-1052) (-912))) (-15 -1546 ((-1052) (-912) (-1080))) (-15 -1546 ((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176) (-227))) (-15 -1546 ((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912) (-1080))))) (T -911)) +((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1080)) (-5 *2 (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-911)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-911)))) (-1546 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-782)) (-5 *6 (-655 (-655 (-325 *3)))) (-5 *7 (-1176)) (-5 *5 (-655 (-325 (-389)))) (-5 *3 (-389)) (-5 *2 (-1052)) (-5 *1 (-911)))) (-1546 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-782)) (-5 *6 (-655 (-655 (-325 *3)))) (-5 *7 (-1176)) (-5 *8 (-227)) (-5 *5 (-655 (-325 (-389)))) (-5 *3 (-389)) (-5 *2 (-1052)) (-5 *1 (-911)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-911)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1052)) (-5 *1 (-911))))) +(-10 -7 (-15 -1546 ((-1052) (-912))) (-15 -1546 ((-1052) (-912) (-1080))) (-15 -1546 ((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176) (-227))) (-15 -1546 ((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912))) (-15 -2803 ((-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912) (-1080)))) +((-2861 (((-112) $ $) NIL)) (-4399 (((-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))) $) 19)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 21) (($ (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 18)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-912) (-13 (-1117) (-10 -8 (-15 -2883 ($ (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))))) (-15 -4399 ((-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))) $))))) (T -912)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) (-5 *1 (-912)))) (-4399 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) (-5 *1 (-912))))) +(-13 (-1117) (-10 -8 (-15 -2883 ($ (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))))) (-15 -4399 ((-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))) $)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2389 (($ $ (-655 |#1|) (-655 (-782))) 44) (($ $ |#1| (-782)) 43) (($ $ (-655 |#1|)) 42) (($ $ |#1|) 40)) (-2883 (((-873) $) 12) (($ (-575)) 33)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-655 |#1|) (-655 (-782))) 47) (($ $ |#1| (-782)) 46) (($ $ (-655 |#1|)) 45) (($ $ |#1|) 41)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-913 |#1|) (-141) (-1117)) (T -913)) +NIL +(-13 (-1066) (-915 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-908 $ |#1|) . T) ((-915 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T)) +((-2389 (($ $ |#2|) NIL) (($ $ (-655 |#2|)) 10) (($ $ |#2| (-782)) 12) (($ $ (-655 |#2|) (-655 (-782))) 15)) (-3430 (($ $ |#2|) 16) (($ $ (-655 |#2|)) 18) (($ $ |#2| (-782)) 19) (($ $ (-655 |#2|) (-655 (-782))) 21))) +(((-914 |#1| |#2|) (-10 -8 (-15 -3430 (|#1| |#1| (-655 |#2|) (-655 (-782)))) (-15 -3430 (|#1| |#1| |#2| (-782))) (-15 -3430 (|#1| |#1| (-655 |#2|))) (-15 -2389 (|#1| |#1| (-655 |#2|) (-655 (-782)))) (-15 -2389 (|#1| |#1| |#2| (-782))) (-15 -2389 (|#1| |#1| (-655 |#2|))) (-15 -3430 (|#1| |#1| |#2|)) (-15 -2389 (|#1| |#1| |#2|))) (-915 |#2|) (-1117)) (T -914)) +NIL +(-10 -8 (-15 -3430 (|#1| |#1| (-655 |#2|) (-655 (-782)))) (-15 -3430 (|#1| |#1| |#2| (-782))) (-15 -3430 (|#1| |#1| (-655 |#2|))) (-15 -2389 (|#1| |#1| (-655 |#2|) (-655 (-782)))) (-15 -2389 (|#1| |#1| |#2| (-782))) (-15 -2389 (|#1| |#1| (-655 |#2|))) (-15 -3430 (|#1| |#1| |#2|)) (-15 -2389 (|#1| |#1| |#2|))) +((-2389 (($ $ |#1|) 7) (($ $ (-655 |#1|)) 15) (($ $ |#1| (-782)) 14) (($ $ (-655 |#1|) (-655 (-782))) 13)) (-3430 (($ $ |#1|) 6) (($ $ (-655 |#1|)) 12) (($ $ |#1| (-782)) 11) (($ $ (-655 |#1|) (-655 (-782))) 10))) +(((-915 |#1|) (-141) (-1117)) (T -915)) +((-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *1 (-915 *3)) (-4 *3 (-1117)))) (-2389 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-915 *2)) (-4 *2 (-1117)))) (-2389 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 (-782))) (-4 *1 (-915 *4)) (-4 *4 (-1117)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *1 (-915 *3)) (-4 *3 (-1117)))) (-3430 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-915 *2)) (-4 *2 (-1117)))) (-3430 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 (-782))) (-4 *1 (-915 *4)) (-4 *4 (-1117))))) +(-13 (-908 $ |t#1|) (-10 -8 (-15 -2389 ($ $ (-655 |t#1|))) (-15 -2389 ($ $ |t#1| (-782))) (-15 -2389 ($ $ (-655 |t#1|) (-655 (-782)))) (-15 -3430 ($ $ (-655 |t#1|))) (-15 -3430 ($ $ |t#1| (-782))) (-15 -3430 ($ $ (-655 |t#1|) (-655 (-782)))))) +(((-908 $ |#1|) . T) ((-1235) . T)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4182 ((|#1| $) 26)) (-1845 (((-112) $ (-782)) NIL)) (-1915 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3030 (($ $ $) NIL (|has| $ (-6 -4461)))) (-1629 (($ $ $) NIL (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "left" $) NIL (|has| $ (-6 -4461))) (($ $ "right" $) NIL (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-2435 (($ $) 25)) (-3950 (($ |#1|) 12) (($ $ $) 17)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) NIL)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2418 (($ $) 23)) (-2482 (((-655 |#1|) $) NIL)) (-1526 (((-112) $) 20)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2220 (((-575) $ $) NIL)) (-1648 (((-112) $) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-1221 |#1|) $) 9) (((-873) $) 29 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) NIL)) (-2781 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 21 (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-916 |#1|) (-13 (-120 |#1|) (-624 (-1221 |#1|)) (-10 -8 (-15 -3950 ($ |#1|)) (-15 -3950 ($ $ $)))) (-1117)) (T -916)) +((-3950 (*1 *1 *2) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1117)))) (-3950 (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1117))))) +(-13 (-120 |#1|) (-624 (-1221 |#1|)) (-10 -8 (-15 -3950 ($ |#1|)) (-15 -3950 ($ $ $)))) +((-4314 ((|#2| (-1159 |#1| |#2|)) 48))) +(((-917 |#1| |#2|) (-10 -7 (-15 -4314 (|#2| (-1159 |#1| |#2|)))) (-936) (-13 (-1066) (-10 -7 (-6 (-4462 "*"))))) (T -917)) +((-4314 (*1 *2 *3) (-12 (-5 *3 (-1159 *4 *2)) (-14 *4 (-936)) (-4 *2 (-13 (-1066) (-10 -7 (-6 (-4462 "*"))))) (-5 *1 (-917 *4 *2))))) +(-10 -7 (-15 -4314 (|#2| (-1159 |#1| |#2|)))) +((-2861 (((-112) $ $) 7)) (-4218 (((-1119 |#1|) $) 35)) (-3011 (($) 19 T CONST)) (-1747 (((-3 $ "failed") $) 16)) (-3948 (((-1119 |#1|) $ |#1|) 34)) (-1542 (((-112) $) 18)) (-1920 (($ $ $) 32 (-3765 (|has| |#1| (-861)) (|has| |#1| (-378))))) (-1425 (($ $ $) 31 (-3765 (|has| |#1| (-861)) (|has| |#1| (-378))))) (-2288 (((-1176) $) 10)) (-4332 (($ $) 25)) (-3912 (((-1137) $) 11)) (-2070 ((|#1| $ |#1|) 38)) (-4231 (($ (-655 (-655 |#1|))) 36)) (-3999 (($ (-655 |#1|)) 37)) (-4258 (($ $ $) 22)) (-3320 (($ $ $) 21)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-2009 (($) 20 T CONST)) (-3981 (((-112) $ $) 29 (-3765 (|has| |#1| (-861)) (|has| |#1| (-378))))) (-3956 (((-112) $ $) 28 (-3765 (|has| |#1| (-861)) (|has| |#1| (-378))))) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 30 (-3765 (|has| |#1| (-861)) (|has| |#1| (-378))))) (-3943 (((-112) $ $) 33)) (-4038 (($ $ $) 24)) (** (($ $ (-936)) 14) (($ $ (-782)) 17) (($ $ (-575)) 23)) (* (($ $ $) 15))) +(((-918 |#1|) (-141) (-1117)) (T -918)) +((-3999 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-918 *3)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-4 *1 (-918 *3)))) (-4218 (*1 *2 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-1119 *3)))) (-3948 (*1 *2 *1 *3) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-1119 *3)))) (-3943 (*1 *2 *1 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-112))))) +(-13 (-484) (-295 |t#1| |t#1|) (-10 -8 (-15 -3999 ($ (-655 |t#1|))) (-15 -4231 ($ (-655 (-655 |t#1|)))) (-15 -4218 ((-1119 |t#1|) $)) (-15 -3948 ((-1119 |t#1|) $ |t#1|)) (-15 -3943 ((-112) $ $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-378)) (-6 (-861)) |%noBranch|))) +(((-102) . T) ((-624 (-873)) . T) ((-295 |#1| |#1|) . T) ((-484) . T) ((-737) . T) ((-861) -3765 (|has| |#1| (-861)) (|has| |#1| (-378))) ((-1129) . T) ((-1117) . T) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-1494 (((-655 (-655 (-782))) $) 160)) (-2490 (((-655 (-782)) (-920 |#1|) $) 188)) (-3008 (((-655 (-782)) (-920 |#1|) $) 189)) (-4218 (((-1119 |#1|) $) 152)) (-3467 (((-655 (-920 |#1|)) $) 149)) (-2079 (((-920 |#1|) $ (-575)) 154) (((-920 |#1|) $) 155)) (-2732 (($ (-655 (-920 |#1|))) 162)) (-2673 (((-782) $) 156)) (-2154 (((-1119 (-1119 |#1|)) $) 186)) (-3948 (((-1119 |#1|) $ |#1|) 177) (((-1119 (-1119 |#1|)) $ (-1119 |#1|)) 197) (((-1119 (-655 |#1|)) $ (-655 |#1|)) 200)) (-2625 (((-112) (-920 |#1|) $) 137)) (-2288 (((-1176) $) NIL)) (-2547 (((-1290) $) 142) (((-1290) $ (-575) (-575)) 201)) (-3912 (((-1137) $) NIL)) (-3144 (((-655 (-920 |#1|)) $) 143)) (-2070 (((-920 |#1|) $ (-782)) 150)) (-2645 (((-782) $) 157)) (-2883 (((-873) $) 174) (((-655 (-920 |#1|)) $) 28) (($ (-655 (-920 |#1|))) 161)) (-4400 (((-112) $ $) NIL)) (-1548 (((-655 |#1|) $) 159)) (-3914 (((-112) $ $) 194)) (-3970 (((-112) $ $) 192)) (-3943 (((-112) $ $) 191))) +(((-919 |#1|) (-13 (-1117) (-10 -8 (-15 -2883 ((-655 (-920 |#1|)) $)) (-15 -3144 ((-655 (-920 |#1|)) $)) (-15 -2070 ((-920 |#1|) $ (-782))) (-15 -2079 ((-920 |#1|) $ (-575))) (-15 -2079 ((-920 |#1|) $)) (-15 -2673 ((-782) $)) (-15 -2645 ((-782) $)) (-15 -1548 ((-655 |#1|) $)) (-15 -3467 ((-655 (-920 |#1|)) $)) (-15 -1494 ((-655 (-655 (-782))) $)) (-15 -2883 ($ (-655 (-920 |#1|)))) (-15 -2732 ($ (-655 (-920 |#1|)))) (-15 -3948 ((-1119 |#1|) $ |#1|)) (-15 -2154 ((-1119 (-1119 |#1|)) $)) (-15 -3948 ((-1119 (-1119 |#1|)) $ (-1119 |#1|))) (-15 -3948 ((-1119 (-655 |#1|)) $ (-655 |#1|))) (-15 -2625 ((-112) (-920 |#1|) $)) (-15 -2490 ((-655 (-782)) (-920 |#1|) $)) (-15 -3008 ((-655 (-782)) (-920 |#1|) $)) (-15 -4218 ((-1119 |#1|) $)) (-15 -3943 ((-112) $ $)) (-15 -3970 ((-112) $ $)) (-15 -2547 ((-1290) $)) (-15 -2547 ((-1290) $ (-575) (-575))))) (-1117)) (T -919)) +((-2883 (*1 *2 *1) (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-920 *4)) (-5 *1 (-919 *4)) (-4 *4 (-1117)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-920 *4)) (-5 *1 (-919 *4)) (-4 *4 (-1117)))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-920 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-1548 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-782)))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-920 *3))) (-4 *3 (-1117)) (-5 *1 (-919 *3)))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-655 (-920 *3))) (-4 *3 (-1117)) (-5 *1 (-919 *3)))) (-3948 (*1 *2 *1 *3) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2154 (*1 *2 *1) (-12 (-5 *2 (-1119 (-1119 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-3948 (*1 *2 *1 *3) (-12 (-4 *4 (-1117)) (-5 *2 (-1119 (-1119 *4))) (-5 *1 (-919 *4)) (-5 *3 (-1119 *4)))) (-3948 (*1 *2 *1 *3) (-12 (-4 *4 (-1117)) (-5 *2 (-1119 (-655 *4))) (-5 *1 (-919 *4)) (-5 *3 (-655 *4)))) (-2625 (*1 *2 *3 *1) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-919 *4)))) (-2490 (*1 *2 *3 *1) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-655 (-782))) (-5 *1 (-919 *4)))) (-3008 (*1 *2 *3 *1) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-655 (-782))) (-5 *1 (-919 *4)))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-3943 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-3970 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2547 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-919 *4)) (-4 *4 (-1117))))) +(-13 (-1117) (-10 -8 (-15 -2883 ((-655 (-920 |#1|)) $)) (-15 -3144 ((-655 (-920 |#1|)) $)) (-15 -2070 ((-920 |#1|) $ (-782))) (-15 -2079 ((-920 |#1|) $ (-575))) (-15 -2079 ((-920 |#1|) $)) (-15 -2673 ((-782) $)) (-15 -2645 ((-782) $)) (-15 -1548 ((-655 |#1|) $)) (-15 -3467 ((-655 (-920 |#1|)) $)) (-15 -1494 ((-655 (-655 (-782))) $)) (-15 -2883 ($ (-655 (-920 |#1|)))) (-15 -2732 ($ (-655 (-920 |#1|)))) (-15 -3948 ((-1119 |#1|) $ |#1|)) (-15 -2154 ((-1119 (-1119 |#1|)) $)) (-15 -3948 ((-1119 (-1119 |#1|)) $ (-1119 |#1|))) (-15 -3948 ((-1119 (-655 |#1|)) $ (-655 |#1|))) (-15 -2625 ((-112) (-920 |#1|) $)) (-15 -2490 ((-655 (-782)) (-920 |#1|) $)) (-15 -3008 ((-655 (-782)) (-920 |#1|) $)) (-15 -4218 ((-1119 |#1|) $)) (-15 -3943 ((-112) $ $)) (-15 -3970 ((-112) $ $)) (-15 -2547 ((-1290) $)) (-15 -2547 ((-1290) $ (-575) (-575))))) +((-2861 (((-112) $ $) NIL)) (-4218 (((-1119 |#1|) $) 60)) (-2031 (((-655 $) (-655 $)) 103)) (-4428 (((-575) $) 83)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) NIL)) (-2673 (((-782) $) 80)) (-3948 (((-1119 |#1|) $ |#1|) 70)) (-1542 (((-112) $) NIL)) (-2437 (((-112) $) 88)) (-2354 (((-782) $) 84)) (-1920 (($ $ $) NIL (-3765 (|has| |#1| (-378)) (|has| |#1| (-861))))) (-1425 (($ $ $) NIL (-3765 (|has| |#1| (-378)) (|has| |#1| (-861))))) (-1695 (((-2 (|:| |preimage| (-655 |#1|)) (|:| |image| (-655 |#1|))) $) 55)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 130)) (-3912 (((-1137) $) NIL)) (-3902 (((-1119 |#1|) $) 136 (|has| |#1| (-378)))) (-2185 (((-112) $) 81)) (-2070 ((|#1| $ |#1|) 68)) (-2645 (((-782) $) 62)) (-4231 (($ (-655 (-655 |#1|))) 118)) (-2033 (((-988) $) 74)) (-3999 (($ (-655 |#1|)) 32)) (-4258 (($ $ $) NIL)) (-3320 (($ $ $) NIL)) (-3213 (($ (-655 (-655 |#1|))) 57)) (-1460 (($ (-655 (-655 |#1|))) 123)) (-2236 (($ (-655 |#1|)) 132)) (-2883 (((-873) $) 117) (($ (-655 (-655 |#1|))) 91) (($ (-655 |#1|)) 92)) (-4400 (((-112) $ $) NIL)) (-2009 (($) 24 T CONST)) (-3981 (((-112) $ $) NIL (-3765 (|has| |#1| (-378)) (|has| |#1| (-861))))) (-3956 (((-112) $ $) NIL (-3765 (|has| |#1| (-378)) (|has| |#1| (-861))))) (-3914 (((-112) $ $) 66)) (-3970 (((-112) $ $) NIL (-3765 (|has| |#1| (-378)) (|has| |#1| (-861))))) (-3943 (((-112) $ $) 90)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ $ $) 33))) +(((-920 |#1|) (-13 (-918 |#1|) (-10 -8 (-15 -1695 ((-2 (|:| |preimage| (-655 |#1|)) (|:| |image| (-655 |#1|))) $)) (-15 -3213 ($ (-655 (-655 |#1|)))) (-15 -2883 ($ (-655 (-655 |#1|)))) (-15 -2883 ($ (-655 |#1|))) (-15 -1460 ($ (-655 (-655 |#1|)))) (-15 -2645 ((-782) $)) (-15 -2033 ((-988) $)) (-15 -2673 ((-782) $)) (-15 -2354 ((-782) $)) (-15 -4428 ((-575) $)) (-15 -2185 ((-112) $)) (-15 -2437 ((-112) $)) (-15 -2031 ((-655 $) (-655 $))) (IF (|has| |#1| (-378)) (-15 -3902 ((-1119 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2236 ($ (-655 |#1|))) (IF (|has| |#1| (-378)) (-15 -2236 ($ (-655 |#1|))) |%noBranch|)))) (-1117)) (T -920)) +((-1695 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-655 *3)) (|:| |image| (-655 *3)))) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-920 *3)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-988)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-2354 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-4428 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-2031 (*1 *2 *2) (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-920 *3)) (-4 *3 (-378)) (-4 *3 (-1117)))) (-2236 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-920 *3))))) +(-13 (-918 |#1|) (-10 -8 (-15 -1695 ((-2 (|:| |preimage| (-655 |#1|)) (|:| |image| (-655 |#1|))) $)) (-15 -3213 ($ (-655 (-655 |#1|)))) (-15 -2883 ($ (-655 (-655 |#1|)))) (-15 -2883 ($ (-655 |#1|))) (-15 -1460 ($ (-655 (-655 |#1|)))) (-15 -2645 ((-782) $)) (-15 -2033 ((-988) $)) (-15 -2673 ((-782) $)) (-15 -2354 ((-782) $)) (-15 -4428 ((-575) $)) (-15 -2185 ((-112) $)) (-15 -2437 ((-112) $)) (-15 -2031 ((-655 $) (-655 $))) (IF (|has| |#1| (-378)) (-15 -3902 ((-1119 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2236 ($ (-655 |#1|))) (IF (|has| |#1| (-378)) (-15 -2236 ($ (-655 |#1|))) |%noBranch|)))) +((-1351 (((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|)) 160)) (-3374 ((|#1|) 97)) (-2953 (((-429 (-1190 |#4|)) (-1190 |#4|)) 169)) (-1758 (((-429 (-1190 |#4|)) (-655 |#3|) (-1190 |#4|)) 84)) (-3501 (((-429 (-1190 |#4|)) (-1190 |#4|)) 179)) (-2815 (((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|) |#3|) 113))) +(((-921 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1351 ((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|))) (-15 -3501 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -2953 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -3374 (|#1|)) (-15 -2815 ((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|) |#3|)) (-15 -1758 ((-429 (-1190 |#4|)) (-655 |#3|) (-1190 |#4|)))) (-924) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -921)) +((-1758 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *7)) (-4 *7 (-861)) (-4 *5 (-924)) (-4 *6 (-804)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-429 (-1190 *8))) (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-1190 *8)))) (-2815 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-655 (-1190 *7))) (-5 *3 (-1190 *7)) (-4 *7 (-964 *5 *6 *4)) (-4 *5 (-924)) (-4 *6 (-804)) (-4 *4 (-861)) (-5 *1 (-921 *5 *6 *4 *7)))) (-3374 (*1 *2) (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-924)) (-5 *1 (-921 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-2953 (*1 *2 *3) (-12 (-4 *4 (-924)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-3501 (*1 *2 *3) (-12 (-4 *4 (-924)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-1351 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 *7))) (-5 *3 (-1190 *7)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-924)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-921 *4 *5 *6 *7))))) +(-10 -7 (-15 -1351 ((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|))) (-15 -3501 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -2953 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -3374 (|#1|)) (-15 -2815 ((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|) |#3|)) (-15 -1758 ((-429 (-1190 |#4|)) (-655 |#3|) (-1190 |#4|)))) +((-1351 (((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|)) 39)) (-3374 ((|#1|) 72)) (-2953 (((-429 (-1190 |#2|)) (-1190 |#2|)) 121)) (-1758 (((-429 (-1190 |#2|)) (-1190 |#2|)) 105)) (-3501 (((-429 (-1190 |#2|)) (-1190 |#2|)) 132))) +(((-922 |#1| |#2|) (-10 -7 (-15 -1351 ((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|))) (-15 -3501 ((-429 (-1190 |#2|)) (-1190 |#2|))) (-15 -2953 ((-429 (-1190 |#2|)) (-1190 |#2|))) (-15 -3374 (|#1|)) (-15 -1758 ((-429 (-1190 |#2|)) (-1190 |#2|)))) (-924) (-1261 |#1|)) (T -922)) +((-1758 (*1 *2 *3) (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5))) (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5)))) (-3374 (*1 *2) (-12 (-4 *2 (-924)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1261 *2)))) (-2953 (*1 *2 *3) (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5))) (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5)))) (-3501 (*1 *2 *3) (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5))) (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5)))) (-1351 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 *5))) (-5 *3 (-1190 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-924)) (-5 *1 (-922 *4 *5))))) +(-10 -7 (-15 -1351 ((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|))) (-15 -3501 ((-429 (-1190 |#2|)) (-1190 |#2|))) (-15 -2953 ((-429 (-1190 |#2|)) (-1190 |#2|))) (-15 -3374 (|#1|)) (-15 -1758 ((-429 (-1190 |#2|)) (-1190 |#2|)))) +((-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 42)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 18)) (-1518 (((-3 $ "failed") $) 36))) +(((-923 |#1|) (-10 -8 (-15 -1518 ((-3 |#1| "failed") |#1|)) (-15 -1830 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -2290 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|)))) (-924)) (T -923)) +NIL +(-10 -8 (-15 -1518 ((-3 |#1| "failed") |#1|)) (-15 -1830 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -2290 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-3535 (((-429 (-1190 $)) (-1190 $)) 66)) (-2058 (($ $) 57)) (-2330 (((-429 $) $) 58)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 63)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1336 (((-112) $) 59)) (-1542 (((-112) $) 35)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-1641 (((-429 (-1190 $)) (-1190 $)) 64)) (-1665 (((-429 (-1190 $)) (-1190 $)) 65)) (-2353 (((-429 $) $) 56)) (-2851 (((-3 $ "failed") $ $) 48)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 62 (|has| $ (-146)))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-1518 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-924) (-141)) (T -924)) +((-2290 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-924)))) (-3535 (*1 *2 *3) (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1)))) (-1665 (*1 *2 *3) (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1)))) (-1641 (*1 *2 *3) (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1)))) (-1830 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 *1))) (-5 *3 (-1190 *1)) (-4 *1 (-924)))) (-3352 (*1 *2 *3) (|partial| -12 (-5 *3 (-700 *1)) (-4 *1 (-146)) (-4 *1 (-924)) (-5 *2 (-1285 *1)))) (-1518 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-924))))) +(-13 (-1239) (-10 -8 (-15 -3535 ((-429 (-1190 $)) (-1190 $))) (-15 -1665 ((-429 (-1190 $)) (-1190 $))) (-15 -1641 ((-429 (-1190 $)) (-1190 $))) (-15 -2290 ((-1190 $) (-1190 $) (-1190 $))) (-15 -1830 ((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $))) (IF (|has| $ (-146)) (PROGN (-15 -3352 ((-3 (-1285 $) "failed") (-700 $))) (-15 -1518 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-2936 (((-782)) NIL)) (-1447 (($ $ (-936)) NIL (|has| $ (-378))) (($ $) NIL)) (-2243 (((-1207 (-936) (-782)) (-575)) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 $ "failed") $) NIL)) (-4399 (($ $) NIL)) (-1385 (($ (-1285 $)) NIL)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1360 (($) NIL)) (-1980 (((-112) $) NIL)) (-4374 (($ $) NIL) (($ $ (-782)) NIL)) (-1336 (((-112) $) NIL)) (-2673 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-1542 (((-112) $) NIL)) (-3547 (($) NIL (|has| $ (-378)))) (-2922 (((-112) $) NIL (|has| $ (-378)))) (-2255 (($ $ (-936)) NIL (|has| $ (-378))) (($ $) NIL)) (-2607 (((-3 $ "failed") $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1943 (((-1190 $) $ (-936)) NIL (|has| $ (-378))) (((-1190 $) $) NIL)) (-4084 (((-936) $) NIL)) (-2394 (((-1190 $) $) NIL (|has| $ (-378)))) (-3255 (((-3 (-1190 $) "failed") $ $) NIL (|has| $ (-378))) (((-1190 $) $) NIL (|has| $ (-378)))) (-2065 (($ $ (-1190 $)) NIL (|has| $ (-378)))) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL T CONST)) (-4317 (($ (-936)) NIL)) (-3497 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3659 (($) NIL (|has| $ (-378)))) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL)) (-2353 (((-429 $) $) NIL)) (-2819 (((-936)) NIL) (((-844 (-936))) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-3905 (((-3 (-782) "failed") $ $) NIL) (((-782) $) NIL)) (-4386 (((-135)) NIL)) (-2389 (($ $) NIL) (($ $ (-782)) NIL)) (-2645 (((-936) $) NIL) (((-844 (-936)) $) NIL)) (-2552 (((-1190 $)) NIL)) (-3500 (($) NIL)) (-3832 (($) NIL (|has| $ (-378)))) (-3962 (((-700 $) (-1285 $)) NIL) (((-1285 $) $) NIL)) (-2615 (((-575) $) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL)) (-1518 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $) (-936)) NIL) (((-1285 $)) NIL)) (-1780 (((-112) $ $) NIL)) (-1591 (((-112) $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-4216 (($ $ (-782)) NIL (|has| $ (-378))) (($ $) NIL (|has| $ (-378)))) (-3430 (($ $) NIL) (($ $ (-782)) NIL)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL))) +(((-925 |#1|) (-13 (-359) (-338 $) (-625 (-575))) (-936)) (T -925)) +NIL +(-13 (-359) (-338 $) (-625 (-575))) +((-3772 (((-3 (-2 (|:| -2673 (-782)) (|:| -3763 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)) 77)) (-2143 (((-112) (-346 |#2| |#3| |#4| |#5|)) 17)) (-2673 (((-3 (-782) "failed") (-346 |#2| |#3| |#4| |#5|)) 15))) +(((-926 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2673 ((-3 (-782) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -2143 ((-112) (-346 |#2| |#3| |#4| |#5|))) (-15 -3772 ((-3 (-2 (|:| -2673 (-782)) (|:| -3763 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)))) (-13 (-567) (-1055 (-575))) (-441 |#1|) (-1261 |#2|) (-1261 (-418 |#3|)) (-352 |#2| |#3| |#4|)) (T -926)) +((-3772 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7)) (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-2 (|:| -2673 (-782)) (|:| -3763 *8))) (-5 *1 (-926 *4 *5 *6 *7 *8)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7)) (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7 *8)))) (-2673 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7)) (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-782)) (-5 *1 (-926 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -2673 ((-3 (-782) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -2143 ((-112) (-346 |#2| |#3| |#4| |#5|))) (-15 -3772 ((-3 (-2 (|:| -2673 (-782)) (|:| -3763 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)))) +((-3772 (((-3 (-2 (|:| -2673 (-782)) (|:| -3763 |#3|)) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|)) 64)) (-2143 (((-112) (-346 (-418 (-575)) |#1| |#2| |#3|)) 16)) (-2673 (((-3 (-782) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|)) 14))) +(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -2673 ((-3 (-782) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|))) (-15 -2143 ((-112) (-346 (-418 (-575)) |#1| |#2| |#3|))) (-15 -3772 ((-3 (-2 (|:| -2673 (-782)) (|:| -3763 |#3|)) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|)))) (-1261 (-418 (-575))) (-1261 (-418 |#1|)) (-352 (-418 (-575)) |#1| |#2|)) (T -927)) +((-3772 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6)) (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 (-418 (-575)) *4 *5)) (-5 *2 (-2 (|:| -2673 (-782)) (|:| -3763 *6))) (-5 *1 (-927 *4 *5 *6)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6)) (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 (-418 (-575)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-927 *4 *5 *6)))) (-2673 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6)) (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 (-418 (-575)) *4 *5)) (-5 *2 (-782)) (-5 *1 (-927 *4 *5 *6))))) +(-10 -7 (-15 -2673 ((-3 (-782) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|))) (-15 -2143 ((-112) (-346 (-418 (-575)) |#1| |#2| |#3|))) (-15 -3772 ((-3 (-2 (|:| -2673 (-782)) (|:| -3763 |#3|)) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|)))) +((-2494 ((|#2| |#2|) 26)) (-1713 (((-575) (-655 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))))) 15)) (-4185 (((-936) (-575)) 38)) (-3822 (((-575) |#2|) 45)) (-4051 (((-575) |#2|) 21) (((-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))) |#1|) 20))) +(((-928 |#1| |#2|) (-10 -7 (-15 -4185 ((-936) (-575))) (-15 -4051 ((-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))) |#1|)) (-15 -4051 ((-575) |#2|)) (-15 -1713 ((-575) (-655 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575)))))) (-15 -3822 ((-575) |#2|)) (-15 -2494 (|#2| |#2|))) (-1261 (-418 (-575))) (-1261 (-418 |#1|))) (T -928)) +((-2494 (*1 *2 *2) (-12 (-4 *3 (-1261 (-418 (-575)))) (-5 *1 (-928 *3 *2)) (-4 *2 (-1261 (-418 *3))))) (-3822 (*1 *2 *3) (-12 (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *3)) (-4 *3 (-1261 (-418 *4))))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))))) (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *5)) (-4 *5 (-1261 (-418 *4))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *3)) (-4 *3 (-1261 (-418 *4))))) (-4051 (*1 *2 *3) (-12 (-4 *3 (-1261 (-418 (-575)))) (-5 *2 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575)))) (-5 *1 (-928 *3 *4)) (-4 *4 (-1261 (-418 *3))))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-575)) (-4 *4 (-1261 (-418 *3))) (-5 *2 (-936)) (-5 *1 (-928 *4 *5)) (-4 *5 (-1261 (-418 *4)))))) +(-10 -7 (-15 -4185 ((-936) (-575))) (-15 -4051 ((-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))) |#1|)) (-15 -4051 ((-575) |#2|)) (-15 -1713 ((-575) (-655 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575)))))) (-15 -3822 ((-575) |#2|)) (-15 -2494 (|#2| |#2|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3127 ((|#1| $) 100)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-2802 (($ $ $) NIL)) (-1747 (((-3 $ "failed") $) 94)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-3587 (($ |#1| (-429 |#1|)) 92)) (-1501 (((-1190 |#1|) |#1| |#1|) 53)) (-1725 (($ $) 61)) (-1542 (((-112) $) NIL)) (-3250 (((-575) $) 97)) (-1790 (($ $ (-575)) 99)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3626 ((|#1| $) 96)) (-3301 (((-429 |#1|) $) 95)) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) 93)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-4069 (($ $) 50)) (-2883 (((-873) $) 124) (($ (-575)) 73) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 41) (((-418 |#1|) $) 78) (($ (-418 (-429 |#1|))) 86)) (-3759 (((-782)) 71 T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-1996 (($) 26 T CONST)) (-2009 (($) 15 T CONST)) (-3914 (((-112) $ $) 87)) (-4038 (($ $ $) NIL)) (-4028 (($ $) 108) (($ $ $) NIL)) (-4016 (($ $ $) 49)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 110) (($ $ $) 48) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-929 |#1|) (-13 (-373) (-38 |#1|) (-10 -8 (-15 -2883 ((-418 |#1|) $)) (-15 -2883 ($ (-418 (-429 |#1|)))) (-15 -4069 ($ $)) (-15 -3301 ((-429 |#1|) $)) (-15 -3626 (|#1| $)) (-15 -1790 ($ $ (-575))) (-15 -3250 ((-575) $)) (-15 -1501 ((-1190 |#1|) |#1| |#1|)) (-15 -1725 ($ $)) (-15 -3587 ($ |#1| (-429 |#1|))) (-15 -3127 (|#1| $)))) (-316)) (T -929)) +((-2883 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-418 (-429 *3))) (-4 *3 (-316)) (-5 *1 (-929 *3)))) (-4069 (*1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-429 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316)))) (-3626 (*1 *2 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316)))) (-1790 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-929 *3)) (-4 *3 (-316)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-929 *3)) (-4 *3 (-316)))) (-1501 (*1 *2 *3 *3) (-12 (-5 *2 (-1190 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316)))) (-1725 (*1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316)))) (-3587 (*1 *1 *2 *3) (-12 (-5 *3 (-429 *2)) (-4 *2 (-316)) (-5 *1 (-929 *2)))) (-3127 (*1 *2 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316))))) +(-13 (-373) (-38 |#1|) (-10 -8 (-15 -2883 ((-418 |#1|) $)) (-15 -2883 ($ (-418 (-429 |#1|)))) (-15 -4069 ($ $)) (-15 -3301 ((-429 |#1|) $)) (-15 -3626 (|#1| $)) (-15 -1790 ($ $ (-575))) (-15 -3250 ((-575) $)) (-15 -1501 ((-1190 |#1|) |#1| |#1|)) (-15 -1725 ($ $)) (-15 -3587 ($ |#1| (-429 |#1|))) (-15 -3127 (|#1| $)))) +((-3587 (((-52) (-967 |#1|) (-429 (-967 |#1|)) (-1194)) 17) (((-52) (-418 (-967 |#1|)) (-1194)) 18))) +(((-930 |#1|) (-10 -7 (-15 -3587 ((-52) (-418 (-967 |#1|)) (-1194))) (-15 -3587 ((-52) (-967 |#1|) (-429 (-967 |#1|)) (-1194)))) (-13 (-316) (-148))) (T -930)) +((-3587 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-429 (-967 *6))) (-5 *5 (-1194)) (-5 *3 (-967 *6)) (-4 *6 (-13 (-316) (-148))) (-5 *2 (-52)) (-5 *1 (-930 *6)))) (-3587 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-52)) (-5 *1 (-930 *5))))) +(-10 -7 (-15 -3587 ((-52) (-418 (-967 |#1|)) (-1194))) (-15 -3587 ((-52) (-967 |#1|) (-429 (-967 |#1|)) (-1194)))) +((-2030 ((|#4| (-655 |#4|)) 147) (((-1190 |#4|) (-1190 |#4|) (-1190 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3926 (((-1190 |#4|) (-655 (-1190 |#4|))) 140) (((-1190 |#4|) (-1190 |#4|) (-1190 |#4|)) 61) ((|#4| (-655 |#4|)) 69) ((|#4| |#4| |#4|) 107))) +(((-931 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3926 (|#4| |#4| |#4|)) (-15 -3926 (|#4| (-655 |#4|))) (-15 -3926 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -3926 ((-1190 |#4|) (-655 (-1190 |#4|)))) (-15 -2030 (|#4| |#4| |#4|)) (-15 -2030 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -2030 (|#4| (-655 |#4|)))) (-804) (-861) (-316) (-964 |#3| |#1| |#2|)) (T -931)) +((-2030 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *6 *4 *5)) (-5 *1 (-931 *4 *5 *6 *2)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)))) (-2030 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *6)))) (-2030 (*1 *2 *2 *2) (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-964 *5 *3 *4)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-655 (-1190 *7))) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-1190 *7)) (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))) (-3926 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *6)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *6 *4 *5)) (-5 *1 (-931 *4 *5 *6 *2)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)))) (-3926 (*1 *2 *2 *2) (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-964 *5 *3 *4))))) +(-10 -7 (-15 -3926 (|#4| |#4| |#4|)) (-15 -3926 (|#4| (-655 |#4|))) (-15 -3926 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -3926 ((-1190 |#4|) (-655 (-1190 |#4|)))) (-15 -2030 (|#4| |#4| |#4|)) (-15 -2030 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -2030 (|#4| (-655 |#4|)))) +((-4354 (((-919 (-575)) (-988)) 38) (((-919 (-575)) (-655 (-575))) 34)) (-3660 (((-919 (-575)) (-655 (-575))) 67) (((-919 (-575)) (-936)) 68)) (-2546 (((-919 (-575))) 39)) (-4387 (((-919 (-575))) 53) (((-919 (-575)) (-655 (-575))) 52)) (-1787 (((-919 (-575))) 51) (((-919 (-575)) (-655 (-575))) 50)) (-3409 (((-919 (-575))) 49) (((-919 (-575)) (-655 (-575))) 48)) (-3811 (((-919 (-575))) 47) (((-919 (-575)) (-655 (-575))) 46)) (-2246 (((-919 (-575))) 45) (((-919 (-575)) (-655 (-575))) 44)) (-2349 (((-919 (-575))) 55) (((-919 (-575)) (-655 (-575))) 54)) (-2834 (((-919 (-575)) (-655 (-575))) 72) (((-919 (-575)) (-936)) 74)) (-2594 (((-919 (-575)) (-655 (-575))) 69) (((-919 (-575)) (-936)) 70)) (-2420 (((-919 (-575)) (-655 (-575))) 65) (((-919 (-575)) (-936)) 66)) (-2916 (((-919 (-575)) (-655 (-936))) 57))) +(((-932) (-10 -7 (-15 -3660 ((-919 (-575)) (-936))) (-15 -3660 ((-919 (-575)) (-655 (-575)))) (-15 -2420 ((-919 (-575)) (-936))) (-15 -2420 ((-919 (-575)) (-655 (-575)))) (-15 -2916 ((-919 (-575)) (-655 (-936)))) (-15 -2594 ((-919 (-575)) (-936))) (-15 -2594 ((-919 (-575)) (-655 (-575)))) (-15 -2834 ((-919 (-575)) (-936))) (-15 -2834 ((-919 (-575)) (-655 (-575)))) (-15 -2246 ((-919 (-575)) (-655 (-575)))) (-15 -2246 ((-919 (-575)))) (-15 -3811 ((-919 (-575)) (-655 (-575)))) (-15 -3811 ((-919 (-575)))) (-15 -3409 ((-919 (-575)) (-655 (-575)))) (-15 -3409 ((-919 (-575)))) (-15 -1787 ((-919 (-575)) (-655 (-575)))) (-15 -1787 ((-919 (-575)))) (-15 -4387 ((-919 (-575)) (-655 (-575)))) (-15 -4387 ((-919 (-575)))) (-15 -2349 ((-919 (-575)) (-655 (-575)))) (-15 -2349 ((-919 (-575)))) (-15 -2546 ((-919 (-575)))) (-15 -4354 ((-919 (-575)) (-655 (-575)))) (-15 -4354 ((-919 (-575)) (-988))))) (T -932)) +((-4354 (*1 *2 *3) (-12 (-5 *3 (-988)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2546 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2349 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2349 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-4387 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-4387 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-1787 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-3409 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-3811 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2246 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932))))) +(-10 -7 (-15 -3660 ((-919 (-575)) (-936))) (-15 -3660 ((-919 (-575)) (-655 (-575)))) (-15 -2420 ((-919 (-575)) (-936))) (-15 -2420 ((-919 (-575)) (-655 (-575)))) (-15 -2916 ((-919 (-575)) (-655 (-936)))) (-15 -2594 ((-919 (-575)) (-936))) (-15 -2594 ((-919 (-575)) (-655 (-575)))) (-15 -2834 ((-919 (-575)) (-936))) (-15 -2834 ((-919 (-575)) (-655 (-575)))) (-15 -2246 ((-919 (-575)) (-655 (-575)))) (-15 -2246 ((-919 (-575)))) (-15 -3811 ((-919 (-575)) (-655 (-575)))) (-15 -3811 ((-919 (-575)))) (-15 -3409 ((-919 (-575)) (-655 (-575)))) (-15 -3409 ((-919 (-575)))) (-15 -1787 ((-919 (-575)) (-655 (-575)))) (-15 -1787 ((-919 (-575)))) (-15 -4387 ((-919 (-575)) (-655 (-575)))) (-15 -4387 ((-919 (-575)))) (-15 -2349 ((-919 (-575)) (-655 (-575)))) (-15 -2349 ((-919 (-575)))) (-15 -2546 ((-919 (-575)))) (-15 -4354 ((-919 (-575)) (-655 (-575)))) (-15 -4354 ((-919 (-575)) (-988)))) +((-2738 (((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194))) 14)) (-3090 (((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194))) 13))) +(((-933 |#1|) (-10 -7 (-15 -3090 ((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -2738 ((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194))))) (-463)) (T -933)) +((-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-967 *4))) (-5 *3 (-655 (-1194))) (-4 *4 (-463)) (-5 *1 (-933 *4)))) (-3090 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-967 *4))) (-5 *3 (-655 (-1194))) (-4 *4 (-463)) (-5 *1 (-933 *4))))) +(-10 -7 (-15 -3090 ((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -2738 ((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194))))) +((-2883 (((-325 |#1|) (-488)) 16))) +(((-934 |#1|) (-10 -7 (-15 -2883 ((-325 |#1|) (-488)))) (-567)) (T -934)) +((-2883 (*1 *2 *3) (-12 (-5 *3 (-488)) (-5 *2 (-325 *4)) (-5 *1 (-934 *4)) (-4 *4 (-567))))) +(-10 -7 (-15 -2883 ((-325 |#1|) (-488)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-1542 (((-112) $) 35)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-935) (-141)) (T -935)) +((-1916 (*1 *2 *3) (-12 (-4 *1 (-935)) (-5 *2 (-2 (|:| -1754 (-655 *1)) (|:| -3659 *1))) (-5 *3 (-655 *1)))) (-3442 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-655 *1)) (-4 *1 (-935))))) +(-13 (-463) (-10 -8 (-15 -1916 ((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $))) (-15 -3442 ((-3 (-655 $) "failed") (-655 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3926 (($ $ $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-2009 (($) NIL T CONST)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ $ $) NIL))) +(((-936) (-13 (-805) (-737) (-10 -8 (-15 -3926 ($ $ $)) (-6 (-4462 "*"))))) (T -936)) +((-3926 (*1 *1 *1 *1) (-5 *1 (-936)))) +(-13 (-805) (-737) (-10 -8 (-15 -3926 ($ $ $)) (-6 (-4462 "*")))) ((|NonNegativeInteger|) (|%igt| |#1| 0)) -((-2317 ((|#2| (-656 |#1|) (-656 |#1|)) 28))) -(((-938 |#1| |#2|) (-10 -7 (-15 -2317 (|#2| (-656 |#1|) (-656 |#1|)))) (-374) (-1262 |#1|)) (T -938)) -((-2317 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1262 *4)) (-5 *1 (-938 *4 *2))))) -(-10 -7 (-15 -2317 (|#2| (-656 |#1|) (-656 |#1|)))) -((-1703 (((-1191 |#2|) (-656 |#2|) (-656 |#2|)) 17) (((-1259 |#1| |#2|) (-1259 |#1| |#2|) (-656 |#2|) (-656 |#2|)) 13))) -(((-939 |#1| |#2|) (-10 -7 (-15 -1703 ((-1259 |#1| |#2|) (-1259 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -1703 ((-1191 |#2|) (-656 |#2|) (-656 |#2|)))) (-1195) (-374)) (T -939)) -((-1703 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1191 *5)) (-5 *1 (-939 *4 *5)) (-14 *4 (-1195)))) (-1703 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1259 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1195)) (-4 *5 (-374)) (-5 *1 (-939 *4 *5))))) -(-10 -7 (-15 -1703 ((-1259 |#1| |#2|) (-1259 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -1703 ((-1191 |#2|) (-656 |#2|) (-656 |#2|)))) -((-2337 (((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177)) 174)) (-2569 ((|#4| |#4|) 193)) (-2379 (((-656 (-419 (-968 |#1|))) (-656 (-1195))) 146)) (-2555 (((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576)) 88)) (-2428 (((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))) (-656 |#4|)) 69)) (-2542 (((-701 |#4|) (-701 |#4|) (-656 |#4|)) 65)) (-2347 (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177)) 186)) (-2326 (((-576) (-701 |#4|) (-937) (-1177)) 166) (((-576) (-701 |#4|) (-656 (-1195)) (-937) (-1177)) 165) (((-576) (-701 |#4|) (-656 |#4|) (-937) (-1177)) 164) (((-576) (-701 |#4|) (-1177)) 154) (((-576) (-701 |#4|) (-656 (-1195)) (-1177)) 153) (((-576) (-701 |#4|) (-656 |#4|) (-1177)) 152) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-937)) 151) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195)) (-937)) 150) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-937)) 149) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|)) 148) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195))) 147) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|)) 143)) (-2389 ((|#4| (-968 |#1|)) 80)) (-2517 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 190)) (-2506 (((-656 (-656 (-576))) (-576) (-576)) 159)) (-2493 (((-656 (-656 |#4|)) (-656 (-656 |#4|))) 106)) (-2477 (((-783) (-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 100)) (-2466 (((-783) (-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 99)) (-2584 (((-112) (-656 (-968 |#1|))) 19) (((-112) (-656 |#4|)) 15)) (-2401 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|)) 84)) (-2454 (((-656 |#4|) |#4|) 57)) (-2367 (((-656 (-419 (-968 |#1|))) (-656 |#4|)) 142) (((-701 (-419 (-968 |#1|))) (-701 |#4|)) 66) (((-419 (-968 |#1|)) |#4|) 139)) (-2357 (((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-783) (-1177) (-576)) 112)) (-2412 (((-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783)) 98)) (-2530 (((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783)) 121)) (-2442 (((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| -2869 (-701 (-419 (-968 |#1|)))) (|:| |vec| (-656 (-419 (-968 |#1|)))) (|:| -4423 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) 56))) -(((-940 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195)))) (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|))) (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-937))) (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195)) (-937))) (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-937))) (-15 -2326 ((-576) (-701 |#4|) (-656 |#4|) (-1177))) (-15 -2326 ((-576) (-701 |#4|) (-656 (-1195)) (-1177))) (-15 -2326 ((-576) (-701 |#4|) (-1177))) (-15 -2326 ((-576) (-701 |#4|) (-656 |#4|) (-937) (-1177))) (-15 -2326 ((-576) (-701 |#4|) (-656 (-1195)) (-937) (-1177))) (-15 -2326 ((-576) (-701 |#4|) (-937) (-1177))) (-15 -2337 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177))) (-15 -2347 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177))) (-15 -2357 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-783) (-1177) (-576))) (-15 -2367 ((-419 (-968 |#1|)) |#4|)) (-15 -2367 ((-701 (-419 (-968 |#1|))) (-701 |#4|))) (-15 -2367 ((-656 (-419 (-968 |#1|))) (-656 |#4|))) (-15 -2379 ((-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -2389 (|#4| (-968 |#1|))) (-15 -2401 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -2412 ((-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -2428 ((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))) (-656 |#4|))) (-15 -2442 ((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| -2869 (-701 (-419 (-968 |#1|)))) (|:| |vec| (-656 (-419 (-968 |#1|)))) (|:| -4423 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -2454 ((-656 |#4|) |#4|)) (-15 -2466 ((-783) (-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2477 ((-783) (-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2493 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -2506 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2517 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2530 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -2542 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -2555 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -2569 (|#4| |#4|)) (-15 -2584 ((-112) (-656 |#4|))) (-15 -2584 ((-112) (-656 (-968 |#1|))))) (-13 (-317) (-148)) (-13 (-862) (-626 (-1195))) (-805) (-965 |#1| |#3| |#2|)) (T -940)) -((-2584 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-940 *4 *5 *6 *7)))) (-2569 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195)))) (-4 *5 (-805)) (-5 *1 (-940 *3 *4 *5 *2)) (-4 *2 (-965 *3 *5 *4)))) (-2555 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-968 *9)))) (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-965 *9 *11 *10)) (-4 *10 (-13 (-862) (-626 (-1195)))) (-4 *11 (-805)) (-5 *2 (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) (|:| |wcond| (-656 (-968 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *9)))) (|:| -1898 (-656 (-1286 (-419 (-968 *9))))))))) (-5 *1 (-940 *9 *10 *11 *12)))) (-2542 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *1 (-940 *4 *5 *6 *7)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-5 *1 (-940 *5 *6 *7 *8)))) (-2517 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-940 *5 *6 *7 *8)))) (-2506 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) (-5 *1 (-940 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-965 *4 *6 *5)))) (-2493 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-965 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195)))) (-4 *5 (-805)) (-5 *1 (-940 *3 *4 *5 *6)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-940 *4 *5 *6 *7)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-940 *4 *5 *6 *7)))) (-2454 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-940 *4 *5 *6 *3)) (-4 *3 (-965 *4 *6 *5)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2869 (-701 (-419 (-968 *4)))) (|:| |vec| (-656 (-419 (-968 *4)))) (|:| -4423 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) (|:| -1898 (-656 (-1286 (-419 (-968 *4))))))) (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5)))) (-2428 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) (|:| -1898 (-656 (-1286 (-419 (-968 *4))))))) (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-965 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *1 (-940 *4 *5 *6 *7)))) (-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *4 (-783)))) (-2401 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-4 *7 (-965 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) (-5 *1 (-940 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-968 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-965 *4 *6 *5)) (-5 *1 (-940 *4 *5 *6 *2)) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-968 *4)))) (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-968 *4)))) (-5 *1 (-940 *4 *5 *6 *7)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-701 (-419 (-968 *4)))) (-5 *1 (-940 *4 *5 *6 *7)))) (-2367 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-419 (-968 *4))) (-5 *1 (-940 *4 *5 *6 *3)) (-4 *3 (-965 *4 *6 *5)))) (-2357 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-968 *8)))) (-5 *5 (-783)) (-5 *6 (-1177)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-965 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1195)))) (-4 *10 (-805)) (-5 *2 (-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) (|:| |wcond| (-656 (-968 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *8)))) (|:| -1898 (-656 (-1286 (-419 (-968 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-940 *8 *9 *10 *11)) (-5 *7 (-576)))) (-2347 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-968 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) (|:| -1898 (-656 (-1286 (-419 (-968 *4)))))))))) (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-968 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) (|:| -1898 (-656 (-1286 (-419 (-968 *5)))))))))) (-5 *4 (-1177)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-965 *5 *7 *6)) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *5 *6 *7 *8)))) (-2326 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-937)) (-5 *5 (-1177)) (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *6 *7 *8 *9)))) (-2326 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1195))) (-5 *5 (-937)) (-5 *6 (-1177)) (-4 *10 (-965 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *7 *8 *9 *10)))) (-2326 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-937)) (-5 *6 (-1177)) (-4 *10 (-965 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *7 *8 *9 *10)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-1177)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *5 *6 *7 *8)))) (-2326 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-1177)) (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *6 *7 *8 *9)))) (-2326 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1177)) (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *6 *7 *8 *9)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-937)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-968 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) (|:| -1898 (-656 (-1286 (-419 (-968 *5)))))))))) (-5 *1 (-940 *5 *6 *7 *8)))) (-2326 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-937)) (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-968 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *6)))) (|:| -1898 (-656 (-1286 (-419 (-968 *6)))))))))) (-5 *1 (-940 *6 *7 *8 *9)))) (-2326 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *5 (-937)) (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-968 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *6)))) (|:| -1898 (-656 (-1286 (-419 (-968 *6)))))))))) (-5 *1 (-940 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-968 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) (|:| -1898 (-656 (-1286 (-419 (-968 *4)))))))))) (-5 *1 (-940 *4 *5 *6 *7)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1195))) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-968 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) (|:| -1898 (-656 (-1286 (-419 (-968 *5)))))))))) (-5 *1 (-940 *5 *6 *7 *8)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-968 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) (|:| -1898 (-656 (-1286 (-419 (-968 *5)))))))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(-10 -7 (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195)))) (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|))) (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-937))) (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195)) (-937))) (-15 -2326 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-937))) (-15 -2326 ((-576) (-701 |#4|) (-656 |#4|) (-1177))) (-15 -2326 ((-576) (-701 |#4|) (-656 (-1195)) (-1177))) (-15 -2326 ((-576) (-701 |#4|) (-1177))) (-15 -2326 ((-576) (-701 |#4|) (-656 |#4|) (-937) (-1177))) (-15 -2326 ((-576) (-701 |#4|) (-656 (-1195)) (-937) (-1177))) (-15 -2326 ((-576) (-701 |#4|) (-937) (-1177))) (-15 -2337 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177))) (-15 -2347 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177))) (-15 -2357 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-783) (-1177) (-576))) (-15 -2367 ((-419 (-968 |#1|)) |#4|)) (-15 -2367 ((-701 (-419 (-968 |#1|))) (-701 |#4|))) (-15 -2367 ((-656 (-419 (-968 |#1|))) (-656 |#4|))) (-15 -2379 ((-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -2389 (|#4| (-968 |#1|))) (-15 -2401 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -2412 ((-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -2428 ((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))) (-656 |#4|))) (-15 -2442 ((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| -2869 (-701 (-419 (-968 |#1|)))) (|:| |vec| (-656 (-419 (-968 |#1|)))) (|:| -4423 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -2454 ((-656 |#4|) |#4|)) (-15 -2466 ((-783) (-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2477 ((-783) (-656 (-2 (|:| -4423 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2493 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -2506 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2517 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2530 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -2542 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -2555 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -1898 (-656 (-1286 (-419 (-968 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -2569 (|#4| |#4|)) (-15 -2584 ((-112) (-656 |#4|))) (-15 -2584 ((-112) (-656 (-968 |#1|))))) -((-2707 (((-943) |#1| (-1195)) 17) (((-943) |#1| (-1195) (-1112 (-227))) 21)) (-2856 (((-943) |#1| |#1| (-1195) (-1112 (-227))) 19) (((-943) |#1| (-1195) (-1112 (-227))) 15))) -(((-941 |#1|) (-10 -7 (-15 -2856 ((-943) |#1| (-1195) (-1112 (-227)))) (-15 -2856 ((-943) |#1| |#1| (-1195) (-1112 (-227)))) (-15 -2707 ((-943) |#1| (-1195) (-1112 (-227)))) (-15 -2707 ((-943) |#1| (-1195)))) (-626 (-548))) (T -941)) -((-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-943)) (-5 *1 (-941 *3)) (-4 *3 (-626 (-548))))) (-2707 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943)) (-5 *1 (-941 *3)) (-4 *3 (-626 (-548))))) (-2856 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943)) (-5 *1 (-941 *3)) (-4 *3 (-626 (-548))))) (-2856 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943)) (-5 *1 (-941 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -2856 ((-943) |#1| (-1195) (-1112 (-227)))) (-15 -2856 ((-943) |#1| |#1| (-1195) (-1112 (-227)))) (-15 -2707 ((-943) |#1| (-1195) (-1112 (-227)))) (-15 -2707 ((-943) |#1| (-1195)))) -((-4302 (($ $ (-1112 (-227)) (-1112 (-227)) (-1112 (-227))) 121)) (-2840 (((-1112 (-227)) $) 64)) (-2827 (((-1112 (-227)) $) 63)) (-2815 (((-1112 (-227)) $) 62)) (-2832 (((-656 (-656 (-227))) $) 69)) (-2844 (((-1112 (-227)) $) 65)) (-2761 (((-576) (-576)) 57)) (-2807 (((-576) (-576)) 52)) (-2781 (((-576) (-576)) 55)) (-2739 (((-112) (-112)) 59)) (-2771 (((-576)) 56)) (-1966 (($ $ (-1112 (-227))) 124) (($ $) 125)) (-2866 (($ (-1 (-959 (-227)) (-227)) (-1112 (-227))) 131) (($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227))) 132)) (-2856 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227))) 135) (($ $ (-1112 (-227))) 127)) (-2729 (((-576)) 60)) (-2820 (((-576)) 50)) (-2793 (((-576)) 53)) (-1364 (((-656 (-656 (-959 (-227)))) $) 151)) (-2718 (((-112) (-112)) 61)) (-2884 (((-874) $) 149)) (-2750 (((-112)) 58))) -(((-942) (-13 (-992) (-10 -8 (-15 -2866 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)))) (-15 -2866 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2856 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2856 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2856 ($ $ (-1112 (-227)))) (-15 -4302 ($ $ (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -1966 ($ $ (-1112 (-227)))) (-15 -1966 ($ $)) (-15 -2844 ((-1112 (-227)) $)) (-15 -2832 ((-656 (-656 (-227))) $)) (-15 -2820 ((-576))) (-15 -2807 ((-576) (-576))) (-15 -2793 ((-576))) (-15 -2781 ((-576) (-576))) (-15 -2771 ((-576))) (-15 -2761 ((-576) (-576))) (-15 -2750 ((-112))) (-15 -2739 ((-112) (-112))) (-15 -2729 ((-576))) (-15 -2718 ((-112) (-112)))))) (T -942)) -((-2866 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-942)))) (-2866 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-942)))) (-2856 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-942)))) (-2856 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-942)))) (-2856 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) (-4302 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) (-1966 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) (-1966 (*1 *1 *1) (-5 *1 (-942))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-942)))) (-2820 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-2807 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-2793 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-2771 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-2750 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))) (-2729 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-2718 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942))))) -(-13 (-992) (-10 -8 (-15 -2866 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)))) (-15 -2866 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2856 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2856 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2856 ($ $ (-1112 (-227)))) (-15 -4302 ($ $ (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -1966 ($ $ (-1112 (-227)))) (-15 -1966 ($ $)) (-15 -2844 ((-1112 (-227)) $)) (-15 -2832 ((-656 (-656 (-227))) $)) (-15 -2820 ((-576))) (-15 -2807 ((-576) (-576))) (-15 -2793 ((-576))) (-15 -2781 ((-576) (-576))) (-15 -2771 ((-576))) (-15 -2761 ((-576) (-576))) (-15 -2750 ((-112))) (-15 -2739 ((-112) (-112))) (-15 -2729 ((-576))) (-15 -2718 ((-112) (-112))))) -((-4302 (($ $ (-1112 (-227))) 122) (($ $ (-1112 (-227)) (-1112 (-227))) 123)) (-2827 (((-1112 (-227)) $) 73)) (-2815 (((-1112 (-227)) $) 72)) (-2844 (((-1112 (-227)) $) 74)) (-2632 (((-576) (-576)) 66)) (-2674 (((-576) (-576)) 61)) (-2652 (((-576) (-576)) 64)) (-2607 (((-112) (-112)) 68)) (-2642 (((-576)) 65)) (-1966 (($ $ (-1112 (-227))) 126) (($ $) 127)) (-2866 (($ (-1 (-959 (-227)) (-227)) (-1112 (-227))) 141) (($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227))) 142)) (-2707 (($ (-1 (-227) (-227)) (-1112 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-2856 (($ (-1 (-227) (-227)) (-1112 (-227))) 137) (($ (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227))) 138) (($ (-656 (-1 (-227) (-227))) (-1112 (-227))) 146) (($ (-656 (-1 (-227) (-227))) (-1112 (-227)) (-1112 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227))) 140) (($ $ (-1112 (-227))) 128)) (-2697 (((-112) $) 69)) (-2597 (((-576)) 70)) (-2686 (((-576)) 59)) (-2663 (((-576)) 62)) (-1364 (((-656 (-656 (-959 (-227)))) $) 35)) (-3420 (((-112) (-112)) 71)) (-2884 (((-874) $) 167)) (-2619 (((-112)) 67))) -(((-943) (-13 (-971) (-10 -8 (-15 -2856 ($ (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2856 ($ (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2856 ($ (-656 (-1 (-227) (-227))) (-1112 (-227)))) (-15 -2856 ($ (-656 (-1 (-227) (-227))) (-1112 (-227)) (-1112 (-227)))) (-15 -2856 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2856 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2866 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)))) (-15 -2866 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2707 ($ (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2707 ($ (-1 (-227) (-227)))) (-15 -2856 ($ $ (-1112 (-227)))) (-15 -2697 ((-112) $)) (-15 -4302 ($ $ (-1112 (-227)))) (-15 -4302 ($ $ (-1112 (-227)) (-1112 (-227)))) (-15 -1966 ($ $ (-1112 (-227)))) (-15 -1966 ($ $)) (-15 -2844 ((-1112 (-227)) $)) (-15 -2686 ((-576))) (-15 -2674 ((-576) (-576))) (-15 -2663 ((-576))) (-15 -2652 ((-576) (-576))) (-15 -2642 ((-576))) (-15 -2632 ((-576) (-576))) (-15 -2619 ((-112))) (-15 -2607 ((-112) (-112))) (-15 -2597 ((-576))) (-15 -3420 ((-112) (-112)))))) (T -943)) -((-2856 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2856 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2856 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2856 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2856 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2856 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2866 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2866 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-943)))) (-2856 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-4302 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) (-4302 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) (-1966 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) (-1966 (*1 *1 *1) (-5 *1 (-943))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) (-2686 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2674 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2663 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2642 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2632 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2619 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-2597 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3420 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) -(-13 (-971) (-10 -8 (-15 -2856 ($ (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2856 ($ (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2856 ($ (-656 (-1 (-227) (-227))) (-1112 (-227)))) (-15 -2856 ($ (-656 (-1 (-227) (-227))) (-1112 (-227)) (-1112 (-227)))) (-15 -2856 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2856 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2866 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)))) (-15 -2866 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2707 ($ (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2707 ($ (-1 (-227) (-227)))) (-15 -2856 ($ $ (-1112 (-227)))) (-15 -2697 ((-112) $)) (-15 -4302 ($ $ (-1112 (-227)))) (-15 -4302 ($ $ (-1112 (-227)) (-1112 (-227)))) (-15 -1966 ($ $ (-1112 (-227)))) (-15 -1966 ($ $)) (-15 -2844 ((-1112 (-227)) $)) (-15 -2686 ((-576))) (-15 -2674 ((-576) (-576))) (-15 -2663 ((-576))) (-15 -2652 ((-576) (-576))) (-15 -2642 ((-576))) (-15 -2632 ((-576) (-576))) (-15 -2619 ((-112))) (-15 -2607 ((-112) (-112))) (-15 -2597 ((-576))) (-15 -3420 ((-112) (-112))))) -((-2876 (((-656 (-1112 (-227))) (-656 (-656 (-959 (-227))))) 34))) -(((-944) (-10 -7 (-15 -2876 ((-656 (-1112 (-227))) (-656 (-656 (-959 (-227)))))))) (T -944)) -((-2876 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *2 (-656 (-1112 (-227)))) (-5 *1 (-944))))) -(-10 -7 (-15 -2876 ((-656 (-1112 (-227))) (-656 (-656 (-959 (-227))))))) -((-4195 ((|#2| |#2|) 28)) (-1619 ((|#2| |#2|) 29)) (-3739 ((|#2| |#2|) 27)) (-2608 ((|#2| |#2| (-518)) 26))) -(((-945 |#1| |#2|) (-10 -7 (-15 -2608 (|#2| |#2| (-518))) (-15 -3739 (|#2| |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -1619 (|#2| |#2|))) (-1118) (-442 |#1|)) (T -945)) -((-1619 (*1 *2 *2) (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3)))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3)))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1118)) (-5 *1 (-945 *4 *2)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -2608 (|#2| |#2| (-518))) (-15 -3739 (|#2| |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -1619 (|#2| |#2|))) -((-4195 (((-326 (-576)) (-1195)) 16)) (-1619 (((-326 (-576)) (-1195)) 14)) (-3739 (((-326 (-576)) (-1195)) 12)) (-2608 (((-326 (-576)) (-1195) (-518)) 19))) -(((-946) (-10 -7 (-15 -2608 ((-326 (-576)) (-1195) (-518))) (-15 -3739 ((-326 (-576)) (-1195))) (-15 -4195 ((-326 (-576)) (-1195))) (-15 -1619 ((-326 (-576)) (-1195))))) (T -946)) -((-1619 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-946))))) -(-10 -7 (-15 -2608 ((-326 (-576)) (-1195) (-518))) (-15 -3739 ((-326 (-576)) (-1195))) (-15 -4195 ((-326 (-576)) (-1195))) (-15 -1619 ((-326 (-576)) (-1195)))) -((-1606 (((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)) 25)) (-2889 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-947 |#1| |#2| |#3|) (-10 -7 (-15 -2889 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1606 ((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)))) (-1118) (-899 |#1|) (-13 (-1118) (-1056 |#2|))) (T -947)) -((-1606 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-4 *6 (-13 (-1118) (-1056 *3))) (-4 *3 (-899 *5)) (-5 *1 (-947 *5 *3 *6)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1118) (-1056 *5))) (-4 *5 (-899 *4)) (-4 *4 (-1118)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-947 *4 *5 *6))))) -(-10 -7 (-15 -2889 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1606 ((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)))) -((-1606 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 30))) -(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -1606 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-1118) (-13 (-568) (-899 |#1|)) (-13 (-442 |#2|) (-626 (-905 |#1|)) (-899 |#1|) (-1056 (-624 $)))) (T -948)) -((-1606 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118)) (-4 *3 (-13 (-442 *6) (-626 *4) (-899 *5) (-1056 (-624 $)))) (-5 *4 (-905 *5)) (-4 *6 (-13 (-568) (-899 *5))) (-5 *1 (-948 *5 *6 *3))))) -(-10 -7 (-15 -1606 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) -((-1606 (((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)) 13))) -(((-949 |#1|) (-10 -7 (-15 -1606 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)))) (-557)) (T -949)) -((-1606 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 (-576) *3)) (-5 *4 (-905 (-576))) (-4 *3 (-557)) (-5 *1 (-949 *3))))) -(-10 -7 (-15 -1606 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)))) -((-1606 (((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)) 57))) -(((-950 |#1| |#2|) (-10 -7 (-15 -1606 ((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)))) (-1118) (-13 (-1118) (-1056 (-624 $)) (-626 (-905 |#1|)) (-899 |#1|))) (T -950)) -((-1606 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1118)) (-4 *6 (-13 (-1118) (-1056 (-624 $)) (-626 *4) (-899 *5))) (-5 *4 (-905 *5)) (-5 *1 (-950 *5 *6))))) -(-10 -7 (-15 -1606 ((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)))) -((-1606 (((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)) 17))) -(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -1606 ((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)))) (-1118) (-899 |#1|) (-678 |#2|)) (T -951)) -((-1606 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-4 *6 (-899 *5)) (-4 *3 (-678 *6)) (-5 *1 (-951 *5 *6 *3))))) -(-10 -7 (-15 -1606 ((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)))) -((-1606 (((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|)) 17 (|has| |#3| (-899 |#1|))) (((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|))) 16))) -(((-952 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1606 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|)))) (IF (|has| |#3| (-899 |#1|)) (-15 -1606 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|))) |%noBranch|)) (-1118) (-805) (-862) (-13 (-1067) (-899 |#1|)) (-13 (-965 |#4| |#2| |#3|) (-626 (-905 |#1|)))) (T -952)) -((-1606 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118)) (-4 *3 (-13 (-965 *8 *6 *7) (-626 *4))) (-5 *4 (-905 *5)) (-4 *7 (-899 *5)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-13 (-1067) (-899 *5))) (-5 *1 (-952 *5 *6 *7 *8 *3)))) (-1606 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-905 *6) (-902 *6 *3))) (-4 *8 (-862)) (-5 *2 (-902 *6 *3)) (-5 *4 (-905 *6)) (-4 *6 (-1118)) (-4 *3 (-13 (-965 *9 *7 *8) (-626 *4))) (-4 *7 (-805)) (-4 *9 (-13 (-1067) (-899 *6))) (-5 *1 (-952 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -1606 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|)))) (IF (|has| |#3| (-899 |#1|)) (-15 -1606 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|))) |%noBranch|)) -((-1694 ((|#2| |#2| (-656 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-953 |#1| |#2| |#3|) (-10 -7 (-15 -1694 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1694 (|#2| |#2| (-656 (-1 (-112) |#3|))))) (-1118) (-442 |#1|) (-1236)) (T -953)) -((-1694 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1236)) (-4 *4 (-1118)) (-5 *1 (-953 *4 *2 *5)) (-4 *2 (-442 *4)))) (-1694 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1236)) (-4 *4 (-1118)) (-5 *1 (-953 *4 *2 *5)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -1694 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1694 (|#2| |#2| (-656 (-1 (-112) |#3|))))) -((-1694 (((-326 (-576)) (-1195) (-656 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1195) (-1 (-112) |#1|)) 15))) -(((-954 |#1|) (-10 -7 (-15 -1694 ((-326 (-576)) (-1195) (-1 (-112) |#1|))) (-15 -1694 ((-326 (-576)) (-1195) (-656 (-1 (-112) |#1|))))) (-1236)) (T -954)) -((-1694 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1236)) (-5 *2 (-326 (-576))) (-5 *1 (-954 *5)))) (-1694 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1236)) (-5 *2 (-326 (-576))) (-5 *1 (-954 *5))))) -(-10 -7 (-15 -1694 ((-326 (-576)) (-1195) (-1 (-112) |#1|))) (-15 -1694 ((-326 (-576)) (-1195) (-656 (-1 (-112) |#1|))))) -((-1606 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 25))) -(((-955 |#1| |#2| |#3|) (-10 -7 (-15 -1606 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-1118) (-13 (-568) (-899 |#1|) (-626 (-905 |#1|))) (-1010 |#2|)) (T -955)) -((-1606 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118)) (-4 *3 (-1010 *6)) (-4 *6 (-13 (-568) (-899 *5) (-626 *4))) (-5 *4 (-905 *5)) (-5 *1 (-955 *5 *6 *3))))) -(-10 -7 (-15 -1606 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) -((-1606 (((-902 |#1| (-1195)) (-1195) (-905 |#1|) (-902 |#1| (-1195))) 18))) -(((-956 |#1|) (-10 -7 (-15 -1606 ((-902 |#1| (-1195)) (-1195) (-905 |#1|) (-902 |#1| (-1195))))) (-1118)) (T -956)) -((-1606 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 (-1195))) (-5 *3 (-1195)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-5 *1 (-956 *5))))) -(-10 -7 (-15 -1606 ((-902 |#1| (-1195)) (-1195) (-905 |#1|) (-902 |#1| (-1195))))) -((-1621 (((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) 34)) (-1606 (((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) 33))) -(((-957 |#1| |#2| |#3|) (-10 -7 (-15 -1606 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-15 -1621 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))) (-1118) (-1067) (-13 (-1067) (-626 (-905 |#1|)) (-1056 |#2|))) (T -957)) -((-1621 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-905 *6))) (-5 *5 (-1 (-902 *6 *8) *8 (-905 *6) (-902 *6 *8))) (-4 *6 (-1118)) (-4 *8 (-13 (-1067) (-626 (-905 *6)) (-1056 *7))) (-5 *2 (-902 *6 *8)) (-4 *7 (-1067)) (-5 *1 (-957 *6 *7 *8)))) (-1606 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-656 (-905 *7))) (-5 *5 (-1 *9 (-656 *9))) (-5 *6 (-1 (-902 *7 *9) *9 (-905 *7) (-902 *7 *9))) (-4 *7 (-1118)) (-4 *9 (-13 (-1067) (-626 (-905 *7)) (-1056 *8))) (-5 *2 (-902 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1067)) (-5 *1 (-957 *7 *8 *9))))) -(-10 -7 (-15 -1606 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-15 -1621 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))) -((-1708 (((-1191 (-419 (-576))) (-576)) 79)) (-1696 (((-1191 (-576)) (-576)) 82)) (-3363 (((-1191 (-576)) (-576)) 76)) (-1682 (((-576) (-1191 (-576))) 72)) (-1672 (((-1191 (-419 (-576))) (-576)) 65)) (-1663 (((-1191 (-576)) (-576)) 49)) (-1653 (((-1191 (-576)) (-576)) 84)) (-1640 (((-1191 (-576)) (-576)) 83)) (-1631 (((-1191 (-419 (-576))) (-576)) 67))) -(((-958) (-10 -7 (-15 -1631 ((-1191 (-419 (-576))) (-576))) (-15 -1640 ((-1191 (-576)) (-576))) (-15 -1653 ((-1191 (-576)) (-576))) (-15 -1663 ((-1191 (-576)) (-576))) (-15 -1672 ((-1191 (-419 (-576))) (-576))) (-15 -1682 ((-576) (-1191 (-576)))) (-15 -3363 ((-1191 (-576)) (-576))) (-15 -1696 ((-1191 (-576)) (-576))) (-15 -1708 ((-1191 (-419 (-576))) (-576))))) (T -958)) -((-1708 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576)))) (-1696 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))) (-3363 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-576)) (-5 *1 (-958)))) (-1672 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576)))) (-1663 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))) (-1653 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))) (-1640 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))) (-1631 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576))))) -(-10 -7 (-15 -1631 ((-1191 (-419 (-576))) (-576))) (-15 -1640 ((-1191 (-576)) (-576))) (-15 -1653 ((-1191 (-576)) (-576))) (-15 -1663 ((-1191 (-576)) (-576))) (-15 -1672 ((-1191 (-419 (-576))) (-576))) (-15 -1682 ((-576) (-1191 (-576)))) (-15 -3363 ((-1191 (-576)) (-576))) (-15 -1696 ((-1191 (-576)) (-576))) (-15 -1708 ((-1191 (-419 (-576))) (-576)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2881 (($ (-783)) NIL (|has| |#1| (-23)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) NIL)) (-2634 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-1839 (($ (-656 |#1|)) 9)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-4057 (((-701 |#1|) $ $) NIL (|has| |#1| (-1067)))) (-2310 (($ (-783) |#1|) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2142 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-2374 (((-112) $ (-783)) NIL)) (-1840 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2134 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1962 ((|#1| $) NIL (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3346 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-2904 (($ $ (-656 |#1|)) 25)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1253 (-576))) NIL)) (-2165 ((|#1| $ $) NIL (|has| |#1| (-1067)))) (-1543 (((-937) $) 13)) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2153 (($ $ $) 23)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 14)) (-2895 (($ (-656 |#1|)) NIL)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-656 $)) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4029 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4017 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2872 (((-783) $) 11 (|has| $ (-6 -4461))))) -(((-959 |#1|) (-998 |#1|) (-1067)) (T -959)) -NIL -(-998 |#1|) -((-1739 (((-493 |#1| |#2|) (-968 |#2|)) 22)) (-1775 (((-253 |#1| |#2|) (-968 |#2|)) 35)) (-1751 (((-968 |#2|) (-493 |#1| |#2|)) 27)) (-1728 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-1765 (((-968 |#2|) (-253 |#1| |#2|)) 32)) (-1717 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48))) -(((-960 |#1| |#2|) (-10 -7 (-15 -1717 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1728 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -1739 ((-493 |#1| |#2|) (-968 |#2|))) (-15 -1751 ((-968 |#2|) (-493 |#1| |#2|))) (-15 -1765 ((-968 |#2|) (-253 |#1| |#2|))) (-15 -1775 ((-253 |#1| |#2|) (-968 |#2|)))) (-656 (-1195)) (-1067)) (T -960)) -((-1775 (*1 *2 *3) (-12 (-5 *3 (-968 *5)) (-4 *5 (-1067)) (-5 *2 (-253 *4 *5)) (-5 *1 (-960 *4 *5)) (-14 *4 (-656 (-1195))))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) (-5 *2 (-968 *5)) (-5 *1 (-960 *4 *5)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) (-5 *2 (-968 *5)) (-5 *1 (-960 *4 *5)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-968 *5)) (-4 *5 (-1067)) (-5 *2 (-493 *4 *5)) (-5 *1 (-960 *4 *5)) (-14 *4 (-656 (-1195))))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) (-5 *2 (-253 *4 *5)) (-5 *1 (-960 *4 *5)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) (-5 *2 (-493 *4 *5)) (-5 *1 (-960 *4 *5))))) -(-10 -7 (-15 -1717 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1728 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -1739 ((-493 |#1| |#2|) (-968 |#2|))) (-15 -1751 ((-968 |#2|) (-493 |#1| |#2|))) (-15 -1765 ((-968 |#2|) (-253 |#1| |#2|))) (-15 -1775 ((-253 |#1| |#2|) (-968 |#2|)))) -((-1786 (((-656 |#2|) |#2| |#2|) 10)) (-1819 (((-783) (-656 |#1|)) 48 (|has| |#1| (-860)))) (-1798 (((-656 |#2|) |#2|) 11)) (-1829 (((-783) (-656 |#1|) (-576) (-576)) 52 (|has| |#1| (-860)))) (-1809 ((|#1| |#2|) 38 (|has| |#1| (-860))))) -(((-961 |#1| |#2|) (-10 -7 (-15 -1786 ((-656 |#2|) |#2| |#2|)) (-15 -1798 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -1809 (|#1| |#2|)) (-15 -1819 ((-783) (-656 |#1|))) (-15 -1829 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1262 |#1|)) (T -961)) -((-1829 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-961 *5 *6)) (-4 *6 (-1262 *5)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-961 *4 *5)) (-4 *5 (-1262 *4)))) (-1809 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-961 *2 *3)) (-4 *3 (-1262 *2)))) (-1798 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-961 *4 *3)) (-4 *3 (-1262 *4)))) (-1786 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-961 *4 *3)) (-4 *3 (-1262 *4))))) -(-10 -7 (-15 -1786 ((-656 |#2|) |#2| |#2|)) (-15 -1798 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -1809 (|#1| |#2|)) (-15 -1819 ((-783) (-656 |#1|))) (-15 -1829 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) -((-2551 (((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|)) 19))) -(((-962 |#1| |#2|) (-10 -7 (-15 -2551 ((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|)))) (-1067) (-1067)) (T -962)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-968 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-968 *6)) (-5 *1 (-962 *5 *6))))) -(-10 -7 (-15 -2551 ((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|)))) -((-3467 (((-1259 |#1| (-968 |#2|)) (-968 |#2|) (-1282 |#1|)) 18))) -(((-963 |#1| |#2|) (-10 -7 (-15 -3467 ((-1259 |#1| (-968 |#2|)) (-968 |#2|) (-1282 |#1|)))) (-1195) (-1067)) (T -963)) -((-3467 (*1 *2 *3 *4) (-12 (-5 *4 (-1282 *5)) (-14 *5 (-1195)) (-4 *6 (-1067)) (-5 *2 (-1259 *5 (-968 *6))) (-5 *1 (-963 *5 *6)) (-5 *3 (-968 *6))))) -(-10 -7 (-15 -3467 ((-1259 |#1| (-968 |#2|)) (-968 |#2|) (-1282 |#1|)))) -((-1853 (((-783) $) 88) (((-783) $ (-656 |#4|)) 93)) (-2944 (($ $) 203)) (-3986 (((-430 $) $) 195)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 141)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-4401 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-2778 (($ $ $ |#4|) 95)) (-2613 (((-701 (-576)) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 131) (((-701 |#2|) (-701 $)) 121) (((-701 |#2|) (-1286 $)) NIL)) (-2192 (($ $) 210) (($ $ |#4|) 213)) (-4394 (((-656 $) $) 77)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 229) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 222)) (-1876 (((-656 $) $) 34)) (-2421 (($ |#2| |#3|) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|) (-656 (-783))) 71)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ |#4|) 192)) (-1899 (((-3 (-656 $) "failed") $) 52)) (-1887 (((-3 (-656 $) "failed") $) 39)) (-1910 (((-3 (-2 (|:| |var| |#4|) (|:| -1359 (-783))) "failed") $) 57)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 134)) (-3181 (((-430 (-1191 $)) (-1191 $)) 147)) (-3192 (((-430 (-1191 $)) (-1191 $)) 145)) (-2354 (((-430 $) $) 165)) (-3049 (($ $ (-656 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL)) (-2790 (($ $ |#4|) 97)) (-2616 (((-905 (-390)) $) 243) (((-905 (-576)) $) 236) (((-548) $) 251)) (-1841 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 184)) (-3245 ((|#2| $ |#3|) NIL) (($ $ |#4| (-783)) 62) (($ $ (-656 |#4|) (-656 (-783))) 69)) (-3148 (((-3 $ "failed") $) 186)) (-3722 (((-112) $ $) 216))) -(((-964 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3214 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -3986 ((-430 |#1|) |#1|)) (-15 -2944 (|#1| |#1|)) (-15 -3148 ((-3 |#1| "failed") |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -1606 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1606 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -3192 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3181 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3169 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3159 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -2192 (|#1| |#1| |#4|)) (-15 -1841 (|#1| |#1| |#4|)) (-15 -2790 (|#1| |#1| |#4|)) (-15 -2778 (|#1| |#1| |#1| |#4|)) (-15 -4394 ((-656 |#1|) |#1|)) (-15 -1853 ((-783) |#1| (-656 |#4|))) (-15 -1853 ((-783) |#1|)) (-15 -1910 ((-3 (-2 (|:| |var| |#4|) (|:| -1359 (-783))) "failed") |#1|)) (-15 -1899 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1887 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2421 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2421 (|#1| |#1| |#4| (-783))) (-15 -2853 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1| |#4|)) (-15 -1876 ((-656 |#1|) |#1|)) (-15 -3245 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3245 (|#1| |#1| |#4| (-783))) (-15 -2613 ((-701 |#2|) (-1286 |#1|))) (-15 -2613 ((-701 |#2|) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -4401 (|#4| |#1|)) (-15 -3049 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#4| |#1|)) (-15 -3049 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3049 (|#1| |#1| |#4| |#2|)) (-15 -3049 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| (-304 |#1|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2421 (|#1| |#2| |#3|)) (-15 -3245 (|#2| |#1| |#3|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -1841 (|#2| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -3722 ((-112) |#1| |#1|))) (-965 |#2| |#3| |#4|) (-1067) (-805) (-862)) (T -964)) -NIL -(-10 -8 (-15 -3214 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -3986 ((-430 |#1|) |#1|)) (-15 -2944 (|#1| |#1|)) (-15 -3148 ((-3 |#1| "failed") |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -1606 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1606 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -3192 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3181 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3169 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3159 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -2192 (|#1| |#1| |#4|)) (-15 -1841 (|#1| |#1| |#4|)) (-15 -2790 (|#1| |#1| |#4|)) (-15 -2778 (|#1| |#1| |#1| |#4|)) (-15 -4394 ((-656 |#1|) |#1|)) (-15 -1853 ((-783) |#1| (-656 |#4|))) (-15 -1853 ((-783) |#1|)) (-15 -1910 ((-3 (-2 (|:| |var| |#4|) (|:| -1359 (-783))) "failed") |#1|)) (-15 -1899 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1887 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2421 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2421 (|#1| |#1| |#4| (-783))) (-15 -2853 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1| |#4|)) (-15 -1876 ((-656 |#1|) |#1|)) (-15 -3245 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3245 (|#1| |#1| |#4| (-783))) (-15 -2613 ((-701 |#2|) (-1286 |#1|))) (-15 -2613 ((-701 |#2|) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -4401 (|#4| |#1|)) (-15 -3049 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#4| |#1|)) (-15 -3049 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3049 (|#1| |#1| |#4| |#2|)) (-15 -3049 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| (-304 |#1|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2421 (|#1| |#2| |#3|)) (-15 -3245 (|#2| |#1| |#3|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -1841 (|#2| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -3722 ((-112) |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1607 (((-656 |#3|) $) 113)) (-3467 (((-1191 $) $ |#3|) 128) (((-1191 |#1|) $) 127)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4241 (($ $) 91 (|has| |#1| (-568)))) (-4221 (((-112) $) 93 (|has| |#1| (-568)))) (-1853 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-1459 (((-3 $ "failed") $ $) 20)) (-3203 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-925)))) (-2944 (($ $) 101 (|has| |#1| (-464)))) (-3986 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-925)))) (-2473 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1056 (-576)))) (((-3 |#3| "failed") $) 141)) (-4401 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1056 (-576)))) ((|#3| $) 142)) (-2778 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-4407 (($ $) 159)) (-2613 (((-701 (-576)) (-1286 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1286 $)) 134)) (-1999 (((-3 $ "failed") $) 37)) (-2192 (($ $) 181 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-4394 (((-656 $) $) 112)) (-2463 (((-112) $) 99 (|has| |#1| (-925)))) (-3098 (($ $ |#1| |#2| $) 177)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1439 (((-112) $) 35)) (-1518 (((-783) $) 174)) (-2437 (($ (-1191 |#1|) |#3|) 120) (($ (-1191 $) |#3|) 119)) (-1876 (((-656 $) $) 129)) (-3734 (((-112) $) 157)) (-2421 (($ |#1| |#2|) 158) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ |#3|) 123)) (-1864 ((|#2| $) 175) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3109 (($ (-1 |#2| |#2|) $) 176)) (-2551 (($ (-1 |#1| |#1|) $) 156)) (-2788 (((-3 |#3| "failed") $) 126)) (-4371 (($ $) 154)) (-4383 ((|#1| $) 153)) (-3888 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3733 (((-1177) $) 10)) (-1899 (((-3 (-656 $) "failed") $) 117)) (-1887 (((-3 (-656 $) "failed") $) 118)) (-1910 (((-3 (-2 (|:| |var| |#3|) (|:| -1359 (-783))) "failed") $) 116)) (-3914 (((-1138) $) 11)) (-4346 (((-112) $) 171)) (-4359 ((|#1| $) 172)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-3928 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-925)))) (-2354 (((-430 $) $) 102 (|has| |#1| (-925)))) (-2852 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3049 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-656 |#3|) (-656 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-656 |#3|) (-656 $)) 143)) (-2790 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2390 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-3813 ((|#2| $) 155) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-2616 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1841 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 107 (-3227 (|has| $ (-146)) (|has| |#1| (-925))))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-1993 (((-656 |#1|) $) 173)) (-3245 ((|#1| $ |#2|) 160) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3148 (((-3 $ "failed") $) 82 (-3766 (-3227 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) 32 T CONST)) (-3086 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 92 (|has| |#1| (-568)))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151))) -(((-965 |#1| |#2| |#3|) (-141) (-1067) (-805) (-862)) (T -965)) -((-2192 (*1 *1 *1) (-12 (-4 *1 (-965 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-3813 (*1 *2 *1 *3) (-12 (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-783)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) (-3245 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-965 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *2 (-862)))) (-3245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)))) (-1876 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5)))) (-3467 (*1 *2 *1 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-1191 *1)) (-4 *1 (-965 *4 *5 *3)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-1191 *3)))) (-2788 (*1 *2 *1) (|partial| -12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-1864 (*1 *2 *1 *3) (-12 (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-783)))) (-1864 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) (-2853 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-965 *4 *5 *3)))) (-2421 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-965 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *2 (-862)))) (-2421 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)))) (-2437 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *4)) (-4 *4 (-1067)) (-4 *1 (-965 *4 *5 *3)) (-4 *5 (-805)) (-4 *3 (-862)))) (-2437 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)))) (-1887 (*1 *2 *1) (|partial| -12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5)))) (-1899 (*1 *2 *1) (|partial| -12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5)))) (-1910 (*1 *2 *1) (|partial| -12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -1359 (-783)))))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-783)))) (-1853 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *5)))) (-4394 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5)))) (-2778 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-174)))) (-2790 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-174)))) (-1841 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-464)))) (-2192 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-464)))) (-2944 (*1 *1 *1) (-12 (-4 *1 (-965 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-3986 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-430 *1)) (-4 *1 (-965 *3 *4 *5))))) -(-13 (-914 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1056 |t#3|) (-388 |t#1|) (-10 -8 (-15 -3813 ((-783) $ |t#3|)) (-15 -3813 ((-656 (-783)) $ (-656 |t#3|))) (-15 -3245 ($ $ |t#3| (-783))) (-15 -3245 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -1876 ((-656 $) $)) (-15 -3467 ((-1191 $) $ |t#3|)) (-15 -3467 ((-1191 |t#1|) $)) (-15 -2788 ((-3 |t#3| "failed") $)) (-15 -1864 ((-783) $ |t#3|)) (-15 -1864 ((-656 (-783)) $ (-656 |t#3|))) (-15 -2853 ((-2 (|:| -2770 $) (|:| -1406 $)) $ $ |t#3|)) (-15 -2421 ($ $ |t#3| (-783))) (-15 -2421 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -2437 ($ (-1191 |t#1|) |t#3|)) (-15 -2437 ($ (-1191 $) |t#3|)) (-15 -1887 ((-3 (-656 $) "failed") $)) (-15 -1899 ((-3 (-656 $) "failed") $)) (-15 -1910 ((-3 (-2 (|:| |var| |t#3|) (|:| -1359 (-783))) "failed") $)) (-15 -1853 ((-783) $)) (-15 -1853 ((-783) $ (-656 |t#3|))) (-15 -1607 ((-656 |t#3|) $)) (-15 -4394 ((-656 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-576)))) (IF (|has| |t#3| (-626 (-905 (-576)))) (-6 (-626 (-905 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-390)))) (IF (|has| |t#3| (-626 (-905 (-390)))) (-6 (-626 (-905 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-576))) (IF (|has| |t#3| (-899 (-576))) (-6 (-899 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-390))) (IF (|has| |t#3| (-899 (-390))) (-6 (-899 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2778 ($ $ $ |t#3|)) (-15 -2790 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -1841 ($ $ |t#3|)) (-15 -2192 ($ $)) (-15 -2192 ($ $ |t#3|)) (-15 -3986 ((-430 $) $)) (-15 -2944 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |t#1| (-925)) (-6 (-925)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-300) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3766 (|has| |#1| (-925)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ |#3|) . T) ((-914 |#3|) . T) ((-916 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-925) |has| |#1| (-925)) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1056 |#3|) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T) ((-1240) |has| |#1| (-925))) -((-1607 (((-656 |#2|) |#5|) 40)) (-3467 (((-1191 |#5|) |#5| |#2| (-1191 |#5|)) 23) (((-419 (-1191 |#5|)) |#5| |#2|) 16)) (-2437 ((|#5| (-419 (-1191 |#5|)) |#2|) 30)) (-2788 (((-3 |#2| "failed") |#5|) 71)) (-1899 (((-3 (-656 |#5|) "failed") |#5|) 65)) (-1923 (((-3 (-2 (|:| |val| |#5|) (|:| -1359 (-576))) "failed") |#5|) 53)) (-1887 (((-3 (-656 |#5|) "failed") |#5|) 67)) (-1910 (((-3 (-2 (|:| |var| |#2|) (|:| -1359 (-576))) "failed") |#5|) 57))) -(((-966 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1607 ((-656 |#2|) |#5|)) (-15 -2788 ((-3 |#2| "failed") |#5|)) (-15 -3467 ((-419 (-1191 |#5|)) |#5| |#2|)) (-15 -2437 (|#5| (-419 (-1191 |#5|)) |#2|)) (-15 -3467 ((-1191 |#5|) |#5| |#2| (-1191 |#5|))) (-15 -1887 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1899 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1910 ((-3 (-2 (|:| |var| |#2|) (|:| -1359 (-576))) "failed") |#5|)) (-15 -1923 ((-3 (-2 (|:| |val| |#5|) (|:| -1359 (-576))) "failed") |#5|))) (-805) (-862) (-1067) (-965 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -2884 ($ |#4|)) (-15 -1595 (|#4| $)) (-15 -1608 (|#4| $))))) (T -966)) -((-1923 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1359 (-576)))) (-5 *1 (-966 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-1910 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1359 (-576)))) (-5 *1 (-966 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-1899 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-966 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-1887 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-966 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-3467 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))) (-4 *7 (-965 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1067)) (-5 *1 (-966 *5 *4 *6 *7 *3)))) (-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1191 *2))) (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1067)) (-4 *2 (-13 (-374) (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))) (-5 *1 (-966 *5 *4 *6 *7 *2)) (-4 *7 (-965 *6 *5 *4)))) (-3467 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-419 (-1191 *3))) (-5 *1 (-966 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-2788 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1067)) (-4 *6 (-965 *5 *4 *2)) (-4 *2 (-862)) (-5 *1 (-966 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2884 ($ *6)) (-15 -1595 (*6 $)) (-15 -1608 (*6 $))))))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *5)) (-5 *1 (-966 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))))) -(-10 -7 (-15 -1607 ((-656 |#2|) |#5|)) (-15 -2788 ((-3 |#2| "failed") |#5|)) (-15 -3467 ((-419 (-1191 |#5|)) |#5| |#2|)) (-15 -2437 (|#5| (-419 (-1191 |#5|)) |#2|)) (-15 -3467 ((-1191 |#5|) |#5| |#2| (-1191 |#5|))) (-15 -1887 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1899 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1910 ((-3 (-2 (|:| |var| |#2|) (|:| -1359 (-576))) "failed") |#5|)) (-15 -1923 ((-3 (-2 (|:| |val| |#5|) (|:| -1359 (-576))) "failed") |#5|))) -((-2551 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-967 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2551 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-805) (-862) (-1067) (-965 |#3| |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (T -967)) -((-2551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862)) (-4 *8 (-1067)) (-4 *6 (-805)) (-4 *2 (-13 (-1118) (-10 -8 (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-967 *6 *7 *8 *5 *2)) (-4 *5 (-965 *8 *6 *7))))) -(-10 -7 (-15 -2551 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 (-1195)) $) 16)) (-3467 (((-1191 $) $ (-1195)) 21) (((-1191 |#1|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 (-1195))) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2944 (($ $) NIL (|has| |#1| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-1195) "failed") $) NIL)) (-4401 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-1195) $) NIL)) (-2778 (($ $ $ (-1195)) NIL (|has| |#1| (-174)))) (-4407 (($ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1195)) NIL (|has| |#1| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#1| (-925)))) (-3098 (($ $ |#1| (-543 (-1195)) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1195) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1195) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-2437 (($ (-1191 |#1|) (-1195)) NIL) (($ (-1191 $) (-1195)) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-1195)) NIL)) (-1864 (((-543 (-1195)) $) NIL) (((-783) $ (-1195)) NIL) (((-656 (-783)) $ (-656 (-1195))) NIL)) (-3109 (($ (-1 (-543 (-1195)) (-543 (-1195))) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2788 (((-3 (-1195) "failed") $) 19)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3733 (((-1177) $) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| (-1195)) (|:| -1359 (-783))) "failed") $) NIL)) (-1956 (($ $ (-1195)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) NIL)) (-4359 ((|#1| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-925)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1195) |#1|) NIL) (($ $ (-656 (-1195)) (-656 |#1|)) NIL) (($ $ (-1195) $) NIL) (($ $ (-656 (-1195)) (-656 $)) NIL)) (-2790 (($ $ (-1195)) NIL (|has| |#1| (-174)))) (-2390 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-3813 (((-543 (-1195)) $) NIL) (((-783) $ (-1195)) NIL) (((-656 (-783)) $ (-656 (-1195))) NIL)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| (-1195) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1195) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1195) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1841 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1195)) NIL (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2884 (((-874) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1195)) 27) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-968 |#1|) (-13 (-965 |#1| (-543 (-1195)) (-1195)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1195))) |%noBranch|))) (-1067)) (T -968)) -((-1956 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-968 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067))))) -(-13 (-965 |#1| (-543 (-1195)) (-1195)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1195))) |%noBranch|))) -((-1935 (((-2 (|:| -1359 (-783)) (|:| -1755 |#5|) (|:| |radicand| |#5|)) |#3| (-783)) 49)) (-1946 (((-2 (|:| -1359 (-783)) (|:| -1755 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783)) 44)) (-1973 (((-2 (|:| -1359 (-783)) (|:| -1755 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)) 65)) (-1959 (((-2 (|:| -1359 (-783)) (|:| -1755 |#5|) (|:| |radicand| |#5|)) |#5| (-783)) 74 (|has| |#3| (-464))))) -(((-969 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1935 ((-2 (|:| -1359 (-783)) (|:| -1755 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -1946 ((-2 (|:| -1359 (-783)) (|:| -1755 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -1959 ((-2 (|:| -1359 (-783)) (|:| -1755 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -1973 ((-2 (|:| -1359 (-783)) (|:| -1755 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) (-805) (-862) (-568) (-965 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -2884 ($ |#4|)) (-15 -1595 (|#4| $)) (-15 -1608 (|#4| $))))) (T -969)) -((-1973 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *3 (-965 *7 *5 *6)) (-5 *2 (-2 (|:| -1359 (-783)) (|:| -1755 *3) (|:| |radicand| (-656 *3)))) (-5 *1 (-969 *5 *6 *7 *3 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -2884 ($ *3)) (-15 -1595 (*3 $)) (-15 -1608 (*3 $))))))) (-1959 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-965 *7 *5 *6)) (-5 *2 (-2 (|:| -1359 (-783)) (|:| -1755 *3) (|:| |radicand| *3))) (-5 *1 (-969 *5 *6 *7 *8 *3)) (-5 *4 (-783)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2884 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $))))))) (-1946 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-965 *7 *5 *6)) (-5 *2 (-2 (|:| -1359 (-783)) (|:| -1755 *9) (|:| |radicand| *9))) (-5 *1 (-969 *5 *6 *7 *8 *9)) (-5 *4 (-783)) (-4 *9 (-13 (-374) (-10 -8 (-15 -2884 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $))))))) (-1935 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-568)) (-4 *7 (-965 *3 *5 *6)) (-5 *2 (-2 (|:| -1359 (-783)) (|:| -1755 *8) (|:| |radicand| *8))) (-5 *1 (-969 *5 *6 *3 *7 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))))) -(-10 -7 (-15 -1935 ((-2 (|:| -1359 (-783)) (|:| -1755 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -1946 ((-2 (|:| -1359 (-783)) (|:| -1755 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -1959 ((-2 (|:| -1359 (-783)) (|:| -1755 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -1973 ((-2 (|:| -1359 (-783)) (|:| -1755 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) -((-2862 (((-112) $ $) NIL)) (-1867 (($ (-1138)) 8)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 15) (((-1138) $) 12)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 11))) -(((-970) (-13 (-1118) (-625 (-1138)) (-10 -8 (-15 -1867 ($ (-1138)))))) (T -970)) -((-1867 (*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-970))))) -(-13 (-1118) (-625 (-1138)) (-10 -8 (-15 -1867 ($ (-1138))))) -((-2827 (((-1112 (-227)) $) 8)) (-2815 (((-1112 (-227)) $) 9)) (-1364 (((-656 (-656 (-959 (-227)))) $) 10)) (-2884 (((-874) $) 6))) -(((-971) (-141)) (T -971)) -((-1364 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-656 (-656 (-959 (-227))))))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1112 (-227))))) (-2827 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1112 (-227)))))) -(-13 (-625 (-874)) (-10 -8 (-15 -1364 ((-656 (-656 (-959 (-227)))) $)) (-15 -2815 ((-1112 (-227)) $)) (-15 -2827 ((-1112 (-227)) $)))) -(((-625 (-874)) . T)) -((-1986 (((-3 (-701 |#1|) "failed") |#2| (-937)) 18))) -(((-972 |#1| |#2|) (-10 -7 (-15 -1986 ((-3 (-701 |#1|) "failed") |#2| (-937)))) (-568) (-668 |#1|)) (T -972)) -((-1986 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-937)) (-4 *5 (-568)) (-5 *2 (-701 *5)) (-5 *1 (-972 *5 *3)) (-4 *3 (-668 *5))))) -(-10 -7 (-15 -1986 ((-3 (-701 |#1|) "failed") |#2| (-937)))) -((-2176 (((-974 |#2|) (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|) 16)) (-2309 ((|#2| (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|) 18)) (-2551 (((-974 |#2|) (-1 |#2| |#1|) (-974 |#1|)) 13))) -(((-973 |#1| |#2|) (-10 -7 (-15 -2176 ((-974 |#2|) (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|)) (-15 -2309 (|#2| (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|)) (-15 -2551 ((-974 |#2|) (-1 |#2| |#1|) (-974 |#1|)))) (-1236) (-1236)) (T -973)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-974 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-974 *6)) (-5 *1 (-973 *5 *6)))) (-2309 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-974 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-973 *5 *2)))) (-2176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-974 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-974 *5)) (-5 *1 (-973 *6 *5))))) -(-10 -7 (-15 -2176 ((-974 |#2|) (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|)) (-15 -2309 (|#2| (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|)) (-15 -2551 ((-974 |#2|) (-1 |#2| |#1|) (-974 |#1|)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) 16)) (-2634 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2310 (($ (-783) |#1|) 15)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) 11 (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2134 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1962 ((|#1| $) NIL (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3346 (($ $ |#1|) 20 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) 12)) (-2071 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1253 (-576))) NIL)) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) 21)) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 14)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2872 (((-783) $) 8 (|has| $ (-6 -4461))))) -(((-974 |#1|) (-19 |#1|) (-1236)) (T -974)) +((-3672 ((|#2| (-655 |#1|) (-655 |#1|)) 28))) +(((-937 |#1| |#2|) (-10 -7 (-15 -3672 (|#2| (-655 |#1|) (-655 |#1|)))) (-373) (-1261 |#1|)) (T -937)) +((-3672 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-373)) (-4 *2 (-1261 *4)) (-5 *1 (-937 *4 *2))))) +(-10 -7 (-15 -3672 (|#2| (-655 |#1|) (-655 |#1|)))) +((-4427 (((-1190 |#2|) (-655 |#2|) (-655 |#2|)) 17) (((-1258 |#1| |#2|) (-1258 |#1| |#2|) (-655 |#2|) (-655 |#2|)) 13))) +(((-938 |#1| |#2|) (-10 -7 (-15 -4427 ((-1258 |#1| |#2|) (-1258 |#1| |#2|) (-655 |#2|) (-655 |#2|))) (-15 -4427 ((-1190 |#2|) (-655 |#2|) (-655 |#2|)))) (-1194) (-373)) (T -938)) +((-4427 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *5)) (-4 *5 (-373)) (-5 *2 (-1190 *5)) (-5 *1 (-938 *4 *5)) (-14 *4 (-1194)))) (-4427 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1258 *4 *5)) (-5 *3 (-655 *5)) (-14 *4 (-1194)) (-4 *5 (-373)) (-5 *1 (-938 *4 *5))))) +(-10 -7 (-15 -4427 ((-1258 |#1| |#2|) (-1258 |#1| |#2|) (-655 |#2|) (-655 |#2|))) (-15 -4427 ((-1190 |#2|) (-655 |#2|) (-655 |#2|)))) +((-2927 (((-575) (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176)) 174)) (-3194 ((|#4| |#4|) 193)) (-3105 (((-655 (-418 (-967 |#1|))) (-655 (-1194))) 146)) (-1352 (((-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-655 (-655 |#4|)) (-782) (-782) (-575)) 88)) (-4307 (((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))) (-655 |#4|)) 69)) (-1798 (((-700 |#4|) (-700 |#4|) (-655 |#4|)) 65)) (-2715 (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176)) 186)) (-3272 (((-575) (-700 |#4|) (-936) (-1176)) 166) (((-575) (-700 |#4|) (-655 (-1194)) (-936) (-1176)) 165) (((-575) (-700 |#4|) (-655 |#4|) (-936) (-1176)) 164) (((-575) (-700 |#4|) (-1176)) 154) (((-575) (-700 |#4|) (-655 (-1194)) (-1176)) 153) (((-575) (-700 |#4|) (-655 |#4|) (-1176)) 152) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-936)) 151) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194)) (-936)) 150) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|) (-936)) 149) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|)) 148) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194))) 147) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|)) 143)) (-2889 ((|#4| (-967 |#1|)) 80)) (-4330 (((-112) (-655 |#4|) (-655 (-655 |#4|))) 190)) (-2578 (((-655 (-655 (-575))) (-575) (-575)) 159)) (-3883 (((-655 (-655 |#4|)) (-655 (-655 |#4|))) 106)) (-3297 (((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|))))) 100)) (-3565 (((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|))))) 99)) (-1857 (((-112) (-655 (-967 |#1|))) 19) (((-112) (-655 |#4|)) 15)) (-1346 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-655 |#4|)) (|:| |n0| (-655 |#4|))) (-655 |#4|) (-655 |#4|)) 84)) (-1885 (((-655 |#4|) |#4|) 57)) (-1388 (((-655 (-418 (-967 |#1|))) (-655 |#4|)) 142) (((-700 (-418 (-967 |#1|))) (-700 |#4|)) 66) (((-418 (-967 |#1|)) |#4|) 139)) (-2913 (((-2 (|:| |rgl| (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))))))) (|:| |rgsz| (-575))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-782) (-1176) (-575)) 112)) (-2560 (((-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))) (-700 |#4|) (-782)) 98)) (-3139 (((-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) (-700 |#4|) (-782)) 121)) (-3167 (((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| -2412 (-700 (-418 (-967 |#1|)))) (|:| |vec| (-655 (-418 (-967 |#1|)))) (|:| -4422 (-782)) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) 56))) +(((-939 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|))) (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194)))) (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|))) (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|) (-936))) (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194)) (-936))) (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-936))) (-15 -3272 ((-575) (-700 |#4|) (-655 |#4|) (-1176))) (-15 -3272 ((-575) (-700 |#4|) (-655 (-1194)) (-1176))) (-15 -3272 ((-575) (-700 |#4|) (-1176))) (-15 -3272 ((-575) (-700 |#4|) (-655 |#4|) (-936) (-1176))) (-15 -3272 ((-575) (-700 |#4|) (-655 (-1194)) (-936) (-1176))) (-15 -3272 ((-575) (-700 |#4|) (-936) (-1176))) (-15 -2927 ((-575) (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176))) (-15 -2715 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176))) (-15 -2913 ((-2 (|:| |rgl| (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))))))) (|:| |rgsz| (-575))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-782) (-1176) (-575))) (-15 -1388 ((-418 (-967 |#1|)) |#4|)) (-15 -1388 ((-700 (-418 (-967 |#1|))) (-700 |#4|))) (-15 -1388 ((-655 (-418 (-967 |#1|))) (-655 |#4|))) (-15 -3105 ((-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -2889 (|#4| (-967 |#1|))) (-15 -1346 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-655 |#4|)) (|:| |n0| (-655 |#4|))) (-655 |#4|) (-655 |#4|))) (-15 -2560 ((-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))) (-700 |#4|) (-782))) (-15 -4307 ((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))) (-655 |#4|))) (-15 -3167 ((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| -2412 (-700 (-418 (-967 |#1|)))) (|:| |vec| (-655 (-418 (-967 |#1|)))) (|:| -4422 (-782)) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (-15 -1885 ((-655 |#4|) |#4|)) (-15 -3565 ((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))))) (-15 -3297 ((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))))) (-15 -3883 ((-655 (-655 |#4|)) (-655 (-655 |#4|)))) (-15 -2578 ((-655 (-655 (-575))) (-575) (-575))) (-15 -4330 ((-112) (-655 |#4|) (-655 (-655 |#4|)))) (-15 -3139 ((-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) (-700 |#4|) (-782))) (-15 -1798 ((-700 |#4|) (-700 |#4|) (-655 |#4|))) (-15 -1352 ((-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-655 (-655 |#4|)) (-782) (-782) (-575))) (-15 -3194 (|#4| |#4|)) (-15 -1857 ((-112) (-655 |#4|))) (-15 -1857 ((-112) (-655 (-967 |#1|))))) (-13 (-316) (-148)) (-13 (-861) (-625 (-1194))) (-804) (-964 |#1| |#3| |#2|)) (T -939)) +((-1857 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-112)) (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-112)) (-5 *1 (-939 *4 *5 *6 *7)))) (-3194 (*1 *2 *2) (-12 (-4 *3 (-13 (-316) (-148))) (-4 *4 (-13 (-861) (-625 (-1194)))) (-4 *5 (-804)) (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-964 *3 *5 *4)))) (-1352 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) (-5 *4 (-700 *12)) (-5 *5 (-655 (-418 (-967 *9)))) (-5 *6 (-655 (-655 *12))) (-5 *7 (-782)) (-5 *8 (-575)) (-4 *9 (-13 (-316) (-148))) (-4 *12 (-964 *9 *11 *10)) (-4 *10 (-13 (-861) (-625 (-1194)))) (-4 *11 (-804)) (-5 *2 (-2 (|:| |eqzro| (-655 *12)) (|:| |neqzro| (-655 *12)) (|:| |wcond| (-655 (-967 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *9)))) (|:| -1624 (-655 (-1285 (-418 (-967 *9))))))))) (-5 *1 (-939 *9 *10 *11 *12)))) (-1798 (*1 *2 *2 *3) (-12 (-5 *2 (-700 *7)) (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *1 (-939 *4 *5 *6 *7)))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-5 *4 (-782)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-655 (-2 (|:| |det| *8) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (-5 *1 (-939 *5 *6 *7 *8)))) (-4330 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-655 *8))) (-5 *3 (-655 *8)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-112)) (-5 *1 (-939 *5 *6 *7 *8)))) (-2578 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 (-655 (-575)))) (-5 *1 (-939 *4 *5 *6 *7)) (-5 *3 (-575)) (-4 *7 (-964 *4 *6 *5)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-655 (-655 *6))) (-4 *6 (-964 *3 *5 *4)) (-4 *3 (-13 (-316) (-148))) (-4 *4 (-13 (-861) (-625 (-1194)))) (-4 *5 (-804)) (-5 *1 (-939 *3 *4 *5 *6)))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| *7) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 *7))))) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-782)) (-5 *1 (-939 *4 *5 *6 *7)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| *7) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 *7))))) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-782)) (-5 *1 (-939 *4 *5 *6 *7)))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 *3)) (-5 *1 (-939 *4 *5 *6 *3)) (-4 *3 (-964 *4 *6 *5)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2412 (-700 (-418 (-967 *4)))) (|:| |vec| (-655 (-418 (-967 *4)))) (|:| -4422 (-782)) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) (|:| -1624 (-655 (-1285 (-418 (-967 *4))))))) (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5)))) (-4307 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) (|:| -1624 (-655 (-1285 (-418 (-967 *4))))))) (-5 *3 (-655 *7)) (-4 *4 (-13 (-316) (-148))) (-4 *7 (-964 *4 *6 *5)) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *1 (-939 *4 *5 *6 *7)))) (-2560 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| *8) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 *8))))) (-5 *1 (-939 *5 *6 *7 *8)) (-5 *4 (-782)))) (-1346 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-4 *7 (-964 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-655 *7)) (|:| |n0| (-655 *7)))) (-5 *1 (-939 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-967 *4)) (-4 *4 (-13 (-316) (-148))) (-4 *2 (-964 *4 *6 *5)) (-5 *1 (-939 *4 *5 *6 *2)) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 (-418 (-967 *4)))) (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 (-418 (-967 *4)))) (-5 *1 (-939 *4 *5 *6 *7)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-700 *7)) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-700 (-418 (-967 *4)))) (-5 *1 (-939 *4 *5 *6 *7)))) (-1388 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-418 (-967 *4))) (-5 *1 (-939 *4 *5 *6 *3)) (-4 *3 (-964 *4 *6 *5)))) (-2913 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-700 *11)) (-5 *4 (-655 (-418 (-967 *8)))) (-5 *5 (-782)) (-5 *6 (-1176)) (-4 *8 (-13 (-316) (-148))) (-4 *11 (-964 *8 *10 *9)) (-4 *9 (-13 (-861) (-625 (-1194)))) (-4 *10 (-804)) (-5 *2 (-2 (|:| |rgl| (-655 (-2 (|:| |eqzro| (-655 *11)) (|:| |neqzro| (-655 *11)) (|:| |wcond| (-655 (-967 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *8)))) (|:| -1624 (-655 (-1285 (-418 (-967 *8)))))))))) (|:| |rgsz| (-575)))) (-5 *1 (-939 *8 *9 *10 *11)) (-5 *7 (-575)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *7)) (|:| |neqzro| (-655 *7)) (|:| |wcond| (-655 (-967 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) (|:| -1624 (-655 (-1285 (-418 (-967 *4)))))))))) (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) (|:| |wcond| (-655 (-967 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) (|:| -1624 (-655 (-1285 (-418 (-967 *5)))))))))) (-5 *4 (-1176)) (-4 *5 (-13 (-316) (-148))) (-4 *8 (-964 *5 *7 *6)) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *5 *6 *7 *8)))) (-3272 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *9)) (-5 *4 (-936)) (-5 *5 (-1176)) (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *6 *7 *8 *9)))) (-3272 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-700 *10)) (-5 *4 (-655 (-1194))) (-5 *5 (-936)) (-5 *6 (-1176)) (-4 *10 (-964 *7 *9 *8)) (-4 *7 (-13 (-316) (-148))) (-4 *8 (-13 (-861) (-625 (-1194)))) (-4 *9 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *7 *8 *9 *10)))) (-3272 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-700 *10)) (-5 *4 (-655 *10)) (-5 *5 (-936)) (-5 *6 (-1176)) (-4 *10 (-964 *7 *9 *8)) (-4 *7 (-13 (-316) (-148))) (-4 *8 (-13 (-861) (-625 (-1194)))) (-4 *9 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *7 *8 *9 *10)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-5 *4 (-1176)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *5 *6 *7 *8)))) (-3272 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 (-1194))) (-5 *5 (-1176)) (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *6 *7 *8 *9)))) (-3272 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 *9)) (-5 *5 (-1176)) (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *6 *7 *8 *9)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-5 *4 (-936)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) (|:| |wcond| (-655 (-967 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) (|:| -1624 (-655 (-1285 (-418 (-967 *5)))))))))) (-5 *1 (-939 *5 *6 *7 *8)))) (-3272 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 (-1194))) (-5 *5 (-936)) (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *9)) (|:| |neqzro| (-655 *9)) (|:| |wcond| (-655 (-967 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *6)))) (|:| -1624 (-655 (-1285 (-418 (-967 *6)))))))))) (-5 *1 (-939 *6 *7 *8 *9)))) (-3272 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *9)) (-5 *5 (-936)) (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *9)) (|:| |neqzro| (-655 *9)) (|:| |wcond| (-655 (-967 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *6)))) (|:| -1624 (-655 (-1285 (-418 (-967 *6)))))))))) (-5 *1 (-939 *6 *7 *8 *9)) (-5 *4 (-655 *9)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-700 *7)) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *7)) (|:| |neqzro| (-655 *7)) (|:| |wcond| (-655 (-967 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) (|:| -1624 (-655 (-1285 (-418 (-967 *4)))))))))) (-5 *1 (-939 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-5 *4 (-655 (-1194))) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) (|:| |wcond| (-655 (-967 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) (|:| -1624 (-655 (-1285 (-418 (-967 *5)))))))))) (-5 *1 (-939 *5 *6 *7 *8)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) (|:| |wcond| (-655 (-967 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) (|:| -1624 (-655 (-1285 (-418 (-967 *5)))))))))) (-5 *1 (-939 *5 *6 *7 *8)) (-5 *4 (-655 *8))))) +(-10 -7 (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|))) (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194)))) (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|))) (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|) (-936))) (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194)) (-936))) (-15 -3272 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-936))) (-15 -3272 ((-575) (-700 |#4|) (-655 |#4|) (-1176))) (-15 -3272 ((-575) (-700 |#4|) (-655 (-1194)) (-1176))) (-15 -3272 ((-575) (-700 |#4|) (-1176))) (-15 -3272 ((-575) (-700 |#4|) (-655 |#4|) (-936) (-1176))) (-15 -3272 ((-575) (-700 |#4|) (-655 (-1194)) (-936) (-1176))) (-15 -3272 ((-575) (-700 |#4|) (-936) (-1176))) (-15 -2927 ((-575) (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176))) (-15 -2715 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176))) (-15 -2913 ((-2 (|:| |rgl| (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))))))) (|:| |rgsz| (-575))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-782) (-1176) (-575))) (-15 -1388 ((-418 (-967 |#1|)) |#4|)) (-15 -1388 ((-700 (-418 (-967 |#1|))) (-700 |#4|))) (-15 -1388 ((-655 (-418 (-967 |#1|))) (-655 |#4|))) (-15 -3105 ((-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -2889 (|#4| (-967 |#1|))) (-15 -1346 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-655 |#4|)) (|:| |n0| (-655 |#4|))) (-655 |#4|) (-655 |#4|))) (-15 -2560 ((-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))) (-700 |#4|) (-782))) (-15 -4307 ((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))) (-655 |#4|))) (-15 -3167 ((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| -2412 (-700 (-418 (-967 |#1|)))) (|:| |vec| (-655 (-418 (-967 |#1|)))) (|:| -4422 (-782)) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (-15 -1885 ((-655 |#4|) |#4|)) (-15 -3565 ((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))))) (-15 -3297 ((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))))) (-15 -3883 ((-655 (-655 |#4|)) (-655 (-655 |#4|)))) (-15 -2578 ((-655 (-655 (-575))) (-575) (-575))) (-15 -4330 ((-112) (-655 |#4|) (-655 (-655 |#4|)))) (-15 -3139 ((-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) (-700 |#4|) (-782))) (-15 -1798 ((-700 |#4|) (-700 |#4|) (-655 |#4|))) (-15 -1352 ((-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -1624 (-655 (-1285 (-418 (-967 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-655 (-655 |#4|)) (-782) (-782) (-575))) (-15 -3194 (|#4| |#4|)) (-15 -1857 ((-112) (-655 |#4|))) (-15 -1857 ((-112) (-655 (-967 |#1|))))) +((-3170 (((-942) |#1| (-1194)) 17) (((-942) |#1| (-1194) (-1111 (-227))) 21)) (-2739 (((-942) |#1| |#1| (-1194) (-1111 (-227))) 19) (((-942) |#1| (-1194) (-1111 (-227))) 15))) +(((-940 |#1|) (-10 -7 (-15 -2739 ((-942) |#1| (-1194) (-1111 (-227)))) (-15 -2739 ((-942) |#1| |#1| (-1194) (-1111 (-227)))) (-15 -3170 ((-942) |#1| (-1194) (-1111 (-227)))) (-15 -3170 ((-942) |#1| (-1194)))) (-625 (-547))) (T -940)) +((-3170 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-5 *2 (-942)) (-5 *1 (-940 *3)) (-4 *3 (-625 (-547))))) (-3170 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942)) (-5 *1 (-940 *3)) (-4 *3 (-625 (-547))))) (-2739 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942)) (-5 *1 (-940 *3)) (-4 *3 (-625 (-547))))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942)) (-5 *1 (-940 *3)) (-4 *3 (-625 (-547)))))) +(-10 -7 (-15 -2739 ((-942) |#1| (-1194) (-1111 (-227)))) (-15 -2739 ((-942) |#1| |#1| (-1194) (-1111 (-227)))) (-15 -3170 ((-942) |#1| (-1194) (-1111 (-227)))) (-15 -3170 ((-942) |#1| (-1194)))) +((-4226 (($ $ (-1111 (-227)) (-1111 (-227)) (-1111 (-227))) 121)) (-2839 (((-1111 (-227)) $) 64)) (-2826 (((-1111 (-227)) $) 63)) (-2814 (((-1111 (-227)) $) 62)) (-4287 (((-655 (-655 (-227))) $) 69)) (-4081 (((-1111 (-227)) $) 65)) (-3031 (((-575) (-575)) 57)) (-3849 (((-575) (-575)) 52)) (-1393 (((-575) (-575)) 55)) (-4177 (((-112) (-112)) 59)) (-1639 (((-575)) 56)) (-3016 (($ $ (-1111 (-227))) 124) (($ $) 125)) (-2253 (($ (-1 (-958 (-227)) (-227)) (-1111 (-227))) 131) (($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227))) 132)) (-2739 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227))) 135) (($ $ (-1111 (-227))) 127)) (-1394 (((-575)) 60)) (-2537 (((-575)) 50)) (-3162 (((-575)) 53)) (-2595 (((-655 (-655 (-958 (-227)))) $) 151)) (-2938 (((-112) (-112)) 61)) (-2883 (((-873) $) 149)) (-4267 (((-112)) 58))) +(((-941) (-13 (-991) (-10 -8 (-15 -2253 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)))) (-15 -2253 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -2739 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)))) (-15 -2739 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -2739 ($ $ (-1111 (-227)))) (-15 -4226 ($ $ (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3016 ($ $ (-1111 (-227)))) (-15 -3016 ($ $)) (-15 -4081 ((-1111 (-227)) $)) (-15 -4287 ((-655 (-655 (-227))) $)) (-15 -2537 ((-575))) (-15 -3849 ((-575) (-575))) (-15 -3162 ((-575))) (-15 -1393 ((-575) (-575))) (-15 -1639 ((-575))) (-15 -3031 ((-575) (-575))) (-15 -4267 ((-112))) (-15 -4177 ((-112) (-112))) (-15 -1394 ((-575))) (-15 -2938 ((-112) (-112)))))) (T -941)) +((-2253 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-941)))) (-2253 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-941)))) (-2739 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-941)))) (-2739 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-941)))) (-2739 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) (-4226 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) (-3016 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) (-3016 (*1 *1 *1) (-5 *1 (-941))) (-4081 (*1 *2 *1) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-227)))) (-5 *1 (-941)))) (-2537 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-3162 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-1639 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-3031 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-4267 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))) (-4177 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))) (-1394 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941))))) +(-13 (-991) (-10 -8 (-15 -2253 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)))) (-15 -2253 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -2739 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)))) (-15 -2739 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -2739 ($ $ (-1111 (-227)))) (-15 -4226 ($ $ (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3016 ($ $ (-1111 (-227)))) (-15 -3016 ($ $)) (-15 -4081 ((-1111 (-227)) $)) (-15 -4287 ((-655 (-655 (-227))) $)) (-15 -2537 ((-575))) (-15 -3849 ((-575) (-575))) (-15 -3162 ((-575))) (-15 -1393 ((-575) (-575))) (-15 -1639 ((-575))) (-15 -3031 ((-575) (-575))) (-15 -4267 ((-112))) (-15 -4177 ((-112) (-112))) (-15 -1394 ((-575))) (-15 -2938 ((-112) (-112))))) +((-4226 (($ $ (-1111 (-227))) 122) (($ $ (-1111 (-227)) (-1111 (-227))) 123)) (-2826 (((-1111 (-227)) $) 73)) (-2814 (((-1111 (-227)) $) 72)) (-4081 (((-1111 (-227)) $) 74)) (-1759 (((-575) (-575)) 66)) (-2671 (((-575) (-575)) 61)) (-1551 (((-575) (-575)) 64)) (-2475 (((-112) (-112)) 68)) (-1464 (((-575)) 65)) (-3016 (($ $ (-1111 (-227))) 126) (($ $) 127)) (-2253 (($ (-1 (-958 (-227)) (-227)) (-1111 (-227))) 141) (($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227))) 142)) (-3170 (($ (-1 (-227) (-227)) (-1111 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-2739 (($ (-1 (-227) (-227)) (-1111 (-227))) 137) (($ (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227))) 138) (($ (-655 (-1 (-227) (-227))) (-1111 (-227))) 146) (($ (-655 (-1 (-227) (-227))) (-1111 (-227)) (-1111 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227))) 140) (($ $ (-1111 (-227))) 128)) (-1430 (((-112) $) 69)) (-3798 (((-575)) 70)) (-1677 (((-575)) 59)) (-2873 (((-575)) 62)) (-2595 (((-655 (-655 (-958 (-227)))) $) 35)) (-3419 (((-112) (-112)) 71)) (-2883 (((-873) $) 167)) (-3265 (((-112)) 67))) +(((-942) (-13 (-970) (-10 -8 (-15 -2739 ($ (-1 (-227) (-227)) (-1111 (-227)))) (-15 -2739 ($ (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -2739 ($ (-655 (-1 (-227) (-227))) (-1111 (-227)))) (-15 -2739 ($ (-655 (-1 (-227) (-227))) (-1111 (-227)) (-1111 (-227)))) (-15 -2739 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)))) (-15 -2739 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -2253 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)))) (-15 -2253 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3170 ($ (-1 (-227) (-227)) (-1111 (-227)))) (-15 -3170 ($ (-1 (-227) (-227)))) (-15 -2739 ($ $ (-1111 (-227)))) (-15 -1430 ((-112) $)) (-15 -4226 ($ $ (-1111 (-227)))) (-15 -4226 ($ $ (-1111 (-227)) (-1111 (-227)))) (-15 -3016 ($ $ (-1111 (-227)))) (-15 -3016 ($ $)) (-15 -4081 ((-1111 (-227)) $)) (-15 -1677 ((-575))) (-15 -2671 ((-575) (-575))) (-15 -2873 ((-575))) (-15 -1551 ((-575) (-575))) (-15 -1464 ((-575))) (-15 -1759 ((-575) (-575))) (-15 -3265 ((-112))) (-15 -2475 ((-112) (-112))) (-15 -3798 ((-575))) (-15 -3419 ((-112) (-112)))))) (T -942)) +((-2739 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-2739 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-2739 (*1 *1 *2 *3) (-12 (-5 *2 (-655 (-1 (-227) (-227)))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-2739 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-655 (-1 (-227) (-227)))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-2739 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-2739 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-2253 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-2253 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-3170 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-942)))) (-2739 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942)))) (-4226 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) (-4226 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) (-3016 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) (-3016 (*1 *1 *1) (-5 *1 (-942))) (-4081 (*1 *2 *1) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) (-1677 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-2671 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-2873 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-1464 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-3265 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))) (-2475 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))) (-3798 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942))))) +(-13 (-970) (-10 -8 (-15 -2739 ($ (-1 (-227) (-227)) (-1111 (-227)))) (-15 -2739 ($ (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -2739 ($ (-655 (-1 (-227) (-227))) (-1111 (-227)))) (-15 -2739 ($ (-655 (-1 (-227) (-227))) (-1111 (-227)) (-1111 (-227)))) (-15 -2739 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)))) (-15 -2739 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -2253 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)))) (-15 -2253 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3170 ($ (-1 (-227) (-227)) (-1111 (-227)))) (-15 -3170 ($ (-1 (-227) (-227)))) (-15 -2739 ($ $ (-1111 (-227)))) (-15 -1430 ((-112) $)) (-15 -4226 ($ $ (-1111 (-227)))) (-15 -4226 ($ $ (-1111 (-227)) (-1111 (-227)))) (-15 -3016 ($ $ (-1111 (-227)))) (-15 -3016 ($ $)) (-15 -4081 ((-1111 (-227)) $)) (-15 -1677 ((-575))) (-15 -2671 ((-575) (-575))) (-15 -2873 ((-575))) (-15 -1551 ((-575) (-575))) (-15 -1464 ((-575))) (-15 -1759 ((-575) (-575))) (-15 -3265 ((-112))) (-15 -2475 ((-112) (-112))) (-15 -3798 ((-575))) (-15 -3419 ((-112) (-112))))) +((-3584 (((-655 (-1111 (-227))) (-655 (-655 (-958 (-227))))) 34))) +(((-943) (-10 -7 (-15 -3584 ((-655 (-1111 (-227))) (-655 (-655 (-958 (-227)))))))) (T -943)) +((-3584 (*1 *2 *3) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *2 (-655 (-1111 (-227)))) (-5 *1 (-943))))) +(-10 -7 (-15 -3584 ((-655 (-1111 (-227))) (-655 (-655 (-958 (-227))))))) +((-4194 ((|#2| |#2|) 28)) (-1618 ((|#2| |#2|) 29)) (-3738 ((|#2| |#2|) 27)) (-2606 ((|#2| |#2| (-517)) 26))) +(((-944 |#1| |#2|) (-10 -7 (-15 -2606 (|#2| |#2| (-517))) (-15 -3738 (|#2| |#2|)) (-15 -4194 (|#2| |#2|)) (-15 -1618 (|#2| |#2|))) (-1117) (-441 |#1|)) (T -944)) +((-1618 (*1 *2 *2) (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3)))) (-4194 (*1 *2 *2) (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3)))) (-2606 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1117)) (-5 *1 (-944 *4 *2)) (-4 *2 (-441 *4))))) +(-10 -7 (-15 -2606 (|#2| |#2| (-517))) (-15 -3738 (|#2| |#2|)) (-15 -4194 (|#2| |#2|)) (-15 -1618 (|#2| |#2|))) +((-4194 (((-325 (-575)) (-1194)) 16)) (-1618 (((-325 (-575)) (-1194)) 14)) (-3738 (((-325 (-575)) (-1194)) 12)) (-2606 (((-325 (-575)) (-1194) (-517)) 19))) +(((-945) (-10 -7 (-15 -2606 ((-325 (-575)) (-1194) (-517))) (-15 -3738 ((-325 (-575)) (-1194))) (-15 -4194 ((-325 (-575)) (-1194))) (-15 -1618 ((-325 (-575)) (-1194))))) (T -945)) +((-1618 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945)))) (-4194 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-517)) (-5 *2 (-325 (-575))) (-5 *1 (-945))))) +(-10 -7 (-15 -2606 ((-325 (-575)) (-1194) (-517))) (-15 -3738 ((-325 (-575)) (-1194))) (-15 -4194 ((-325 (-575)) (-1194))) (-15 -1618 ((-325 (-575)) (-1194)))) +((-1704 (((-901 |#1| |#3|) |#2| (-904 |#1|) (-901 |#1| |#3|)) 25)) (-2212 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-946 |#1| |#2| |#3|) (-10 -7 (-15 -2212 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1704 ((-901 |#1| |#3|) |#2| (-904 |#1|) (-901 |#1| |#3|)))) (-1117) (-898 |#1|) (-13 (-1117) (-1055 |#2|))) (T -946)) +((-1704 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-4 *6 (-13 (-1117) (-1055 *3))) (-4 *3 (-898 *5)) (-5 *1 (-946 *5 *3 *6)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1117) (-1055 *5))) (-4 *5 (-898 *4)) (-4 *4 (-1117)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-946 *4 *5 *6))))) +(-10 -7 (-15 -2212 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1704 ((-901 |#1| |#3|) |#2| (-904 |#1|) (-901 |#1| |#3|)))) +((-1704 (((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)) 30))) +(((-947 |#1| |#2| |#3|) (-10 -7 (-15 -1704 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)))) (-1117) (-13 (-567) (-898 |#1|)) (-13 (-441 |#2|) (-625 (-904 |#1|)) (-898 |#1|) (-1055 (-623 $)))) (T -947)) +((-1704 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117)) (-4 *3 (-13 (-441 *6) (-625 *4) (-898 *5) (-1055 (-623 $)))) (-5 *4 (-904 *5)) (-4 *6 (-13 (-567) (-898 *5))) (-5 *1 (-947 *5 *6 *3))))) +(-10 -7 (-15 -1704 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)))) +((-1704 (((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|)) 13))) +(((-948 |#1|) (-10 -7 (-15 -1704 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|)))) (-556)) (T -948)) +((-1704 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 (-575) *3)) (-5 *4 (-904 (-575))) (-4 *3 (-556)) (-5 *1 (-948 *3))))) +(-10 -7 (-15 -1704 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|)))) +((-1704 (((-901 |#1| |#2|) (-623 |#2|) (-904 |#1|) (-901 |#1| |#2|)) 57))) +(((-949 |#1| |#2|) (-10 -7 (-15 -1704 ((-901 |#1| |#2|) (-623 |#2|) (-904 |#1|) (-901 |#1| |#2|)))) (-1117) (-13 (-1117) (-1055 (-623 $)) (-625 (-904 |#1|)) (-898 |#1|))) (T -949)) +((-1704 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *6)) (-5 *3 (-623 *6)) (-4 *5 (-1117)) (-4 *6 (-13 (-1117) (-1055 (-623 $)) (-625 *4) (-898 *5))) (-5 *4 (-904 *5)) (-5 *1 (-949 *5 *6))))) +(-10 -7 (-15 -1704 ((-901 |#1| |#2|) (-623 |#2|) (-904 |#1|) (-901 |#1| |#2|)))) +((-1704 (((-897 |#1| |#2| |#3|) |#3| (-904 |#1|) (-897 |#1| |#2| |#3|)) 17))) +(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -1704 ((-897 |#1| |#2| |#3|) |#3| (-904 |#1|) (-897 |#1| |#2| |#3|)))) (-1117) (-898 |#1|) (-677 |#2|)) (T -950)) +((-1704 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-897 *5 *6 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-4 *6 (-898 *5)) (-4 *3 (-677 *6)) (-5 *1 (-950 *5 *6 *3))))) +(-10 -7 (-15 -1704 ((-897 |#1| |#2| |#3|) |#3| (-904 |#1|) (-897 |#1| |#2| |#3|)))) +((-1704 (((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|)) 17 (|has| |#3| (-898 |#1|))) (((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|) (-1 (-901 |#1| |#5|) |#3| (-904 |#1|) (-901 |#1| |#5|))) 16))) +(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1704 ((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|) (-1 (-901 |#1| |#5|) |#3| (-904 |#1|) (-901 |#1| |#5|)))) (IF (|has| |#3| (-898 |#1|)) (-15 -1704 ((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|))) |%noBranch|)) (-1117) (-804) (-861) (-13 (-1066) (-898 |#1|)) (-13 (-964 |#4| |#2| |#3|) (-625 (-904 |#1|)))) (T -951)) +((-1704 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117)) (-4 *3 (-13 (-964 *8 *6 *7) (-625 *4))) (-5 *4 (-904 *5)) (-4 *7 (-898 *5)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-13 (-1066) (-898 *5))) (-5 *1 (-951 *5 *6 *7 *8 *3)))) (-1704 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-901 *6 *3) *8 (-904 *6) (-901 *6 *3))) (-4 *8 (-861)) (-5 *2 (-901 *6 *3)) (-5 *4 (-904 *6)) (-4 *6 (-1117)) (-4 *3 (-13 (-964 *9 *7 *8) (-625 *4))) (-4 *7 (-804)) (-4 *9 (-13 (-1066) (-898 *6))) (-5 *1 (-951 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -1704 ((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|) (-1 (-901 |#1| |#5|) |#3| (-904 |#1|) (-901 |#1| |#5|)))) (IF (|has| |#3| (-898 |#1|)) (-15 -1704 ((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|))) |%noBranch|)) +((-1693 ((|#2| |#2| (-655 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -1693 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1693 (|#2| |#2| (-655 (-1 (-112) |#3|))))) (-1117) (-441 |#1|) (-1235)) (T -952)) +((-1693 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-1 (-112) *5))) (-4 *5 (-1235)) (-4 *4 (-1117)) (-5 *1 (-952 *4 *2 *5)) (-4 *2 (-441 *4)))) (-1693 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1235)) (-4 *4 (-1117)) (-5 *1 (-952 *4 *2 *5)) (-4 *2 (-441 *4))))) +(-10 -7 (-15 -1693 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1693 (|#2| |#2| (-655 (-1 (-112) |#3|))))) +((-1693 (((-325 (-575)) (-1194) (-655 (-1 (-112) |#1|))) 18) (((-325 (-575)) (-1194) (-1 (-112) |#1|)) 15))) +(((-953 |#1|) (-10 -7 (-15 -1693 ((-325 (-575)) (-1194) (-1 (-112) |#1|))) (-15 -1693 ((-325 (-575)) (-1194) (-655 (-1 (-112) |#1|))))) (-1235)) (T -953)) +((-1693 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-655 (-1 (-112) *5))) (-4 *5 (-1235)) (-5 *2 (-325 (-575))) (-5 *1 (-953 *5)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1235)) (-5 *2 (-325 (-575))) (-5 *1 (-953 *5))))) +(-10 -7 (-15 -1693 ((-325 (-575)) (-1194) (-1 (-112) |#1|))) (-15 -1693 ((-325 (-575)) (-1194) (-655 (-1 (-112) |#1|))))) +((-1704 (((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)) 25))) +(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -1704 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)))) (-1117) (-13 (-567) (-898 |#1|) (-625 (-904 |#1|))) (-1009 |#2|)) (T -954)) +((-1704 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117)) (-4 *3 (-1009 *6)) (-4 *6 (-13 (-567) (-898 *5) (-625 *4))) (-5 *4 (-904 *5)) (-5 *1 (-954 *5 *6 *3))))) +(-10 -7 (-15 -1704 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)))) +((-1704 (((-901 |#1| (-1194)) (-1194) (-904 |#1|) (-901 |#1| (-1194))) 18))) +(((-955 |#1|) (-10 -7 (-15 -1704 ((-901 |#1| (-1194)) (-1194) (-904 |#1|) (-901 |#1| (-1194))))) (-1117)) (T -955)) +((-1704 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 (-1194))) (-5 *3 (-1194)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-5 *1 (-955 *5))))) +(-10 -7 (-15 -1704 ((-901 |#1| (-1194)) (-1194) (-904 |#1|) (-901 |#1| (-1194))))) +((-1480 (((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))) 34)) (-1704 (((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-1 |#3| (-655 |#3|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))) 33))) +(((-956 |#1| |#2| |#3|) (-10 -7 (-15 -1704 ((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-1 |#3| (-655 |#3|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)))) (-15 -1480 ((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))))) (-1117) (-1066) (-13 (-1066) (-625 (-904 |#1|)) (-1055 |#2|))) (T -956)) +((-1480 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 (-904 *6))) (-5 *5 (-1 (-901 *6 *8) *8 (-904 *6) (-901 *6 *8))) (-4 *6 (-1117)) (-4 *8 (-13 (-1066) (-625 (-904 *6)) (-1055 *7))) (-5 *2 (-901 *6 *8)) (-4 *7 (-1066)) (-5 *1 (-956 *6 *7 *8)))) (-1704 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-655 (-904 *7))) (-5 *5 (-1 *9 (-655 *9))) (-5 *6 (-1 (-901 *7 *9) *9 (-904 *7) (-901 *7 *9))) (-4 *7 (-1117)) (-4 *9 (-13 (-1066) (-625 (-904 *7)) (-1055 *8))) (-5 *2 (-901 *7 *9)) (-5 *3 (-655 *9)) (-4 *8 (-1066)) (-5 *1 (-956 *7 *8 *9))))) +(-10 -7 (-15 -1704 ((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-1 |#3| (-655 |#3|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)))) (-15 -1480 ((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))))) +((-3755 (((-1190 (-418 (-575))) (-575)) 79)) (-1894 (((-1190 (-575)) (-575)) 82)) (-3053 (((-1190 (-575)) (-575)) 76)) (-3357 (((-575) (-1190 (-575))) 72)) (-3872 (((-1190 (-418 (-575))) (-575)) 65)) (-3069 (((-1190 (-575)) (-575)) 49)) (-1338 (((-1190 (-575)) (-575)) 84)) (-2786 (((-1190 (-575)) (-575)) 83)) (-3227 (((-1190 (-418 (-575))) (-575)) 67))) +(((-957) (-10 -7 (-15 -3227 ((-1190 (-418 (-575))) (-575))) (-15 -2786 ((-1190 (-575)) (-575))) (-15 -1338 ((-1190 (-575)) (-575))) (-15 -3069 ((-1190 (-575)) (-575))) (-15 -3872 ((-1190 (-418 (-575))) (-575))) (-15 -3357 ((-575) (-1190 (-575)))) (-15 -3053 ((-1190 (-575)) (-575))) (-15 -1894 ((-1190 (-575)) (-575))) (-15 -3755 ((-1190 (-418 (-575))) (-575))))) (T -957)) +((-3755 (*1 *2 *3) (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575)))) (-1894 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))) (-3053 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-1190 (-575))) (-5 *2 (-575)) (-5 *1 (-957)))) (-3872 (*1 *2 *3) (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575)))) (-3069 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))) (-1338 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))) (-2786 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))) (-3227 (*1 *2 *3) (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575))))) +(-10 -7 (-15 -3227 ((-1190 (-418 (-575))) (-575))) (-15 -2786 ((-1190 (-575)) (-575))) (-15 -1338 ((-1190 (-575)) (-575))) (-15 -3069 ((-1190 (-575)) (-575))) (-15 -3872 ((-1190 (-418 (-575))) (-575))) (-15 -3357 ((-575) (-1190 (-575)))) (-15 -3053 ((-1190 (-575)) (-575))) (-15 -1894 ((-1190 (-575)) (-575))) (-15 -3755 ((-1190 (-418 (-575))) (-575)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2880 (($ (-782)) NIL (|has| |#1| (-23)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) NIL)) (-2632 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-1838 (($ (-655 |#1|)) 9)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-4056 (((-700 |#1|) $ $) NIL (|has| |#1| (-1066)))) (-2309 (($ (-782) |#1|) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2706 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-4026 (((-112) $ (-782)) NIL)) (-1839 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2135 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1961 ((|#1| $) NIL (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3954 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-4276 (($ $ (-655 |#1|)) 25)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) 18) (($ $ (-1252 (-575))) NIL)) (-1886 ((|#1| $ $) NIL (|has| |#1| (-1066)))) (-4386 (((-936) $) 13)) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-4304 (($ $ $) 23)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547)))) (($ (-655 |#1|)) 14)) (-2894 (($ (-655 |#1|)) NIL)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-655 $)) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4028 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4016 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-575) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-737))) (($ $ |#1|) NIL (|has| |#1| (-737)))) (-2871 (((-782) $) 11 (|has| $ (-6 -4460))))) +(((-958 |#1|) (-997 |#1|) (-1066)) (T -958)) +NIL +(-997 |#1|) +((-2421 (((-492 |#1| |#2|) (-967 |#2|)) 22)) (-2443 (((-252 |#1| |#2|) (-967 |#2|)) 35)) (-2235 (((-967 |#2|) (-492 |#1| |#2|)) 27)) (-3211 (((-252 |#1| |#2|) (-492 |#1| |#2|)) 57)) (-4006 (((-967 |#2|) (-252 |#1| |#2|)) 32)) (-4339 (((-492 |#1| |#2|) (-252 |#1| |#2|)) 48))) +(((-959 |#1| |#2|) (-10 -7 (-15 -4339 ((-492 |#1| |#2|) (-252 |#1| |#2|))) (-15 -3211 ((-252 |#1| |#2|) (-492 |#1| |#2|))) (-15 -2421 ((-492 |#1| |#2|) (-967 |#2|))) (-15 -2235 ((-967 |#2|) (-492 |#1| |#2|))) (-15 -4006 ((-967 |#2|) (-252 |#1| |#2|))) (-15 -2443 ((-252 |#1| |#2|) (-967 |#2|)))) (-655 (-1194)) (-1066)) (T -959)) +((-2443 (*1 *2 *3) (-12 (-5 *3 (-967 *5)) (-4 *5 (-1066)) (-5 *2 (-252 *4 *5)) (-5 *1 (-959 *4 *5)) (-14 *4 (-655 (-1194))))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) (-5 *2 (-967 *5)) (-5 *1 (-959 *4 *5)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) (-5 *2 (-967 *5)) (-5 *1 (-959 *4 *5)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-967 *5)) (-4 *5 (-1066)) (-5 *2 (-492 *4 *5)) (-5 *1 (-959 *4 *5)) (-14 *4 (-655 (-1194))))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) (-5 *2 (-252 *4 *5)) (-5 *1 (-959 *4 *5)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) (-5 *2 (-492 *4 *5)) (-5 *1 (-959 *4 *5))))) +(-10 -7 (-15 -4339 ((-492 |#1| |#2|) (-252 |#1| |#2|))) (-15 -3211 ((-252 |#1| |#2|) (-492 |#1| |#2|))) (-15 -2421 ((-492 |#1| |#2|) (-967 |#2|))) (-15 -2235 ((-967 |#2|) (-492 |#1| |#2|))) (-15 -4006 ((-967 |#2|) (-252 |#1| |#2|))) (-15 -2443 ((-252 |#1| |#2|) (-967 |#2|)))) +((-2209 (((-655 |#2|) |#2| |#2|) 10)) (-3655 (((-782) (-655 |#1|)) 48 (|has| |#1| (-859)))) (-2168 (((-655 |#2|) |#2|) 11)) (-2324 (((-782) (-655 |#1|) (-575) (-575)) 52 (|has| |#1| (-859)))) (-1822 ((|#1| |#2|) 38 (|has| |#1| (-859))))) +(((-960 |#1| |#2|) (-10 -7 (-15 -2209 ((-655 |#2|) |#2| |#2|)) (-15 -2168 ((-655 |#2|) |#2|)) (IF (|has| |#1| (-859)) (PROGN (-15 -1822 (|#1| |#2|)) (-15 -3655 ((-782) (-655 |#1|))) (-15 -2324 ((-782) (-655 |#1|) (-575) (-575)))) |%noBranch|)) (-373) (-1261 |#1|)) (T -960)) +((-2324 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-575)) (-4 *5 (-859)) (-4 *5 (-373)) (-5 *2 (-782)) (-5 *1 (-960 *5 *6)) (-4 *6 (-1261 *5)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-859)) (-4 *4 (-373)) (-5 *2 (-782)) (-5 *1 (-960 *4 *5)) (-4 *5 (-1261 *4)))) (-1822 (*1 *2 *3) (-12 (-4 *2 (-373)) (-4 *2 (-859)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1261 *2)))) (-2168 (*1 *2 *3) (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-960 *4 *3)) (-4 *3 (-1261 *4)))) (-2209 (*1 *2 *3 *3) (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-960 *4 *3)) (-4 *3 (-1261 *4))))) +(-10 -7 (-15 -2209 ((-655 |#2|) |#2| |#2|)) (-15 -2168 ((-655 |#2|) |#2|)) (IF (|has| |#1| (-859)) (PROGN (-15 -1822 (|#1| |#2|)) (-15 -3655 ((-782) (-655 |#1|))) (-15 -2324 ((-782) (-655 |#1|) (-575) (-575)))) |%noBranch|)) +((-2550 (((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|)) 19))) +(((-961 |#1| |#2|) (-10 -7 (-15 -2550 ((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|)))) (-1066) (-1066)) (T -961)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-967 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-967 *6)) (-5 *1 (-961 *5 *6))))) +(-10 -7 (-15 -2550 ((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|)))) +((-3466 (((-1258 |#1| (-967 |#2|)) (-967 |#2|) (-1281 |#1|)) 18))) +(((-962 |#1| |#2|) (-10 -7 (-15 -3466 ((-1258 |#1| (-967 |#2|)) (-967 |#2|) (-1281 |#1|)))) (-1194) (-1066)) (T -962)) +((-3466 (*1 *2 *3 *4) (-12 (-5 *4 (-1281 *5)) (-14 *5 (-1194)) (-4 *6 (-1066)) (-5 *2 (-1258 *5 (-967 *6))) (-5 *1 (-962 *5 *6)) (-5 *3 (-967 *6))))) +(-10 -7 (-15 -3466 ((-1258 |#1| (-967 |#2|)) (-967 |#2|) (-1281 |#1|)))) +((-3805 (((-782) $) 88) (((-782) $ (-655 |#4|)) 93)) (-2058 (($ $) 203)) (-2330 (((-429 $) $) 195)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 141)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-4399 ((|#2| $) NIL) (((-418 (-575)) $) NIL) (((-575) $) NIL) ((|#4| $) 73)) (-4232 (($ $ $ |#4|) 95)) (-1749 (((-700 (-575)) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 131) (((-700 |#2|) (-700 $)) 121) (((-700 |#2|) (-1285 $)) NIL)) (-1824 (($ $) 210) (($ $ |#4|) 213)) (-4394 (((-655 $) $) 77)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 229) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 222)) (-3010 (((-655 $) $) 34)) (-2417 (($ |#2| |#3|) NIL) (($ $ |#4| (-782)) NIL) (($ $ (-655 |#4|) (-655 (-782))) 71)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ |#4|) 192)) (-3658 (((-3 (-655 $) "failed") $) 52)) (-1734 (((-3 (-655 $) "failed") $) 39)) (-2455 (((-3 (-2 (|:| |var| |#4|) (|:| -2398 (-782))) "failed") $) 57)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 134)) (-1641 (((-429 (-1190 $)) (-1190 $)) 147)) (-1665 (((-429 (-1190 $)) (-1190 $)) 145)) (-2353 (((-429 $) $) 165)) (-3048 (($ $ (-655 (-303 $))) 24) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-655 |#4|) (-655 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-655 |#4|) (-655 $)) NIL)) (-4060 (($ $ |#4|) 97)) (-2615 (((-904 (-389)) $) 243) (((-904 (-575)) $) 236) (((-547) $) 251)) (-2178 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 184)) (-2012 ((|#2| $ |#3|) NIL) (($ $ |#4| (-782)) 62) (($ $ (-655 |#4|) (-655 (-782))) 69)) (-1518 (((-3 $ "failed") $) 186)) (-4400 (((-112) $ $) 216))) +(((-963 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2290 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -2330 ((-429 |#1|) |#1|)) (-15 -2058 (|#1| |#1|)) (-15 -1518 ((-3 |#1| "failed") |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -1704 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -1704 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -1665 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1641 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1830 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -3352 ((-3 (-1285 |#1|) "failed") (-700 |#1|))) (-15 -1824 (|#1| |#1| |#4|)) (-15 -2178 (|#1| |#1| |#4|)) (-15 -4060 (|#1| |#1| |#4|)) (-15 -4232 (|#1| |#1| |#1| |#4|)) (-15 -4394 ((-655 |#1|) |#1|)) (-15 -3805 ((-782) |#1| (-655 |#4|))) (-15 -3805 ((-782) |#1|)) (-15 -2455 ((-3 (-2 (|:| |var| |#4|) (|:| -2398 (-782))) "failed") |#1|)) (-15 -3658 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -1734 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -2417 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -2417 (|#1| |#1| |#4| (-782))) (-15 -2402 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1| |#4|)) (-15 -3010 ((-655 |#1|) |#1|)) (-15 -2012 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -2012 (|#1| |#1| |#4| (-782))) (-15 -1749 ((-700 |#2|) (-1285 |#1|))) (-15 -1749 ((-700 |#2|) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -4399 (|#4| |#1|)) (-15 -3048 (|#1| |#1| (-655 |#4|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#4| |#1|)) (-15 -3048 (|#1| |#1| (-655 |#4|) (-655 |#2|))) (-15 -3048 (|#1| |#1| |#4| |#2|)) (-15 -3048 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| (-303 |#1|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -2417 (|#1| |#2| |#3|)) (-15 -2012 (|#2| |#1| |#3|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2178 (|#2| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -4400 ((-112) |#1| |#1|))) (-964 |#2| |#3| |#4|) (-1066) (-804) (-861)) (T -963)) +NIL +(-10 -8 (-15 -2290 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -2330 ((-429 |#1|) |#1|)) (-15 -2058 (|#1| |#1|)) (-15 -1518 ((-3 |#1| "failed") |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -1704 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -1704 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -1665 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1641 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1830 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -3352 ((-3 (-1285 |#1|) "failed") (-700 |#1|))) (-15 -1824 (|#1| |#1| |#4|)) (-15 -2178 (|#1| |#1| |#4|)) (-15 -4060 (|#1| |#1| |#4|)) (-15 -4232 (|#1| |#1| |#1| |#4|)) (-15 -4394 ((-655 |#1|) |#1|)) (-15 -3805 ((-782) |#1| (-655 |#4|))) (-15 -3805 ((-782) |#1|)) (-15 -2455 ((-3 (-2 (|:| |var| |#4|) (|:| -2398 (-782))) "failed") |#1|)) (-15 -3658 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -1734 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -2417 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -2417 (|#1| |#1| |#4| (-782))) (-15 -2402 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1| |#4|)) (-15 -3010 ((-655 |#1|) |#1|)) (-15 -2012 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -2012 (|#1| |#1| |#4| (-782))) (-15 -1749 ((-700 |#2|) (-1285 |#1|))) (-15 -1749 ((-700 |#2|) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -4399 (|#4| |#1|)) (-15 -3048 (|#1| |#1| (-655 |#4|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#4| |#1|)) (-15 -3048 (|#1| |#1| (-655 |#4|) (-655 |#2|))) (-15 -3048 (|#1| |#1| |#4| |#2|)) (-15 -3048 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| (-303 |#1|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -2417 (|#1| |#2| |#3|)) (-15 -2012 (|#2| |#1| |#3|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2178 (|#2| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -4400 ((-112) |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1606 (((-655 |#3|) $) 113)) (-3466 (((-1190 $) $ |#3|) 128) (((-1190 |#1|) $) 127)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 90 (|has| |#1| (-567)))) (-1540 (($ $) 91 (|has| |#1| (-567)))) (-3286 (((-112) $) 93 (|has| |#1| (-567)))) (-3805 (((-782) $) 115) (((-782) $ (-655 |#3|)) 114)) (-2597 (((-3 $ "failed") $ $) 20)) (-3535 (((-429 (-1190 $)) (-1190 $)) 103 (|has| |#1| (-924)))) (-2058 (($ $) 101 (|has| |#1| (-463)))) (-2330 (((-429 $) $) 100 (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 106 (|has| |#1| (-924)))) (-3011 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 169) (((-3 (-418 (-575)) "failed") $) 166 (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) 164 (|has| |#1| (-1055 (-575)))) (((-3 |#3| "failed") $) 141)) (-4399 ((|#1| $) 168) (((-418 (-575)) $) 167 (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) 165 (|has| |#1| (-1055 (-575)))) ((|#3| $) 142)) (-4232 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-4406 (($ $) 159)) (-1749 (((-700 (-575)) (-1285 $)) 139 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 138 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 137 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 136) (((-700 |#1|) (-700 $)) 135) (((-700 |#1|) (-1285 $)) 134)) (-1747 (((-3 $ "failed") $) 37)) (-1824 (($ $) 181 (|has| |#1| (-463))) (($ $ |#3|) 108 (|has| |#1| (-463)))) (-4394 (((-655 $) $) 112)) (-1336 (((-112) $) 99 (|has| |#1| (-924)))) (-3703 (($ $ |#1| |#2| $) 177)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 87 (-12 (|has| |#3| (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 86 (-12 (|has| |#3| (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-1542 (((-112) $) 35)) (-2218 (((-782) $) 174)) (-2433 (($ (-1190 |#1|) |#3|) 120) (($ (-1190 $) |#3|) 119)) (-3010 (((-655 $) $) 129)) (-2376 (((-112) $) 157)) (-2417 (($ |#1| |#2|) 158) (($ $ |#3| (-782)) 122) (($ $ (-655 |#3|) (-655 (-782))) 121)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ |#3|) 123)) (-4337 ((|#2| $) 175) (((-782) $ |#3|) 125) (((-655 (-782)) $ (-655 |#3|)) 124)) (-2520 (($ (-1 |#2| |#2|) $) 176)) (-2550 (($ (-1 |#1| |#1|) $) 156)) (-3976 (((-3 |#3| "failed") $) 126)) (-4371 (($ $) 154)) (-4383 ((|#1| $) 153)) (-3887 (($ (-655 $)) 97 (|has| |#1| (-463))) (($ $ $) 96 (|has| |#1| (-463)))) (-2288 (((-1176) $) 10)) (-3658 (((-3 (-655 $) "failed") $) 117)) (-1734 (((-3 (-655 $) "failed") $) 118)) (-2455 (((-3 (-2 (|:| |var| |#3|) (|:| -2398 (-782))) "failed") $) 116)) (-3912 (((-1137) $) 11)) (-4345 (((-112) $) 171)) (-4353 ((|#1| $) 172)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 98 (|has| |#1| (-463)))) (-3926 (($ (-655 $)) 95 (|has| |#1| (-463))) (($ $ $) 94 (|has| |#1| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) 105 (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) 104 (|has| |#1| (-924)))) (-2353 (((-429 $) $) 102 (|has| |#1| (-924)))) (-2851 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-567)))) (-3048 (($ $ (-655 (-303 $))) 150) (($ $ (-303 $)) 149) (($ $ $ $) 148) (($ $ (-655 $) (-655 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-655 |#3|) (-655 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-655 |#3|) (-655 $)) 143)) (-4060 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2389 (($ $ (-655 |#3|) (-655 (-782))) 44) (($ $ |#3| (-782)) 43) (($ $ (-655 |#3|)) 42) (($ $ |#3|) 40)) (-2645 ((|#2| $) 155) (((-782) $ |#3|) 133) (((-655 (-782)) $ (-655 |#3|)) 132)) (-2615 (((-904 (-389)) $) 85 (-12 (|has| |#3| (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) 84 (-12 (|has| |#3| (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) 83 (-12 (|has| |#3| (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-2178 ((|#1| $) 180 (|has| |#1| (-463))) (($ $ |#3|) 109 (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 107 (-3226 (|has| $ (-146)) (|has| |#1| (-924))))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ $) 88 (|has| |#1| (-567))) (($ (-418 (-575))) 81 (-3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))))) (-2501 (((-655 |#1|) $) 173)) (-2012 ((|#1| $ |#2|) 160) (($ $ |#3| (-782)) 131) (($ $ (-655 |#3|) (-655 (-782))) 130)) (-1518 (((-3 $ "failed") $) 82 (-3765 (-3226 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) 32 T CONST)) (-1835 (($ $ $ (-782)) 178 (|has| |#1| (-174)))) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 92 (|has| |#1| (-567)))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-655 |#3|) (-655 (-782))) 47) (($ $ |#3| (-782)) 46) (($ $ (-655 |#3|)) 45) (($ $ |#3|) 41)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 161 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 163 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 162 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 152) (($ $ |#1|) 151))) +(((-964 |#1| |#2| |#3|) (-141) (-1066) (-804) (-861)) (T -964)) +((-1824 (*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-2645 (*1 *2 *1 *3) (-12 (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-782)))) (-2645 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-782))))) (-2012 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-964 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *2 (-861)))) (-2012 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 (-782))) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)))) (-3010 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5)))) (-3466 (*1 *2 *1 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-1190 *1)) (-4 *1 (-964 *4 *5 *3)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-1190 *3)))) (-3976 (*1 *2 *1) (|partial| -12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-4337 (*1 *2 *1 *3) (-12 (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-782)))) (-4337 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-782))))) (-2402 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-964 *4 *5 *3)))) (-2417 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-964 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *2 (-861)))) (-2417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 (-782))) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)))) (-2433 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *4)) (-4 *4 (-1066)) (-4 *1 (-964 *4 *5 *3)) (-4 *5 (-804)) (-4 *3 (-861)))) (-2433 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)))) (-1734 (*1 *2 *1) (|partial| -12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5)))) (-3658 (*1 *2 *1) (|partial| -12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5)))) (-2455 (*1 *2 *1) (|partial| -12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -2398 (-782)))))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-782)))) (-3805 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-782)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *5)))) (-4394 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5)))) (-4232 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *3 (-174)))) (-4060 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2178 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *3 (-463)))) (-1824 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *3 (-463)))) (-2058 (*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-2330 (*1 *2 *1) (-12 (-4 *3 (-463)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-429 *1)) (-4 *1 (-964 *3 *4 *5))))) +(-13 (-913 |t#3|) (-335 |t#1| |t#2|) (-318 $) (-525 |t#3| |t#1|) (-525 |t#3| $) (-1055 |t#3|) (-387 |t#1|) (-10 -8 (-15 -2645 ((-782) $ |t#3|)) (-15 -2645 ((-655 (-782)) $ (-655 |t#3|))) (-15 -2012 ($ $ |t#3| (-782))) (-15 -2012 ($ $ (-655 |t#3|) (-655 (-782)))) (-15 -3010 ((-655 $) $)) (-15 -3466 ((-1190 $) $ |t#3|)) (-15 -3466 ((-1190 |t#1|) $)) (-15 -3976 ((-3 |t#3| "failed") $)) (-15 -4337 ((-782) $ |t#3|)) (-15 -4337 ((-655 (-782)) $ (-655 |t#3|))) (-15 -2402 ((-2 (|:| -2829 $) (|:| -1635 $)) $ $ |t#3|)) (-15 -2417 ($ $ |t#3| (-782))) (-15 -2417 ($ $ (-655 |t#3|) (-655 (-782)))) (-15 -2433 ($ (-1190 |t#1|) |t#3|)) (-15 -2433 ($ (-1190 $) |t#3|)) (-15 -1734 ((-3 (-655 $) "failed") $)) (-15 -3658 ((-3 (-655 $) "failed") $)) (-15 -2455 ((-3 (-2 (|:| |var| |t#3|) (|:| -2398 (-782))) "failed") $)) (-15 -3805 ((-782) $)) (-15 -3805 ((-782) $ (-655 |t#3|))) (-15 -1606 ((-655 |t#3|) $)) (-15 -4394 ((-655 $) $)) (IF (|has| |t#1| (-625 (-547))) (IF (|has| |t#3| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-625 (-904 (-575)))) (IF (|has| |t#3| (-625 (-904 (-575)))) (-6 (-625 (-904 (-575)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-625 (-904 (-389)))) (IF (|has| |t#3| (-625 (-904 (-389)))) (-6 (-625 (-904 (-389)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-898 (-575))) (IF (|has| |t#3| (-898 (-575))) (-6 (-898 (-575))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-898 (-389))) (IF (|has| |t#3| (-898 (-389))) (-6 (-898 (-389))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -4232 ($ $ $ |t#3|)) (-15 -4060 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-463)) (PROGN (-6 (-463)) (-15 -2178 ($ $ |t#3|)) (-15 -1824 ($ $)) (-15 -1824 ($ $ |t#3|)) (-15 -2330 ((-429 $) $)) (-15 -2058 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |t#1| (-924)) (-6 (-924)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 |#3|) . T) ((-627 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-625 (-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#3| (-625 (-547)))) ((-625 (-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#3| (-625 (-904 (-389))))) ((-625 (-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#3| (-625 (-904 (-575))))) ((-299) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-318 $) . T) ((-335 |#1| |#2|) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-463) -3765 (|has| |#1| (-924)) (|has| |#1| (-463))) ((-525 |#3| |#1|) . T) ((-525 |#3| $) . T) ((-525 $ $) . T) ((-567) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 #1=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-650 #1#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-737) . T) ((-908 $ |#3|) . T) ((-913 |#3|) . T) ((-915 |#3|) . T) ((-898 (-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#3| (-898 (-389)))) ((-898 (-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#3| (-898 (-575)))) ((-924) |has| |#1| (-924)) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1055 |#3|) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T) ((-1239) |has| |#1| (-924))) +((-1606 (((-655 |#2|) |#5|) 40)) (-3466 (((-1190 |#5|) |#5| |#2| (-1190 |#5|)) 23) (((-418 (-1190 |#5|)) |#5| |#2|) 16)) (-2433 ((|#5| (-418 (-1190 |#5|)) |#2|) 30)) (-3976 (((-3 |#2| "failed") |#5|) 71)) (-3658 (((-3 (-655 |#5|) "failed") |#5|) 65)) (-2056 (((-3 (-2 (|:| |val| |#5|) (|:| -2398 (-575))) "failed") |#5|) 53)) (-1734 (((-3 (-655 |#5|) "failed") |#5|) 67)) (-2455 (((-3 (-2 (|:| |var| |#2|) (|:| -2398 (-575))) "failed") |#5|) 57))) +(((-965 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1606 ((-655 |#2|) |#5|)) (-15 -3976 ((-3 |#2| "failed") |#5|)) (-15 -3466 ((-418 (-1190 |#5|)) |#5| |#2|)) (-15 -2433 (|#5| (-418 (-1190 |#5|)) |#2|)) (-15 -3466 ((-1190 |#5|) |#5| |#2| (-1190 |#5|))) (-15 -1734 ((-3 (-655 |#5|) "failed") |#5|)) (-15 -3658 ((-3 (-655 |#5|) "failed") |#5|)) (-15 -2455 ((-3 (-2 (|:| |var| |#2|) (|:| -2398 (-575))) "failed") |#5|)) (-15 -2056 ((-3 (-2 (|:| |val| |#5|) (|:| -2398 (-575))) "failed") |#5|))) (-804) (-861) (-1066) (-964 |#3| |#1| |#2|) (-13 (-373) (-10 -8 (-15 -2883 ($ |#4|)) (-15 -1595 (|#4| $)) (-15 -1608 (|#4| $))))) (T -965)) +((-2056 (*1 *2 *3) (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2398 (-575)))) (-5 *1 (-965 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-2455 (*1 *2 *3) (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2398 (-575)))) (-5 *1 (-965 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-3658 (*1 *2 *3) (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *3)) (-5 *1 (-965 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-1734 (*1 *2 *3) (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *3)) (-5 *1 (-965 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-3466 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))) (-4 *7 (-964 *6 *5 *4)) (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-1066)) (-5 *1 (-965 *5 *4 *6 *7 *3)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-1190 *2))) (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-1066)) (-4 *2 (-13 (-373) (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))) (-5 *1 (-965 *5 *4 *6 *7 *2)) (-4 *7 (-964 *6 *5 *4)))) (-3466 (*1 *2 *3 *4) (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-418 (-1190 *3))) (-5 *1 (-965 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-3976 (*1 *2 *3) (|partial| -12 (-4 *4 (-804)) (-4 *5 (-1066)) (-4 *6 (-964 *5 *4 *2)) (-4 *2 (-861)) (-5 *1 (-965 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2883 ($ *6)) (-15 -1595 (*6 $)) (-15 -1608 (*6 $))))))) (-1606 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *5)) (-5 *1 (-965 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))))) +(-10 -7 (-15 -1606 ((-655 |#2|) |#5|)) (-15 -3976 ((-3 |#2| "failed") |#5|)) (-15 -3466 ((-418 (-1190 |#5|)) |#5| |#2|)) (-15 -2433 (|#5| (-418 (-1190 |#5|)) |#2|)) (-15 -3466 ((-1190 |#5|) |#5| |#2| (-1190 |#5|))) (-15 -1734 ((-3 (-655 |#5|) "failed") |#5|)) (-15 -3658 ((-3 (-655 |#5|) "failed") |#5|)) (-15 -2455 ((-3 (-2 (|:| |var| |#2|) (|:| -2398 (-575))) "failed") |#5|)) (-15 -2056 ((-3 (-2 (|:| |val| |#5|) (|:| -2398 (-575))) "failed") |#5|))) +((-2550 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-966 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2550 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-804) (-861) (-1066) (-964 |#3| |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -4016 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-782)))))) (T -966)) +((-2550 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) (-4 *8 (-1066)) (-4 *6 (-804)) (-4 *2 (-13 (-1117) (-10 -8 (-15 -4016 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-782)))))) (-5 *1 (-966 *6 *7 *8 *5 *2)) (-4 *5 (-964 *8 *6 *7))))) +(-10 -7 (-15 -2550 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 (-1194)) $) 16)) (-3466 (((-1190 $) $ (-1194)) 21) (((-1190 |#1|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 (-1194))) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2058 (($ $) NIL (|has| |#1| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 8) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-1194) "failed") $) NIL)) (-4399 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-1194) $) NIL)) (-4232 (($ $ $ (-1194)) NIL (|has| |#1| (-174)))) (-4406 (($ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#1| (-463))) (($ $ (-1194)) NIL (|has| |#1| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#1| (-924)))) (-3703 (($ $ |#1| (-542 (-1194)) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1194) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1194) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-2433 (($ (-1190 |#1|) (-1194)) NIL) (($ (-1190 $) (-1194)) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-542 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-1194)) NIL)) (-4337 (((-542 (-1194)) $) NIL) (((-782) $ (-1194)) NIL) (((-655 (-782)) $ (-655 (-1194))) NIL)) (-2520 (($ (-1 (-542 (-1194)) (-542 (-1194))) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3976 (((-3 (-1194) "failed") $) 19)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-2288 (((-1176) $) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| (-1194)) (|:| -2398 (-782))) "failed") $) NIL)) (-4413 (($ $ (-1194)) 29 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1194) |#1|) NIL) (($ $ (-655 (-1194)) (-655 |#1|)) NIL) (($ $ (-1194) $) NIL) (($ $ (-655 (-1194)) (-655 $)) NIL)) (-4060 (($ $ (-1194)) NIL (|has| |#1| (-174)))) (-2389 (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL)) (-2645 (((-542 (-1194)) $) NIL) (((-782) $ (-1194)) NIL) (((-655 (-782)) $ (-655 (-1194))) NIL)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| (-1194) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1194) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1194) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-2178 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ (-1194)) NIL (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2883 (((-873) $) 25) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-1194)) 27) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-542 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-967 |#1|) (-13 (-964 |#1| (-542 (-1194)) (-1194)) (-10 -8 (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1194))) |%noBranch|))) (-1066)) (T -967)) +((-4413 (*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-967 *3)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066))))) +(-13 (-964 |#1| (-542 (-1194)) (-1194)) (-10 -8 (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1194))) |%noBranch|))) +((-4058 (((-2 (|:| -2398 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#3| (-782)) 49)) (-1560 (((-2 (|:| -2398 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) (-418 (-575)) (-782)) 44)) (-2325 (((-2 (|:| -2398 (-782)) (|:| -1754 |#4|) (|:| |radicand| (-655 |#4|))) |#4| (-782)) 65)) (-3554 (((-2 (|:| -2398 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#5| (-782)) 74 (|has| |#3| (-463))))) +(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4058 ((-2 (|:| -2398 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#3| (-782))) (-15 -1560 ((-2 (|:| -2398 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) (-418 (-575)) (-782))) (IF (|has| |#3| (-463)) (-15 -3554 ((-2 (|:| -2398 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#5| (-782))) |%noBranch|) (-15 -2325 ((-2 (|:| -2398 (-782)) (|:| -1754 |#4|) (|:| |radicand| (-655 |#4|))) |#4| (-782)))) (-804) (-861) (-567) (-964 |#3| |#1| |#2|) (-13 (-373) (-10 -8 (-15 -2883 ($ |#4|)) (-15 -1595 (|#4| $)) (-15 -1608 (|#4| $))))) (T -968)) +((-2325 (*1 *2 *3 *4) (-12 (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-567)) (-4 *3 (-964 *7 *5 *6)) (-5 *2 (-2 (|:| -2398 (-782)) (|:| -1754 *3) (|:| |radicand| (-655 *3)))) (-5 *1 (-968 *5 *6 *7 *3 *8)) (-5 *4 (-782)) (-4 *8 (-13 (-373) (-10 -8 (-15 -2883 ($ *3)) (-15 -1595 (*3 $)) (-15 -1608 (*3 $))))))) (-3554 (*1 *2 *3 *4) (-12 (-4 *7 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-567)) (-4 *8 (-964 *7 *5 *6)) (-5 *2 (-2 (|:| -2398 (-782)) (|:| -1754 *3) (|:| |radicand| *3))) (-5 *1 (-968 *5 *6 *7 *8 *3)) (-5 *4 (-782)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2883 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $))))))) (-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-575))) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-567)) (-4 *8 (-964 *7 *5 *6)) (-5 *2 (-2 (|:| -2398 (-782)) (|:| -1754 *9) (|:| |radicand| *9))) (-5 *1 (-968 *5 *6 *7 *8 *9)) (-5 *4 (-782)) (-4 *9 (-13 (-373) (-10 -8 (-15 -2883 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $))))))) (-4058 (*1 *2 *3 *4) (-12 (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-567)) (-4 *7 (-964 *3 *5 *6)) (-5 *2 (-2 (|:| -2398 (-782)) (|:| -1754 *8) (|:| |radicand| *8))) (-5 *1 (-968 *5 *6 *3 *7 *8)) (-5 *4 (-782)) (-4 *8 (-13 (-373) (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))))) +(-10 -7 (-15 -4058 ((-2 (|:| -2398 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#3| (-782))) (-15 -1560 ((-2 (|:| -2398 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) (-418 (-575)) (-782))) (IF (|has| |#3| (-463)) (-15 -3554 ((-2 (|:| -2398 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#5| (-782))) |%noBranch|) (-15 -2325 ((-2 (|:| -2398 (-782)) (|:| -1754 |#4|) (|:| |radicand| (-655 |#4|))) |#4| (-782)))) +((-2861 (((-112) $ $) NIL)) (-1866 (($ (-1137)) 8)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 15) (((-1137) $) 12)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 11))) +(((-969) (-13 (-1117) (-624 (-1137)) (-10 -8 (-15 -1866 ($ (-1137)))))) (T -969)) +((-1866 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-969))))) +(-13 (-1117) (-624 (-1137)) (-10 -8 (-15 -1866 ($ (-1137))))) +((-2826 (((-1111 (-227)) $) 8)) (-2814 (((-1111 (-227)) $) 9)) (-2595 (((-655 (-655 (-958 (-227)))) $) 10)) (-2883 (((-873) $) 6))) +(((-970) (-141)) (T -970)) +((-2595 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-655 (-655 (-958 (-227))))))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1111 (-227))))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1111 (-227)))))) +(-13 (-624 (-873)) (-10 -8 (-15 -2595 ((-655 (-655 (-958 (-227)))) $)) (-15 -2814 ((-1111 (-227)) $)) (-15 -2826 ((-1111 (-227)) $)))) +(((-624 (-873)) . T)) +((-3155 (((-3 (-700 |#1|) "failed") |#2| (-936)) 18))) +(((-971 |#1| |#2|) (-10 -7 (-15 -3155 ((-3 (-700 |#1|) "failed") |#2| (-936)))) (-567) (-667 |#1|)) (T -971)) +((-3155 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-936)) (-4 *5 (-567)) (-5 *2 (-700 *5)) (-5 *1 (-971 *5 *3)) (-4 *3 (-667 *5))))) +(-10 -7 (-15 -3155 ((-3 (-700 |#1|) "failed") |#2| (-936)))) +((-3715 (((-973 |#2|) (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|) 16)) (-2308 ((|#2| (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|) 18)) (-2550 (((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|)) 13))) +(((-972 |#1| |#2|) (-10 -7 (-15 -3715 ((-973 |#2|) (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|)) (-15 -2308 (|#2| (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|)) (-15 -2550 ((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|)))) (-1235) (-1235)) (T -972)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-973 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-973 *6)) (-5 *1 (-972 *5 *6)))) (-2308 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-973 *5)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-972 *5 *2)))) (-3715 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-973 *6)) (-4 *6 (-1235)) (-4 *5 (-1235)) (-5 *2 (-973 *5)) (-5 *1 (-972 *6 *5))))) +(-10 -7 (-15 -3715 ((-973 |#2|) (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|)) (-15 -2308 (|#2| (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|)) (-15 -2550 ((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#1| $ (-575) |#1|) 19 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) 18 (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) 16)) (-2632 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2309 (($ (-782) |#1|) 15)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) 11 (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2135 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1961 ((|#1| $) NIL (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3954 (($ $ |#1|) 20 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) 12)) (-2070 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) 17) (($ $ (-1252 (-575))) NIL)) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) 21)) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 14)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2871 (((-782) $) 8 (|has| $ (-6 -4460))))) +(((-973 |#1|) (-19 |#1|) (-1235)) (T -973)) NIL (-19 |#1|) -((-1997 (($ $ (-1110 $)) 7) (($ $ (-1195)) 6))) -(((-975) (-141)) (T -975)) -((-1997 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-975)))) (-1997 (*1 *1 *1 *2) (-12 (-4 *1 (-975)) (-5 *2 (-1195))))) -(-13 (-10 -8 (-15 -1997 ($ $ (-1195))) (-15 -1997 ($ $ (-1110 $))))) -((-2013 (((-2 (|:| -1755 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195)) (-1195)) 26) (((-2 (|:| -1755 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 |#1|))) (-968 |#1|) (-1195) (-968 |#1|) (-1195)) 49))) -(((-976 |#1|) (-10 -7 (-15 -2013 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 |#1|))) (-968 |#1|) (-1195) (-968 |#1|) (-1195))) (-15 -2013 ((-2 (|:| -1755 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -2013 ((-2 (|:| -1755 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195)) (-1195)))) (-13 (-374) (-148))) (T -976)) -((-2013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195))) (-5 *5 (-1195)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1755 (-656 (-576))) (|:| |poly| (-656 (-1191 *6))) (|:| |prim| (-1191 *6)))) (-5 *1 (-976 *6)))) (-2013 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1755 (-656 (-576))) (|:| |poly| (-656 (-1191 *5))) (|:| |prim| (-1191 *5)))) (-5 *1 (-976 *5)))) (-2013 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-968 *5)) (-5 *4 (-1195)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 *5)))) (-5 *1 (-976 *5))))) -(-10 -7 (-15 -2013 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 |#1|))) (-968 |#1|) (-1195) (-968 |#1|) (-1195))) (-15 -2013 ((-2 (|:| -1755 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -2013 ((-2 (|:| -1755 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195)) (-1195)))) -((-2047 (((-656 |#1|) |#1| |#1|) 47)) (-2463 (((-112) |#1|) 44)) (-2036 ((|#1| |#1|) 79)) (-2024 ((|#1| |#1|) 78))) -(((-977 |#1|) (-10 -7 (-15 -2463 ((-112) |#1|)) (-15 -2024 (|#1| |#1|)) (-15 -2036 (|#1| |#1|)) (-15 -2047 ((-656 |#1|) |#1| |#1|))) (-557)) (T -977)) -((-2047 (*1 *2 *3 *3) (-12 (-5 *2 (-656 *3)) (-5 *1 (-977 *3)) (-4 *3 (-557)))) (-2036 (*1 *2 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-557)))) (-2024 (*1 *2 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-557)))) (-2463 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -2463 ((-112) |#1|)) (-15 -2024 (|#1| |#1|)) (-15 -2036 (|#1| |#1|)) (-15 -2047 ((-656 |#1|) |#1| |#1|))) -((-3521 (((-1291) (-874)) 9))) -(((-978) (-10 -7 (-15 -3521 ((-1291) (-874))))) (T -978)) -((-3521 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-978))))) -(-10 -7 (-15 -3521 ((-1291) (-874)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-4241 (($ $) 79 (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-4407 (($ $) 31)) (-1999 (((-3 $ "failed") $) 42)) (-2192 (($ $) NIL (|has| |#1| (-464)))) (-3098 (($ $ |#1| |#2| $) 62)) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) 17)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| |#2|) NIL)) (-1864 ((|#2| $) 24)) (-3109 (($ (-1 |#2| |#2|) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-4371 (($ $) 28)) (-4383 ((|#1| $) 26)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) 51)) (-4359 ((|#1| $) NIL)) (-2581 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-2852 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-3813 ((|#2| $) 22)) (-1841 ((|#1| $) NIL (|has| |#1| (-464)))) (-2884 (((-874) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ |#2|) 37)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) 15 T CONST)) (-3086 (($ $ $ (-783)) 74 (|has| |#1| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) 84 (|has| |#1| (-568)))) (-1996 (($) 27 T CONST)) (-2011 (($) 12 T CONST)) (-3915 (((-112) $ $) 83)) (-4039 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) 69) (($ $ (-783)) 67)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-979 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -2581 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) (-1067) (-804)) (T -979)) -((-2581 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-979 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *2 (-804))))) -(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -2581 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL (-3766 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2158 (($ $ $) 65 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (-1459 (((-3 $ "failed") $ $) 52 (-3766 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2416 (((-783)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2059 ((|#2| $) 22)) (-2072 ((|#1| $) 21)) (-2473 (($) NIL (-3766 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-1999 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-2080 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1439 (((-112) $) NIL (-3766 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-1921 (($ $ $) NIL (-3766 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-4137 (($ $ $) NIL (-3766 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2083 (($ |#1| |#2|) 20)) (-1875 (((-937) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-4318 (($ (-937)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3914 (((-1138) $) NIL)) (-3276 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2920 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2884 (((-874) $) 14)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 42 (-3766 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-2011 (($) 25 (-3766 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-3983 (((-112) $ $) NIL (-3766 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3957 (((-112) $ $) NIL (-3766 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3915 (((-112) $ $) 19)) (-3970 (((-112) $ $) NIL (-3766 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3943 (((-112) $ $) 69 (-3766 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-4039 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-4029 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4017 (($ $ $) 45 (-3766 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-783)) 32 (-3766 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))) (($ $ (-937)) NIL (-3766 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-783) $) 48 (-3766 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ (-937) $) NIL (-3766 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ $ $) 28 (-3766 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))))) -(((-980 |#1| |#2|) (-13 (-1118) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -2083 ($ |#1| |#2|)) (-15 -2072 (|#1| $)) (-15 -2059 (|#2| $)))) (-1118) (-1118)) (T -980)) -((-2083 (*1 *1 *2 *3) (-12 (-5 *1 (-980 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-2072 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1118)))) (-2059 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-980 *3 *2)) (-4 *3 (-1118))))) -(-13 (-1118) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -2083 ($ |#1| |#2|)) (-15 -2072 (|#1| $)) (-15 -2059 (|#2| $)))) -((-4183 (((-1122) $) 12)) (-2094 (($ (-518) (-1122)) 14)) (-1778 (((-518) $) 9)) (-2884 (((-874) $) 24))) -(((-981) (-13 (-625 (-874)) (-10 -8 (-15 -1778 ((-518) $)) (-15 -4183 ((-1122) $)) (-15 -2094 ($ (-518) (-1122)))))) (T -981)) -((-1778 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-981)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-981)))) (-2094 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-981))))) -(-13 (-625 (-874)) (-10 -8 (-15 -1778 ((-518) $)) (-15 -4183 ((-1122) $)) (-15 -2094 ($ (-518) (-1122))))) -((-2862 (((-112) $ $) NIL)) (-2004 (($) NIL T CONST)) (-3239 (($ $ $) 30)) (-3216 (($ $) 24)) (-3733 (((-1177) $) NIL)) (-2145 (((-703 (-885 $ $)) $) 55)) (-2167 (((-703 $) $) 45)) (-2135 (((-703 (-885 $ $)) $) 56)) (-2124 (((-703 (-885 $ $)) $) 57)) (-2179 (((-703 |#1|) $) 36)) (-2157 (((-703 (-885 $ $)) $) 54)) (-2219 (($ $ $) 31)) (-3914 (((-1138) $) NIL)) (-3941 (($) NIL T CONST)) (-2209 (($ $ $) 32)) (-2104 (($ $ $) 29)) (-2114 (($ $ $) 27)) (-2884 (((-874) $) 59) (($ |#1|) 12)) (-3722 (((-112) $ $) NIL)) (-3227 (($ $ $) 28)) (-3915 (((-112) $ $) NIL))) -(((-982 |#1|) (-13 (-985) (-628 |#1|) (-10 -8 (-15 -2179 ((-703 |#1|) $)) (-15 -2167 ((-703 $) $)) (-15 -2157 ((-703 (-885 $ $)) $)) (-15 -2145 ((-703 (-885 $ $)) $)) (-15 -2135 ((-703 (-885 $ $)) $)) (-15 -2124 ((-703 (-885 $ $)) $)) (-15 -2114 ($ $ $)) (-15 -2104 ($ $ $)))) (-1118)) (T -982)) -((-2179 (*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-703 (-982 *3))) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-2114 (*1 *1 *1 *1) (-12 (-5 *1 (-982 *2)) (-4 *2 (-1118)))) (-2104 (*1 *1 *1 *1) (-12 (-5 *1 (-982 *2)) (-4 *2 (-1118))))) -(-13 (-985) (-628 |#1|) (-10 -8 (-15 -2179 ((-703 |#1|) $)) (-15 -2167 ((-703 $) $)) (-15 -2157 ((-703 (-885 $ $)) $)) (-15 -2145 ((-703 (-885 $ $)) $)) (-15 -2135 ((-703 (-885 $ $)) $)) (-15 -2124 ((-703 (-885 $ $)) $)) (-15 -2114 ($ $ $)) (-15 -2104 ($ $ $)))) -((-4122 (((-982 |#1|) (-982 |#1|)) 46)) (-2200 (((-982 |#1|) (-982 |#1|)) 22)) (-2190 (((-1120 |#1|) (-982 |#1|)) 41))) -(((-983 |#1|) (-13 (-1236) (-10 -7 (-15 -2200 ((-982 |#1|) (-982 |#1|))) (-15 -2190 ((-1120 |#1|) (-982 |#1|))) (-15 -4122 ((-982 |#1|) (-982 |#1|))))) (-1118)) (T -983)) -((-2200 (*1 *2 *2) (-12 (-5 *2 (-982 *3)) (-4 *3 (-1118)) (-5 *1 (-983 *3)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-982 *4)) (-4 *4 (-1118)) (-5 *2 (-1120 *4)) (-5 *1 (-983 *4)))) (-4122 (*1 *2 *2) (-12 (-5 *2 (-982 *3)) (-4 *3 (-1118)) (-5 *1 (-983 *3))))) -(-13 (-1236) (-10 -7 (-15 -2200 ((-982 |#1|) (-982 |#1|))) (-15 -2190 ((-1120 |#1|) (-982 |#1|))) (-15 -4122 ((-982 |#1|) (-982 |#1|))))) -((-2551 (((-982 |#2|) (-1 |#2| |#1|) (-982 |#1|)) 29))) -(((-984 |#1| |#2|) (-13 (-1236) (-10 -7 (-15 -2551 ((-982 |#2|) (-1 |#2| |#1|) (-982 |#1|))))) (-1118) (-1118)) (T -984)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-982 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-982 *6)) (-5 *1 (-984 *5 *6))))) -(-13 (-1236) (-10 -7 (-15 -2551 ((-982 |#2|) (-1 |#2| |#1|) (-982 |#1|))))) -((-2862 (((-112) $ $) 15)) (-2004 (($) 14 T CONST)) (-3239 (($ $ $) 6)) (-3216 (($ $) 8)) (-3733 (((-1177) $) 19)) (-2219 (($ $ $) 12)) (-3914 (((-1138) $) 18)) (-3941 (($) 13 T CONST)) (-2209 (($ $ $) 11)) (-2884 (((-874) $) 17)) (-3722 (((-112) $ $) 20)) (-3227 (($ $ $) 7)) (-3915 (((-112) $ $) 16))) -(((-985) (-141)) (T -985)) -((-2004 (*1 *1) (-4 *1 (-985))) (-3941 (*1 *1) (-4 *1 (-985))) (-2219 (*1 *1 *1 *1) (-4 *1 (-985))) (-2209 (*1 *1 *1 *1) (-4 *1 (-985)))) -(-13 (-113) (-1118) (-10 -8 (-15 -2004 ($) -3739) (-15 -3941 ($) -3739) (-15 -2219 ($ $ $)) (-15 -2209 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-625 (-874)) . T) ((-1118) . T) ((-1236) . T)) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) 8)) (-2473 (($) 7 T CONST)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-2230 (($ $ $) 44)) (-4214 (($ $ $) 45)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-4137 ((|#1| $) 46)) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3449 ((|#1| $) 40)) (-3807 (($ |#1| $) 41)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-3458 ((|#1| $) 42)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) 43)) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-986 |#1|) (-141) (-862)) (T -986)) -((-4137 (*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862)))) (-4214 (*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862)))) (-2230 (*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4461) (-15 -4137 (|t#1| $)) (-15 -4214 ($ $ $)) (-15 -2230 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-4242 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3928 |#2|)) |#2| |#2|) 105)) (-2768 ((|#2| |#2| |#2|) 103)) (-4254 (((-2 (|:| |coef2| |#2|) (|:| -3928 |#2|)) |#2| |#2|) 107)) (-4265 (((-2 (|:| |coef1| |#2|) (|:| -3928 |#2|)) |#2| |#2|) 109)) (-4338 (((-2 (|:| |coef2| |#2|) (|:| -4315 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-4420 (((-2 (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|) 56)) (-4154 (((-2 (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|) 80)) (-4160 (((-2 (|:| |coef1| |#2|) (|:| -2778 |#1|)) |#2| |#2|) 82)) (-4233 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-4186 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 89)) (-4284 (((-2 (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|) 121)) (-4213 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 92)) (-4305 (((-656 (-783)) |#2| |#2|) 102)) (-4398 ((|#1| |#2| |#2|) 50)) (-4326 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4315 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-4315 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-4410 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|) 54)) (-4146 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|) 79)) (-2778 ((|#1| |#2| |#2|) 76)) (-2736 (((-2 (|:| -1755 |#1|) (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2|) 41)) (-4387 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-4222 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-1411 ((|#2| |#2| |#2|) 93)) (-4177 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 87)) (-4168 ((|#2| |#2| |#2| (-783)) 85)) (-3928 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-2852 (((-1286 |#2|) (-1286 |#2|) |#1|) 22)) (-4350 (((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2|) 46)) (-4275 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|) 119)) (-2790 ((|#1| |#2|) 116)) (-4203 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 91)) (-4194 ((|#2| |#2| |#2| (-783)) 90)) (-4295 (((-656 |#2|) |#2| |#2|) 99)) (-4375 ((|#2| |#2| |#1| |#1| (-783)) 62)) (-4363 ((|#1| |#1| |#1| (-783)) 61)) (* (((-1286 |#2|) |#1| (-1286 |#2|)) 17))) -(((-987 |#1| |#2|) (-10 -7 (-15 -2778 (|#1| |#2| |#2|)) (-15 -4146 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|)) (-15 -4154 ((-2 (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|)) (-15 -4160 ((-2 (|:| |coef1| |#2|) (|:| -2778 |#1|)) |#2| |#2|)) (-15 -4168 (|#2| |#2| |#2| (-783))) (-15 -4177 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4186 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4194 (|#2| |#2| |#2| (-783))) (-15 -4203 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4213 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1411 (|#2| |#2| |#2|)) (-15 -4222 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4233 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2768 (|#2| |#2| |#2|)) (-15 -4242 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3928 |#2|)) |#2| |#2|)) (-15 -4254 ((-2 (|:| |coef2| |#2|) (|:| -3928 |#2|)) |#2| |#2|)) (-15 -4265 ((-2 (|:| |coef1| |#2|) (|:| -3928 |#2|)) |#2| |#2|)) (-15 -2790 (|#1| |#2|)) (-15 -4275 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|)) (-15 -4284 ((-2 (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|)) (-15 -4295 ((-656 |#2|) |#2| |#2|)) (-15 -4305 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -4315 (|#1| |#2| |#2|)) (-15 -4326 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4315 |#1|)) |#2| |#2|)) (-15 -4338 ((-2 (|:| |coef2| |#2|) (|:| -4315 |#1|)) |#2| |#2|)) (-15 -3928 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1286 |#2|) |#1| (-1286 |#2|))) (-15 -2852 ((-1286 |#2|) (-1286 |#2|) |#1|)) (-15 -2736 ((-2 (|:| -1755 |#1|) (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2|)) (-15 -4350 ((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2|)) (-15 -4363 (|#1| |#1| |#1| (-783))) (-15 -4375 (|#2| |#2| |#1| |#1| (-783))) (-15 -4387 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4398 (|#1| |#2| |#2|)) (-15 -4410 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|)) (-15 -4420 ((-2 (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|))) (-568) (-1262 |#1|)) (T -987)) -((-4420 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2778 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4410 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2778 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4398 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2)))) (-4387 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) (-4375 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) (-4363 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-987 *2 *4)) (-4 *4 (-1262 *2)))) (-4350 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2736 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1755 *4) (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2852 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) (-5 *1 (-987 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) (-5 *1 (-987 *3 *4)))) (-3928 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) (-4338 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4315 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4326 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4315 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4315 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2)))) (-4305 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4295 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4284 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2790 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4275 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2790 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2790 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2)))) (-4265 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3928 *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4254 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3928 *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4242 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3928 *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2768 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) (-4233 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4222 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-1411 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) (-4213 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))) (-4203 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))) (-4194 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-987 *4 *2)) (-4 *2 (-1262 *4)))) (-4186 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))) (-4177 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))) (-4168 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-987 *4 *2)) (-4 *2 (-1262 *4)))) (-4160 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2778 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4154 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2778 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4146 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2778 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2778 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2))))) -(-10 -7 (-15 -2778 (|#1| |#2| |#2|)) (-15 -4146 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|)) (-15 -4154 ((-2 (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|)) (-15 -4160 ((-2 (|:| |coef1| |#2|) (|:| -2778 |#1|)) |#2| |#2|)) (-15 -4168 (|#2| |#2| |#2| (-783))) (-15 -4177 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4186 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4194 (|#2| |#2| |#2| (-783))) (-15 -4203 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4213 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1411 (|#2| |#2| |#2|)) (-15 -4222 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4233 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2768 (|#2| |#2| |#2|)) (-15 -4242 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3928 |#2|)) |#2| |#2|)) (-15 -4254 ((-2 (|:| |coef2| |#2|) (|:| -3928 |#2|)) |#2| |#2|)) (-15 -4265 ((-2 (|:| |coef1| |#2|) (|:| -3928 |#2|)) |#2| |#2|)) (-15 -2790 (|#1| |#2|)) (-15 -4275 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|)) (-15 -4284 ((-2 (|:| |coef2| |#2|) (|:| -2790 |#1|)) |#2|)) (-15 -4295 ((-656 |#2|) |#2| |#2|)) (-15 -4305 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -4315 (|#1| |#2| |#2|)) (-15 -4326 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4315 |#1|)) |#2| |#2|)) (-15 -4338 ((-2 (|:| |coef2| |#2|) (|:| -4315 |#1|)) |#2| |#2|)) (-15 -3928 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1286 |#2|) |#1| (-1286 |#2|))) (-15 -2852 ((-1286 |#2|) (-1286 |#2|) |#1|)) (-15 -2736 ((-2 (|:| -1755 |#1|) (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2|)) (-15 -4350 ((-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) |#2| |#2|)) (-15 -4363 (|#1| |#1| |#1| (-783))) (-15 -4375 (|#2| |#2| |#1| |#1| (-783))) (-15 -4387 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4398 (|#1| |#2| |#2|)) (-15 -4410 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|)) (-15 -4420 ((-2 (|:| |coef2| |#2|) (|:| -2778 |#1|)) |#2| |#2|))) -((-2862 (((-112) $ $) NIL)) (-2940 (((-1235) $) 13)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3830 (((-1153) $) 10)) (-2884 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-988) (-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $)) (-15 -2940 ((-1235) $))))) (T -988)) -((-3830 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-988)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-988))))) -(-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $)) (-15 -2940 ((-1235) $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 40)) (-1459 (((-3 $ "failed") $ $) 54)) (-2473 (($) NIL T CONST)) (-4440 (((-656 (-885 (-937) (-937))) $) 67)) (-4431 (((-937) $) 94)) (-4001 (((-656 (-937)) $) 17)) (-1327 (((-1175 $) (-783)) 39)) (-1337 (($ (-656 (-937))) 16)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3276 (($ $) 70)) (-2884 (((-874) $) 90) (((-656 (-937)) $) 11)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 8 T CONST)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 44)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 42)) (-4017 (($ $ $) 46)) (* (($ (-937) $) NIL) (($ (-783) $) 49)) (-2872 (((-783) $) 22))) -(((-989) (-13 (-807) (-625 (-656 (-937))) (-10 -8 (-15 -1337 ($ (-656 (-937)))) (-15 -4001 ((-656 (-937)) $)) (-15 -2872 ((-783) $)) (-15 -1327 ((-1175 $) (-783))) (-15 -4440 ((-656 (-885 (-937) (-937))) $)) (-15 -4431 ((-937) $)) (-15 -3276 ($ $))))) (T -989)) -((-1337 (*1 *1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-989)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-989)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-989)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1175 (-989))) (-5 *1 (-989)))) (-4440 (*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-937) (-937)))) (-5 *1 (-989)))) (-4431 (*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-989)))) (-3276 (*1 *1 *1) (-5 *1 (-989)))) -(-13 (-807) (-625 (-656 (-937))) (-10 -8 (-15 -1337 ($ (-656 (-937)))) (-15 -4001 ((-656 (-937)) $)) (-15 -2872 ((-783) $)) (-15 -1327 ((-1175 $) (-783))) (-15 -4440 ((-656 (-885 (-937) (-937))) $)) (-15 -4431 ((-937) $)) (-15 -3276 ($ $)))) -((-4039 (($ $ |#2|) 31)) (-4029 (($ $) 23) (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29))) -(((-990 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4039 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) (-991 |#2| |#3| |#4|) (-1067) (-804) (-862)) (T -990)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4039 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1607 (((-656 |#3|) $) 86)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4241 (($ $) 64 (|has| |#1| (-568)))) (-4221 (((-112) $) 66 (|has| |#1| (-568)))) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-4407 (($ $) 72)) (-1999 (((-3 $ "failed") $) 37)) (-1355 (((-112) $) 85)) (-1439 (((-112) $) 35)) (-3734 (((-112) $) 74)) (-2421 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-656 |#3|) (-656 |#2|)) 87)) (-2551 (($ (-1 |#1| |#1|) $) 75)) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3813 ((|#2| $) 76)) (-1346 (($ $) 84)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3245 ((|#1| $ |#2|) 71)) (-3148 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-991 |#1| |#2| |#3|) (-141) (-1067) (-804) (-862)) (T -991)) -((-4383 (*1 *2 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-862)) (-4 *2 (-1067)))) (-4371 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-804)) (-4 *4 (-862)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *2 *4)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *2 (-804)))) (-2421 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-991 *4 *3 *2)) (-4 *4 (-1067)) (-4 *3 (-804)) (-4 *2 (-862)))) (-2421 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-804)) (-4 *6 (-862)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-804)) (-4 *5 (-862)) (-5 *2 (-656 *5)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-804)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1346 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-804)) (-4 *4 (-862))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2421 ($ $ |t#3| |t#2|)) (-15 -2421 ($ $ (-656 |t#3|) (-656 |t#2|))) (-15 -4371 ($ $)) (-15 -4383 (|t#1| $)) (-15 -3813 (|t#2| $)) (-15 -1607 ((-656 |t#3|) $)) (-15 -1355 ((-112) $)) (-15 -1346 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2840 (((-1112 (-227)) $) 8)) (-2827 (((-1112 (-227)) $) 9)) (-2815 (((-1112 (-227)) $) 10)) (-1364 (((-656 (-656 (-959 (-227)))) $) 11)) (-2884 (((-874) $) 6))) -(((-992) (-141)) (T -992)) -((-1364 (*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-656 (-656 (-959 (-227))))))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227))))) (-2827 (*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227))))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227)))))) -(-13 (-625 (-874)) (-10 -8 (-15 -1364 ((-656 (-656 (-959 (-227)))) $)) (-15 -2815 ((-1112 (-227)) $)) (-15 -2827 ((-1112 (-227)) $)) (-15 -2840 ((-1112 (-227)) $)))) -(((-625 (-874)) . T)) -((-1607 (((-656 |#4|) $) 23)) (-1470 (((-112) $) 55)) (-1374 (((-112) $) 54)) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#4|) 42)) (-1425 (((-112) $) 56)) (-1445 (((-112) $ $) 62)) (-1435 (((-112) $ $) 65)) (-1457 (((-112) $) 60)) (-1384 (((-656 |#5|) (-656 |#5|) $) 98)) (-1394 (((-656 |#5|) (-656 |#5|) $) 95)) (-1406 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-1524 (((-656 |#4|) $) 27)) (-1513 (((-112) |#4| $) 34)) (-1415 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1483 (($ $ |#4|) 39)) (-1504 (($ $ |#4|) 38)) (-1493 (($ $ |#4|) 40)) (-3915 (((-112) $ $) 46))) -(((-993 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1374 ((-112) |#1|)) (-15 -1384 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1394 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1406 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1415 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1425 ((-112) |#1|)) (-15 -1435 ((-112) |#1| |#1|)) (-15 -1445 ((-112) |#1| |#1|)) (-15 -1457 ((-112) |#1|)) (-15 -1470 ((-112) |#1|)) (-15 -2032 ((-2 (|:| |under| |#1|) (|:| -1916 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1483 (|#1| |#1| |#4|)) (-15 -1493 (|#1| |#1| |#4|)) (-15 -1504 (|#1| |#1| |#4|)) (-15 -1513 ((-112) |#4| |#1|)) (-15 -1524 ((-656 |#4|) |#1|)) (-15 -1607 ((-656 |#4|) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) (-994 |#2| |#3| |#4| |#5|) (-1067) (-805) (-862) (-1083 |#2| |#3| |#4|)) (T -993)) -NIL -(-10 -8 (-15 -1374 ((-112) |#1|)) (-15 -1384 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1394 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1406 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1415 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1425 ((-112) |#1|)) (-15 -1435 ((-112) |#1| |#1|)) (-15 -1445 ((-112) |#1| |#1|)) (-15 -1457 ((-112) |#1|)) (-15 -1470 ((-112) |#1|)) (-15 -2032 ((-2 (|:| |under| |#1|) (|:| -1916 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1483 (|#1| |#1| |#4|)) (-15 -1493 (|#1| |#1| |#4|)) (-15 -1504 (|#1| |#1| |#4|)) (-15 -1513 ((-112) |#4| |#1|)) (-15 -1524 ((-656 |#4|) |#1|)) (-15 -1607 ((-656 |#4|) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1607 (((-656 |#3|) $) 34)) (-1470 (((-112) $) 27)) (-1374 (((-112) $) 18 (|has| |#1| (-568)))) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#3|) 28)) (-2970 (((-112) $ (-783)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461)))) (-2473 (($) 46 T CONST)) (-1425 (((-112) $) 23 (|has| |#1| (-568)))) (-1445 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1435 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1457 (((-112) $) 26 (|has| |#1| (-568)))) (-1384 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1394 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 |#4|)) 37)) (-4401 (($ (-656 |#4|)) 36)) (-1919 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2309 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461)))) (-4001 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-1323 ((|#3| $) 35)) (-2408 (((-112) $ (-783)) 44)) (-1496 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) 48)) (-1524 (((-656 |#3|) $) 33)) (-1513 (((-112) |#3| $) 32)) (-2374 (((-112) $ (-783)) 43)) (-3733 (((-1177) $) 10)) (-1415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3914 (((-1138) $) 11)) (-1932 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2476 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) 39)) (-2809 (((-112) $) 42)) (-1458 (($) 41)) (-3926 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3079 (($ $) 40)) (-2616 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2895 (($ (-656 |#4|)) 61)) (-1483 (($ $ |#3|) 29)) (-1504 (($ $ |#3|) 31)) (-1493 (($ $ |#3|) 30)) (-2884 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3722 (((-112) $ $) 9)) (-2492 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 6)) (-2872 (((-783) $) 47 (|has| $ (-6 -4461))))) -(((-994 |#1| |#2| |#3| |#4|) (-141) (-1067) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -994)) -((-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-994 *3 *4 *5 *6)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-994 *3 *4 *5 *6)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-1083 *3 *4 *2)) (-4 *2 (-862)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5)))) (-1513 (*1 *2 *3 *1) (-12 (-4 *1 (-994 *4 *5 *3 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1083 *4 *5 *3)) (-5 *2 (-112)))) (-1504 (*1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2)))) (-1493 (*1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2)))) (-1483 (*1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2)))) (-2032 (*1 *2 *1 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1083 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1916 *1) (|:| |upper| *1))) (-4 *1 (-994 *4 *5 *3 *6)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1445 (*1 *2 *1 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1435 (*1 *2 *1 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1415 (*1 *2 *3 *1) (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1406 (*1 *2 *3 *1) (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1394 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)))) (-1384 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112))))) -(-13 (-1118) (-152 |t#4|) (-625 (-656 |t#4|)) (-10 -8 (-6 -4461) (-15 -2449 ((-3 $ "failed") (-656 |t#4|))) (-15 -4401 ($ (-656 |t#4|))) (-15 -1323 (|t#3| $)) (-15 -1607 ((-656 |t#3|) $)) (-15 -1524 ((-656 |t#3|) $)) (-15 -1513 ((-112) |t#3| $)) (-15 -1504 ($ $ |t#3|)) (-15 -1493 ($ $ |t#3|)) (-15 -1483 ($ $ |t#3|)) (-15 -2032 ((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |t#3|)) (-15 -1470 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -1457 ((-112) $)) (-15 -1445 ((-112) $ $)) (-15 -1435 ((-112) $ $)) (-15 -1425 ((-112) $)) (-15 -1415 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1406 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1394 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -1384 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -1374 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-1118) . T) ((-1236) . T)) -((-1547 (((-656 |#4|) |#4| |#4|) 136)) (-3728 (((-656 |#4|) (-656 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-656 |#4|) (-656 |#4|)) 126 (|has| |#1| (-464)))) (-3598 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 44)) (-3587 (((-112) |#4|) 43)) (-3716 (((-656 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-3553 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|)) 24)) (-3561 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 30)) (-3567 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 31)) (-3677 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|)) 90)) (-3698 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3707 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-1535 (((-656 |#4|) (-656 |#4|)) 128)) (-3642 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112)) 59) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 61)) (-3652 ((|#4| |#4| (-656 |#4|)) 60)) (-3737 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 132 (|has| |#1| (-464)))) (-3760 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 135 (|has| |#1| (-464)))) (-3748 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 134 (|has| |#1| (-464)))) (-1557 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|))) 105) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 107) (((-656 |#4|) (-656 |#4|) |#4|) 140) (((-656 |#4|) |#4| |#4|) 137) (((-656 |#4|) (-656 |#4|)) 106)) (-3796 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3577 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 52)) (-3544 (((-112) (-656 |#4|)) 79)) (-1586 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 67)) (-3615 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 37)) (-3606 (((-112) |#4|) 36)) (-3785 (((-656 |#4|) (-656 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3773 (((-656 |#4|) (-656 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3666 (((-656 |#4|) (-656 |#4|)) 83)) (-3687 (((-656 |#4|) (-656 |#4|)) 97)) (-1572 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-3632 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 50)) (-3623 (((-112) |#4|) 45))) -(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1557 ((-656 |#4|) (-656 |#4|))) (-15 -1557 ((-656 |#4|) |#4| |#4|)) (-15 -1535 ((-656 |#4|) (-656 |#4|))) (-15 -1547 ((-656 |#4|) |#4| |#4|)) (-15 -1557 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -1557 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1557 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -1572 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1586 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3544 ((-112) (-656 |#4|))) (-15 -3553 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -3561 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3567 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3577 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3587 ((-112) |#4|)) (-15 -3598 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3606 ((-112) |#4|)) (-15 -3615 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3623 ((-112) |#4|)) (-15 -3632 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3642 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3642 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3652 (|#4| |#4| (-656 |#4|))) (-15 -3666 ((-656 |#4|) (-656 |#4|))) (-15 -3677 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -3687 ((-656 |#4|) (-656 |#4|))) (-15 -3698 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3707 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3716 ((-656 |#4|) |#4|)) (-15 -3728 ((-656 |#4|) (-656 |#4|))) (-15 -3728 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -3737 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3748 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3760 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -3773 ((-656 |#4|) (-656 |#4|))) (-15 -3785 ((-656 |#4|) (-656 |#4|))) (-15 -3796 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -995)) -((-3796 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3773 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3760 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3748 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3737 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3728 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *7)))) (-3728 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3716 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-3707 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-995 *5 *6 *7 *8)))) (-3698 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *1 (-995 *6 *7 *8 *9)))) (-3687 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3677 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -2012 (-656 *7)))) (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3666 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3652 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *2)))) (-3642 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *7)))) (-3642 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3632 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-3615 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3606 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-3577 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-3553 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *4 *5 *6 *7)))) (-1586 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *5 *6 *7 *8)))) (-1572 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *4 *5 *6 *7)))) (-1557 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *7)))) (-1557 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-1557 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *3)))) (-1547 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-1535 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-1557 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-1557 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6))))) -(-10 -7 (-15 -1557 ((-656 |#4|) (-656 |#4|))) (-15 -1557 ((-656 |#4|) |#4| |#4|)) (-15 -1535 ((-656 |#4|) (-656 |#4|))) (-15 -1547 ((-656 |#4|) |#4| |#4|)) (-15 -1557 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -1557 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1557 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -1572 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1586 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3544 ((-112) (-656 |#4|))) (-15 -3553 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -3561 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3567 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3577 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3587 ((-112) |#4|)) (-15 -3598 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3606 ((-112) |#4|)) (-15 -3615 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3623 ((-112) |#4|)) (-15 -3632 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3642 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3642 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3652 (|#4| |#4| (-656 |#4|))) (-15 -3666 ((-656 |#4|) (-656 |#4|))) (-15 -3677 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -3687 ((-656 |#4|) (-656 |#4|))) (-15 -3698 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3707 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3716 ((-656 |#4|) |#4|)) (-15 -3728 ((-656 |#4|) (-656 |#4|))) (-15 -3728 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -3737 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3748 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3760 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -3773 ((-656 |#4|) (-656 |#4|))) (-15 -3785 ((-656 |#4|) (-656 |#4|))) (-15 -3796 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) -((-3806 (((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3827 (((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|)) 46)) (-3816 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-996 |#1|) (-10 -7 (-15 -3806 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3816 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3827 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|)))) (-374)) (T -996)) -((-3827 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5))))) (-5 *1 (-996 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)))) (-3816 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-996 *5)))) (-3806 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) (-5 *1 (-996 *6)) (-5 *3 (-701 *6))))) -(-10 -7 (-15 -3806 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3816 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3827 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|)))) -((-3986 (((-430 |#4|) |#4|) 56))) -(((-997 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3986 ((-430 |#4|) |#4|))) (-862) (-805) (-464) (-965 |#3| |#2| |#1|)) (T -997)) -((-3986 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-965 *6 *5 *4))))) -(-10 -7 (-15 -3986 ((-430 |#4|) |#4|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2881 (($ (-783)) 115 (|has| |#1| (-23)))) (-3336 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) 8)) (-3055 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-2745 (($ $) 93 (|has| $ (-6 -4462)))) (-4379 (($ $) 103)) (-1919 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) 52)) (-2634 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1118)))) (-1839 (($ (-656 |#1|)) 121)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-4057 (((-701 |#1|) $ $) 108 (|has| |#1| (-1067)))) (-2310 (($ (-783) |#1|) 70)) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 44 (|has| (-576) (-862)))) (-1921 (($ $ $) 90 (|has| |#1| (-862)))) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 45 (|has| (-576) (-862)))) (-4137 (($ $ $) 89 (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2142 ((|#1| $) 105 (-12 (|has| |#1| (-1067)) (|has| |#1| (-1020))))) (-2374 (((-112) $ (-783)) 10)) (-1840 ((|#1| $) 106 (-12 (|has| |#1| (-1067)) (|has| |#1| (-1020))))) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2134 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3385 (((-656 (-576)) $) 47)) (-3394 (((-112) (-576) $) 48)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1962 ((|#1| $) 43 (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3346 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-2904 (($ $ (-656 |#1|)) 119)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) 49)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-2165 ((|#1| $ $) 109 (|has| |#1| (-1067)))) (-1543 (((-937) $) 120)) (-3240 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-2153 (($ $ $) 107)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1902 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3079 (($ $) 13)) (-2616 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 122)) (-2895 (($ (-656 |#1|)) 72)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3957 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-3970 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-862)))) (-4029 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4017 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-998 |#1|) (-141) (-1067)) (T -998)) -((-1839 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1067)) (-4 *1 (-998 *3)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1067)) (-5 *2 (-937)))) (-2153 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1067)))) (-2904 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-998 *3)) (-4 *3 (-1067))))) -(-13 (-1284 |t#1|) (-630 (-656 |t#1|)) (-10 -8 (-15 -1839 ($ (-656 |t#1|))) (-15 -1543 ((-937) $)) (-15 -2153 ($ $ $)) (-15 -2904 ($ $ (-656 |t#1|))))) -(((-34) . T) ((-102) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-630 (-656 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1118) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-1236) . T) ((-1284 |#1|) . T)) -((-2551 (((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)) 17))) -(((-999 |#1| |#2|) (-10 -7 (-15 -2551 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)))) (-1067) (-1067)) (T -999)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-959 *6)) (-5 *1 (-999 *5 *6))))) -(-10 -7 (-15 -2551 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)))) -((-3861 ((|#1| (-959 |#1|)) 14)) (-3850 ((|#1| (-959 |#1|)) 13)) (-3838 ((|#1| (-959 |#1|)) 12)) (-3884 ((|#1| (-959 |#1|)) 16)) (-3935 ((|#1| (-959 |#1|)) 24)) (-3872 ((|#1| (-959 |#1|)) 15)) (-3896 ((|#1| (-959 |#1|)) 17)) (-3921 ((|#1| (-959 |#1|)) 23)) (-3907 ((|#1| (-959 |#1|)) 22))) -(((-1000 |#1|) (-10 -7 (-15 -3838 (|#1| (-959 |#1|))) (-15 -3850 (|#1| (-959 |#1|))) (-15 -3861 (|#1| (-959 |#1|))) (-15 -3872 (|#1| (-959 |#1|))) (-15 -3884 (|#1| (-959 |#1|))) (-15 -3896 (|#1| (-959 |#1|))) (-15 -3907 (|#1| (-959 |#1|))) (-15 -3921 (|#1| (-959 |#1|))) (-15 -3935 (|#1| (-959 |#1|)))) (-1067)) (T -1000)) -((-3935 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067))))) -(-10 -7 (-15 -3838 (|#1| (-959 |#1|))) (-15 -3850 (|#1| (-959 |#1|))) (-15 -3861 (|#1| (-959 |#1|))) (-15 -3872 (|#1| (-959 |#1|))) (-15 -3884 (|#1| (-959 |#1|))) (-15 -3896 (|#1| (-959 |#1|))) (-15 -3907 (|#1| (-959 |#1|))) (-15 -3921 (|#1| (-959 |#1|))) (-15 -3935 (|#1| (-959 |#1|)))) -((-4121 (((-3 |#1| "failed") |#1|) 18)) (-4011 (((-3 |#1| "failed") |#1|) 6)) (-4102 (((-3 |#1| "failed") |#1|) 16)) (-3989 (((-3 |#1| "failed") |#1|) 4)) (-2952 (((-3 |#1| "failed") |#1|) 20)) (-4032 (((-3 |#1| "failed") |#1|) 8)) (-3950 (((-3 |#1| "failed") |#1| (-783)) 1)) (-3977 (((-3 |#1| "failed") |#1|) 3)) (-3964 (((-3 |#1| "failed") |#1|) 2)) (-2961 (((-3 |#1| "failed") |#1|) 21)) (-4042 (((-3 |#1| "failed") |#1|) 9)) (-2943 (((-3 |#1| "failed") |#1|) 19)) (-4021 (((-3 |#1| "failed") |#1|) 7)) (-4112 (((-3 |#1| "failed") |#1|) 17)) (-4000 (((-3 |#1| "failed") |#1|) 5)) (-2993 (((-3 |#1| "failed") |#1|) 24)) (-4069 (((-3 |#1| "failed") |#1|) 12)) (-2969 (((-3 |#1| "failed") |#1|) 22)) (-4052 (((-3 |#1| "failed") |#1|) 10)) (-3012 (((-3 |#1| "failed") |#1|) 26)) (-4086 (((-3 |#1| "failed") |#1|) 14)) (-3026 (((-3 |#1| "failed") |#1|) 27)) (-4096 (((-3 |#1| "failed") |#1|) 15)) (-3003 (((-3 |#1| "failed") |#1|) 25)) (-4077 (((-3 |#1| "failed") |#1|) 13)) (-2982 (((-3 |#1| "failed") |#1|) 23)) (-4061 (((-3 |#1| "failed") |#1|) 11))) -(((-1001 |#1|) (-141) (-1221)) (T -1001)) -((-3026 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3012 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3003 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2993 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2952 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2943 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4121 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4112 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4102 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4096 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4086 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4077 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4069 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4061 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4052 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4042 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4032 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4021 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4011 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4000 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3989 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3977 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3964 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3950 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(-13 (-10 -7 (-15 -3950 ((-3 |t#1| "failed") |t#1| (-783))) (-15 -3964 ((-3 |t#1| "failed") |t#1|)) (-15 -3977 ((-3 |t#1| "failed") |t#1|)) (-15 -3989 ((-3 |t#1| "failed") |t#1|)) (-15 -4000 ((-3 |t#1| "failed") |t#1|)) (-15 -4011 ((-3 |t#1| "failed") |t#1|)) (-15 -4021 ((-3 |t#1| "failed") |t#1|)) (-15 -4032 ((-3 |t#1| "failed") |t#1|)) (-15 -4042 ((-3 |t#1| "failed") |t#1|)) (-15 -4052 ((-3 |t#1| "failed") |t#1|)) (-15 -4061 ((-3 |t#1| "failed") |t#1|)) (-15 -4069 ((-3 |t#1| "failed") |t#1|)) (-15 -4077 ((-3 |t#1| "failed") |t#1|)) (-15 -4086 ((-3 |t#1| "failed") |t#1|)) (-15 -4096 ((-3 |t#1| "failed") |t#1|)) (-15 -4102 ((-3 |t#1| "failed") |t#1|)) (-15 -4112 ((-3 |t#1| "failed") |t#1|)) (-15 -4121 ((-3 |t#1| "failed") |t#1|)) (-15 -2943 ((-3 |t#1| "failed") |t#1|)) (-15 -2952 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2993 ((-3 |t#1| "failed") |t#1|)) (-15 -3003 ((-3 |t#1| "failed") |t#1|)) (-15 -3012 ((-3 |t#1| "failed") |t#1|)) (-15 -3026 ((-3 |t#1| "failed") |t#1|)))) -((-3052 ((|#4| |#4| (-656 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-3038 ((|#4| |#4| (-656 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2551 ((|#4| (-1 |#4| (-968 |#1|)) |#4|) 31))) -(((-1002 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3038 (|#4| |#4| |#3|)) (-15 -3038 (|#4| |#4| (-656 |#3|))) (-15 -3052 (|#4| |#4| |#3|)) (-15 -3052 (|#4| |#4| (-656 |#3|))) (-15 -2551 (|#4| (-1 |#4| (-968 |#1|)) |#4|))) (-1067) (-805) (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)) (-15 -1441 ((-3 $ "failed") (-1195))))) (-965 (-968 |#1|) |#2| |#3|)) (T -1002)) -((-2551 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-968 *4))) (-4 *4 (-1067)) (-4 *2 (-965 (-968 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)) (-15 -1441 ((-3 $ "failed") (-1195)))))) (-5 *1 (-1002 *4 *5 *6 *2)))) (-3052 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)) (-15 -1441 ((-3 $ "failed") (-1195)))))) (-4 *4 (-1067)) (-4 *5 (-805)) (-5 *1 (-1002 *4 *5 *6 *2)) (-4 *2 (-965 (-968 *4) *5 *6)))) (-3052 (*1 *2 *2 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)) (-15 -1441 ((-3 $ "failed") (-1195)))))) (-5 *1 (-1002 *4 *5 *3 *2)) (-4 *2 (-965 (-968 *4) *5 *3)))) (-3038 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)) (-15 -1441 ((-3 $ "failed") (-1195)))))) (-4 *4 (-1067)) (-4 *5 (-805)) (-5 *1 (-1002 *4 *5 *6 *2)) (-4 *2 (-965 (-968 *4) *5 *6)))) (-3038 (*1 *2 *2 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)) (-15 -1441 ((-3 $ "failed") (-1195)))))) (-5 *1 (-1002 *4 *5 *3 *2)) (-4 *2 (-965 (-968 *4) *5 *3))))) -(-10 -7 (-15 -3038 (|#4| |#4| |#3|)) (-15 -3038 (|#4| |#4| (-656 |#3|))) (-15 -3052 (|#4| |#4| |#3|)) (-15 -3052 (|#4| |#4| (-656 |#3|))) (-15 -2551 (|#4| (-1 |#4| (-968 |#1|)) |#4|))) -((-3065 ((|#2| |#3|) 35)) (-1637 (((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 79)) (-1627 (((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 100))) -(((-1003 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1627 ((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1637 ((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -3065 (|#2| |#3|))) (-360) (-1262 |#1|) (-1262 |#2|) (-736 |#2| |#3|)) (T -1003)) -((-3065 (*1 *2 *3) (-12 (-4 *3 (-1262 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1003 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))) (-1637 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) (-5 *2 (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1003 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) (-1627 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -1898 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5))))) -(-10 -7 (-15 -1627 ((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1637 ((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -3065 (|#2| |#3|))) -((-3132 (((-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576))))) 82))) -(((-1004 |#1| |#2|) (-10 -7 (-15 -3132 ((-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576))))))) (-656 (-1195)) (-783)) (T -1004)) -((-3132 (*1 *2 *2) (-12 (-5 *2 (-1005 (-419 (-576)) (-876 *3) (-246 *4 (-783)) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-1004 *3 *4))))) -(-10 -7 (-15 -3132 ((-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576))))))) -((-2862 (((-112) $ $) NIL)) (-2795 (((-3 (-112) "failed") $) 71)) (-4122 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3111 (($ $ (-3 (-112) "failed")) 72)) (-3121 (($ (-656 |#4|) |#4|) 25)) (-3733 (((-1177) $) NIL)) (-3076 (($ $) 69)) (-3914 (((-1138) $) NIL)) (-2809 (((-112) $) 70)) (-1458 (($) 30)) (-3088 ((|#4| $) 74)) (-3100 (((-656 |#4|) $) 73)) (-2884 (((-874) $) 68)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1005 |#1| |#2| |#3| |#4|) (-13 (-1118) (-625 (-874)) (-10 -8 (-15 -1458 ($)) (-15 -3121 ($ (-656 |#4|) |#4|)) (-15 -2795 ((-3 (-112) "failed") $)) (-15 -3111 ($ $ (-3 (-112) "failed"))) (-15 -2809 ((-112) $)) (-15 -3100 ((-656 |#4|) $)) (-15 -3088 (|#4| $)) (-15 -3076 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -4122 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-862) (-805) (-965 |#1| |#3| |#2|)) (T -1005)) -((-1458 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3)))) (-3121 (*1 *1 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-965 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *1 (-1005 *4 *5 *6 *3)))) (-2795 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4)))) (-3111 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4)))) (-2809 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4)))) (-3100 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-656 *6)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4)))) (-3088 (*1 *2 *1) (-12 (-4 *2 (-965 *3 *5 *4)) (-5 *1 (-1005 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)))) (-3076 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3)))) (-4122 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3))))) -(-13 (-1118) (-625 (-874)) (-10 -8 (-15 -1458 ($)) (-15 -3121 ($ (-656 |#4|) |#4|)) (-15 -2795 ((-3 (-112) "failed") $)) (-15 -3111 ($ $ (-3 (-112) "failed"))) (-15 -2809 ((-112) $)) (-15 -3100 ((-656 |#4|) $)) (-15 -3088 (|#4| $)) (-15 -3076 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -4122 ($ $)) |%noBranch|) |%noBranch|))) -((-3958 (((-112) |#5| |#5|) 44)) (-3995 (((-112) |#5| |#5|) 59)) (-4048 (((-112) |#5| (-656 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-4007 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-4066 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) 70)) (-3944 (((-1291)) 32)) (-3930 (((-1291) (-1177) (-1177) (-1177)) 28)) (-4058 (((-656 |#5|) (-656 |#5|)) 100)) (-4074 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)))) 92)) (-4083 (((-656 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 122)) (-3984 (((-112) |#5| |#5|) 53)) (-4038 (((-3 (-112) "failed") |#5| |#5|) 78)) (-4016 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-4028 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-3461 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-4092 (((-3 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3971 (((-656 |#5|) (-656 |#5|)) 49))) -(((-1006 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3930 ((-1291) (-1177) (-1177) (-1177))) (-15 -3944 ((-1291))) (-15 -3958 ((-112) |#5| |#5|)) (-15 -3971 ((-656 |#5|) (-656 |#5|))) (-15 -3984 ((-112) |#5| |#5|)) (-15 -3995 ((-112) |#5| |#5|)) (-15 -4007 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4016 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4028 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3461 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4038 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4048 ((-112) |#5| |#5|)) (-15 -4048 ((-112) |#5| (-656 |#5|))) (-15 -4058 ((-656 |#5|) (-656 |#5|))) (-15 -4066 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)))) (-15 -4074 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) (-15 -4083 ((-656 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4092 ((-3 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -1006)) -((-4092 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| -2572 (-656 *9)) (|:| -4271 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1006 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1089 *6 *7 *8 *9)))) (-4083 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1089 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -2572 (-656 *9)) (|:| -4271 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1006 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4271 *7)))) (-4 *6 (-1083 *3 *4 *5)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1006 *3 *4 *5 *6 *7)))) (-4066 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4271 *8))) (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *8)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-1006 *3 *4 *5 *6 *7)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1006 *5 *6 *7 *8 *3)))) (-4048 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-4038 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3461 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-4028 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-4016 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-4007 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-3995 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3984 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3971 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-1006 *3 *4 *5 *6 *7)))) (-3958 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3944 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-3930 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))) -(-10 -7 (-15 -3930 ((-1291) (-1177) (-1177) (-1177))) (-15 -3944 ((-1291))) (-15 -3958 ((-112) |#5| |#5|)) (-15 -3971 ((-656 |#5|) (-656 |#5|))) (-15 -3984 ((-112) |#5| |#5|)) (-15 -3995 ((-112) |#5| |#5|)) (-15 -4007 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4016 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4028 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3461 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4038 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4048 ((-112) |#5| |#5|)) (-15 -4048 ((-112) |#5| (-656 |#5|))) (-15 -4058 ((-656 |#5|) (-656 |#5|))) (-15 -4066 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)))) (-15 -4074 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) (-15 -4083 ((-656 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4092 ((-3 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1441 (((-1195) $) 15)) (-4183 (((-1177) $) 16)) (-2677 (($ (-1195) (-1177)) 14)) (-2884 (((-874) $) 13))) -(((-1007) (-13 (-625 (-874)) (-10 -8 (-15 -2677 ($ (-1195) (-1177))) (-15 -1441 ((-1195) $)) (-15 -4183 ((-1177) $))))) (T -1007)) -((-2677 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-1007)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1007)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1007))))) -(-13 (-625 (-874)) (-10 -8 (-15 -2677 ($ (-1195) (-1177))) (-15 -1441 ((-1195) $)) (-15 -4183 ((-1177) $)))) -((-2551 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-1008 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2551 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1010 |#1|) (-1010 |#2|)) (T -1008)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1010 *6)) (-5 *1 (-1008 *5 *6 *4 *2)) (-4 *4 (-1010 *5))))) -(-10 -7 (-15 -2551 (|#4| (-1 |#2| |#1|) |#3|))) -((-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-1195) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-4401 ((|#2| $) NIL) (((-1195) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-2613 (((-701 (-576)) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 115) (((-701 |#2|) (-701 $)) 28) (((-701 |#2|) (-1286 $)) NIL)) (-2080 (($) 99)) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 76) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 85)) (-3154 (($ $) 10)) (-1831 (((-3 $ "failed") $) 20)) (-2551 (($ (-1 |#2| |#2|) $) 22)) (-3475 (($) 16)) (-1894 (($ $) 55)) (-2390 (($ $ (-783)) NIL) (($ $) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3143 (($ $) 12)) (-2616 (((-905 (-576)) $) 71) (((-905 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1195)) 58)) (-1871 (((-783)) 31)) (-3943 (((-112) $ $) 51))) -(((-1009 |#1| |#2|) (-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -3475 (|#1|)) (-15 -1831 ((-3 |#1| "failed") |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2616 ((-227) |#1|)) (-15 -2616 ((-390) |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -2884 (|#1| (-1195))) (-15 -2449 ((-3 (-1195) "failed") |#1|)) (-15 -4401 ((-1195) |#1|)) (-15 -2080 (|#1|)) (-15 -1894 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -1606 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1606 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -2613 ((-701 |#2|) (-1286 |#1|))) (-15 -2613 ((-701 |#2|) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 (|#1| |#1|)) (-15 -1871 ((-783))) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) (-1010 |#2|) (-568)) (T -1009)) -((-1871 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1009 *3 *4)) (-4 *3 (-1010 *4))))) -(-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -3475 (|#1|)) (-15 -1831 ((-3 |#1| "failed") |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2616 ((-227) |#1|)) (-15 -2616 ((-390) |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -2884 (|#1| (-1195))) (-15 -2449 ((-3 (-1195) "failed") |#1|)) (-15 -4401 ((-1195) |#1|)) (-15 -2080 (|#1|)) (-15 -1894 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -1606 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1606 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -2613 ((-701 |#2|) (-1286 |#1|))) (-15 -2613 ((-701 |#2|) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 (|#1| |#1|)) (-15 -1871 ((-783))) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1905 ((|#1| $) 149 (|has| |#1| (-317)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-3203 (((-430 (-1191 $)) (-1191 $)) 140 (|has| |#1| (-925)))) (-2944 (($ $) 81)) (-3986 (((-430 $) $) 80)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 143 (|has| |#1| (-925)))) (-2922 (((-112) $ $) 65)) (-3966 (((-576) $) 130 (|has| |#1| (-832)))) (-2473 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 189) (((-3 (-1195) "failed") $) 138 (|has| |#1| (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) 121 (|has| |#1| (-1056 (-576)))) (((-3 (-576) "failed") $) 119 (|has| |#1| (-1056 (-576))))) (-4401 ((|#1| $) 190) (((-1195) $) 139 (|has| |#1| (-1056 (-1195)))) (((-419 (-576)) $) 122 (|has| |#1| (-1056 (-576)))) (((-576) $) 120 (|has| |#1| (-1056 (-576))))) (-2803 (($ $ $) 61)) (-2613 (((-701 (-576)) (-1286 $)) 164 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 163 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 162 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 161) (((-701 |#1|) (-701 $)) 160) (((-701 |#1|) (-1286 $)) 159)) (-1999 (((-3 $ "failed") $) 37)) (-2080 (($) 147 (|has| |#1| (-557)))) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-2463 (((-112) $) 79)) (-1370 (((-112) $) 132 (|has| |#1| (-832)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 156 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 155 (|has| |#1| (-899 (-390))))) (-1439 (((-112) $) 35)) (-3154 (($ $) 151)) (-1595 ((|#1| $) 153)) (-1831 (((-3 $ "failed") $) 118 (|has| |#1| (-1170)))) (-1379 (((-112) $) 131 (|has| |#1| (-832)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1921 (($ $ $) 128 (|has| |#1| (-862)))) (-4137 (($ $ $) 127 (|has| |#1| (-862)))) (-2551 (($ (-1 |#1| |#1|) $) 181)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 78)) (-3475 (($) 117 (|has| |#1| (-1170)) CONST)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-1894 (($ $) 148 (|has| |#1| (-317)))) (-1916 ((|#1| $) 145 (|has| |#1| (-557)))) (-3181 (((-430 (-1191 $)) (-1191 $)) 142 (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) 141 (|has| |#1| (-925)))) (-2354 (((-430 $) $) 82)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3049 (($ $ (-656 |#1|) (-656 |#1|)) 187 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 186 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 185 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 184 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 183 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 182 (|has| |#1| (-526 (-1195) |#1|)))) (-2910 (((-783) $) 64)) (-2071 (($ $ |#1|) 188 (|has| |#1| (-296 |#1| |#1|)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-2390 (($ $ (-783)) 179 (|has| |#1| (-239))) (($ $) 177 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 173 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 172 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 171 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 169 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 166) (($ $ (-1 |#1| |#1|)) 165)) (-3143 (($ $) 150)) (-1608 ((|#1| $) 152)) (-2616 (((-905 (-576)) $) 158 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 157 (|has| |#1| (-626 (-905 (-390))))) (((-548) $) 135 (|has| |#1| (-626 (-548)))) (((-390) $) 134 (|has| |#1| (-1040))) (((-227) $) 133 (|has| |#1| (-1040)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 144 (-3227 (|has| $ (-146)) (|has| |#1| (-925))))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 193) (($ (-1195)) 137 (|has| |#1| (-1056 (-1195))))) (-3148 (((-3 $ "failed") $) 136 (-3766 (|has| |#1| (-146)) (-3227 (|has| $ (-146)) (|has| |#1| (-925)))))) (-1871 (((-783)) 32 T CONST)) (-1929 ((|#1| $) 146 (|has| |#1| (-557)))) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-2610 (($ $) 129 (|has| |#1| (-832)))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-783)) 180 (|has| |#1| (-239))) (($ $) 178 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 176 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 175 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 174 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 170 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 168) (($ $ (-1 |#1| |#1|)) 167)) (-3983 (((-112) $ $) 125 (|has| |#1| (-862)))) (-3957 (((-112) $ $) 124 (|has| |#1| (-862)))) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 126 (|has| |#1| (-862)))) (-3943 (((-112) $ $) 123 (|has| |#1| (-862)))) (-4039 (($ $ $) 73) (($ |#1| |#1|) 154)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 192) (($ $ |#1|) 191))) -(((-1010 |#1|) (-141) (-568)) (T -1010)) -((-4039 (*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-1894 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-2080 (*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-557))))) -(-13 (-374) (-38 |t#1|) (-1056 |t#1|) (-349 |t#1|) (-233 |t#1|) (-388 |t#1|) (-897 |t#1|) (-412 |t#1|) (-10 -8 (-15 -4039 ($ |t#1| |t#1|)) (-15 -1595 (|t#1| $)) (-15 -1608 (|t#1| $)) (-15 -3154 ($ $)) (-15 -3143 ($ $)) (IF (|has| |t#1| (-1170)) (-6 (-1170)) |%noBranch|) (IF (|has| |t#1| (-1056 (-576))) (PROGN (-6 (-1056 (-576))) (-6 (-1056 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-1040)) (-6 (-1040)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1056 (-1195))) (-6 (-1056 (-1195))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -1905 (|t#1| $)) (-15 -1894 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -2080 ($)) (-15 -1929 (|t#1| $)) (-15 -1916 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-925)) (-6 (-925)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1195)) |has| |#1| (-1056 (-1195))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1040)) ((-626 (-390)) |has| |#1| (-1040)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-803) |has| |#1| (-832)) ((-804) |has| |#1| (-832)) ((-806) |has| |#1| (-832)) ((-807) |has| |#1| (-832)) ((-832) |has| |#1| (-832)) ((-860) |has| |#1| (-832)) ((-862) -3766 (|has| |#1| (-862)) (|has| |#1| (-832))) ((-909 $ #3=(-1195)) |has| |#1| (-914 (-1195))) ((-914 #3#) |has| |#1| (-914 (-1195))) ((-916 #3#) |has| |#1| (-914 (-1195))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-925) |has| |#1| (-925)) ((-936) . T) ((-1040) |has| |#1| (-1040)) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-576))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 #1#) |has| |#1| (-1056 (-1195))) ((-1056 |#1|) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 |#1|) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| |#1| (-1170)) ((-1236) . T) ((-1240) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-3164 (($ (-1160 |#1| |#2|)) 11)) (-4317 (((-1160 |#1| |#2|) $) 12)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2071 ((|#2| $ (-246 |#1| |#2|)) 16)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL))) -(((-1011 |#1| |#2|) (-13 (-21) (-296 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3164 ($ (-1160 |#1| |#2|))) (-15 -4317 ((-1160 |#1| |#2|) $)))) (-937) (-374)) (T -1011)) -((-3164 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4)) (-14 *3 (-937)) (-4 *4 (-374)) (-5 *1 (-1011 *3 *4)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1160 *3 *4)) (-5 *1 (-1011 *3 *4)) (-14 *3 (-937)) (-4 *4 (-374))))) -(-13 (-21) (-296 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3164 ($ (-1160 |#1| |#2|))) (-15 -4317 ((-1160 |#1| |#2|) $)))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3830 (((-1153) $) 9)) (-2884 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1012) (-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $))))) (T -1012)) -((-3830 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1012))))) -(-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $)))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) 8)) (-2473 (($) 7 T CONST)) (-3197 (($ $) 47)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-1840 (((-783) $) 46)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3449 ((|#1| $) 40)) (-3807 (($ |#1| $) 41)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-3187 ((|#1| $) 45)) (-3458 ((|#1| $) 42)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-3219 ((|#1| |#1| $) 49)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-3208 ((|#1| $) 48)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) 43)) (-3175 ((|#1| $) 44)) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-1013 |#1|) (-141) (-1236)) (T -1013)) -((-3219 (*1 *2 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))) (-3197 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4461) (-15 -3219 (|t#1| |t#1| $)) (-15 -3208 (|t#1| $)) (-15 -3197 ($ $)) (-15 -1840 ((-783) $)) (-15 -3187 (|t#1| $)) (-15 -3175 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-1389 (((-112) $) 43)) (-2449 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-4401 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-3424 (((-3 (-419 (-576)) "failed") $) 78)) (-3413 (((-112) $) 72)) (-3404 (((-419 (-576)) $) 76)) (-1439 (((-112) $) 42)) (-1941 ((|#2| $) 22)) (-2551 (($ (-1 |#2| |#2|) $) 19)) (-4333 (($ $) 58)) (-2390 (($ $ (-783)) NIL) (($ $) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-2616 (((-548) $) 67)) (-3276 (($ $) 17)) (-2884 (((-874) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-1871 (((-783)) 10)) (-2610 ((|#2| $) 71)) (-3915 (((-112) $ $) 26)) (-3943 (((-112) $ $) 69)) (-4029 (($ $) 30) (($ $ $) 29)) (-4017 (($ $ $) 27)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-1014 |#1| |#2|) (-10 -8 (-15 -2884 (|#1| (-419 (-576)))) (-15 -3943 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -4333 (|#1| |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -3424 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3404 ((-419 (-576)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -2610 (|#2| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2884 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1871 ((-783))) (-15 -2884 (|#1| (-576))) (-15 -1439 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1389 ((-112) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) (-1015 |#2|) (-174)) (T -1014)) -((-1871 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1014 *3 *4)) (-4 *3 (-1015 *4))))) -(-10 -8 (-15 -2884 (|#1| (-419 (-576)))) (-15 -3943 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -4333 (|#1| |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -3424 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3404 ((-419 (-576)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -2610 (|#2| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -2551 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2884 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1871 ((-783))) (-15 -2884 (|#1| (-576))) (-15 -1439 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1389 ((-112) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-2449 (((-3 (-576) "failed") $) 131 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 129 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 126)) (-4401 (((-576) $) 130 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 128 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 127)) (-2613 (((-701 (-576)) (-1286 $)) 101 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 100 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 99 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 98) (((-701 |#1|) (-701 $)) 97) (((-701 |#1|) (-1286 $)) 96)) (-1999 (((-3 $ "failed") $) 37)) (-2488 ((|#1| $) 89)) (-3424 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-3413 (((-112) $) 87 (|has| |#1| (-557)))) (-3404 (((-419 (-576)) $) 86 (|has| |#1| (-557)))) (-3230 (($ |#1| |#1| |#1| |#1|) 90)) (-1439 (((-112) $) 35)) (-1941 ((|#1| $) 91)) (-1921 (($ $ $) 78 (|has| |#1| (-862)))) (-4137 (($ $ $) 77 (|has| |#1| (-862)))) (-2551 (($ (-1 |#1| |#1|) $) 102)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 82 (|has| |#1| (-374)))) (-3243 ((|#1| $) 92)) (-3253 ((|#1| $) 93)) (-3264 ((|#1| $) 94)) (-3914 (((-1138) $) 11)) (-3049 (($ $ (-656 |#1|) (-656 |#1|)) 108 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 107 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 106 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 105 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 104 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 103 (|has| |#1| (-526 (-1195) |#1|)))) (-2071 (($ $ |#1|) 109 (|has| |#1| (-296 |#1| |#1|)))) (-2390 (($ $ (-783)) 124 (|has| |#1| (-239))) (($ $) 122 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 118 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 117 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 116 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 114 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 111) (($ $ (-1 |#1| |#1|)) 110)) (-2616 (((-548) $) 83 (|has| |#1| (-626 (-548))))) (-3276 (($ $) 95)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 72 (-3766 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576))))))) (-3148 (((-3 $ "failed") $) 84 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-2610 ((|#1| $) 88 (|has| |#1| (-1078)))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-783)) 125 (|has| |#1| (-239))) (($ $) 123 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 121 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 120 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 119 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 115 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 113) (($ $ (-1 |#1| |#1|)) 112)) (-3983 (((-112) $ $) 75 (|has| |#1| (-862)))) (-3957 (((-112) $ $) 74 (|has| |#1| (-862)))) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 76 (|has| |#1| (-862)))) (-3943 (((-112) $ $) 73 (|has| |#1| (-862)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 81 (|has| |#1| (-374)))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 80 (|has| |#1| (-374))) (($ (-419 (-576)) $) 79 (|has| |#1| (-374))))) -(((-1015 |#1|) (-141) (-174)) (T -1015)) -((-3276 (*1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-1941 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-3230 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)) (-4 *2 (-1078)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3424 (*1 *2 *1) (|partial| -12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-233 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -3276 ($ $)) (-15 -3264 (|t#1| $)) (-15 -3253 (|t#1| $)) (-15 -3243 (|t#1| $)) (-15 -1941 (|t#1| $)) (-15 -3230 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2488 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1078)) (-15 -2610 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3413 ((-112) $)) (-15 -3404 ((-419 (-576)) $)) (-15 -3424 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -3766 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 #0#) |has| |#1| (-374)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-374)) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-374)) ((-652 |#1|) . T) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-374)) ((-729 |#1|) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-909 $ #2=(-1195)) |has| |#1| (-914 (-1195))) ((-914 #2#) |has| |#1| (-914 (-1195))) ((-916 #2#) |has| |#1| (-914 (-1195))) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 #0#) |has| |#1| (-374)) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1074 #0#) |has| |#1| (-374)) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) -3766 (|has| |#1| (-914 (-1195))) (|has| |#1| (-296 |#1| |#1|)) (|has| |#1| (-239)))) -((-2551 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1016 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2551 (|#3| (-1 |#4| |#2|) |#1|))) (-1015 |#2|) (-174) (-1015 |#4|) (-174)) (T -1016)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1015 *6)) (-5 *1 (-1016 *4 *5 *2 *6)) (-4 *4 (-1015 *5))))) -(-10 -7 (-15 -2551 (|#3| (-1 |#4| |#2|) |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2488 ((|#1| $) 12)) (-3424 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3413 (((-112) $) NIL (|has| |#1| (-557)))) (-3404 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3230 (($ |#1| |#1| |#1| |#1|) 16)) (-1439 (((-112) $) NIL)) (-1941 ((|#1| $) NIL)) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL (|has| |#1| (-374)))) (-3243 ((|#1| $) 15)) (-3253 ((|#1| $) 14)) (-3264 ((|#1| $) 13)) (-3914 (((-1138) $) NIL)) (-3049 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-2071 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2390 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3276 (($ $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576))))))) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-2610 ((|#1| $) NIL (|has| |#1| (-1078)))) (-1996 (($) 8 T CONST)) (-2011 (($) 10 T CONST)) (-3431 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))))) -(((-1017 |#1|) (-1015 |#1|) (-174)) (T -1017)) -NIL -(-1015 |#1|) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2970 (((-112) $ (-783)) NIL)) (-2473 (($) NIL T CONST)) (-3197 (($ $) 23)) (-3288 (($ (-656 |#1|)) 33)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-1840 (((-783) $) 26)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3449 ((|#1| $) 28)) (-3807 (($ |#1| $) 17)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3187 ((|#1| $) 27)) (-3458 ((|#1| $) 22)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3219 ((|#1| |#1| $) 16)) (-2809 (((-112) $) 18)) (-1458 (($) NIL)) (-3208 ((|#1| $) 21)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) NIL)) (-3175 ((|#1| $) 30)) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1018 |#1|) (-13 (-1013 |#1|) (-10 -8 (-15 -3288 ($ (-656 |#1|))))) (-1118)) (T -1018)) -((-3288 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-1018 *3))))) -(-13 (-1013 |#1|) (-10 -8 (-15 -3288 ($ (-656 |#1|))))) -((-2474 (($ $) 12)) (-3298 (($ $ (-576)) 13))) -(((-1019 |#1|) (-10 -8 (-15 -2474 (|#1| |#1|)) (-15 -3298 (|#1| |#1| (-576)))) (-1020)) (T -1019)) -NIL -(-10 -8 (-15 -2474 (|#1| |#1|)) (-15 -3298 (|#1| |#1| (-576)))) -((-2474 (($ $) 6)) (-3298 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8))) -(((-1020) (-141)) (T -1020)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-419 (-576))))) (-3298 (*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-576)))) (-2474 (*1 *1 *1) (-4 *1 (-1020)))) -(-13 (-10 -8 (-15 -2474 ($ $)) (-15 -3298 ($ $ (-576))) (-15 ** ($ $ (-419 (-576)))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2243 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-4241 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4221 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-4355 (((-701 (-419 |#2|)) (-1286 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-1448 (((-419 |#2|) $) NIL)) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3986 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2922 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2416 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-2393 (((-112)) NIL)) (-2382 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| (-419 |#2|) (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-1339 (($ (-1286 (-419 |#2|)) (-1286 $)) NIL) (($ (-1286 (-419 |#2|))) 79) (($ (-1286 |#2|) |#2|) NIL)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-2803 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4342 (((-701 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-701 $) (-1286 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL) (((-701 (-419 |#2|)) (-1286 $)) NIL)) (-2295 (((-1286 $) (-1286 $)) NIL)) (-2309 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-1999 (((-3 $ "failed") $) NIL)) (-3411 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-2433 (((-112) |#1| |#1|) NIL)) (-4423 (((-937)) NIL)) (-2080 (($) NIL (|has| (-419 |#2|) (-379)))) (-2370 (((-112)) NIL)) (-2360 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2814 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-2192 (($ $) NIL)) (-2013 (($) NIL (|has| (-419 |#2|) (-360)))) (-2635 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-4188 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-2463 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2927 (((-937) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-937)) $) NIL (|has| (-419 |#2|) (-360)))) (-1439 (((-112) $) NIL)) (-2556 (((-783)) NIL)) (-2307 (((-1286 $) (-1286 $)) NIL)) (-1941 (((-419 |#2|) $) NIL)) (-3421 (((-656 (-968 |#1|)) (-1195)) NIL (|has| |#1| (-374)))) (-1831 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1922 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-1875 (((-937) $) NIL (|has| (-419 |#2|) (-379)))) (-2297 ((|#3| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3733 (((-1177) $) NIL)) (-2255 (((-701 (-419 |#2|))) 57)) (-2276 (((-701 (-419 |#2|))) 56)) (-4333 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2222 (($ (-1286 |#2|) |#2|) 80)) (-2266 (((-701 (-419 |#2|))) 55)) (-2284 (((-701 (-419 |#2|))) 54)) (-2212 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-2233 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 86)) (-2350 (((-1286 $)) 51)) (-1627 (((-1286 $)) 50)) (-2340 (((-112) $) NIL)) (-2329 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3475 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-4318 (($ (-937)) NIL (|has| (-419 |#2|) (-379)))) (-3440 (((-3 |#2| "failed")) 70)) (-3914 (((-1138) $) NIL)) (-2457 (((-783)) NIL)) (-3660 (($) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-419 |#2|) (-374)))) (-3928 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-2354 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2910 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2071 ((|#1| $ |#1| |#1|) NIL)) (-3450 (((-3 |#2| "failed")) 68)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2790 (((-419 |#2|) (-1286 $)) NIL) (((-419 |#2|)) 47)) (-4197 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2390 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1195)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $) NIL (-3766 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) NIL (-3766 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-1430 (((-701 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-1360 ((|#3|) 58)) (-2560 (($) NIL (|has| (-419 |#2|) (-360)))) (-3629 (((-1286 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) (-1286 $) (-1286 $)) NIL) (((-1286 (-419 |#2|)) $) 81) (((-701 (-419 |#2|)) (-1286 $)) NIL)) (-2616 (((-1286 (-419 |#2|)) $) NIL) (($ (-1286 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2318 (((-1286 $) (-1286 $)) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-3766 (|has| (-419 |#2|) (-1056 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3148 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-1776 ((|#3| $) NIL)) (-1871 (((-783)) NIL T CONST)) (-2415 (((-112)) 65)) (-2404 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) NIL)) (-4232 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3432 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2445 (((-112)) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1195)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $) NIL (-3766 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) NIL (-3766 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) -(((-1021 |#1| |#2| |#3| |#4| |#5|) (-353 |#1| |#2| |#3|) (-1240) (-1262 |#1|) (-1262 (-419 |#2|)) (-419 |#2|) (-783)) (T -1021)) -NIL -(-353 |#1| |#2| |#3|) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-3357 (((-656 (-576)) $) 73)) (-3317 (($ (-656 (-576))) 81)) (-1905 (((-576) $) 48 (|has| (-576) (-317)))) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL (|has| (-576) (-832)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) 60) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1056 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1056 (-576))))) (-4401 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1056 (-576)))) (((-576) $) NIL (|has| (-576) (-1056 (-576))))) (-2803 (($ $ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2080 (($) NIL (|has| (-576) (-557)))) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-3337 (((-656 (-576)) $) 79)) (-1370 (((-112) $) NIL (|has| (-576) (-832)))) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1439 (((-112) $) NIL)) (-3154 (($ $) NIL)) (-1595 (((-576) $) 45)) (-1831 (((-3 $ "failed") $) NIL (|has| (-576) (-1170)))) (-1379 (((-112) $) NIL (|has| (-576) (-832)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| (-576) (-862)))) (-2551 (($ (-1 (-576) (-576)) $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL)) (-3475 (($) NIL (|has| (-576) (-1170)) CONST)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1894 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-3347 (((-1175 (-576)) $) 78)) (-3307 (($ (-656 (-576)) (-656 (-576))) 82)) (-1916 (((-576) $) 64 (|has| (-576) (-557)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2354 (((-430 $) $) NIL)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3049 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-2910 (((-783) $) NIL)) (-2071 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2390 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) 15 (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3143 (($ $) NIL)) (-1608 (((-576) $) 47)) (-3327 (((-656 (-576)) $) 80)) (-2616 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1040))) (((-227) $) NIL (|has| (-576) (-1040)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-925))))) (-2884 (((-874) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1195)) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) 25)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| (-576) (-925))) (|has| (-576) (-146))))) (-1871 (((-783)) 13 T CONST)) (-1929 (((-576) $) 62 (|has| (-576) (-557)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-2610 (($ $) NIL (|has| (-576) (-832)))) (-1996 (($) 14 T CONST)) (-2011 (($) 17 T CONST)) (-3431 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3983 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3957 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3915 (((-112) $ $) 21)) (-3970 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3943 (((-112) $ $) 40 (|has| (-576) (-862)))) (-4039 (($ $ $) 36) (($ (-576) (-576)) 38)) (-4029 (($ $) 23) (($ $ $) 30)) (-4017 (($ $ $) 28)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL))) -(((-1022 |#1|) (-13 (-1010 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -1894 ((-419 (-576)) $)) (-15 -3357 ((-656 (-576)) $)) (-15 -3347 ((-1175 (-576)) $)) (-15 -3337 ((-656 (-576)) $)) (-15 -3327 ((-656 (-576)) $)) (-15 -3317 ($ (-656 (-576)))) (-15 -3307 ($ (-656 (-576)) (-656 (-576)))))) (-576)) (T -1022)) -((-1894 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-3307 (*1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576))))) -(-13 (-1010 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -1894 ((-419 (-576)) $)) (-15 -3357 ((-656 (-576)) $)) (-15 -3347 ((-1175 (-576)) $)) (-15 -3337 ((-656 (-576)) $)) (-15 -3327 ((-656 (-576)) $)) (-15 -3317 ($ (-656 (-576)))) (-15 -3307 ($ (-656 (-576)) (-656 (-576)))))) -((-3366 (((-52) (-419 (-576)) (-576)) 9))) -(((-1023) (-10 -7 (-15 -3366 ((-52) (-419 (-576)) (-576))))) (T -1023)) -((-3366 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1023))))) -(-10 -7 (-15 -3366 ((-52) (-419 (-576)) (-576)))) -((-2416 (((-576)) 23)) (-3395 (((-576)) 28)) (-3386 (((-1291) (-576)) 26)) (-3376 (((-576) (-576)) 29) (((-576)) 22))) -(((-1024) (-10 -7 (-15 -3376 ((-576))) (-15 -2416 ((-576))) (-15 -3376 ((-576) (-576))) (-15 -3386 ((-1291) (-576))) (-15 -3395 ((-576))))) (T -1024)) -((-3395 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1024)))) (-3376 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024)))) (-2416 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024)))) (-3376 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024))))) -(-10 -7 (-15 -3376 ((-576))) (-15 -2416 ((-576))) (-15 -3376 ((-576) (-576))) (-15 -3386 ((-1291) (-576))) (-15 -3395 ((-576)))) -((-2539 (((-430 |#1|) |#1|) 43)) (-2354 (((-430 |#1|) |#1|) 41))) -(((-1025 |#1|) (-10 -7 (-15 -2354 ((-430 |#1|) |#1|)) (-15 -2539 ((-430 |#1|) |#1|))) (-1262 (-419 (-576)))) (T -1025)) -((-2539 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1025 *3)) (-4 *3 (-1262 (-419 (-576)))))) (-2354 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1025 *3)) (-4 *3 (-1262 (-419 (-576))))))) -(-10 -7 (-15 -2354 ((-430 |#1|) |#1|)) (-15 -2539 ((-430 |#1|) |#1|))) -((-3424 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-3413 (((-112) |#1|) 14)) (-3404 (((-419 (-576)) |#1|) 10))) -(((-1026 |#1|) (-10 -7 (-15 -3404 ((-419 (-576)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -3424 ((-3 (-419 (-576)) "failed") |#1|))) (-1056 (-419 (-576)))) (T -1026)) -((-3424 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3)) (-4 *3 (-1056 *2)))) (-3413 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1026 *3)) (-4 *3 (-1056 (-419 (-576)))))) (-3404 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3)) (-4 *3 (-1056 *2))))) -(-10 -7 (-15 -3404 ((-419 (-576)) |#1|)) (-15 -3413 ((-112) |#1|)) (-15 -3424 ((-3 (-419 (-576)) "failed") |#1|))) -((-3055 ((|#2| $ "value" |#2|) 12)) (-2071 ((|#2| $ "value") 10)) (-3462 (((-112) $ $) 18))) -(((-1027 |#1| |#2|) (-10 -8 (-15 -3055 (|#2| |#1| "value" |#2|)) (-15 -3462 ((-112) |#1| |#1|)) (-15 -2071 (|#2| |#1| "value"))) (-1028 |#2|) (-1236)) (T -1027)) -NIL -(-10 -8 (-15 -3055 (|#2| |#1| "value" |#2|)) (-15 -3462 ((-112) |#1| |#1|)) (-15 -2071 (|#2| |#1| "value"))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-4183 ((|#1| $) 49)) (-2970 (((-112) $ (-783)) 8)) (-3434 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-2473 (($) 7 T CONST)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) 51)) (-3452 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-2482 (((-656 |#1|) $) 46)) (-4306 (((-112) $) 50)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ "value") 48)) (-3473 (((-576) $ $) 45)) (-4053 (((-112) $) 47)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) 52)) (-3462 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-1028 |#1|) (-141) (-1236)) (T -1028)) -((-4255 (*1 *2 *1) (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1028 *3)))) (-3484 (*1 *2 *1) (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1028 *3)))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-4183 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1236)))) (-2071 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1028 *2)) (-4 *2 (-1236)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-2482 (*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3)))) (-3473 (*1 *2 *1 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-576)))) (-3462 (*1 *2 *1 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-3452 (*1 *2 *1 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-3442 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4462)) (-4 *1 (-1028 *3)) (-4 *3 (-1236)))) (-3055 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4462)) (-4 *1 (-1028 *2)) (-4 *2 (-1236)))) (-3434 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1028 *2)) (-4 *2 (-1236))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -4255 ((-656 $) $)) (-15 -3484 ((-656 $) $)) (-15 -4306 ((-112) $)) (-15 -4183 (|t#1| $)) (-15 -2071 (|t#1| $ "value")) (-15 -4053 ((-112) $)) (-15 -2482 ((-656 |t#1|) $)) (-15 -3473 ((-576) $ $)) (IF (|has| |t#1| (-1118)) (PROGN (-15 -3462 ((-112) $ $)) (-15 -3452 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3442 ($ $ (-656 $))) (-15 -3055 (|t#1| $ "value" |t#1|)) (-15 -3434 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-2474 (($ $) 9) (($ $ (-937)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-1342 (((-3 $ "failed") (-1191 $) (-937) (-874)) 24) (((-3 $ "failed") (-1191 $) (-937)) 32)) (-3298 (($ $ (-576)) 58)) (-1871 (((-783)) 18)) (-1351 (((-656 $) (-1191 $)) NIL) (((-656 $) (-1191 (-419 (-576)))) 63) (((-656 $) (-1191 (-576))) 68) (((-656 $) (-968 $)) 72) (((-656 $) (-968 (-419 (-576)))) 76) (((-656 $) (-968 (-576))) 80)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53))) -(((-1029 |#1|) (-10 -8 (-15 -2474 (|#1| (-576))) (-15 -2474 (|#1| (-419 (-576)))) (-15 -2474 (|#1| |#1| (-937))) (-15 -1351 ((-656 |#1|) (-968 (-576)))) (-15 -1351 ((-656 |#1|) (-968 (-419 (-576))))) (-15 -1351 ((-656 |#1|) (-968 |#1|))) (-15 -1351 ((-656 |#1|) (-1191 (-576)))) (-15 -1351 ((-656 |#1|) (-1191 (-419 (-576))))) (-15 -1351 ((-656 |#1|) (-1191 |#1|))) (-15 -1342 ((-3 |#1| "failed") (-1191 |#1|) (-937))) (-15 -1342 ((-3 |#1| "failed") (-1191 |#1|) (-937) (-874))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3298 (|#1| |#1| (-576))) (-15 -2474 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -1871 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937)))) (-1030)) (T -1029)) -((-1871 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1029 *3)) (-4 *3 (-1030))))) -(-10 -8 (-15 -2474 (|#1| (-576))) (-15 -2474 (|#1| (-419 (-576)))) (-15 -2474 (|#1| |#1| (-937))) (-15 -1351 ((-656 |#1|) (-968 (-576)))) (-15 -1351 ((-656 |#1|) (-968 (-419 (-576))))) (-15 -1351 ((-656 |#1|) (-968 |#1|))) (-15 -1351 ((-656 |#1|) (-1191 (-576)))) (-15 -1351 ((-656 |#1|) (-1191 (-419 (-576))))) (-15 -1351 ((-656 |#1|) (-1191 |#1|))) (-15 -1342 ((-3 |#1| "failed") (-1191 |#1|) (-937))) (-15 -1342 ((-3 |#1| "failed") (-1191 |#1|) (-937) (-874))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3298 (|#1| |#1| (-576))) (-15 -2474 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -1871 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 102)) (-4241 (($ $) 103)) (-4221 (((-112) $) 105)) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 122)) (-3986 (((-430 $) $) 123)) (-2474 (($ $) 86) (($ $ (-937)) 72) (($ (-419 (-576))) 71) (($ (-576)) 70)) (-2922 (((-112) $ $) 113)) (-3966 (((-576) $) 139)) (-2473 (($) 18 T CONST)) (-1342 (((-3 $ "failed") (-1191 $) (-937) (-874)) 80) (((-3 $ "failed") (-1191 $) (-937)) 79)) (-2449 (((-3 (-576) "failed") $) 99 (|has| (-419 (-576)) (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 97 (|has| (-419 (-576)) (-1056 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 94)) (-4401 (((-576) $) 98 (|has| (-419 (-576)) (-1056 (-576)))) (((-419 (-576)) $) 96 (|has| (-419 (-576)) (-1056 (-419 (-576))))) (((-419 (-576)) $) 95)) (-3505 (($ $ (-874)) 69)) (-3496 (($ $ (-874)) 68)) (-2803 (($ $ $) 117)) (-1999 (((-3 $ "failed") $) 37)) (-2814 (($ $ $) 116)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 111)) (-2463 (((-112) $) 124)) (-1370 (((-112) $) 137)) (-1439 (((-112) $) 35)) (-3298 (($ $ (-576)) 85)) (-1379 (((-112) $) 138)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 120)) (-1921 (($ $ $) 136)) (-4137 (($ $ $) 135)) (-3514 (((-3 (-1191 $) "failed") $) 81)) (-2287 (((-3 (-874) "failed") $) 83)) (-3523 (((-3 (-1191 $) "failed") $) 82)) (-3888 (($ (-656 $)) 109) (($ $ $) 108)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 125)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 110)) (-3928 (($ (-656 $)) 107) (($ $ $) 106)) (-2354 (((-430 $) $) 121)) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 118)) (-2852 (((-3 $ "failed") $ $) 101)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 112)) (-2910 (((-783) $) 114)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 115)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 129) (($ $) 100) (($ (-419 (-576))) 93) (($ (-576)) 92) (($ (-419 (-576))) 89)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 104)) (-3495 (((-419 (-576)) $ $) 67)) (-1351 (((-656 $) (-1191 $)) 78) (((-656 $) (-1191 (-419 (-576)))) 77) (((-656 $) (-1191 (-576))) 76) (((-656 $) (-968 $)) 75) (((-656 $) (-968 (-419 (-576)))) 74) (((-656 $) (-968 (-576))) 73)) (-2610 (($ $) 140)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3983 (((-112) $ $) 133)) (-3957 (((-112) $ $) 132)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 134)) (-3943 (((-112) $ $) 131)) (-4039 (($ $ $) 130)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 126) (($ $ (-419 (-576))) 84)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 128) (($ $ (-419 (-576))) 127) (($ (-576) $) 91) (($ $ (-576)) 90) (($ (-419 (-576)) $) 88) (($ $ (-419 (-576))) 87))) -(((-1030) (-141)) (T -1030)) -((-2474 (*1 *1 *1) (-4 *1 (-1030))) (-2287 (*1 *2 *1) (|partial| -12 (-4 *1 (-1030)) (-5 *2 (-874)))) (-3523 (*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1030)))) (-3514 (*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1030)))) (-1342 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-5 *4 (-874)) (-4 *1 (-1030)))) (-1342 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-4 *1 (-1030)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-1030)) (-5 *2 (-656 *1)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-1191 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-1030)) (-5 *2 (-656 *1)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-968 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) (-2474 (*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-937)))) (-2474 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1030)))) (-2474 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1030)))) (-3505 (*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-874)))) (-3496 (*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-874)))) (-3495 (*1 *2 *1 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-419 (-576)))))) -(-13 (-148) (-860) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1020) (-10 -8 (-15 -2287 ((-3 (-874) "failed") $)) (-15 -3523 ((-3 (-1191 $) "failed") $)) (-15 -3514 ((-3 (-1191 $) "failed") $)) (-15 -1342 ((-3 $ "failed") (-1191 $) (-937) (-874))) (-15 -1342 ((-3 $ "failed") (-1191 $) (-937))) (-15 -1351 ((-656 $) (-1191 $))) (-15 -1351 ((-656 $) (-1191 (-419 (-576))))) (-15 -1351 ((-656 $) (-1191 (-576)))) (-15 -1351 ((-656 $) (-968 $))) (-15 -1351 ((-656 $) (-968 (-419 (-576))))) (-15 -1351 ((-656 $) (-968 (-576)))) (-15 -2474 ($ $ (-937))) (-15 -2474 ($ $)) (-15 -2474 ($ (-419 (-576)))) (-15 -2474 ($ (-576))) (-15 -3505 ($ $ (-874))) (-15 -3496 ($ $ (-874))) (-15 -3495 ((-419 (-576)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 #1=(-576)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-423 (-419 (-576))) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 #1#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 #1#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-936) . T) ((-1020) . T) ((-1056 (-419 (-576))) . T) ((-1056 (-576)) |has| (-419 (-576)) (-1056 (-576))) ((-1069 #0#) . T) ((-1069 #1#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 #1#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T)) -((-2300 (((-2 (|:| |ans| |#2|) (|:| -2436 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1031 |#1| |#2|) (-10 -7 (-15 -2300 ((-2 (|:| |ans| |#2|) (|:| -2436 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-27) (-442 |#1|))) (T -1031)) -((-2300 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1195)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3849 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1221) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1056 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2436 *4) (|:| |sol?| (-112)))) (-5 *1 (-1031 *8 *4))))) -(-10 -7 (-15 -2300 ((-2 (|:| |ans| |#2|) (|:| -2436 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2312 (((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1032 |#1| |#2|) (-10 -7 (-15 -2312 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-27) (-442 |#1|))) (T -1032)) -((-2312 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1195)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3849 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1221) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1056 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-656 *4)) (-5 *1 (-1032 *8 *4))))) -(-10 -7 (-15 -2312 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3849 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2343 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2572 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-2321 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -1890 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-2333 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74))) -(((-1033 |#1| |#2|) (-10 -7 (-15 -2321 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -1890 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2333 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -2343 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2572 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1056 (-576))) (-1262 |#1|)) (T -1033)) -((-2343 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1262 *6)) (-4 *6 (-13 (-374) (-148) (-1056 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2572 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1033 *6 *3)))) (-2333 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1033 *4 *5)) (-5 *3 (-419 *5)))) (-2321 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -1890 *6))) (-5 *1 (-1033 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -2321 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -1890 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2333 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -2343 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2572 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) -((-2353 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -1890 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-2363 (((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34))) -(((-1034 |#1| |#2|) (-10 -7 (-15 -2353 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -1890 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2363 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1056 (-576))) (-1262 |#1|)) (T -1034)) -((-2363 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-419 *5)))) (-2353 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -1890 *6))) (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -2353 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -1890 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2363 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) -((-2373 (((-1 |#1|) (-656 (-2 (|:| -4183 |#1|) (|:| -2092 (-576))))) 34)) (-1647 (((-1 |#1|) (-1120 |#1|)) 42)) (-2385 (((-1 |#1|) (-1286 |#1|) (-1286 (-576)) (-576)) 31))) -(((-1035 |#1|) (-10 -7 (-15 -1647 ((-1 |#1|) (-1120 |#1|))) (-15 -2373 ((-1 |#1|) (-656 (-2 (|:| -4183 |#1|) (|:| -2092 (-576)))))) (-15 -2385 ((-1 |#1|) (-1286 |#1|) (-1286 (-576)) (-576)))) (-1118)) (T -1035)) -((-2385 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1286 *6)) (-5 *4 (-1286 (-576))) (-5 *5 (-576)) (-4 *6 (-1118)) (-5 *2 (-1 *6)) (-5 *1 (-1035 *6)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4183 *4) (|:| -2092 (-576))))) (-4 *4 (-1118)) (-5 *2 (-1 *4)) (-5 *1 (-1035 *4)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-1120 *4)) (-4 *4 (-1118)) (-5 *2 (-1 *4)) (-5 *1 (-1035 *4))))) -(-10 -7 (-15 -1647 ((-1 |#1|) (-1120 |#1|))) (-15 -2373 ((-1 |#1|) (-656 (-2 (|:| -4183 |#1|) (|:| -2092 (-576)))))) (-15 -2385 ((-1 |#1|) (-1286 |#1|) (-1286 (-576)) (-576)))) -((-2927 (((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2927 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1036)) -((-2927 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-4 *4 (-1262 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) (-5 *1 (-1036 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2927 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2862 (((-112) $ $) NIL)) (-2573 (((-1153) $) 9)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL) (($ (-1200)) NIL) (((-1200) $) NIL)) (-1789 (((-1153) $) 11)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1037) (-13 (-1101) (-10 -8 (-15 -2573 ((-1153) $)) (-15 -1789 ((-1153) $))))) (T -1037)) -((-2573 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1037)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1037))))) -(-13 (-1101) (-10 -8 (-15 -2573 ((-1153) $)) (-15 -1789 ((-1153) $)))) -((-1966 (((-3 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) "failed") |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) 32) (((-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576))) 29)) (-2422 (((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576))) 34) (((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) 33) (((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1|) 28)) (-2407 (((-656 (-419 (-576))) (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) 20)) (-2396 (((-419 (-576)) (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) 17))) -(((-1038 |#1|) (-10 -7 (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1|)) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576)))) (-15 -1966 ((-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576)))) (-15 -1966 ((-3 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) "failed") |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-15 -2396 ((-419 (-576)) (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-15 -2407 ((-656 (-419 (-576))) (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))))) (-1262 (-576))) (T -1038)) -((-2407 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1038 *4)) (-4 *4 (-1262 (-576))))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1038 *4)) (-4 *4 (-1262 (-576))))) (-1966 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))))) (-1966 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))))) (-2422 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2419 *5) (|:| -2436 *5)))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-2 (|:| -2419 *5) (|:| -2436 *5))))) (-2422 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-419 (-576))))) (-2422 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))))) (-2422 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576)))))) -(-10 -7 (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1|)) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576)))) (-15 -1966 ((-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576)))) (-15 -1966 ((-3 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) "failed") |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-15 -2396 ((-419 (-576)) (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-15 -2407 ((-656 (-419 (-576))) (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))))) -((-1966 (((-3 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) "failed") |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) 35) (((-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576))) 32)) (-2422 (((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576))) 30) (((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) 28) (((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1|) 24))) -(((-1039 |#1|) (-10 -7 (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1|)) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576)))) (-15 -1966 ((-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576)))) (-15 -1966 ((-3 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) "failed") |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))))) (-1262 (-419 (-576)))) (T -1039)) -((-1966 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576)))))) (-1966 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 *4)))) (-2422 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2419 *5) (|:| -2436 *5)))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 *5)) (-5 *4 (-2 (|:| -2419 *5) (|:| -2436 *5))))) (-2422 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2419 *4) (|:| -2436 *4)))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 *4)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576)))) (-5 *4 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))))) (-2422 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576))))))) -(-10 -7 (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1|)) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -2422 ((-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576)))) (-15 -1966 ((-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-419 (-576)))) (-15 -1966 ((-3 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) "failed") |#1| (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))) (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))))) -((-2616 (((-227) $) 6) (((-390) $) 9))) -(((-1040) (-141)) (T -1040)) -NIL -(-13 (-626 (-227)) (-626 (-390))) -(((-626 (-227)) . T) ((-626 (-390)) . T)) -((-1525 (((-656 (-390)) (-968 (-576)) (-390)) 28) (((-656 (-390)) (-968 (-419 (-576))) (-390)) 27)) (-3960 (((-656 (-656 (-390))) (-656 (-968 (-576))) (-656 (-1195)) (-390)) 37))) -(((-1041) (-10 -7 (-15 -1525 ((-656 (-390)) (-968 (-419 (-576))) (-390))) (-15 -1525 ((-656 (-390)) (-968 (-576)) (-390))) (-15 -3960 ((-656 (-656 (-390))) (-656 (-968 (-576))) (-656 (-1195)) (-390))))) (T -1041)) -((-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1041)) (-5 *5 (-390)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-968 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1041)) (-5 *4 (-390)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *2 (-656 (-390))) (-5 *1 (-1041)) (-5 *4 (-390))))) -(-10 -7 (-15 -1525 ((-656 (-390)) (-968 (-419 (-576))) (-390))) (-15 -1525 ((-656 (-390)) (-968 (-576)) (-390))) (-15 -3960 ((-656 (-656 (-390))) (-656 (-968 (-576))) (-656 (-1195)) (-390)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 75)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2474 (($ $) NIL) (($ $ (-937)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) 70)) (-2473 (($) NIL T CONST)) (-1342 (((-3 $ "failed") (-1191 $) (-937) (-874)) NIL) (((-3 $ "failed") (-1191 $) (-937)) 55)) (-2449 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1056 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-3766 (|has| (-419 (-576)) (-1056 (-576))) (|has| |#1| (-1056 (-576)))))) (-4401 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1056 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-3766 (|has| (-419 (-576)) (-1056 (-576))) (|has| |#1| (-1056 (-576)))))) (-3505 (($ $ (-874)) 47)) (-3496 (($ $ (-874)) 48)) (-2803 (($ $ $) NIL)) (-1333 (((-419 (-576)) $ $) 21)) (-1999 (((-3 $ "failed") $) 88)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-1370 (((-112) $) 66)) (-1439 (((-112) $) NIL)) (-3298 (($ $ (-576)) NIL)) (-1379 (((-112) $) 69)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3514 (((-3 (-1191 $) "failed") $) 83)) (-2287 (((-3 (-874) "failed") $) 82)) (-3523 (((-3 (-1191 $) "failed") $) 80)) (-2438 (((-3 (-1079 $ (-1191 $)) "failed") $) 78)) (-3888 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 89)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2354 (((-430 $) $) NIL)) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2884 (((-874) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-3495 (((-419 (-576)) $ $) 27)) (-1351 (((-656 $) (-1191 $)) 61) (((-656 $) (-1191 (-419 (-576)))) NIL) (((-656 $) (-1191 (-576))) NIL) (((-656 $) (-968 $)) NIL) (((-656 $) (-968 (-419 (-576)))) NIL) (((-656 $) (-968 (-576))) NIL)) (-2448 (($ (-1079 $ (-1191 $)) (-874)) 46)) (-2610 (($ $) 22)) (-1996 (($) 32 T CONST)) (-2011 (($) 39 T CONST)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 76)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 24)) (-4039 (($ $ $) 37)) (-4029 (($ $) 38) (($ $ $) 74)) (-4017 (($ $ $) 112)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1042 |#1|) (-13 (-1030) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -2448 ($ (-1079 $ (-1191 $)) (-874))) (-15 -2438 ((-3 (-1079 $ (-1191 $)) "failed") $)) (-15 -1333 ((-419 (-576)) $ $)))) (-13 (-860) (-374) (-1040))) (T -1042)) -((-2448 (*1 *1 *2 *3) (-12 (-5 *2 (-1079 (-1042 *4) (-1191 (-1042 *4)))) (-5 *3 (-874)) (-5 *1 (-1042 *4)) (-4 *4 (-13 (-860) (-374) (-1040))))) (-2438 (*1 *2 *1) (|partial| -12 (-5 *2 (-1079 (-1042 *3) (-1191 (-1042 *3)))) (-5 *1 (-1042 *3)) (-4 *3 (-13 (-860) (-374) (-1040))))) (-1333 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-13 (-860) (-374) (-1040)))))) -(-13 (-1030) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -2448 ($ (-1079 $ (-1191 $)) (-874))) (-15 -2438 ((-3 (-1079 $ (-1191 $)) "failed") $)) (-15 -1333 ((-419 (-576)) $ $)))) -((-2461 (((-2 (|:| -2572 |#2|) (|:| -1577 (-656 |#1|))) |#2| (-656 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1043 |#1| |#2|) (-10 -7 (-15 -2461 (|#2| |#2| |#1|)) (-15 -2461 ((-2 (|:| -2572 |#2|) (|:| -1577 (-656 |#1|))) |#2| (-656 |#1|)))) (-374) (-668 |#1|)) (T -1043)) -((-2461 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -2572 *3) (|:| -1577 (-656 *5)))) (-5 *1 (-1043 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))) (-2461 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1043 *3 *2)) (-4 *2 (-668 *3))))) -(-10 -7 (-15 -2461 (|#2| |#2| |#1|)) (-15 -2461 ((-2 (|:| -2572 |#2|) (|:| -1577 (-656 |#1|))) |#2| (-656 |#1|)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2472 ((|#1| $ |#1|) 14)) (-3055 ((|#1| $ |#1|) 12)) (-2501 (($ |#1|) 10)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2071 ((|#1| $) 11)) (-2485 ((|#1| $) 13)) (-2884 (((-874) $) 21 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3915 (((-112) $ $) 9))) -(((-1044 |#1|) (-13 (-1236) (-10 -8 (-15 -2501 ($ |#1|)) (-15 -2071 (|#1| $)) (-15 -3055 (|#1| $ |#1|)) (-15 -2485 (|#1| $)) (-15 -2472 (|#1| $ |#1|)) (-15 -3915 ((-112) $ $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|))) (-1236)) (T -1044)) -((-2501 (*1 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) (-2071 (*1 *2 *1) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) (-3055 (*1 *2 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) (-2485 (*1 *2 *1) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) (-2472 (*1 *2 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) (-3915 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1044 *3)) (-4 *3 (-1236))))) -(-13 (-1236) (-10 -8 (-15 -2501 ($ |#1|)) (-15 -2071 (|#1| $)) (-15 -3055 (|#1| $ |#1|)) (-15 -2485 (|#1| $)) (-15 -2472 (|#1| $ |#1|)) (-15 -3915 ((-112) $ $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|))) -((-2862 (((-112) $ $) NIL)) (-3289 (((-656 (-2 (|:| -2459 $) (|:| -2980 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3299 (((-656 $) (-656 |#4|)) 118) (((-656 $) (-656 |#4|) (-112)) 119) (((-656 $) (-656 |#4|) (-112) (-112)) 117) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1607 (((-656 |#3|) $) NIL)) (-1470 (((-112) $) NIL)) (-1374 (((-112) $) NIL (|has| |#1| (-568)))) (-3405 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3358 ((|#4| |#4| $) NIL)) (-2944 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| $) 112)) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#3|) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3985 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 66)) (-2473 (($) NIL T CONST)) (-1425 (((-112) $) 29 (|has| |#1| (-568)))) (-1445 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1435 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1457 (((-112) $) NIL (|has| |#1| (-568)))) (-3367 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1384 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1394 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4401 (($ (-656 |#4|)) NIL)) (-1976 (((-3 $ "failed") $) 45)) (-3328 ((|#4| |#4| $) 69)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3634 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-3414 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3308 ((|#4| |#4| $) NIL)) (-2309 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3435 (((-2 (|:| -2459 (-656 |#4|)) (|:| -2980 (-656 |#4|))) $) NIL)) (-1489 (((-112) |#4| $) NIL)) (-1463 (((-112) |#4| $) NIL)) (-1498 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1777 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 133)) (-4001 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-3425 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1323 ((|#3| $) 38)) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#4|) $) 19 (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-2848 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) 23)) (-1524 (((-656 |#3|) $) NIL)) (-1513 (((-112) |#3| $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-1421 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-1411 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| |#4| $) 110)) (-3654 (((-3 |#4| "failed") $) 42)) (-1431 (((-656 $) |#4| $) 93)) (-1451 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-1440 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3703 (((-656 $) |#4| $) 115) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 116) (((-656 $) |#4| (-656 $)) NIL)) (-1788 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 128)) (-1800 (($ |#4| $) 82) (($ (-656 |#4|) $) 83) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-3443 (((-656 |#4|) $) NIL)) (-3387 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#4| |#4| $) NIL)) (-3461 (((-112) $ $) NIL)) (-1415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3396 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3348 ((|#4| |#4| $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 (((-3 |#4| "failed") $) 40)) (-1932 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3266 (((-3 $ "failed") $ |#4|) 59)) (-2904 (($ $ |#4|) NIL) (((-656 $) |#4| $) 95) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 89)) (-2476 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 17)) (-1458 (($) 14)) (-3813 (((-783) $) NIL)) (-3926 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) 13)) (-2616 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2895 (($ (-656 |#4|)) 22)) (-1483 (($ $ |#3|) 52)) (-1504 (($ $ |#3|) 54)) (-3318 (($ $) NIL)) (-1493 (($ $ |#3|) NIL)) (-2884 (((-874) $) 35) (((-656 |#4|) $) 46)) (-3255 (((-783) $) NIL (|has| |#3| (-379)))) (-3722 (((-112) $ $) NIL)) (-3453 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3377 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-1400 (((-656 $) |#4| $) 92) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2492 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3278 (((-656 |#3|) $) NIL)) (-1479 (((-112) |#4| $) NIL)) (-3704 (((-112) |#3| $) 65)) (-3915 (((-112) $ $) NIL)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1045 |#1| |#2| |#3| |#4|) (-13 (-1089 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1800 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3299 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3299 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -1788 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -1777 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -1045)) -((-1800 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1045 *5 *6 *7 *3))) (-5 *1 (-1045 *5 *6 *7 *3)) (-4 *3 (-1083 *5 *6 *7)))) (-3299 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-3299 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-1788 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-1777 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1045 *5 *6 *7 *8))))) (-5 *1 (-1045 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(-13 (-1089 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1800 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3299 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3299 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -1788 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -1777 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) -((-2638 (((-656 (-701 |#1|)) (-656 (-701 |#1|))) 70) (((-701 |#1|) (-701 |#1|)) 69) (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 68) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 65)) (-2626 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937)) 63) (((-701 |#1|) (-701 |#1|) (-937)) 62)) (-2648 (((-656 (-701 (-576))) (-656 (-656 (-576)))) 81) (((-656 (-701 (-576))) (-656 (-921 (-576))) (-576)) 80) (((-701 (-576)) (-656 (-576))) 77) (((-701 (-576)) (-921 (-576)) (-576)) 75)) (-2614 (((-701 (-968 |#1|)) (-783)) 95)) (-2603 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937)) 49 (|has| |#1| (-6 (-4463 "*")))) (((-701 |#1|) (-701 |#1|) (-937)) 47 (|has| |#1| (-6 (-4463 "*")))))) -(((-1046 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -2603 ((-701 |#1|) (-701 |#1|) (-937))) |%noBranch|) (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -2603 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937))) |%noBranch|) (-15 -2614 ((-701 (-968 |#1|)) (-783))) (-15 -2626 ((-701 |#1|) (-701 |#1|) (-937))) (-15 -2626 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937))) (-15 -2638 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2638 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2638 ((-701 |#1|) (-701 |#1|))) (-15 -2638 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2648 ((-701 (-576)) (-921 (-576)) (-576))) (-15 -2648 ((-701 (-576)) (-656 (-576)))) (-15 -2648 ((-656 (-701 (-576))) (-656 (-921 (-576))) (-576))) (-15 -2648 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) (-1067)) (T -1046)) -((-2648 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1046 *4)) (-4 *4 (-1067)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-921 (-576)))) (-5 *4 (-576)) (-5 *2 (-656 (-701 *4))) (-5 *1 (-1046 *5)) (-4 *5 (-1067)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1046 *4)) (-4 *4 (-1067)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) (-5 *1 (-1046 *5)) (-4 *5 (-1067)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))) (-2638 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))) (-2638 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-937)) (-4 *4 (-1067)) (-5 *1 (-1046 *4)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-937)) (-4 *4 (-1067)) (-5 *1 (-1046 *4)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-701 (-968 *4))) (-5 *1 (-1046 *4)) (-4 *4 (-1067)))) (-2603 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-937)) (|has| *4 (-6 (-4463 "*"))) (-4 *4 (-1067)) (-5 *1 (-1046 *4)))) (-2603 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-937)) (|has| *4 (-6 (-4463 "*"))) (-4 *4 (-1067)) (-5 *1 (-1046 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -2603 ((-701 |#1|) (-701 |#1|) (-937))) |%noBranch|) (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -2603 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937))) |%noBranch|) (-15 -2614 ((-701 (-968 |#1|)) (-783))) (-15 -2626 ((-701 |#1|) (-701 |#1|) (-937))) (-15 -2626 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937))) (-15 -2638 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2638 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2638 ((-701 |#1|) (-701 |#1|))) (-15 -2638 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2648 ((-701 (-576)) (-921 (-576)) (-576))) (-15 -2648 ((-701 (-576)) (-656 (-576)))) (-15 -2648 ((-656 (-701 (-576))) (-656 (-921 (-576))) (-576))) (-15 -2648 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) -((-2693 (((-701 |#1|) (-656 (-701 |#1|)) (-1286 |#1|)) 70 (|has| |#1| (-317)))) (-2921 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 (-1286 |#1|))) 110 (|has| |#1| (-374))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 |#1|)) 117 (|has| |#1| (-374)))) (-2735 (((-1286 |#1|) (-656 (-1286 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-2725 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-937)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-2714 (((-112) (-656 (-701 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-656 (-701 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-2682 (((-1286 (-1286 |#1|)) (-656 (-701 |#1|)) (-1286 |#1|)) 67 (|has| |#1| (-317)))) (-2670 (((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|)) 47)) (-2658 (((-701 |#1|) (-1286 (-1286 |#1|))) 40)) (-2703 (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 93 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374))))) -(((-1047 |#1|) (-10 -7 (-15 -2658 ((-701 |#1|) (-1286 (-1286 |#1|)))) (-15 -2670 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2682 ((-1286 (-1286 |#1|)) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -2693 ((-701 |#1|) (-656 (-701 |#1|)) (-1286 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2703 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -2703 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2703 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -2714 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -2714 ((-112) (-656 (-701 |#1|)))) (-15 -2921 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -2921 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 (-1286 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -2725 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -2725 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -2725 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -2725 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-937))) (-15 -2735 ((-1286 |#1|) (-656 (-1286 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1067)) (T -1047)) -((-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1286 *5))) (-5 *4 (-576)) (-5 *2 (-1286 *5)) (-5 *1 (-1047 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-656 (-701 *5))))) (-2725 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-656 (-701 *5))))) (-2725 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1067)) (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1047 *4)) (-5 *3 (-656 (-701 *4))))) (-2725 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1067)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1047 *6)) (-5 *3 (-656 (-701 *6))))) (-2921 (*1 *2 *3 *4) (-12 (-5 *4 (-1286 (-1286 *5))) (-4 *5 (-374)) (-4 *5 (-1067)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-656 (-701 *5))))) (-2921 (*1 *2 *3 *4) (-12 (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-4 *5 (-1067)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-656 (-701 *5))))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-1047 *4)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-1047 *5)))) (-2703 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) (-5 *1 (-1047 *5)) (-4 *5 (-374)) (-4 *5 (-1067)))) (-2703 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1047 *4)) (-4 *4 (-374)) (-4 *4 (-1067)))) (-2703 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-701 *6)) (-5 *1 (-1047 *6)) (-4 *6 (-374)) (-4 *6 (-1067)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1286 *5)) (-4 *5 (-317)) (-4 *5 (-1067)) (-5 *2 (-701 *5)) (-5 *1 (-1047 *5)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1067)) (-5 *2 (-1286 (-1286 *5))) (-5 *1 (-1047 *5)) (-5 *4 (-1286 *5)))) (-2670 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1067)) (-5 *1 (-1047 *4)))) (-2658 (*1 *2 *3) (-12 (-5 *3 (-1286 (-1286 *4))) (-4 *4 (-1067)) (-5 *2 (-701 *4)) (-5 *1 (-1047 *4))))) -(-10 -7 (-15 -2658 ((-701 |#1|) (-1286 (-1286 |#1|)))) (-15 -2670 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2682 ((-1286 (-1286 |#1|)) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -2693 ((-701 |#1|) (-656 (-701 |#1|)) (-1286 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2703 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -2703 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2703 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -2714 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -2714 ((-112) (-656 (-701 |#1|)))) (-15 -2921 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -2921 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 (-1286 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -2725 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -2725 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -2725 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -2725 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-937))) (-15 -2735 ((-1286 |#1|) (-656 (-1286 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) -((-3997 ((|#1| (-937) |#1|) 18))) -(((-1048 |#1|) (-10 -7 (-15 -3997 (|#1| (-937) |#1|))) (-13 (-1118) (-10 -8 (-15 -4017 ($ $ $))))) (T -1048)) -((-3997 (*1 *2 *3 *2) (-12 (-5 *3 (-937)) (-5 *1 (-1048 *2)) (-4 *2 (-13 (-1118) (-10 -8 (-15 -4017 ($ $ $)))))))) -(-10 -7 (-15 -3997 (|#1| (-937) |#1|))) -((-2512 (((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-968 (-576))))) 67)) (-2525 (((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-968 (-576))))) 52)) (-2538 (((-656 (-326 (-576))) (-701 (-419 (-968 (-576))))) 45)) (-2592 (((-656 (-701 (-326 (-576)))) (-701 (-419 (-968 (-576))))) 85)) (-2564 (((-701 (-326 (-576))) (-701 (-326 (-576)))) 38)) (-2579 (((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576))))) 74)) (-2549 (((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-968 (-576))))) 82))) -(((-1049) (-10 -7 (-15 -2512 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-968 (-576)))))) (-15 -2525 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-968 (-576)))))) (-15 -2538 ((-656 (-326 (-576))) (-701 (-419 (-968 (-576)))))) (-15 -2549 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-968 (-576)))))) (-15 -2564 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -2579 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -2592 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-968 (-576)))))))) (T -1049)) -((-2592 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-968 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049)))) (-2564 (*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1049)))) (-2549 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 (-419 (-968 (-576))))) (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1049)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-968 (-576))))) (-5 *2 (-656 (-326 (-576)))) (-5 *1 (-1049)))) (-2525 (*1 *2 *3 *4) (-12 (-5 *4 (-701 (-419 (-968 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049)) (-5 *3 (-326 (-576))))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-968 (-576))))) (-5 *2 (-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576)))))))) (-5 *1 (-1049))))) -(-10 -7 (-15 -2512 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-968 (-576)))))) (-15 -2525 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-968 (-576)))))) (-15 -2538 ((-656 (-326 (-576))) (-701 (-419 (-968 (-576)))))) (-15 -2549 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-968 (-576)))))) (-15 -2564 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -2579 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -2592 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-968 (-576))))))) -((-2746 ((|#1| |#1| (-937)) 18))) -(((-1050 |#1|) (-10 -7 (-15 -2746 (|#1| |#1| (-937)))) (-13 (-1118) (-10 -8 (-15 * ($ $ $))))) (T -1050)) -((-2746 (*1 *2 *2 *3) (-12 (-5 *3 (-937)) (-5 *1 (-1050 *2)) (-4 *2 (-13 (-1118) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2746 (|#1| |#1| (-937)))) -((-2884 ((|#1| (-322)) 11) (((-1291) |#1|) 9))) -(((-1051 |#1|) (-10 -7 (-15 -2884 ((-1291) |#1|)) (-15 -2884 (|#1| (-322)))) (-1236)) (T -1051)) -((-2884 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1051 *2)) (-4 *2 (-1236)))) (-2884 (*1 *2 *3) (-12 (-5 *2 (-1291)) (-5 *1 (-1051 *3)) (-4 *3 (-1236))))) -(-10 -7 (-15 -2884 ((-1291) |#1|)) (-15 -2884 (|#1| (-322)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2309 (($ |#4|) 25)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) NIL)) (-2297 ((|#4| $) 27)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1871 (((-783)) 43 T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 21 T CONST)) (-2011 (($) 23 T CONST)) (-3915 (((-112) $ $) 40)) (-4029 (($ $) 31) (($ $ $) NIL)) (-4017 (($ $ $) 29)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1052 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2309 ($ |#4|)) (-15 -2884 ($ |#4|)) (-15 -2297 (|#4| $)))) (-374) (-805) (-862) (-965 |#1| |#2| |#3|) (-656 |#4|)) (T -1052)) -((-2309 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1052 *3 *4 *5 *2 *6)) (-4 *2 (-965 *3 *4 *5)) (-14 *6 (-656 *2)))) (-2884 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1052 *3 *4 *5 *2 *6)) (-4 *2 (-965 *3 *4 *5)) (-14 *6 (-656 *2)))) (-2297 (*1 *2 *1) (-12 (-4 *2 (-965 *3 *4 *5)) (-5 *1 (-1052 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-14 *6 (-656 *2))))) -(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2309 ($ |#4|)) (-15 -2884 ($ |#4|)) (-15 -2297 (|#4| $)))) -((-2862 (((-112) $ $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-2298 (($) NIL) (($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) NIL)) (-3336 (((-1291) $ (-1195) (-1195)) NIL (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-2767 (((-112) (-112)) 43)) (-2757 (((-112) (-112)) 42)) (-3055 (((-52) $ (-1195) (-52)) NIL)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-1397 (((-3 (-52) "failed") (-1195) $) NIL)) (-2473 (($) NIL T CONST)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-2833 (($ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-3 (-52) "failed") (-1195) $) NIL)) (-3634 (($ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (((-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2859 (((-52) $ (-1195) (-52)) NIL (|has| $ (-6 -4462)))) (-2789 (((-52) $ (-1195)) NIL)) (-4001 (((-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-1195) $) NIL (|has| (-1195) (-862)))) (-1496 (((-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-3365 (((-1195) $) NIL (|has| (-1195) (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-2002 (((-656 (-1195)) $) 37)) (-3412 (((-112) (-1195) $) NIL)) (-3449 (((-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL)) (-3807 (($ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL)) (-3385 (((-656 (-1195)) $) NIL)) (-3394 (((-112) (-1195) $) NIL)) (-3914 (((-1138) $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-1962 (((-52) $) NIL (|has| (-1195) (-862)))) (-1932 (((-3 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) "failed") (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL)) (-3346 (($ $ (-52)) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))))) NIL (-12 (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (($ $ (-304 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (($ $ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) NIL (-12 (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (($ $ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-3403 (((-656 (-52)) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 (((-52) $ (-1195)) 39) (((-52) $ (-1195) (-52)) NIL)) (-1581 (($) NIL) (($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) NIL)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) NIL)) (-2884 (((-874) $) 41 (-3766 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-625 (-874)))))) (-3722 (((-112) $ $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) NIL)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1053) (-13 (-1212 (-1195) (-52)) (-10 -7 (-15 -2767 ((-112) (-112))) (-15 -2757 ((-112) (-112))) (-6 -4461)))) (T -1053)) -((-2767 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1053)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1053))))) -(-13 (-1212 (-1195) (-52)) (-10 -7 (-15 -2767 ((-112) (-112))) (-15 -2757 ((-112) (-112))) (-6 -4461))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3830 (((-1153) $) 9)) (-2884 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1054) (-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $))))) (T -1054)) -((-3830 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1054))))) -(-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $)))) -((-4401 ((|#2| $) 10))) -(((-1055 |#1| |#2|) (-10 -8 (-15 -4401 (|#2| |#1|))) (-1056 |#2|) (-1236)) (T -1055)) -NIL -(-10 -8 (-15 -4401 (|#2| |#1|))) -((-2449 (((-3 |#1| "failed") $) 9)) (-4401 ((|#1| $) 8)) (-2884 (($ |#1|) 6))) -(((-1056 |#1|) (-141) (-1236)) (T -1056)) -((-2449 (*1 *2 *1) (|partial| -12 (-4 *1 (-1056 *2)) (-4 *2 (-1236)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-1236))))) -(-13 (-628 |t#1|) (-10 -8 (-15 -2449 ((-3 |t#1| "failed") $)) (-15 -4401 (|t#1| $)))) -(((-628 |#1|) . T)) -((-2777 (((-656 (-656 (-304 (-419 (-968 |#2|))))) (-656 (-968 |#2|)) (-656 (-1195))) 38))) -(((-1057 |#1| |#2|) (-10 -7 (-15 -2777 ((-656 (-656 (-304 (-419 (-968 |#2|))))) (-656 (-968 |#2|)) (-656 (-1195))))) (-568) (-13 (-568) (-1056 |#1|))) (T -1057)) -((-2777 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195))) (-4 *6 (-13 (-568) (-1056 *5))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *6)))))) (-5 *1 (-1057 *5 *6))))) -(-10 -7 (-15 -2777 ((-656 (-656 (-304 (-419 (-968 |#2|))))) (-656 (-968 |#2|)) (-656 (-1195))))) -((-2802 (((-390)) 17)) (-1647 (((-1 (-390)) (-390) (-390)) 22)) (-1890 (((-1 (-390)) (-783)) 48)) (-2812 (((-390)) 37)) (-1502 (((-1 (-390)) (-390) (-390)) 38)) (-2826 (((-390)) 29)) (-2851 (((-1 (-390)) (-390)) 30)) (-2837 (((-390) (-783)) 43)) (-2861 (((-1 (-390)) (-783)) 44)) (-3030 (((-1 (-390)) (-783) (-783)) 47)) (-2621 (((-1 (-390)) (-783) (-783)) 45))) -(((-1058) (-10 -7 (-15 -2802 ((-390))) (-15 -2812 ((-390))) (-15 -2826 ((-390))) (-15 -2837 ((-390) (-783))) (-15 -1647 ((-1 (-390)) (-390) (-390))) (-15 -1502 ((-1 (-390)) (-390) (-390))) (-15 -2851 ((-1 (-390)) (-390))) (-15 -2861 ((-1 (-390)) (-783))) (-15 -2621 ((-1 (-390)) (-783) (-783))) (-15 -3030 ((-1 (-390)) (-783) (-783))) (-15 -1890 ((-1 (-390)) (-783))))) (T -1058)) -((-1890 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))) (-3030 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))) (-2621 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))) (-2851 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390)))) (-1502 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390)))) (-1647 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1058)))) (-2826 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058)))) (-2812 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058)))) (-2802 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058))))) -(-10 -7 (-15 -2802 ((-390))) (-15 -2812 ((-390))) (-15 -2826 ((-390))) (-15 -2837 ((-390) (-783))) (-15 -1647 ((-1 (-390)) (-390) (-390))) (-15 -1502 ((-1 (-390)) (-390) (-390))) (-15 -2851 ((-1 (-390)) (-390))) (-15 -2861 ((-1 (-390)) (-783))) (-15 -2621 ((-1 (-390)) (-783) (-783))) (-15 -3030 ((-1 (-390)) (-783) (-783))) (-15 -1890 ((-1 (-390)) (-783)))) -((-2354 (((-430 |#1|) |#1|) 33))) -(((-1059 |#1|) (-10 -7 (-15 -2354 ((-430 |#1|) |#1|))) (-1262 (-419 (-968 (-576))))) (T -1059)) -((-2354 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-1262 (-419 (-968 (-576)))))))) -(-10 -7 (-15 -2354 ((-430 |#1|) |#1|))) -((-2871 (((-419 (-430 (-968 |#1|))) (-419 (-968 |#1|))) 14))) -(((-1060 |#1|) (-10 -7 (-15 -2871 ((-419 (-430 (-968 |#1|))) (-419 (-968 |#1|))))) (-317)) (T -1060)) -((-2871 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-968 *4)))) (-5 *1 (-1060 *4))))) -(-10 -7 (-15 -2871 ((-419 (-430 (-968 |#1|))) (-419 (-968 |#1|))))) -((-1607 (((-656 (-1195)) (-419 (-968 |#1|))) 17)) (-3467 (((-419 (-1191 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195)) 24)) (-2437 (((-419 (-968 |#1|)) (-419 (-1191 (-419 (-968 |#1|)))) (-1195)) 26)) (-2788 (((-3 (-1195) "failed") (-419 (-968 |#1|))) 20)) (-3049 (((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-304 (-419 (-968 |#1|))))) 32) (((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|)))) 33) (((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-1195)) (-656 (-419 (-968 |#1|)))) 28) (((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|))) 29)) (-2884 (((-419 (-968 |#1|)) |#1|) 11))) -(((-1061 |#1|) (-10 -7 (-15 -1607 ((-656 (-1195)) (-419 (-968 |#1|)))) (-15 -2788 ((-3 (-1195) "failed") (-419 (-968 |#1|)))) (-15 -3467 ((-419 (-1191 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195))) (-15 -2437 ((-419 (-968 |#1|)) (-419 (-1191 (-419 (-968 |#1|)))) (-1195))) (-15 -3049 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|)))) (-15 -3049 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-1195)) (-656 (-419 (-968 |#1|))))) (-15 -3049 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -3049 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -2884 ((-419 (-968 |#1|)) |#1|))) (-568)) (T -1061)) -((-2884 (*1 *2 *3) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-1061 *3)) (-4 *3 (-568)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-968 *4))))) (-5 *2 (-419 (-968 *4))) (-4 *4 (-568)) (-5 *1 (-1061 *4)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-968 *4)))) (-5 *2 (-419 (-968 *4))) (-4 *4 (-568)) (-5 *1 (-1061 *4)))) (-3049 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-1195))) (-5 *4 (-656 (-419 (-968 *5)))) (-5 *2 (-419 (-968 *5))) (-4 *5 (-568)) (-5 *1 (-1061 *5)))) (-3049 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-968 *4))) (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-1061 *4)))) (-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1191 (-419 (-968 *5))))) (-5 *4 (-1195)) (-5 *2 (-419 (-968 *5))) (-5 *1 (-1061 *5)) (-4 *5 (-568)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-568)) (-5 *2 (-419 (-1191 (-419 (-968 *5))))) (-5 *1 (-1061 *5)) (-5 *3 (-419 (-968 *5))))) (-2788 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-5 *2 (-1195)) (-5 *1 (-1061 *4)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1195))) (-5 *1 (-1061 *4))))) -(-10 -7 (-15 -1607 ((-656 (-1195)) (-419 (-968 |#1|)))) (-15 -2788 ((-3 (-1195) "failed") (-419 (-968 |#1|)))) (-15 -3467 ((-419 (-1191 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195))) (-15 -2437 ((-419 (-968 |#1|)) (-419 (-1191 (-419 (-968 |#1|)))) (-1195))) (-15 -3049 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|)))) (-15 -3049 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-1195)) (-656 (-419 (-968 |#1|))))) (-15 -3049 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -3049 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -2884 ((-419 (-968 |#1|)) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-2473 (($) 18 T CONST)) (-2914 ((|#1| $) 23)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2903 ((|#1| $) 22)) (-2883 ((|#1|) 20 T CONST)) (-2884 (((-874) $) 12)) (-2894 ((|#1| $) 21)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16))) +((-2827 (($ $ (-1109 $)) 7) (($ $ (-1194)) 6))) +(((-974) (-141)) (T -974)) +((-2827 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-974)))) (-2827 (*1 *1 *1 *2) (-12 (-4 *1 (-974)) (-5 *2 (-1194))))) +(-13 (-10 -8 (-15 -2827 ($ $ (-1194))) (-15 -2827 ($ $ (-1109 $))))) +((-1360 (((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194)) (-1194)) 26) (((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194))) 27) (((-2 (|:| |coef1| (-575)) (|:| |coef2| (-575)) (|:| |prim| (-1190 |#1|))) (-967 |#1|) (-1194) (-967 |#1|) (-1194)) 49))) +(((-975 |#1|) (-10 -7 (-15 -1360 ((-2 (|:| |coef1| (-575)) (|:| |coef2| (-575)) (|:| |prim| (-1190 |#1|))) (-967 |#1|) (-1194) (-967 |#1|) (-1194))) (-15 -1360 ((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -1360 ((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194)) (-1194)))) (-13 (-373) (-148))) (T -975)) +((-1360 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194))) (-5 *5 (-1194)) (-4 *6 (-13 (-373) (-148))) (-5 *2 (-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 *6))) (|:| |prim| (-1190 *6)))) (-5 *1 (-975 *6)))) (-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194))) (-4 *5 (-13 (-373) (-148))) (-5 *2 (-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 *5))) (|:| |prim| (-1190 *5)))) (-5 *1 (-975 *5)))) (-1360 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-967 *5)) (-5 *4 (-1194)) (-4 *5 (-13 (-373) (-148))) (-5 *2 (-2 (|:| |coef1| (-575)) (|:| |coef2| (-575)) (|:| |prim| (-1190 *5)))) (-5 *1 (-975 *5))))) +(-10 -7 (-15 -1360 ((-2 (|:| |coef1| (-575)) (|:| |coef2| (-575)) (|:| |prim| (-1190 |#1|))) (-967 |#1|) (-1194) (-967 |#1|) (-1194))) (-15 -1360 ((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -1360 ((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194)) (-1194)))) +((-3242 (((-655 |#1|) |#1| |#1|) 47)) (-1336 (((-112) |#1|) 44)) (-3034 ((|#1| |#1|) 79)) (-3219 ((|#1| |#1|) 78))) +(((-976 |#1|) (-10 -7 (-15 -1336 ((-112) |#1|)) (-15 -3219 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -3242 ((-655 |#1|) |#1| |#1|))) (-556)) (T -976)) +((-3242 (*1 *2 *3 *3) (-12 (-5 *2 (-655 *3)) (-5 *1 (-976 *3)) (-4 *3 (-556)))) (-3034 (*1 *2 *2) (-12 (-5 *1 (-976 *2)) (-4 *2 (-556)))) (-3219 (*1 *2 *2) (-12 (-5 *1 (-976 *2)) (-4 *2 (-556)))) (-1336 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-976 *3)) (-4 *3 (-556))))) +(-10 -7 (-15 -1336 ((-112) |#1|)) (-15 -3219 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -3242 ((-655 |#1|) |#1| |#1|))) +((-3520 (((-1290) (-873)) 9))) +(((-977) (-10 -7 (-15 -3520 ((-1290) (-873))))) (T -977)) +((-3520 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-977))))) +(-10 -7 (-15 -3520 ((-1290) (-873)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 78 (|has| |#1| (-567)))) (-1540 (($ $) 79 (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 34)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) 31)) (-1747 (((-3 $ "failed") $) 42)) (-1824 (($ $) NIL (|has| |#1| (-463)))) (-3703 (($ $ |#1| |#2| $) 62)) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) 17)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| |#2|) NIL)) (-4337 ((|#2| $) 24)) (-2520 (($ (-1 |#2| |#2|) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4371 (($ $) 28)) (-4383 ((|#1| $) 26)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) 51)) (-4353 ((|#1| $) NIL)) (-2754 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-567))))) (-2851 (((-3 $ "failed") $ $) 91 (|has| |#1| (-567))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-567)))) (-2645 ((|#2| $) 22)) (-2178 ((|#1| $) NIL (|has| |#1| (-463)))) (-2883 (((-873) $) NIL) (($ (-575)) 46) (($ $) NIL (|has| |#1| (-567))) (($ |#1|) 41) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ |#2|) 37)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) 15 T CONST)) (-1835 (($ $ $ (-782)) 74 (|has| |#1| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) 84 (|has| |#1| (-567)))) (-1996 (($) 27 T CONST)) (-2009 (($) 12 T CONST)) (-3914 (((-112) $ $) 83)) (-4038 (($ $ |#1|) 92 (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) 69) (($ $ (-782)) 67)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-978 |#1| |#2|) (-13 (-335 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-567)) (IF (|has| |#2| (-132)) (-15 -2754 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|))) (-1066) (-803)) (T -978)) +((-2754 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-978 *3 *2)) (-4 *2 (-132)) (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *2 (-803))))) +(-13 (-335 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-567)) (IF (|has| |#2| (-132)) (-15 -2754 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))))) (-3605 (($ $ $) 65 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))))) (-2597 (((-3 $ "failed") $ $) 52 (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))))) (-2415 (((-782)) 36 (-12 (|has| |#1| (-378)) (|has| |#2| (-378))))) (-1667 ((|#2| $) 22)) (-1625 ((|#1| $) 21)) (-3011 (($) NIL (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))) CONST)) (-1747 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737)))))) (-2079 (($) NIL (-12 (|has| |#1| (-378)) (|has| |#2| (-378))))) (-1542 (((-112) $) NIL (-3765 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737)))))) (-1920 (($ $ $) NIL (-3765 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-1425 (($ $ $) NIL (-3765 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3249 (($ |#1| |#2|) 20)) (-4084 (((-936) $) NIL (-12 (|has| |#1| (-378)) (|has| |#2| (-378))))) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 39 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))))) (-4317 (($ (-936)) NIL (-12 (|has| |#1| (-378)) (|has| |#2| (-378))))) (-3912 (((-1137) $) NIL)) (-4258 (($ $ $) NIL (-12 (|has| |#1| (-484)) (|has| |#2| (-484))))) (-3320 (($ $ $) NIL (-12 (|has| |#1| (-484)) (|has| |#2| (-484))))) (-2883 (((-873) $) 14)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 42 (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))) CONST)) (-2009 (($) 25 (-3765 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737)))) CONST)) (-3981 (((-112) $ $) NIL (-3765 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3956 (((-112) $ $) NIL (-3765 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3914 (((-112) $ $) 19)) (-3970 (((-112) $ $) NIL (-3765 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3943 (((-112) $ $) 69 (-3765 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-4038 (($ $ $) NIL (-12 (|has| |#1| (-484)) (|has| |#2| (-484))))) (-4028 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4016 (($ $ $) 45 (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))))) (** (($ $ (-575)) NIL (-12 (|has| |#1| (-484)) (|has| |#2| (-484)))) (($ $ (-782)) 32 (-3765 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737))))) (($ $ (-936)) NIL (-3765 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737)))))) (* (($ (-575) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-782) $) 48 (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804))))) (($ (-936) $) NIL (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804))))) (($ $ $) 28 (-3765 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737))))))) +(((-979 |#1| |#2|) (-13 (-1117) (-10 -8 (IF (|has| |#1| (-378)) (IF (|has| |#2| (-378)) (-6 (-378)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-737)) (IF (|has| |#2| (-737)) (-6 (-737)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-484)) (IF (|has| |#2| (-484)) (-6 (-484)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-804)) (IF (|has| |#2| (-804)) (-6 (-804)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -3249 ($ |#1| |#2|)) (-15 -1625 (|#1| $)) (-15 -1667 (|#2| $)))) (-1117) (-1117)) (T -979)) +((-3249 (*1 *1 *2 *3) (-12 (-5 *1 (-979 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-1625 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-979 *2 *3)) (-4 *3 (-1117)))) (-1667 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-979 *3 *2)) (-4 *3 (-1117))))) +(-13 (-1117) (-10 -8 (IF (|has| |#1| (-378)) (IF (|has| |#2| (-378)) (-6 (-378)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-737)) (IF (|has| |#2| (-737)) (-6 (-737)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-484)) (IF (|has| |#2| (-484)) (-6 (-484)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-804)) (IF (|has| |#2| (-804)) (-6 (-804)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -3249 ($ |#1| |#2|)) (-15 -1625 (|#1| $)) (-15 -1667 (|#2| $)))) +((-4182 (((-1121) $) 12)) (-1739 (($ (-517) (-1121)) 14)) (-1777 (((-517) $) 9)) (-2883 (((-873) $) 24))) +(((-980) (-13 (-624 (-873)) (-10 -8 (-15 -1777 ((-517) $)) (-15 -4182 ((-1121) $)) (-15 -1739 ($ (-517) (-1121)))))) (T -980)) +((-1777 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-980)))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-980)))) (-1739 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1121)) (-5 *1 (-980))))) +(-13 (-624 (-873)) (-10 -8 (-15 -1777 ((-517) $)) (-15 -4182 ((-1121) $)) (-15 -1739 ($ (-517) (-1121))))) +((-2861 (((-112) $ $) NIL)) (-2002 (($) NIL T CONST)) (-3238 (($ $ $) 30)) (-3215 (($ $) 24)) (-2288 (((-1176) $) NIL)) (-1716 (((-702 (-884 $ $)) $) 55)) (-2123 (((-702 $) $) 45)) (-3125 (((-702 (-884 $ $)) $) 56)) (-4342 (((-702 (-884 $ $)) $) 57)) (-4059 (((-702 |#1|) $) 36)) (-1570 (((-702 (-884 $ $)) $) 54)) (-2920 (($ $ $) 31)) (-3912 (((-1137) $) NIL)) (-3939 (($) NIL T CONST)) (-3083 (($ $ $) 32)) (-1445 (($ $ $) 29)) (-2611 (($ $ $) 27)) (-2883 (((-873) $) 59) (($ |#1|) 12)) (-4400 (((-112) $ $) NIL)) (-3226 (($ $ $) 28)) (-3914 (((-112) $ $) NIL))) +(((-981 |#1|) (-13 (-984) (-627 |#1|) (-10 -8 (-15 -4059 ((-702 |#1|) $)) (-15 -2123 ((-702 $) $)) (-15 -1570 ((-702 (-884 $ $)) $)) (-15 -1716 ((-702 (-884 $ $)) $)) (-15 -3125 ((-702 (-884 $ $)) $)) (-15 -4342 ((-702 (-884 $ $)) $)) (-15 -2611 ($ $ $)) (-15 -1445 ($ $ $)))) (-1117)) (T -981)) +((-4059 (*1 *2 *1) (-12 (-5 *2 (-702 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-702 (-981 *3))) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-4342 (*1 *2 *1) (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-2611 (*1 *1 *1 *1) (-12 (-5 *1 (-981 *2)) (-4 *2 (-1117)))) (-1445 (*1 *1 *1 *1) (-12 (-5 *1 (-981 *2)) (-4 *2 (-1117))))) +(-13 (-984) (-627 |#1|) (-10 -8 (-15 -4059 ((-702 |#1|) $)) (-15 -2123 ((-702 $) $)) (-15 -1570 ((-702 (-884 $ $)) $)) (-15 -1716 ((-702 (-884 $ $)) $)) (-15 -3125 ((-702 (-884 $ $)) $)) (-15 -4342 ((-702 (-884 $ $)) $)) (-15 -2611 ($ $ $)) (-15 -1445 ($ $ $)))) +((-2598 (((-981 |#1|) (-981 |#1|)) 46)) (-1462 (((-981 |#1|) (-981 |#1|)) 22)) (-2882 (((-1119 |#1|) (-981 |#1|)) 41))) +(((-982 |#1|) (-13 (-1235) (-10 -7 (-15 -1462 ((-981 |#1|) (-981 |#1|))) (-15 -2882 ((-1119 |#1|) (-981 |#1|))) (-15 -2598 ((-981 |#1|) (-981 |#1|))))) (-1117)) (T -982)) +((-1462 (*1 *2 *2) (-12 (-5 *2 (-981 *3)) (-4 *3 (-1117)) (-5 *1 (-982 *3)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-981 *4)) (-4 *4 (-1117)) (-5 *2 (-1119 *4)) (-5 *1 (-982 *4)))) (-2598 (*1 *2 *2) (-12 (-5 *2 (-981 *3)) (-4 *3 (-1117)) (-5 *1 (-982 *3))))) +(-13 (-1235) (-10 -7 (-15 -1462 ((-981 |#1|) (-981 |#1|))) (-15 -2882 ((-1119 |#1|) (-981 |#1|))) (-15 -2598 ((-981 |#1|) (-981 |#1|))))) +((-2550 (((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)) 29))) +(((-983 |#1| |#2|) (-13 (-1235) (-10 -7 (-15 -2550 ((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|))))) (-1117) (-1117)) (T -983)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-981 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-981 *6)) (-5 *1 (-983 *5 *6))))) +(-13 (-1235) (-10 -7 (-15 -2550 ((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|))))) +((-2861 (((-112) $ $) 15)) (-2002 (($) 14 T CONST)) (-3238 (($ $ $) 6)) (-3215 (($ $) 8)) (-2288 (((-1176) $) 19)) (-2920 (($ $ $) 12)) (-3912 (((-1137) $) 18)) (-3939 (($) 13 T CONST)) (-3083 (($ $ $) 11)) (-2883 (((-873) $) 17)) (-4400 (((-112) $ $) 20)) (-3226 (($ $ $) 7)) (-3914 (((-112) $ $) 16))) +(((-984) (-141)) (T -984)) +((-2002 (*1 *1) (-4 *1 (-984))) (-3939 (*1 *1) (-4 *1 (-984))) (-2920 (*1 *1 *1 *1) (-4 *1 (-984))) (-3083 (*1 *1 *1 *1) (-4 *1 (-984)))) +(-13 (-113) (-1117) (-10 -8 (-15 -2002 ($) -3738) (-15 -3939 ($) -3738) (-15 -2920 ($ $ $)) (-15 -3083 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-624 (-873)) . T) ((-1117) . T) ((-1235) . T)) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) 8)) (-3011 (($) 7 T CONST)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-4174 (($ $ $) 44)) (-3794 (($ $ $) 45)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-1425 ((|#1| $) 46)) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4012 ((|#1| $) 40)) (-3862 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-2454 ((|#1| $) 42)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) 43)) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-985 |#1|) (-141) (-861)) (T -985)) +((-1425 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861)))) (-4174 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4460) (-15 -1425 (|t#1| $)) (-15 -3794 ($ $ $)) (-15 -4174 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-3592 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3926 |#2|)) |#2| |#2|) 105)) (-2583 ((|#2| |#2| |#2|) 103)) (-3478 (((-2 (|:| |coef2| |#2|) (|:| -3926 |#2|)) |#2| |#2|) 107)) (-1998 (((-2 (|:| |coef1| |#2|) (|:| -3926 |#2|)) |#2| |#2|) 109)) (-1434 (((-2 (|:| |coef2| |#2|) (|:| -3168 |#1|)) |#2| |#2|) 131 (|has| |#1| (-463)))) (-3877 (((-2 (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|) 56)) (-2127 (((-2 (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|) 80)) (-3508 (((-2 (|:| |coef1| |#2|) (|:| -4232 |#1|)) |#2| |#2|) 82)) (-1904 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-4273 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782)) 89)) (-3108 (((-2 (|:| |coef2| |#2|) (|:| -4060 |#1|)) |#2|) 121)) (-3686 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782)) 92)) (-1417 (((-655 (-782)) |#2| |#2|) 102)) (-1872 ((|#1| |#2| |#2|) 50)) (-1652 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3168 |#1|)) |#2| |#2|) 129 (|has| |#1| (-463)))) (-3168 ((|#1| |#2| |#2|) 127 (|has| |#1| (-463)))) (-2214 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|) 54)) (-4154 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|) 79)) (-4232 ((|#1| |#2| |#2|) 76)) (-3965 (((-2 (|:| -1754 |#1|) (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2|) 41)) (-3377 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3394 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-2896 ((|#2| |#2| |#2|) 93)) (-2875 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782)) 87)) (-3202 ((|#2| |#2| |#2| (-782)) 85)) (-3926 ((|#2| |#2| |#2|) 135 (|has| |#1| (-463)))) (-2851 (((-1285 |#2|) (-1285 |#2|) |#1|) 22)) (-2196 (((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2|) 46)) (-2823 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4060 |#1|)) |#2|) 119)) (-4060 ((|#1| |#2|) 116)) (-3306 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782)) 91)) (-3735 ((|#2| |#2| |#2| (-782)) 90)) (-1597 (((-655 |#2|) |#2| |#2|) 99)) (-1458 ((|#2| |#2| |#1| |#1| (-782)) 62)) (-4359 ((|#1| |#1| |#1| (-782)) 61)) (* (((-1285 |#2|) |#1| (-1285 |#2|)) 17))) +(((-986 |#1| |#2|) (-10 -7 (-15 -4232 (|#1| |#2| |#2|)) (-15 -4154 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|)) (-15 -2127 ((-2 (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|)) (-15 -3508 ((-2 (|:| |coef1| |#2|) (|:| -4232 |#1|)) |#2| |#2|)) (-15 -3202 (|#2| |#2| |#2| (-782))) (-15 -2875 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -4273 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -3735 (|#2| |#2| |#2| (-782))) (-15 -3306 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -3686 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -2896 (|#2| |#2| |#2|)) (-15 -3394 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1904 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2583 (|#2| |#2| |#2|)) (-15 -3592 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3926 |#2|)) |#2| |#2|)) (-15 -3478 ((-2 (|:| |coef2| |#2|) (|:| -3926 |#2|)) |#2| |#2|)) (-15 -1998 ((-2 (|:| |coef1| |#2|) (|:| -3926 |#2|)) |#2| |#2|)) (-15 -4060 (|#1| |#2|)) (-15 -2823 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4060 |#1|)) |#2|)) (-15 -3108 ((-2 (|:| |coef2| |#2|) (|:| -4060 |#1|)) |#2|)) (-15 -1597 ((-655 |#2|) |#2| |#2|)) (-15 -1417 ((-655 (-782)) |#2| |#2|)) (IF (|has| |#1| (-463)) (PROGN (-15 -3168 (|#1| |#2| |#2|)) (-15 -1652 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3168 |#1|)) |#2| |#2|)) (-15 -1434 ((-2 (|:| |coef2| |#2|) (|:| -3168 |#1|)) |#2| |#2|)) (-15 -3926 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1285 |#2|) |#1| (-1285 |#2|))) (-15 -2851 ((-1285 |#2|) (-1285 |#2|) |#1|)) (-15 -3965 ((-2 (|:| -1754 |#1|) (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2|)) (-15 -2196 ((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2|)) (-15 -4359 (|#1| |#1| |#1| (-782))) (-15 -1458 (|#2| |#2| |#1| |#1| (-782))) (-15 -3377 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1872 (|#1| |#2| |#2|)) (-15 -2214 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|)) (-15 -3877 ((-2 (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|))) (-567) (-1261 |#1|)) (T -986)) +((-3877 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4232 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-2214 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4232 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-1872 (*1 *2 *3 *3) (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2)))) (-3377 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) (-1458 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-782)) (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) (-4359 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *2 (-567)) (-5 *1 (-986 *2 *4)) (-4 *4 (-1261 *2)))) (-2196 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-3965 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| -1754 *4) (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-2851 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-567)) (-5 *1 (-986 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-567)) (-5 *1 (-986 *3 *4)))) (-3926 (*1 *2 *2 *2) (-12 (-4 *3 (-463)) (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) (-1434 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3168 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-1652 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3168 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-3168 (*1 *2 *3 *3) (-12 (-4 *2 (-567)) (-4 *2 (-463)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2)))) (-1417 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 (-782))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-1597 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4060 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4060 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-4060 (*1 *2 *3) (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2)))) (-1998 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3926 *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-3478 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3926 *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-3592 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3926 *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-2583 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) (-1904 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-3394 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-2896 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) (-3686 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))) (-3306 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))) (-3735 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-567)) (-5 *1 (-986 *4 *2)) (-4 *2 (-1261 *4)))) (-4273 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))) (-2875 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))) (-3202 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-567)) (-5 *1 (-986 *4 *2)) (-4 *2 (-1261 *4)))) (-3508 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4232 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-2127 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4232 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-4154 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4232 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-4232 (*1 *2 *3 *3) (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2))))) +(-10 -7 (-15 -4232 (|#1| |#2| |#2|)) (-15 -4154 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|)) (-15 -2127 ((-2 (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|)) (-15 -3508 ((-2 (|:| |coef1| |#2|) (|:| -4232 |#1|)) |#2| |#2|)) (-15 -3202 (|#2| |#2| |#2| (-782))) (-15 -2875 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -4273 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -3735 (|#2| |#2| |#2| (-782))) (-15 -3306 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -3686 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -2896 (|#2| |#2| |#2|)) (-15 -3394 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1904 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2583 (|#2| |#2| |#2|)) (-15 -3592 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3926 |#2|)) |#2| |#2|)) (-15 -3478 ((-2 (|:| |coef2| |#2|) (|:| -3926 |#2|)) |#2| |#2|)) (-15 -1998 ((-2 (|:| |coef1| |#2|) (|:| -3926 |#2|)) |#2| |#2|)) (-15 -4060 (|#1| |#2|)) (-15 -2823 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4060 |#1|)) |#2|)) (-15 -3108 ((-2 (|:| |coef2| |#2|) (|:| -4060 |#1|)) |#2|)) (-15 -1597 ((-655 |#2|) |#2| |#2|)) (-15 -1417 ((-655 (-782)) |#2| |#2|)) (IF (|has| |#1| (-463)) (PROGN (-15 -3168 (|#1| |#2| |#2|)) (-15 -1652 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3168 |#1|)) |#2| |#2|)) (-15 -1434 ((-2 (|:| |coef2| |#2|) (|:| -3168 |#1|)) |#2| |#2|)) (-15 -3926 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1285 |#2|) |#1| (-1285 |#2|))) (-15 -2851 ((-1285 |#2|) (-1285 |#2|) |#1|)) (-15 -3965 ((-2 (|:| -1754 |#1|) (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2|)) (-15 -2196 ((-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) |#2| |#2|)) (-15 -4359 (|#1| |#1| |#1| (-782))) (-15 -1458 (|#2| |#2| |#1| |#1| (-782))) (-15 -3377 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1872 (|#1| |#2| |#2|)) (-15 -2214 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|)) (-15 -3877 ((-2 (|:| |coef2| |#2|) (|:| -4232 |#1|)) |#2| |#2|))) +((-2861 (((-112) $ $) NIL)) (-2939 (((-1234) $) 13)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3829 (((-1152) $) 10)) (-2883 (((-873) $) 20) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-987) (-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $)) (-15 -2939 ((-1234) $))))) (T -987)) +((-3829 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-987)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-987))))) +(-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $)) (-15 -2939 ((-1234) $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 40)) (-2597 (((-3 $ "failed") $ $) 54)) (-3011 (($) NIL T CONST)) (-2104 (((-655 (-884 (-936) (-936))) $) 67)) (-2429 (((-936) $) 94)) (-4001 (((-655 (-936)) $) 17)) (-2699 (((-1174 $) (-782)) 39)) (-4319 (($ (-655 (-936))) 16)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4258 (($ $) 70)) (-2883 (((-873) $) 90) (((-655 (-936)) $) 11)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 8 T CONST)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 44)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 42)) (-4016 (($ $ $) 46)) (* (($ (-936) $) NIL) (($ (-782) $) 49)) (-2871 (((-782) $) 22))) +(((-988) (-13 (-806) (-624 (-655 (-936))) (-10 -8 (-15 -4319 ($ (-655 (-936)))) (-15 -4001 ((-655 (-936)) $)) (-15 -2871 ((-782) $)) (-15 -2699 ((-1174 $) (-782))) (-15 -2104 ((-655 (-884 (-936) (-936))) $)) (-15 -2429 ((-936) $)) (-15 -4258 ($ $))))) (T -988)) +((-4319 (*1 *1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-988)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-988)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-988)))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1174 (-988))) (-5 *1 (-988)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-655 (-884 (-936) (-936)))) (-5 *1 (-988)))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-988)))) (-4258 (*1 *1 *1) (-5 *1 (-988)))) +(-13 (-806) (-624 (-655 (-936))) (-10 -8 (-15 -4319 ($ (-655 (-936)))) (-15 -4001 ((-655 (-936)) $)) (-15 -2871 ((-782) $)) (-15 -2699 ((-1174 $) (-782))) (-15 -2104 ((-655 (-884 (-936) (-936))) $)) (-15 -2429 ((-936) $)) (-15 -4258 ($ $)))) +((-4038 (($ $ |#2|) 31)) (-4028 (($ $) 23) (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-418 (-575)) $) 27) (($ $ (-418 (-575))) 29))) +(((-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -4038 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) (-990 |#2| |#3| |#4|) (-1066) (-803) (-861)) (T -989)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -4038 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1606 (((-655 |#3|) $) 86)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-1540 (($ $) 64 (|has| |#1| (-567)))) (-3286 (((-112) $) 66 (|has| |#1| (-567)))) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-4406 (($ $) 72)) (-1747 (((-3 $ "failed") $) 37)) (-2789 (((-112) $) 85)) (-1542 (((-112) $) 35)) (-2376 (((-112) $) 74)) (-2417 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-655 |#3|) (-655 |#2|)) 87)) (-2550 (($ (-1 |#1| |#1|) $) 75)) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2851 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-2645 ((|#2| $) 76)) (-2972 (($ $) 84)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2012 ((|#1| $ |#2|) 71)) (-1518 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575))))))) +(((-990 |#1| |#2| |#3|) (-141) (-1066) (-803) (-861)) (T -990)) +((-4383 (*1 *2 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *3 (-803)) (-4 *4 (-861)) (-4 *2 (-1066)))) (-4371 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-803)) (-4 *4 (-861)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *2 *4)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *2 (-803)))) (-2417 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-990 *4 *3 *2)) (-4 *4 (-1066)) (-4 *3 (-803)) (-4 *2 (-861)))) (-2417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 *5)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-803)) (-4 *6 (-861)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-803)) (-4 *5 (-861)) (-5 *2 (-655 *5)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-803)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2972 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-803)) (-4 *4 (-861))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2417 ($ $ |t#3| |t#2|)) (-15 -2417 ($ $ (-655 |t#3|) (-655 |t#2|))) (-15 -4371 ($ $)) (-15 -4383 (|t#1| $)) (-15 -2645 (|t#2| $)) (-15 -1606 ((-655 |t#3|) $)) (-15 -2789 ((-112) $)) (-15 -2972 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) |has| |#1| (-38 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-299) |has| |#1| (-567)) ((-567) |has| |#1| (-567)) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2839 (((-1111 (-227)) $) 8)) (-2826 (((-1111 (-227)) $) 9)) (-2814 (((-1111 (-227)) $) 10)) (-2595 (((-655 (-655 (-958 (-227)))) $) 11)) (-2883 (((-873) $) 6))) +(((-991) (-141)) (T -991)) +((-2595 (*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-655 (-655 (-958 (-227))))))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227))))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227))))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227)))))) +(-13 (-624 (-873)) (-10 -8 (-15 -2595 ((-655 (-655 (-958 (-227)))) $)) (-15 -2814 ((-1111 (-227)) $)) (-15 -2826 ((-1111 (-227)) $)) (-15 -2839 ((-1111 (-227)) $)))) +(((-624 (-873)) . T)) +((-1606 (((-655 |#4|) $) 23)) (-2210 (((-112) $) 55)) (-3036 (((-112) $) 54)) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#4|) 42)) (-1437 (((-112) $) 56)) (-2365 (((-112) $ $) 62)) (-4289 (((-112) $ $) 65)) (-1812 (((-112) $) 60)) (-3629 (((-655 |#5|) (-655 |#5|) $) 98)) (-3563 (((-655 |#5|) (-655 |#5|) $) 95)) (-1635 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-1444 (((-655 |#4|) $) 27)) (-1808 (((-112) |#4| $) 34)) (-4395 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1879 (($ $ |#4|) 39)) (-3427 (($ $ |#4|) 38)) (-3608 (($ $ |#4|) 40)) (-3914 (((-112) $ $) 46))) +(((-992 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3036 ((-112) |#1|)) (-15 -3629 ((-655 |#5|) (-655 |#5|) |#1|)) (-15 -3563 ((-655 |#5|) (-655 |#5|) |#1|)) (-15 -1635 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4395 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1437 ((-112) |#1|)) (-15 -4289 ((-112) |#1| |#1|)) (-15 -2365 ((-112) |#1| |#1|)) (-15 -1812 ((-112) |#1|)) (-15 -2210 ((-112) |#1|)) (-15 -2031 ((-2 (|:| |under| |#1|) (|:| -2736 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1879 (|#1| |#1| |#4|)) (-15 -3608 (|#1| |#1| |#4|)) (-15 -3427 (|#1| |#1| |#4|)) (-15 -1808 ((-112) |#4| |#1|)) (-15 -1444 ((-655 |#4|) |#1|)) (-15 -1606 ((-655 |#4|) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) (-993 |#2| |#3| |#4| |#5|) (-1066) (-804) (-861) (-1082 |#2| |#3| |#4|)) (T -992)) +NIL +(-10 -8 (-15 -3036 ((-112) |#1|)) (-15 -3629 ((-655 |#5|) (-655 |#5|) |#1|)) (-15 -3563 ((-655 |#5|) (-655 |#5|) |#1|)) (-15 -1635 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4395 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1437 ((-112) |#1|)) (-15 -4289 ((-112) |#1| |#1|)) (-15 -2365 ((-112) |#1| |#1|)) (-15 -1812 ((-112) |#1|)) (-15 -2210 ((-112) |#1|)) (-15 -2031 ((-2 (|:| |under| |#1|) (|:| -2736 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1879 (|#1| |#1| |#4|)) (-15 -3608 (|#1| |#1| |#4|)) (-15 -3427 (|#1| |#1| |#4|)) (-15 -1808 ((-112) |#4| |#1|)) (-15 -1444 ((-655 |#4|) |#1|)) (-15 -1606 ((-655 |#4|) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-1606 (((-655 |#3|) $) 34)) (-2210 (((-112) $) 27)) (-3036 (((-112) $) 18 (|has| |#1| (-567)))) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#3|) 28)) (-1845 (((-112) $ (-782)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460)))) (-3011 (($) 46 T CONST)) (-1437 (((-112) $) 23 (|has| |#1| (-567)))) (-2365 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4289 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1812 (((-112) $) 26 (|has| |#1| (-567)))) (-3629 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-3563 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 |#4|)) 37)) (-4399 (($ (-655 |#4|)) 36)) (-1748 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-2308 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460)))) (-4001 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-3838 ((|#3| $) 35)) (-3896 (((-112) $ (-782)) 44)) (-3955 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) 48)) (-1444 (((-655 |#3|) $) 33)) (-1808 (((-112) |#3| $) 32)) (-4026 (((-112) $ (-782)) 43)) (-2288 (((-1176) $) 10)) (-4395 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-3912 (((-1137) $) 11)) (-3704 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) 39)) (-4076 (((-112) $) 42)) (-1938 (($) 41)) (-3925 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3078 (($ $) 40)) (-2615 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2894 (($ (-655 |#4|)) 61)) (-1879 (($ $ |#3|) 29)) (-3427 (($ $ |#3|) 31)) (-3608 (($ $ |#3|) 30)) (-2883 (((-873) $) 12) (((-655 |#4|) $) 38)) (-4400 (((-112) $ $) 9)) (-3771 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 6)) (-2871 (((-782) $) 47 (|has| $ (-6 -4460))))) +(((-993 |#1| |#2| |#3| |#4|) (-141) (-1066) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -993)) +((-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *1 (-993 *3 *4 *5 *6)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *1 (-993 *3 *4 *5 *6)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-1082 *3 *4 *2)) (-4 *2 (-861)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5)))) (-1808 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *5 *3 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-4 *6 (-1082 *4 *5 *3)) (-5 *2 (-112)))) (-3427 (*1 *1 *1 *2) (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2)))) (-3608 (*1 *1 *1 *2) (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2)))) (-1879 (*1 *1 *1 *2) (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2)))) (-2031 (*1 *2 *1 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-4 *6 (-1082 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2736 *1) (|:| |upper| *1))) (-4 *1 (-993 *4 *5 *3 *6)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-1812 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-5 *2 (-112)))) (-2365 (*1 *2 *1 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-5 *2 (-112)))) (-4289 (*1 *2 *1 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-5 *2 (-112)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-5 *2 (-112)))) (-4395 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *5 *6 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1635 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *5 *6 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3563 (*1 *2 *2 *1) (-12 (-5 *2 (-655 *6)) (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)))) (-3629 (*1 *2 *2 *1) (-12 (-5 *2 (-655 *6)) (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-5 *2 (-112))))) +(-13 (-1117) (-152 |t#4|) (-624 (-655 |t#4|)) (-10 -8 (-6 -4460) (-15 -2449 ((-3 $ "failed") (-655 |t#4|))) (-15 -4399 ($ (-655 |t#4|))) (-15 -3838 (|t#3| $)) (-15 -1606 ((-655 |t#3|) $)) (-15 -1444 ((-655 |t#3|) $)) (-15 -1808 ((-112) |t#3| $)) (-15 -3427 ($ $ |t#3|)) (-15 -3608 ($ $ |t#3|)) (-15 -1879 ($ $ |t#3|)) (-15 -2031 ((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |t#3|)) (-15 -2210 ((-112) $)) (IF (|has| |t#1| (-567)) (PROGN (-15 -1812 ((-112) $)) (-15 -2365 ((-112) $ $)) (-15 -4289 ((-112) $ $)) (-15 -1437 ((-112) $)) (-15 -4395 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1635 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3563 ((-655 |t#4|) (-655 |t#4|) $)) (-15 -3629 ((-655 |t#4|) (-655 |t#4|) $)) (-15 -3036 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-1117) . T) ((-1235) . T)) +((-1556 (((-655 |#4|) |#4| |#4|) 136)) (-3079 (((-655 |#4|) (-655 |#4|) (-112)) 125 (|has| |#1| (-463))) (((-655 |#4|) (-655 |#4|)) 126 (|has| |#1| (-463)))) (-3149 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|)) 44)) (-1528 (((-112) |#4|) 43)) (-3152 (((-655 |#4|) |#4|) 121 (|has| |#1| (-463)))) (-4159 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-1 (-112) |#4|) (-655 |#4|)) 24)) (-3784 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|)) 30)) (-3275 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|)) 31)) (-1945 (((-3 (-2 (|:| |bas| (-487 |#1| |#2| |#3| |#4|)) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|)) 90)) (-2186 (((-655 |#4|) (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3846 (((-655 |#4|) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-1875 (((-655 |#4|) (-655 |#4|)) 128)) (-1588 (((-655 |#4|) (-655 |#4|) (-655 |#4|) (-112)) 59) (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 61)) (-1407 ((|#4| |#4| (-655 |#4|)) 60)) (-2768 (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 132 (|has| |#1| (-463)))) (-1350 (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 135 (|has| |#1| (-463)))) (-1689 (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 134 (|has| |#1| (-463)))) (-3186 (((-655 |#4|) (-655 |#4|) (-655 |#4|) (-1 (-655 |#4|) (-655 |#4|))) 105) (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 107) (((-655 |#4|) (-655 |#4|) |#4|) 140) (((-655 |#4|) |#4| |#4|) 137) (((-655 |#4|) (-655 |#4|)) 106)) (-2281 (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-316))))) (-1770 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|)) 52)) (-3714 (((-112) (-655 |#4|)) 79)) (-3929 (((-112) (-655 |#4|) (-655 (-655 |#4|))) 67)) (-2191 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|)) 37)) (-2664 (((-112) |#4|) 36)) (-2631 (((-655 |#4|) (-655 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-316))))) (-4150 (((-655 |#4|) (-655 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-316))))) (-3359 (((-655 |#4|) (-655 |#4|)) 83)) (-2513 (((-655 |#4|) (-655 |#4|)) 97)) (-2052 (((-112) (-655 |#4|) (-655 |#4|)) 65)) (-3097 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|)) 50)) (-1442 (((-112) |#4|) 45))) +(((-994 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3186 ((-655 |#4|) (-655 |#4|))) (-15 -3186 ((-655 |#4|) |#4| |#4|)) (-15 -1875 ((-655 |#4|) (-655 |#4|))) (-15 -1556 ((-655 |#4|) |#4| |#4|)) (-15 -3186 ((-655 |#4|) (-655 |#4|) |#4|)) (-15 -3186 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -3186 ((-655 |#4|) (-655 |#4|) (-655 |#4|) (-1 (-655 |#4|) (-655 |#4|)))) (-15 -2052 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -3929 ((-112) (-655 |#4|) (-655 (-655 |#4|)))) (-15 -3714 ((-112) (-655 |#4|))) (-15 -4159 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-1 (-112) |#4|) (-655 |#4|))) (-15 -3784 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|))) (-15 -3275 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|))) (-15 -1770 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -1528 ((-112) |#4|)) (-15 -3149 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -2664 ((-112) |#4|)) (-15 -2191 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -1442 ((-112) |#4|)) (-15 -3097 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -1588 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -1588 ((-655 |#4|) (-655 |#4|) (-655 |#4|) (-112))) (-15 -1407 (|#4| |#4| (-655 |#4|))) (-15 -3359 ((-655 |#4|) (-655 |#4|))) (-15 -1945 ((-3 (-2 (|:| |bas| (-487 |#1| |#2| |#3| |#4|)) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|))) (-15 -2513 ((-655 |#4|) (-655 |#4|))) (-15 -2186 ((-655 |#4|) (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3846 ((-655 |#4|) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-463)) (PROGN (-15 -3152 ((-655 |#4|) |#4|)) (-15 -3079 ((-655 |#4|) (-655 |#4|))) (-15 -3079 ((-655 |#4|) (-655 |#4|) (-112))) (-15 -2768 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -1689 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -1350 ((-655 |#4|) (-655 |#4|) (-655 |#4|)))) |%noBranch|) (IF (|has| |#1| (-316)) (IF (|has| |#1| (-148)) (PROGN (-15 -4150 ((-655 |#4|) (-655 |#4|))) (-15 -2631 ((-655 |#4|) (-655 |#4|))) (-15 -2281 ((-655 |#4|) (-655 |#4|) (-655 |#4|)))) |%noBranch|) |%noBranch|)) (-567) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -994)) +((-2281 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-2631 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-1350 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-1689 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-2768 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-3079 (*1 *2 *2 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-112)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *7)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-3152 (*1 *2 *3) (-12 (-4 *4 (-463)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *3)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-3846 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-994 *5 *6 *7 *8)))) (-2186 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-655 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567)) (-4 *7 (-804)) (-4 *8 (-861)) (-5 *1 (-994 *6 *7 *8 *9)))) (-2513 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-1945 (*1 *2 *3) (|partial| -12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-487 *4 *5 *6 *7)) (|:| -2010 (-655 *7)))) (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-3359 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-1407 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *2)))) (-1588 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-112)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *7)))) (-1588 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-3097 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-1442 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-2191 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-2664 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-3149 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-1528 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-1 (-112) *8))) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8)))) (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-1 (-112) *8))) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8)))) (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8)))) (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-655 *8))) (-5 *3 (-655 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *5 *6 *7 *8)))) (-2052 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7)))) (-3186 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-655 *7) (-655 *7))) (-5 *2 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *7)))) (-3186 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-3186 (*1 *2 *2 *3) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *3)))) (-1556 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *3)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-1875 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-3186 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *3)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-3186 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6))))) +(-10 -7 (-15 -3186 ((-655 |#4|) (-655 |#4|))) (-15 -3186 ((-655 |#4|) |#4| |#4|)) (-15 -1875 ((-655 |#4|) (-655 |#4|))) (-15 -1556 ((-655 |#4|) |#4| |#4|)) (-15 -3186 ((-655 |#4|) (-655 |#4|) |#4|)) (-15 -3186 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -3186 ((-655 |#4|) (-655 |#4|) (-655 |#4|) (-1 (-655 |#4|) (-655 |#4|)))) (-15 -2052 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -3929 ((-112) (-655 |#4|) (-655 (-655 |#4|)))) (-15 -3714 ((-112) (-655 |#4|))) (-15 -4159 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-1 (-112) |#4|) (-655 |#4|))) (-15 -3784 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|))) (-15 -3275 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|))) (-15 -1770 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -1528 ((-112) |#4|)) (-15 -3149 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -2664 ((-112) |#4|)) (-15 -2191 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -1442 ((-112) |#4|)) (-15 -3097 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -1588 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -1588 ((-655 |#4|) (-655 |#4|) (-655 |#4|) (-112))) (-15 -1407 (|#4| |#4| (-655 |#4|))) (-15 -3359 ((-655 |#4|) (-655 |#4|))) (-15 -1945 ((-3 (-2 (|:| |bas| (-487 |#1| |#2| |#3| |#4|)) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|))) (-15 -2513 ((-655 |#4|) (-655 |#4|))) (-15 -2186 ((-655 |#4|) (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3846 ((-655 |#4|) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-463)) (PROGN (-15 -3152 ((-655 |#4|) |#4|)) (-15 -3079 ((-655 |#4|) (-655 |#4|))) (-15 -3079 ((-655 |#4|) (-655 |#4|) (-112))) (-15 -2768 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -1689 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -1350 ((-655 |#4|) (-655 |#4|) (-655 |#4|)))) |%noBranch|) (IF (|has| |#1| (-316)) (IF (|has| |#1| (-148)) (PROGN (-15 -4150 ((-655 |#4|) (-655 |#4|))) (-15 -2631 ((-655 |#4|) (-655 |#4|))) (-15 -2281 ((-655 |#4|) (-655 |#4|) (-655 |#4|)))) |%noBranch|) |%noBranch|)) +((-3760 (((-2 (|:| R (-700 |#1|)) (|:| A (-700 |#1|)) (|:| |Ainv| (-700 |#1|))) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-1495 (((-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|)) 46)) (-1687 (((-700 |#1|) (-700 |#1|) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-995 |#1|) (-10 -7 (-15 -3760 ((-2 (|:| R (-700 |#1|)) (|:| A (-700 |#1|)) (|:| |Ainv| (-700 |#1|))) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1687 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1495 ((-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|)))) (-373)) (T -995)) +((-1495 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-5 *2 (-655 (-2 (|:| C (-700 *5)) (|:| |g| (-1285 *5))))) (-5 *1 (-995 *5)) (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)))) (-1687 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-700 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-373)) (-5 *1 (-995 *5)))) (-3760 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-373)) (-5 *2 (-2 (|:| R (-700 *6)) (|:| A (-700 *6)) (|:| |Ainv| (-700 *6)))) (-5 *1 (-995 *6)) (-5 *3 (-700 *6))))) +(-10 -7 (-15 -3760 ((-2 (|:| R (-700 |#1|)) (|:| A (-700 |#1|)) (|:| |Ainv| (-700 |#1|))) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1687 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1495 ((-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|)))) +((-2330 (((-429 |#4|) |#4|) 56))) +(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2330 ((-429 |#4|) |#4|))) (-861) (-804) (-463) (-964 |#3| |#2| |#1|)) (T -996)) +((-2330 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-463)) (-5 *2 (-429 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-964 *6 *5 *4))))) +(-10 -7 (-15 -2330 ((-429 |#4|) |#4|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-2880 (($ (-782)) 115 (|has| |#1| (-23)))) (-4161 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4461))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) 8)) (-3054 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1789 (($ $) 93 (|has| $ (-6 -4461)))) (-4381 (($ $) 103)) (-1748 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) 52)) (-2632 (((-575) (-1 (-112) |#1|) $) 100) (((-575) |#1| $) 99 (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) 98 (|has| |#1| (-1117)))) (-1838 (($ (-655 |#1|)) 121)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-4056 (((-700 |#1|) $ $) 108 (|has| |#1| (-1066)))) (-2309 (($ (-782) |#1|) 70)) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 44 (|has| (-575) (-861)))) (-1920 (($ $ $) 90 (|has| |#1| (-861)))) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 45 (|has| (-575) (-861)))) (-1425 (($ $ $) 89 (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2706 ((|#1| $) 105 (-12 (|has| |#1| (-1066)) (|has| |#1| (-1019))))) (-4026 (((-112) $ (-782)) 10)) (-1839 ((|#1| $) 106 (-12 (|has| |#1| (-1066)) (|has| |#1| (-1019))))) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-2135 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-4310 (((-655 (-575)) $) 47)) (-2969 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1961 ((|#1| $) 43 (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3954 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-4276 (($ $ (-655 |#1|)) 119)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) 49)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-1886 ((|#1| $ $) 109 (|has| |#1| (-1066)))) (-4386 (((-936) $) 120)) (-3239 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-4304 (($ $ $) 107)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4005 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3078 (($ $) 13)) (-2615 (((-547) $) 81 (|has| |#1| (-625 (-547)))) (($ (-655 |#1|)) 122)) (-2894 (($ (-655 |#1|)) 72)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3956 (((-112) $ $) 86 (|has| |#1| (-861)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-3970 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-861)))) (-4028 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4016 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-575) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-737))) (($ $ |#1|) 110 (|has| |#1| (-737)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-997 |#1|) (-141) (-1066)) (T -997)) +((-1838 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1066)) (-4 *1 (-997 *3)))) (-4386 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1066)) (-5 *2 (-936)))) (-4304 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1066)))) (-4276 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *1 (-997 *3)) (-4 *3 (-1066))))) +(-13 (-1283 |t#1|) (-629 (-655 |t#1|)) (-10 -8 (-15 -1838 ($ (-655 |t#1|))) (-15 -4386 ((-936) $)) (-15 -4304 ($ $ $)) (-15 -4276 ($ $ (-655 |t#1|))))) +(((-34) . T) ((-102) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-629 (-655 |#1|)) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-383 |#1|) . T) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-1117) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-1235) . T) ((-1283 |#1|) . T)) +((-2550 (((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)) 17))) +(((-998 |#1| |#2|) (-10 -7 (-15 -2550 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) (-1066) (-1066)) (T -998)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-958 *6)) (-5 *1 (-998 *5 *6))))) +(-10 -7 (-15 -2550 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) +((-1491 ((|#1| (-958 |#1|)) 14)) (-1750 ((|#1| (-958 |#1|)) 13)) (-3236 ((|#1| (-958 |#1|)) 12)) (-3631 ((|#1| (-958 |#1|)) 16)) (-3418 ((|#1| (-958 |#1|)) 24)) (-3173 ((|#1| (-958 |#1|)) 15)) (-3433 ((|#1| (-958 |#1|)) 17)) (-3636 ((|#1| (-958 |#1|)) 23)) (-1952 ((|#1| (-958 |#1|)) 22))) +(((-999 |#1|) (-10 -7 (-15 -3236 (|#1| (-958 |#1|))) (-15 -1750 (|#1| (-958 |#1|))) (-15 -1491 (|#1| (-958 |#1|))) (-15 -3173 (|#1| (-958 |#1|))) (-15 -3631 (|#1| (-958 |#1|))) (-15 -3433 (|#1| (-958 |#1|))) (-15 -1952 (|#1| (-958 |#1|))) (-15 -3636 (|#1| (-958 |#1|))) (-15 -3418 (|#1| (-958 |#1|)))) (-1066)) (T -999)) +((-3418 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-3636 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066))))) +(-10 -7 (-15 -3236 (|#1| (-958 |#1|))) (-15 -1750 (|#1| (-958 |#1|))) (-15 -1491 (|#1| (-958 |#1|))) (-15 -3173 (|#1| (-958 |#1|))) (-15 -3631 (|#1| (-958 |#1|))) (-15 -3433 (|#1| (-958 |#1|))) (-15 -1952 (|#1| (-958 |#1|))) (-15 -3636 (|#1| (-958 |#1|))) (-15 -3418 (|#1| (-958 |#1|)))) +((-2478 (((-3 |#1| "failed") |#1|) 18)) (-3224 (((-3 |#1| "failed") |#1|) 6)) (-4331 (((-3 |#1| "failed") |#1|) 16)) (-2700 (((-3 |#1| "failed") |#1|) 4)) (-3566 (((-3 |#1| "failed") |#1|) 20)) (-3532 (((-3 |#1| "failed") |#1|) 8)) (-1853 (((-3 |#1| "failed") |#1| (-782)) 1)) (-2932 (((-3 |#1| "failed") |#1|) 3)) (-4302 (((-3 |#1| "failed") |#1|) 2)) (-3364 (((-3 |#1| "failed") |#1|) 21)) (-1929 (((-3 |#1| "failed") |#1|) 9)) (-1933 (((-3 |#1| "failed") |#1|) 19)) (-1707 (((-3 |#1| "failed") |#1|) 7)) (-4037 (((-3 |#1| "failed") |#1|) 17)) (-1367 (((-3 |#1| "failed") |#1|) 5)) (-2327 (((-3 |#1| "failed") |#1|) 24)) (-2153 (((-3 |#1| "failed") |#1|) 12)) (-1745 (((-3 |#1| "failed") |#1|) 22)) (-1529 (((-3 |#1| "failed") |#1|) 10)) (-1422 (((-3 |#1| "failed") |#1|) 26)) (-1628 (((-3 |#1| "failed") |#1|) 14)) (-3392 (((-3 |#1| "failed") |#1|) 27)) (-1823 (((-3 |#1| "failed") |#1|) 15)) (-1762 (((-3 |#1| "failed") |#1|) 25)) (-3245 (((-3 |#1| "failed") |#1|) 13)) (-3671 (((-3 |#1| "failed") |#1|) 23)) (-3198 (((-3 |#1| "failed") |#1|) 11))) +(((-1000 |#1|) (-141) (-1220)) (T -1000)) +((-3392 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1422 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1762 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2327 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3671 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1745 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3566 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1933 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2478 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-4037 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-4331 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1823 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1628 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3245 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2153 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3198 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1529 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1929 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3532 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1707 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3224 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1367 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2700 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2932 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-4302 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1853 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-782)) (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(-13 (-10 -7 (-15 -1853 ((-3 |t#1| "failed") |t#1| (-782))) (-15 -4302 ((-3 |t#1| "failed") |t#1|)) (-15 -2932 ((-3 |t#1| "failed") |t#1|)) (-15 -2700 ((-3 |t#1| "failed") |t#1|)) (-15 -1367 ((-3 |t#1| "failed") |t#1|)) (-15 -3224 ((-3 |t#1| "failed") |t#1|)) (-15 -1707 ((-3 |t#1| "failed") |t#1|)) (-15 -3532 ((-3 |t#1| "failed") |t#1|)) (-15 -1929 ((-3 |t#1| "failed") |t#1|)) (-15 -1529 ((-3 |t#1| "failed") |t#1|)) (-15 -3198 ((-3 |t#1| "failed") |t#1|)) (-15 -2153 ((-3 |t#1| "failed") |t#1|)) (-15 -3245 ((-3 |t#1| "failed") |t#1|)) (-15 -1628 ((-3 |t#1| "failed") |t#1|)) (-15 -1823 ((-3 |t#1| "failed") |t#1|)) (-15 -4331 ((-3 |t#1| "failed") |t#1|)) (-15 -4037 ((-3 |t#1| "failed") |t#1|)) (-15 -2478 ((-3 |t#1| "failed") |t#1|)) (-15 -1933 ((-3 |t#1| "failed") |t#1|)) (-15 -3566 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -1745 ((-3 |t#1| "failed") |t#1|)) (-15 -3671 ((-3 |t#1| "failed") |t#1|)) (-15 -2327 ((-3 |t#1| "failed") |t#1|)) (-15 -1762 ((-3 |t#1| "failed") |t#1|)) (-15 -1422 ((-3 |t#1| "failed") |t#1|)) (-15 -3392 ((-3 |t#1| "failed") |t#1|)))) +((-2917 ((|#4| |#4| (-655 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-4114 ((|#4| |#4| (-655 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2550 ((|#4| (-1 |#4| (-967 |#1|)) |#4|) 31))) +(((-1001 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4114 (|#4| |#4| |#3|)) (-15 -4114 (|#4| |#4| (-655 |#3|))) (-15 -2917 (|#4| |#4| |#3|)) (-15 -2917 (|#4| |#4| (-655 |#3|))) (-15 -2550 (|#4| (-1 |#4| (-967 |#1|)) |#4|))) (-1066) (-804) (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194))))) (-964 (-967 |#1|) |#2| |#3|)) (T -1001)) +((-2550 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-967 *4))) (-4 *4 (-1066)) (-4 *2 (-964 (-967 *4) *5 *6)) (-4 *5 (-804)) (-4 *6 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-5 *1 (-1001 *4 *5 *6 *2)))) (-2917 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-4 *4 (-1066)) (-4 *5 (-804)) (-5 *1 (-1001 *4 *5 *6 *2)) (-4 *2 (-964 (-967 *4) *5 *6)))) (-2917 (*1 *2 *2 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-5 *1 (-1001 *4 *5 *3 *2)) (-4 *2 (-964 (-967 *4) *5 *3)))) (-4114 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-4 *4 (-1066)) (-4 *5 (-804)) (-5 *1 (-1001 *4 *5 *6 *2)) (-4 *2 (-964 (-967 *4) *5 *6)))) (-4114 (*1 *2 *2 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-5 *1 (-1001 *4 *5 *3 *2)) (-4 *2 (-964 (-967 *4) *5 *3))))) +(-10 -7 (-15 -4114 (|#4| |#4| |#3|)) (-15 -4114 (|#4| |#4| (-655 |#3|))) (-15 -2917 (|#4| |#4| |#3|)) (-15 -2917 (|#4| |#4| (-655 |#3|))) (-15 -2550 (|#4| (-1 |#4| (-967 |#1|)) |#4|))) +((-3935 ((|#2| |#3|) 35)) (-2393 (((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|) 79)) (-2899 (((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) 100))) +(((-1002 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2899 ((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))))) (-15 -2393 ((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|)) (-15 -3935 (|#2| |#3|))) (-359) (-1261 |#1|) (-1261 |#2|) (-735 |#2| |#3|)) (T -1002)) +((-3935 (*1 *2 *3) (-12 (-4 *3 (-1261 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-1002 *4 *2 *3 *5)) (-4 *4 (-359)) (-4 *5 (-735 *2 *3)))) (-2393 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 *3)) (-5 *2 (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-5 *1 (-1002 *4 *3 *5 *6)) (-4 *6 (-735 *3 *5)))) (-2899 (*1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| -1624 (-700 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-700 *4)))) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-735 *4 *5))))) +(-10 -7 (-15 -2899 ((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))))) (-15 -2393 ((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|)) (-15 -3935 (|#2| |#3|))) +((-2590 (((-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575)))) (-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575))))) 82))) +(((-1003 |#1| |#2|) (-10 -7 (-15 -2590 ((-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575)))) (-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575))))))) (-655 (-1194)) (-782)) (T -1003)) +((-2590 (*1 *2 *2) (-12 (-5 *2 (-1004 (-418 (-575)) (-875 *3) (-245 *4 (-782)) (-252 *3 (-418 (-575))))) (-14 *3 (-655 (-1194))) (-14 *4 (-782)) (-5 *1 (-1003 *3 *4))))) +(-10 -7 (-15 -2590 ((-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575)))) (-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575))))))) +((-2861 (((-112) $ $) NIL)) (-3346 (((-3 (-112) "failed") $) 71)) (-2598 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-316))))) (-2450 (($ $ (-3 (-112) "failed")) 72)) (-2176 (($ (-655 |#4|) |#4|) 25)) (-2288 (((-1176) $) NIL)) (-3553 (($ $) 69)) (-3912 (((-1137) $) NIL)) (-4076 (((-112) $) 70)) (-1938 (($) 30)) (-2066 ((|#4| $) 74)) (-3917 (((-655 |#4|) $) 73)) (-2883 (((-873) $) 68)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1004 |#1| |#2| |#3| |#4|) (-13 (-1117) (-624 (-873)) (-10 -8 (-15 -1938 ($)) (-15 -2176 ($ (-655 |#4|) |#4|)) (-15 -3346 ((-3 (-112) "failed") $)) (-15 -2450 ($ $ (-3 (-112) "failed"))) (-15 -4076 ((-112) $)) (-15 -3917 ((-655 |#4|) $)) (-15 -2066 (|#4| $)) (-15 -3553 ($ $)) (IF (|has| |#1| (-316)) (IF (|has| |#1| (-148)) (-15 -2598 ($ $)) |%noBranch|) |%noBranch|))) (-463) (-861) (-804) (-964 |#1| |#3| |#2|)) (T -1004)) +((-1938 (*1 *1) (-12 (-4 *2 (-463)) (-4 *3 (-861)) (-4 *4 (-804)) (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3)))) (-2176 (*1 *1 *2 *3) (-12 (-5 *2 (-655 *3)) (-4 *3 (-964 *4 *6 *5)) (-4 *4 (-463)) (-4 *5 (-861)) (-4 *6 (-804)) (-5 *1 (-1004 *4 *5 *6 *3)))) (-3346 (*1 *2 *1) (|partial| -12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4)))) (-2450 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4)))) (-4076 (*1 *2 *1) (-12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4)))) (-3917 (*1 *2 *1) (-12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *2 (-655 *6)) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4)))) (-2066 (*1 *2 *1) (-12 (-4 *2 (-964 *3 *5 *4)) (-5 *1 (-1004 *3 *4 *5 *2)) (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)))) (-3553 (*1 *1 *1) (-12 (-4 *2 (-463)) (-4 *3 (-861)) (-4 *4 (-804)) (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3)))) (-2598 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-316)) (-4 *2 (-463)) (-4 *3 (-861)) (-4 *4 (-804)) (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3))))) +(-13 (-1117) (-624 (-873)) (-10 -8 (-15 -1938 ($)) (-15 -2176 ($ (-655 |#4|) |#4|)) (-15 -3346 ((-3 (-112) "failed") $)) (-15 -2450 ($ $ (-3 (-112) "failed"))) (-15 -4076 ((-112) $)) (-15 -3917 ((-655 |#4|) $)) (-15 -2066 (|#4| $)) (-15 -3553 ($ $)) (IF (|has| |#1| (-316)) (IF (|has| |#1| (-148)) (-15 -2598 ($ $)) |%noBranch|) |%noBranch|))) +((-2221 (((-112) |#5| |#5|) 44)) (-2193 (((-112) |#5| |#5|) 59)) (-4333 (((-112) |#5| (-655 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3992 (((-112) (-655 |#4|) (-655 |#4|)) 65)) (-2063 (((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) 70)) (-2751 (((-1290)) 32)) (-2988 (((-1290) (-1176) (-1176) (-1176)) 28)) (-4017 (((-655 |#5|) (-655 |#5|)) 100)) (-2934 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) 92)) (-2605 (((-655 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112)) 122)) (-2222 (((-112) |#5| |#5|) 53)) (-2915 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2568 (((-112) (-655 |#4|) (-655 |#4|)) 64)) (-4212 (((-112) (-655 |#4|) (-655 |#4|)) 66)) (-2687 (((-112) (-655 |#4|) (-655 |#4|)) 67)) (-2849 (((-3 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3695 (((-655 |#5|) (-655 |#5|)) 49))) +(((-1005 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2988 ((-1290) (-1176) (-1176) (-1176))) (-15 -2751 ((-1290))) (-15 -2221 ((-112) |#5| |#5|)) (-15 -3695 ((-655 |#5|) (-655 |#5|))) (-15 -2222 ((-112) |#5| |#5|)) (-15 -2193 ((-112) |#5| |#5|)) (-15 -3992 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2568 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -4212 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2687 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2915 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4333 ((-112) |#5| |#5|)) (-15 -4333 ((-112) |#5| (-655 |#5|))) (-15 -4017 ((-655 |#5|) (-655 |#5|))) (-15 -2063 ((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2934 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-15 -2605 ((-655 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -2849 ((-3 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -1005)) +((-2849 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| -2571 (-655 *9)) (|:| -4270 *4) (|:| |ineq| (-655 *9)))) (-5 *1 (-1005 *6 *7 *8 *9 *4)) (-5 *3 (-655 *9)) (-4 *4 (-1088 *6 *7 *8 *9)))) (-2605 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-655 *10)) (-5 *5 (-112)) (-4 *10 (-1088 *6 *7 *8 *9)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8)) (-5 *2 (-655 (-2 (|:| -2571 (-655 *9)) (|:| -4270 *10) (|:| |ineq| (-655 *9))))) (-5 *1 (-1005 *6 *7 *8 *9 *10)) (-5 *3 (-655 *9)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-655 (-2 (|:| |val| (-655 *6)) (|:| -4270 *7)))) (-4 *6 (-1082 *3 *4 *5)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1005 *3 *4 *5 *6 *7)))) (-2063 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *8)))) (-4017 (*1 *2 *2) (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *6 *7)))) (-4333 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1005 *5 *6 *7 *8 *3)))) (-4333 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2915 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2687 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-4212 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-2568 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-3992 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-2193 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2222 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *6 *7)))) (-2221 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2751 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1005 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-2988 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))) +(-10 -7 (-15 -2988 ((-1290) (-1176) (-1176) (-1176))) (-15 -2751 ((-1290))) (-15 -2221 ((-112) |#5| |#5|)) (-15 -3695 ((-655 |#5|) (-655 |#5|))) (-15 -2222 ((-112) |#5| |#5|)) (-15 -2193 ((-112) |#5| |#5|)) (-15 -3992 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2568 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -4212 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2687 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2915 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4333 ((-112) |#5| |#5|)) (-15 -4333 ((-112) |#5| (-655 |#5|))) (-15 -4017 ((-655 |#5|) (-655 |#5|))) (-15 -2063 ((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2934 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-15 -2605 ((-655 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -2849 ((-3 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1441 (((-1194) $) 15)) (-4182 (((-1176) $) 16)) (-2676 (($ (-1194) (-1176)) 14)) (-2883 (((-873) $) 13))) +(((-1006) (-13 (-624 (-873)) (-10 -8 (-15 -2676 ($ (-1194) (-1176))) (-15 -1441 ((-1194) $)) (-15 -4182 ((-1176) $))))) (T -1006)) +((-2676 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1176)) (-5 *1 (-1006)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1006)))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1006))))) +(-13 (-624 (-873)) (-10 -8 (-15 -2676 ($ (-1194) (-1176))) (-15 -1441 ((-1194) $)) (-15 -4182 ((-1176) $)))) +((-2550 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-1007 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 (|#4| (-1 |#2| |#1|) |#3|))) (-567) (-567) (-1009 |#1|) (-1009 |#2|)) (T -1007)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-567)) (-4 *6 (-567)) (-4 *2 (-1009 *6)) (-5 *1 (-1007 *5 *6 *4 *2)) (-4 *4 (-1009 *5))))) +(-10 -7 (-15 -2550 (|#4| (-1 |#2| |#1|) |#3|))) +((-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-1194) "failed") $) 66) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) 96)) (-4399 ((|#2| $) NIL) (((-1194) $) 61) (((-418 (-575)) $) NIL) (((-575) $) 93)) (-1749 (((-700 (-575)) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 115) (((-700 |#2|) (-700 $)) 28) (((-700 |#2|) (-1285 $)) NIL)) (-2079 (($) 99)) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 76) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 85)) (-4046 (($ $) 10)) (-2607 (((-3 $ "failed") $) 20)) (-2550 (($ (-1 |#2| |#2|) $) 22)) (-3474 (($) 16)) (-4309 (($ $) 55)) (-2389 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $) NIL) (($ $ (-782)) NIL)) (-4172 (($ $) 12)) (-2615 (((-904 (-575)) $) 71) (((-904 (-389)) $) 80) (((-547) $) 40) (((-389) $) 44) (((-227) $) 48)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) 91) (($ |#2|) NIL) (($ (-1194)) 58)) (-3759 (((-782)) 31)) (-3943 (((-112) $ $) 51))) +(((-1008 |#1| |#2|) (-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -3474 (|#1|)) (-15 -2607 ((-3 |#1| "failed") |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2615 ((-227) |#1|)) (-15 -2615 ((-389) |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2883 (|#1| (-1194))) (-15 -2449 ((-3 (-1194) "failed") |#1|)) (-15 -4399 ((-1194) |#1|)) (-15 -2079 (|#1|)) (-15 -4309 (|#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -4046 (|#1| |#1|)) (-15 -1704 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -1704 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -1749 ((-700 |#2|) (-1285 |#1|))) (-15 -1749 ((-700 |#2|) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 (|#1| |#1|)) (-15 -3759 ((-782))) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) (-1009 |#2|) (-567)) (T -1008)) +((-3759 (*1 *2) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-1008 *3 *4)) (-4 *3 (-1009 *4))))) +(-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -3474 (|#1|)) (-15 -2607 ((-3 |#1| "failed") |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2615 ((-227) |#1|)) (-15 -2615 ((-389) |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2883 (|#1| (-1194))) (-15 -2449 ((-3 (-1194) "failed") |#1|)) (-15 -4399 ((-1194) |#1|)) (-15 -2079 (|#1|)) (-15 -4309 (|#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -4046 (|#1| |#1|)) (-15 -1704 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -1704 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -1749 ((-700 |#2|) (-1285 |#1|))) (-15 -1749 ((-700 |#2|) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 (|#1| |#1|)) (-15 -3759 ((-782))) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3127 ((|#1| $) 162 (|has| |#1| (-316)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-3535 (((-429 (-1190 $)) (-1190 $)) 153 (|has| |#1| (-924)))) (-2058 (($ $) 81)) (-2330 (((-429 $) $) 80)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 156 (|has| |#1| (-924)))) (-2279 (((-112) $ $) 65)) (-4428 (((-575) $) 143 (|has| |#1| (-831)))) (-3011 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 190) (((-3 (-1194) "failed") $) 151 (|has| |#1| (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) 134 (|has| |#1| (-1055 (-575)))) (((-3 (-575) "failed") $) 132 (|has| |#1| (-1055 (-575))))) (-4399 ((|#1| $) 191) (((-1194) $) 152 (|has| |#1| (-1055 (-1194)))) (((-418 (-575)) $) 135 (|has| |#1| (-1055 (-575)))) (((-575) $) 133 (|has| |#1| (-1055 (-575))))) (-2802 (($ $ $) 61)) (-1749 (((-700 (-575)) (-1285 $)) 177 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 176 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 175 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 174) (((-700 |#1|) (-700 $)) 173) (((-700 |#1|) (-1285 $)) 172)) (-1747 (((-3 $ "failed") $) 37)) (-2079 (($) 160 (|has| |#1| (-556)))) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-1336 (((-112) $) 79)) (-4075 (((-112) $) 145 (|has| |#1| (-831)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 169 (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 168 (|has| |#1| (-898 (-389))))) (-1542 (((-112) $) 35)) (-4046 (($ $) 164)) (-1595 ((|#1| $) 166)) (-2607 (((-3 $ "failed") $) 131 (|has| |#1| (-1169)))) (-4087 (((-112) $) 144 (|has| |#1| (-831)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-1920 (($ $ $) 141 (|has| |#1| (-861)))) (-1425 (($ $ $) 140 (|has| |#1| (-861)))) (-2550 (($ (-1 |#1| |#1|) $) 182)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3474 (($) 130 (|has| |#1| (-1169)) CONST)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-4309 (($ $) 161 (|has| |#1| (-316)))) (-2736 ((|#1| $) 158 (|has| |#1| (-556)))) (-1641 (((-429 (-1190 $)) (-1190 $)) 155 (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) 154 (|has| |#1| (-924)))) (-2353 (((-429 $) $) 82)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3048 (($ $ (-655 |#1|) (-655 |#1|)) 188 (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) 187 (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) 186 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) 185 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 184 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) 183 (|has| |#1| (-525 (-1194) |#1|)))) (-3708 (((-782) $) 64)) (-2070 (($ $ |#1|) 189 (|has| |#1| (-295 |#1| |#1|)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-2389 (($ $ (-1 |#1| |#1|)) 181) (($ $ (-1 |#1| |#1|) (-782)) 180) (($ $) 129 (|has| |#1| (-237))) (($ $ (-782)) 127 (|has| |#1| (-237))) (($ $ (-1194)) 125 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 123 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 122 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 121 (|has| |#1| (-915 (-1194))))) (-4172 (($ $) 163)) (-1608 ((|#1| $) 165)) (-2615 (((-904 (-575)) $) 171 (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) 170 (|has| |#1| (-625 (-904 (-389))))) (((-547) $) 148 (|has| |#1| (-625 (-547)))) (((-389) $) 147 (|has| |#1| (-1039))) (((-227) $) 146 (|has| |#1| (-1039)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 157 (-3226 (|has| $ (-146)) (|has| |#1| (-924))))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ |#1|) 194) (($ (-1194)) 150 (|has| |#1| (-1055 (-1194))))) (-1518 (((-3 $ "failed") $) 149 (-3765 (|has| |#1| (-146)) (-3226 (|has| $ (-146)) (|has| |#1| (-924)))))) (-3759 (((-782)) 32 T CONST)) (-1432 ((|#1| $) 159 (|has| |#1| (-556)))) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-2705 (($ $) 142 (|has| |#1| (-831)))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1 |#1| |#1|)) 179) (($ $ (-1 |#1| |#1|) (-782)) 178) (($ $) 128 (|has| |#1| (-237))) (($ $ (-782)) 126 (|has| |#1| (-237))) (($ $ (-1194)) 124 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 120 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 119 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 118 (|has| |#1| (-915 (-1194))))) (-3981 (((-112) $ $) 138 (|has| |#1| (-861)))) (-3956 (((-112) $ $) 137 (|has| |#1| (-861)))) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 139 (|has| |#1| (-861)))) (-3943 (((-112) $ $) 136 (|has| |#1| (-861)))) (-4038 (($ $ $) 73) (($ |#1| |#1|) 167)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75) (($ |#1| $) 193) (($ $ |#1|) 192))) +(((-1009 |#1|) (-141) (-567)) (T -1009)) +((-4038 (*1 *1 *2 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))) (-4046 (*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-316)))) (-4309 (*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-316)))) (-2079 (*1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-556)) (-4 *2 (-567)))) (-1432 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-556)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-556))))) +(-13 (-373) (-38 |t#1|) (-1055 |t#1|) (-348 |t#1|) (-232 |t#1|) (-387 |t#1|) (-896 |t#1|) (-411 |t#1|) (-10 -8 (-15 -4038 ($ |t#1| |t#1|)) (-15 -1595 (|t#1| $)) (-15 -1608 (|t#1| $)) (-15 -4046 ($ $)) (-15 -4172 ($ $)) (IF (|has| |t#1| (-1169)) (-6 (-1169)) |%noBranch|) (IF (|has| |t#1| (-1055 (-575))) (PROGN (-6 (-1055 (-575))) (-6 (-1055 (-418 (-575))))) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |%noBranch|) (IF (|has| |t#1| (-1039)) (-6 (-1039)) |%noBranch|) (IF (|has| |t#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1055 (-1194))) (-6 (-1055 (-1194))) |%noBranch|) (IF (|has| |t#1| (-316)) (PROGN (-15 -3127 (|t#1| $)) (-15 -4309 ($ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -2079 ($)) (-15 -1432 (|t#1| $)) (-15 -2736 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-924)) (-6 (-924)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 #1=(-1194)) |has| |#1| (-1055 (-1194))) ((-627 |#1|) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-625 (-227)) |has| |#1| (-1039)) ((-625 (-389)) |has| |#1| (-1039)) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-625 (-904 (-389))) |has| |#1| (-625 (-904 (-389)))) ((-625 (-904 (-575))) |has| |#1| (-625 (-904 (-575)))) ((-234 $) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-271 |#1|) . T) ((-248) . T) ((-295 |#1| $) |has| |#1| (-295 |#1| |#1|)) ((-299) . T) ((-316) . T) ((-318 |#1|) |has| |#1| (-318 |#1|)) ((-373) . T) ((-348 |#1|) . T) ((-387 |#1|) . T) ((-411 |#1|) . T) ((-463) . T) ((-525 (-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((-525 |#1| |#1|) |has| |#1| (-318 |#1|)) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 #2=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-650 #2#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) . T) ((-728 |#1|) . T) ((-728 $) . T) ((-737) . T) ((-802) |has| |#1| (-831)) ((-803) |has| |#1| (-831)) ((-805) |has| |#1| (-831)) ((-806) |has| |#1| (-831)) ((-831) |has| |#1| (-831)) ((-859) |has| |#1| (-831)) ((-861) -3765 (|has| |#1| (-861)) (|has| |#1| (-831))) ((-908 $ #3=(-1194)) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-915 #3#) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-898 (-389)) |has| |#1| (-898 (-389))) ((-898 (-575)) |has| |#1| (-898 (-575))) ((-896 |#1|) . T) ((-924) |has| |#1| (-924)) ((-935) . T) ((-1039) |has| |#1| (-1039)) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-575))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 #1#) |has| |#1| (-1055 (-1194))) ((-1055 |#1|) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| |#1| (-1169)) ((-1235) . T) ((-1239) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2609 (($ (-1159 |#1| |#2|)) 11)) (-4316 (((-1159 |#1| |#2|) $) 12)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2070 ((|#2| $ (-245 |#1| |#2|)) 16)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL))) +(((-1010 |#1| |#2|) (-13 (-21) (-295 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -2609 ($ (-1159 |#1| |#2|))) (-15 -4316 ((-1159 |#1| |#2|) $)))) (-936) (-373)) (T -1010)) +((-2609 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4)) (-14 *3 (-936)) (-4 *4 (-373)) (-5 *1 (-1010 *3 *4)))) (-4316 (*1 *2 *1) (-12 (-5 *2 (-1159 *3 *4)) (-5 *1 (-1010 *3 *4)) (-14 *3 (-936)) (-4 *4 (-373))))) +(-13 (-21) (-295 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -2609 ($ (-1159 |#1| |#2|))) (-15 -4316 ((-1159 |#1| |#2|) $)))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3829 (((-1152) $) 9)) (-2883 (((-873) $) 15) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1011) (-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $))))) (T -1011)) +((-3829 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1011))))) +(-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $)))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) 8)) (-3011 (($) 7 T CONST)) (-4162 (($ $) 47)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-1839 (((-782) $) 46)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4012 ((|#1| $) 40)) (-3862 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-2392 ((|#1| $) 45)) (-2454 ((|#1| $) 42)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-2818 ((|#1| |#1| $) 49)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2906 ((|#1| $) 48)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) 43)) (-4315 ((|#1| $) 44)) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-1012 |#1|) (-141) (-1235)) (T -1012)) +((-2818 (*1 *2 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))) (-4162 (*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))) (-4315 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4460) (-15 -2818 (|t#1| |t#1| $)) (-15 -2906 (|t#1| $)) (-15 -4162 ($ $)) (-15 -1839 ((-782) $)) (-15 -2392 (|t#1| $)) (-15 -4315 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-3799 (((-112) $) 43)) (-2449 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-4399 (((-575) $) NIL) (((-418 (-575)) $) NIL) ((|#2| $) 44)) (-2446 (((-3 (-418 (-575)) "failed") $) 78)) (-3405 (((-112) $) 72)) (-3100 (((-418 (-575)) $) 76)) (-1542 (((-112) $) 42)) (-2255 ((|#2| $) 22)) (-2550 (($ (-1 |#2| |#2|) $) 19)) (-4332 (($ $) 58)) (-2389 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $) NIL) (($ $ (-782)) NIL)) (-2615 (((-547) $) 67)) (-4258 (($ $) 17)) (-2883 (((-873) $) 53) (($ (-575)) 39) (($ |#2|) 37) (($ (-418 (-575))) NIL)) (-3759 (((-782)) 10)) (-2705 ((|#2| $) 71)) (-3914 (((-112) $ $) 26)) (-3943 (((-112) $ $) 69)) (-4028 (($ $) 30) (($ $ $) 29)) (-4016 (($ $ $) 27)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL))) +(((-1013 |#1| |#2|) (-10 -8 (-15 -2883 (|#1| (-418 (-575)))) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -3943 ((-112) |#1| |#1|)) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 * (|#1| |#1| (-418 (-575)))) (-15 -4332 (|#1| |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2446 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -3100 ((-418 (-575)) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -2705 (|#2| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -4258 (|#1| |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2883 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3759 ((-782))) (-15 -2883 (|#1| (-575))) (-15 -1542 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 -3799 ((-112) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4016 (|#1| |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) (-1014 |#2|) (-174)) (T -1013)) +((-3759 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-1013 *3 *4)) (-4 *3 (-1014 *4))))) +(-10 -8 (-15 -2883 (|#1| (-418 (-575)))) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -3943 ((-112) |#1| |#1|)) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 * (|#1| |#1| (-418 (-575)))) (-15 -4332 (|#1| |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2446 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -3100 ((-418 (-575)) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -2705 (|#2| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -4258 (|#1| |#1|)) (-15 -2550 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2883 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3759 ((-782))) (-15 -2883 (|#1| (-575))) (-15 -1542 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 -3799 ((-112) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4016 (|#1| |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2449 (((-3 (-575) "failed") $) 132 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 130 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 127)) (-4399 (((-575) $) 131 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 129 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 128)) (-1749 (((-700 (-575)) (-1285 $)) 114 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 113 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 112 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 111) (((-700 |#1|) (-700 $)) 110) (((-700 |#1|) (-1285 $)) 109)) (-1747 (((-3 $ "failed") $) 37)) (-2487 ((|#1| $) 102)) (-2446 (((-3 (-418 (-575)) "failed") $) 98 (|has| |#1| (-556)))) (-3405 (((-112) $) 100 (|has| |#1| (-556)))) (-3100 (((-418 (-575)) $) 99 (|has| |#1| (-556)))) (-4408 (($ |#1| |#1| |#1| |#1|) 103)) (-1542 (((-112) $) 35)) (-2255 ((|#1| $) 104)) (-1920 (($ $ $) 91 (|has| |#1| (-861)))) (-1425 (($ $ $) 90 (|has| |#1| (-861)))) (-2550 (($ (-1 |#1| |#1|) $) 115)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 95 (|has| |#1| (-373)))) (-2942 ((|#1| $) 105)) (-1571 ((|#1| $) 106)) (-3513 ((|#1| $) 107)) (-3912 (((-1137) $) 11)) (-3048 (($ $ (-655 |#1|) (-655 |#1|)) 121 (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) 120 (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) 119 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) 118 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 117 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) 116 (|has| |#1| (-525 (-1194) |#1|)))) (-2070 (($ $ |#1|) 122 (|has| |#1| (-295 |#1| |#1|)))) (-2389 (($ $ (-1 |#1| |#1|)) 126) (($ $ (-1 |#1| |#1|) (-782)) 125) (($ $) 85 (|has| |#1| (-237))) (($ $ (-782)) 83 (|has| |#1| (-237))) (($ $ (-1194)) 81 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 79 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 78 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 77 (|has| |#1| (-915 (-1194))))) (-2615 (((-547) $) 96 (|has| |#1| (-625 (-547))))) (-4258 (($ $) 108)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44) (($ (-418 (-575))) 73 (-3765 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575))))))) (-1518 (((-3 $ "failed") $) 97 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-2705 ((|#1| $) 101 (|has| |#1| (-1077)))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1 |#1| |#1|)) 124) (($ $ (-1 |#1| |#1|) (-782)) 123) (($ $) 84 (|has| |#1| (-237))) (($ $ (-782)) 82 (|has| |#1| (-237))) (($ $ (-1194)) 80 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 76 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 75 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 74 (|has| |#1| (-915 (-1194))))) (-3981 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3956 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3943 (((-112) $ $) 86 (|has| |#1| (-861)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 94 (|has| |#1| (-373)))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-418 (-575))) 93 (|has| |#1| (-373))) (($ (-418 (-575)) $) 92 (|has| |#1| (-373))))) +(((-1014 |#1|) (-141) (-174)) (T -1014)) +((-4258 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-1571 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-4408 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-2705 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)) (-4 *2 (-1077)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575))))) (-2446 (*1 *2 *1) (|partial| -12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575)))))) +(-13 (-38 |t#1|) (-422 |t#1|) (-232 |t#1|) (-348 |t#1|) (-387 |t#1|) (-10 -8 (-15 -4258 ($ $)) (-15 -3513 (|t#1| $)) (-15 -1571 (|t#1| $)) (-15 -2942 (|t#1| $)) (-15 -2255 (|t#1| $)) (-15 -4408 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2487 (|t#1| $)) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-373)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1077)) (-15 -2705 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3405 ((-112) $)) (-15 -3100 ((-418 (-575)) $)) (-15 -2446 ((-3 (-418 (-575)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-373)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-373)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-373)) (|has| |#1| (-299))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-373))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-234 $) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-271 |#1|) . T) ((-248) |has| |#1| (-373)) ((-295 |#1| $) |has| |#1| (-295 |#1| |#1|)) ((-299) -3765 (|has| |#1| (-373)) (|has| |#1| (-299))) ((-318 |#1|) |has| |#1| (-318 |#1|)) ((-348 |#1|) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-525 (-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((-525 |#1| |#1|) |has| |#1| (-318 |#1|)) ((-657 #0#) |has| |#1| (-373)) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-373)) ((-659 #1=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-373)) ((-651 |#1|) . T) ((-650 #1#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) |has| |#1| (-373)) ((-728 |#1|) . T) ((-737) . T) ((-861) |has| |#1| (-861)) ((-908 $ #2=(-1194)) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-915 #2#) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 #0#) |has| |#1| (-373)) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-373)) (|has| |#1| (-299))) ((-1073 #0#) |has| |#1| (-373)) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-373)) (|has| |#1| (-299))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T)) +((-2550 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1015 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 (|#3| (-1 |#4| |#2|) |#1|))) (-1014 |#2|) (-174) (-1014 |#4|) (-174)) (T -1015)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1014 *6)) (-5 *1 (-1015 *4 *5 *2 *6)) (-4 *4 (-1014 *5))))) +(-10 -7 (-15 -2550 (|#3| (-1 |#4| |#2|) |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2487 ((|#1| $) 12)) (-2446 (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-556)))) (-3405 (((-112) $) NIL (|has| |#1| (-556)))) (-3100 (((-418 (-575)) $) NIL (|has| |#1| (-556)))) (-4408 (($ |#1| |#1| |#1| |#1|) 16)) (-1542 (((-112) $) NIL)) (-2255 ((|#1| $) NIL)) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-2942 ((|#1| $) 15)) (-1571 ((|#1| $) 14)) (-3513 ((|#1| $) 13)) (-3912 (((-1137) $) NIL)) (-3048 (($ $ (-655 |#1|) (-655 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-525 (-1194) |#1|)))) (-2070 (($ $ |#1|) NIL (|has| |#1| (-295 |#1| |#1|)))) (-2389 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237))) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-4258 (($ $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575))))))) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-2705 ((|#1| $) NIL (|has| |#1| (-1077)))) (-1996 (($) 8 T CONST)) (-2009 (($) 10 T CONST)) (-3430 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237))) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-373))) (($ (-418 (-575)) $) NIL (|has| |#1| (-373))))) +(((-1016 |#1|) (-1014 |#1|) (-174)) (T -1016)) +NIL +(-1014 |#1|) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1845 (((-112) $ (-782)) NIL)) (-3011 (($) NIL T CONST)) (-4162 (($ $) 23)) (-3193 (($ (-655 |#1|)) 33)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-1839 (((-782) $) 26)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4012 ((|#1| $) 28)) (-3862 (($ |#1| $) 17)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2392 ((|#1| $) 27)) (-2454 ((|#1| $) 22)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2818 ((|#1| |#1| $) 16)) (-4076 (((-112) $) 18)) (-1938 (($) NIL)) (-2906 ((|#1| $) 21)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) NIL)) (-4315 ((|#1| $) 30)) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1017 |#1|) (-13 (-1012 |#1|) (-10 -8 (-15 -3193 ($ (-655 |#1|))))) (-1117)) (T -1017)) +((-3193 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-1017 *3))))) +(-13 (-1012 |#1|) (-10 -8 (-15 -3193 ($ (-655 |#1|))))) +((-2473 (($ $) 12)) (-2931 (($ $ (-575)) 13))) +(((-1018 |#1|) (-10 -8 (-15 -2473 (|#1| |#1|)) (-15 -2931 (|#1| |#1| (-575)))) (-1019)) (T -1018)) +NIL +(-10 -8 (-15 -2473 (|#1| |#1|)) (-15 -2931 (|#1| |#1| (-575)))) +((-2473 (($ $) 6)) (-2931 (($ $ (-575)) 7)) (** (($ $ (-418 (-575))) 8))) +(((-1019) (-141)) (T -1019)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1019)) (-5 *2 (-418 (-575))))) (-2931 (*1 *1 *1 *2) (-12 (-4 *1 (-1019)) (-5 *2 (-575)))) (-2473 (*1 *1 *1) (-4 *1 (-1019)))) +(-13 (-10 -8 (-15 -2473 ($ $)) (-15 -2931 ($ $ (-575))) (-15 ** ($ $ (-418 (-575)))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3023 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| (-418 |#2|) (-373)))) (-1540 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-3286 (((-112) $) NIL (|has| (-418 |#2|) (-373)))) (-1389 (((-700 (-418 |#2|)) (-1285 $)) NIL) (((-700 (-418 |#2|))) NIL)) (-1447 (((-418 |#2|) $) NIL)) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-418 |#2|) (-359)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-2330 (((-429 $) $) NIL (|has| (-418 |#2|) (-373)))) (-2279 (((-112) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2415 (((-782)) NIL (|has| (-418 |#2|) (-378)))) (-1883 (((-112)) NIL)) (-3400 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| (-418 |#2|) (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-3 (-418 |#2|) "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| (-418 |#2|) (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-418 |#2|) $) NIL)) (-1385 (($ (-1285 (-418 |#2|)) (-1285 $)) NIL) (($ (-1285 (-418 |#2|))) 79) (($ (-1285 |#2|) |#2|) NIL)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-418 |#2|) (-359)))) (-2802 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-2746 (((-700 (-418 |#2|)) $ (-1285 $)) NIL) (((-700 (-418 |#2|)) $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-418 |#2|))) (|:| |vec| (-1285 (-418 |#2|)))) (-700 $) (-1285 $)) NIL) (((-700 (-418 |#2|)) (-700 $)) NIL) (((-700 (-418 |#2|)) (-1285 $)) NIL)) (-2438 (((-1285 $) (-1285 $)) NIL)) (-2308 (($ |#3|) 73) (((-3 $ "failed") (-418 |#3|)) NIL (|has| (-418 |#2|) (-373)))) (-1747 (((-3 $ "failed") $) NIL)) (-3222 (((-655 (-655 |#1|))) NIL (|has| |#1| (-378)))) (-3569 (((-112) |#1| |#1|) NIL)) (-4422 (((-936)) NIL)) (-2079 (($) NIL (|has| (-418 |#2|) (-378)))) (-3610 (((-112)) NIL)) (-1903 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2813 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| (-418 |#2|) (-373)))) (-1824 (($ $) NIL)) (-1360 (($) NIL (|has| (-418 |#2|) (-359)))) (-1980 (((-112) $) NIL (|has| (-418 |#2|) (-359)))) (-4374 (($ $ (-782)) NIL (|has| (-418 |#2|) (-359))) (($ $) NIL (|has| (-418 |#2|) (-359)))) (-1336 (((-112) $) NIL (|has| (-418 |#2|) (-373)))) (-2673 (((-936) $) NIL (|has| (-418 |#2|) (-359))) (((-844 (-936)) $) NIL (|has| (-418 |#2|) (-359)))) (-1542 (((-112) $) NIL)) (-1454 (((-782)) NIL)) (-2215 (((-1285 $) (-1285 $)) NIL)) (-2255 (((-418 |#2|) $) NIL)) (-3521 (((-655 (-967 |#1|)) (-1194)) NIL (|has| |#1| (-373)))) (-2607 (((-3 $ "failed") $) NIL (|has| (-418 |#2|) (-359)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-418 |#2|) (-373)))) (-1943 ((|#3| $) NIL (|has| (-418 |#2|) (-373)))) (-4084 (((-936) $) NIL (|has| (-418 |#2|) (-378)))) (-2295 ((|#3| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| (-418 |#2|) (-373))) (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-2288 (((-1176) $) NIL)) (-1643 (((-700 (-418 |#2|))) 57)) (-3406 (((-700 (-418 |#2|))) 56)) (-4332 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-1543 (($ (-1285 |#2|) |#2|) 80)) (-3507 (((-700 (-418 |#2|))) 55)) (-4061 (((-700 (-418 |#2|))) 54)) (-3399 (((-2 (|:| |num| (-700 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-1371 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) 86)) (-2362 (((-1285 $)) 51)) (-2899 (((-1285 $)) 50)) (-3234 (((-112) $) NIL)) (-3183 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3474 (($) NIL (|has| (-418 |#2|) (-359)) CONST)) (-4317 (($ (-936)) NIL (|has| (-418 |#2|) (-378)))) (-4414 (((-3 |#2| "failed")) 70)) (-3912 (((-1137) $) NIL)) (-2198 (((-782)) NIL)) (-3659 (($) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| (-418 |#2|) (-373)))) (-3926 (($ (-655 $)) NIL (|has| (-418 |#2|) (-373))) (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| (-418 |#2|) (-359)))) (-2353 (((-429 $) $) NIL (|has| (-418 |#2|) (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-418 |#2|) (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2851 (((-3 $ "failed") $ $) NIL (|has| (-418 |#2|) (-373)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-418 |#2|) (-373)))) (-3708 (((-782) $) NIL (|has| (-418 |#2|) (-373)))) (-2070 ((|#1| $ |#1| |#1|) NIL)) (-4106 (((-3 |#2| "failed")) 68)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| (-418 |#2|) (-373)))) (-4060 (((-418 |#2|) (-1285 $)) NIL) (((-418 |#2|)) 47)) (-3905 (((-782) $) NIL (|has| (-418 |#2|) (-359))) (((-3 (-782) "failed") $ $) NIL (|has| (-418 |#2|) (-359)))) (-2389 (($ $ (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-782)) NIL (-3765 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) NIL (-3765 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3792 (((-700 (-418 |#2|)) (-1285 $) (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373)))) (-2552 ((|#3|) 58)) (-3500 (($) NIL (|has| (-418 |#2|) (-359)))) (-3962 (((-1285 (-418 |#2|)) $ (-1285 $)) NIL) (((-700 (-418 |#2|)) (-1285 $) (-1285 $)) NIL) (((-1285 (-418 |#2|)) $) 81) (((-700 (-418 |#2|)) (-1285 $)) NIL)) (-2615 (((-1285 (-418 |#2|)) $) NIL) (($ (-1285 (-418 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-418 |#2|) (-359)))) (-3768 (((-1285 $) (-1285 $)) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 |#2|)) NIL) (($ (-418 (-575))) NIL (-3765 (|has| (-418 |#2|) (-1055 (-418 (-575)))) (|has| (-418 |#2|) (-373)))) (($ $) NIL (|has| (-418 |#2|) (-373)))) (-1518 (($ $) NIL (|has| (-418 |#2|) (-359))) (((-3 $ "failed") $) NIL (|has| (-418 |#2|) (-146)))) (-2551 ((|#3| $) NIL)) (-3759 (((-782)) NIL T CONST)) (-1610 (((-112)) 65)) (-1607 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) NIL)) (-1780 (((-112) $ $) NIL (|has| (-418 |#2|) (-373)))) (-1712 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3476 (((-112)) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) NIL (|has| (-418 |#2|) (-373))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-782)) NIL (-3765 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) NIL (-3765 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| (-418 |#2|) (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 |#2|)) NIL) (($ (-418 |#2|) $) NIL) (($ (-418 (-575)) $) NIL (|has| (-418 |#2|) (-373))) (($ $ (-418 (-575))) NIL (|has| (-418 |#2|) (-373))))) +(((-1020 |#1| |#2| |#3| |#4| |#5|) (-352 |#1| |#2| |#3|) (-1239) (-1261 |#1|) (-1261 (-418 |#2|)) (-418 |#2|) (-782)) (T -1020)) +NIL +(-352 |#1| |#2| |#3|) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2662 (((-655 (-575)) $) 73)) (-4018 (($ (-655 (-575))) 81)) (-3127 (((-575) $) 48 (|has| (-575) (-316)))) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL (|has| (-575) (-831)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) 60) (((-3 (-1194) "failed") $) NIL (|has| (-575) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) 57 (|has| (-575) (-1055 (-575)))) (((-3 (-575) "failed") $) 60 (|has| (-575) (-1055 (-575))))) (-4399 (((-575) $) NIL) (((-1194) $) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-575) (-1055 (-575)))) (((-575) $) NIL (|has| (-575) (-1055 (-575))))) (-2802 (($ $ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2079 (($) NIL (|has| (-575) (-556)))) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-4257 (((-655 (-575)) $) 79)) (-4075 (((-112) $) NIL (|has| (-575) (-831)))) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-575) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-575) (-898 (-389))))) (-1542 (((-112) $) NIL)) (-4046 (($ $) NIL)) (-1595 (((-575) $) 45)) (-2607 (((-3 $ "failed") $) NIL (|has| (-575) (-1169)))) (-4087 (((-112) $) NIL (|has| (-575) (-831)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| (-575) (-861)))) (-2550 (($ (-1 (-575) (-575)) $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3474 (($) NIL (|has| (-575) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4309 (($ $) NIL (|has| (-575) (-316))) (((-418 (-575)) $) 50)) (-4071 (((-1174 (-575)) $) 78)) (-4118 (($ (-655 (-575)) (-655 (-575))) 82)) (-2736 (((-575) $) 64 (|has| (-575) (-556)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2353 (((-429 $) $) NIL)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3048 (($ $ (-655 (-575)) (-655 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-575) (-575)) NIL (|has| (-575) (-318 (-575)))) (($ $ (-303 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-303 (-575)))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-1194)) (-655 (-575))) NIL (|has| (-575) (-525 (-1194) (-575)))) (($ $ (-1194) (-575)) NIL (|has| (-575) (-525 (-1194) (-575))))) (-3708 (((-782) $) NIL)) (-2070 (($ $ (-575)) NIL (|has| (-575) (-295 (-575) (-575))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2389 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) 15 (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-4172 (($ $) NIL)) (-1608 (((-575) $) 47)) (-2561 (((-655 (-575)) $) 80)) (-2615 (((-904 (-575)) $) NIL (|has| (-575) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-575) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-575) (-625 (-547)))) (((-389) $) NIL (|has| (-575) (-1039))) (((-227) $) NIL (|has| (-575) (-1039)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-575) (-924))))) (-2883 (((-873) $) 107) (($ (-575)) 51) (($ $) NIL) (($ (-418 (-575))) 27) (($ (-575)) 51) (($ (-1194)) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) 25)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-575) (-924))) (|has| (-575) (-146))))) (-3759 (((-782)) 13 T CONST)) (-1432 (((-575) $) 62 (|has| (-575) (-556)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-2705 (($ $) NIL (|has| (-575) (-831)))) (-1996 (($) 14 T CONST)) (-2009 (($) 17 T CONST)) (-3430 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-3981 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3956 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3914 (((-112) $ $) 21)) (-3970 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3943 (((-112) $ $) 40 (|has| (-575) (-861)))) (-4038 (($ $ $) 36) (($ (-575) (-575)) 38)) (-4028 (($ $) 23) (($ $ $) 30)) (-4016 (($ $ $) 28)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 32) (($ $ $) 34) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-575) $) 32) (($ $ (-575)) NIL))) +(((-1021 |#1|) (-13 (-1009 (-575)) (-624 (-418 (-575))) (-10 -8 (-15 -4309 ((-418 (-575)) $)) (-15 -2662 ((-655 (-575)) $)) (-15 -4071 ((-1174 (-575)) $)) (-15 -4257 ((-655 (-575)) $)) (-15 -2561 ((-655 (-575)) $)) (-15 -4018 ($ (-655 (-575)))) (-15 -4118 ($ (-655 (-575)) (-655 (-575)))))) (-575)) (T -1021)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-4071 (*1 *2 *1) (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-4118 (*1 *1 *2 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575))))) +(-13 (-1009 (-575)) (-624 (-418 (-575))) (-10 -8 (-15 -4309 ((-418 (-575)) $)) (-15 -2662 ((-655 (-575)) $)) (-15 -4071 ((-1174 (-575)) $)) (-15 -4257 ((-655 (-575)) $)) (-15 -2561 ((-655 (-575)) $)) (-15 -4018 ($ (-655 (-575)))) (-15 -4118 ($ (-655 (-575)) (-655 (-575)))))) +((-3298 (((-52) (-418 (-575)) (-575)) 9))) +(((-1022) (-10 -7 (-15 -3298 ((-52) (-418 (-575)) (-575))))) (T -1022)) +((-3298 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-575))) (-5 *4 (-575)) (-5 *2 (-52)) (-5 *1 (-1022))))) +(-10 -7 (-15 -3298 ((-52) (-418 (-575)) (-575)))) +((-2415 (((-575)) 23)) (-3077 (((-575)) 28)) (-4436 (((-1290) (-575)) 26)) (-2872 (((-575) (-575)) 29) (((-575)) 22))) +(((-1023) (-10 -7 (-15 -2872 ((-575))) (-15 -2415 ((-575))) (-15 -2872 ((-575) (-575))) (-15 -4436 ((-1290) (-575))) (-15 -3077 ((-575))))) (T -1023)) +((-3077 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023)))) (-4436 (*1 *2 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1023)))) (-2872 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023)))) (-2415 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023)))) (-2872 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023))))) +(-10 -7 (-15 -2872 ((-575))) (-15 -2415 ((-575))) (-15 -2872 ((-575) (-575))) (-15 -4436 ((-1290) (-575))) (-15 -3077 ((-575)))) +((-2794 (((-429 |#1|) |#1|) 43)) (-2353 (((-429 |#1|) |#1|) 41))) +(((-1024 |#1|) (-10 -7 (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2794 ((-429 |#1|) |#1|))) (-1261 (-418 (-575)))) (T -1024)) +((-2794 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-1024 *3)) (-4 *3 (-1261 (-418 (-575)))))) (-2353 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-1024 *3)) (-4 *3 (-1261 (-418 (-575))))))) +(-10 -7 (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2794 ((-429 |#1|) |#1|))) +((-2446 (((-3 (-418 (-575)) "failed") |#1|) 15)) (-3405 (((-112) |#1|) 14)) (-3100 (((-418 (-575)) |#1|) 10))) +(((-1025 |#1|) (-10 -7 (-15 -3100 ((-418 (-575)) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -2446 ((-3 (-418 (-575)) "failed") |#1|))) (-1055 (-418 (-575)))) (T -1025)) +((-2446 (*1 *2 *3) (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-1025 *3)) (-4 *3 (-1055 *2)))) (-3405 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1025 *3)) (-4 *3 (-1055 (-418 (-575)))))) (-3100 (*1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1025 *3)) (-4 *3 (-1055 *2))))) +(-10 -7 (-15 -3100 ((-418 (-575)) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -2446 ((-3 (-418 (-575)) "failed") |#1|))) +((-3054 ((|#2| $ "value" |#2|) 12)) (-2070 ((|#2| $ "value") 10)) (-2781 (((-112) $ $) 18))) +(((-1026 |#1| |#2|) (-10 -8 (-15 -3054 (|#2| |#1| "value" |#2|)) (-15 -2781 ((-112) |#1| |#1|)) (-15 -2070 (|#2| |#1| "value"))) (-1027 |#2|) (-1235)) (T -1026)) +NIL +(-10 -8 (-15 -3054 (|#2| |#1| "value" |#2|)) (-15 -2781 ((-112) |#1| |#1|)) (-15 -2070 (|#2| |#1| "value"))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4182 ((|#1| $) 49)) (-1845 (((-112) $ (-782)) 8)) (-1915 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3011 (($) 7 T CONST)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) 51)) (-3117 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2482 (((-655 |#1|) $) 46)) (-1526 (((-112) $) 50)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ "value") 48)) (-2220 (((-575) $ $) 45)) (-1648 (((-112) $) 47)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) 52)) (-2781 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-1027 |#1|) (-141) (-1235)) (T -1027)) +((-2348 (*1 *2 *1) (-12 (-4 *3 (-1235)) (-5 *2 (-655 *1)) (-4 *1 (-1027 *3)))) (-3698 (*1 *2 *1) (-12 (-4 *3 (-1235)) (-5 *2 (-655 *1)) (-4 *1 (-1027 *3)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-4182 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1235)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1027 *2)) (-4 *2 (-1235)))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-2482 (*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-655 *3)))) (-2220 (*1 *2 *1 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-575)))) (-2781 (*1 *2 *1 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-3117 (*1 *2 *1 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-1488 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *1)) (|has| *1 (-6 -4461)) (-4 *1 (-1027 *3)) (-4 *3 (-1235)))) (-3054 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4461)) (-4 *1 (-1027 *2)) (-4 *2 (-1235)))) (-1915 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1027 *2)) (-4 *2 (-1235))))) +(-13 (-500 |t#1|) (-10 -8 (-15 -2348 ((-655 $) $)) (-15 -3698 ((-655 $) $)) (-15 -1526 ((-112) $)) (-15 -4182 (|t#1| $)) (-15 -2070 (|t#1| $ "value")) (-15 -1648 ((-112) $)) (-15 -2482 ((-655 |t#1|) $)) (-15 -2220 ((-575) $ $)) (IF (|has| |t#1| (-1117)) (PROGN (-15 -2781 ((-112) $ $)) (-15 -3117 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4461)) (PROGN (-15 -1488 ($ $ (-655 $))) (-15 -3054 (|t#1| $ "value" |t#1|)) (-15 -1915 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-2473 (($ $) 9) (($ $ (-936)) 49) (($ (-418 (-575))) 13) (($ (-575)) 15)) (-3700 (((-3 $ "failed") (-1190 $) (-936) (-873)) 24) (((-3 $ "failed") (-1190 $) (-936)) 32)) (-2931 (($ $ (-575)) 58)) (-3759 (((-782)) 18)) (-2251 (((-655 $) (-1190 $)) NIL) (((-655 $) (-1190 (-418 (-575)))) 63) (((-655 $) (-1190 (-575))) 68) (((-655 $) (-967 $)) 72) (((-655 $) (-967 (-418 (-575)))) 76) (((-655 $) (-967 (-575))) 80)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL) (($ $ (-418 (-575))) 53))) +(((-1028 |#1|) (-10 -8 (-15 -2473 (|#1| (-575))) (-15 -2473 (|#1| (-418 (-575)))) (-15 -2473 (|#1| |#1| (-936))) (-15 -2251 ((-655 |#1|) (-967 (-575)))) (-15 -2251 ((-655 |#1|) (-967 (-418 (-575))))) (-15 -2251 ((-655 |#1|) (-967 |#1|))) (-15 -2251 ((-655 |#1|) (-1190 (-575)))) (-15 -2251 ((-655 |#1|) (-1190 (-418 (-575))))) (-15 -2251 ((-655 |#1|) (-1190 |#1|))) (-15 -3700 ((-3 |#1| "failed") (-1190 |#1|) (-936))) (-15 -3700 ((-3 |#1| "failed") (-1190 |#1|) (-936) (-873))) (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -2931 (|#1| |#1| (-575))) (-15 -2473 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -3759 ((-782))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936)))) (-1029)) (T -1028)) +((-3759 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1028 *3)) (-4 *3 (-1029))))) +(-10 -8 (-15 -2473 (|#1| (-575))) (-15 -2473 (|#1| (-418 (-575)))) (-15 -2473 (|#1| |#1| (-936))) (-15 -2251 ((-655 |#1|) (-967 (-575)))) (-15 -2251 ((-655 |#1|) (-967 (-418 (-575))))) (-15 -2251 ((-655 |#1|) (-967 |#1|))) (-15 -2251 ((-655 |#1|) (-1190 (-575)))) (-15 -2251 ((-655 |#1|) (-1190 (-418 (-575))))) (-15 -2251 ((-655 |#1|) (-1190 |#1|))) (-15 -3700 ((-3 |#1| "failed") (-1190 |#1|) (-936))) (-15 -3700 ((-3 |#1| "failed") (-1190 |#1|) (-936) (-873))) (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -2931 (|#1| |#1| (-575))) (-15 -2473 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -3759 ((-782))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 102)) (-1540 (($ $) 103)) (-3286 (((-112) $) 105)) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 122)) (-2330 (((-429 $) $) 123)) (-2473 (($ $) 86) (($ $ (-936)) 72) (($ (-418 (-575))) 71) (($ (-575)) 70)) (-2279 (((-112) $ $) 113)) (-4428 (((-575) $) 139)) (-3011 (($) 18 T CONST)) (-3700 (((-3 $ "failed") (-1190 $) (-936) (-873)) 80) (((-3 $ "failed") (-1190 $) (-936)) 79)) (-2449 (((-3 (-575) "failed") $) 99 (|has| (-418 (-575)) (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 97 (|has| (-418 (-575)) (-1055 (-418 (-575))))) (((-3 (-418 (-575)) "failed") $) 94)) (-4399 (((-575) $) 98 (|has| (-418 (-575)) (-1055 (-575)))) (((-418 (-575)) $) 96 (|has| (-418 (-575)) (-1055 (-418 (-575))))) (((-418 (-575)) $) 95)) (-1408 (($ $ (-873)) 69)) (-1720 (($ $ (-873)) 68)) (-2802 (($ $ $) 117)) (-1747 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 116)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 111)) (-1336 (((-112) $) 124)) (-4075 (((-112) $) 137)) (-1542 (((-112) $) 35)) (-2931 (($ $ (-575)) 85)) (-4087 (((-112) $) 138)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 120)) (-1920 (($ $ $) 136)) (-1425 (($ $ $) 135)) (-3180 (((-3 (-1190 $) "failed") $) 81)) (-3122 (((-3 (-873) "failed") $) 83)) (-2865 (((-3 (-1190 $) "failed") $) 82)) (-3887 (($ (-655 $)) 109) (($ $ $) 108)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 125)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 110)) (-3926 (($ (-655 $)) 107) (($ $ $) 106)) (-2353 (((-429 $) $) 121)) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 118)) (-2851 (((-3 $ "failed") $ $) 101)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 112)) (-3708 (((-782) $) 114)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 115)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 129) (($ $) 100) (($ (-418 (-575))) 93) (($ (-575)) 92) (($ (-418 (-575))) 89)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 104)) (-3494 (((-418 (-575)) $ $) 67)) (-2251 (((-655 $) (-1190 $)) 78) (((-655 $) (-1190 (-418 (-575)))) 77) (((-655 $) (-1190 (-575))) 76) (((-655 $) (-967 $)) 75) (((-655 $) (-967 (-418 (-575)))) 74) (((-655 $) (-967 (-575))) 73)) (-2705 (($ $) 140)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3981 (((-112) $ $) 133)) (-3956 (((-112) $ $) 132)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 134)) (-3943 (((-112) $ $) 131)) (-4038 (($ $ $) 130)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 126) (($ $ (-418 (-575))) 84)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ (-418 (-575)) $) 128) (($ $ (-418 (-575))) 127) (($ (-575) $) 91) (($ $ (-575)) 90) (($ (-418 (-575)) $) 88) (($ $ (-418 (-575))) 87))) +(((-1029) (-141)) (T -1029)) +((-2473 (*1 *1 *1) (-4 *1 (-1029))) (-3122 (*1 *2 *1) (|partial| -12 (-4 *1 (-1029)) (-5 *2 (-873)))) (-2865 (*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1029)))) (-3180 (*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1029)))) (-3700 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-5 *4 (-873)) (-4 *1 (-1029)))) (-3700 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-4 *1 (-1029)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-1029)) (-5 *2 (-655 *1)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-1190 (-418 (-575)))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-1190 (-575))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-1029)) (-5 *2 (-655 *1)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-967 (-575))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) (-2473 (*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-936)))) (-2473 (*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-4 *1 (-1029)))) (-2473 (*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1029)))) (-1408 (*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-873)))) (-1720 (*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-873)))) (-3494 (*1 *2 *1 *1) (-12 (-4 *1 (-1029)) (-5 *2 (-418 (-575)))))) +(-13 (-148) (-859) (-174) (-373) (-422 (-418 (-575))) (-38 (-575)) (-38 (-418 (-575))) (-1019) (-10 -8 (-15 -3122 ((-3 (-873) "failed") $)) (-15 -2865 ((-3 (-1190 $) "failed") $)) (-15 -3180 ((-3 (-1190 $) "failed") $)) (-15 -3700 ((-3 $ "failed") (-1190 $) (-936) (-873))) (-15 -3700 ((-3 $ "failed") (-1190 $) (-936))) (-15 -2251 ((-655 $) (-1190 $))) (-15 -2251 ((-655 $) (-1190 (-418 (-575))))) (-15 -2251 ((-655 $) (-1190 (-575)))) (-15 -2251 ((-655 $) (-967 $))) (-15 -2251 ((-655 $) (-967 (-418 (-575))))) (-15 -2251 ((-655 $) (-967 (-575)))) (-15 -2473 ($ $ (-936))) (-15 -2473 ($ $)) (-15 -2473 ($ (-418 (-575)))) (-15 -2473 ($ (-575))) (-15 -1408 ($ $ (-873))) (-15 -1720 ($ $ (-873))) (-15 -3494 ((-418 (-575)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 #1=(-575)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-422 (-418 (-575))) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 #1#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 #1#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 #1#) . T) ((-728 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-859) . T) ((-861) . T) ((-935) . T) ((-1019) . T) ((-1055 (-418 (-575))) . T) ((-1055 (-575)) |has| (-418 (-575)) (-1055 (-575))) ((-1068 #0#) . T) ((-1068 #1#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 #1#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T)) +((-2777 (((-2 (|:| |ans| |#2|) (|:| -2435 |#2|) (|:| |sol?| (-112))) (-575) |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1030 |#1| |#2|) (-10 -7 (-15 -2777 ((-2 (|:| |ans| |#2|) (|:| -2435 |#2|) (|:| |sol?| (-112))) (-575) |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-463) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-27) (-441 |#1|))) (T -1030)) +((-2777 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1194)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-655 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1630 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1220) (-27) (-441 *8))) (-4 *8 (-13 (-463) (-148) (-1055 *3) (-650 *3))) (-5 *3 (-575)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2435 *4) (|:| |sol?| (-112)))) (-5 *1 (-1030 *8 *4))))) +(-10 -7 (-15 -2777 ((-2 (|:| |ans| |#2|) (|:| -2435 |#2|) (|:| |sol?| (-112))) (-575) |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1323 (((-3 (-655 |#2|) "failed") (-575) |#2| |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1031 |#1| |#2|) (-10 -7 (-15 -1323 ((-3 (-655 |#2|) "failed") (-575) |#2| |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-463) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-27) (-441 |#1|))) (T -1031)) +((-1323 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1194)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-655 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1630 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1220) (-27) (-441 *8))) (-4 *8 (-13 (-463) (-148) (-1055 *3) (-650 *3))) (-5 *3 (-575)) (-5 *2 (-655 *4)) (-5 *1 (-1031 *8 *4))))) +(-10 -7 (-15 -1323 ((-3 (-655 |#2|) "failed") (-575) |#2| |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -1630 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2237 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2571 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-575)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-575) (-1 |#2| |#2|)) 38)) (-2982 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |c| (-418 |#2|)) (|:| -1889 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|)) 69)) (-3112 (((-2 (|:| |ans| (-418 |#2|)) (|:| |nosol| (-112))) (-418 |#2|) (-418 |#2|)) 74))) +(((-1032 |#1| |#2|) (-10 -7 (-15 -2982 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |c| (-418 |#2|)) (|:| -1889 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|))) (-15 -3112 ((-2 (|:| |ans| (-418 |#2|)) (|:| |nosol| (-112))) (-418 |#2|) (-418 |#2|))) (-15 -2237 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2571 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-575)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-575) (-1 |#2| |#2|)))) (-13 (-373) (-148) (-1055 (-575))) (-1261 |#1|)) (T -1032)) +((-2237 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1261 *6)) (-4 *6 (-13 (-373) (-148) (-1055 *4))) (-5 *4 (-575)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2571 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1032 *6 *3)))) (-3112 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| |ans| (-418 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1032 *4 *5)) (-5 *3 (-418 *5)))) (-2982 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-418 *6)) (|:| |c| (-418 *6)) (|:| -1889 *6))) (-5 *1 (-1032 *5 *6)) (-5 *3 (-418 *6))))) +(-10 -7 (-15 -2982 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |c| (-418 |#2|)) (|:| -1889 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|))) (-15 -3112 ((-2 (|:| |ans| (-418 |#2|)) (|:| |nosol| (-112))) (-418 |#2|) (-418 |#2|))) (-15 -2237 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2571 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-575)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-575) (-1 |#2| |#2|)))) +((-2669 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |h| |#2|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| -1889 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|)) 22)) (-2257 (((-3 (-655 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|)) 34))) +(((-1033 |#1| |#2|) (-10 -7 (-15 -2669 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |h| |#2|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| -1889 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|))) (-15 -2257 ((-3 (-655 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|)))) (-13 (-373) (-148) (-1055 (-575))) (-1261 |#1|)) (T -1033)) +((-2257 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-418 *5))) (-5 *1 (-1033 *4 *5)) (-5 *3 (-418 *5)))) (-2669 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-418 *6)) (|:| |h| *6) (|:| |c1| (-418 *6)) (|:| |c2| (-418 *6)) (|:| -1889 *6))) (-5 *1 (-1033 *5 *6)) (-5 *3 (-418 *6))))) +(-10 -7 (-15 -2669 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |h| |#2|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| -1889 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|))) (-15 -2257 ((-3 (-655 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|)))) +((-3900 (((-1 |#1|) (-655 (-2 (|:| -4182 |#1|) (|:| -2807 (-575))))) 34)) (-2160 (((-1 |#1|) (-1119 |#1|)) 42)) (-2467 (((-1 |#1|) (-1285 |#1|) (-1285 (-575)) (-575)) 31))) +(((-1034 |#1|) (-10 -7 (-15 -2160 ((-1 |#1|) (-1119 |#1|))) (-15 -3900 ((-1 |#1|) (-655 (-2 (|:| -4182 |#1|) (|:| -2807 (-575)))))) (-15 -2467 ((-1 |#1|) (-1285 |#1|) (-1285 (-575)) (-575)))) (-1117)) (T -1034)) +((-2467 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1285 *6)) (-5 *4 (-1285 (-575))) (-5 *5 (-575)) (-4 *6 (-1117)) (-5 *2 (-1 *6)) (-5 *1 (-1034 *6)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -4182 *4) (|:| -2807 (-575))))) (-4 *4 (-1117)) (-5 *2 (-1 *4)) (-5 *1 (-1034 *4)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-1119 *4)) (-4 *4 (-1117)) (-5 *2 (-1 *4)) (-5 *1 (-1034 *4))))) +(-10 -7 (-15 -2160 ((-1 |#1|) (-1119 |#1|))) (-15 -3900 ((-1 |#1|) (-655 (-2 (|:| -4182 |#1|) (|:| -2807 (-575)))))) (-15 -2467 ((-1 |#1|) (-1285 |#1|) (-1285 (-575)) (-575)))) +((-2673 (((-782) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2673 ((-782) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|) (-13 (-378) (-373))) (T -1035)) +((-2673 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-4 *4 (-1261 (-418 *7))) (-4 *8 (-352 *6 *7 *4)) (-4 *9 (-13 (-378) (-373))) (-5 *2 (-782)) (-5 *1 (-1035 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -2673 ((-782) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2861 (((-112) $ $) NIL)) (-2572 (((-1152) $) 9)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 11)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1036) (-13 (-1100) (-10 -8 (-15 -2572 ((-1152) $)) (-15 -1788 ((-1152) $))))) (T -1036)) +((-2572 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1036)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1036))))) +(-13 (-1100) (-10 -8 (-15 -2572 ((-1152) $)) (-15 -1788 ((-1152) $)))) +((-3016 (((-3 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) "failed") |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) 32) (((-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575))) 29)) (-1963 (((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575))) 34) (((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-418 (-575))) 30) (((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) 33) (((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1|) 28)) (-3785 (((-655 (-418 (-575))) (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) 20)) (-2231 (((-418 (-575)) (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) 17))) +(((-1037 |#1|) (-10 -7 (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1|)) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-418 (-575)))) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575)))) (-15 -3016 ((-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575)))) (-15 -3016 ((-3 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) "failed") |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-15 -2231 ((-418 (-575)) (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-15 -3785 ((-655 (-418 (-575))) (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))))) (-1261 (-575))) (T -1037)) +((-3785 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-5 *2 (-655 (-418 (-575)))) (-5 *1 (-1037 *4)) (-4 *4 (-1261 (-575))))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) (-5 *2 (-418 (-575))) (-5 *1 (-1037 *4)) (-4 *4 (-1261 (-575))))) (-3016 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))))) (-3016 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) (-5 *4 (-418 (-575))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))))) (-1963 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-418 (-575))) (-5 *2 (-655 (-2 (|:| -2418 *5) (|:| -2435 *5)))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))) (-5 *4 (-2 (|:| -2418 *5) (|:| -2435 *5))))) (-1963 (*1 *2 *3 *4) (-12 (-5 *2 (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))) (-5 *4 (-418 (-575))))) (-1963 (*1 *2 *3 *4) (-12 (-5 *2 (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))) (-5 *4 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))))) (-1963 (*1 *2 *3) (-12 (-5 *2 (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575)))))) +(-10 -7 (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1|)) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-418 (-575)))) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575)))) (-15 -3016 ((-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575)))) (-15 -3016 ((-3 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) "failed") |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-15 -2231 ((-418 (-575)) (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-15 -3785 ((-655 (-418 (-575))) (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))))) +((-3016 (((-3 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) "failed") |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) 35) (((-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575))) 32)) (-1963 (((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575))) 30) (((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-418 (-575))) 26) (((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) 28) (((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1|) 24))) +(((-1038 |#1|) (-10 -7 (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1|)) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-418 (-575)))) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575)))) (-15 -3016 ((-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575)))) (-15 -3016 ((-3 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) "failed") |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))))) (-1261 (-418 (-575)))) (T -1038)) +((-3016 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575)))))) (-3016 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) (-5 *4 (-418 (-575))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 *4)))) (-1963 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-418 (-575))) (-5 *2 (-655 (-2 (|:| -2418 *5) (|:| -2435 *5)))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 *5)) (-5 *4 (-2 (|:| -2418 *5) (|:| -2435 *5))))) (-1963 (*1 *2 *3 *4) (-12 (-5 *4 (-418 (-575))) (-5 *2 (-655 (-2 (|:| -2418 *4) (|:| -2435 *4)))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 *4)))) (-1963 (*1 *2 *3 *4) (-12 (-5 *2 (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575)))) (-5 *4 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))))) (-1963 (*1 *2 *3) (-12 (-5 *2 (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575))))))) +(-10 -7 (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1|)) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-418 (-575)))) (-15 -1963 ((-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575)))) (-15 -3016 ((-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-418 (-575)))) (-15 -3016 ((-3 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) "failed") |#1| (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))) (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))))) +((-2615 (((-227) $) 6) (((-389) $) 9))) +(((-1039) (-141)) (T -1039)) +NIL +(-13 (-625 (-227)) (-625 (-389))) +(((-625 (-227)) . T) ((-625 (-389)) . T)) +((-1546 (((-655 (-389)) (-967 (-575)) (-389)) 28) (((-655 (-389)) (-967 (-418 (-575))) (-389)) 27)) (-2318 (((-655 (-655 (-389))) (-655 (-967 (-575))) (-655 (-1194)) (-389)) 37))) +(((-1040) (-10 -7 (-15 -1546 ((-655 (-389)) (-967 (-418 (-575))) (-389))) (-15 -1546 ((-655 (-389)) (-967 (-575)) (-389))) (-15 -2318 ((-655 (-655 (-389))) (-655 (-967 (-575))) (-655 (-1194)) (-389))))) (T -1040)) +((-2318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-655 (-1194))) (-5 *2 (-655 (-655 (-389)))) (-5 *1 (-1040)) (-5 *5 (-389)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-967 (-575))) (-5 *2 (-655 (-389))) (-5 *1 (-1040)) (-5 *4 (-389)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *2 (-655 (-389))) (-5 *1 (-1040)) (-5 *4 (-389))))) +(-10 -7 (-15 -1546 ((-655 (-389)) (-967 (-418 (-575))) (-389))) (-15 -1546 ((-655 (-389)) (-967 (-575)) (-389))) (-15 -2318 ((-655 (-655 (-389))) (-655 (-967 (-575))) (-655 (-1194)) (-389)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 75)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2473 (($ $) NIL) (($ $ (-936)) NIL) (($ (-418 (-575))) NIL) (($ (-575)) NIL)) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) 70)) (-3011 (($) NIL T CONST)) (-3700 (((-3 $ "failed") (-1190 $) (-936) (-873)) NIL) (((-3 $ "failed") (-1190 $) (-936)) 55)) (-2449 (((-3 (-418 (-575)) "failed") $) NIL (|has| (-418 (-575)) (-1055 (-418 (-575))))) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-575) "failed") $) NIL (-3765 (|has| (-418 (-575)) (-1055 (-575))) (|has| |#1| (-1055 (-575)))))) (-4399 (((-418 (-575)) $) 17 (|has| (-418 (-575)) (-1055 (-418 (-575))))) (((-418 (-575)) $) 17) ((|#1| $) 117) (((-575) $) NIL (-3765 (|has| (-418 (-575)) (-1055 (-575))) (|has| |#1| (-1055 (-575)))))) (-1408 (($ $ (-873)) 47)) (-1720 (($ $ (-873)) 48)) (-2802 (($ $ $) NIL)) (-2003 (((-418 (-575)) $ $) 21)) (-1747 (((-3 $ "failed") $) 88)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-4075 (((-112) $) 66)) (-1542 (((-112) $) NIL)) (-2931 (($ $ (-575)) NIL)) (-4087 (((-112) $) 69)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-3180 (((-3 (-1190 $) "failed") $) 83)) (-3122 (((-3 (-873) "failed") $) 82)) (-2865 (((-3 (-1190 $) "failed") $) 80)) (-3911 (((-3 (-1078 $ (-1190 $)) "failed") $) 78)) (-3887 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 89)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2353 (((-429 $) $) NIL)) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2883 (((-873) $) 87) (($ (-575)) NIL) (($ (-418 (-575))) NIL) (($ $) 63) (($ (-418 (-575))) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 119)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-3494 (((-418 (-575)) $ $) 27)) (-2251 (((-655 $) (-1190 $)) 61) (((-655 $) (-1190 (-418 (-575)))) NIL) (((-655 $) (-1190 (-575))) NIL) (((-655 $) (-967 $)) NIL) (((-655 $) (-967 (-418 (-575)))) NIL) (((-655 $) (-967 (-575))) NIL)) (-2629 (($ (-1078 $ (-1190 $)) (-873)) 46)) (-2705 (($ $) 22)) (-1996 (($) 32 T CONST)) (-2009 (($) 39 T CONST)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 76)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 24)) (-4038 (($ $ $) 37)) (-4028 (($ $) 38) (($ $ $) 74)) (-4016 (($ $ $) 112)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL) (($ $ (-418 (-575))) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 98) (($ $ $) 104) (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL) (($ (-575) $) 98) (($ $ (-575)) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1041 |#1|) (-13 (-1029) (-422 |#1|) (-38 |#1|) (-10 -8 (-15 -2629 ($ (-1078 $ (-1190 $)) (-873))) (-15 -3911 ((-3 (-1078 $ (-1190 $)) "failed") $)) (-15 -2003 ((-418 (-575)) $ $)))) (-13 (-859) (-373) (-1039))) (T -1041)) +((-2629 (*1 *1 *2 *3) (-12 (-5 *2 (-1078 (-1041 *4) (-1190 (-1041 *4)))) (-5 *3 (-873)) (-5 *1 (-1041 *4)) (-4 *4 (-13 (-859) (-373) (-1039))))) (-3911 (*1 *2 *1) (|partial| -12 (-5 *2 (-1078 (-1041 *3) (-1190 (-1041 *3)))) (-5 *1 (-1041 *3)) (-4 *3 (-13 (-859) (-373) (-1039))))) (-2003 (*1 *2 *1 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1041 *3)) (-4 *3 (-13 (-859) (-373) (-1039)))))) +(-13 (-1029) (-422 |#1|) (-38 |#1|) (-10 -8 (-15 -2629 ($ (-1078 $ (-1190 $)) (-873))) (-15 -3911 ((-3 (-1078 $ (-1190 $)) "failed") $)) (-15 -2003 ((-418 (-575)) $ $)))) +((-4362 (((-2 (|:| -2571 |#2|) (|:| -1576 (-655 |#1|))) |#2| (-655 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1042 |#1| |#2|) (-10 -7 (-15 -4362 (|#2| |#2| |#1|)) (-15 -4362 ((-2 (|:| -2571 |#2|) (|:| -1576 (-655 |#1|))) |#2| (-655 |#1|)))) (-373) (-667 |#1|)) (T -1042)) +((-4362 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-5 *2 (-2 (|:| -2571 *3) (|:| -1576 (-655 *5)))) (-5 *1 (-1042 *5 *3)) (-5 *4 (-655 *5)) (-4 *3 (-667 *5)))) (-4362 (*1 *2 *2 *3) (-12 (-4 *3 (-373)) (-5 *1 (-1042 *3 *2)) (-4 *2 (-667 *3))))) +(-10 -7 (-15 -4362 (|#2| |#2| |#1|)) (-15 -4362 ((-2 (|:| -2571 |#2|) (|:| -1576 (-655 |#1|))) |#2| (-655 |#1|)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4101 ((|#1| $ |#1|) 14)) (-3054 ((|#1| $ |#1|) 12)) (-3375 (($ |#1|) 10)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2070 ((|#1| $) 11)) (-1523 ((|#1| $) 13)) (-2883 (((-873) $) 21 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3914 (((-112) $ $) 9))) +(((-1043 |#1|) (-13 (-1235) (-10 -8 (-15 -3375 ($ |#1|)) (-15 -2070 (|#1| $)) (-15 -3054 (|#1| $ |#1|)) (-15 -1523 (|#1| $)) (-15 -4101 (|#1| $ |#1|)) (-15 -3914 ((-112) $ $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|))) (-1235)) (T -1043)) +((-3375 (*1 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) (-2070 (*1 *2 *1) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) (-3054 (*1 *2 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) (-1523 (*1 *2 *1) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) (-4101 (*1 *2 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) (-3914 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1043 *3)) (-4 *3 (-1235))))) +(-13 (-1235) (-10 -8 (-15 -3375 ($ |#1|)) (-15 -2070 (|#1| $)) (-15 -3054 (|#1| $ |#1|)) (-15 -1523 (|#1| $)) (-15 -4101 (|#1| $ |#1|)) (-15 -3914 ((-112) $ $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|))) +((-2861 (((-112) $ $) NIL)) (-3303 (((-655 (-2 (|:| -2458 $) (|:| -2978 (-655 |#4|)))) (-655 |#4|)) NIL)) (-1740 (((-655 $) (-655 |#4|)) 118) (((-655 $) (-655 |#4|) (-112)) 119) (((-655 $) (-655 |#4|) (-112) (-112)) 117) (((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1606 (((-655 |#3|) $) NIL)) (-2210 (((-112) $) NIL)) (-3036 (((-112) $) NIL (|has| |#1| (-567)))) (-3309 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2749 ((|#4| |#4| $) NIL)) (-2058 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 112)) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#3|) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3985 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 66)) (-3011 (($) NIL T CONST)) (-1437 (((-112) $) 29 (|has| |#1| (-567)))) (-2365 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4289 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1812 (((-112) $) NIL (|has| |#1| (-567)))) (-3376 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3629 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-3563 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 |#4|)) NIL)) (-4399 (($ (-655 |#4|)) NIL)) (-1975 (((-3 $ "failed") $) 45)) (-2690 ((|#4| |#4| $) 69)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3633 (($ |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-567)))) (-2249 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4183 ((|#4| |#4| $) NIL)) (-2308 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2029 (((-2 (|:| -2458 (-655 |#4|)) (|:| -2978 (-655 |#4|))) $) NIL)) (-4355 (((-112) |#4| $) NIL)) (-1718 (((-112) |#4| $) NIL)) (-2986 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2675 (((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112)) 133)) (-4001 (((-655 |#4|) $) 18 (|has| $ (-6 -4460)))) (-2548 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3838 ((|#3| $) 38)) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#4|) $) 19 (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-2847 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) 23)) (-1444 (((-655 |#3|) $) NIL)) (-1808 (((-112) |#3| $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-2053 (((-3 |#4| (-655 $)) |#4| |#4| $) NIL)) (-2896 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 110)) (-3653 (((-3 |#4| "failed") $) 42)) (-2463 (((-655 $) |#4| $) 93)) (-2192 (((-3 (-112) (-655 $)) |#4| $) NIL)) (-1658 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-1479 (((-655 $) |#4| $) 115) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) 116) (((-655 $) |#4| (-655 $)) NIL)) (-4284 (((-655 $) (-655 |#4|) (-112) (-112) (-112)) 128)) (-2233 (($ |#4| $) 82) (($ (-655 |#4|) $) 83) (((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-1590 (((-655 |#4|) $) NIL)) (-1411 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4367 ((|#4| |#4| $) NIL)) (-2687 (((-112) $ $) NIL)) (-4395 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-3188 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2973 ((|#4| |#4| $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 (((-3 |#4| "failed") $) 40)) (-3704 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2500 (((-3 $ "failed") $ |#4|) 59)) (-4276 (($ $ |#4|) NIL) (((-655 $) |#4| $) 95) (((-655 $) |#4| (-655 $)) NIL) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) 89)) (-3207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 17)) (-1938 (($) 14)) (-2645 (((-782) $) NIL)) (-3925 (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) 13)) (-2615 (((-547) $) NIL (|has| |#4| (-625 (-547))))) (-2894 (($ (-655 |#4|)) 22)) (-1879 (($ $ |#3|) 52)) (-3427 (($ $ |#3|) 54)) (-2921 (($ $) NIL)) (-3608 (($ $ |#3|) NIL)) (-2883 (((-873) $) 35) (((-655 |#4|) $) 46)) (-3706 (((-782) $) NIL (|has| |#3| (-378)))) (-4400 (((-112) $ $) NIL)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2994 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) NIL)) (-3556 (((-655 $) |#4| $) 92) (((-655 $) |#4| (-655 $)) NIL) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) NIL)) (-3771 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-1359 (((-655 |#3|) $) NIL)) (-2722 (((-112) |#4| $) NIL)) (-1591 (((-112) |#3| $) 65)) (-3914 (((-112) $ $) NIL)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1044 |#1| |#2| |#3| |#4|) (-13 (-1088 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2233 ((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1740 ((-655 $) (-655 |#4|) (-112) (-112))) (-15 -1740 ((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112))) (-15 -4284 ((-655 $) (-655 |#4|) (-112) (-112) (-112))) (-15 -2675 ((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112))))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -1044)) +((-2233 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1044 *5 *6 *7 *3))) (-5 *1 (-1044 *5 *6 *7 *3)) (-4 *3 (-1082 *5 *6 *7)))) (-1740 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-1740 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-4284 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-2675 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-655 *8)) (|:| |towers| (-655 (-1044 *5 *6 *7 *8))))) (-5 *1 (-1044 *5 *6 *7 *8)) (-5 *3 (-655 *8))))) +(-13 (-1088 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2233 ((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1740 ((-655 $) (-655 |#4|) (-112) (-112))) (-15 -1740 ((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112))) (-15 -4284 ((-655 $) (-655 |#4|) (-112) (-112) (-112))) (-15 -2675 ((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112))))) +((-2277 (((-655 (-700 |#1|)) (-655 (-700 |#1|))) 70) (((-700 |#1|) (-700 |#1|)) 69) (((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-655 (-700 |#1|))) 68) (((-700 |#1|) (-700 |#1|) (-700 |#1|)) 65)) (-2525 (((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936)) 63) (((-700 |#1|) (-700 |#1|) (-936)) 62)) (-4116 (((-655 (-700 (-575))) (-655 (-655 (-575)))) 81) (((-655 (-700 (-575))) (-655 (-920 (-575))) (-575)) 80) (((-700 (-575)) (-655 (-575))) 77) (((-700 (-575)) (-920 (-575)) (-575)) 75)) (-1840 (((-700 (-967 |#1|)) (-782)) 95)) (-3268 (((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936)) 49 (|has| |#1| (-6 (-4462 "*")))) (((-700 |#1|) (-700 |#1|) (-936)) 47 (|has| |#1| (-6 (-4462 "*")))))) +(((-1045 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4462 "*"))) (-15 -3268 ((-700 |#1|) (-700 |#1|) (-936))) |%noBranch|) (IF (|has| |#1| (-6 (-4462 "*"))) (-15 -3268 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936))) |%noBranch|) (-15 -1840 ((-700 (-967 |#1|)) (-782))) (-15 -2525 ((-700 |#1|) (-700 |#1|) (-936))) (-15 -2525 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936))) (-15 -2277 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2277 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -2277 ((-700 |#1|) (-700 |#1|))) (-15 -2277 ((-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -4116 ((-700 (-575)) (-920 (-575)) (-575))) (-15 -4116 ((-700 (-575)) (-655 (-575)))) (-15 -4116 ((-655 (-700 (-575))) (-655 (-920 (-575))) (-575))) (-15 -4116 ((-655 (-700 (-575))) (-655 (-655 (-575)))))) (-1066)) (T -1045)) +((-4116 (*1 *2 *3) (-12 (-5 *3 (-655 (-655 (-575)))) (-5 *2 (-655 (-700 (-575)))) (-5 *1 (-1045 *4)) (-4 *4 (-1066)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-920 (-575)))) (-5 *4 (-575)) (-5 *2 (-655 (-700 *4))) (-5 *1 (-1045 *5)) (-4 *5 (-1066)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-1045 *4)) (-4 *4 (-1066)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-920 (-575))) (-5 *4 (-575)) (-5 *2 (-700 *4)) (-5 *1 (-1045 *5)) (-4 *5 (-1066)))) (-2277 (*1 *2 *2) (-12 (-5 *2 (-655 (-700 *3))) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))) (-2277 (*1 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))) (-2277 (*1 *2 *2 *2) (-12 (-5 *2 (-655 (-700 *3))) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))) (-2277 (*1 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))) (-2525 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-700 *4))) (-5 *3 (-936)) (-4 *4 (-1066)) (-5 *1 (-1045 *4)))) (-2525 (*1 *2 *2 *3) (-12 (-5 *2 (-700 *4)) (-5 *3 (-936)) (-4 *4 (-1066)) (-5 *1 (-1045 *4)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-700 (-967 *4))) (-5 *1 (-1045 *4)) (-4 *4 (-1066)))) (-3268 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-700 *4))) (-5 *3 (-936)) (|has| *4 (-6 (-4462 "*"))) (-4 *4 (-1066)) (-5 *1 (-1045 *4)))) (-3268 (*1 *2 *2 *3) (-12 (-5 *2 (-700 *4)) (-5 *3 (-936)) (|has| *4 (-6 (-4462 "*"))) (-4 *4 (-1066)) (-5 *1 (-1045 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4462 "*"))) (-15 -3268 ((-700 |#1|) (-700 |#1|) (-936))) |%noBranch|) (IF (|has| |#1| (-6 (-4462 "*"))) (-15 -3268 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936))) |%noBranch|) (-15 -1840 ((-700 (-967 |#1|)) (-782))) (-15 -2525 ((-700 |#1|) (-700 |#1|) (-936))) (-15 -2525 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936))) (-15 -2277 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2277 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -2277 ((-700 |#1|) (-700 |#1|))) (-15 -2277 ((-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -4116 ((-700 (-575)) (-920 (-575)) (-575))) (-15 -4116 ((-700 (-575)) (-655 (-575)))) (-15 -4116 ((-655 (-700 (-575))) (-655 (-920 (-575))) (-575))) (-15 -4116 ((-655 (-700 (-575))) (-655 (-655 (-575)))))) +((-4181 (((-700 |#1|) (-655 (-700 |#1|)) (-1285 |#1|)) 70 (|has| |#1| (-316)))) (-3436 (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 (-1285 |#1|))) 110 (|has| |#1| (-373))) (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 |#1|)) 117 (|has| |#1| (-373)))) (-3851 (((-1285 |#1|) (-655 (-1285 |#1|)) (-575)) 135 (-12 (|has| |#1| (-373)) (|has| |#1| (-378))))) (-2293 (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-936)) 123 (-12 (|has| |#1| (-373)) (|has| |#1| (-378)))) (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112)) 122 (-12 (|has| |#1| (-373)) (|has| |#1| (-378)))) (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|))) 121 (-12 (|has| |#1| (-373)) (|has| |#1| (-378)))) (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112) (-575) (-575)) 120 (-12 (|has| |#1| (-373)) (|has| |#1| (-378))))) (-2531 (((-112) (-655 (-700 |#1|))) 103 (|has| |#1| (-373))) (((-112) (-655 (-700 |#1|)) (-575)) 106 (|has| |#1| (-373)))) (-2613 (((-1285 (-1285 |#1|)) (-655 (-700 |#1|)) (-1285 |#1|)) 67 (|has| |#1| (-316)))) (-2205 (((-700 |#1|) (-655 (-700 |#1|)) (-700 |#1|)) 47)) (-3654 (((-700 |#1|) (-1285 (-1285 |#1|))) 40)) (-3983 (((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-575)) 94 (|has| |#1| (-373))) (((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|))) 93 (|has| |#1| (-373))) (((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-112) (-575)) 101 (|has| |#1| (-373))))) +(((-1046 |#1|) (-10 -7 (-15 -3654 ((-700 |#1|) (-1285 (-1285 |#1|)))) (-15 -2205 ((-700 |#1|) (-655 (-700 |#1|)) (-700 |#1|))) (IF (|has| |#1| (-316)) (PROGN (-15 -2613 ((-1285 (-1285 |#1|)) (-655 (-700 |#1|)) (-1285 |#1|))) (-15 -4181 ((-700 |#1|) (-655 (-700 |#1|)) (-1285 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -3983 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-112) (-575))) (-15 -3983 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -3983 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-575))) (-15 -2531 ((-112) (-655 (-700 |#1|)) (-575))) (-15 -2531 ((-112) (-655 (-700 |#1|)))) (-15 -3436 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 |#1|))) (-15 -3436 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 (-1285 |#1|))))) |%noBranch|) (IF (|has| |#1| (-378)) (IF (|has| |#1| (-373)) (PROGN (-15 -2293 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112) (-575) (-575))) (-15 -2293 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)))) (-15 -2293 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112))) (-15 -2293 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-936))) (-15 -3851 ((-1285 |#1|) (-655 (-1285 |#1|)) (-575)))) |%noBranch|) |%noBranch|)) (-1066)) (T -1046)) +((-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-1285 *5))) (-5 *4 (-575)) (-5 *2 (-1285 *5)) (-5 *1 (-1046 *5)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066)))) (-2293 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066)) (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-655 (-700 *5))))) (-2293 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066)) (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-655 (-700 *5))))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-373)) (-4 *4 (-378)) (-4 *4 (-1066)) (-5 *2 (-655 (-655 (-700 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-655 (-700 *4))))) (-2293 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-575)) (-4 *6 (-373)) (-4 *6 (-378)) (-4 *6 (-1066)) (-5 *2 (-655 (-655 (-700 *6)))) (-5 *1 (-1046 *6)) (-5 *3 (-655 (-700 *6))))) (-3436 (*1 *2 *3 *4) (-12 (-5 *4 (-1285 (-1285 *5))) (-4 *5 (-373)) (-4 *5 (-1066)) (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-655 (-700 *5))))) (-3436 (*1 *2 *3 *4) (-12 (-5 *4 (-1285 *5)) (-4 *5 (-373)) (-4 *5 (-1066)) (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-655 (-700 *5))))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-655 (-700 *4))) (-4 *4 (-373)) (-4 *4 (-1066)) (-5 *2 (-112)) (-5 *1 (-1046 *4)))) (-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-575)) (-4 *5 (-373)) (-4 *5 (-1066)) (-5 *2 (-112)) (-5 *1 (-1046 *5)))) (-3983 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-575)) (-5 *2 (-700 *5)) (-5 *1 (-1046 *5)) (-4 *5 (-373)) (-4 *5 (-1066)))) (-3983 (*1 *2 *3 *3) (-12 (-5 *3 (-655 (-700 *4))) (-5 *2 (-700 *4)) (-5 *1 (-1046 *4)) (-4 *4 (-373)) (-4 *4 (-1066)))) (-3983 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-655 (-700 *6))) (-5 *4 (-112)) (-5 *5 (-575)) (-5 *2 (-700 *6)) (-5 *1 (-1046 *6)) (-4 *6 (-373)) (-4 *6 (-1066)))) (-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-1285 *5)) (-4 *5 (-316)) (-4 *5 (-1066)) (-5 *2 (-700 *5)) (-5 *1 (-1046 *5)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-700 *5))) (-4 *5 (-316)) (-4 *5 (-1066)) (-5 *2 (-1285 (-1285 *5))) (-5 *1 (-1046 *5)) (-5 *4 (-1285 *5)))) (-2205 (*1 *2 *3 *2) (-12 (-5 *3 (-655 (-700 *4))) (-5 *2 (-700 *4)) (-4 *4 (-1066)) (-5 *1 (-1046 *4)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-1285 (-1285 *4))) (-4 *4 (-1066)) (-5 *2 (-700 *4)) (-5 *1 (-1046 *4))))) +(-10 -7 (-15 -3654 ((-700 |#1|) (-1285 (-1285 |#1|)))) (-15 -2205 ((-700 |#1|) (-655 (-700 |#1|)) (-700 |#1|))) (IF (|has| |#1| (-316)) (PROGN (-15 -2613 ((-1285 (-1285 |#1|)) (-655 (-700 |#1|)) (-1285 |#1|))) (-15 -4181 ((-700 |#1|) (-655 (-700 |#1|)) (-1285 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -3983 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-112) (-575))) (-15 -3983 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -3983 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-575))) (-15 -2531 ((-112) (-655 (-700 |#1|)) (-575))) (-15 -2531 ((-112) (-655 (-700 |#1|)))) (-15 -3436 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 |#1|))) (-15 -3436 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 (-1285 |#1|))))) |%noBranch|) (IF (|has| |#1| (-378)) (IF (|has| |#1| (-373)) (PROGN (-15 -2293 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112) (-575) (-575))) (-15 -2293 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)))) (-15 -2293 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112))) (-15 -2293 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-936))) (-15 -3851 ((-1285 |#1|) (-655 (-1285 |#1|)) (-575)))) |%noBranch|) |%noBranch|)) +((-3996 ((|#1| (-936) |#1|) 18))) +(((-1047 |#1|) (-10 -7 (-15 -3996 (|#1| (-936) |#1|))) (-13 (-1117) (-10 -8 (-15 -4016 ($ $ $))))) (T -1047)) +((-3996 (*1 *2 *3 *2) (-12 (-5 *3 (-936)) (-5 *1 (-1047 *2)) (-4 *2 (-13 (-1117) (-10 -8 (-15 -4016 ($ $ $)))))))) +(-10 -7 (-15 -3996 (|#1| (-936) |#1|))) +((-2018 (((-655 (-2 (|:| |radval| (-325 (-575))) (|:| |radmult| (-575)) (|:| |radvect| (-655 (-700 (-325 (-575))))))) (-700 (-418 (-967 (-575))))) 67)) (-3901 (((-655 (-700 (-325 (-575)))) (-325 (-575)) (-700 (-418 (-967 (-575))))) 52)) (-2674 (((-655 (-325 (-575))) (-700 (-418 (-967 (-575))))) 45)) (-4433 (((-655 (-700 (-325 (-575)))) (-700 (-418 (-967 (-575))))) 85)) (-3847 (((-700 (-325 (-575))) (-700 (-325 (-575)))) 38)) (-2635 (((-655 (-700 (-325 (-575)))) (-655 (-700 (-325 (-575))))) 74)) (-2080 (((-3 (-700 (-325 (-575))) "failed") (-700 (-418 (-967 (-575))))) 82))) +(((-1048) (-10 -7 (-15 -2018 ((-655 (-2 (|:| |radval| (-325 (-575))) (|:| |radmult| (-575)) (|:| |radvect| (-655 (-700 (-325 (-575))))))) (-700 (-418 (-967 (-575)))))) (-15 -3901 ((-655 (-700 (-325 (-575)))) (-325 (-575)) (-700 (-418 (-967 (-575)))))) (-15 -2674 ((-655 (-325 (-575))) (-700 (-418 (-967 (-575)))))) (-15 -2080 ((-3 (-700 (-325 (-575))) "failed") (-700 (-418 (-967 (-575)))))) (-15 -3847 ((-700 (-325 (-575))) (-700 (-325 (-575))))) (-15 -2635 ((-655 (-700 (-325 (-575)))) (-655 (-700 (-325 (-575)))))) (-15 -4433 ((-655 (-700 (-325 (-575)))) (-700 (-418 (-967 (-575)))))))) (T -1048)) +((-4433 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-967 (-575))))) (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-700 (-325 (-575)))) (-5 *1 (-1048)))) (-2080 (*1 *2 *3) (|partial| -12 (-5 *3 (-700 (-418 (-967 (-575))))) (-5 *2 (-700 (-325 (-575)))) (-5 *1 (-1048)))) (-2674 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-967 (-575))))) (-5 *2 (-655 (-325 (-575)))) (-5 *1 (-1048)))) (-3901 (*1 *2 *3 *4) (-12 (-5 *4 (-700 (-418 (-967 (-575))))) (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048)) (-5 *3 (-325 (-575))))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-967 (-575))))) (-5 *2 (-655 (-2 (|:| |radval| (-325 (-575))) (|:| |radmult| (-575)) (|:| |radvect| (-655 (-700 (-325 (-575)))))))) (-5 *1 (-1048))))) +(-10 -7 (-15 -2018 ((-655 (-2 (|:| |radval| (-325 (-575))) (|:| |radmult| (-575)) (|:| |radvect| (-655 (-700 (-325 (-575))))))) (-700 (-418 (-967 (-575)))))) (-15 -3901 ((-655 (-700 (-325 (-575)))) (-325 (-575)) (-700 (-418 (-967 (-575)))))) (-15 -2674 ((-655 (-325 (-575))) (-700 (-418 (-967 (-575)))))) (-15 -2080 ((-3 (-700 (-325 (-575))) "failed") (-700 (-418 (-967 (-575)))))) (-15 -3847 ((-700 (-325 (-575))) (-700 (-325 (-575))))) (-15 -2635 ((-655 (-700 (-325 (-575)))) (-655 (-700 (-325 (-575)))))) (-15 -4433 ((-655 (-700 (-325 (-575)))) (-700 (-418 (-967 (-575))))))) +((-1925 ((|#1| |#1| (-936)) 18))) +(((-1049 |#1|) (-10 -7 (-15 -1925 (|#1| |#1| (-936)))) (-13 (-1117) (-10 -8 (-15 * ($ $ $))))) (T -1049)) +((-1925 (*1 *2 *2 *3) (-12 (-5 *3 (-936)) (-5 *1 (-1049 *2)) (-4 *2 (-13 (-1117) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -1925 (|#1| |#1| (-936)))) +((-2883 ((|#1| (-321)) 11) (((-1290) |#1|) 9))) +(((-1050 |#1|) (-10 -7 (-15 -2883 ((-1290) |#1|)) (-15 -2883 (|#1| (-321)))) (-1235)) (T -1050)) +((-2883 (*1 *2 *3) (-12 (-5 *3 (-321)) (-5 *1 (-1050 *2)) (-4 *2 (-1235)))) (-2883 (*1 *2 *3) (-12 (-5 *2 (-1290)) (-5 *1 (-1050 *3)) (-4 *3 (-1235))))) +(-10 -7 (-15 -2883 ((-1290) |#1|)) (-15 -2883 (|#1| (-321)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2308 (($ |#4|) 25)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) NIL)) (-2295 ((|#4| $) 27)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 46) (($ (-575)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3759 (((-782)) 43 T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 21 T CONST)) (-2009 (($) 23 T CONST)) (-3914 (((-112) $ $) 40)) (-4028 (($ $) 31) (($ $ $) NIL)) (-4016 (($ $ $) 29)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1051 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2308 ($ |#4|)) (-15 -2883 ($ |#4|)) (-15 -2295 (|#4| $)))) (-373) (-804) (-861) (-964 |#1| |#2| |#3|) (-655 |#4|)) (T -1051)) +((-2308 (*1 *1 *2) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1051 *3 *4 *5 *2 *6)) (-4 *2 (-964 *3 *4 *5)) (-14 *6 (-655 *2)))) (-2883 (*1 *1 *2) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1051 *3 *4 *5 *2 *6)) (-4 *2 (-964 *3 *4 *5)) (-14 *6 (-655 *2)))) (-2295 (*1 *2 *1) (-12 (-4 *2 (-964 *3 *4 *5)) (-5 *1 (-1051 *3 *4 *5 *2 *6)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-14 *6 (-655 *2))))) +(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2308 ($ |#4|)) (-15 -2883 ($ |#4|)) (-15 -2295 (|#4| $)))) +((-2861 (((-112) $ $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2297 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-4161 (((-1290) $ (-1194) (-1194)) NIL (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-2427 (((-112) (-112)) 43)) (-3751 (((-112) (-112)) 42)) (-3054 (((-52) $ (-1194) (-52)) NIL)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-1399 (((-3 (-52) "failed") (-1194) $) NIL)) (-3011 (($) NIL T CONST)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-4404 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-3 (-52) "failed") (-1194) $) NIL)) (-3633 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-2859 (((-52) $ (-1194) (-52)) NIL (|has| $ (-6 -4461)))) (-2788 (((-52) $ (-1194)) NIL)) (-4001 (((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-1194) $) NIL (|has| (-1194) (-861)))) (-3955 (((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-3197 (((-1194) $) NIL (|has| (-1194) (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2001 (((-655 (-1194)) $) 37)) (-3308 (((-112) (-1194) $) NIL)) (-4012 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL)) (-3862 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL)) (-4310 (((-655 (-1194)) $) NIL)) (-2969 (((-112) (-1194) $) NIL)) (-3912 (((-1137) $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-1961 (((-52) $) NIL (|has| (-1194) (-861)))) (-3704 (((-3 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) "failed") (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL)) (-3954 (($ $ (-52)) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-303 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-52)) (-655 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-303 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-655 (-303 (-52)))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-1691 (((-655 (-52)) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 (((-52) $ (-1194)) 39) (((-52) $ (-1194) (-52)) NIL)) (-3601 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-782) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117)))) (((-782) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-2883 (((-873) $) 41 (-3765 (|has| (-52) (-624 (-873))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-624 (-873)))))) (-4400 (((-112) $ $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1052) (-13 (-1211 (-1194) (-52)) (-10 -7 (-15 -2427 ((-112) (-112))) (-15 -3751 ((-112) (-112))) (-6 -4460)))) (T -1052)) +((-2427 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1052)))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1052))))) +(-13 (-1211 (-1194) (-52)) (-10 -7 (-15 -2427 ((-112) (-112))) (-15 -3751 ((-112) (-112))) (-6 -4460))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3829 (((-1152) $) 9)) (-2883 (((-873) $) 15) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1053) (-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $))))) (T -1053)) +((-3829 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1053))))) +(-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $)))) +((-4399 ((|#2| $) 10))) +(((-1054 |#1| |#2|) (-10 -8 (-15 -4399 (|#2| |#1|))) (-1055 |#2|) (-1235)) (T -1054)) +NIL +(-10 -8 (-15 -4399 (|#2| |#1|))) +((-2449 (((-3 |#1| "failed") $) 9)) (-4399 ((|#1| $) 8)) (-2883 (($ |#1|) 6))) +(((-1055 |#1|) (-141) (-1235)) (T -1055)) +((-2449 (*1 *2 *1) (|partial| -12 (-4 *1 (-1055 *2)) (-4 *2 (-1235)))) (-4399 (*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-1235))))) +(-13 (-627 |t#1|) (-10 -8 (-15 -2449 ((-3 |t#1| "failed") $)) (-15 -4399 (|t#1| $)))) +(((-627 |#1|) . T)) +((-4153 (((-655 (-655 (-303 (-418 (-967 |#2|))))) (-655 (-967 |#2|)) (-655 (-1194))) 38))) +(((-1056 |#1| |#2|) (-10 -7 (-15 -4153 ((-655 (-655 (-303 (-418 (-967 |#2|))))) (-655 (-967 |#2|)) (-655 (-1194))))) (-567) (-13 (-567) (-1055 |#1|))) (T -1056)) +((-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194))) (-4 *6 (-13 (-567) (-1055 *5))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *6)))))) (-5 *1 (-1056 *5 *6))))) +(-10 -7 (-15 -4153 ((-655 (-655 (-303 (-418 (-967 |#2|))))) (-655 (-967 |#2|)) (-655 (-1194))))) +((-1492 (((-389)) 17)) (-2160 (((-1 (-389)) (-389) (-389)) 22)) (-1889 (((-1 (-389)) (-782)) 48)) (-3229 (((-389)) 37)) (-1500 (((-1 (-389)) (-389) (-389)) 38)) (-1834 (((-389)) 29)) (-3518 (((-1 (-389)) (-389)) 30)) (-1600 (((-389) (-782)) 43)) (-1865 (((-1 (-389)) (-782)) 44)) (-3029 (((-1 (-389)) (-782) (-782)) 47)) (-3413 (((-1 (-389)) (-782) (-782)) 45))) +(((-1057) (-10 -7 (-15 -1492 ((-389))) (-15 -3229 ((-389))) (-15 -1834 ((-389))) (-15 -1600 ((-389) (-782))) (-15 -2160 ((-1 (-389)) (-389) (-389))) (-15 -1500 ((-1 (-389)) (-389) (-389))) (-15 -3518 ((-1 (-389)) (-389))) (-15 -1865 ((-1 (-389)) (-782))) (-15 -3413 ((-1 (-389)) (-782) (-782))) (-15 -3029 ((-1 (-389)) (-782) (-782))) (-15 -1889 ((-1 (-389)) (-782))))) (T -1057)) +((-1889 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))) (-3029 (*1 *2 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))) (-3413 (*1 *2 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))) (-1865 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))) (-3518 (*1 *2 *3) (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389)))) (-1500 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389)))) (-2160 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-389)) (-5 *1 (-1057)))) (-1834 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057)))) (-3229 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057)))) (-1492 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057))))) +(-10 -7 (-15 -1492 ((-389))) (-15 -3229 ((-389))) (-15 -1834 ((-389))) (-15 -1600 ((-389) (-782))) (-15 -2160 ((-1 (-389)) (-389) (-389))) (-15 -1500 ((-1 (-389)) (-389) (-389))) (-15 -3518 ((-1 (-389)) (-389))) (-15 -1865 ((-1 (-389)) (-782))) (-15 -3413 ((-1 (-389)) (-782) (-782))) (-15 -3029 ((-1 (-389)) (-782) (-782))) (-15 -1889 ((-1 (-389)) (-782)))) +((-2353 (((-429 |#1|) |#1|) 33))) +(((-1058 |#1|) (-10 -7 (-15 -2353 ((-429 |#1|) |#1|))) (-1261 (-418 (-967 (-575))))) (T -1058)) +((-2353 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-1261 (-418 (-967 (-575)))))))) +(-10 -7 (-15 -2353 ((-429 |#1|) |#1|))) +((-4312 (((-418 (-429 (-967 |#1|))) (-418 (-967 |#1|))) 14))) +(((-1059 |#1|) (-10 -7 (-15 -4312 ((-418 (-429 (-967 |#1|))) (-418 (-967 |#1|))))) (-316)) (T -1059)) +((-4312 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-316)) (-5 *2 (-418 (-429 (-967 *4)))) (-5 *1 (-1059 *4))))) +(-10 -7 (-15 -4312 ((-418 (-429 (-967 |#1|))) (-418 (-967 |#1|))))) +((-1606 (((-655 (-1194)) (-418 (-967 |#1|))) 17)) (-3466 (((-418 (-1190 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194)) 24)) (-2433 (((-418 (-967 |#1|)) (-418 (-1190 (-418 (-967 |#1|)))) (-1194)) 26)) (-3976 (((-3 (-1194) "failed") (-418 (-967 |#1|))) 20)) (-3048 (((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-303 (-418 (-967 |#1|))))) 32) (((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|)))) 33) (((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-1194)) (-655 (-418 (-967 |#1|)))) 28) (((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|))) 29)) (-2883 (((-418 (-967 |#1|)) |#1|) 11))) +(((-1060 |#1|) (-10 -7 (-15 -1606 ((-655 (-1194)) (-418 (-967 |#1|)))) (-15 -3976 ((-3 (-1194) "failed") (-418 (-967 |#1|)))) (-15 -3466 ((-418 (-1190 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194))) (-15 -2433 ((-418 (-967 |#1|)) (-418 (-1190 (-418 (-967 |#1|)))) (-1194))) (-15 -3048 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|)))) (-15 -3048 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-1194)) (-655 (-418 (-967 |#1|))))) (-15 -3048 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -3048 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -2883 ((-418 (-967 |#1|)) |#1|))) (-567)) (T -1060)) +((-2883 (*1 *2 *3) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-1060 *3)) (-4 *3 (-567)))) (-3048 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-303 (-418 (-967 *4))))) (-5 *2 (-418 (-967 *4))) (-4 *4 (-567)) (-5 *1 (-1060 *4)))) (-3048 (*1 *2 *2 *3) (-12 (-5 *3 (-303 (-418 (-967 *4)))) (-5 *2 (-418 (-967 *4))) (-4 *4 (-567)) (-5 *1 (-1060 *4)))) (-3048 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-655 (-1194))) (-5 *4 (-655 (-418 (-967 *5)))) (-5 *2 (-418 (-967 *5))) (-4 *5 (-567)) (-5 *1 (-1060 *5)))) (-3048 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-418 (-967 *4))) (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-1060 *4)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-1190 (-418 (-967 *5))))) (-5 *4 (-1194)) (-5 *2 (-418 (-967 *5))) (-5 *1 (-1060 *5)) (-4 *5 (-567)))) (-3466 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-567)) (-5 *2 (-418 (-1190 (-418 (-967 *5))))) (-5 *1 (-1060 *5)) (-5 *3 (-418 (-967 *5))))) (-3976 (*1 *2 *3) (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-5 *2 (-1194)) (-5 *1 (-1060 *4)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-5 *2 (-655 (-1194))) (-5 *1 (-1060 *4))))) +(-10 -7 (-15 -1606 ((-655 (-1194)) (-418 (-967 |#1|)))) (-15 -3976 ((-3 (-1194) "failed") (-418 (-967 |#1|)))) (-15 -3466 ((-418 (-1190 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194))) (-15 -2433 ((-418 (-967 |#1|)) (-418 (-1190 (-418 (-967 |#1|)))) (-1194))) (-15 -3048 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|)))) (-15 -3048 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-1194)) (-655 (-418 (-967 |#1|))))) (-15 -3048 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -3048 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -2883 ((-418 (-967 |#1|)) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3011 (($) 18 T CONST)) (-3979 ((|#1| $) 23)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4171 ((|#1| $) 22)) (-2940 ((|#1|) 20 T CONST)) (-2883 (((-873) $) 12)) (-2710 ((|#1| $) 21)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16))) +(((-1061 |#1|) (-141) (-23)) (T -1061)) +((-3979 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))) (-4171 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))) (-2940 (*1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3979 (|t#1| $)) (-15 -4171 (|t#1| $)) (-15 -2710 (|t#1| $)) (-15 -2940 (|t#1|) -3738))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2553 (($) 25 T CONST)) (-3011 (($) 18 T CONST)) (-3979 ((|#1| $) 23)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4171 ((|#1| $) 22)) (-2940 ((|#1|) 20 T CONST)) (-2883 (((-873) $) 12)) (-2710 ((|#1| $) 21)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16))) (((-1062 |#1|) (-141) (-23)) (T -1062)) -((-2914 (*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))) (-2883 (*1 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -2914 (|t#1| $)) (-15 -2903 (|t#1| $)) (-15 -2894 (|t#1| $)) (-15 -2883 (|t#1|) -3739))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-2926 (($) 25 T CONST)) (-2473 (($) 18 T CONST)) (-2914 ((|#1| $) 23)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2903 ((|#1| $) 22)) (-2883 ((|#1|) 20 T CONST)) (-2884 (((-874) $) 12)) (-2894 ((|#1| $) 21)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16))) -(((-1063 |#1|) (-141) (-23)) (T -1063)) -((-2926 (*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) -(-13 (-1062 |t#1|) (-10 -8 (-15 -2926 ($) -3739))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1062 |#1|) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-3289 (((-656 (-2 (|:| -2459 $) (|:| -2980 (-656 (-792 |#1| (-876 |#2|)))))) (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-3299 (((-656 $) (-656 (-792 |#1| (-876 |#2|)))) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112)) NIL)) (-1607 (((-656 (-876 |#2|)) $) NIL)) (-1470 (((-112) $) NIL)) (-1374 (((-112) $) NIL (|has| |#1| (-568)))) (-3405 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-3358 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-2944 (((-656 (-2 (|:| |val| (-792 |#1| (-876 |#2|))) (|:| -4271 $))) (-792 |#1| (-876 |#2|)) $) NIL)) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ (-876 |#2|)) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3985 (($ (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 (-792 |#1| (-876 |#2|)) "failed") $ (-876 |#2|)) NIL)) (-2473 (($) NIL T CONST)) (-1425 (((-112) $) NIL (|has| |#1| (-568)))) (-1445 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1435 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1457 (((-112) $) NIL (|has| |#1| (-568)))) (-3367 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-1384 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)))) (-1394 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-4401 (($ (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-1976 (((-3 $ "failed") $) NIL)) (-3328 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1118))))) (-3634 (($ (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (($ (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-792 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)))) (-3414 (((-112) (-792 |#1| (-876 |#2|)) $ (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-3308 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-2309 (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $ (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $ (-792 |#1| (-876 |#2|))) NIL (|has| $ (-6 -4461))) (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-3435 (((-2 (|:| -2459 (-656 (-792 |#1| (-876 |#2|)))) (|:| -2980 (-656 (-792 |#1| (-876 |#2|))))) $) NIL)) (-1489 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-1463 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-1498 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-4001 (((-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3425 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-1323 (((-876 |#2|) $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1118))))) (-2848 (($ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL)) (-1524 (((-656 (-876 |#2|)) $) NIL)) (-1513 (((-112) (-876 |#2|) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-1421 (((-3 (-792 |#1| (-876 |#2|)) (-656 $)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-1411 (((-656 (-2 (|:| |val| (-792 |#1| (-876 |#2|))) (|:| -4271 $))) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3654 (((-3 (-792 |#1| (-876 |#2|)) "failed") $) NIL)) (-1431 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL)) (-1451 (((-3 (-112) (-656 $)) (-792 |#1| (-876 |#2|)) $) NIL)) (-1440 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 $))) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-3703 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL)) (-1800 (($ (-792 |#1| (-876 |#2|)) $) NIL) (($ (-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-3443 (((-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-3387 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-3338 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3461 (((-112) $ $) NIL)) (-1415 (((-2 (|:| |num| (-792 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)))) (-3396 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-3348 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 (((-3 (-792 |#1| (-876 |#2|)) "failed") $) NIL)) (-1932 (((-3 (-792 |#1| (-876 |#2|)) "failed") (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL)) (-3266 (((-3 $ "failed") $ (-792 |#1| (-876 |#2|))) NIL)) (-2904 (($ $ (-792 |#1| (-876 |#2|))) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL)) (-2476 (((-112) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|)))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (($ $ (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (($ $ (-304 (-792 |#1| (-876 |#2|)))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (($ $ (-656 (-304 (-792 |#1| (-876 |#2|))))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-3813 (((-783) $) NIL)) (-3926 (((-783) (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (((-783) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-792 |#1| (-876 |#2|)) (-626 (-548))))) (-2895 (($ (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-1483 (($ $ (-876 |#2|)) NIL)) (-1504 (($ $ (-876 |#2|)) NIL)) (-3318 (($ $) NIL)) (-1493 (($ $ (-876 |#2|)) NIL)) (-2884 (((-874) $) NIL) (((-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-3255 (((-783) $) NIL (|has| (-876 |#2|) (-379)))) (-3722 (((-112) $ $) NIL)) (-3453 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 (-792 |#1| (-876 |#2|))))) "failed") (-656 (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 (-792 |#1| (-876 |#2|))))) "failed") (-656 (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-3377 (((-112) $ (-1 (-112) (-792 |#1| (-876 |#2|)) (-656 (-792 |#1| (-876 |#2|))))) NIL)) (-1400 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL)) (-2492 (((-112) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3278 (((-656 (-876 |#2|)) $) NIL)) (-1479 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-3704 (((-112) (-876 |#2|) $) NIL)) (-3915 (((-112) $ $) NIL)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1064 |#1| |#2|) (-13 (-1089 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) (-10 -8 (-15 -3299 ((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112))))) (-464) (-656 (-1195))) (T -1064)) -((-3299 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-1064 *5 *6))))) -(-13 (-1089 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) (-10 -8 (-15 -3299 ((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112))))) -((-1647 (((-1 (-576)) (-1112 (-576))) 32)) (-1690 (((-576) (-576) (-576) (-576) (-576)) 29)) (-1668 (((-1 (-576)) |RationalNumber|) NIL)) (-1678 (((-1 (-576)) |RationalNumber|) NIL)) (-1658 (((-1 (-576)) (-576) |RationalNumber|) NIL))) -(((-1065) (-10 -7 (-15 -1647 ((-1 (-576)) (-1112 (-576)))) (-15 -1658 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -1668 ((-1 (-576)) |RationalNumber|)) (-15 -1678 ((-1 (-576)) |RationalNumber|)) (-15 -1690 ((-576) (-576) (-576) (-576) (-576))))) (T -1065)) -((-1690 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1065)))) (-1678 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065)))) (-1668 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065)))) (-1658 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065)) (-5 *3 (-576)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-1112 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1065))))) -(-10 -7 (-15 -1647 ((-1 (-576)) (-1112 (-576)))) (-15 -1658 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -1668 ((-1 (-576)) |RationalNumber|)) (-15 -1678 ((-1 (-576)) |RationalNumber|)) (-15 -1690 ((-576) (-576) (-576) (-576) (-576)))) -((-2884 (((-874) $) NIL) (($ (-576)) 10))) -(((-1066 |#1|) (-10 -8 (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) (-1067)) (T -1066)) -NIL -(-10 -8 (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-576)) 33)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1067) (-141)) (T -1067)) -((-1871 (*1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-783))))) -(-13 (-1076) (-738) (-660 $) (-628 (-576)) (-10 -7 (-15 -1871 ((-783)) -3739) (-6 -4458))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-1703 (((-419 (-968 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)) 54))) -(((-1068 |#1| |#2|) (-10 -7 (-15 -1703 ((-419 (-968 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) (-1195) (-374)) (T -1068)) -((-1703 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) (-5 *2 (-419 (-968 *6))) (-5 *1 (-1068 *5 *6)) (-14 *5 (-1195))))) -(-10 -7 (-15 -1703 ((-419 (-968 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 15)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 16 T CONST)) (-3915 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) -(((-1069 |#1|) (-141) (-1130)) (T -1069)) -((-1996 (*1 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1130)))) (-1389 (*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1130))))) -(-13 (-1118) (-10 -8 (-15 (-1996) ($) -3739) (-15 -1389 ((-112) $)) (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-1825 (((-112) $) 38)) (-1847 (((-112) $) 17)) (-4244 (((-783) $) 13)) (-4256 (((-783) $) 14)) (-1835 (((-112) $) 30)) (-1815 (((-112) $) 40))) -(((-1070 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4256 ((-783) |#1|)) (-15 -4244 ((-783) |#1|)) (-15 -1815 ((-112) |#1|)) (-15 -1825 ((-112) |#1|)) (-15 -1835 ((-112) |#1|)) (-15 -1847 ((-112) |#1|))) (-1071 |#2| |#3| |#4| |#5| |#6|) (-783) (-783) (-1067) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1070)) -NIL -(-10 -8 (-15 -4256 ((-783) |#1|)) (-15 -4244 ((-783) |#1|)) (-15 -1815 ((-112) |#1|)) (-15 -1825 ((-112) |#1|)) (-15 -1835 ((-112) |#1|)) (-15 -1847 ((-112) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1825 (((-112) $) 56)) (-1459 (((-3 $ "failed") $ $) 20)) (-1847 (((-112) $) 58)) (-2970 (((-112) $ (-783)) 66)) (-2473 (($) 18 T CONST)) (-1735 (($ $) 39 (|has| |#3| (-317)))) (-1759 ((|#4| $ (-576)) 44)) (-4423 (((-783) $) 38 (|has| |#3| (-568)))) (-2789 ((|#3| $ (-576) (-576)) 46)) (-4001 (((-656 |#3|) $) 73 (|has| $ (-6 -4461)))) (-1724 (((-783) $) 37 (|has| |#3| (-568)))) (-1714 (((-656 |#5|) $) 36 (|has| |#3| (-568)))) (-4244 (((-783) $) 50)) (-4256 (((-783) $) 49)) (-2408 (((-112) $ (-783)) 65)) (-1805 (((-576) $) 54)) (-1782 (((-576) $) 52)) (-1496 (((-656 |#3|) $) 74 (|has| $ (-6 -4461)))) (-3743 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1118)) (|has| $ (-6 -4461))))) (-1793 (((-576) $) 53)) (-1771 (((-576) $) 51)) (-4317 (($ (-656 (-656 |#3|))) 59)) (-2848 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-3667 (((-656 (-656 |#3|)) $) 48)) (-2374 (((-112) $ (-783)) 64)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2852 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-2476 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#3|) (-656 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-656 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))) (-2983 (((-112) $ $) 60)) (-2809 (((-112) $) 63)) (-1458 (($) 62)) (-2071 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-1835 (((-112) $) 57)) (-3926 (((-783) |#3| $) 75 (-12 (|has| |#3| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4461)))) (-3079 (($ $) 61)) (-1747 ((|#5| $ (-576)) 43)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-2492 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4461)))) (-1815 (((-112) $) 55)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2872 (((-783) $) 67 (|has| $ (-6 -4461))))) -(((-1071 |#1| |#2| |#3| |#4| |#5|) (-141) (-783) (-783) (-1067) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1071)) -((-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1067)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-783)))) (-4256 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-783)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-656 (-656 *5))))) (-2071 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1067)))) (-2789 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1067)))) (-2071 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7)) (-4 *2 (-1067)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-1759 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *6 *2 *7)) (-4 *6 (-1067)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-1747 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *6 *7 *2)) (-4 *6 (-1067)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-2551 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2852 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *2 (-1067)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-568)))) (-4039 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *2 (-1067)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-374)))) (-1735 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-317)))) (-4423 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568)) (-5 *2 (-656 *7))))) -(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4461) (IF (|has| |t#3| (-174)) (-6 (-729 |t#3|)) |%noBranch|) (-15 -4317 ($ (-656 (-656 |t#3|)))) (-15 -1847 ((-112) $)) (-15 -1835 ((-112) $)) (-15 -1825 ((-112) $)) (-15 -1815 ((-112) $)) (-15 -1805 ((-576) $)) (-15 -1793 ((-576) $)) (-15 -1782 ((-576) $)) (-15 -1771 ((-576) $)) (-15 -4244 ((-783) $)) (-15 -4256 ((-783) $)) (-15 -3667 ((-656 (-656 |t#3|)) $)) (-15 -2071 (|t#3| $ (-576) (-576))) (-15 -2789 (|t#3| $ (-576) (-576))) (-15 -2071 (|t#3| $ (-576) (-576) |t#3|)) (-15 -1759 (|t#4| $ (-576))) (-15 -1747 (|t#5| $ (-576))) (-15 -2551 ($ (-1 |t#3| |t#3|) $)) (-15 -2551 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -2852 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -4039 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -1735 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -4423 ((-783) $)) (-15 -1724 ((-783) $)) (-15 -1714 ((-656 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-625 (-874)) . T) ((-319 |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))) ((-658 (-576)) . T) ((-658 |#3|) . T) ((-660 |#3|) . T) ((-652 |#3|) |has| |#3| (-174)) ((-729 |#3|) |has| |#3| (-174)) ((-1069 |#3|) . T) ((-1074 |#3|) . T) ((-1118) . T) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1825 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-1847 (((-112) $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-2473 (($) NIL T CONST)) (-1735 (($ $) 47 (|has| |#3| (-317)))) (-1759 (((-246 |#2| |#3|) $ (-576)) 36)) (-1859 (($ (-701 |#3|)) 45)) (-4423 (((-783) $) 49 (|has| |#3| (-568)))) (-2789 ((|#3| $ (-576) (-576)) NIL)) (-4001 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-1724 (((-783) $) 51 (|has| |#3| (-568)))) (-1714 (((-656 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-4244 (((-783) $) NIL)) (-4256 (((-783) $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-1805 (((-576) $) NIL)) (-1782 (((-576) $) NIL)) (-1496 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-1793 (((-576) $) NIL)) (-1771 (((-576) $) NIL)) (-4317 (($ (-656 (-656 |#3|))) 31)) (-2848 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3667 (((-656 (-656 |#3|)) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2852 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-2476 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-1543 (((-135)) 59 (|has| |#3| (-374)))) (-1835 (((-112) $) NIL)) (-3926 (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118)))) (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-1747 (((-246 |#1| |#3|) $ (-576)) 40)) (-2884 (((-874) $) 19) (((-701 |#3|) $) 42)) (-3722 (((-112) $ $) NIL)) (-2492 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-1815 (((-112) $) NIL)) (-1996 (($) 16 T CONST)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1072 |#1| |#2| |#3|) (-13 (-1071 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1293 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -1859 ($ (-701 |#3|))))) (-783) (-783) (-1067)) (T -1072)) -((-1859 (*1 *1 *2) (-12 (-5 *2 (-701 *5)) (-4 *5 (-1067)) (-5 *1 (-1072 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783))))) -(-13 (-1071 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1293 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -1859 ($ (-701 |#3|))))) -((-2309 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2551 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1073 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2551 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2309 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-783) (-783) (-1067) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1071 |#1| |#2| |#3| |#4| |#5|) (-1067) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1071 |#1| |#2| |#7| |#8| |#9|)) (T -1073)) -((-2309 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1067)) (-4 *2 (-1067)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1073 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1071 *5 *6 *7 *8 *9)) (-4 *12 (-1071 *5 *6 *2 *10 *11)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1067)) (-4 *10 (-1067)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1071 *5 *6 *10 *11 *12)) (-5 *1 (-1073 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1071 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10))))) -(-10 -7 (-15 -2551 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2309 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27))) -(((-1074 |#1|) (-141) (-1076)) (T -1074)) -NIL -(-13 (-21) (-1069 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1069 |#1|) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1441 (((-1195) $) 11)) (-4128 ((|#1| $) 12)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2677 (($ (-1195) |#1|) 10)) (-2884 (((-874) $) 22 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3915 (((-112) $ $) 17 (|has| |#1| (-1118))))) -(((-1075 |#1| |#2|) (-13 (-1236) (-10 -8 (-15 -2677 ($ (-1195) |#1|)) (-15 -1441 ((-1195) $)) (-15 -4128 (|#1| $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|))) (-1111 |#2|) (-1236)) (T -1075)) -((-2677 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-4 *4 (-1236)) (-5 *1 (-1075 *3 *4)) (-4 *3 (-1111 *4)))) (-1441 (*1 *2 *1) (-12 (-4 *4 (-1236)) (-5 *2 (-1195)) (-5 *1 (-1075 *3 *4)) (-4 *3 (-1111 *4)))) (-4128 (*1 *2 *1) (-12 (-4 *2 (-1111 *3)) (-5 *1 (-1075 *2 *3)) (-4 *3 (-1236))))) -(-13 (-1236) (-10 -8 (-15 -2677 ($ (-1195) |#1|)) (-15 -1441 ((-1195) $)) (-15 -4128 (|#1| $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1076) (-141)) (T -1076)) -NIL -(-13 (-21) (-1130)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1130) . T) ((-1118) . T)) -((-2916 (($ $) 17)) (-1882 (($ $) 25)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 55)) (-1941 (($ $) 27)) (-1894 (($ $) 12)) (-1916 (($ $) 43)) (-2616 (((-390) $) NIL) (((-227) $) NIL) (((-905 (-390)) $) 36)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-1871 (((-783)) 9)) (-1929 (($ $) 45))) -(((-1077 |#1|) (-10 -8 (-15 -1882 (|#1| |#1|)) (-15 -2916 (|#1| |#1|)) (-15 -1894 (|#1| |#1|)) (-15 -1916 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -1941 (|#1| |#1|)) (-15 -1606 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 (|#1| (-576))) (-15 -2616 ((-227) |#1|)) (-15 -2616 ((-390) |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 (|#1| |#1|)) (-15 -1871 ((-783))) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) (-1078)) (T -1077)) -((-1871 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1077 *3)) (-4 *3 (-1078))))) -(-10 -8 (-15 -1882 (|#1| |#1|)) (-15 -2916 (|#1| |#1|)) (-15 -1894 (|#1| |#1|)) (-15 -1916 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -1941 (|#1| |#1|)) (-15 -1606 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 (|#1| (-576))) (-15 -2616 ((-227) |#1|)) (-15 -2616 ((-390) |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 (|#1| |#1|)) (-15 -1871 ((-783))) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1905 (((-576) $) 97)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-2916 (($ $) 95)) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 81)) (-3986 (((-430 $) $) 80)) (-2474 (($ $) 105)) (-2922 (((-112) $ $) 65)) (-3966 (((-576) $) 122)) (-2473 (($) 18 T CONST)) (-1882 (($ $) 94)) (-2449 (((-3 (-576) "failed") $) 110) (((-3 (-419 (-576)) "failed") $) 107)) (-4401 (((-576) $) 111) (((-419 (-576)) $) 108)) (-2803 (($ $ $) 61)) (-1999 (((-3 $ "failed") $) 37)) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-2463 (((-112) $) 79)) (-1370 (((-112) $) 120)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 101)) (-1439 (((-112) $) 35)) (-3298 (($ $ (-576)) 104)) (-1941 (($ $) 100)) (-1379 (((-112) $) 121)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1921 (($ $ $) 119)) (-4137 (($ $ $) 118)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 78)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-1894 (($ $) 96)) (-1916 (($ $) 98)) (-2354 (((-430 $) $) 82)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2910 (((-783) $) 64)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-2616 (((-390) $) 113) (((-227) $) 112) (((-905 (-390)) $) 102)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 109) (($ (-419 (-576))) 106)) (-1871 (((-783)) 32 T CONST)) (-1929 (($ $) 99)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-2610 (($ $) 123)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3983 (((-112) $ $) 116)) (-3957 (((-112) $ $) 115)) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 117)) (-3943 (((-112) $ $) 114)) (-4039 (($ $ $) 73)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 103)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-1078) (-141)) (T -1078)) -((-2610 (*1 *1 *1) (-4 *1 (-1078))) (-1941 (*1 *1 *1) (-4 *1 (-1078))) (-1929 (*1 *1 *1) (-4 *1 (-1078))) (-1916 (*1 *1 *1) (-4 *1 (-1078))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1078)) (-5 *2 (-576)))) (-1894 (*1 *1 *1) (-4 *1 (-1078))) (-2916 (*1 *1 *1) (-4 *1 (-1078))) (-1882 (*1 *1 *1) (-4 *1 (-1078)))) -(-13 (-374) (-860) (-1040) (-1056 (-576)) (-1056 (-419 (-576))) (-1020) (-626 (-905 (-390))) (-899 (-390)) (-148) (-10 -8 (-15 -1941 ($ $)) (-15 -1929 ($ $)) (-15 -1916 ($ $)) (-15 -1905 ((-576) $)) (-15 -1894 ($ $)) (-15 -2916 ($ $)) (-15 -1882 ($ $)) (-15 -2610 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-905 (-390))) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-899 (-390)) . T) ((-936) . T) ((-1020) . T) ((-1040) . T) ((-1056 (-419 (-576))) . T) ((-1056 (-576)) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) |#2| $) 26)) (-2416 ((|#1| $) 10)) (-3966 (((-576) |#2| $) 116)) (-1342 (((-3 $ "failed") |#2| (-937)) 75)) (-2436 ((|#1| $) 31)) (-1333 ((|#1| |#2| $ |#1|) 40)) (-1966 (($ $) 28)) (-1999 (((-3 |#2| "failed") |#2| $) 111)) (-1370 (((-112) |#2| $) NIL)) (-1379 (((-112) |#2| $) NIL)) (-1954 (((-112) |#2| $) 27)) (-1980 ((|#1| $) 117)) (-2419 ((|#1| $) 30)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1360 ((|#2| $) 102)) (-2884 (((-874) $) 92)) (-3722 (((-112) $ $) NIL)) (-3495 ((|#1| |#2| $ |#1|) 41)) (-1351 (((-656 $) |#2|) 77)) (-3915 (((-112) $ $) 97))) -(((-1079 |#1| |#2|) (-13 (-1086 |#1| |#2|) (-10 -8 (-15 -2419 (|#1| $)) (-15 -2436 (|#1| $)) (-15 -2416 (|#1| $)) (-15 -1980 (|#1| $)) (-15 -1966 ($ $)) (-15 -1954 ((-112) |#2| $)) (-15 -1333 (|#1| |#2| $ |#1|)))) (-13 (-860) (-374)) (-1262 |#1|)) (T -1079)) -((-1333 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-2419 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-2436 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-2416 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-1980 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-1966 (*1 *1 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-1954 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1079 *4 *3)) (-4 *3 (-1262 *4))))) -(-13 (-1086 |#1| |#2|) (-10 -8 (-15 -2419 (|#1| $)) (-15 -2436 (|#1| $)) (-15 -2416 (|#1| $)) (-15 -1980 (|#1| $)) (-15 -1966 ($ $)) (-15 -1954 ((-112) |#2| $)) (-15 -1333 (|#1| |#2| $ |#1|)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-2199 (($ $ $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2178 (($ $ $ $) NIL)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-3966 (((-576) $) NIL)) (-3626 (($ $ $) NIL)) (-2473 (($) NIL T CONST)) (-1992 (($ (-1195)) 10) (($ (-576)) 7)) (-2449 (((-3 (-576) "failed") $) NIL)) (-4401 (((-576) $) NIL)) (-2803 (($ $ $) NIL)) (-2613 (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-3424 (((-3 (-419 (-576)) "failed") $) NIL)) (-3413 (((-112) $) NIL)) (-3404 (((-419 (-576)) $) NIL)) (-2080 (($) NIL) (($ $) NIL)) (-2814 (($ $ $) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-2156 (($ $ $ $) NIL)) (-2208 (($ $ $) NIL)) (-1370 (((-112) $) NIL)) (-2954 (($ $ $) NIL)) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1439 (((-112) $) NIL)) (-4064 (((-112) $) NIL)) (-1831 (((-3 $ "failed") $) NIL)) (-1379 (((-112) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2166 (($ $ $ $) NIL)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-3537 (($ $) NIL)) (-1840 (($ $) NIL)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-2144 (($ $ $) NIL)) (-3475 (($) NIL T CONST)) (-3048 (($ $) NIL)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2935 (($ $) NIL)) (-2354 (((-430 $) $) NIL)) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4072 (((-112) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-2390 (($ $) NIL) (($ $ (-783)) NIL)) (-3355 (($ $) NIL)) (-3079 (($ $) NIL)) (-2616 (((-576) $) 16) (((-548) $) NIL) (((-905 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1195)) 9)) (-2884 (((-874) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-1871 (((-783)) NIL T CONST)) (-2218 (((-112) $ $) NIL)) (-1658 (($ $ $) NIL)) (-3722 (((-112) $ $) NIL)) (-1549 (($) NIL)) (-4232 (((-112) $ $) NIL)) (-2189 (($ $ $ $) NIL)) (-2610 (($ $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $) NIL) (($ $ (-783)) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4029 (($ $) 22) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL))) -(((-1080) (-13 (-557) (-630 (-1195)) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -1992 ($ (-1195))) (-15 -1992 ($ (-576)))))) (T -1080)) -((-1992 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1080)))) (-1992 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1080))))) -(-13 (-557) (-630 (-1195)) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -1992 ($ (-1195))) (-15 -1992 ($ (-576))))) -((-2862 (((-112) $ $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-2298 (($) NIL) (($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) NIL)) (-3336 (((-1291) $ (-1195) (-1195)) NIL (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-2019 (($) 9)) (-3055 (((-52) $ (-1195) (-52)) NIL)) (-2110 (($ $) 32)) (-2141 (($ $) 30)) (-2152 (($ $) 29)) (-2130 (($ $) 31)) (-2100 (($ $) 35)) (-2090 (($ $) 36)) (-2164 (($ $) 28)) (-2120 (($ $) 33)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) 27 (|has| $ (-6 -4461)))) (-1397 (((-3 (-52) "failed") (-1195) $) 43)) (-2473 (($) NIL T CONST)) (-2174 (($) 7)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-2833 (($ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) 53 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-3 (-52) "failed") (-1195) $) NIL)) (-3634 (($ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (((-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2006 (((-3 (-1177) "failed") $ (-1177) (-576)) 72)) (-2859 (((-52) $ (-1195) (-52)) NIL (|has| $ (-6 -4462)))) (-2789 (((-52) $ (-1195)) NIL)) (-4001 (((-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-1195) $) NIL (|has| (-1195) (-862)))) (-1496 (((-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) 38 (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-3365 (((-1195) $) NIL (|has| (-1195) (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-2002 (((-656 (-1195)) $) NIL)) (-3412 (((-112) (-1195) $) NIL)) (-3449 (((-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL)) (-3807 (($ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) 46)) (-3385 (((-656 (-1195)) $) NIL)) (-3394 (((-112) (-1195) $) NIL)) (-3914 (((-1138) $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-2054 (((-390) $ (-1195)) 52)) (-2042 (((-656 (-1177)) $ (-1177)) 74)) (-1962 (((-52) $) NIL (|has| (-1195) (-862)))) (-1932 (((-3 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) "failed") (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL)) (-3346 (($ $ (-52)) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))))) NIL (-12 (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (($ $ (-304 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (($ $ (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) NIL (-12 (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (($ $ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-319 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-3403 (((-656 (-52)) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 (((-52) $ (-1195)) NIL) (((-52) $ (-1195) (-52)) NIL)) (-1581 (($) NIL) (($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) NIL)) (-2030 (($ $ (-1195)) 54)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) 40)) (-1514 (($ $ $) 41)) (-2884 (((-874) $) NIL (-3766 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-625 (-874)))))) (-2078 (($ $ (-1195) (-390)) 50)) (-2066 (($ $ (-1195) (-390)) 51)) (-3722 (((-112) $ $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))))) NIL)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 (-1195)) (|:| -3180 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (-3766 (|has| (-52) (-1118)) (|has| (-2 (|:| -4169 (-1195)) (|:| -3180 (-52))) (-1118))))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1081) (-13 (-1212 (-1195) (-52)) (-10 -8 (-15 -1514 ($ $ $)) (-15 -2174 ($)) (-15 -2164 ($ $)) (-15 -2152 ($ $)) (-15 -2141 ($ $)) (-15 -2130 ($ $)) (-15 -2120 ($ $)) (-15 -2110 ($ $)) (-15 -2100 ($ $)) (-15 -2090 ($ $)) (-15 -2078 ($ $ (-1195) (-390))) (-15 -2066 ($ $ (-1195) (-390))) (-15 -2054 ((-390) $ (-1195))) (-15 -2042 ((-656 (-1177)) $ (-1177))) (-15 -2030 ($ $ (-1195))) (-15 -2019 ($)) (-15 -2006 ((-3 (-1177) "failed") $ (-1177) (-576))) (-6 -4461)))) (T -1081)) -((-1514 (*1 *1 *1 *1) (-5 *1 (-1081))) (-2174 (*1 *1) (-5 *1 (-1081))) (-2164 (*1 *1 *1) (-5 *1 (-1081))) (-2152 (*1 *1 *1) (-5 *1 (-1081))) (-2141 (*1 *1 *1) (-5 *1 (-1081))) (-2130 (*1 *1 *1) (-5 *1 (-1081))) (-2120 (*1 *1 *1) (-5 *1 (-1081))) (-2110 (*1 *1 *1) (-5 *1 (-1081))) (-2100 (*1 *1 *1) (-5 *1 (-1081))) (-2090 (*1 *1 *1) (-5 *1 (-1081))) (-2078 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1081)))) (-2066 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1081)))) (-2054 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-390)) (-5 *1 (-1081)))) (-2042 (*1 *2 *1 *3) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1081)) (-5 *3 (-1177)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1081)))) (-2019 (*1 *1) (-5 *1 (-1081))) (-2006 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-1081))))) -(-13 (-1212 (-1195) (-52)) (-10 -8 (-15 -1514 ($ $ $)) (-15 -2174 ($)) (-15 -2164 ($ $)) (-15 -2152 ($ $)) (-15 -2141 ($ $)) (-15 -2130 ($ $)) (-15 -2120 ($ $)) (-15 -2110 ($ $)) (-15 -2100 ($ $)) (-15 -2090 ($ $)) (-15 -2078 ($ $ (-1195) (-390))) (-15 -2066 ($ $ (-1195) (-390))) (-15 -2054 ((-390) $ (-1195))) (-15 -2042 ((-656 (-1177)) $ (-1177))) (-15 -2030 ($ $ (-1195))) (-15 -2019 ($)) (-15 -2006 ((-3 (-1177) "failed") $ (-1177) (-576))) (-6 -4461))) -((-3463 (($ $) 46)) (-4300 (((-112) $ $) 82)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-968 (-419 (-576)))) 251) (((-3 $ "failed") (-968 (-576))) 250) (((-3 $ "failed") (-968 |#2|)) 253)) (-4401 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-968 (-419 (-576)))) 239) (($ (-968 (-576))) 235) (($ (-968 |#2|)) 255)) (-4407 (($ $) NIL) (($ $ |#4|) 44)) (-3414 (((-112) $ $) 131) (((-112) $ (-656 $)) 135)) (-4370 (((-112) $) 60)) (-2736 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 125)) (-2215 (($ $) 160)) (-4200 (($ $) 156)) (-4210 (($ $) 155)) (-4289 (($ $ $) 87) (($ $ $ |#4|) 92)) (-4280 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3425 (((-112) $ $) 143) (((-112) $ (-656 $)) 144)) (-1323 ((|#4| $) 32)) (-4229 (($ $ $) 128)) (-4382 (((-112) $) 59)) (-4436 (((-783) $) 35)) (-2185 (($ $) 174)) (-2196 (($ $) 171)) (-4322 (((-656 $) $) 72)) (-4358 (($ $) 62)) (-2204 (($ $) 167)) (-4332 (((-656 $) $) 69)) (-4345 (($ $) 64)) (-4383 ((|#2| $) NIL) (($ $ |#4|) 39)) (-4219 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2147 (-783))) $ $) 130)) (-4238 (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -2770 $) (|:| -1406 $)) $ $) 126) (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -2770 $) (|:| -1406 $)) $ $ |#4|) 127)) (-4249 (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -1406 $)) $ $) 121) (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -1406 $)) $ $ |#4|) 123)) (-4270 (($ $ $) 97) (($ $ $ |#4|) 106)) (-4260 (($ $ $) 98) (($ $ $ |#4|) 107)) (-4405 (((-656 $) $) 54)) (-3387 (((-112) $ $) 140) (((-112) $ (-656 $)) 141)) (-3338 (($ $ $) 116)) (-3475 (($ $) 37)) (-3461 (((-112) $ $) 80)) (-3396 (((-112) $ $) 136) (((-112) $ (-656 $)) 138)) (-3348 (($ $ $) 112)) (-4427 (($ $) 41)) (-3928 ((|#2| |#2| $) 164) (($ (-656 $)) NIL) (($ $ $) NIL)) (-4182 (($ $ |#2|) NIL) (($ $ $) 153)) (-4191 (($ $ |#2|) 148) (($ $ $) 151)) (-4416 (($ $) 49)) (-4393 (($ $) 55)) (-2616 (((-905 (-390)) $) NIL) (((-905 (-576)) $) NIL) (((-548) $) NIL) (($ (-968 (-419 (-576)))) 241) (($ (-968 (-576))) 237) (($ (-968 |#2|)) 252) (((-1177) $) 279) (((-968 |#2|) $) 184)) (-2884 (((-874) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-968 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-4310 (((-3 (-112) "failed") $ $) 79))) -(((-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2884 (|#1| |#1|)) (-15 -3928 (|#1| |#1| |#1|)) (-15 -3928 (|#1| (-656 |#1|))) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 ((-968 |#2|) |#1|)) (-15 -2616 ((-968 |#2|) |#1|)) (-15 -2616 ((-1177) |#1|)) (-15 -2185 (|#1| |#1|)) (-15 -2196 (|#1| |#1|)) (-15 -2204 (|#1| |#1|)) (-15 -2215 (|#1| |#1|)) (-15 -3928 (|#2| |#2| |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4191 (|#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| |#2|)) (-15 -4191 (|#1| |#1| |#2|)) (-15 -4200 (|#1| |#1|)) (-15 -4210 (|#1| |#1|)) (-15 -2616 (|#1| (-968 |#2|))) (-15 -4401 (|#1| (-968 |#2|))) (-15 -2449 ((-3 |#1| "failed") (-968 |#2|))) (-15 -2616 (|#1| (-968 (-576)))) (-15 -4401 (|#1| (-968 (-576)))) (-15 -2449 ((-3 |#1| "failed") (-968 (-576)))) (-15 -2616 (|#1| (-968 (-419 (-576))))) (-15 -4401 (|#1| (-968 (-419 (-576))))) (-15 -2449 ((-3 |#1| "failed") (-968 (-419 (-576))))) (-15 -3338 (|#1| |#1| |#1|)) (-15 -3348 (|#1| |#1| |#1|)) (-15 -4219 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2147 (-783))) |#1| |#1|)) (-15 -4229 (|#1| |#1| |#1|)) (-15 -2736 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -4238 ((-2 (|:| -1755 |#1|) (|:| |gap| (-783)) (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1| |#4|)) (-15 -4238 ((-2 (|:| -1755 |#1|) (|:| |gap| (-783)) (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -4249 ((-2 (|:| -1755 |#1|) (|:| |gap| (-783)) (|:| -1406 |#1|)) |#1| |#1| |#4|)) (-15 -4249 ((-2 (|:| -1755 |#1|) (|:| |gap| (-783)) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -4260 (|#1| |#1| |#1| |#4|)) (-15 -4270 (|#1| |#1| |#1| |#4|)) (-15 -4260 (|#1| |#1| |#1|)) (-15 -4270 (|#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| |#1| |#4|)) (-15 -4289 (|#1| |#1| |#1| |#4|)) (-15 -4280 (|#1| |#1| |#1|)) (-15 -4289 (|#1| |#1| |#1|)) (-15 -3425 ((-112) |#1| (-656 |#1|))) (-15 -3425 ((-112) |#1| |#1|)) (-15 -3387 ((-112) |#1| (-656 |#1|))) (-15 -3387 ((-112) |#1| |#1|)) (-15 -3396 ((-112) |#1| (-656 |#1|))) (-15 -3396 ((-112) |#1| |#1|)) (-15 -3414 ((-112) |#1| (-656 |#1|))) (-15 -3414 ((-112) |#1| |#1|)) (-15 -4300 ((-112) |#1| |#1|)) (-15 -3461 ((-112) |#1| |#1|)) (-15 -4310 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4322 ((-656 |#1|) |#1|)) (-15 -4332 ((-656 |#1|) |#1|)) (-15 -4345 (|#1| |#1|)) (-15 -4358 (|#1| |#1|)) (-15 -4370 ((-112) |#1|)) (-15 -4382 ((-112) |#1|)) (-15 -4407 (|#1| |#1| |#4|)) (-15 -4383 (|#1| |#1| |#4|)) (-15 -4393 (|#1| |#1|)) (-15 -4405 ((-656 |#1|) |#1|)) (-15 -4416 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -4427 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -4436 ((-783) |#1|)) (-15 -1323 (|#4| |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -2884 (|#1| |#4|)) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -4401 (|#4| |#1|)) (-15 -4383 (|#2| |#1|)) (-15 -4407 (|#1| |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) (-1083 |#2| |#3| |#4|) (-1067) (-805) (-862)) (T -1082)) -NIL -(-10 -8 (-15 -2884 (|#1| |#1|)) (-15 -3928 (|#1| |#1| |#1|)) (-15 -3928 (|#1| (-656 |#1|))) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 ((-968 |#2|) |#1|)) (-15 -2616 ((-968 |#2|) |#1|)) (-15 -2616 ((-1177) |#1|)) (-15 -2185 (|#1| |#1|)) (-15 -2196 (|#1| |#1|)) (-15 -2204 (|#1| |#1|)) (-15 -2215 (|#1| |#1|)) (-15 -3928 (|#2| |#2| |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4191 (|#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| |#2|)) (-15 -4191 (|#1| |#1| |#2|)) (-15 -4200 (|#1| |#1|)) (-15 -4210 (|#1| |#1|)) (-15 -2616 (|#1| (-968 |#2|))) (-15 -4401 (|#1| (-968 |#2|))) (-15 -2449 ((-3 |#1| "failed") (-968 |#2|))) (-15 -2616 (|#1| (-968 (-576)))) (-15 -4401 (|#1| (-968 (-576)))) (-15 -2449 ((-3 |#1| "failed") (-968 (-576)))) (-15 -2616 (|#1| (-968 (-419 (-576))))) (-15 -4401 (|#1| (-968 (-419 (-576))))) (-15 -2449 ((-3 |#1| "failed") (-968 (-419 (-576))))) (-15 -3338 (|#1| |#1| |#1|)) (-15 -3348 (|#1| |#1| |#1|)) (-15 -4219 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2147 (-783))) |#1| |#1|)) (-15 -4229 (|#1| |#1| |#1|)) (-15 -2736 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -4238 ((-2 (|:| -1755 |#1|) (|:| |gap| (-783)) (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1| |#4|)) (-15 -4238 ((-2 (|:| -1755 |#1|) (|:| |gap| (-783)) (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -4249 ((-2 (|:| -1755 |#1|) (|:| |gap| (-783)) (|:| -1406 |#1|)) |#1| |#1| |#4|)) (-15 -4249 ((-2 (|:| -1755 |#1|) (|:| |gap| (-783)) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -4260 (|#1| |#1| |#1| |#4|)) (-15 -4270 (|#1| |#1| |#1| |#4|)) (-15 -4260 (|#1| |#1| |#1|)) (-15 -4270 (|#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| |#1| |#4|)) (-15 -4289 (|#1| |#1| |#1| |#4|)) (-15 -4280 (|#1| |#1| |#1|)) (-15 -4289 (|#1| |#1| |#1|)) (-15 -3425 ((-112) |#1| (-656 |#1|))) (-15 -3425 ((-112) |#1| |#1|)) (-15 -3387 ((-112) |#1| (-656 |#1|))) (-15 -3387 ((-112) |#1| |#1|)) (-15 -3396 ((-112) |#1| (-656 |#1|))) (-15 -3396 ((-112) |#1| |#1|)) (-15 -3414 ((-112) |#1| (-656 |#1|))) (-15 -3414 ((-112) |#1| |#1|)) (-15 -4300 ((-112) |#1| |#1|)) (-15 -3461 ((-112) |#1| |#1|)) (-15 -4310 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4322 ((-656 |#1|) |#1|)) (-15 -4332 ((-656 |#1|) |#1|)) (-15 -4345 (|#1| |#1|)) (-15 -4358 (|#1| |#1|)) (-15 -4370 ((-112) |#1|)) (-15 -4382 ((-112) |#1|)) (-15 -4407 (|#1| |#1| |#4|)) (-15 -4383 (|#1| |#1| |#4|)) (-15 -4393 (|#1| |#1|)) (-15 -4405 ((-656 |#1|) |#1|)) (-15 -4416 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -4427 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -4436 ((-783) |#1|)) (-15 -1323 (|#4| |#1|)) (-15 -2616 ((-548) |#1|)) (-15 -2616 ((-905 (-576)) |#1|)) (-15 -2616 ((-905 (-390)) |#1|)) (-15 -2884 (|#1| |#4|)) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -4401 (|#4| |#1|)) (-15 -4383 (|#2| |#1|)) (-15 -4407 (|#1| |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1607 (((-656 |#3|) $) 113)) (-3467 (((-1191 $) $ |#3|) 128) (((-1191 |#1|) $) 127)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4241 (($ $) 91 (|has| |#1| (-568)))) (-4221 (((-112) $) 93 (|has| |#1| (-568)))) (-1853 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-3463 (($ $) 276)) (-4300 (((-112) $ $) 262)) (-1459 (((-3 $ "failed") $ $) 20)) (-2768 (($ $ $) 221 (|has| |#1| (-568)))) (-2258 (((-656 $) $ $) 216 (|has| |#1| (-568)))) (-3203 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-925)))) (-2944 (($ $) 101 (|has| |#1| (-464)))) (-3986 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-925)))) (-2473 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1056 (-576)))) (((-3 |#3| "failed") $) 141) (((-3 $ "failed") (-968 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))) (((-3 $ "failed") (-968 (-576))) 233 (-3766 (-12 (-3216 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195)))))) (((-3 $ "failed") (-968 |#1|)) 230 (-3766 (-12 (-3216 (|has| |#1| (-38 (-419 (-576))))) (-3216 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1195)))) (-12 (-3216 (|has| |#1| (-557))) (-3216 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (-3216 (|has| |#1| (-1010 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))))) (-4401 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1056 (-576)))) ((|#3| $) 142) (($ (-968 (-419 (-576)))) 235 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))) (($ (-968 (-576))) 232 (-3766 (-12 (-3216 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195)))))) (($ (-968 |#1|)) 229 (-3766 (-12 (-3216 (|has| |#1| (-38 (-419 (-576))))) (-3216 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1195)))) (-12 (-3216 (|has| |#1| (-557))) (-3216 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (-3216 (|has| |#1| (-1010 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))))) (-2778 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 217 (|has| |#1| (-568)))) (-4407 (($ $) 159) (($ $ |#3|) 271)) (-2613 (((-701 (-576)) (-1286 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1286 $)) 134)) (-3414 (((-112) $ $) 261) (((-112) $ (-656 $)) 260)) (-1999 (((-3 $ "failed") $) 37)) (-4370 (((-112) $) 269)) (-2736 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 241)) (-2215 (($ $) 210 (|has| |#1| (-464)))) (-2192 (($ $) 181 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-4394 (((-656 $) $) 112)) (-2463 (((-112) $) 99 (|has| |#1| (-925)))) (-4200 (($ $) 226 (|has| |#1| (-568)))) (-4210 (($ $) 227 (|has| |#1| (-568)))) (-4289 (($ $ $) 253) (($ $ $ |#3|) 251)) (-4280 (($ $ $) 252) (($ $ $ |#3|) 250)) (-3098 (($ $ |#1| |#2| $) 177)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1439 (((-112) $) 35)) (-1518 (((-783) $) 174)) (-3425 (((-112) $ $) 255) (((-112) $ (-656 $)) 254)) (-2225 (($ $ $ $ $) 212 (|has| |#1| (-568)))) (-1323 ((|#3| $) 280)) (-2437 (($ (-1191 |#1|) |#3|) 120) (($ (-1191 $) |#3|) 119)) (-1876 (((-656 $) $) 129)) (-3734 (((-112) $) 157)) (-2421 (($ |#1| |#2|) 158) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-4229 (($ $ $) 240)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ |#3|) 123)) (-4382 (((-112) $) 270)) (-1864 ((|#2| $) 175) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-4436 (((-783) $) 279)) (-3109 (($ (-1 |#2| |#2|) $) 176)) (-2551 (($ (-1 |#1| |#1|) $) 156)) (-2788 (((-3 |#3| "failed") $) 126)) (-2185 (($ $) 207 (|has| |#1| (-464)))) (-2196 (($ $) 208 (|has| |#1| (-464)))) (-4322 (((-656 $) $) 265)) (-4358 (($ $) 268)) (-2204 (($ $) 209 (|has| |#1| (-464)))) (-4332 (((-656 $) $) 266)) (-4345 (($ $) 267)) (-4371 (($ $) 154)) (-4383 ((|#1| $) 153) (($ $ |#3|) 272)) (-3888 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-4219 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2147 (-783))) $ $) 239)) (-4238 (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -2770 $) (|:| -1406 $)) $ $) 243) (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -2770 $) (|:| -1406 $)) $ $ |#3|) 242)) (-4249 (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -1406 $)) $ $) 245) (((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -1406 $)) $ $ |#3|) 244)) (-4270 (($ $ $) 249) (($ $ $ |#3|) 247)) (-4260 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3733 (((-1177) $) 10)) (-1411 (($ $ $) 215 (|has| |#1| (-568)))) (-4405 (((-656 $) $) 274)) (-1899 (((-3 (-656 $) "failed") $) 117)) (-1887 (((-3 (-656 $) "failed") $) 118)) (-1910 (((-3 (-2 (|:| |var| |#3|) (|:| -1359 (-783))) "failed") $) 116)) (-3387 (((-112) $ $) 257) (((-112) $ (-656 $)) 256)) (-3338 (($ $ $) 237)) (-3475 (($ $) 278)) (-3461 (((-112) $ $) 263)) (-3396 (((-112) $ $) 259) (((-112) $ (-656 $)) 258)) (-3348 (($ $ $) 238)) (-4427 (($ $) 277)) (-3914 (((-1138) $) 11)) (-2269 (((-2 (|:| -3928 $) (|:| |coef2| $)) $ $) 218 (|has| |#1| (-568)))) (-4165 (((-2 (|:| -3928 $) (|:| |coef1| $)) $ $) 219 (|has| |#1| (-568)))) (-4346 (((-112) $) 171)) (-4359 ((|#1| $) 172)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-3928 ((|#1| |#1| $) 211 (|has| |#1| (-464))) (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-925)))) (-2354 (((-430 $) $) 102 (|has| |#1| (-925)))) (-4174 (((-2 (|:| -3928 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-2852 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-4182 (($ $ |#1|) 224 (|has| |#1| (-568))) (($ $ $) 222 (|has| |#1| (-568)))) (-4191 (($ $ |#1|) 225 (|has| |#1| (-568))) (($ $ $) 223 (|has| |#1| (-568)))) (-3049 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-656 |#3|) (-656 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-656 |#3|) (-656 $)) 143)) (-2790 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2390 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-3813 ((|#2| $) 155) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-4416 (($ $) 275)) (-4393 (($ $) 273)) (-2616 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-968 (-419 (-576)))) 234 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))) (($ (-968 (-576))) 231 (-3766 (-12 (-3216 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195)))))) (($ (-968 |#1|)) 228 (|has| |#3| (-626 (-1195)))) (((-1177) $) 206 (-12 (|has| |#1| (-1056 (-576))) (|has| |#3| (-626 (-1195))))) (((-968 |#1|) $) 205 (|has| |#3| (-626 (-1195))))) (-1841 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 107 (-3227 (|has| $ (-146)) (|has| |#1| (-925))))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ |#3|) 140) (((-968 |#1|) $) 204 (|has| |#3| (-626 (-1195)))) (($ (-419 (-576))) 81 (-3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-1993 (((-656 |#1|) $) 173)) (-3245 ((|#1| $ |#2|) 160) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3148 (((-3 $ "failed") $) 82 (-3766 (-3227 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) 32 T CONST)) (-3086 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 92 (|has| |#1| (-568)))) (-1996 (($) 19 T CONST)) (-4310 (((-3 (-112) "failed") $ $) 264)) (-2011 (($) 34 T CONST)) (-2236 (($ $ $ $ (-783)) 213 (|has| |#1| (-568)))) (-2247 (($ $ $ (-783)) 214 (|has| |#1| (-568)))) (-3431 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151))) -(((-1083 |#1| |#2| |#3|) (-141) (-1067) (-805) (-862)) (T -1083)) -((-1323 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-783)))) (-3475 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4427 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3463 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4416 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4405 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1083 *3 *4 *5)))) (-4393 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4383 (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-4407 (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-4358 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4345 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4332 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1083 *3 *4 *5)))) (-4322 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1083 *3 *4 *5)))) (-4310 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3461 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-4300 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3414 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3414 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3396 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3396 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3387 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3387 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3425 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3425 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-4289 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4280 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4289 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-4280 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-4270 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4260 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4270 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-4260 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-4249 (*1 *2 *1 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1755 *1) (|:| |gap| (-783)) (|:| -1406 *1))) (-4 *1 (-1083 *3 *4 *5)))) (-4249 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1755 *1) (|:| |gap| (-783)) (|:| -1406 *1))) (-4 *1 (-1083 *4 *5 *3)))) (-4238 (*1 *2 *1 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1755 *1) (|:| |gap| (-783)) (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-1083 *3 *4 *5)))) (-4238 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1755 *1) (|:| |gap| (-783)) (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-1083 *4 *5 *3)))) (-2736 (*1 *2 *1 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-1083 *3 *4 *5)))) (-4229 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4219 (*1 *2 *1 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2147 (-783)))) (-4 *1 (-1083 *3 *4 *5)))) (-3348 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3338 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))) (-2449 (*1 *1 *2) (|partial| -3766 (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-3216 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))))) (-4401 (*1 *1 *2) (-3766 (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-3216 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))))) (-2616 (*1 *1 *2) (-3766 (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-3216 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))))) (-2449 (*1 *1 *2) (|partial| -3766 (-12 (-5 *2 (-968 *3)) (-12 (-3216 (-4 *3 (-38 (-419 (-576))))) (-3216 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 *3)) (-12 (-3216 (-4 *3 (-557))) (-3216 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 *3)) (-12 (-3216 (-4 *3 (-1010 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))))) (-4401 (*1 *1 *2) (-3766 (-12 (-5 *2 (-968 *3)) (-12 (-3216 (-4 *3 (-38 (-419 (-576))))) (-3216 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 *3)) (-12 (-3216 (-4 *3 (-557))) (-3216 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 *3)) (-12 (-3216 (-4 *3 (-1010 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-968 *3)) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *5 (-626 (-1195))) (-4 *4 (-805)) (-4 *5 (-862)))) (-4210 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4200 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4191 (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4182 (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4191 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2768 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4174 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3928 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1083 *3 *4 *5)))) (-4165 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3928 *1) (|:| |coef1| *1))) (-4 *1 (-1083 *3 *4 *5)))) (-2269 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3928 *1) (|:| |coef2| *1))) (-4 *1 (-1083 *3 *4 *5)))) (-2778 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2258 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1083 *3 *4 *5)))) (-1411 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2247 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))) (-2236 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))) (-2225 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3928 (*1 *2 *2 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2215 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2204 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2196 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2185 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464))))) -(-13 (-965 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1323 (|t#3| $)) (-15 -4436 ((-783) $)) (-15 -3475 ($ $)) (-15 -4427 ($ $)) (-15 -3463 ($ $)) (-15 -4416 ($ $)) (-15 -4405 ((-656 $) $)) (-15 -4393 ($ $)) (-15 -4383 ($ $ |t#3|)) (-15 -4407 ($ $ |t#3|)) (-15 -4382 ((-112) $)) (-15 -4370 ((-112) $)) (-15 -4358 ($ $)) (-15 -4345 ($ $)) (-15 -4332 ((-656 $) $)) (-15 -4322 ((-656 $) $)) (-15 -4310 ((-3 (-112) "failed") $ $)) (-15 -3461 ((-112) $ $)) (-15 -4300 ((-112) $ $)) (-15 -3414 ((-112) $ $)) (-15 -3414 ((-112) $ (-656 $))) (-15 -3396 ((-112) $ $)) (-15 -3396 ((-112) $ (-656 $))) (-15 -3387 ((-112) $ $)) (-15 -3387 ((-112) $ (-656 $))) (-15 -3425 ((-112) $ $)) (-15 -3425 ((-112) $ (-656 $))) (-15 -4289 ($ $ $)) (-15 -4280 ($ $ $)) (-15 -4289 ($ $ $ |t#3|)) (-15 -4280 ($ $ $ |t#3|)) (-15 -4270 ($ $ $)) (-15 -4260 ($ $ $)) (-15 -4270 ($ $ $ |t#3|)) (-15 -4260 ($ $ $ |t#3|)) (-15 -4249 ((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -1406 $)) $ $)) (-15 -4249 ((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -1406 $)) $ $ |t#3|)) (-15 -4238 ((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -2770 $) (|:| -1406 $)) $ $)) (-15 -4238 ((-2 (|:| -1755 $) (|:| |gap| (-783)) (|:| -2770 $) (|:| -1406 $)) $ $ |t#3|)) (-15 -2736 ((-2 (|:| -2770 $) (|:| -1406 $)) $ $)) (-15 -4229 ($ $ $)) (-15 -4219 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2147 (-783))) $ $)) (-15 -3348 ($ $ $)) (-15 -3338 ($ $ $)) (IF (|has| |t#3| (-626 (-1195))) (PROGN (-6 (-625 (-968 |t#1|))) (-6 (-626 (-968 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2449 ((-3 $ "failed") (-968 (-419 (-576))))) (-15 -4401 ($ (-968 (-419 (-576))))) (-15 -2616 ($ (-968 (-419 (-576))))) (-15 -2449 ((-3 $ "failed") (-968 (-576)))) (-15 -4401 ($ (-968 (-576)))) (-15 -2616 ($ (-968 (-576)))) (IF (|has| |t#1| (-1010 (-576))) |%noBranch| (PROGN (-15 -2449 ((-3 $ "failed") (-968 |t#1|))) (-15 -4401 ($ (-968 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -2449 ((-3 $ "failed") (-968 (-576)))) (-15 -4401 ($ (-968 (-576)))) (-15 -2616 ($ (-968 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -2449 ((-3 $ "failed") (-968 |t#1|))) (-15 -4401 ($ (-968 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -2449 ((-3 $ "failed") (-968 |t#1|))) (-15 -4401 ($ (-968 |t#1|)))))) (-15 -2616 ($ (-968 |t#1|))) (IF (|has| |t#1| (-1056 (-576))) (-6 (-626 (-1177))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -4210 ($ $)) (-15 -4200 ($ $)) (-15 -4191 ($ $ |t#1|)) (-15 -4182 ($ $ |t#1|)) (-15 -4191 ($ $ $)) (-15 -4182 ($ $ $)) (-15 -2768 ($ $ $)) (-15 -4174 ((-2 (|:| -3928 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4165 ((-2 (|:| -3928 $) (|:| |coef1| $)) $ $)) (-15 -2269 ((-2 (|:| -3928 $) (|:| |coef2| $)) $ $)) (-15 -2778 ($ $ $)) (-15 -2258 ((-656 $) $ $)) (-15 -1411 ($ $ $)) (-15 -2247 ($ $ $ (-783))) (-15 -2236 ($ $ $ $ (-783))) (-15 -2225 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3928 (|t#1| |t#1| $)) (-15 -2215 ($ $)) (-15 -2204 ($ $)) (-15 -2196 ($ $)) (-15 -2185 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-625 (-968 |#1|)) |has| |#3| (-626 (-1195))) ((-174) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-626 (-968 |#1|)) |has| |#3| (-626 (-1195))) ((-626 (-1177)) -12 (|has| |#1| (-1056 (-576))) (|has| |#3| (-626 (-1195)))) ((-300) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3766 (|has| |#1| (-925)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ |#3|) . T) ((-914 |#3|) . T) ((-916 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-965 |#1| |#2| |#3|) . T) ((-925) |has| |#1| (-925)) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1056 |#3|) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T) ((-1240) |has| |#1| (-925))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-1452 (((-656 (-1153)) $) 18)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 27) (($ (-1200)) NIL) (((-1200) $) NIL)) (-1789 (((-1153) $) 20)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1084) (-13 (-1101) (-10 -8 (-15 -1452 ((-656 (-1153)) $)) (-15 -1789 ((-1153) $))))) (T -1084)) -((-1452 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1084)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1084))))) -(-13 (-1101) (-10 -8 (-15 -1452 ((-656 (-1153)) $)) (-15 -1789 ((-1153) $)))) -((-1389 (((-112) |#3| $) 15)) (-1342 (((-3 $ "failed") |#3| (-937)) 29)) (-1999 (((-3 |#3| "failed") |#3| $) 45)) (-1370 (((-112) |#3| $) 19)) (-1379 (((-112) |#3| $) 17))) -(((-1085 |#1| |#2| |#3|) (-10 -8 (-15 -1342 ((-3 |#1| "failed") |#3| (-937))) (-15 -1999 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1370 ((-112) |#3| |#1|)) (-15 -1379 ((-112) |#3| |#1|)) (-15 -1389 ((-112) |#3| |#1|))) (-1086 |#2| |#3|) (-13 (-860) (-374)) (-1262 |#2|)) (T -1085)) -NIL -(-10 -8 (-15 -1342 ((-3 |#1| "failed") |#3| (-937))) (-15 -1999 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1370 ((-112) |#3| |#1|)) (-15 -1379 ((-112) |#3| |#1|)) (-15 -1389 ((-112) |#3| |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) |#2| $) 22)) (-3966 (((-576) |#2| $) 23)) (-1342 (((-3 $ "failed") |#2| (-937)) 16)) (-1333 ((|#1| |#2| $ |#1|) 14)) (-1999 (((-3 |#2| "failed") |#2| $) 19)) (-1370 (((-112) |#2| $) 20)) (-1379 (((-112) |#2| $) 21)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-1360 ((|#2| $) 18)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3495 ((|#1| |#2| $ |#1|) 15)) (-1351 (((-656 $) |#2|) 17)) (-3915 (((-112) $ $) 6))) -(((-1086 |#1| |#2|) (-141) (-13 (-860) (-374)) (-1262 |t#1|)) (T -1086)) -((-3966 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-576)))) (-1389 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-112)))) (-1379 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-112)))) (-1370 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-112)))) (-1999 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1262 *3)))) (-1360 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1262 *3)))) (-1351 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *4 *3)))) (-1342 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-937)) (-4 *4 (-13 (-860) (-374))) (-4 *1 (-1086 *4 *2)) (-4 *2 (-1262 *4)))) (-3495 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1262 *2)))) (-1333 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1262 *2))))) -(-13 (-1118) (-10 -8 (-15 -3966 ((-576) |t#2| $)) (-15 -1389 ((-112) |t#2| $)) (-15 -1379 ((-112) |t#2| $)) (-15 -1370 ((-112) |t#2| $)) (-15 -1999 ((-3 |t#2| "failed") |t#2| $)) (-15 -1360 (|t#2| $)) (-15 -1351 ((-656 $) |t#2|)) (-15 -1342 ((-3 $ "failed") |t#2| (-937))) (-15 -3495 (|t#1| |t#2| $ |t#1|)) (-15 -1333 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-1766 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) (-783)) 114)) (-1730 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783)) 63)) (-2722 (((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-783)) 99)) (-1710 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-1741 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783)) 65) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783) (-112)) 67)) (-1754 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 87)) (-2616 (((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) 92)) (-1719 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-112)) 62)) (-1698 (((-783) (-656 |#4|) (-656 |#5|)) 21))) -(((-1087 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1698 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1710 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1719 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-112))) (-15 -1730 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783))) (-15 -1730 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|)) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783))) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|)) (-15 -1754 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -1754 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1766 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) (-783))) (-15 -2616 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)))) (-15 -2722 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-783)))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -1087)) -((-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4271 *9)))) (-5 *4 (-783)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4271 *8))) (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177)) (-5 *1 (-1087 *4 *5 *6 *7 *8)))) (-1766 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4271 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4271 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1083 *7 *8 *9)) (-4 *11 (-1089 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-5 *1 (-1087 *7 *8 *9 *10 *11)))) (-1754 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-1754 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-1741 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1741 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) (-1741 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-4 *3 (-1083 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1087 *7 *8 *9 *3 *4)) (-4 *4 (-1089 *7 *8 *9 *3)))) (-1730 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1730 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) (-1719 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) (-1710 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1698 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1710 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1719 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-112))) (-15 -1730 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783))) (-15 -1730 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|)) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783))) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|)) (-15 -1754 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -1754 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1766 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) (-783))) (-15 -2616 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)))) (-15 -2722 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-783)))) -((-1489 (((-112) |#5| $) 26)) (-1463 (((-112) |#5| $) 29)) (-1498 (((-112) |#5| $) 18) (((-112) $) 52)) (-3703 (((-656 $) |#5| $) NIL) (((-656 $) (-656 |#5|) $) 94) (((-656 $) (-656 |#5|) (-656 $)) 92) (((-656 $) |#5| (-656 $)) 95)) (-2904 (($ $ |#5|) NIL) (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 73) (((-656 $) (-656 |#5|) $) 75) (((-656 $) (-656 |#5|) (-656 $)) 77)) (-1400 (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 64) (((-656 $) (-656 |#5|) $) 69) (((-656 $) (-656 |#5|) (-656 $)) 71)) (-1479 (((-112) |#5| $) 32))) -(((-1088 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2904 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2904 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2904 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2904 ((-656 |#1|) |#5| |#1|)) (-15 -1400 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1400 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1400 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1400 ((-656 |#1|) |#5| |#1|)) (-15 -3703 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3703 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3703 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3703 ((-656 |#1|) |#5| |#1|)) (-15 -1463 ((-112) |#5| |#1|)) (-15 -1498 ((-112) |#1|)) (-15 -1479 ((-112) |#5| |#1|)) (-15 -1489 ((-112) |#5| |#1|)) (-15 -1498 ((-112) |#5| |#1|)) (-15 -2904 (|#1| |#1| |#5|))) (-1089 |#2| |#3| |#4| |#5|) (-464) (-805) (-862) (-1083 |#2| |#3| |#4|)) (T -1088)) -NIL -(-10 -8 (-15 -2904 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2904 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2904 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2904 ((-656 |#1|) |#5| |#1|)) (-15 -1400 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1400 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1400 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1400 ((-656 |#1|) |#5| |#1|)) (-15 -3703 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3703 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3703 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3703 ((-656 |#1|) |#5| |#1|)) (-15 -1463 ((-112) |#5| |#1|)) (-15 -1498 ((-112) |#1|)) (-15 -1479 ((-112) |#5| |#1|)) (-15 -1489 ((-112) |#5| |#1|)) (-15 -1498 ((-112) |#5| |#1|)) (-15 -2904 (|#1| |#1| |#5|))) -((-2862 (((-112) $ $) 7)) (-3289 (((-656 (-2 (|:| -2459 $) (|:| -2980 (-656 |#4|)))) (-656 |#4|)) 86)) (-3299 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1607 (((-656 |#3|) $) 34)) (-1470 (((-112) $) 27)) (-1374 (((-112) $) 18 (|has| |#1| (-568)))) (-3405 (((-112) |#4| $) 102) (((-112) $) 98)) (-3358 ((|#4| |#4| $) 93)) (-2944 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| $) 127)) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#3|) 28)) (-2970 (((-112) $ (-783)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-2473 (($) 46 T CONST)) (-1425 (((-112) $) 23 (|has| |#1| (-568)))) (-1445 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1435 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1457 (((-112) $) 26 (|has| |#1| (-568)))) (-3367 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1384 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1394 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 |#4|)) 37)) (-4401 (($ (-656 |#4|)) 36)) (-1976 (((-3 $ "failed") $) 83)) (-3328 ((|#4| |#4| $) 90)) (-1919 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3414 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3308 ((|#4| |#4| $) 88)) (-2309 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3435 (((-2 (|:| -2459 (-656 |#4|)) (|:| -2980 (-656 |#4|))) $) 106)) (-1489 (((-112) |#4| $) 137)) (-1463 (((-112) |#4| $) 134)) (-1498 (((-112) |#4| $) 138) (((-112) $) 135)) (-4001 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-3425 (((-112) |#4| $) 105) (((-112) $) 104)) (-1323 ((|#3| $) 35)) (-2408 (((-112) $ (-783)) 44)) (-1496 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) 48)) (-1524 (((-656 |#3|) $) 33)) (-1513 (((-112) |#3| $) 32)) (-2374 (((-112) $ (-783)) 43)) (-3733 (((-1177) $) 10)) (-1421 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1411 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| |#4| $) 128)) (-3654 (((-3 |#4| "failed") $) 84)) (-1431 (((-656 $) |#4| $) 130)) (-1451 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1440 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3703 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1800 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3443 (((-656 |#4|) $) 108)) (-3387 (((-112) |#4| $) 100) (((-112) $) 96)) (-3338 ((|#4| |#4| $) 91)) (-3461 (((-112) $ $) 111)) (-1415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3396 (((-112) |#4| $) 101) (((-112) $) 97)) (-3348 ((|#4| |#4| $) 92)) (-3914 (((-1138) $) 11)) (-1962 (((-3 |#4| "failed") $) 85)) (-1932 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3266 (((-3 $ "failed") $ |#4|) 79)) (-2904 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-2476 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) 39)) (-2809 (((-112) $) 42)) (-1458 (($) 41)) (-3813 (((-783) $) 107)) (-3926 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3079 (($ $) 40)) (-2616 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2895 (($ (-656 |#4|)) 61)) (-1483 (($ $ |#3|) 29)) (-1504 (($ $ |#3|) 31)) (-3318 (($ $) 89)) (-1493 (($ $ |#3|) 30)) (-2884 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3255 (((-783) $) 77 (|has| |#3| (-379)))) (-3722 (((-112) $ $) 9)) (-3453 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3377 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1400 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2492 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-3278 (((-656 |#3|) $) 82)) (-1479 (((-112) |#4| $) 136)) (-3704 (((-112) |#3| $) 81)) (-3915 (((-112) $ $) 6)) (-2872 (((-783) $) 47 (|has| $ (-6 -4461))))) -(((-1089 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -1089)) -((-1498 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-1489 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-1479 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-1463 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-1451 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) (-4 *1 (-1089 *4 *5 *6 *3)))) (-1440 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *1)))) (-4 *1 (-1089 *4 *5 *6 *3)))) (-1440 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-1431 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)))) (-1421 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) (-4 *1 (-1089 *4 *5 *6 *3)))) (-1411 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *1)))) (-4 *1 (-1089 *4 *5 *6 *3)))) (-2944 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *1)))) (-4 *1 (-1089 *4 *5 *6 *3)))) (-3703 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)))) (-3703 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *7)))) (-3703 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)))) (-3703 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)))) (-1400 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)))) (-1400 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)))) (-1400 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *7)))) (-1400 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)))) (-1800 (*1 *1 *2 *1) (-12 (-4 *1 (-1089 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-1800 (*1 *1 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)))) (-2904 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)))) (-2904 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)))) (-2904 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *7)))) (-2904 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)))) (-3299 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *5 *6 *7 *8))))) -(-13 (-1229 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1498 ((-112) |t#4| $)) (-15 -1489 ((-112) |t#4| $)) (-15 -1479 ((-112) |t#4| $)) (-15 -1498 ((-112) $)) (-15 -1463 ((-112) |t#4| $)) (-15 -1451 ((-3 (-112) (-656 $)) |t#4| $)) (-15 -1440 ((-656 (-2 (|:| |val| (-112)) (|:| -4271 $))) |t#4| $)) (-15 -1440 ((-112) |t#4| $)) (-15 -1431 ((-656 $) |t#4| $)) (-15 -1421 ((-3 |t#4| (-656 $)) |t#4| |t#4| $)) (-15 -1411 ((-656 (-2 (|:| |val| |t#4|) (|:| -4271 $))) |t#4| |t#4| $)) (-15 -2944 ((-656 (-2 (|:| |val| |t#4|) (|:| -4271 $))) |t#4| $)) (-15 -3703 ((-656 $) |t#4| $)) (-15 -3703 ((-656 $) (-656 |t#4|) $)) (-15 -3703 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3703 ((-656 $) |t#4| (-656 $))) (-15 -1400 ((-656 $) |t#4| $)) (-15 -1400 ((-656 $) |t#4| (-656 $))) (-15 -1400 ((-656 $) (-656 |t#4|) $)) (-15 -1400 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -1800 ($ |t#4| $)) (-15 -1800 ($ (-656 |t#4|) $)) (-15 -2904 ((-656 $) |t#4| $)) (-15 -2904 ((-656 $) |t#4| (-656 $))) (-15 -2904 ((-656 $) (-656 |t#4|) $)) (-15 -2904 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3299 ((-656 $) (-656 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1118) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) -((-1580 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#5|) 86)) (-1542 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|) 127)) (-1566 (((-656 |#5|) |#4| |#5|) 74)) (-1551 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-4126 (((-1291)) 36)) (-4109 (((-1291)) 25)) (-4118 (((-1291) (-1177) (-1177) (-1177)) 32)) (-4099 (((-1291) (-1177) (-1177) (-1177)) 21)) (-1509 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#4| |#4| |#5|) 107)) (-1519 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#3| (-112)) 118) (((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-1529 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|) 113))) -(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4099 ((-1291) (-1177) (-1177) (-1177))) (-15 -4109 ((-1291))) (-15 -4118 ((-1291) (-1177) (-1177) (-1177))) (-15 -4126 ((-1291))) (-15 -1509 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -1519 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1519 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#3| (-112))) (-15 -1529 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -1542 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -1551 ((-112) |#4| |#5|)) (-15 -1551 ((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|)) (-15 -1566 ((-656 |#5|) |#4| |#5|)) (-15 -1580 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -1090)) -((-1580 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1566 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1551 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1551 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1542 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1529 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1519 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4271 *9)))) (-5 *5 (-112)) (-4 *8 (-1083 *6 *7 *4)) (-4 *9 (-1089 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4271 *9)))) (-5 *1 (-1090 *6 *7 *4 *8 *9)))) (-1519 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) (-1509 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-4126 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-4118 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-4109 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-4099 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))) -(-10 -7 (-15 -4099 ((-1291) (-1177) (-1177) (-1177))) (-15 -4109 ((-1291))) (-15 -4118 ((-1291) (-1177) (-1177) (-1177))) (-15 -4126 ((-1291))) (-15 -1509 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -1519 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1519 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#3| (-112))) (-15 -1529 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -1542 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -1551 ((-112) |#4| |#5|)) (-15 -1551 ((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|)) (-15 -1566 ((-656 |#5|) |#4| |#5|)) (-15 -1580 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#5|))) -((-2862 (((-112) $ $) NIL)) (-2940 (((-1235) $) 13)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3830 (((-1153) $) 10)) (-2884 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1091) (-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $)) (-15 -2940 ((-1235) $))))) (T -1091)) -((-3830 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1091)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1091))))) -(-13 (-1101) (-10 -8 (-15 -3830 ((-1153) $)) (-15 -2940 ((-1235) $)))) -((-2572 (((-112) $ $) 7))) -(((-1092) (-13 (-1236) (-10 -8 (-15 -2572 ((-112) $ $))))) (T -1092)) -((-2572 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1092))))) -(-13 (-1236) (-10 -8 (-15 -2572 ((-112) $ $)))) -((-2862 (((-112) $ $) NIL)) (-1778 (((-1195) $) 8)) (-3733 (((-1177) $) 17)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 11)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 14))) -(((-1093 |#1|) (-13 (-1118) (-10 -8 (-15 -1778 ((-1195) $)))) (-1195)) (T -1093)) -((-1778 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1093 *3)) (-14 *3 *2)))) -(-13 (-1118) (-10 -8 (-15 -1778 ((-1195) $)))) -((-2862 (((-112) $ $) NIL)) (-1694 (($ $ (-656 (-1195)) (-1 (-112) (-656 |#3|))) 34)) (-4043 (($ |#3| |#3|) 23) (($ |#3| |#3| (-656 (-1195))) 21)) (-3892 ((|#3| $) 13)) (-2449 (((-3 (-304 |#3|) "failed") $) 60)) (-4401 (((-304 |#3|) $) NIL)) (-1591 (((-656 (-1195)) $) 16)) (-3922 (((-905 |#1|) $) 11)) (-3880 ((|#3| $) 12)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2071 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-937)) 41)) (-2884 (((-874) $) 89) (($ (-304 |#3|)) 22)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 38))) -(((-1094 |#1| |#2| |#3|) (-13 (-1118) (-296 |#3| |#3|) (-1056 (-304 |#3|)) (-10 -8 (-15 -4043 ($ |#3| |#3|)) (-15 -4043 ($ |#3| |#3| (-656 (-1195)))) (-15 -1694 ($ $ (-656 (-1195)) (-1 (-112) (-656 |#3|)))) (-15 -3922 ((-905 |#1|) $)) (-15 -3880 (|#3| $)) (-15 -3892 (|#3| $)) (-15 -2071 (|#3| $ |#3| (-937))) (-15 -1591 ((-656 (-1195)) $)))) (-1118) (-13 (-1067) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -1094)) -((-4043 (*1 *1 *2 *2) (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1094 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))) (-4043 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1094 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-1694 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1 (-112) (-656 *6))) (-4 *6 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1094 *4 *5 *6)))) (-3922 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 *2))) (-5 *2 (-905 *3)) (-5 *1 (-1094 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 *2))))) (-3880 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1094 *3 *4 *2)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))))) (-3892 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1094 *3 *4 *2)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))))) (-2071 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-937)) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1094 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-1591 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) (-5 *2 (-656 (-1195))) (-5 *1 (-1094 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) -(-13 (-1118) (-296 |#3| |#3|) (-1056 (-304 |#3|)) (-10 -8 (-15 -4043 ($ |#3| |#3|)) (-15 -4043 ($ |#3| |#3| (-656 (-1195)))) (-15 -1694 ($ $ (-656 (-1195)) (-1 (-112) (-656 |#3|)))) (-15 -3922 ((-905 |#1|) $)) (-15 -3880 (|#3| $)) (-15 -3892 (|#3| $)) (-15 -2071 (|#3| $ |#3| (-937))) (-15 -1591 ((-656 (-1195)) $)))) -((-2862 (((-112) $ $) NIL)) (-1661 (($ (-656 (-1094 |#1| |#2| |#3|))) 14)) (-4093 (((-656 (-1094 |#1| |#2| |#3|)) $) 21)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2071 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-937)) 27)) (-2884 (((-874) $) 17)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 20))) -(((-1095 |#1| |#2| |#3|) (-13 (-1118) (-296 |#3| |#3|) (-10 -8 (-15 -1661 ($ (-656 (-1094 |#1| |#2| |#3|)))) (-15 -4093 ((-656 (-1094 |#1| |#2| |#3|)) $)) (-15 -2071 (|#3| $ |#3| (-937))))) (-1118) (-13 (-1067) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -1095)) -((-1661 (*1 *1 *2) (-12 (-5 *2 (-656 (-1094 *3 *4 *5))) (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1095 *3 *4 *5)))) (-4093 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) (-5 *2 (-656 (-1094 *3 *4 *5))) (-5 *1 (-1095 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))) (-2071 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-937)) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1095 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))) -(-13 (-1118) (-296 |#3| |#3|) (-10 -8 (-15 -1661 ($ (-656 (-1094 |#1| |#2| |#3|)))) (-15 -4093 ((-656 (-1094 |#1| |#2| |#3|)) $)) (-15 -2071 (|#3| $ |#3| (-937))))) -((-1601 (((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112)) 88) (((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|))) 92) (((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112)) 90))) -(((-1096 |#1| |#2|) (-10 -7 (-15 -1601 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112))) (-15 -1601 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -1601 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-656 (-1195))) (T -1096)) -((-1601 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2087 (-1191 *5)) (|:| -3629 (-656 (-968 *5)))))) (-5 *1 (-1096 *5 *6)) (-5 *3 (-656 (-968 *5))) (-14 *6 (-656 (-1195))))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2087 (-1191 *4)) (|:| -3629 (-656 (-968 *4)))))) (-5 *1 (-1096 *4 *5)) (-5 *3 (-656 (-968 *4))) (-14 *5 (-656 (-1195))))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2087 (-1191 *5)) (|:| -3629 (-656 (-968 *5)))))) (-5 *1 (-1096 *5 *6)) (-5 *3 (-656 (-968 *5))) (-14 *6 (-656 (-1195)))))) -(-10 -7 (-15 -1601 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112))) (-15 -1601 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -1601 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112)))) -((-2354 (((-430 |#3|) |#3|) 18))) -(((-1097 |#1| |#2| |#3|) (-10 -7 (-15 -2354 ((-430 |#3|) |#3|))) (-1262 (-419 (-576))) (-13 (-374) (-148) (-736 (-419 (-576)) |#1|)) (-1262 |#2|)) (T -1097)) -((-2354 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1097 *4 *5 *3)) (-4 *3 (-1262 *5))))) -(-10 -7 (-15 -2354 ((-430 |#3|) |#3|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 136)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-4241 (($ $) NIL (|has| |#1| (-374)))) (-4221 (((-112) $) NIL (|has| |#1| (-374)))) (-4355 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) 121)) (-1448 ((|#1| $) 125)) (-2575 (((-1208 (-937) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL (|has| |#1| (-374)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2416 (((-783)) 43 (|has| |#1| (-379)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-1339 (($ (-1286 |#1|) (-1286 $)) NIL) (($ (-1286 |#1|)) 46)) (-2545 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4342 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 113) (((-701 |#1|) (-701 $)) 108) (((-701 |#1|) (-1286 $)) NIL)) (-2309 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-1999 (((-3 $ "failed") $) NIL)) (-4423 (((-937)) 84)) (-2080 (($) 47 (|has| |#1| (-379)))) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2013 (($) NIL (|has| |#1| (-360)))) (-2635 (((-112) $) NIL (|has| |#1| (-360)))) (-4188 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-2463 (((-112) $) NIL (|has| |#1| (-374)))) (-2927 (((-937) $) NIL (|has| |#1| (-360))) (((-845 (-937)) $) NIL (|has| |#1| (-360)))) (-1439 (((-112) $) NIL)) (-1941 ((|#1| $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1922 ((|#2| $) 91 (|has| |#1| (-374)))) (-1875 (((-937) $) 145 (|has| |#1| (-379)))) (-2297 ((|#2| $) 62)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL (|has| |#1| (-374)))) (-3475 (($) NIL (|has| |#1| (-360)) CONST)) (-4318 (($ (-937)) 135 (|has| |#1| (-379)))) (-3914 (((-1138) $) NIL)) (-3660 (($) 127)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2588 (((-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576))))) NIL (|has| |#1| (-360)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2790 ((|#1| (-1286 $)) NIL) ((|#1|) 117)) (-4197 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2390 (($ $ (-783)) NIL (-3766 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-3766 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1195)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-1430 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-1360 ((|#2|) 81)) (-2560 (($) NIL (|has| |#1| (-360)))) (-3629 (((-1286 |#1|) $ (-1286 $)) 96) (((-701 |#1|) (-1286 $) (-1286 $)) NIL) (((-1286 |#1|) $) 75) (((-701 |#1|) (-1286 $)) 92)) (-2616 (((-1286 |#1|) $) NIL) (($ (-1286 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-360)))) (-2884 (((-874) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576))))))) (-3148 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1776 ((|#2| $) 89)) (-1871 (((-783)) 83 T CONST)) (-3722 (((-112) $ $) NIL)) (-1898 (((-1286 $)) 88)) (-4232 (((-112) $ $) NIL (|has| |#1| (-374)))) (-1996 (($) 32 T CONST)) (-2011 (($) 19 T CONST)) (-3431 (($ $ (-783)) NIL (-3766 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-3766 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1195)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-3915 (((-112) $ $) 67)) (-4039 (($ $ $) NIL (|has| |#1| (-374)))) (-4029 (($ $) 71) (($ $ $) NIL)) (-4017 (($ $ $) 69)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) -(((-1098 |#1| |#2| |#3|) (-736 |#1| |#2|) (-174) (-1262 |#1|) |#2|) (T -1098)) -NIL -(-736 |#1| |#2|) -((-2354 (((-430 |#3|) |#3|) 19))) -(((-1099 |#1| |#2| |#3|) (-10 -7 (-15 -2354 ((-430 |#3|) |#3|))) (-1262 (-419 (-968 (-576)))) (-13 (-374) (-148) (-736 (-419 (-968 (-576))) |#1|)) (-1262 |#2|)) (T -1099)) -((-2354 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 (-968 (-576))))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-968 (-576))) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1099 *4 *5 *3)) (-4 *3 (-1262 *5))))) -(-10 -7 (-15 -2354 ((-430 |#3|) |#3|))) -((-2862 (((-112) $ $) NIL)) (-1921 (($ $ $) 16)) (-4137 (($ $ $) 17)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1615 (($) 6)) (-2616 (((-1195) $) 20)) (-2884 (((-874) $) 13)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 15)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 9))) -(((-1100) (-13 (-862) (-626 (-1195)) (-10 -8 (-15 -1615 ($))))) (T -1100)) -((-1615 (*1 *1) (-5 *1 (-1100)))) -(-13 (-862) (-626 (-1195)) (-10 -8 (-15 -1615 ($)))) -((-2862 (((-112) $ $) 7)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-1200)) 17) (((-1200) $) 16)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-1101) (-141)) (T -1101)) +((-2553 (*1 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23))))) +(-13 (-1061 |t#1|) (-10 -8 (-15 -2553 ($) -3738))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-1061 |#1|) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-3303 (((-655 (-2 (|:| -2458 $) (|:| -2978 (-655 (-791 |#1| (-875 |#2|)))))) (-655 (-791 |#1| (-875 |#2|)))) NIL)) (-1740 (((-655 $) (-655 (-791 |#1| (-875 |#2|)))) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-112)) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-112) (-112)) NIL)) (-1606 (((-655 (-875 |#2|)) $) NIL)) (-2210 (((-112) $) NIL)) (-3036 (((-112) $) NIL (|has| |#1| (-567)))) (-3309 (((-112) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) $) NIL)) (-2749 (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-2058 (((-655 (-2 (|:| |val| (-791 |#1| (-875 |#2|))) (|:| -4270 $))) (-791 |#1| (-875 |#2|)) $) NIL)) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ (-875 |#2|)) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3985 (($ (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 (-791 |#1| (-875 |#2|)) "failed") $ (-875 |#2|)) NIL)) (-3011 (($) NIL T CONST)) (-1437 (((-112) $) NIL (|has| |#1| (-567)))) (-2365 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4289 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1812 (((-112) $) NIL (|has| |#1| (-567)))) (-3376 (((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|))) $ (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) (-1 (-112) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)))) NIL)) (-3629 (((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|))) $) NIL (|has| |#1| (-567)))) (-3563 (((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|))) $) NIL (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 (-791 |#1| (-875 |#2|)))) NIL)) (-4399 (($ (-655 (-791 |#1| (-875 |#2|)))) NIL)) (-1975 (((-3 $ "failed") $) NIL)) (-2690 (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-791 |#1| (-875 |#2|)) (-1117))))) (-3633 (($ (-791 |#1| (-875 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (($ (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-791 |#1| (-875 |#2|))) (|:| |den| |#1|)) (-791 |#1| (-875 |#2|)) $) NIL (|has| |#1| (-567)))) (-2249 (((-112) (-791 |#1| (-875 |#2|)) $ (-1 (-112) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)))) NIL)) (-4183 (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-2308 (((-791 |#1| (-875 |#2|)) (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) $ (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (((-791 |#1| (-875 |#2|)) (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) $ (-791 |#1| (-875 |#2|))) NIL (|has| $ (-6 -4460))) (((-791 |#1| (-875 |#2|)) (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $ (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) (-1 (-112) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)))) NIL)) (-2029 (((-2 (|:| -2458 (-655 (-791 |#1| (-875 |#2|)))) (|:| -2978 (-655 (-791 |#1| (-875 |#2|))))) $) NIL)) (-4355 (((-112) (-791 |#1| (-875 |#2|)) $) NIL)) (-1718 (((-112) (-791 |#1| (-875 |#2|)) $) NIL)) (-2986 (((-112) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) $) NIL)) (-4001 (((-655 (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2548 (((-112) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) $) NIL)) (-3838 (((-875 |#2|) $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-791 |#1| (-875 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-791 |#1| (-875 |#2|)) (-1117))))) (-2847 (($ (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) $) NIL)) (-1444 (((-655 (-875 |#2|)) $) NIL)) (-1808 (((-112) (-875 |#2|) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-2053 (((-3 (-791 |#1| (-875 |#2|)) (-655 $)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-2896 (((-655 (-2 (|:| |val| (-791 |#1| (-875 |#2|))) (|:| -4270 $))) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-3653 (((-3 (-791 |#1| (-875 |#2|)) "failed") $) NIL)) (-2463 (((-655 $) (-791 |#1| (-875 |#2|)) $) NIL)) (-2192 (((-3 (-112) (-655 $)) (-791 |#1| (-875 |#2|)) $) NIL)) (-1658 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) (-791 |#1| (-875 |#2|)) $) NIL)) (-1479 (((-655 $) (-791 |#1| (-875 |#2|)) $) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) $) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-655 $)) NIL) (((-655 $) (-791 |#1| (-875 |#2|)) (-655 $)) NIL)) (-2233 (($ (-791 |#1| (-875 |#2|)) $) NIL) (($ (-655 (-791 |#1| (-875 |#2|))) $) NIL)) (-1590 (((-655 (-791 |#1| (-875 |#2|))) $) NIL)) (-1411 (((-112) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) $) NIL)) (-4367 (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-2687 (((-112) $ $) NIL)) (-4395 (((-2 (|:| |num| (-791 |#1| (-875 |#2|))) (|:| |den| |#1|)) (-791 |#1| (-875 |#2|)) $) NIL (|has| |#1| (-567)))) (-3188 (((-112) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) $) NIL)) (-2973 (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 (((-3 (-791 |#1| (-875 |#2|)) "failed") $) NIL)) (-3704 (((-3 (-791 |#1| (-875 |#2|)) "failed") (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL)) (-2500 (((-3 $ "failed") $ (-791 |#1| (-875 |#2|))) NIL)) (-4276 (($ $ (-791 |#1| (-875 |#2|))) NIL) (((-655 $) (-791 |#1| (-875 |#2|)) $) NIL) (((-655 $) (-791 |#1| (-875 |#2|)) (-655 $)) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) $) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-655 $)) NIL)) (-3207 (((-112) (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|)))) NIL (-12 (|has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|)))) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (($ $ (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) NIL (-12 (|has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|)))) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (($ $ (-303 (-791 |#1| (-875 |#2|)))) NIL (-12 (|has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|)))) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (($ $ (-655 (-303 (-791 |#1| (-875 |#2|))))) NIL (-12 (|has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|)))) (|has| (-791 |#1| (-875 |#2|)) (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2645 (((-782) $) NIL)) (-3925 (((-782) (-791 |#1| (-875 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (((-782) (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-791 |#1| (-875 |#2|)) (-625 (-547))))) (-2894 (($ (-655 (-791 |#1| (-875 |#2|)))) NIL)) (-1879 (($ $ (-875 |#2|)) NIL)) (-3427 (($ $ (-875 |#2|)) NIL)) (-2921 (($ $) NIL)) (-3608 (($ $ (-875 |#2|)) NIL)) (-2883 (((-873) $) NIL) (((-655 (-791 |#1| (-875 |#2|))) $) NIL)) (-3706 (((-782) $) NIL (|has| (-875 |#2|) (-378)))) (-4400 (((-112) $ $) NIL)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 (-791 |#1| (-875 |#2|))))) "failed") (-655 (-791 |#1| (-875 |#2|))) (-1 (-112) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 (-791 |#1| (-875 |#2|))))) "failed") (-655 (-791 |#1| (-875 |#2|))) (-1 (-112) (-791 |#1| (-875 |#2|))) (-1 (-112) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)))) NIL)) (-2994 (((-112) $ (-1 (-112) (-791 |#1| (-875 |#2|)) (-655 (-791 |#1| (-875 |#2|))))) NIL)) (-3556 (((-655 $) (-791 |#1| (-875 |#2|)) $) NIL) (((-655 $) (-791 |#1| (-875 |#2|)) (-655 $)) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) $) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-655 $)) NIL)) (-3771 (((-112) (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1359 (((-655 (-875 |#2|)) $) NIL)) (-2722 (((-112) (-791 |#1| (-875 |#2|)) $) NIL)) (-1591 (((-112) (-875 |#2|) $) NIL)) (-3914 (((-112) $ $) NIL)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1063 |#1| |#2|) (-13 (-1088 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|))) (-10 -8 (-15 -1740 ((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-112) (-112))))) (-463) (-655 (-1194))) (T -1063)) +((-1740 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-1063 *5 *6))))) +(-13 (-1088 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|))) (-10 -8 (-15 -1740 ((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-112) (-112))))) +((-2160 (((-1 (-575)) (-1111 (-575))) 32)) (-2658 (((-575) (-575) (-575) (-575) (-575)) 29)) (-1586 (((-1 (-575)) |RationalNumber|) NIL)) (-3027 (((-1 (-575)) |RationalNumber|) NIL)) (-3820 (((-1 (-575)) (-575) |RationalNumber|) NIL))) +(((-1064) (-10 -7 (-15 -2160 ((-1 (-575)) (-1111 (-575)))) (-15 -3820 ((-1 (-575)) (-575) |RationalNumber|)) (-15 -1586 ((-1 (-575)) |RationalNumber|)) (-15 -3027 ((-1 (-575)) |RationalNumber|)) (-15 -2658 ((-575) (-575) (-575) (-575) (-575))))) (T -1064)) +((-2658 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1064)))) (-3027 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064)))) (-1586 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064)) (-5 *3 (-575)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-1111 (-575))) (-5 *2 (-1 (-575))) (-5 *1 (-1064))))) +(-10 -7 (-15 -2160 ((-1 (-575)) (-1111 (-575)))) (-15 -3820 ((-1 (-575)) (-575) |RationalNumber|)) (-15 -1586 ((-1 (-575)) |RationalNumber|)) (-15 -3027 ((-1 (-575)) |RationalNumber|)) (-15 -2658 ((-575) (-575) (-575) (-575) (-575)))) +((-2883 (((-873) $) NIL) (($ (-575)) 10))) +(((-1065 |#1|) (-10 -8 (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) (-1066)) (T -1065)) +NIL +(-10 -8 (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-575)) 33)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-1066) (-141)) (T -1066)) +((-3759 (*1 *2) (-12 (-4 *1 (-1066)) (-5 *2 (-782))))) +(-13 (-1075) (-737) (-659 $) (-627 (-575)) (-10 -7 (-15 -3759 ((-782)) -3738) (-6 -4457))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-4427 (((-418 (-967 |#2|)) (-655 |#2|) (-655 |#2|) (-782) (-782)) 54))) +(((-1067 |#1| |#2|) (-10 -7 (-15 -4427 ((-418 (-967 |#2|)) (-655 |#2|) (-655 |#2|) (-782) (-782)))) (-1194) (-373)) (T -1067)) +((-4427 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-782)) (-4 *6 (-373)) (-5 *2 (-418 (-967 *6))) (-5 *1 (-1067 *5 *6)) (-14 *5 (-1194))))) +(-10 -7 (-15 -4427 ((-418 (-967 |#2|)) (-655 |#2|) (-655 |#2|) (-782) (-782)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 15)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 16 T CONST)) (-3914 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) +(((-1068 |#1|) (-141) (-1129)) (T -1068)) +((-1996 (*1 *1) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1129)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1068 *3)) (-4 *3 (-1129)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1129))))) +(-13 (-1117) (-10 -8 (-15 (-1996) ($) -3738) (-15 -3799 ((-112) $)) (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-3158 (((-112) $) 38)) (-1503 (((-112) $) 17)) (-4243 (((-782) $) 13)) (-4255 (((-782) $) 14)) (-1763 (((-112) $) 30)) (-4412 (((-112) $) 40))) +(((-1069 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4255 ((-782) |#1|)) (-15 -4243 ((-782) |#1|)) (-15 -4412 ((-112) |#1|)) (-15 -3158 ((-112) |#1|)) (-15 -1763 ((-112) |#1|)) (-15 -1503 ((-112) |#1|))) (-1070 |#2| |#3| |#4| |#5| |#6|) (-782) (-782) (-1066) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1069)) +NIL +(-10 -8 (-15 -4255 ((-782) |#1|)) (-15 -4243 ((-782) |#1|)) (-15 -4412 ((-112) |#1|)) (-15 -3158 ((-112) |#1|)) (-15 -1763 ((-112) |#1|)) (-15 -1503 ((-112) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3158 (((-112) $) 56)) (-2597 (((-3 $ "failed") $ $) 20)) (-1503 (((-112) $) 58)) (-1845 (((-112) $ (-782)) 66)) (-3011 (($) 18 T CONST)) (-3356 (($ $) 39 (|has| |#3| (-316)))) (-1565 ((|#4| $ (-575)) 44)) (-4422 (((-782) $) 38 (|has| |#3| (-567)))) (-2788 ((|#3| $ (-575) (-575)) 46)) (-4001 (((-655 |#3|) $) 73 (|has| $ (-6 -4460)))) (-1911 (((-782) $) 37 (|has| |#3| (-567)))) (-3264 (((-655 |#5|) $) 36 (|has| |#3| (-567)))) (-4243 (((-782) $) 50)) (-4255 (((-782) $) 49)) (-3896 (((-112) $ (-782)) 65)) (-2667 (((-575) $) 54)) (-1775 (((-575) $) 52)) (-3955 (((-655 |#3|) $) 74 (|has| $ (-6 -4460)))) (-2625 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1117)) (|has| $ (-6 -4460))))) (-1776 (((-575) $) 53)) (-3293 (((-575) $) 51)) (-4316 (($ (-655 (-655 |#3|))) 59)) (-2847 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-3487 (((-655 (-655 |#3|)) $) 48)) (-4026 (((-112) $ (-782)) 64)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2851 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-567)))) (-3207 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#3|) (-655 |#3|)) 80 (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-303 |#3|)) 78 (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-655 (-303 |#3|))) 77 (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))) (-3753 (((-112) $ $) 60)) (-4076 (((-112) $) 63)) (-1938 (($) 62)) (-2070 ((|#3| $ (-575) (-575)) 47) ((|#3| $ (-575) (-575) |#3|) 45)) (-1763 (((-112) $) 57)) (-3925 (((-782) |#3| $) 75 (-12 (|has| |#3| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4460)))) (-3078 (($ $) 61)) (-1792 ((|#5| $ (-575)) 43)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3771 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4460)))) (-4412 (((-112) $) 55)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#3|) 40 (|has| |#3| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2871 (((-782) $) 67 (|has| $ (-6 -4460))))) +(((-1070 |#1| |#2| |#3| |#4| |#5|) (-141) (-782) (-782) (-1066) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1070)) +((-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *5))) (-4 *5 (-1066)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-4412 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-782)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-782)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-655 (-655 *5))))) (-2070 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1066)))) (-2788 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1066)))) (-2070 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7)) (-4 *2 (-1066)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-1565 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *6 *2 *7)) (-4 *6 (-1066)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *6 *7 *2)) (-4 *6 (-1066)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-2550 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2851 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *2 (-1066)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-567)))) (-4038 (*1 *1 *1 *2) (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *2 (-1066)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-373)))) (-3356 (*1 *1 *1) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-316)))) (-4422 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567)) (-5 *2 (-782)))) (-1911 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567)) (-5 *2 (-782)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567)) (-5 *2 (-655 *7))))) +(-13 (-111 |t#3| |t#3|) (-500 |t#3|) (-10 -8 (-6 -4460) (IF (|has| |t#3| (-174)) (-6 (-728 |t#3|)) |%noBranch|) (-15 -4316 ($ (-655 (-655 |t#3|)))) (-15 -1503 ((-112) $)) (-15 -1763 ((-112) $)) (-15 -3158 ((-112) $)) (-15 -4412 ((-112) $)) (-15 -2667 ((-575) $)) (-15 -1776 ((-575) $)) (-15 -1775 ((-575) $)) (-15 -3293 ((-575) $)) (-15 -4243 ((-782) $)) (-15 -4255 ((-782) $)) (-15 -3487 ((-655 (-655 |t#3|)) $)) (-15 -2070 (|t#3| $ (-575) (-575))) (-15 -2788 (|t#3| $ (-575) (-575))) (-15 -2070 (|t#3| $ (-575) (-575) |t#3|)) (-15 -1565 (|t#4| $ (-575))) (-15 -1792 (|t#5| $ (-575))) (-15 -2550 ($ (-1 |t#3| |t#3|) $)) (-15 -2550 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-567)) (-15 -2851 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-373)) (-15 -4038 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-316)) (-15 -3356 ($ $)) |%noBranch|) (IF (|has| |t#3| (-567)) (PROGN (-15 -4422 ((-782) $)) (-15 -1911 ((-782) $)) (-15 -3264 ((-655 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-624 (-873)) . T) ((-318 |#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))) ((-500 |#3|) . T) ((-525 |#3| |#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))) ((-657 (-575)) . T) ((-657 |#3|) . T) ((-659 |#3|) . T) ((-651 |#3|) |has| |#3| (-174)) ((-728 |#3|) |has| |#3| (-174)) ((-1068 |#3|) . T) ((-1073 |#3|) . T) ((-1117) . T) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3158 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-1503 (((-112) $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3011 (($) NIL T CONST)) (-3356 (($ $) 47 (|has| |#3| (-316)))) (-1565 (((-245 |#2| |#3|) $ (-575)) 36)) (-2046 (($ (-700 |#3|)) 45)) (-4422 (((-782) $) 49 (|has| |#3| (-567)))) (-2788 ((|#3| $ (-575) (-575)) NIL)) (-4001 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-1911 (((-782) $) 51 (|has| |#3| (-567)))) (-3264 (((-655 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-567)))) (-4243 (((-782) $) NIL)) (-4255 (((-782) $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2667 (((-575) $) NIL)) (-1775 (((-575) $) NIL)) (-3955 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-1776 (((-575) $) NIL)) (-3293 (((-575) $) NIL)) (-4316 (($ (-655 (-655 |#3|))) 31)) (-2847 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3487 (((-655 (-655 |#3|)) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2851 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-567)))) (-3207 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#3|) (-655 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-303 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-655 (-303 |#3|))) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#3| $ (-575) (-575)) NIL) ((|#3| $ (-575) (-575) |#3|) NIL)) (-4386 (((-135)) 59 (|has| |#3| (-373)))) (-1763 (((-112) $) NIL)) (-3925 (((-782) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117)))) (((-782) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) 65 (|has| |#3| (-625 (-547))))) (-1792 (((-245 |#1| |#3|) $ (-575)) 40)) (-2883 (((-873) $) 19) (((-700 |#3|) $) 42)) (-4400 (((-112) $ $) NIL)) (-3771 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-4412 (((-112) $) NIL)) (-1996 (($) 16 T CONST)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#3|) NIL (|has| |#3| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1071 |#1| |#2| |#3|) (-13 (-1070 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-624 (-700 |#3|)) (-10 -8 (IF (|has| |#3| (-373)) (-6 (-1292 |#3|)) |%noBranch|) (IF (|has| |#3| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (-15 -2046 ($ (-700 |#3|))))) (-782) (-782) (-1066)) (T -1071)) +((-2046 (*1 *1 *2) (-12 (-5 *2 (-700 *5)) (-4 *5 (-1066)) (-5 *1 (-1071 *3 *4 *5)) (-14 *3 (-782)) (-14 *4 (-782))))) +(-13 (-1070 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-624 (-700 |#3|)) (-10 -8 (IF (|has| |#3| (-373)) (-6 (-1292 |#3|)) |%noBranch|) (IF (|has| |#3| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (-15 -2046 ($ (-700 |#3|))))) +((-2308 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2550 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1072 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2550 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2308 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-782) (-782) (-1066) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1070 |#1| |#2| |#3| |#4| |#5|) (-1066) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1070 |#1| |#2| |#7| |#8| |#9|)) (T -1072)) +((-2308 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1066)) (-4 *2 (-1066)) (-14 *5 (-782)) (-14 *6 (-782)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1072 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1070 *5 *6 *7 *8 *9)) (-4 *12 (-1070 *5 *6 *2 *10 *11)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1066)) (-4 *10 (-1066)) (-14 *5 (-782)) (-14 *6 (-782)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1070 *5 *6 *10 *11 *12)) (-5 *1 (-1072 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1070 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) +(-10 -7 (-15 -2550 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2308 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ |#1|) 27))) +(((-1073 |#1|) (-141) (-1075)) (T -1073)) +NIL +(-13 (-21) (-1068 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-1068 |#1|) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1441 (((-1194) $) 11)) (-4127 ((|#1| $) 12)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2676 (($ (-1194) |#1|) 10)) (-2883 (((-873) $) 22 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3914 (((-112) $ $) 17 (|has| |#1| (-1117))))) +(((-1074 |#1| |#2|) (-13 (-1235) (-10 -8 (-15 -2676 ($ (-1194) |#1|)) (-15 -1441 ((-1194) $)) (-15 -4127 (|#1| $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|))) (-1110 |#2|) (-1235)) (T -1074)) +((-2676 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-4 *4 (-1235)) (-5 *1 (-1074 *3 *4)) (-4 *3 (-1110 *4)))) (-1441 (*1 *2 *1) (-12 (-4 *4 (-1235)) (-5 *2 (-1194)) (-5 *1 (-1074 *3 *4)) (-4 *3 (-1110 *4)))) (-4127 (*1 *2 *1) (-12 (-4 *2 (-1110 *3)) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1235))))) +(-13 (-1235) (-10 -8 (-15 -2676 ($ (-1194) |#1|)) (-15 -1441 ((-1194) $)) (-15 -4127 (|#1| $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-1075) (-141)) (T -1075)) +NIL +(-13 (-21) (-1129)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-1129) . T) ((-1117) . T)) +((-4080 (($ $) 17)) (-2447 (($ $) 25)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 55)) (-2255 (($ $) 27)) (-4309 (($ $) 12)) (-2736 (($ $) 43)) (-2615 (((-389) $) NIL) (((-227) $) NIL) (((-904 (-389)) $) 36)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) 31) (($ (-575)) NIL) (($ (-418 (-575))) 31)) (-3759 (((-782)) 9)) (-1432 (($ $) 45))) +(((-1076 |#1|) (-10 -8 (-15 -2447 (|#1| |#1|)) (-15 -4080 (|#1| |#1|)) (-15 -4309 (|#1| |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -1432 (|#1| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -1704 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 (|#1| (-575))) (-15 -2615 ((-227) |#1|)) (-15 -2615 ((-389) |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 (|#1| |#1|)) (-15 -3759 ((-782))) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) (-1077)) (T -1076)) +((-3759 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1076 *3)) (-4 *3 (-1077))))) +(-10 -8 (-15 -2447 (|#1| |#1|)) (-15 -4080 (|#1| |#1|)) (-15 -4309 (|#1| |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -1432 (|#1| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -1704 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 (|#1| (-575))) (-15 -2615 ((-227) |#1|)) (-15 -2615 ((-389) |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 (|#1| |#1|)) (-15 -3759 ((-782))) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3127 (((-575) $) 97)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-4080 (($ $) 95)) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 81)) (-2330 (((-429 $) $) 80)) (-2473 (($ $) 105)) (-2279 (((-112) $ $) 65)) (-4428 (((-575) $) 122)) (-3011 (($) 18 T CONST)) (-2447 (($ $) 94)) (-2449 (((-3 (-575) "failed") $) 110) (((-3 (-418 (-575)) "failed") $) 107)) (-4399 (((-575) $) 111) (((-418 (-575)) $) 108)) (-2802 (($ $ $) 61)) (-1747 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-1336 (((-112) $) 79)) (-4075 (((-112) $) 120)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 101)) (-1542 (((-112) $) 35)) (-2931 (($ $ (-575)) 104)) (-2255 (($ $) 100)) (-4087 (((-112) $) 121)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-1920 (($ $ $) 119)) (-1425 (($ $ $) 118)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-4309 (($ $) 96)) (-2736 (($ $) 98)) (-2353 (((-429 $) $) 82)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3708 (((-782) $) 64)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-2615 (((-389) $) 113) (((-227) $) 112) (((-904 (-389)) $) 102)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ (-575)) 109) (($ (-418 (-575))) 106)) (-3759 (((-782)) 32 T CONST)) (-1432 (($ $) 99)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-2705 (($ $) 123)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3981 (((-112) $ $) 116)) (-3956 (((-112) $ $) 115)) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 117)) (-3943 (((-112) $ $) 114)) (-4038 (($ $ $) 73)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77) (($ $ (-418 (-575))) 103)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75))) +(((-1077) (-141)) (T -1077)) +((-2705 (*1 *1 *1) (-4 *1 (-1077))) (-2255 (*1 *1 *1) (-4 *1 (-1077))) (-1432 (*1 *1 *1) (-4 *1 (-1077))) (-2736 (*1 *1 *1) (-4 *1 (-1077))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-575)))) (-4309 (*1 *1 *1) (-4 *1 (-1077))) (-4080 (*1 *1 *1) (-4 *1 (-1077))) (-2447 (*1 *1 *1) (-4 *1 (-1077)))) +(-13 (-373) (-859) (-1039) (-1055 (-575)) (-1055 (-418 (-575))) (-1019) (-625 (-904 (-389))) (-898 (-389)) (-148) (-10 -8 (-15 -2255 ($ $)) (-15 -1432 ($ $)) (-15 -2736 ($ $)) (-15 -3127 ((-575) $)) (-15 -4309 ($ $)) (-15 -4080 ($ $)) (-15 -2447 ($ $)) (-15 -2705 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-625 (-227)) . T) ((-625 (-389)) . T) ((-625 (-904 (-389))) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-859) . T) ((-861) . T) ((-898 (-389)) . T) ((-935) . T) ((-1019) . T) ((-1039) . T) ((-1055 (-418 (-575))) . T) ((-1055 (-575)) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) |#2| $) 26)) (-2415 ((|#1| $) 10)) (-4428 (((-575) |#2| $) 116)) (-3700 (((-3 $ "failed") |#2| (-936)) 75)) (-2435 ((|#1| $) 31)) (-2003 ((|#1| |#2| $ |#1|) 40)) (-3016 (($ $) 28)) (-1747 (((-3 |#2| "failed") |#2| $) 111)) (-4075 (((-112) |#2| $) NIL)) (-4087 (((-112) |#2| $) NIL)) (-4197 (((-112) |#2| $) 27)) (-4021 ((|#1| $) 117)) (-2418 ((|#1| $) 30)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2552 ((|#2| $) 102)) (-2883 (((-873) $) 92)) (-4400 (((-112) $ $) NIL)) (-3494 ((|#1| |#2| $ |#1|) 41)) (-2251 (((-655 $) |#2|) 77)) (-3914 (((-112) $ $) 97))) +(((-1078 |#1| |#2|) (-13 (-1085 |#1| |#2|) (-10 -8 (-15 -2418 (|#1| $)) (-15 -2435 (|#1| $)) (-15 -2415 (|#1| $)) (-15 -4021 (|#1| $)) (-15 -3016 ($ $)) (-15 -4197 ((-112) |#2| $)) (-15 -2003 (|#1| |#2| $ |#1|)))) (-13 (-859) (-373)) (-1261 |#1|)) (T -1078)) +((-2003 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-2418 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-2435 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-2415 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-4021 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-3016 (*1 *1 *1) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-4197 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-859) (-373))) (-5 *2 (-112)) (-5 *1 (-1078 *4 *3)) (-4 *3 (-1261 *4))))) +(-13 (-1085 |#1| |#2|) (-10 -8 (-15 -2418 (|#1| $)) (-15 -2435 (|#1| $)) (-15 -2415 (|#1| $)) (-15 -4021 (|#1| $)) (-15 -3016 ($ $)) (-15 -4197 ((-112) |#2| $)) (-15 -2003 (|#1| |#2| $ |#1|)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1349 (($ $ $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3949 (($ $ $ $) NIL)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-4428 (((-575) $) NIL)) (-3624 (($ $ $) NIL)) (-3011 (($) NIL T CONST)) (-2396 (($ (-1194)) 10) (($ (-575)) 7)) (-2449 (((-3 (-575) "failed") $) NIL)) (-4399 (((-575) $) NIL)) (-2802 (($ $ $) NIL)) (-1749 (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2446 (((-3 (-418 (-575)) "failed") $) NIL)) (-3405 (((-112) $) NIL)) (-3100 (((-418 (-575)) $) NIL)) (-2079 (($) NIL) (($ $) NIL)) (-2813 (($ $ $) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-1455 (($ $ $ $) NIL)) (-4149 (($ $ $) NIL)) (-4075 (((-112) $) NIL)) (-3747 (($ $ $) NIL)) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL)) (-1542 (((-112) $) NIL)) (-2437 (((-112) $) NIL)) (-2607 (((-3 $ "failed") $) NIL)) (-4087 (((-112) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1993 (($ $ $ $) NIL)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-3537 (($ $) NIL)) (-1839 (($ $) NIL)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-1619 (($ $ $) NIL)) (-3474 (($) NIL T CONST)) (-3047 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2217 (($ $) NIL)) (-2353 (((-429 $) $) NIL)) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2185 (((-112) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-2389 (($ $) NIL) (($ $ (-782)) NIL)) (-3353 (($ $) NIL)) (-3078 (($ $) NIL)) (-2615 (((-575) $) 16) (((-547) $) NIL) (((-904 (-575)) $) NIL) (((-389) $) NIL) (((-227) $) NIL) (($ (-1194)) 9)) (-2883 (((-873) $) 23) (($ (-575)) 6) (($ $) NIL) (($ (-575)) 6)) (-3759 (((-782)) NIL T CONST)) (-2830 (((-112) $ $) NIL)) (-3820 (($ $ $) NIL)) (-4400 (((-112) $ $) NIL)) (-1548 (($) NIL)) (-1780 (((-112) $ $) NIL)) (-2755 (($ $ $ $) NIL)) (-2705 (($ $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $) NIL) (($ $ (-782)) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4028 (($ $) 22) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ (-575) $) NIL))) +(((-1079) (-13 (-556) (-629 (-1194)) (-10 -8 (-6 -4447) (-6 -4452) (-6 -4448) (-15 -2396 ($ (-1194))) (-15 -2396 ($ (-575)))))) (T -1079)) +((-2396 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1079)))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1079))))) +(-13 (-556) (-629 (-1194)) (-10 -8 (-6 -4447) (-6 -4452) (-6 -4448) (-15 -2396 ($ (-1194))) (-15 -2396 ($ (-575))))) +((-2861 (((-112) $ $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2297 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-4161 (((-1290) $ (-1194) (-1194)) NIL (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-3931 (($) 9)) (-3054 (((-52) $ (-1194) (-52)) NIL)) (-2305 (($ $) 32)) (-2554 (($ $) 30)) (-4211 (($ $) 29)) (-3854 (($ $) 31)) (-4233 (($ $) 35)) (-2619 (($ $) 36)) (-2951 (($ $) 28)) (-2038 (($ $) 33)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) 27 (|has| $ (-6 -4460)))) (-1399 (((-3 (-52) "failed") (-1194) $) 43)) (-3011 (($) NIL T CONST)) (-1585 (($) 7)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-4404 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) 53 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-3 (-52) "failed") (-1194) $) NIL)) (-3633 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-2164 (((-3 (-1176) "failed") $ (-1176) (-575)) 72)) (-2859 (((-52) $ (-1194) (-52)) NIL (|has| $ (-6 -4461)))) (-2788 (((-52) $ (-1194)) NIL)) (-4001 (((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-1194) $) NIL (|has| (-1194) (-861)))) (-3955 (((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) 38 (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-3197 (((-1194) $) NIL (|has| (-1194) (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2001 (((-655 (-1194)) $) NIL)) (-3308 (((-112) (-1194) $) NIL)) (-4012 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL)) (-3862 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) 46)) (-4310 (((-655 (-1194)) $) NIL)) (-2969 (((-112) (-1194) $) NIL)) (-3912 (((-1137) $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2602 (((-389) $ (-1194)) 52)) (-3348 (((-655 (-1176)) $ (-1176)) 74)) (-1961 (((-52) $) NIL (|has| (-1194) (-861)))) (-3704 (((-3 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) "failed") (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL)) (-3954 (($ $ (-52)) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-303 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-52)) (-655 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-303 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-655 (-303 (-52)))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-1691 (((-655 (-52)) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 (((-52) $ (-1194)) NIL) (((-52) $ (-1194) (-52)) NIL)) (-3601 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-2169 (($ $ (-1194)) 54)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-782) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117)))) (((-782) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) 40)) (-1514 (($ $ $) 41)) (-2883 (((-873) $) NIL (-3765 (|has| (-52) (-624 (-873))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-624 (-873)))))) (-4057 (($ $ (-1194) (-389)) 50)) (-4259 (($ $ (-1194) (-389)) 51)) (-4400 (((-112) $ $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (-3765 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1080) (-13 (-1211 (-1194) (-52)) (-10 -8 (-15 -1514 ($ $ $)) (-15 -1585 ($)) (-15 -2951 ($ $)) (-15 -4211 ($ $)) (-15 -2554 ($ $)) (-15 -3854 ($ $)) (-15 -2038 ($ $)) (-15 -2305 ($ $)) (-15 -4233 ($ $)) (-15 -2619 ($ $)) (-15 -4057 ($ $ (-1194) (-389))) (-15 -4259 ($ $ (-1194) (-389))) (-15 -2602 ((-389) $ (-1194))) (-15 -3348 ((-655 (-1176)) $ (-1176))) (-15 -2169 ($ $ (-1194))) (-15 -3931 ($)) (-15 -2164 ((-3 (-1176) "failed") $ (-1176) (-575))) (-6 -4460)))) (T -1080)) +((-1514 (*1 *1 *1 *1) (-5 *1 (-1080))) (-1585 (*1 *1) (-5 *1 (-1080))) (-2951 (*1 *1 *1) (-5 *1 (-1080))) (-4211 (*1 *1 *1) (-5 *1 (-1080))) (-2554 (*1 *1 *1) (-5 *1 (-1080))) (-3854 (*1 *1 *1) (-5 *1 (-1080))) (-2038 (*1 *1 *1) (-5 *1 (-1080))) (-2305 (*1 *1 *1) (-5 *1 (-1080))) (-4233 (*1 *1 *1) (-5 *1 (-1080))) (-2619 (*1 *1 *1) (-5 *1 (-1080))) (-4057 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-389)) (-5 *1 (-1080)))) (-4259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-389)) (-5 *1 (-1080)))) (-2602 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-389)) (-5 *1 (-1080)))) (-3348 (*1 *2 *1 *3) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1080)) (-5 *3 (-1176)))) (-2169 (*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1080)))) (-3931 (*1 *1) (-5 *1 (-1080))) (-2164 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-1080))))) +(-13 (-1211 (-1194) (-52)) (-10 -8 (-15 -1514 ($ $ $)) (-15 -1585 ($)) (-15 -2951 ($ $)) (-15 -4211 ($ $)) (-15 -2554 ($ $)) (-15 -3854 ($ $)) (-15 -2038 ($ $)) (-15 -2305 ($ $)) (-15 -4233 ($ $)) (-15 -2619 ($ $)) (-15 -4057 ($ $ (-1194) (-389))) (-15 -4259 ($ $ (-1194) (-389))) (-15 -2602 ((-389) $ (-1194))) (-15 -3348 ((-655 (-1176)) $ (-1176))) (-15 -2169 ($ $ (-1194))) (-15 -3931 ($)) (-15 -2164 ((-3 (-1176) "failed") $ (-1176) (-575))) (-6 -4460))) +((-3462 (($ $) 46)) (-4139 (((-112) $ $) 82)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-967 (-418 (-575)))) 251) (((-3 $ "failed") (-967 (-575))) 250) (((-3 $ "failed") (-967 |#2|)) 253)) (-4399 ((|#2| $) NIL) (((-418 (-575)) $) NIL) (((-575) $) NIL) ((|#4| $) NIL) (($ (-967 (-418 (-575)))) 239) (($ (-967 (-575))) 235) (($ (-967 |#2|)) 255)) (-4406 (($ $) NIL) (($ $ |#4|) 44)) (-2249 (((-112) $ $) 131) (((-112) $ (-655 $)) 135)) (-4327 (((-112) $) 60)) (-3965 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 125)) (-2507 (($ $) 160)) (-3024 (($ $) 156)) (-2460 (($ $) 155)) (-2382 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3858 (($ $ $) 90) (($ $ $ |#4|) 94)) (-2548 (((-112) $ $) 143) (((-112) $ (-655 $)) 144)) (-3838 ((|#4| $) 32)) (-2723 (($ $ $) 128)) (-2995 (((-112) $) 59)) (-2947 (((-782) $) 35)) (-3522 (($ $) 174)) (-4173 (($ $) 171)) (-2492 (((-655 $) $) 72)) (-3638 (($ $) 62)) (-3833 (($ $) 167)) (-4167 (((-655 $) $) 69)) (-1782 (($ $) 64)) (-4383 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3051 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1934 (-782))) $ $) 130)) (-4343 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -2829 $) (|:| -1635 $)) $ $) 126) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -2829 $) (|:| -1635 $)) $ $ |#4|) 127)) (-4125 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -1635 $)) $ $) 121) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -1635 $)) $ $ |#4|) 123)) (-2360 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2808 (($ $ $) 98) (($ $ $ |#4|) 107)) (-4372 (((-655 $) $) 54)) (-1411 (((-112) $ $) 140) (((-112) $ (-655 $)) 141)) (-4367 (($ $ $) 116)) (-3474 (($ $) 37)) (-2687 (((-112) $ $) 80)) (-3188 (((-112) $ $) 136) (((-112) $ (-655 $)) 138)) (-2973 (($ $ $) 112)) (-3283 (($ $) 41)) (-3926 ((|#2| |#2| $) 164) (($ (-655 $)) NIL) (($ $ $) NIL)) (-2113 (($ $ |#2|) NIL) (($ $ $) 153)) (-1533 (($ $ |#2|) 148) (($ $ $) 151)) (-1549 (($ $) 49)) (-2778 (($ $) 55)) (-2615 (((-904 (-389)) $) NIL) (((-904 (-575)) $) NIL) (((-547) $) NIL) (($ (-967 (-418 (-575)))) 241) (($ (-967 (-575))) 237) (($ (-967 |#2|)) 252) (((-1176) $) 279) (((-967 |#2|) $) 184)) (-2883 (((-873) $) 29) (($ (-575)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-967 |#2|) $) 185) (($ (-418 (-575))) NIL) (($ $) NIL)) (-3927 (((-3 (-112) "failed") $ $) 79))) +(((-1081 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2883 (|#1| |#1|)) (-15 -3926 (|#1| |#1| |#1|)) (-15 -3926 (|#1| (-655 |#1|))) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 ((-967 |#2|) |#1|)) (-15 -2615 ((-967 |#2|) |#1|)) (-15 -2615 ((-1176) |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -4173 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -3926 (|#2| |#2| |#1|)) (-15 -2113 (|#1| |#1| |#1|)) (-15 -1533 (|#1| |#1| |#1|)) (-15 -2113 (|#1| |#1| |#2|)) (-15 -1533 (|#1| |#1| |#2|)) (-15 -3024 (|#1| |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -2615 (|#1| (-967 |#2|))) (-15 -4399 (|#1| (-967 |#2|))) (-15 -2449 ((-3 |#1| "failed") (-967 |#2|))) (-15 -2615 (|#1| (-967 (-575)))) (-15 -4399 (|#1| (-967 (-575)))) (-15 -2449 ((-3 |#1| "failed") (-967 (-575)))) (-15 -2615 (|#1| (-967 (-418 (-575))))) (-15 -4399 (|#1| (-967 (-418 (-575))))) (-15 -2449 ((-3 |#1| "failed") (-967 (-418 (-575))))) (-15 -4367 (|#1| |#1| |#1|)) (-15 -2973 (|#1| |#1| |#1|)) (-15 -3051 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1934 (-782))) |#1| |#1|)) (-15 -2723 (|#1| |#1| |#1|)) (-15 -3965 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -4343 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1| |#4|)) (-15 -4343 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -4125 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -1635 |#1|)) |#1| |#1| |#4|)) (-15 -4125 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -2808 (|#1| |#1| |#1| |#4|)) (-15 -2360 (|#1| |#1| |#1| |#4|)) (-15 -2808 (|#1| |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -3858 (|#1| |#1| |#1| |#4|)) (-15 -2382 (|#1| |#1| |#1| |#4|)) (-15 -3858 (|#1| |#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2548 ((-112) |#1| (-655 |#1|))) (-15 -2548 ((-112) |#1| |#1|)) (-15 -1411 ((-112) |#1| (-655 |#1|))) (-15 -1411 ((-112) |#1| |#1|)) (-15 -3188 ((-112) |#1| (-655 |#1|))) (-15 -3188 ((-112) |#1| |#1|)) (-15 -2249 ((-112) |#1| (-655 |#1|))) (-15 -2249 ((-112) |#1| |#1|)) (-15 -4139 ((-112) |#1| |#1|)) (-15 -2687 ((-112) |#1| |#1|)) (-15 -3927 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2492 ((-655 |#1|) |#1|)) (-15 -4167 ((-655 |#1|) |#1|)) (-15 -1782 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -4327 ((-112) |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -4406 (|#1| |#1| |#4|)) (-15 -4383 (|#1| |#1| |#4|)) (-15 -2778 (|#1| |#1|)) (-15 -4372 ((-655 |#1|) |#1|)) (-15 -1549 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3283 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -2947 ((-782) |#1|)) (-15 -3838 (|#4| |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -2883 (|#1| |#4|)) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -4399 (|#4| |#1|)) (-15 -4383 (|#2| |#1|)) (-15 -4406 (|#1| |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) (-1082 |#2| |#3| |#4|) (-1066) (-804) (-861)) (T -1081)) +NIL +(-10 -8 (-15 -2883 (|#1| |#1|)) (-15 -3926 (|#1| |#1| |#1|)) (-15 -3926 (|#1| (-655 |#1|))) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 ((-967 |#2|) |#1|)) (-15 -2615 ((-967 |#2|) |#1|)) (-15 -2615 ((-1176) |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -4173 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -3926 (|#2| |#2| |#1|)) (-15 -2113 (|#1| |#1| |#1|)) (-15 -1533 (|#1| |#1| |#1|)) (-15 -2113 (|#1| |#1| |#2|)) (-15 -1533 (|#1| |#1| |#2|)) (-15 -3024 (|#1| |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -2615 (|#1| (-967 |#2|))) (-15 -4399 (|#1| (-967 |#2|))) (-15 -2449 ((-3 |#1| "failed") (-967 |#2|))) (-15 -2615 (|#1| (-967 (-575)))) (-15 -4399 (|#1| (-967 (-575)))) (-15 -2449 ((-3 |#1| "failed") (-967 (-575)))) (-15 -2615 (|#1| (-967 (-418 (-575))))) (-15 -4399 (|#1| (-967 (-418 (-575))))) (-15 -2449 ((-3 |#1| "failed") (-967 (-418 (-575))))) (-15 -4367 (|#1| |#1| |#1|)) (-15 -2973 (|#1| |#1| |#1|)) (-15 -3051 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1934 (-782))) |#1| |#1|)) (-15 -2723 (|#1| |#1| |#1|)) (-15 -3965 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -4343 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1| |#4|)) (-15 -4343 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -4125 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -1635 |#1|)) |#1| |#1| |#4|)) (-15 -4125 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -2808 (|#1| |#1| |#1| |#4|)) (-15 -2360 (|#1| |#1| |#1| |#4|)) (-15 -2808 (|#1| |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -3858 (|#1| |#1| |#1| |#4|)) (-15 -2382 (|#1| |#1| |#1| |#4|)) (-15 -3858 (|#1| |#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2548 ((-112) |#1| (-655 |#1|))) (-15 -2548 ((-112) |#1| |#1|)) (-15 -1411 ((-112) |#1| (-655 |#1|))) (-15 -1411 ((-112) |#1| |#1|)) (-15 -3188 ((-112) |#1| (-655 |#1|))) (-15 -3188 ((-112) |#1| |#1|)) (-15 -2249 ((-112) |#1| (-655 |#1|))) (-15 -2249 ((-112) |#1| |#1|)) (-15 -4139 ((-112) |#1| |#1|)) (-15 -2687 ((-112) |#1| |#1|)) (-15 -3927 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2492 ((-655 |#1|) |#1|)) (-15 -4167 ((-655 |#1|) |#1|)) (-15 -1782 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -4327 ((-112) |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -4406 (|#1| |#1| |#4|)) (-15 -4383 (|#1| |#1| |#4|)) (-15 -2778 (|#1| |#1|)) (-15 -4372 ((-655 |#1|) |#1|)) (-15 -1549 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3283 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -2947 ((-782) |#1|)) (-15 -3838 (|#4| |#1|)) (-15 -2615 ((-547) |#1|)) (-15 -2615 ((-904 (-575)) |#1|)) (-15 -2615 ((-904 (-389)) |#1|)) (-15 -2883 (|#1| |#4|)) (-15 -2449 ((-3 |#4| "failed") |#1|)) (-15 -4399 (|#4| |#1|)) (-15 -4383 (|#2| |#1|)) (-15 -4406 (|#1| |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1606 (((-655 |#3|) $) 113)) (-3466 (((-1190 $) $ |#3|) 128) (((-1190 |#1|) $) 127)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 90 (|has| |#1| (-567)))) (-1540 (($ $) 91 (|has| |#1| (-567)))) (-3286 (((-112) $) 93 (|has| |#1| (-567)))) (-3805 (((-782) $) 115) (((-782) $ (-655 |#3|)) 114)) (-3462 (($ $) 276)) (-4139 (((-112) $ $) 262)) (-2597 (((-3 $ "failed") $ $) 20)) (-2583 (($ $ $) 221 (|has| |#1| (-567)))) (-2039 (((-655 $) $ $) 216 (|has| |#1| (-567)))) (-3535 (((-429 (-1190 $)) (-1190 $)) 103 (|has| |#1| (-924)))) (-2058 (($ $) 101 (|has| |#1| (-463)))) (-2330 (((-429 $) $) 100 (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 106 (|has| |#1| (-924)))) (-3011 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 169) (((-3 (-418 (-575)) "failed") $) 166 (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) 164 (|has| |#1| (-1055 (-575)))) (((-3 |#3| "failed") $) 141) (((-3 $ "failed") (-967 (-418 (-575)))) 236 (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194))))) (((-3 $ "failed") (-967 (-575))) 233 (-3765 (-12 (-3215 (|has| |#1| (-38 (-418 (-575))))) (|has| |#1| (-38 (-575))) (|has| |#3| (-625 (-1194)))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194)))))) (((-3 $ "failed") (-967 |#1|)) 230 (-3765 (-12 (-3215 (|has| |#1| (-38 (-418 (-575))))) (-3215 (|has| |#1| (-38 (-575)))) (|has| |#3| (-625 (-1194)))) (-12 (-3215 (|has| |#1| (-556))) (-3215 (|has| |#1| (-38 (-418 (-575))))) (|has| |#1| (-38 (-575))) (|has| |#3| (-625 (-1194)))) (-12 (-3215 (|has| |#1| (-1009 (-575)))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194))))))) (-4399 ((|#1| $) 168) (((-418 (-575)) $) 167 (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) 165 (|has| |#1| (-1055 (-575)))) ((|#3| $) 142) (($ (-967 (-418 (-575)))) 235 (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194))))) (($ (-967 (-575))) 232 (-3765 (-12 (-3215 (|has| |#1| (-38 (-418 (-575))))) (|has| |#1| (-38 (-575))) (|has| |#3| (-625 (-1194)))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194)))))) (($ (-967 |#1|)) 229 (-3765 (-12 (-3215 (|has| |#1| (-38 (-418 (-575))))) (-3215 (|has| |#1| (-38 (-575)))) (|has| |#3| (-625 (-1194)))) (-12 (-3215 (|has| |#1| (-556))) (-3215 (|has| |#1| (-38 (-418 (-575))))) (|has| |#1| (-38 (-575))) (|has| |#3| (-625 (-1194)))) (-12 (-3215 (|has| |#1| (-1009 (-575)))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194))))))) (-4232 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 217 (|has| |#1| (-567)))) (-4406 (($ $) 159) (($ $ |#3|) 271)) (-1749 (((-700 (-575)) (-1285 $)) 139 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 138 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 137 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 136) (((-700 |#1|) (-700 $)) 135) (((-700 |#1|) (-1285 $)) 134)) (-2249 (((-112) $ $) 261) (((-112) $ (-655 $)) 260)) (-1747 (((-3 $ "failed") $) 37)) (-4327 (((-112) $) 269)) (-3965 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 241)) (-2507 (($ $) 210 (|has| |#1| (-463)))) (-1824 (($ $) 181 (|has| |#1| (-463))) (($ $ |#3|) 108 (|has| |#1| (-463)))) (-4394 (((-655 $) $) 112)) (-1336 (((-112) $) 99 (|has| |#1| (-924)))) (-3024 (($ $) 226 (|has| |#1| (-567)))) (-2460 (($ $) 227 (|has| |#1| (-567)))) (-2382 (($ $ $) 253) (($ $ $ |#3|) 251)) (-3858 (($ $ $) 252) (($ $ $ |#3|) 250)) (-3703 (($ $ |#1| |#2| $) 177)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 87 (-12 (|has| |#3| (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 86 (-12 (|has| |#3| (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-1542 (((-112) $) 35)) (-2218 (((-782) $) 174)) (-2548 (((-112) $ $) 255) (((-112) $ (-655 $)) 254)) (-1896 (($ $ $ $ $) 212 (|has| |#1| (-567)))) (-3838 ((|#3| $) 280)) (-2433 (($ (-1190 |#1|) |#3|) 120) (($ (-1190 $) |#3|) 119)) (-3010 (((-655 $) $) 129)) (-2376 (((-112) $) 157)) (-2417 (($ |#1| |#2|) 158) (($ $ |#3| (-782)) 122) (($ $ (-655 |#3|) (-655 (-782))) 121)) (-2723 (($ $ $) 240)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ |#3|) 123)) (-2995 (((-112) $) 270)) (-4337 ((|#2| $) 175) (((-782) $ |#3|) 125) (((-655 (-782)) $ (-655 |#3|)) 124)) (-2947 (((-782) $) 279)) (-2520 (($ (-1 |#2| |#2|) $) 176)) (-2550 (($ (-1 |#1| |#1|) $) 156)) (-3976 (((-3 |#3| "failed") $) 126)) (-3522 (($ $) 207 (|has| |#1| (-463)))) (-4173 (($ $) 208 (|has| |#1| (-463)))) (-2492 (((-655 $) $) 265)) (-3638 (($ $) 268)) (-3833 (($ $) 209 (|has| |#1| (-463)))) (-4167 (((-655 $) $) 266)) (-1782 (($ $) 267)) (-4371 (($ $) 154)) (-4383 ((|#1| $) 153) (($ $ |#3|) 272)) (-3887 (($ (-655 $)) 97 (|has| |#1| (-463))) (($ $ $) 96 (|has| |#1| (-463)))) (-3051 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1934 (-782))) $ $) 239)) (-4343 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -2829 $) (|:| -1635 $)) $ $) 243) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -2829 $) (|:| -1635 $)) $ $ |#3|) 242)) (-4125 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -1635 $)) $ $) 245) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -1635 $)) $ $ |#3|) 244)) (-2360 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2808 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2288 (((-1176) $) 10)) (-2896 (($ $ $) 215 (|has| |#1| (-567)))) (-4372 (((-655 $) $) 274)) (-3658 (((-3 (-655 $) "failed") $) 117)) (-1734 (((-3 (-655 $) "failed") $) 118)) (-2455 (((-3 (-2 (|:| |var| |#3|) (|:| -2398 (-782))) "failed") $) 116)) (-1411 (((-112) $ $) 257) (((-112) $ (-655 $)) 256)) (-4367 (($ $ $) 237)) (-3474 (($ $) 278)) (-2687 (((-112) $ $) 263)) (-3188 (((-112) $ $) 259) (((-112) $ (-655 $)) 258)) (-2973 (($ $ $) 238)) (-3283 (($ $) 277)) (-3912 (((-1137) $) 11)) (-3842 (((-2 (|:| -3926 $) (|:| |coef2| $)) $ $) 218 (|has| |#1| (-567)))) (-4063 (((-2 (|:| -3926 $) (|:| |coef1| $)) $ $) 219 (|has| |#1| (-567)))) (-4345 (((-112) $) 171)) (-4353 ((|#1| $) 172)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 98 (|has| |#1| (-463)))) (-3926 ((|#1| |#1| $) 211 (|has| |#1| (-463))) (($ (-655 $)) 95 (|has| |#1| (-463))) (($ $ $) 94 (|has| |#1| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) 105 (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) 104 (|has| |#1| (-924)))) (-2353 (((-429 $) $) 102 (|has| |#1| (-924)))) (-2504 (((-2 (|:| -3926 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-567)))) (-2851 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-567)))) (-2113 (($ $ |#1|) 224 (|has| |#1| (-567))) (($ $ $) 222 (|has| |#1| (-567)))) (-1533 (($ $ |#1|) 225 (|has| |#1| (-567))) (($ $ $) 223 (|has| |#1| (-567)))) (-3048 (($ $ (-655 (-303 $))) 150) (($ $ (-303 $)) 149) (($ $ $ $) 148) (($ $ (-655 $) (-655 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-655 |#3|) (-655 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-655 |#3|) (-655 $)) 143)) (-4060 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2389 (($ $ (-655 |#3|) (-655 (-782))) 44) (($ $ |#3| (-782)) 43) (($ $ (-655 |#3|)) 42) (($ $ |#3|) 40)) (-2645 ((|#2| $) 155) (((-782) $ |#3|) 133) (((-655 (-782)) $ (-655 |#3|)) 132)) (-1549 (($ $) 275)) (-2778 (($ $) 273)) (-2615 (((-904 (-389)) $) 85 (-12 (|has| |#3| (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) 84 (-12 (|has| |#3| (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) 83 (-12 (|has| |#3| (-625 (-547))) (|has| |#1| (-625 (-547))))) (($ (-967 (-418 (-575)))) 234 (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194))))) (($ (-967 (-575))) 231 (-3765 (-12 (-3215 (|has| |#1| (-38 (-418 (-575))))) (|has| |#1| (-38 (-575))) (|has| |#3| (-625 (-1194)))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194)))))) (($ (-967 |#1|)) 228 (|has| |#3| (-625 (-1194)))) (((-1176) $) 206 (-12 (|has| |#1| (-1055 (-575))) (|has| |#3| (-625 (-1194))))) (((-967 |#1|) $) 205 (|has| |#3| (-625 (-1194))))) (-2178 ((|#1| $) 180 (|has| |#1| (-463))) (($ $ |#3|) 109 (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 107 (-3226 (|has| $ (-146)) (|has| |#1| (-924))))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 170) (($ |#3|) 140) (((-967 |#1|) $) 204 (|has| |#3| (-625 (-1194)))) (($ (-418 (-575))) 81 (-3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575)))))) (($ $) 88 (|has| |#1| (-567)))) (-2501 (((-655 |#1|) $) 173)) (-2012 ((|#1| $ |#2|) 160) (($ $ |#3| (-782)) 131) (($ $ (-655 |#3|) (-655 (-782))) 130)) (-1518 (((-3 $ "failed") $) 82 (-3765 (-3226 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) 32 T CONST)) (-1835 (($ $ $ (-782)) 178 (|has| |#1| (-174)))) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 92 (|has| |#1| (-567)))) (-1996 (($) 19 T CONST)) (-3927 (((-3 (-112) "failed") $ $) 264)) (-2009 (($) 34 T CONST)) (-3663 (($ $ $ $ (-782)) 213 (|has| |#1| (-567)))) (-3354 (($ $ $ (-782)) 214 (|has| |#1| (-567)))) (-3430 (($ $ (-655 |#3|) (-655 (-782))) 47) (($ $ |#3| (-782)) 46) (($ $ (-655 |#3|)) 45) (($ $ |#3|) 41)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 161 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 163 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 162 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 152) (($ $ |#1|) 151))) +(((-1082 |#1| |#2| |#3|) (-141) (-1066) (-804) (-861)) (T -1082)) +((-3838 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-782)))) (-3474 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-3283 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-3462 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-1549 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-4372 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1082 *3 *4 *5)))) (-2778 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-4383 (*1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-4406 (*1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-4327 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3638 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-1782 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-4167 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1082 *3 *4 *5)))) (-2492 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1082 *3 *4 *5)))) (-3927 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-4139 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2249 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2249 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) (-3188 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) (-1411 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1411 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2548 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) (-2382 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-3858 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-2382 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-3858 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-2360 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-2808 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-2360 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-2808 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-4125 (*1 *2 *1 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -1635 *1))) (-4 *1 (-1082 *3 *4 *5)))) (-4125 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -1635 *1))) (-4 *1 (-1082 *4 *5 *3)))) (-4343 (*1 *2 *1 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-1082 *3 *4 *5)))) (-4343 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-1082 *4 *5 *3)))) (-3965 (*1 *2 *1 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-1082 *3 *4 *5)))) (-2723 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-3051 (*1 *2 *1 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1934 (-782)))) (-4 *1 (-1082 *3 *4 *5)))) (-2973 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-4367 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-2449 (*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))) (-2449 (*1 *1 *2) (|partial| -3765 (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-3215 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))))) (-4399 (*1 *1 *2) (-3765 (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-3215 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))))) (-2615 (*1 *1 *2) (-3765 (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-3215 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))))) (-2449 (*1 *1 *2) (|partial| -3765 (-12 (-5 *2 (-967 *3)) (-12 (-3215 (-4 *3 (-38 (-418 (-575))))) (-3215 (-4 *3 (-38 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 *3)) (-12 (-3215 (-4 *3 (-556))) (-3215 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 *3)) (-12 (-3215 (-4 *3 (-1009 (-575)))) (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))))) (-4399 (*1 *1 *2) (-3765 (-12 (-5 *2 (-967 *3)) (-12 (-3215 (-4 *3 (-38 (-418 (-575))))) (-3215 (-4 *3 (-38 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 *3)) (-12 (-3215 (-4 *3 (-556))) (-3215 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 *3)) (-12 (-3215 (-4 *3 (-1009 (-575)))) (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-967 *3)) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *5 (-625 (-1194))) (-4 *4 (-804)) (-4 *5 (-861)))) (-2460 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-3024 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-1533 (*1 *1 *1 *2) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-2113 (*1 *1 *1 *2) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-1533 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-2113 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-2583 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-2504 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3926 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1082 *3 *4 *5)))) (-4063 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3926 *1) (|:| |coef1| *1))) (-4 *1 (-1082 *3 *4 *5)))) (-3842 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3926 *1) (|:| |coef2| *1))) (-4 *1 (-1082 *3 *4 *5)))) (-4232 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-2039 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1082 *3 *4 *5)))) (-2896 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-3354 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *3 (-567)))) (-3663 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *3 (-567)))) (-1896 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-3926 (*1 *2 *2 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-2507 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-3833 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-4173 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-3522 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463))))) +(-13 (-964 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3838 (|t#3| $)) (-15 -2947 ((-782) $)) (-15 -3474 ($ $)) (-15 -3283 ($ $)) (-15 -3462 ($ $)) (-15 -1549 ($ $)) (-15 -4372 ((-655 $) $)) (-15 -2778 ($ $)) (-15 -4383 ($ $ |t#3|)) (-15 -4406 ($ $ |t#3|)) (-15 -2995 ((-112) $)) (-15 -4327 ((-112) $)) (-15 -3638 ($ $)) (-15 -1782 ($ $)) (-15 -4167 ((-655 $) $)) (-15 -2492 ((-655 $) $)) (-15 -3927 ((-3 (-112) "failed") $ $)) (-15 -2687 ((-112) $ $)) (-15 -4139 ((-112) $ $)) (-15 -2249 ((-112) $ $)) (-15 -2249 ((-112) $ (-655 $))) (-15 -3188 ((-112) $ $)) (-15 -3188 ((-112) $ (-655 $))) (-15 -1411 ((-112) $ $)) (-15 -1411 ((-112) $ (-655 $))) (-15 -2548 ((-112) $ $)) (-15 -2548 ((-112) $ (-655 $))) (-15 -2382 ($ $ $)) (-15 -3858 ($ $ $)) (-15 -2382 ($ $ $ |t#3|)) (-15 -3858 ($ $ $ |t#3|)) (-15 -2360 ($ $ $)) (-15 -2808 ($ $ $)) (-15 -2360 ($ $ $ |t#3|)) (-15 -2808 ($ $ $ |t#3|)) (-15 -4125 ((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -1635 $)) $ $)) (-15 -4125 ((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -1635 $)) $ $ |t#3|)) (-15 -4343 ((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -2829 $) (|:| -1635 $)) $ $)) (-15 -4343 ((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -2829 $) (|:| -1635 $)) $ $ |t#3|)) (-15 -3965 ((-2 (|:| -2829 $) (|:| -1635 $)) $ $)) (-15 -2723 ($ $ $)) (-15 -3051 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1934 (-782))) $ $)) (-15 -2973 ($ $ $)) (-15 -4367 ($ $ $)) (IF (|has| |t#3| (-625 (-1194))) (PROGN (-6 (-624 (-967 |t#1|))) (-6 (-625 (-967 |t#1|))) (IF (|has| |t#1| (-38 (-418 (-575)))) (PROGN (-15 -2449 ((-3 $ "failed") (-967 (-418 (-575))))) (-15 -4399 ($ (-967 (-418 (-575))))) (-15 -2615 ($ (-967 (-418 (-575))))) (-15 -2449 ((-3 $ "failed") (-967 (-575)))) (-15 -4399 ($ (-967 (-575)))) (-15 -2615 ($ (-967 (-575)))) (IF (|has| |t#1| (-1009 (-575))) |%noBranch| (PROGN (-15 -2449 ((-3 $ "failed") (-967 |t#1|))) (-15 -4399 ($ (-967 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-575))) (IF (|has| |t#1| (-38 (-418 (-575)))) |%noBranch| (PROGN (-15 -2449 ((-3 $ "failed") (-967 (-575)))) (-15 -4399 ($ (-967 (-575)))) (-15 -2615 ($ (-967 (-575)))) (IF (|has| |t#1| (-556)) |%noBranch| (PROGN (-15 -2449 ((-3 $ "failed") (-967 |t#1|))) (-15 -4399 ($ (-967 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-575))) |%noBranch| (IF (|has| |t#1| (-38 (-418 (-575)))) |%noBranch| (PROGN (-15 -2449 ((-3 $ "failed") (-967 |t#1|))) (-15 -4399 ($ (-967 |t#1|)))))) (-15 -2615 ($ (-967 |t#1|))) (IF (|has| |t#1| (-1055 (-575))) (-6 (-625 (-1176))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-567)) (PROGN (-15 -2460 ($ $)) (-15 -3024 ($ $)) (-15 -1533 ($ $ |t#1|)) (-15 -2113 ($ $ |t#1|)) (-15 -1533 ($ $ $)) (-15 -2113 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -2504 ((-2 (|:| -3926 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4063 ((-2 (|:| -3926 $) (|:| |coef1| $)) $ $)) (-15 -3842 ((-2 (|:| -3926 $) (|:| |coef2| $)) $ $)) (-15 -4232 ($ $ $)) (-15 -2039 ((-655 $) $ $)) (-15 -2896 ($ $ $)) (-15 -3354 ($ $ $ (-782))) (-15 -3663 ($ $ $ $ (-782))) (-15 -1896 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-463)) (PROGN (-15 -3926 (|t#1| |t#1| $)) (-15 -2507 ($ $)) (-15 -3833 ($ $)) (-15 -4173 ($ $)) (-15 -3522 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 |#3|) . T) ((-627 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-624 (-873)) . T) ((-624 (-967 |#1|)) |has| |#3| (-625 (-1194))) ((-174) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-625 (-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#3| (-625 (-547)))) ((-625 (-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#3| (-625 (-904 (-389))))) ((-625 (-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#3| (-625 (-904 (-575))))) ((-625 (-967 |#1|)) |has| |#3| (-625 (-1194))) ((-625 (-1176)) -12 (|has| |#1| (-1055 (-575))) (|has| |#3| (-625 (-1194)))) ((-299) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-318 $) . T) ((-335 |#1| |#2|) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-463) -3765 (|has| |#1| (-924)) (|has| |#1| (-463))) ((-525 |#3| |#1|) . T) ((-525 |#3| $) . T) ((-525 $ $) . T) ((-567) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 #1=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-650 #1#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-737) . T) ((-908 $ |#3|) . T) ((-913 |#3|) . T) ((-915 |#3|) . T) ((-898 (-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#3| (-898 (-389)))) ((-898 (-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#3| (-898 (-575)))) ((-964 |#1| |#2| |#3|) . T) ((-924) |has| |#1| (-924)) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1055 |#3|) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T) ((-1239) |has| |#1| (-924))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-1452 (((-655 (-1152)) $) 18)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 27) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 20)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1083) (-13 (-1100) (-10 -8 (-15 -1452 ((-655 (-1152)) $)) (-15 -1788 ((-1152) $))))) (T -1083)) +((-1452 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1083)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1083))))) +(-13 (-1100) (-10 -8 (-15 -1452 ((-655 (-1152)) $)) (-15 -1788 ((-1152) $)))) +((-3799 (((-112) |#3| $) 15)) (-3700 (((-3 $ "failed") |#3| (-936)) 29)) (-1747 (((-3 |#3| "failed") |#3| $) 45)) (-4075 (((-112) |#3| $) 19)) (-4087 (((-112) |#3| $) 17))) +(((-1084 |#1| |#2| |#3|) (-10 -8 (-15 -3700 ((-3 |#1| "failed") |#3| (-936))) (-15 -1747 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4075 ((-112) |#3| |#1|)) (-15 -4087 ((-112) |#3| |#1|)) (-15 -3799 ((-112) |#3| |#1|))) (-1085 |#2| |#3|) (-13 (-859) (-373)) (-1261 |#2|)) (T -1084)) +NIL +(-10 -8 (-15 -3700 ((-3 |#1| "failed") |#3| (-936))) (-15 -1747 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4075 ((-112) |#3| |#1|)) (-15 -4087 ((-112) |#3| |#1|)) (-15 -3799 ((-112) |#3| |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) |#2| $) 22)) (-4428 (((-575) |#2| $) 23)) (-3700 (((-3 $ "failed") |#2| (-936)) 16)) (-2003 ((|#1| |#2| $ |#1|) 14)) (-1747 (((-3 |#2| "failed") |#2| $) 19)) (-4075 (((-112) |#2| $) 20)) (-4087 (((-112) |#2| $) 21)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2552 ((|#2| $) 18)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3494 ((|#1| |#2| $ |#1|) 15)) (-2251 (((-655 $) |#2|) 17)) (-3914 (((-112) $ $) 6))) +(((-1085 |#1| |#2|) (-141) (-13 (-859) (-373)) (-1261 |t#1|)) (T -1085)) +((-4428 (*1 *2 *3 *1) (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-575)))) (-3799 (*1 *2 *3 *1) (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-112)))) (-4087 (*1 *2 *3 *1) (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-112)))) (-4075 (*1 *2 *3 *1) (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-112)))) (-1747 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-13 (-859) (-373))) (-4 *2 (-1261 *3)))) (-2552 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-13 (-859) (-373))) (-4 *2 (-1261 *3)))) (-2251 (*1 *2 *3) (-12 (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-655 *1)) (-4 *1 (-1085 *4 *3)))) (-3700 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-936)) (-4 *4 (-13 (-859) (-373))) (-4 *1 (-1085 *4 *2)) (-4 *2 (-1261 *4)))) (-3494 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-13 (-859) (-373))) (-4 *3 (-1261 *2)))) (-2003 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-13 (-859) (-373))) (-4 *3 (-1261 *2))))) +(-13 (-1117) (-10 -8 (-15 -4428 ((-575) |t#2| $)) (-15 -3799 ((-112) |t#2| $)) (-15 -4087 ((-112) |t#2| $)) (-15 -4075 ((-112) |t#2| $)) (-15 -1747 ((-3 |t#2| "failed") |t#2| $)) (-15 -2552 (|t#2| $)) (-15 -2251 ((-655 $) |t#2|)) (-15 -3700 ((-3 $ "failed") |t#2| (-936))) (-15 -3494 (|t#1| |t#2| $ |t#1|)) (-15 -2003 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-4091 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782)) 114)) (-4085 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782)) 63)) (-2721 (((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782)) 99)) (-3984 (((-782) (-655 |#4|) (-655 |#5|)) 30)) (-2647 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782)) 65) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112)) 67)) (-4299 (((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112)) 87)) (-2615 (((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) 92)) (-3665 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-112)) 62)) (-2110 (((-782) (-655 |#4|) (-655 |#5|)) 21))) +(((-1086 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2110 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3984 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3665 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-112))) (-15 -4085 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -4085 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112))) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -4299 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -4299 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4091 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782))) (-15 -2615 ((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2721 ((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782)))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -1086)) +((-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) (-5 *4 (-782)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-1290)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1176)) (-5 *1 (-1086 *4 *5 *6 *7 *8)))) (-4091 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-655 *11)) (|:| |todo| (-655 (-2 (|:| |val| *3) (|:| -4270 *11)))))) (-5 *6 (-782)) (-5 *2 (-655 (-2 (|:| |val| (-655 *10)) (|:| -4270 *11)))) (-5 *3 (-655 *10)) (-5 *4 (-655 *11)) (-4 *10 (-1082 *7 *8 *9)) (-4 *11 (-1088 *7 *8 *9 *10)) (-4 *7 (-463)) (-4 *8 (-804)) (-4 *9 (-861)) (-5 *1 (-1086 *7 *8 *9 *10 *11)))) (-4299 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) (-4299 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) (-2647 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2647 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-2647 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-782)) (-5 *6 (-112)) (-4 *7 (-463)) (-4 *8 (-804)) (-4 *9 (-861)) (-4 *3 (-1082 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *7 *8 *9 *3 *4)) (-4 *4 (-1088 *7 *8 *9 *3)))) (-4085 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-4085 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-3665 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-3984 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) (-2110 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1086 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2110 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3984 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3665 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-112))) (-15 -4085 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -4085 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112))) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -4299 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -4299 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4091 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782))) (-15 -2615 ((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2721 ((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782)))) +((-4355 (((-112) |#5| $) 26)) (-1718 (((-112) |#5| $) 29)) (-2986 (((-112) |#5| $) 18) (((-112) $) 52)) (-1479 (((-655 $) |#5| $) NIL) (((-655 $) (-655 |#5|) $) 94) (((-655 $) (-655 |#5|) (-655 $)) 92) (((-655 $) |#5| (-655 $)) 95)) (-4276 (($ $ |#5|) NIL) (((-655 $) |#5| $) NIL) (((-655 $) |#5| (-655 $)) 73) (((-655 $) (-655 |#5|) $) 75) (((-655 $) (-655 |#5|) (-655 $)) 77)) (-3556 (((-655 $) |#5| $) NIL) (((-655 $) |#5| (-655 $)) 64) (((-655 $) (-655 |#5|) $) 69) (((-655 $) (-655 |#5|) (-655 $)) 71)) (-2722 (((-112) |#5| $) 32))) +(((-1087 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4276 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -4276 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -4276 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -4276 ((-655 |#1|) |#5| |#1|)) (-15 -3556 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -3556 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -3556 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -3556 ((-655 |#1|) |#5| |#1|)) (-15 -1479 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -1479 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -1479 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -1479 ((-655 |#1|) |#5| |#1|)) (-15 -1718 ((-112) |#5| |#1|)) (-15 -2986 ((-112) |#1|)) (-15 -2722 ((-112) |#5| |#1|)) (-15 -4355 ((-112) |#5| |#1|)) (-15 -2986 ((-112) |#5| |#1|)) (-15 -4276 (|#1| |#1| |#5|))) (-1088 |#2| |#3| |#4| |#5|) (-463) (-804) (-861) (-1082 |#2| |#3| |#4|)) (T -1087)) +NIL +(-10 -8 (-15 -4276 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -4276 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -4276 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -4276 ((-655 |#1|) |#5| |#1|)) (-15 -3556 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -3556 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -3556 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -3556 ((-655 |#1|) |#5| |#1|)) (-15 -1479 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -1479 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -1479 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -1479 ((-655 |#1|) |#5| |#1|)) (-15 -1718 ((-112) |#5| |#1|)) (-15 -2986 ((-112) |#1|)) (-15 -2722 ((-112) |#5| |#1|)) (-15 -4355 ((-112) |#5| |#1|)) (-15 -2986 ((-112) |#5| |#1|)) (-15 -4276 (|#1| |#1| |#5|))) +((-2861 (((-112) $ $) 7)) (-3303 (((-655 (-2 (|:| -2458 $) (|:| -2978 (-655 |#4|)))) (-655 |#4|)) 86)) (-1740 (((-655 $) (-655 |#4|)) 87) (((-655 $) (-655 |#4|) (-112)) 112)) (-1606 (((-655 |#3|) $) 34)) (-2210 (((-112) $) 27)) (-3036 (((-112) $) 18 (|has| |#1| (-567)))) (-3309 (((-112) |#4| $) 102) (((-112) $) 98)) (-2749 ((|#4| |#4| $) 93)) (-2058 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 127)) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#3|) 28)) (-1845 (((-112) $ (-782)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 80)) (-3011 (($) 46 T CONST)) (-1437 (((-112) $) 23 (|has| |#1| (-567)))) (-2365 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4289 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1812 (((-112) $) 26 (|has| |#1| (-567)))) (-3376 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3629 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-3563 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 |#4|)) 37)) (-4399 (($ (-655 |#4|)) 36)) (-1975 (((-3 $ "failed") $) 83)) (-2690 ((|#4| |#4| $) 90)) (-1748 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-2249 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4183 ((|#4| |#4| $) 88)) (-2308 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2029 (((-2 (|:| -2458 (-655 |#4|)) (|:| -2978 (-655 |#4|))) $) 106)) (-4355 (((-112) |#4| $) 137)) (-1718 (((-112) |#4| $) 134)) (-2986 (((-112) |#4| $) 138) (((-112) $) 135)) (-4001 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-2548 (((-112) |#4| $) 105) (((-112) $) 104)) (-3838 ((|#3| $) 35)) (-3896 (((-112) $ (-782)) 44)) (-3955 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) 48)) (-1444 (((-655 |#3|) $) 33)) (-1808 (((-112) |#3| $) 32)) (-4026 (((-112) $ (-782)) 43)) (-2288 (((-1176) $) 10)) (-2053 (((-3 |#4| (-655 $)) |#4| |#4| $) 129)) (-2896 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 128)) (-3653 (((-3 |#4| "failed") $) 84)) (-2463 (((-655 $) |#4| $) 130)) (-2192 (((-3 (-112) (-655 $)) |#4| $) 133)) (-1658 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1479 (((-655 $) |#4| $) 126) (((-655 $) (-655 |#4|) $) 125) (((-655 $) (-655 |#4|) (-655 $)) 124) (((-655 $) |#4| (-655 $)) 123)) (-2233 (($ |#4| $) 118) (($ (-655 |#4|) $) 117)) (-1590 (((-655 |#4|) $) 108)) (-1411 (((-112) |#4| $) 100) (((-112) $) 96)) (-4367 ((|#4| |#4| $) 91)) (-2687 (((-112) $ $) 111)) (-4395 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-3188 (((-112) |#4| $) 101) (((-112) $) 97)) (-2973 ((|#4| |#4| $) 92)) (-3912 (((-1137) $) 11)) (-1961 (((-3 |#4| "failed") $) 85)) (-3704 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2500 (((-3 $ "failed") $ |#4|) 79)) (-4276 (($ $ |#4|) 78) (((-655 $) |#4| $) 116) (((-655 $) |#4| (-655 $)) 115) (((-655 $) (-655 |#4|) $) 114) (((-655 $) (-655 |#4|) (-655 $)) 113)) (-3207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) 39)) (-4076 (((-112) $) 42)) (-1938 (($) 41)) (-2645 (((-782) $) 107)) (-3925 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3078 (($ $) 40)) (-2615 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2894 (($ (-655 |#4|)) 61)) (-1879 (($ $ |#3|) 29)) (-3427 (($ $ |#3|) 31)) (-2921 (($ $) 89)) (-3608 (($ $ |#3|) 30)) (-2883 (((-873) $) 12) (((-655 |#4|) $) 38)) (-3706 (((-782) $) 77 (|has| |#3| (-378)))) (-4400 (((-112) $ $) 9)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2994 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) 99)) (-3556 (((-655 $) |#4| $) 122) (((-655 $) |#4| (-655 $)) 121) (((-655 $) (-655 |#4|) $) 120) (((-655 $) (-655 |#4|) (-655 $)) 119)) (-3771 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-1359 (((-655 |#3|) $) 82)) (-2722 (((-112) |#4| $) 136)) (-1591 (((-112) |#3| $) 81)) (-3914 (((-112) $ $) 6)) (-2871 (((-782) $) 47 (|has| $ (-6 -4460))))) +(((-1088 |#1| |#2| |#3| |#4|) (-141) (-463) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -1088)) +((-2986 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-4355 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-2722 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-1718 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-2192 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-3 (-112) (-655 *1))) (-4 *1 (-1088 *4 *5 *6 *3)))) (-1658 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *1)))) (-4 *1 (-1088 *4 *5 *6 *3)))) (-1658 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-2463 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)))) (-2053 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-3 *3 (-655 *1))) (-4 *1 (-1088 *4 *5 *6 *3)))) (-2896 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *1)))) (-4 *1 (-1088 *4 *5 *6 *3)))) (-2058 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *1)))) (-4 *1 (-1088 *4 *5 *6 *3)))) (-1479 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)))) (-1479 (*1 *2 *3 *1) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *7)))) (-1479 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)))) (-1479 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)))) (-3556 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)))) (-3556 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)))) (-3556 (*1 *2 *3 *1) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *7)))) (-3556 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)))) (-2233 (*1 *1 *2 *1) (-12 (-4 *1 (-1088 *3 *4 *5 *2)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-2233 (*1 *1 *2 *1) (-12 (-5 *2 (-655 *6)) (-4 *1 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)))) (-4276 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)))) (-4276 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)))) (-4276 (*1 *2 *3 *1) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *7)))) (-4276 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *5 *6 *7 *8))))) +(-13 (-1228 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2986 ((-112) |t#4| $)) (-15 -4355 ((-112) |t#4| $)) (-15 -2722 ((-112) |t#4| $)) (-15 -2986 ((-112) $)) (-15 -1718 ((-112) |t#4| $)) (-15 -2192 ((-3 (-112) (-655 $)) |t#4| $)) (-15 -1658 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |t#4| $)) (-15 -1658 ((-112) |t#4| $)) (-15 -2463 ((-655 $) |t#4| $)) (-15 -2053 ((-3 |t#4| (-655 $)) |t#4| |t#4| $)) (-15 -2896 ((-655 (-2 (|:| |val| |t#4|) (|:| -4270 $))) |t#4| |t#4| $)) (-15 -2058 ((-655 (-2 (|:| |val| |t#4|) (|:| -4270 $))) |t#4| $)) (-15 -1479 ((-655 $) |t#4| $)) (-15 -1479 ((-655 $) (-655 |t#4|) $)) (-15 -1479 ((-655 $) (-655 |t#4|) (-655 $))) (-15 -1479 ((-655 $) |t#4| (-655 $))) (-15 -3556 ((-655 $) |t#4| $)) (-15 -3556 ((-655 $) |t#4| (-655 $))) (-15 -3556 ((-655 $) (-655 |t#4|) $)) (-15 -3556 ((-655 $) (-655 |t#4|) (-655 $))) (-15 -2233 ($ |t#4| $)) (-15 -2233 ($ (-655 |t#4|) $)) (-15 -4276 ((-655 $) |t#4| $)) (-15 -4276 ((-655 $) |t#4| (-655 $))) (-15 -4276 ((-655 $) (-655 |t#4|) $)) (-15 -4276 ((-655 $) (-655 |t#4|) (-655 $))) (-15 -1740 ((-655 $) (-655 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-993 |#1| |#2| |#3| |#4|) . T) ((-1117) . T) ((-1228 |#1| |#2| |#3| |#4|) . T) ((-1235) . T)) +((-1550 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|) 86)) (-4274 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|) 127)) (-2860 (((-655 |#5|) |#4| |#5|) 74)) (-3825 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1709 (((-1290)) 36)) (-3721 (((-1290)) 25)) (-3428 (((-1290) (-1176) (-1176) (-1176)) 32)) (-2163 (((-1290) (-1176) (-1176) (-1176)) 21)) (-2792 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|) 107)) (-4192 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112)) 118) (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2727 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|) 113))) +(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2163 ((-1290) (-1176) (-1176) (-1176))) (-15 -3721 ((-1290))) (-15 -3428 ((-1290) (-1176) (-1176) (-1176))) (-15 -1709 ((-1290))) (-15 -2792 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -4192 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4192 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112))) (-15 -2727 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -4274 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -3825 ((-112) |#4| |#5|)) (-15 -3825 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -2860 ((-655 |#5|) |#4| |#5|)) (-15 -1550 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -1089)) +((-1550 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2860 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-3825 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-3825 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-4274 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2727 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-4192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) (-5 *5 (-112)) (-4 *8 (-1082 *6 *7 *4)) (-4 *9 (-1088 *6 *7 *4 *8)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *4 (-861)) (-5 *2 (-655 (-2 (|:| |val| *8) (|:| -4270 *9)))) (-5 *1 (-1089 *6 *7 *4 *8 *9)))) (-4192 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-2792 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-1709 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-3428 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-3721 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-2163 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))) +(-10 -7 (-15 -2163 ((-1290) (-1176) (-1176) (-1176))) (-15 -3721 ((-1290))) (-15 -3428 ((-1290) (-1176) (-1176) (-1176))) (-15 -1709 ((-1290))) (-15 -2792 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -4192 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4192 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112))) (-15 -2727 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -4274 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -3825 ((-112) |#4| |#5|)) (-15 -3825 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -2860 ((-655 |#5|) |#4| |#5|)) (-15 -1550 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|))) +((-2861 (((-112) $ $) NIL)) (-2939 (((-1234) $) 13)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3829 (((-1152) $) 10)) (-2883 (((-873) $) 20) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1090) (-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $)) (-15 -2939 ((-1234) $))))) (T -1090)) +((-3829 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1090)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-1090))))) +(-13 (-1100) (-10 -8 (-15 -3829 ((-1152) $)) (-15 -2939 ((-1234) $)))) +((-2571 (((-112) $ $) 7))) +(((-1091) (-13 (-1235) (-10 -8 (-15 -2571 ((-112) $ $))))) (T -1091)) +((-2571 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1091))))) +(-13 (-1235) (-10 -8 (-15 -2571 ((-112) $ $)))) +((-2861 (((-112) $ $) NIL)) (-1777 (((-1194) $) 8)) (-2288 (((-1176) $) 17)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 11)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 14))) +(((-1092 |#1|) (-13 (-1117) (-10 -8 (-15 -1777 ((-1194) $)))) (-1194)) (T -1092)) +((-1777 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1092 *3)) (-14 *3 *2)))) +(-13 (-1117) (-10 -8 (-15 -1777 ((-1194) $)))) +((-2861 (((-112) $ $) NIL)) (-1693 (($ $ (-655 (-1194)) (-1 (-112) (-655 |#3|))) 34)) (-4042 (($ |#3| |#3|) 23) (($ |#3| |#3| (-655 (-1194))) 21)) (-3892 ((|#3| $) 13)) (-2449 (((-3 (-303 |#3|) "failed") $) 60)) (-4399 (((-303 |#3|) $) NIL)) (-3284 (((-655 (-1194)) $) 16)) (-3921 (((-904 |#1|) $) 11)) (-3880 ((|#3| $) 12)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2070 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-936)) 41)) (-2883 (((-873) $) 89) (($ (-303 |#3|)) 22)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 38))) +(((-1093 |#1| |#2| |#3|) (-13 (-1117) (-295 |#3| |#3|) (-1055 (-303 |#3|)) (-10 -8 (-15 -4042 ($ |#3| |#3|)) (-15 -4042 ($ |#3| |#3| (-655 (-1194)))) (-15 -1693 ($ $ (-655 (-1194)) (-1 (-112) (-655 |#3|)))) (-15 -3921 ((-904 |#1|) $)) (-15 -3880 (|#3| $)) (-15 -3892 (|#3| $)) (-15 -2070 (|#3| $ |#3| (-936))) (-15 -3284 ((-655 (-1194)) $)))) (-1117) (-13 (-1066) (-898 |#1|) (-625 (-904 |#1|))) (-13 (-441 |#2|) (-898 |#1|) (-625 (-904 |#1|)))) (T -1093)) +((-4042 (*1 *1 *2 *2) (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) (-5 *1 (-1093 *3 *4 *2)) (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))))) (-4042 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-1093 *4 *5 *2)) (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))))) (-1693 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-1 (-112) (-655 *6))) (-4 *6 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-1093 *4 *5 *6)))) (-3921 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 *2))) (-5 *2 (-904 *3)) (-5 *1 (-1093 *3 *4 *5)) (-4 *5 (-13 (-441 *4) (-898 *3) (-625 *2))))) (-3880 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))) (-5 *1 (-1093 *3 *4 *2)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))))) (-3892 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))) (-5 *1 (-1093 *3 *4 *2)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))))) (-2070 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-936)) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-1093 *4 *5 *2)) (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))))) (-3284 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) (-5 *2 (-655 (-1194))) (-5 *1 (-1093 *3 *4 *5)) (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3))))))) +(-13 (-1117) (-295 |#3| |#3|) (-1055 (-303 |#3|)) (-10 -8 (-15 -4042 ($ |#3| |#3|)) (-15 -4042 ($ |#3| |#3| (-655 (-1194)))) (-15 -1693 ($ $ (-655 (-1194)) (-1 (-112) (-655 |#3|)))) (-15 -3921 ((-904 |#1|) $)) (-15 -3880 (|#3| $)) (-15 -3892 (|#3| $)) (-15 -2070 (|#3| $ |#3| (-936))) (-15 -3284 ((-655 (-1194)) $)))) +((-2861 (((-112) $ $) NIL)) (-1660 (($ (-655 (-1093 |#1| |#2| |#3|))) 14)) (-4092 (((-655 (-1093 |#1| |#2| |#3|)) $) 21)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2070 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-936)) 27)) (-2883 (((-873) $) 17)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 20))) +(((-1094 |#1| |#2| |#3|) (-13 (-1117) (-295 |#3| |#3|) (-10 -8 (-15 -1660 ($ (-655 (-1093 |#1| |#2| |#3|)))) (-15 -4092 ((-655 (-1093 |#1| |#2| |#3|)) $)) (-15 -2070 (|#3| $ |#3| (-936))))) (-1117) (-13 (-1066) (-898 |#1|) (-625 (-904 |#1|))) (-13 (-441 |#2|) (-898 |#1|) (-625 (-904 |#1|)))) (T -1094)) +((-1660 (*1 *1 *2) (-12 (-5 *2 (-655 (-1093 *3 *4 *5))) (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))) (-5 *1 (-1094 *3 *4 *5)))) (-4092 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) (-5 *2 (-655 (-1093 *3 *4 *5))) (-5 *1 (-1094 *3 *4 *5)) (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))))) (-2070 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-936)) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-1094 *4 *5 *2)) (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4))))))) +(-13 (-1117) (-295 |#3| |#3|) (-10 -8 (-15 -1660 ($ (-655 (-1093 |#1| |#2| |#3|)))) (-15 -4092 ((-655 (-1093 |#1| |#2| |#3|)) $)) (-15 -2070 (|#3| $ |#3| (-936))))) +((-2566 (((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112)) 88) (((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|))) 92) (((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112)) 90))) +(((-1095 |#1| |#2|) (-10 -7 (-15 -2566 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112))) (-15 -2566 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -2566 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112)))) (-13 (-316) (-148)) (-655 (-1194))) (T -1095)) +((-2566 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-2 (|:| -3527 (-1190 *5)) (|:| -3962 (-655 (-967 *5)))))) (-5 *1 (-1095 *5 *6)) (-5 *3 (-655 (-967 *5))) (-14 *6 (-655 (-1194))))) (-2566 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-2 (|:| -3527 (-1190 *4)) (|:| -3962 (-655 (-967 *4)))))) (-5 *1 (-1095 *4 *5)) (-5 *3 (-655 (-967 *4))) (-14 *5 (-655 (-1194))))) (-2566 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-2 (|:| -3527 (-1190 *5)) (|:| -3962 (-655 (-967 *5)))))) (-5 *1 (-1095 *5 *6)) (-5 *3 (-655 (-967 *5))) (-14 *6 (-655 (-1194)))))) +(-10 -7 (-15 -2566 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112))) (-15 -2566 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -2566 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112)))) +((-2353 (((-429 |#3|) |#3|) 18))) +(((-1096 |#1| |#2| |#3|) (-10 -7 (-15 -2353 ((-429 |#3|) |#3|))) (-1261 (-418 (-575))) (-13 (-373) (-148) (-735 (-418 (-575)) |#1|)) (-1261 |#2|)) (T -1096)) +((-2353 (*1 *2 *3) (-12 (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-13 (-373) (-148) (-735 (-418 (-575)) *4))) (-5 *2 (-429 *3)) (-5 *1 (-1096 *4 *5 *3)) (-4 *3 (-1261 *5))))) +(-10 -7 (-15 -2353 ((-429 |#3|) |#3|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 136)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-373)))) (-1540 (($ $) NIL (|has| |#1| (-373)))) (-3286 (((-112) $) NIL (|has| |#1| (-373)))) (-1389 (((-700 |#1|) (-1285 $)) NIL) (((-700 |#1|)) 121)) (-1447 ((|#1| $) 125)) (-2243 (((-1207 (-936) (-782)) (-575)) NIL (|has| |#1| (-359)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL (|has| |#1| (-373)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-2415 (((-782)) 43 (|has| |#1| (-378)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-1385 (($ (-1285 |#1|) (-1285 $)) NIL) (($ (-1285 |#1|)) 46)) (-2068 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-359)))) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-2746 (((-700 |#1|) $ (-1285 $)) NIL) (((-700 |#1|) $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 113) (((-700 |#1|) (-700 $)) 108) (((-700 |#1|) (-1285 $)) NIL)) (-2308 (($ |#2|) 65) (((-3 $ "failed") (-418 |#2|)) NIL (|has| |#1| (-373)))) (-1747 (((-3 $ "failed") $) NIL)) (-4422 (((-936)) 84)) (-2079 (($) 47 (|has| |#1| (-378)))) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1360 (($) NIL (|has| |#1| (-359)))) (-1980 (((-112) $) NIL (|has| |#1| (-359)))) (-4374 (($ $ (-782)) NIL (|has| |#1| (-359))) (($ $) NIL (|has| |#1| (-359)))) (-1336 (((-112) $) NIL (|has| |#1| (-373)))) (-2673 (((-936) $) NIL (|has| |#1| (-359))) (((-844 (-936)) $) NIL (|has| |#1| (-359)))) (-1542 (((-112) $) NIL)) (-2255 ((|#1| $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-1943 ((|#2| $) 91 (|has| |#1| (-373)))) (-4084 (((-936) $) 145 (|has| |#1| (-378)))) (-2295 ((|#2| $) 62)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-3474 (($) NIL (|has| |#1| (-359)) CONST)) (-4317 (($ (-936)) 135 (|has| |#1| (-378)))) (-3912 (((-1137) $) NIL)) (-3659 (($) 127)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4122 (((-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575))))) NIL (|has| |#1| (-359)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-4060 ((|#1| (-1285 $)) NIL) ((|#1|) 117)) (-3905 (((-782) $) NIL (|has| |#1| (-359))) (((-3 (-782) "failed") $ $) NIL (|has| |#1| (-359)))) (-2389 (($ $ (-782)) NIL (-3765 (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $) NIL (-3765 (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-373))) (($ $ (-1 |#1| |#1|) (-782)) NIL (|has| |#1| (-373)))) (-3792 (((-700 |#1|) (-1285 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-373)))) (-2552 ((|#2|) 81)) (-3500 (($) NIL (|has| |#1| (-359)))) (-3962 (((-1285 |#1|) $ (-1285 $)) 96) (((-700 |#1|) (-1285 $) (-1285 $)) NIL) (((-1285 |#1|) $) 75) (((-700 |#1|) (-1285 $)) 92)) (-2615 (((-1285 |#1|) $) NIL) (($ (-1285 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-359)))) (-2883 (((-873) $) 61) (($ (-575)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-373))) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575))))))) (-1518 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2551 ((|#2| $) 89)) (-3759 (((-782)) 83 T CONST)) (-4400 (((-112) $ $) NIL)) (-1624 (((-1285 $)) 88)) (-1780 (((-112) $ $) NIL (|has| |#1| (-373)))) (-1996 (($) 32 T CONST)) (-2009 (($) 19 T CONST)) (-3430 (($ $ (-782)) NIL (-3765 (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $) NIL (-3765 (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-373))) (($ $ (-1 |#1| |#1|) (-782)) NIL (|has| |#1| (-373)))) (-3914 (((-112) $ $) 67)) (-4038 (($ $ $) NIL (|has| |#1| (-373)))) (-4028 (($ $) 71) (($ $ $) NIL)) (-4016 (($ $ $) 69)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-418 (-575)) $) NIL (|has| |#1| (-373))) (($ $ (-418 (-575))) NIL (|has| |#1| (-373))))) +(((-1097 |#1| |#2| |#3|) (-735 |#1| |#2|) (-174) (-1261 |#1|) |#2|) (T -1097)) +NIL +(-735 |#1| |#2|) +((-2353 (((-429 |#3|) |#3|) 19))) +(((-1098 |#1| |#2| |#3|) (-10 -7 (-15 -2353 ((-429 |#3|) |#3|))) (-1261 (-418 (-967 (-575)))) (-13 (-373) (-148) (-735 (-418 (-967 (-575))) |#1|)) (-1261 |#2|)) (T -1098)) +((-2353 (*1 *2 *3) (-12 (-4 *4 (-1261 (-418 (-967 (-575))))) (-4 *5 (-13 (-373) (-148) (-735 (-418 (-967 (-575))) *4))) (-5 *2 (-429 *3)) (-5 *1 (-1098 *4 *5 *3)) (-4 *3 (-1261 *5))))) +(-10 -7 (-15 -2353 ((-429 |#3|) |#3|))) +((-2861 (((-112) $ $) NIL)) (-1920 (($ $ $) 16)) (-1425 (($ $ $) 17)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4272 (($) 6)) (-2615 (((-1194) $) 20)) (-2883 (((-873) $) 13)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 15)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 9))) +(((-1099) (-13 (-861) (-625 (-1194)) (-10 -8 (-15 -4272 ($))))) (T -1099)) +((-4272 (*1 *1) (-5 *1 (-1099)))) +(-13 (-861) (-625 (-1194)) (-10 -8 (-15 -4272 ($)))) +((-2861 (((-112) $ $) 7)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-1199)) 17) (((-1199) $) 16)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-1100) (-141)) (T -1100)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-628 #0=(-1200)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1118) . T)) -((-1626 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-2292 (((-1291)) 21)) (-2325 (((-656 |#1|)) 13))) -(((-1102 |#1|) (-10 -7 (-15 -2292 ((-1291))) (-15 -2325 ((-656 |#1|))) (-15 -1626 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1626 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1102)) -((-1626 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1102 *2)))) (-1626 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1102 *2)))) (-2325 (*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-133)))) (-2292 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1102 *3)) (-4 *3 (-133))))) -(-10 -7 (-15 -2292 ((-1291))) (-15 -2325 ((-656 |#1|))) (-15 -1626 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1626 (|#1| |#1| (-1 (-576) |#1| |#1|)))) -((-3594 (($ (-109) $) 20)) (-3603 (((-703 (-109)) (-518) $) 19)) (-1458 (($) 7)) (-3583 (($) 21)) (-3573 (($) 22)) (-3611 (((-656 (-177)) $) 10)) (-2884 (((-874) $) 25))) -(((-1103) (-13 (-625 (-874)) (-10 -8 (-15 -1458 ($)) (-15 -3611 ((-656 (-177)) $)) (-15 -3603 ((-703 (-109)) (-518) $)) (-15 -3594 ($ (-109) $)) (-15 -3583 ($)) (-15 -3573 ($))))) (T -1103)) -((-1458 (*1 *1) (-5 *1 (-1103))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1103)))) (-3603 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1103)))) (-3594 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1103)))) (-3583 (*1 *1) (-5 *1 (-1103))) (-3573 (*1 *1) (-5 *1 (-1103)))) -(-13 (-625 (-874)) (-10 -8 (-15 -1458 ($)) (-15 -3611 ((-656 (-177)) $)) (-15 -3603 ((-703 (-109)) (-518) $)) (-15 -3594 ($ (-109) $)) (-15 -3583 ($)) (-15 -3573 ($)))) -((-3620 (((-1286 (-701 |#1|)) (-656 (-701 |#1|))) 45) (((-1286 (-701 (-968 |#1|))) (-656 (-1195)) (-701 (-968 |#1|))) 75) (((-1286 (-701 (-419 (-968 |#1|)))) (-656 (-1195)) (-701 (-419 (-968 |#1|)))) 92)) (-3629 (((-1286 |#1|) (-701 |#1|) (-656 (-701 |#1|))) 39))) -(((-1104 |#1|) (-10 -7 (-15 -3620 ((-1286 (-701 (-419 (-968 |#1|)))) (-656 (-1195)) (-701 (-419 (-968 |#1|))))) (-15 -3620 ((-1286 (-701 (-968 |#1|))) (-656 (-1195)) (-701 (-968 |#1|)))) (-15 -3620 ((-1286 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3629 ((-1286 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) (-374)) (T -1104)) -((-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-1286 *5)) (-5 *1 (-1104 *5)))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-1104 *4)))) (-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374)) (-5 *2 (-1286 (-701 (-968 *5)))) (-5 *1 (-1104 *5)) (-5 *4 (-701 (-968 *5))))) (-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374)) (-5 *2 (-1286 (-701 (-419 (-968 *5))))) (-5 *1 (-1104 *5)) (-5 *4 (-701 (-419 (-968 *5))))))) -(-10 -7 (-15 -3620 ((-1286 (-701 (-419 (-968 |#1|)))) (-656 (-1195)) (-701 (-419 (-968 |#1|))))) (-15 -3620 ((-1286 (-701 (-968 |#1|))) (-656 (-1195)) (-701 (-968 |#1|)))) (-15 -3620 ((-1286 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3629 ((-1286 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1726 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1195)) NIL)) (-2092 (((-783) $) NIL) (((-783) $ (-1195)) NIL)) (-1607 (((-656 (-1106 (-1195))) $) NIL)) (-3467 (((-1191 $) $ (-1106 (-1195))) NIL) (((-1191 |#1|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 (-1106 (-1195)))) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2944 (($ $) NIL (|has| |#1| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-1706 (($ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-1106 (-1195)) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL) (((-3 (-1143 |#1| (-1195)) "failed") $) NIL)) (-4401 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-1106 (-1195)) $) NIL) (((-1195) $) NIL) (((-1143 |#1| (-1195)) $) NIL)) (-2778 (($ $ $ (-1106 (-1195))) NIL (|has| |#1| (-174)))) (-4407 (($ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1106 (-1195))) NIL (|has| |#1| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#1| (-925)))) (-3098 (($ $ |#1| (-543 (-1106 (-1195))) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1106 (-1195)) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1106 (-1195)) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2927 (((-783) $ (-1195)) NIL) (((-783) $) NIL)) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-2437 (($ (-1191 |#1|) (-1106 (-1195))) NIL) (($ (-1191 $) (-1106 (-1195))) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-543 (-1106 (-1195)))) NIL) (($ $ (-1106 (-1195)) (-783)) NIL) (($ $ (-656 (-1106 (-1195))) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-1106 (-1195))) NIL)) (-1864 (((-543 (-1106 (-1195))) $) NIL) (((-783) $ (-1106 (-1195))) NIL) (((-656 (-783)) $ (-656 (-1106 (-1195)))) NIL)) (-3109 (($ (-1 (-543 (-1106 (-1195))) (-543 (-1106 (-1195)))) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2102 (((-1 $ (-783)) (-1195)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-239)))) (-2788 (((-3 (-1106 (-1195)) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2148 (((-1106 (-1195)) $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3733 (((-1177) $) NIL)) (-1715 (((-112) $) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| (-1106 (-1195))) (|:| -1359 (-783))) "failed") $) NIL)) (-2817 (($ $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) NIL)) (-4359 ((|#1| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-925)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1106 (-1195)) |#1|) NIL) (($ $ (-656 (-1106 (-1195))) (-656 |#1|)) NIL) (($ $ (-1106 (-1195)) $) NIL) (($ $ (-656 (-1106 (-1195))) (-656 $)) NIL) (($ $ (-1195) $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 $)) NIL (|has| |#1| (-239))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-239)))) (-2790 (($ $ (-1106 (-1195))) NIL (|has| |#1| (-174)))) (-2390 (($ $ (-656 (-1106 (-1195))) (-656 (-783))) NIL) (($ $ (-1106 (-1195)) (-783)) NIL) (($ $ (-656 (-1106 (-1195)))) NIL) (($ $ (-1106 (-1195))) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1737 (((-656 (-1195)) $) NIL)) (-3813 (((-543 (-1106 (-1195))) $) NIL) (((-783) $ (-1106 (-1195))) NIL) (((-656 (-783)) $ (-656 (-1106 (-1195)))) NIL) (((-783) $ (-1195)) NIL)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| (-1106 (-1195)) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1106 (-1195)) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1106 (-1195)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1841 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1106 (-1195))) NIL (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1106 (-1195))) NIL) (($ (-1195)) NIL) (($ (-1143 |#1| (-1195))) NIL) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-543 (-1106 (-1195)))) NIL) (($ $ (-1106 (-1195)) (-783)) NIL) (($ $ (-656 (-1106 (-1195))) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-656 (-1106 (-1195))) (-656 (-783))) NIL) (($ $ (-1106 (-1195)) (-783)) NIL) (($ $ (-656 (-1106 (-1195)))) NIL) (($ $ (-1106 (-1195))) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1105 |#1|) (-13 (-260 |#1| (-1195) (-1106 (-1195)) (-543 (-1106 (-1195)))) (-1056 (-1143 |#1| (-1195)))) (-1067)) (T -1105)) -NIL -(-13 (-260 |#1| (-1195) (-1106 (-1195)) (-543 (-1106 (-1195)))) (-1056 (-1143 |#1| (-1195)))) -((-2862 (((-112) $ $) NIL)) (-2092 (((-783) $) NIL)) (-1441 ((|#1| $) 10)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4401 ((|#1| $) NIL)) (-2927 (((-783) $) 11)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-2102 (($ |#1| (-783)) 9)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2390 (($ $ (-783)) NIL) (($ $) NIL)) (-2884 (((-874) $) NIL) (($ |#1|) NIL)) (-3722 (((-112) $ $) NIL)) (-3431 (($ $ (-783)) NIL) (($ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 16))) -(((-1106 |#1|) (-275 |#1|) (-862)) (T -1106)) -NIL -(-275 |#1|) -((-2551 (((-656 |#2|) (-1 |#2| |#1|) (-1112 |#1|)) 29 (|has| |#1| (-860))) (((-1112 |#2|) (-1 |#2| |#1|) (-1112 |#1|)) 14))) -(((-1107 |#1| |#2|) (-10 -7 (-15 -2551 ((-1112 |#2|) (-1 |#2| |#1|) (-1112 |#1|))) (IF (|has| |#1| (-860)) (-15 -2551 ((-656 |#2|) (-1 |#2| |#1|) (-1112 |#1|))) |%noBranch|)) (-1236) (-1236)) (T -1107)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-860)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-656 *6)) (-5 *1 (-1107 *5 *6)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1112 *6)) (-5 *1 (-1107 *5 *6))))) -(-10 -7 (-15 -2551 ((-1112 |#2|) (-1 |#2| |#1|) (-1112 |#1|))) (IF (|has| |#1| (-860)) (-15 -2551 ((-656 |#2|) (-1 |#2| |#1|) (-1112 |#1|))) |%noBranch|)) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3638 (((-656 (-1153)) $) 10)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1108) (-13 (-1101) (-10 -8 (-15 -3638 ((-656 (-1153)) $))))) (T -1108)) -((-3638 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1108))))) -(-13 (-1101) (-10 -8 (-15 -3638 ((-656 (-1153)) $)))) -((-2551 (((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|)) 19))) -(((-1109 |#1| |#2|) (-10 -7 (-15 -2551 ((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|)))) (-1236) (-1236)) (T -1109)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1110 *6)) (-5 *1 (-1109 *5 *6))))) -(-10 -7 (-15 -2551 ((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|)))) -((-2862 (((-112) $ $) NIL (|has| (-1112 |#1|) (-1118)))) (-1441 (((-1195) $) NIL)) (-4128 (((-1112 |#1|) $) NIL)) (-3733 (((-1177) $) NIL (|has| (-1112 |#1|) (-1118)))) (-3914 (((-1138) $) NIL (|has| (-1112 |#1|) (-1118)))) (-2677 (($ (-1195) (-1112 |#1|)) NIL)) (-2884 (((-874) $) NIL (|has| (-1112 |#1|) (-1118)))) (-3722 (((-112) $ $) NIL (|has| (-1112 |#1|) (-1118)))) (-3915 (((-112) $ $) NIL (|has| (-1112 |#1|) (-1118))))) -(((-1110 |#1|) (-13 (-1236) (-10 -8 (-15 -2677 ($ (-1195) (-1112 |#1|))) (-15 -1441 ((-1195) $)) (-15 -4128 ((-1112 |#1|) $)) (IF (|has| (-1112 |#1|) (-1118)) (-6 (-1118)) |%noBranch|))) (-1236)) (T -1110)) -((-2677 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1112 *4)) (-4 *4 (-1236)) (-5 *1 (-1110 *4)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1110 *3)) (-4 *3 (-1236)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-1112 *3)) (-5 *1 (-1110 *3)) (-4 *3 (-1236))))) -(-13 (-1236) (-10 -8 (-15 -2677 ($ (-1195) (-1112 |#1|))) (-15 -1441 ((-1195) $)) (-15 -4128 ((-1112 |#1|) $)) (IF (|has| (-1112 |#1|) (-1118)) (-6 (-1118)) |%noBranch|))) -((-4128 (($ |#1| |#1|) 8)) (-3659 ((|#1| $) 11)) (-2073 ((|#1| $) 13)) (-3756 (((-576) $) 9)) (-3647 ((|#1| $) 10)) (-3769 ((|#1| $) 12)) (-2616 (($ |#1|) 6)) (-1860 (($ |#1| |#1|) 15)) (-3685 (($ $ (-576)) 14))) -(((-1111 |#1|) (-141) (-1236)) (T -1111)) -((-1860 (*1 *1 *2 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) (-3685 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1111 *3)) (-4 *3 (-1236)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1236)) (-5 *2 (-576)))) (-4128 (*1 *1 *2 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236))))) -(-13 (-630 |t#1|) (-10 -8 (-15 -1860 ($ |t#1| |t#1|)) (-15 -3685 ($ $ (-576))) (-15 -2073 (|t#1| $)) (-15 -3769 (|t#1| $)) (-15 -3659 (|t#1| $)) (-15 -3647 (|t#1| $)) (-15 -3756 ((-576) $)) (-15 -4128 ($ |t#1| |t#1|)))) -(((-630 |#1|) . T)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4128 (($ |#1| |#1|) 16)) (-2551 (((-656 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-860)))) (-3659 ((|#1| $) 12)) (-2073 ((|#1| $) 11)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3756 (((-576) $) 15)) (-3647 ((|#1| $) 14)) (-3769 ((|#1| $) 13)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3945 (((-656 |#1|) $) 44 (|has| |#1| (-860))) (((-656 |#1|) (-656 $)) 43 (|has| |#1| (-860)))) (-2616 (($ |#1|) 29)) (-2884 (((-874) $) 28 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1860 (($ |#1| |#1|) 10)) (-3685 (($ $ (-576)) 17)) (-3915 (((-112) $ $) 22 (|has| |#1| (-1118))))) -(((-1112 |#1|) (-13 (-1111 |#1|) (-10 -7 (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1113 |#1| (-656 |#1|))) |%noBranch|))) (-1236)) (T -1112)) -NIL -(-13 (-1111 |#1|) (-10 -7 (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1113 |#1| (-656 |#1|))) |%noBranch|))) -((-4128 (($ |#1| |#1|) 8)) (-2551 ((|#2| (-1 |#1| |#1|) $) 16)) (-3659 ((|#1| $) 11)) (-2073 ((|#1| $) 13)) (-3756 (((-576) $) 9)) (-3647 ((|#1| $) 10)) (-3769 ((|#1| $) 12)) (-3945 ((|#2| (-656 $)) 18) ((|#2| $) 17)) (-2616 (($ |#1|) 6)) (-1860 (($ |#1| |#1|) 15)) (-3685 (($ $ (-576)) 14))) -(((-1113 |#1| |#2|) (-141) (-860) (-1167 |t#1|)) (T -1113)) -((-3945 (*1 *2 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1113 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1167 *4)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1167 *3)))) (-2551 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1113 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1167 *4))))) -(-13 (-1111 |t#1|) (-10 -8 (-15 -3945 (|t#2| (-656 $))) (-15 -3945 (|t#2| $)) (-15 -2551 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-630 |#1|) . T) ((-1111 |#1|) . T)) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3654 (((-1153) $) 12)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 18) (($ (-1200)) NIL) (((-1200) $) NIL)) (-1789 (((-656 (-1153)) $) 10)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1114) (-13 (-1101) (-10 -8 (-15 -1789 ((-656 (-1153)) $)) (-15 -3654 ((-1153) $))))) (T -1114)) -((-1789 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1114)))) (-3654 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1114))))) -(-13 (-1101) (-10 -8 (-15 -1789 ((-656 (-1153)) $)) (-15 -3654 ((-1153) $)))) -((-1645 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3682 (($ $ $) 10)) (-3693 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1115 |#1| |#2|) (-10 -8 (-15 -1645 (|#1| |#2| |#1|)) (-15 -1645 (|#1| |#1| |#2|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#1|)) (-15 -3693 (|#1| |#1| |#2|)) (-15 -3693 (|#1| |#1| |#1|))) (-1116 |#2|) (-1118)) (T -1115)) -NIL -(-10 -8 (-15 -1645 (|#1| |#2| |#1|)) (-15 -1645 (|#1| |#1| |#2|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#1|)) (-15 -3693 (|#1| |#1| |#2|)) (-15 -3693 (|#1| |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-1645 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3682 (($ $ $) 21)) (-3672 (((-112) $ $) 20)) (-2970 (((-112) $ (-783)) 36)) (-1330 (($) 26) (($ (-656 |#1|)) 25)) (-3985 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4461)))) (-2473 (($) 37 T CONST)) (-1919 (($ $) 60 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#1| $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4461)))) (-4001 (((-656 |#1|) $) 44 (|has| $ (-6 -4461)))) (-3712 (((-112) $ $) 29)) (-2408 (((-112) $ (-783)) 35)) (-1496 (((-656 |#1|) $) 45 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 39)) (-2374 (((-112) $ (-783)) 34)) (-3733 (((-1177) $) 10)) (-3703 (($ $ $) 24)) (-3914 (((-1138) $) 11)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2476 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#1|) (-656 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 30)) (-2809 (((-112) $) 33)) (-1458 (($) 32)) (-3693 (($ $ $) 23) (($ $ |#1|) 22)) (-3926 (((-783) |#1| $) 46 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4461)))) (-3079 (($ $) 31)) (-2616 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 52)) (-2884 (((-874) $) 12)) (-2557 (($) 28) (($ (-656 |#1|)) 27)) (-3722 (((-112) $ $) 9)) (-2492 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 6)) (-2872 (((-783) $) 38 (|has| $ (-6 -4461))))) -(((-1116 |#1|) (-141) (-1118)) (T -1116)) -((-3712 (*1 *2 *1 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-2557 (*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-1116 *3)))) (-1330 (*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-1116 *3)))) (-3703 (*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-3693 (*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-3693 (*1 *1 *1 *2) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-3682 (*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-3672 (*1 *2 *1 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-1645 (*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-1645 (*1 *1 *1 *2) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-1645 (*1 *1 *2 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118))))) -(-13 (-1118) (-152 |t#1|) (-10 -8 (-6 -4451) (-15 -3712 ((-112) $ $)) (-15 -2557 ($)) (-15 -2557 ($ (-656 |t#1|))) (-15 -1330 ($)) (-15 -1330 ($ (-656 |t#1|))) (-15 -3703 ($ $ $)) (-15 -3693 ($ $ $)) (-15 -3693 ($ $ |t#1|)) (-15 -3682 ($ $ $)) (-15 -3672 ((-112) $ $)) (-15 -1645 ($ $ $)) (-15 -1645 ($ $ |t#1|)) (-15 -1645 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) . T) ((-1236) . T)) -((-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 8)) (-3722 (((-112) $ $) 12))) -(((-1117 |#1|) (-10 -8 (-15 -3722 ((-112) |#1| |#1|)) (-15 -3733 ((-1177) |#1|)) (-15 -3914 ((-1138) |#1|))) (-1118)) (T -1117)) -NIL -(-10 -8 (-15 -3722 ((-112) |#1| |#1|)) (-15 -3733 ((-1177) |#1|)) (-15 -3914 ((-1138) |#1|))) -((-2862 (((-112) $ $) 7)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-1118) (-141)) (T -1118)) -((-3914 (*1 *2 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-1138)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-1177)))) (-3722 (*1 *2 *1 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-112))))) -(-13 (-102) (-625 (-874)) (-10 -8 (-15 -3914 ((-1138) $)) (-15 -3733 ((-1177) $)) (-15 -3722 ((-112) $ $)))) -(((-102) . T) ((-625 (-874)) . T)) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) 36)) (-3768 (($ (-656 (-937))) 70)) (-3791 (((-3 $ "failed") $ (-937) (-937)) 81)) (-2080 (($) 40)) (-3743 (((-112) (-937) $) 42)) (-1875 (((-937) $) 64)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) 39)) (-3802 (((-3 $ "failed") $ (-937)) 77)) (-3914 (((-1138) $) NIL)) (-3755 (((-1286 $)) 47)) (-3780 (((-656 (-937)) $) 27)) (-3595 (((-783) $ (-937) (-937)) 78)) (-2884 (((-874) $) 32)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 24))) -(((-1119 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -3802 ((-3 $ "failed") $ (-937))) (-15 -3791 ((-3 $ "failed") $ (-937) (-937))) (-15 -3780 ((-656 (-937)) $)) (-15 -3768 ($ (-656 (-937)))) (-15 -3755 ((-1286 $))) (-15 -3743 ((-112) (-937) $)) (-15 -3595 ((-783) $ (-937) (-937))))) (-937) (-937)) (T -1119)) -((-3802 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1119 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3791 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1119 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1119 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1119 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-3755 (*1 *2) (-12 (-5 *2 (-1286 (-1119 *3 *4))) (-5 *1 (-1119 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-3743 (*1 *2 *3 *1) (-12 (-5 *3 (-937)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3595 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-783)) (-5 *1 (-1119 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-379) (-10 -8 (-15 -3802 ((-3 $ "failed") $ (-937))) (-15 -3791 ((-3 $ "failed") $ (-937) (-937))) (-15 -3780 ((-656 (-937)) $)) (-15 -3768 ($ (-656 (-937)))) (-15 -3755 ((-1286 $))) (-15 -3743 ((-112) (-937) $)) (-15 -3595 ((-783) $ (-937) (-937))))) -((-2862 (((-112) $ $) NIL)) (-1408 (($) NIL (|has| |#1| (-379)))) (-1645 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3682 (($ $ $) 81)) (-3672 (((-112) $ $) 82)) (-2970 (((-112) $ (-783)) NIL)) (-2416 (((-783)) NIL (|has| |#1| (-379)))) (-1330 (($ (-656 |#1|)) NIL) (($) 13)) (-1443 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2833 (($ |#1| $) 74 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4461)))) (-2080 (($) NIL (|has| |#1| (-379)))) (-4001 (((-656 |#1|) $) 19 (|has| $ (-6 -4461)))) (-3712 (((-112) $ $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-1921 ((|#1| $) 55 (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4137 ((|#1| $) 53 (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 34)) (-1875 (((-937) $) NIL (|has| |#1| (-379)))) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-3703 (($ $ $) 79)) (-3449 ((|#1| $) 25)) (-3807 (($ |#1| $) 69)) (-4318 (($ (-937)) NIL (|has| |#1| (-379)))) (-3914 (((-1138) $) NIL)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3458 ((|#1| $) 27)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 21)) (-1458 (($) 11)) (-3693 (($ $ |#1|) NIL) (($ $ $) 80)) (-1581 (($) NIL) (($ (-656 |#1|)) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) 16)) (-2616 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 62)) (-1418 (($ $) NIL (|has| |#1| (-379)))) (-2884 (((-874) $) NIL)) (-1427 (((-783) $) NIL)) (-2557 (($ (-656 |#1|)) NIL) (($) 12)) (-3722 (((-112) $ $) NIL)) (-3541 (($ (-656 |#1|)) NIL)) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 52)) (-2872 (((-783) $) 10 (|has| $ (-6 -4461))))) -(((-1120 |#1|) (-437 |#1|) (-1118)) (T -1120)) -NIL -(-437 |#1|) -((-2862 (((-112) $ $) 7)) (-3857 (((-112) $) 33)) (-3819 ((|#2| $) 28)) (-3868 (((-112) $) 34)) (-1651 ((|#1| $) 29)) (-3891 (((-112) $) 36)) (-3916 (((-112) $) 38)) (-3879 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3846 (((-112) $) 32)) (-3842 ((|#3| $) 27)) (-3914 (((-1138) $) 11)) (-3834 (((-112) $) 31)) (-1540 ((|#4| $) 26)) (-1401 ((|#5| $) 25)) (-2572 (((-112) $ $) 39)) (-2071 (($ $ (-576)) 41) (($ $ (-656 (-576))) 40)) (-3844 (((-656 $) $) 30)) (-2616 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-656 $)) 42)) (-2884 (((-874) $) 12)) (-3812 (($ $) 23)) (-3823 (($ $) 24)) (-3722 (((-112) $ $) 9)) (-3902 (((-112) $) 37)) (-3915 (((-112) $ $) 6)) (-2872 (((-576) $) 22))) -(((-1121 |#1| |#2| |#3| |#4| |#5|) (-141) (-1118) (-1118) (-1118) (-1118) (-1118)) (T -1121)) -((-2572 (*1 *2 *1 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-3844 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-656 *1)) (-4 *1 (-1121 *3 *4 *5 *6 *7)))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *2 *4 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))) (-3842 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *2 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *2 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *2)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))) (-3823 (*1 *1 *1) (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *2 (-1118)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *2 (-1118)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-576))))) -(-13 (-1118) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-656 $)) (-296 (-576) $) (-296 (-656 (-576)) $) (-10 -8 (-15 -2572 ((-112) $ $)) (-15 -3916 ((-112) $)) (-15 -3902 ((-112) $)) (-15 -3891 ((-112) $)) (-15 -3879 ((-112) $)) (-15 -3868 ((-112) $)) (-15 -3857 ((-112) $)) (-15 -3846 ((-112) $)) (-15 -3834 ((-112) $)) (-15 -3844 ((-656 $) $)) (-15 -1651 (|t#1| $)) (-15 -3819 (|t#2| $)) (-15 -3842 (|t#3| $)) (-15 -1540 (|t#4| $)) (-15 -1401 (|t#5| $)) (-15 -3823 ($ $)) (-15 -3812 ($ $)) (-15 -2872 ((-576) $)))) -(((-102) . T) ((-625 (-874)) . T) ((-630 (-656 $)) . T) ((-630 |#1|) . T) ((-630 |#2|) . T) ((-630 |#3|) . T) ((-630 |#4|) . T) ((-630 |#5|) . T) ((-296 (-576) $) . T) ((-296 (-656 (-576)) $) . T) ((-1118) . T) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-3857 (((-112) $) NIL)) (-3819 (((-1195) $) NIL)) (-3868 (((-112) $) NIL)) (-1651 (((-1177) $) NIL)) (-3891 (((-112) $) NIL)) (-3916 (((-112) $) NIL)) (-3879 (((-112) $) NIL)) (-3733 (((-1177) $) NIL)) (-3846 (((-112) $) NIL)) (-3842 (((-576) $) NIL)) (-3914 (((-1138) $) NIL)) (-3834 (((-112) $) NIL)) (-1540 (((-227) $) NIL)) (-1401 (((-874) $) NIL)) (-2572 (((-112) $ $) NIL)) (-2071 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-3844 (((-656 $) $) NIL)) (-2616 (($ (-1177)) NIL) (($ (-1195)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-874)) NIL) (($ (-656 $)) NIL)) (-2884 (((-874) $) NIL)) (-3812 (($ $) NIL)) (-3823 (($ $) NIL)) (-3722 (((-112) $ $) NIL)) (-3902 (((-112) $) NIL)) (-3915 (((-112) $ $) NIL)) (-2872 (((-576) $) NIL))) -(((-1122) (-1121 (-1177) (-1195) (-576) (-227) (-874))) (T -1122)) -NIL -(-1121 (-1177) (-1195) (-576) (-227) (-874)) -((-2862 (((-112) $ $) NIL)) (-3857 (((-112) $) 45)) (-3819 ((|#2| $) 48)) (-3868 (((-112) $) 20)) (-1651 ((|#1| $) 21)) (-3891 (((-112) $) 42)) (-3916 (((-112) $) 14)) (-3879 (((-112) $) 44)) (-3733 (((-1177) $) NIL)) (-3846 (((-112) $) 46)) (-3842 ((|#3| $) 50)) (-3914 (((-1138) $) NIL)) (-3834 (((-112) $) 47)) (-1540 ((|#4| $) 49)) (-1401 ((|#5| $) 51)) (-2572 (((-112) $ $) 41)) (-2071 (($ $ (-576)) 62) (($ $ (-656 (-576))) 64)) (-3844 (((-656 $) $) 27)) (-2616 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-656 $)) 52)) (-2884 (((-874) $) 28)) (-3812 (($ $) 26)) (-3823 (($ $) 58)) (-3722 (((-112) $ $) NIL)) (-3902 (((-112) $) 23)) (-3915 (((-112) $ $) 40)) (-2872 (((-576) $) 60))) -(((-1123 |#1| |#2| |#3| |#4| |#5|) (-1121 |#1| |#2| |#3| |#4| |#5|) (-1118) (-1118) (-1118) (-1118) (-1118)) (T -1123)) -NIL -(-1121 |#1| |#2| |#3| |#4| |#5|) -((-2251 (((-1291) $) 22)) (-2577 (($ (-1195) (-446) |#2|) 11)) (-2884 (((-874) $) 16))) -(((-1124 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -2577 ($ (-1195) (-446) |#2|)))) (-1118) (-442 |#1|)) (T -1124)) -((-2577 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-446)) (-4 *5 (-1118)) (-5 *1 (-1124 *5 *4)) (-4 *4 (-442 *5))))) -(-13 (-407) (-10 -8 (-15 -2577 ($ (-1195) (-446) |#2|)))) -((-3958 (((-112) |#5| |#5|) 44)) (-3995 (((-112) |#5| |#5|) 59)) (-4048 (((-112) |#5| (-656 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-4007 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-4066 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) 70)) (-3944 (((-1291)) 32)) (-3930 (((-1291) (-1177) (-1177) (-1177)) 28)) (-4058 (((-656 |#5|) (-656 |#5|)) 101)) (-4074 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)))) 93)) (-4083 (((-656 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 123)) (-3984 (((-112) |#5| |#5|) 53)) (-4038 (((-3 (-112) "failed") |#5| |#5|) 78)) (-4016 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-4028 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-3461 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-4092 (((-3 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3971 (((-656 |#5|) (-656 |#5|)) 49))) -(((-1125 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3930 ((-1291) (-1177) (-1177) (-1177))) (-15 -3944 ((-1291))) (-15 -3958 ((-112) |#5| |#5|)) (-15 -3971 ((-656 |#5|) (-656 |#5|))) (-15 -3984 ((-112) |#5| |#5|)) (-15 -3995 ((-112) |#5| |#5|)) (-15 -4007 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4016 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4028 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3461 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4038 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4048 ((-112) |#5| |#5|)) (-15 -4048 ((-112) |#5| (-656 |#5|))) (-15 -4058 ((-656 |#5|) (-656 |#5|))) (-15 -4066 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)))) (-15 -4074 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) (-15 -4083 ((-656 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4092 ((-3 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -1125)) -((-4092 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| -2572 (-656 *9)) (|:| -4271 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1125 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1089 *6 *7 *8 *9)))) (-4083 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1089 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -2572 (-656 *9)) (|:| -4271 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1125 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4271 *7)))) (-4 *6 (-1083 *3 *4 *5)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1125 *3 *4 *5 *6 *7)))) (-4066 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4271 *8))) (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *8)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-1125 *3 *4 *5 *6 *7)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1125 *5 *6 *7 *8 *3)))) (-4048 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-4038 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3461 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-4028 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-4016 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-4007 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-3995 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3984 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3971 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-1125 *3 *4 *5 *6 *7)))) (-3958 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3944 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-3930 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))) -(-10 -7 (-15 -3930 ((-1291) (-1177) (-1177) (-1177))) (-15 -3944 ((-1291))) (-15 -3958 ((-112) |#5| |#5|)) (-15 -3971 ((-656 |#5|) (-656 |#5|))) (-15 -3984 ((-112) |#5| |#5|)) (-15 -3995 ((-112) |#5| |#5|)) (-15 -4007 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4016 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4028 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3461 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4038 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4048 ((-112) |#5| |#5|)) (-15 -4048 ((-112) |#5| (-656 |#5|))) (-15 -4058 ((-656 |#5|) (-656 |#5|))) (-15 -4066 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)))) (-15 -4074 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) (-15 -4083 ((-656 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4092 ((-3 (-2 (|:| -2572 (-656 |#4|)) (|:| -4271 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3061 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#5|) 108)) (-4134 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#4| |#4| |#5|) 80)) (-2976 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|) 102)) (-3000 (((-656 |#5|) |#4| |#5|) 124)) (-3020 (((-656 |#5|) |#4| |#5|) 131)) (-3046 (((-656 |#5|) |#4| |#5|) 132)) (-2989 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|) 109)) (-3009 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|) 130)) (-3034 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-4143 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#3| (-112)) 92) (((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4151 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|) 87)) (-4126 (((-1291)) 36)) (-4109 (((-1291)) 25)) (-4118 (((-1291) (-1177) (-1177) (-1177)) 32)) (-4099 (((-1291) (-1177) (-1177) (-1177)) 21))) -(((-1126 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4099 ((-1291) (-1177) (-1177) (-1177))) (-15 -4109 ((-1291))) (-15 -4118 ((-1291) (-1177) (-1177) (-1177))) (-15 -4126 ((-1291))) (-15 -4134 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -4143 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4143 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#3| (-112))) (-15 -4151 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -2976 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -3034 ((-112) |#4| |#5|)) (-15 -2989 ((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|)) (-15 -3000 ((-656 |#5|) |#4| |#5|)) (-15 -3009 ((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|)) (-15 -3020 ((-656 |#5|) |#4| |#5|)) (-15 -3034 ((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|)) (-15 -3046 ((-656 |#5|) |#4| |#5|)) (-15 -3061 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -1126)) -((-3061 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3046 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3034 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3020 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3009 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3000 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-2989 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3034 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-2976 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-4151 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-4143 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4271 *9)))) (-5 *5 (-112)) (-4 *8 (-1083 *6 *7 *4)) (-4 *9 (-1089 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4271 *9)))) (-5 *1 (-1126 *6 *7 *4 *8 *9)))) (-4143 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) (-5 *1 (-1126 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) (-4134 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-4126 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-4118 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-4109 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-4099 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))) -(-10 -7 (-15 -4099 ((-1291) (-1177) (-1177) (-1177))) (-15 -4109 ((-1291))) (-15 -4118 ((-1291) (-1177) (-1177) (-1177))) (-15 -4126 ((-1291))) (-15 -4134 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -4143 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4143 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) |#3| (-112))) (-15 -4151 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -2976 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#4| |#5|)) (-15 -3034 ((-112) |#4| |#5|)) (-15 -2989 ((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|)) (-15 -3000 ((-656 |#5|) |#4| |#5|)) (-15 -3009 ((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|)) (-15 -3020 ((-656 |#5|) |#4| |#5|)) (-15 -3034 ((-656 (-2 (|:| |val| (-112)) (|:| -4271 |#5|))) |#4| |#5|)) (-15 -3046 ((-656 |#5|) |#4| |#5|)) (-15 -3061 ((-656 (-2 (|:| |val| |#4|) (|:| -4271 |#5|))) |#4| |#5|))) -((-2862 (((-112) $ $) 7)) (-3289 (((-656 (-2 (|:| -2459 $) (|:| -2980 (-656 |#4|)))) (-656 |#4|)) 86)) (-3299 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1607 (((-656 |#3|) $) 34)) (-1470 (((-112) $) 27)) (-1374 (((-112) $) 18 (|has| |#1| (-568)))) (-3405 (((-112) |#4| $) 102) (((-112) $) 98)) (-3358 ((|#4| |#4| $) 93)) (-2944 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| $) 127)) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#3|) 28)) (-2970 (((-112) $ (-783)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-2473 (($) 46 T CONST)) (-1425 (((-112) $) 23 (|has| |#1| (-568)))) (-1445 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1435 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1457 (((-112) $) 26 (|has| |#1| (-568)))) (-3367 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1384 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1394 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 |#4|)) 37)) (-4401 (($ (-656 |#4|)) 36)) (-1976 (((-3 $ "failed") $) 83)) (-3328 ((|#4| |#4| $) 90)) (-1919 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3414 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3308 ((|#4| |#4| $) 88)) (-2309 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3435 (((-2 (|:| -2459 (-656 |#4|)) (|:| -2980 (-656 |#4|))) $) 106)) (-1489 (((-112) |#4| $) 137)) (-1463 (((-112) |#4| $) 134)) (-1498 (((-112) |#4| $) 138) (((-112) $) 135)) (-4001 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-3425 (((-112) |#4| $) 105) (((-112) $) 104)) (-1323 ((|#3| $) 35)) (-2408 (((-112) $ (-783)) 44)) (-1496 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) 48)) (-1524 (((-656 |#3|) $) 33)) (-1513 (((-112) |#3| $) 32)) (-2374 (((-112) $ (-783)) 43)) (-3733 (((-1177) $) 10)) (-1421 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1411 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| |#4| $) 128)) (-3654 (((-3 |#4| "failed") $) 84)) (-1431 (((-656 $) |#4| $) 130)) (-1451 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1440 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3703 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1800 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3443 (((-656 |#4|) $) 108)) (-3387 (((-112) |#4| $) 100) (((-112) $) 96)) (-3338 ((|#4| |#4| $) 91)) (-3461 (((-112) $ $) 111)) (-1415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3396 (((-112) |#4| $) 101) (((-112) $) 97)) (-3348 ((|#4| |#4| $) 92)) (-3914 (((-1138) $) 11)) (-1962 (((-3 |#4| "failed") $) 85)) (-1932 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3266 (((-3 $ "failed") $ |#4|) 79)) (-2904 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-2476 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) 39)) (-2809 (((-112) $) 42)) (-1458 (($) 41)) (-3813 (((-783) $) 107)) (-3926 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3079 (($ $) 40)) (-2616 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2895 (($ (-656 |#4|)) 61)) (-1483 (($ $ |#3|) 29)) (-1504 (($ $ |#3|) 31)) (-3318 (($ $) 89)) (-1493 (($ $ |#3|) 30)) (-2884 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3255 (((-783) $) 77 (|has| |#3| (-379)))) (-3722 (((-112) $ $) 9)) (-3453 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3377 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1400 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2492 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-3278 (((-656 |#3|) $) 82)) (-1479 (((-112) |#4| $) 136)) (-3704 (((-112) |#3| $) 81)) (-3915 (((-112) $ $) 6)) (-2872 (((-783) $) 47 (|has| $ (-6 -4461))))) -(((-1127 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -1127)) -NIL -(-13 (-1089 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1089 |#1| |#2| |#3| |#4|) . T) ((-1118) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) -((-3183 (((-656 (-576)) (-576) (-576) (-576)) 38)) (-3171 (((-656 (-576)) (-576) (-576) (-576)) 28)) (-3161 (((-656 (-576)) (-576) (-576) (-576)) 33)) (-3150 (((-576) (-576) (-576)) 21)) (-3140 (((-1286 (-576)) (-656 (-576)) (-1286 (-576)) (-576)) 76) (((-1286 (-576)) (-1286 (-576)) (-1286 (-576)) (-576)) 71)) (-3128 (((-656 (-576)) (-656 (-937)) (-656 (-576)) (-112)) 54)) (-3118 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 75)) (-3107 (((-701 (-576)) (-656 (-937)) (-656 (-576))) 59)) (-3096 (((-656 (-701 (-576))) (-656 (-937))) 64)) (-3084 (((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 79)) (-3072 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576))) 89))) -(((-1128) (-10 -7 (-15 -3072 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -3084 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3096 ((-656 (-701 (-576))) (-656 (-937)))) (-15 -3107 ((-701 (-576)) (-656 (-937)) (-656 (-576)))) (-15 -3118 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3128 ((-656 (-576)) (-656 (-937)) (-656 (-576)) (-112))) (-15 -3140 ((-1286 (-576)) (-1286 (-576)) (-1286 (-576)) (-576))) (-15 -3140 ((-1286 (-576)) (-656 (-576)) (-1286 (-576)) (-576))) (-15 -3150 ((-576) (-576) (-576))) (-15 -3161 ((-656 (-576)) (-576) (-576) (-576))) (-15 -3171 ((-656 (-576)) (-576) (-576) (-576))) (-15 -3183 ((-656 (-576)) (-576) (-576) (-576))))) (T -1128)) -((-3183 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576)))) (-3171 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576)))) (-3161 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576)))) (-3150 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1128)))) (-3140 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) (-5 *1 (-1128)))) (-3140 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-576)) (-5 *1 (-1128)))) (-3128 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-937))) (-5 *4 (-112)) (-5 *1 (-1128)))) (-3118 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1128)))) (-3107 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-937))) (-5 *4 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1128)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1128)))) (-3084 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1128)))) (-3072 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1128))))) -(-10 -7 (-15 -3072 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -3084 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3096 ((-656 (-701 (-576))) (-656 (-937)))) (-15 -3107 ((-701 (-576)) (-656 (-937)) (-656 (-576)))) (-15 -3118 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3128 ((-656 (-576)) (-656 (-937)) (-656 (-576)) (-112))) (-15 -3140 ((-1286 (-576)) (-1286 (-576)) (-1286 (-576)) (-576))) (-15 -3140 ((-1286 (-576)) (-656 (-576)) (-1286 (-576)) (-576))) (-15 -3150 ((-576) (-576) (-576))) (-15 -3161 ((-656 (-576)) (-576) (-576) (-576))) (-15 -3171 ((-656 (-576)) (-576) (-576) (-576))) (-15 -3183 ((-656 (-576)) (-576) (-576) (-576)))) -((** (($ $ (-937)) 10))) -(((-1129 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-937)))) (-1130)) (T -1129)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-937)))) -((-2862 (((-112) $ $) 7)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6)) (** (($ $ (-937)) 14)) (* (($ $ $) 15))) -(((-1130) (-141)) (T -1130)) -((* (*1 *1 *1 *1) (-4 *1 (-1130))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1130)) (-5 *2 (-937))))) -(-13 (-1118) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-937))))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL (|has| |#3| (-1118)))) (-1389 (((-112) $) NIL (-3766 (|has| |#3| (-23)) (|has| |#3| (-738))))) (-3533 (($ (-937)) NIL (|has| |#3| (-1067)))) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2158 (($ $ $) NIL (|has| |#3| (-805)))) (-1459 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-2970 (((-112) $ (-783)) NIL)) (-2416 (((-783)) NIL (|has| |#3| (-379)))) (-3055 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1118)))) (-4401 (((-576) $) NIL (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118)))) ((|#3| $) NIL (|has| |#3| (-1118)))) (-2613 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) (((-2 (|:| -2869 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) NIL (|has| |#3| (-1067))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1067))) (((-701 |#3|) (-1286 $)) NIL (|has| |#3| (-1067)))) (-1999 (((-3 $ "failed") $) NIL (|has| |#3| (-1067)))) (-2080 (($) NIL (|has| |#3| (-379)))) (-2859 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#3| $ (-576)) 12)) (-4001 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-1439 (((-112) $) NIL (|has| |#3| (-1067)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#3| (-862)))) (-1496 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#3| (-862)))) (-2848 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#3| |#3|) $) NIL)) (-1875 (((-937) $) NIL (|has| |#3| (-379)))) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#3| (-1118)))) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-4318 (($ (-937)) NIL (|has| |#3| (-379)))) (-3914 (((-1138) $) NIL (|has| |#3| (-1118)))) (-1962 ((|#3| $) NIL (|has| (-576) (-862)))) (-3346 (($ $ |#3|) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-3403 (((-656 |#3|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-2165 ((|#3| $ $) NIL (|has| |#3| (-1067)))) (-1982 (($ (-1286 |#3|)) NIL)) (-1543 (((-135)) NIL (|has| |#3| (-374)))) (-2390 (($ $ (-783)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1067))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1067)))) (-3926 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-3079 (($ $) NIL)) (-2884 (((-1286 |#3|) $) NIL) (($ (-576)) NIL (-3766 (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (|has| |#3| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118)))) (($ |#3|) NIL (|has| |#3| (-1118))) (((-874) $) NIL (|has| |#3| (-625 (-874))))) (-1871 (((-783)) NIL (|has| |#3| (-1067)) CONST)) (-3722 (((-112) $ $) NIL (|has| |#3| (-1118)))) (-2492 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-1996 (($) NIL (-3766 (|has| |#3| (-23)) (|has| |#3| (-738))) CONST)) (-2011 (($) NIL (|has| |#3| (-1067)) CONST)) (-3431 (($ $ (-783)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1067))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1067)))) (-3983 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#3| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3943 (((-112) $ $) 24 (|has| |#3| (-862)))) (-4039 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4029 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-4017 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-783)) NIL (|has| |#3| (-1067))) (($ $ (-937)) NIL (|has| |#3| (-1067)))) (* (($ $ $) NIL (|has| |#3| (-1067))) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-783) $) NIL (|has| |#3| (-23))) (($ (-937) $) NIL (|has| |#3| (-25)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1131 |#1| |#2| |#3|) (-244 |#1| |#3|) (-783) (-783) (-805)) (T -1131)) -NIL -(-244 |#1| |#3|) -((-3194 (((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 50)) (-3260 (((-576) (-1259 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-3238 (((-576) (-1259 |#2| |#1|)) 76)) (-3205 (((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 58)) (-3250 (((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-3215 (((-656 |#1|) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 61)) (-3226 (((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 75))) -(((-1132 |#1| |#2|) (-10 -7 (-15 -3194 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3205 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3215 ((-656 |#1|) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3226 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3238 ((-576) (-1259 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3250 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3260 ((-576) (-1259 |#2| |#1|)))) |%noBranch|)) (-832) (-1195)) (T -1132)) -((-3260 (*1 *2 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))) (-3250 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))) (-3226 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))) (-3215 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 *4)) (-5 *1 (-1132 *4 *5)))) (-3205 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4))) (-5 *1 (-1132 *4 *5)) (-5 *3 (-1259 *5 *4)))) (-3194 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4))) (-5 *1 (-1132 *4 *5)) (-5 *3 (-1259 *5 *4))))) -(-10 -7 (-15 -3194 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3205 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3215 ((-656 |#1|) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3226 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3238 ((-576) (-1259 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3250 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3260 ((-576) (-1259 |#2| |#1|)))) |%noBranch|)) -((-2862 (((-112) $ $) NIL)) (-3272 (($ (-518) (-1136)) 13)) (-1382 (((-1136) $) 19)) (-1778 (((-518) $) 16)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 26) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1133) (-13 (-1101) (-10 -8 (-15 -3272 ($ (-518) (-1136))) (-15 -1778 ((-518) $)) (-15 -1382 ((-1136) $))))) (T -1133)) -((-3272 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-1133)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1133)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1133))))) -(-13 (-1101) (-10 -8 (-15 -3272 ($ (-518) (-1136))) (-15 -1778 ((-518) $)) (-15 -1382 ((-1136) $)))) -((-3966 (((-3 (-576) "failed") |#2| (-1195) |#2| (-1177)) 19) (((-3 (-576) "failed") |#2| (-1195) (-855 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60))) -(((-1134 |#1| |#2|) (-10 -7 (-15 -3966 ((-3 (-576) "failed") |#2|)) (-15 -3966 ((-3 (-576) "failed") |#2| (-1195) (-855 |#2|))) (-15 -3966 ((-3 (-576) "failed") |#2| (-1195) |#2| (-1177)))) (-13 (-568) (-1056 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1221) (-442 |#1|))) (T -1134)) -((-3966 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-1177)) (-4 *6 (-13 (-568) (-1056 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1134 *6 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))))) (-3966 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1134 *6 *3)))) (-3966 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1056 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1134 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4)))))) -(-10 -7 (-15 -3966 ((-3 (-576) "failed") |#2|)) (-15 -3966 ((-3 (-576) "failed") |#2| (-1195) (-855 |#2|))) (-15 -3966 ((-3 (-576) "failed") |#2| (-1195) |#2| (-1177)))) -((-3966 (((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|)) (-1177)) 38) (((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-855 (-419 (-968 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-968 |#1|))) 14))) -(((-1135 |#1|) (-10 -7 (-15 -3966 ((-3 (-576) "failed") (-419 (-968 |#1|)))) (-15 -3966 ((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-855 (-419 (-968 |#1|))))) (-15 -3966 ((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|)) (-1177)))) (-464)) (T -1135)) -((-3966 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-968 *6))) (-5 *4 (-1195)) (-5 *5 (-1177)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1135 *6)))) (-3966 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 (-419 (-968 *6)))) (-5 *3 (-419 (-968 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1135 *6)))) (-3966 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1135 *4))))) -(-10 -7 (-15 -3966 ((-3 (-576) "failed") (-419 (-968 |#1|)))) (-15 -3966 ((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-855 (-419 (-968 |#1|))))) (-15 -3966 ((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|)) (-1177)))) -((-2862 (((-112) $ $) NIL)) (-2940 (((-1200) $) 12)) (-2891 (((-656 (-1200)) $) 14)) (-1382 (($ (-656 (-1200)) (-1200)) 10)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 29)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 17))) -(((-1136) (-13 (-1118) (-10 -8 (-15 -1382 ($ (-656 (-1200)) (-1200))) (-15 -2940 ((-1200) $)) (-15 -2891 ((-656 (-1200)) $))))) (T -1136)) -((-1382 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1200))) (-5 *3 (-1200)) (-5 *1 (-1136)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-1136)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1136))))) -(-13 (-1118) (-10 -8 (-15 -1382 ($ (-656 (-1200)) (-1200))) (-15 -2940 ((-1200) $)) (-15 -2891 ((-656 (-1200)) $)))) -((-4122 (((-326 (-576)) (-48)) 12))) -(((-1137) (-10 -7 (-15 -4122 ((-326 (-576)) (-48))))) (T -1137)) -((-4122 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1137))))) -(-10 -7 (-15 -4122 ((-326 (-576)) (-48)))) -((-2862 (((-112) $ $) NIL)) (-2880 (($ $) 44)) (-1389 (((-112) $) 70)) (-1971 (($ $ $) 53)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 98)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-2199 (($ $ $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2178 (($ $ $ $) 81)) (-2944 (($ $) NIL)) (-3986 (((-430 $) $) NIL)) (-2922 (((-112) $ $) NIL)) (-2416 (((-783)) 83)) (-3966 (((-576) $) NIL)) (-3626 (($ $ $) 78)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL)) (-4401 (((-576) $) NIL)) (-2803 (($ $ $) 64)) (-2613 (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 92) (((-701 (-576)) (-701 $)) 32) (((-701 (-576)) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-3424 (((-3 (-419 (-576)) "failed") $) NIL)) (-3413 (((-112) $) NIL)) (-3404 (((-419 (-576)) $) NIL)) (-2080 (($) 95) (($ $) 96)) (-2814 (($ $ $) 63)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL)) (-2463 (((-112) $) NIL)) (-2156 (($ $ $ $) NIL)) (-2208 (($ $ $) 93)) (-1370 (((-112) $) NIL)) (-2954 (($ $ $) NIL)) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-3239 (($ $ $) 52)) (-1439 (((-112) $) 72)) (-4064 (((-112) $) 69)) (-3216 (($ $) 45)) (-1831 (((-3 $ "failed") $) NIL)) (-1379 (((-112) $) 82)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2166 (($ $ $ $) 79)) (-1921 (($ $ $) 74) (($) 42 T CONST)) (-4137 (($ $ $) 73) (($) 41 T CONST)) (-3537 (($ $) NIL)) (-1875 (((-937) $) 88)) (-1840 (($ $) 77)) (-3888 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3733 (((-1177) $) NIL)) (-2144 (($ $ $) NIL)) (-3475 (($) NIL T CONST)) (-4318 (($ (-937)) 87)) (-3048 (($ $) 57)) (-3914 (((-1138) $) 76)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3928 (($ $ $) 67) (($ (-656 $)) NIL)) (-2935 (($ $) NIL)) (-2354 (((-430 $) $) NIL)) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL)) (-2852 (((-3 $ "failed") $ $) NIL)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4072 (((-112) $) NIL)) (-2910 (((-783) $) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 66)) (-2390 (($ $) NIL) (($ $ (-783)) NIL)) (-3355 (($ $) 58)) (-3079 (($ $) NIL)) (-2616 (((-576) $) 17) (((-548) $) NIL) (((-905 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-2884 (((-874) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-1871 (((-783)) NIL T CONST)) (-2218 (((-112) $ $) NIL)) (-1658 (($ $ $) NIL)) (-3722 (((-112) $ $) NIL)) (-1549 (($) 40)) (-4232 (((-112) $ $) NIL)) (-3227 (($ $ $) 50)) (-2189 (($ $ $ $) 80)) (-2610 (($ $) 68)) (-2923 (($ $ $) 47)) (-1996 (($) 7 T CONST)) (-2913 (($ $ $) 51)) (-2011 (($) 39 T CONST)) (-1813 (((-1177) $) 26) (((-1177) $ (-112)) 27) (((-1291) (-834) $) 28) (((-1291) (-834) $ (-112)) 29)) (-2924 (($ $) 48)) (-3431 (($ $) NIL) (($ $ (-783)) NIL)) (-2901 (($ $ $) 49)) (-3983 (((-112) $ $) 56)) (-3957 (((-112) $ $) 54)) (-3915 (((-112) $ $) 43)) (-3970 (((-112) $ $) 55)) (-3943 (((-112) $ $) 10)) (-2911 (($ $ $) 46)) (-4029 (($ $) 16) (($ $ $) 60)) (-4017 (($ $ $) 59)) (** (($ $ (-937)) NIL) (($ $ (-783)) 62)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38))) -(((-1138) (-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -1971 ($ $ $)) (-15 -2924 ($ $)) (-15 -2901 ($ $ $)) (-15 -2913 ($ $ $))))) (T -1138)) -((-1971 (*1 *1 *1 *1) (-5 *1 (-1138))) (-2924 (*1 *1 *1) (-5 *1 (-1138))) (-2901 (*1 *1 *1 *1) (-5 *1 (-1138))) (-2913 (*1 *1 *1 *1) (-5 *1 (-1138)))) -(-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -1971 ($ $ $)) (-15 -2924 ($ $)) (-15 -2901 ($ $ $)) (-15 -2913 ($ $ $)))) +(((-93) . T) ((-102) . T) ((-627 #0=(-1199)) . T) ((-624 (-873)) . T) ((-624 #0#) . T) ((-501 #0#) . T) ((-1117) . T)) +((-3997 ((|#1| |#1| (-1 (-575) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-2291 (((-1290)) 21)) (-2323 (((-655 |#1|)) 13))) +(((-1101 |#1|) (-10 -7 (-15 -2291 ((-1290))) (-15 -2323 ((-655 |#1|))) (-15 -3997 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3997 (|#1| |#1| (-1 (-575) |#1| |#1|)))) (-133)) (T -1101)) +((-3997 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-575) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1101 *2)))) (-3997 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1101 *2)))) (-2323 (*1 *2) (-12 (-5 *2 (-655 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-133)))) (-2291 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1101 *3)) (-4 *3 (-133))))) +(-10 -7 (-15 -2291 ((-1290))) (-15 -2323 ((-655 |#1|))) (-15 -3997 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3997 (|#1| |#1| (-1 (-575) |#1| |#1|)))) +((-4015 (($ (-109) $) 20)) (-2338 (((-702 (-109)) (-517) $) 19)) (-1938 (($) 7)) (-4227 (($) 21)) (-2591 (($) 22)) (-1899 (((-655 (-177)) $) 10)) (-2883 (((-873) $) 25))) +(((-1102) (-13 (-624 (-873)) (-10 -8 (-15 -1938 ($)) (-15 -1899 ((-655 (-177)) $)) (-15 -2338 ((-702 (-109)) (-517) $)) (-15 -4015 ($ (-109) $)) (-15 -4227 ($)) (-15 -2591 ($))))) (T -1102)) +((-1938 (*1 *1) (-5 *1 (-1102))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-655 (-177))) (-5 *1 (-1102)))) (-2338 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-109))) (-5 *1 (-1102)))) (-4015 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1102)))) (-4227 (*1 *1) (-5 *1 (-1102))) (-2591 (*1 *1) (-5 *1 (-1102)))) +(-13 (-624 (-873)) (-10 -8 (-15 -1938 ($)) (-15 -1899 ((-655 (-177)) $)) (-15 -2338 ((-702 (-109)) (-517) $)) (-15 -4015 ($ (-109) $)) (-15 -4227 ($)) (-15 -2591 ($)))) +((-4239 (((-1285 (-700 |#1|)) (-655 (-700 |#1|))) 45) (((-1285 (-700 (-967 |#1|))) (-655 (-1194)) (-700 (-967 |#1|))) 75) (((-1285 (-700 (-418 (-967 |#1|)))) (-655 (-1194)) (-700 (-418 (-967 |#1|)))) 92)) (-3962 (((-1285 |#1|) (-700 |#1|) (-655 (-700 |#1|))) 39))) +(((-1103 |#1|) (-10 -7 (-15 -4239 ((-1285 (-700 (-418 (-967 |#1|)))) (-655 (-1194)) (-700 (-418 (-967 |#1|))))) (-15 -4239 ((-1285 (-700 (-967 |#1|))) (-655 (-1194)) (-700 (-967 |#1|)))) (-15 -4239 ((-1285 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -3962 ((-1285 |#1|) (-700 |#1|) (-655 (-700 |#1|))))) (-373)) (T -1103)) +((-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-700 *5))) (-5 *3 (-700 *5)) (-4 *5 (-373)) (-5 *2 (-1285 *5)) (-5 *1 (-1103 *5)))) (-4239 (*1 *2 *3) (-12 (-5 *3 (-655 (-700 *4))) (-4 *4 (-373)) (-5 *2 (-1285 (-700 *4))) (-5 *1 (-1103 *4)))) (-4239 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-1194))) (-4 *5 (-373)) (-5 *2 (-1285 (-700 (-967 *5)))) (-5 *1 (-1103 *5)) (-5 *4 (-700 (-967 *5))))) (-4239 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-1194))) (-4 *5 (-373)) (-5 *2 (-1285 (-700 (-418 (-967 *5))))) (-5 *1 (-1103 *5)) (-5 *4 (-700 (-418 (-967 *5))))))) +(-10 -7 (-15 -4239 ((-1285 (-700 (-418 (-967 |#1|)))) (-655 (-1194)) (-700 (-418 (-967 |#1|))))) (-15 -4239 ((-1285 (-700 (-967 |#1|))) (-655 (-1194)) (-700 (-967 |#1|)))) (-15 -4239 ((-1285 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -3962 ((-1285 |#1|) (-700 |#1|) (-655 (-700 |#1|))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3004 (((-655 (-782)) $) NIL) (((-655 (-782)) $ (-1194)) NIL)) (-2807 (((-782) $) NIL) (((-782) $ (-1194)) NIL)) (-1606 (((-655 (-1105 (-1194))) $) NIL)) (-3466 (((-1190 $) $ (-1105 (-1194))) NIL) (((-1190 |#1|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 (-1105 (-1194)))) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2058 (($ $) NIL (|has| |#1| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-1611 (($ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-1105 (-1194)) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL) (((-3 (-1142 |#1| (-1194)) "failed") $) NIL)) (-4399 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-1105 (-1194)) $) NIL) (((-1194) $) NIL) (((-1142 |#1| (-1194)) $) NIL)) (-4232 (($ $ $ (-1105 (-1194))) NIL (|has| |#1| (-174)))) (-4406 (($ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#1| (-463))) (($ $ (-1105 (-1194))) NIL (|has| |#1| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#1| (-924)))) (-3703 (($ $ |#1| (-542 (-1105 (-1194))) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1105 (-1194)) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1105 (-1194)) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-2673 (((-782) $ (-1194)) NIL) (((-782) $) NIL)) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-2433 (($ (-1190 |#1|) (-1105 (-1194))) NIL) (($ (-1190 $) (-1105 (-1194))) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-542 (-1105 (-1194)))) NIL) (($ $ (-1105 (-1194)) (-782)) NIL) (($ $ (-655 (-1105 (-1194))) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-1105 (-1194))) NIL)) (-4337 (((-542 (-1105 (-1194))) $) NIL) (((-782) $ (-1105 (-1194))) NIL) (((-655 (-782)) $ (-655 (-1105 (-1194)))) NIL)) (-2520 (($ (-1 (-542 (-1105 (-1194))) (-542 (-1105 (-1194)))) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4420 (((-1 $ (-782)) (-1194)) NIL) (((-1 $ (-782)) $) NIL (|has| |#1| (-238)))) (-3976 (((-3 (-1105 (-1194)) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2147 (((-1105 (-1194)) $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-2288 (((-1176) $) NIL)) (-2976 (((-112) $) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| (-1105 (-1194))) (|:| -2398 (-782))) "failed") $) NIL)) (-2816 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1105 (-1194)) |#1|) NIL) (($ $ (-655 (-1105 (-1194))) (-655 |#1|)) NIL) (($ $ (-1105 (-1194)) $) NIL) (($ $ (-655 (-1105 (-1194))) (-655 $)) NIL) (($ $ (-1194) $) NIL (|has| |#1| (-238))) (($ $ (-655 (-1194)) (-655 $)) NIL (|has| |#1| (-238))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-238))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-238)))) (-4060 (($ $ (-1105 (-1194))) NIL (|has| |#1| (-174)))) (-2389 (($ $ (-655 (-1105 (-1194))) (-655 (-782))) NIL) (($ $ (-1105 (-1194)) (-782)) NIL) (($ $ (-655 (-1105 (-1194)))) NIL) (($ $ (-1105 (-1194))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-3503 (((-655 (-1194)) $) NIL)) (-2645 (((-542 (-1105 (-1194))) $) NIL) (((-782) $ (-1105 (-1194))) NIL) (((-655 (-782)) $ (-655 (-1105 (-1194)))) NIL) (((-782) $ (-1194)) NIL)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| (-1105 (-1194)) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1105 (-1194)) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1105 (-1194)) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-2178 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ (-1105 (-1194))) NIL (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-1105 (-1194))) NIL) (($ (-1194)) NIL) (($ (-1142 |#1| (-1194))) NIL) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-542 (-1105 (-1194)))) NIL) (($ $ (-1105 (-1194)) (-782)) NIL) (($ $ (-655 (-1105 (-1194))) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-655 (-1105 (-1194))) (-655 (-782))) NIL) (($ $ (-1105 (-1194)) (-782)) NIL) (($ $ (-655 (-1105 (-1194)))) NIL) (($ $ (-1105 (-1194))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1104 |#1|) (-13 (-259 |#1| (-1194) (-1105 (-1194)) (-542 (-1105 (-1194)))) (-1055 (-1142 |#1| (-1194)))) (-1066)) (T -1104)) +NIL +(-13 (-259 |#1| (-1194) (-1105 (-1194)) (-542 (-1105 (-1194)))) (-1055 (-1142 |#1| (-1194)))) +((-2861 (((-112) $ $) NIL)) (-2807 (((-782) $) NIL)) (-1441 ((|#1| $) 10)) (-2449 (((-3 |#1| "failed") $) NIL)) (-4399 ((|#1| $) NIL)) (-2673 (((-782) $) 11)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-4420 (($ |#1| (-782)) 9)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2389 (($ $ (-782)) NIL) (($ $) NIL)) (-2883 (((-873) $) NIL) (($ |#1|) NIL)) (-4400 (((-112) $ $) NIL)) (-3430 (($ $ (-782)) NIL) (($ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 16))) +(((-1105 |#1|) (-274 |#1|) (-861)) (T -1105)) +NIL +(-274 |#1|) +((-2550 (((-655 |#2|) (-1 |#2| |#1|) (-1111 |#1|)) 29 (|has| |#1| (-859))) (((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)) 14))) +(((-1106 |#1| |#2|) (-10 -7 (-15 -2550 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|))) (IF (|has| |#1| (-859)) (-15 -2550 ((-655 |#2|) (-1 |#2| |#1|) (-1111 |#1|))) |%noBranch|)) (-1235) (-1235)) (T -1106)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-859)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-655 *6)) (-5 *1 (-1106 *5 *6)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1111 *6)) (-5 *1 (-1106 *5 *6))))) +(-10 -7 (-15 -2550 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|))) (IF (|has| |#1| (-859)) (-15 -2550 ((-655 |#2|) (-1 |#2| |#1|) (-1111 |#1|))) |%noBranch|)) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 16) (($ (-1199)) NIL) (((-1199) $) NIL)) (-2370 (((-655 (-1152)) $) 10)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1107) (-13 (-1100) (-10 -8 (-15 -2370 ((-655 (-1152)) $))))) (T -1107)) +((-2370 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1107))))) +(-13 (-1100) (-10 -8 (-15 -2370 ((-655 (-1152)) $)))) +((-2550 (((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|)) 19))) +(((-1108 |#1| |#2|) (-10 -7 (-15 -2550 ((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|)))) (-1235) (-1235)) (T -1108)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1109 *6)) (-5 *1 (-1108 *5 *6))))) +(-10 -7 (-15 -2550 ((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|)))) +((-2861 (((-112) $ $) NIL (|has| (-1111 |#1|) (-1117)))) (-1441 (((-1194) $) NIL)) (-4127 (((-1111 |#1|) $) NIL)) (-2288 (((-1176) $) NIL (|has| (-1111 |#1|) (-1117)))) (-3912 (((-1137) $) NIL (|has| (-1111 |#1|) (-1117)))) (-2676 (($ (-1194) (-1111 |#1|)) NIL)) (-2883 (((-873) $) NIL (|has| (-1111 |#1|) (-1117)))) (-4400 (((-112) $ $) NIL (|has| (-1111 |#1|) (-1117)))) (-3914 (((-112) $ $) NIL (|has| (-1111 |#1|) (-1117))))) +(((-1109 |#1|) (-13 (-1235) (-10 -8 (-15 -2676 ($ (-1194) (-1111 |#1|))) (-15 -1441 ((-1194) $)) (-15 -4127 ((-1111 |#1|) $)) (IF (|has| (-1111 |#1|) (-1117)) (-6 (-1117)) |%noBranch|))) (-1235)) (T -1109)) +((-2676 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1111 *4)) (-4 *4 (-1235)) (-5 *1 (-1109 *4)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1109 *3)) (-4 *3 (-1235)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-1235))))) +(-13 (-1235) (-10 -8 (-15 -2676 ($ (-1194) (-1111 |#1|))) (-15 -1441 ((-1194) $)) (-15 -4127 ((-1111 |#1|) $)) (IF (|has| (-1111 |#1|) (-1117)) (-6 (-1117)) |%noBranch|))) +((-4127 (($ |#1| |#1|) 8)) (-4024 ((|#1| $) 11)) (-2072 ((|#1| $) 13)) (-3756 (((-575) $) 9)) (-4131 ((|#1| $) 10)) (-3769 ((|#1| $) 12)) (-2615 (($ |#1|) 6)) (-1859 (($ |#1| |#1|) 15)) (-3684 (($ $ (-575)) 14))) +(((-1110 |#1|) (-141) (-1235)) (T -1110)) +((-1859 (*1 *1 *2 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) (-3684 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1110 *3)) (-4 *3 (-1235)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1235)) (-5 *2 (-575)))) (-4127 (*1 *1 *2 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235))))) +(-13 (-629 |t#1|) (-10 -8 (-15 -1859 ($ |t#1| |t#1|)) (-15 -3684 ($ $ (-575))) (-15 -2072 (|t#1| $)) (-15 -3769 (|t#1| $)) (-15 -4024 (|t#1| $)) (-15 -4131 (|t#1| $)) (-15 -3756 ((-575) $)) (-15 -4127 ($ |t#1| |t#1|)))) +(((-629 |#1|) . T)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4127 (($ |#1| |#1|) 16)) (-2550 (((-655 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-859)))) (-4024 ((|#1| $) 12)) (-2072 ((|#1| $) 11)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3756 (((-575) $) 15)) (-4131 ((|#1| $) 14)) (-3769 ((|#1| $) 13)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3945 (((-655 |#1|) $) 44 (|has| |#1| (-859))) (((-655 |#1|) (-655 $)) 43 (|has| |#1| (-859)))) (-2615 (($ |#1|) 29)) (-2883 (((-873) $) 28 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1859 (($ |#1| |#1|) 10)) (-3684 (($ $ (-575)) 17)) (-3914 (((-112) $ $) 22 (|has| |#1| (-1117))))) +(((-1111 |#1|) (-13 (-1110 |#1|) (-10 -7 (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-1112 |#1| (-655 |#1|))) |%noBranch|))) (-1235)) (T -1111)) +NIL +(-13 (-1110 |#1|) (-10 -7 (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-1112 |#1| (-655 |#1|))) |%noBranch|))) +((-4127 (($ |#1| |#1|) 8)) (-2550 ((|#2| (-1 |#1| |#1|) $) 16)) (-4024 ((|#1| $) 11)) (-2072 ((|#1| $) 13)) (-3756 (((-575) $) 9)) (-4131 ((|#1| $) 10)) (-3769 ((|#1| $) 12)) (-3945 ((|#2| (-655 $)) 18) ((|#2| $) 17)) (-2615 (($ |#1|) 6)) (-1859 (($ |#1| |#1|) 15)) (-3684 (($ $ (-575)) 14))) +(((-1112 |#1| |#2|) (-141) (-859) (-1166 |t#1|)) (T -1112)) +((-3945 (*1 *2 *3) (-12 (-5 *3 (-655 *1)) (-4 *1 (-1112 *4 *2)) (-4 *4 (-859)) (-4 *2 (-1166 *4)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1166 *3)))) (-2550 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1112 *4 *2)) (-4 *4 (-859)) (-4 *2 (-1166 *4))))) +(-13 (-1110 |t#1|) (-10 -8 (-15 -3945 (|t#2| (-655 $))) (-15 -3945 (|t#2| $)) (-15 -2550 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-629 |#1|) . T) ((-1110 |#1|) . T)) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3653 (((-1152) $) 12)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 18) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-655 (-1152)) $) 10)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1113) (-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $)) (-15 -3653 ((-1152) $))))) (T -1113)) +((-1788 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1113)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1113))))) +(-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $)) (-15 -3653 ((-1152) $)))) +((-1644 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3404 (($ $ $) 10)) (-1771 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1114 |#1| |#2|) (-10 -8 (-15 -1644 (|#1| |#2| |#1|)) (-15 -1644 (|#1| |#1| |#2|)) (-15 -1644 (|#1| |#1| |#1|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#2|)) (-15 -1771 (|#1| |#1| |#1|))) (-1115 |#2|) (-1117)) (T -1114)) +NIL +(-10 -8 (-15 -1644 (|#1| |#2| |#1|)) (-15 -1644 (|#1| |#1| |#2|)) (-15 -1644 (|#1| |#1| |#1|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#2|)) (-15 -1771 (|#1| |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-1644 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3404 (($ $ $) 21)) (-2696 (((-112) $ $) 20)) (-1845 (((-112) $ (-782)) 36)) (-1329 (($) 26) (($ (-655 |#1|)) 25)) (-3985 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4460)))) (-3011 (($) 37 T CONST)) (-1748 (($ $) 60 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#1| $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4460)))) (-4001 (((-655 |#1|) $) 44 (|has| $ (-6 -4460)))) (-3244 (((-112) $ $) 29)) (-3896 (((-112) $ (-782)) 35)) (-3955 (((-655 |#1|) $) 45 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 39)) (-4026 (((-112) $ (-782)) 34)) (-2288 (((-1176) $) 10)) (-1479 (($ $ $) 24)) (-3912 (((-1137) $) 11)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3207 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#1|) (-655 |#1|)) 51 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 49 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 (-303 |#1|))) 48 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 30)) (-4076 (((-112) $) 33)) (-1938 (($) 32)) (-1771 (($ $ $) 23) (($ $ |#1|) 22)) (-3925 (((-782) |#1| $) 46 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4460)))) (-3078 (($ $) 31)) (-2615 (((-547) $) 61 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 52)) (-2883 (((-873) $) 12)) (-2556 (($) 28) (($ (-655 |#1|)) 27)) (-4400 (((-112) $ $) 9)) (-3771 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 6)) (-2871 (((-782) $) 38 (|has| $ (-6 -4460))))) +(((-1115 |#1|) (-141) (-1117)) (T -1115)) +((-3244 (*1 *2 *1 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-2556 (*1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-2556 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-1115 *3)))) (-1329 (*1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-1329 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-1115 *3)))) (-1479 (*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-1771 (*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-1771 (*1 *1 *1 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-3404 (*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-2696 (*1 *2 *1 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-1644 (*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-1644 (*1 *1 *1 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-1644 (*1 *1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117))))) +(-13 (-1117) (-152 |t#1|) (-10 -8 (-6 -4450) (-15 -3244 ((-112) $ $)) (-15 -2556 ($)) (-15 -2556 ($ (-655 |t#1|))) (-15 -1329 ($)) (-15 -1329 ($ (-655 |t#1|))) (-15 -1479 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1771 ($ $ |t#1|)) (-15 -3404 ($ $ $)) (-15 -2696 ((-112) $ $)) (-15 -1644 ($ $ $)) (-15 -1644 ($ $ |t#1|)) (-15 -1644 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-624 (-873)) . T) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) . T) ((-1235) . T)) +((-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 8)) (-4400 (((-112) $ $) 12))) +(((-1116 |#1|) (-10 -8 (-15 -4400 ((-112) |#1| |#1|)) (-15 -2288 ((-1176) |#1|)) (-15 -3912 ((-1137) |#1|))) (-1117)) (T -1116)) +NIL +(-10 -8 (-15 -4400 ((-112) |#1| |#1|)) (-15 -2288 ((-1176) |#1|)) (-15 -3912 ((-1137) |#1|))) +((-2861 (((-112) $ $) 7)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-1117) (-141)) (T -1117)) +((-3912 (*1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1137)))) (-2288 (*1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1176)))) (-4400 (*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112))))) +(-13 (-102) (-624 (-873)) (-10 -8 (-15 -3912 ((-1137) $)) (-15 -2288 ((-1176) $)) (-15 -4400 ((-112) $ $)))) +(((-102) . T) ((-624 (-873)) . T)) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) 36)) (-3767 (($ (-655 (-936))) 70)) (-1841 (((-3 $ "failed") $ (-936) (-936)) 81)) (-2079 (($) 40)) (-2625 (((-112) (-936) $) 42)) (-4084 (((-936) $) 64)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) 39)) (-1470 (((-3 $ "failed") $ (-936)) 77)) (-3912 (((-1137) $) NIL)) (-2203 (((-1285 $)) 47)) (-3469 (((-655 (-936)) $) 27)) (-3594 (((-782) $ (-936) (-936)) 78)) (-2883 (((-873) $) 32)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 24))) +(((-1118 |#1| |#2|) (-13 (-378) (-10 -8 (-15 -1470 ((-3 $ "failed") $ (-936))) (-15 -1841 ((-3 $ "failed") $ (-936) (-936))) (-15 -3469 ((-655 (-936)) $)) (-15 -3767 ($ (-655 (-936)))) (-15 -2203 ((-1285 $))) (-15 -2625 ((-112) (-936) $)) (-15 -3594 ((-782) $ (-936) (-936))))) (-936) (-936)) (T -1118)) +((-1470 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1118 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1841 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1118 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1118 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-3767 (*1 *1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1118 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-2203 (*1 *2) (-12 (-5 *2 (-1285 (-1118 *3 *4))) (-5 *1 (-1118 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-2625 (*1 *2 *3 *1) (-12 (-5 *3 (-936)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3594 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-782)) (-5 *1 (-1118 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-378) (-10 -8 (-15 -1470 ((-3 $ "failed") $ (-936))) (-15 -1841 ((-3 $ "failed") $ (-936) (-936))) (-15 -3469 ((-655 (-936)) $)) (-15 -3767 ($ (-655 (-936)))) (-15 -2203 ((-1285 $))) (-15 -2625 ((-112) (-936) $)) (-15 -3594 ((-782) $ (-936) (-936))))) +((-2861 (((-112) $ $) NIL)) (-3443 (($) NIL (|has| |#1| (-378)))) (-1644 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3404 (($ $ $) 81)) (-2696 (((-112) $ $) 82)) (-1845 (((-112) $ (-782)) NIL)) (-2415 (((-782)) NIL (|has| |#1| (-378)))) (-1329 (($ (-655 |#1|)) NIL) (($) 13)) (-1999 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4404 (($ |#1| $) 74 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4460)))) (-2079 (($) NIL (|has| |#1| (-378)))) (-4001 (((-655 |#1|) $) 19 (|has| $ (-6 -4460)))) (-3244 (((-112) $ $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-1920 ((|#1| $) 55 (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1425 ((|#1| $) 53 (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 34)) (-4084 (((-936) $) NIL (|has| |#1| (-378)))) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-1479 (($ $ $) 79)) (-4012 ((|#1| $) 25)) (-3862 (($ |#1| $) 69)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-3912 (((-1137) $) NIL)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2454 ((|#1| $) 27)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 21)) (-1938 (($) 11)) (-1771 (($ $ |#1|) NIL) (($ $ $) 80)) (-3601 (($) NIL) (($ (-655 |#1|)) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) 16)) (-2615 (((-547) $) 50 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 62)) (-3296 (($ $) NIL (|has| |#1| (-378)))) (-2883 (((-873) $) NIL)) (-3130 (((-782) $) NIL)) (-2556 (($ (-655 |#1|)) NIL) (($) 12)) (-4400 (((-112) $ $) NIL)) (-1511 (($ (-655 |#1|)) NIL)) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 52)) (-2871 (((-782) $) 10 (|has| $ (-6 -4460))))) +(((-1119 |#1|) (-436 |#1|) (-1117)) (T -1119)) +NIL +(-436 |#1|) +((-2861 (((-112) $ $) 7)) (-4221 (((-112) $) 33)) (-3818 ((|#2| $) 28)) (-3988 (((-112) $) 34)) (-1650 ((|#1| $) 29)) (-2992 (((-112) $) 36)) (-4392 (((-112) $) 38)) (-2342 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-2567 (((-112) $) 32)) (-3841 ((|#3| $) 27)) (-3912 (((-1137) $) 11)) (-4003 (((-112) $) 31)) (-1539 ((|#4| $) 26)) (-1400 ((|#5| $) 25)) (-2571 (((-112) $ $) 39)) (-2070 (($ $ (-575)) 41) (($ $ (-655 (-575))) 40)) (-3843 (((-655 $) $) 30)) (-2615 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-655 $)) 42)) (-2883 (((-873) $) 12)) (-3013 (($ $) 23)) (-4179 (($ $) 24)) (-4400 (((-112) $ $) 9)) (-2775 (((-112) $) 37)) (-3914 (((-112) $ $) 6)) (-2871 (((-575) $) 22))) +(((-1120 |#1| |#2| |#3| |#4| |#5|) (-141) (-1117) (-1117) (-1117) (-1117) (-1117)) (T -1120)) +((-2571 (*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-4392 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-4221 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-3843 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-655 *1)) (-4 *1 (-1120 *3 *4 *5 *6 *7)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2 *4 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *2 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *2)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))) (-4179 (*1 *1 *1) (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *2 (-1117)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)))) (-3013 (*1 *1 *1) (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *2 (-1117)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)))) (-2871 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-575))))) +(-13 (-1117) (-629 |t#1|) (-629 |t#2|) (-629 |t#3|) (-629 |t#4|) (-629 |t#4|) (-629 |t#5|) (-629 (-655 $)) (-295 (-575) $) (-295 (-655 (-575)) $) (-10 -8 (-15 -2571 ((-112) $ $)) (-15 -4392 ((-112) $)) (-15 -2775 ((-112) $)) (-15 -2992 ((-112) $)) (-15 -2342 ((-112) $)) (-15 -3988 ((-112) $)) (-15 -4221 ((-112) $)) (-15 -2567 ((-112) $)) (-15 -4003 ((-112) $)) (-15 -3843 ((-655 $) $)) (-15 -1650 (|t#1| $)) (-15 -3818 (|t#2| $)) (-15 -3841 (|t#3| $)) (-15 -1539 (|t#4| $)) (-15 -1400 (|t#5| $)) (-15 -4179 ($ $)) (-15 -3013 ($ $)) (-15 -2871 ((-575) $)))) +(((-102) . T) ((-624 (-873)) . T) ((-629 (-655 $)) . T) ((-629 |#1|) . T) ((-629 |#2|) . T) ((-629 |#3|) . T) ((-629 |#4|) . T) ((-629 |#5|) . T) ((-295 (-575) $) . T) ((-295 (-655 (-575)) $) . T) ((-1117) . T) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-4221 (((-112) $) NIL)) (-3818 (((-1194) $) NIL)) (-3988 (((-112) $) NIL)) (-1650 (((-1176) $) NIL)) (-2992 (((-112) $) NIL)) (-4392 (((-112) $) NIL)) (-2342 (((-112) $) NIL)) (-2288 (((-1176) $) NIL)) (-2567 (((-112) $) NIL)) (-3841 (((-575) $) NIL)) (-3912 (((-1137) $) NIL)) (-4003 (((-112) $) NIL)) (-1539 (((-227) $) NIL)) (-1400 (((-873) $) NIL)) (-2571 (((-112) $ $) NIL)) (-2070 (($ $ (-575)) NIL) (($ $ (-655 (-575))) NIL)) (-3843 (((-655 $) $) NIL)) (-2615 (($ (-1176)) NIL) (($ (-1194)) NIL) (($ (-575)) NIL) (($ (-227)) NIL) (($ (-873)) NIL) (($ (-655 $)) NIL)) (-2883 (((-873) $) NIL)) (-3013 (($ $) NIL)) (-4179 (($ $) NIL)) (-4400 (((-112) $ $) NIL)) (-2775 (((-112) $) NIL)) (-3914 (((-112) $ $) NIL)) (-2871 (((-575) $) NIL))) +(((-1121) (-1120 (-1176) (-1194) (-575) (-227) (-873))) (T -1121)) +NIL +(-1120 (-1176) (-1194) (-575) (-227) (-873)) +((-2861 (((-112) $ $) NIL)) (-4221 (((-112) $) 45)) (-3818 ((|#2| $) 48)) (-3988 (((-112) $) 20)) (-1650 ((|#1| $) 21)) (-2992 (((-112) $) 42)) (-4392 (((-112) $) 14)) (-2342 (((-112) $) 44)) (-2288 (((-1176) $) NIL)) (-2567 (((-112) $) 46)) (-3841 ((|#3| $) 50)) (-3912 (((-1137) $) NIL)) (-4003 (((-112) $) 47)) (-1539 ((|#4| $) 49)) (-1400 ((|#5| $) 51)) (-2571 (((-112) $ $) 41)) (-2070 (($ $ (-575)) 62) (($ $ (-655 (-575))) 64)) (-3843 (((-655 $) $) 27)) (-2615 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-655 $)) 52)) (-2883 (((-873) $) 28)) (-3013 (($ $) 26)) (-4179 (($ $) 58)) (-4400 (((-112) $ $) NIL)) (-2775 (((-112) $) 23)) (-3914 (((-112) $ $) 40)) (-2871 (((-575) $) 60))) +(((-1122 |#1| |#2| |#3| |#4| |#5|) (-1120 |#1| |#2| |#3| |#4| |#5|) (-1117) (-1117) (-1117) (-1117) (-1117)) (T -1122)) +NIL +(-1120 |#1| |#2| |#3| |#4| |#5|) +((-2248 (((-1290) $) 22)) (-2576 (($ (-1194) (-445) |#2|) 11)) (-2883 (((-873) $) 16))) +(((-1123 |#1| |#2|) (-13 (-406) (-10 -8 (-15 -2576 ($ (-1194) (-445) |#2|)))) (-1117) (-441 |#1|)) (T -1123)) +((-2576 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-445)) (-4 *5 (-1117)) (-5 *1 (-1123 *5 *4)) (-4 *4 (-441 *5))))) +(-13 (-406) (-10 -8 (-15 -2576 ($ (-1194) (-445) |#2|)))) +((-2221 (((-112) |#5| |#5|) 44)) (-2193 (((-112) |#5| |#5|) 59)) (-4333 (((-112) |#5| (-655 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3992 (((-112) (-655 |#4|) (-655 |#4|)) 65)) (-2063 (((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) 70)) (-2751 (((-1290)) 32)) (-2988 (((-1290) (-1176) (-1176) (-1176)) 28)) (-4017 (((-655 |#5|) (-655 |#5|)) 101)) (-2934 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) 93)) (-2605 (((-655 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112)) 123)) (-2222 (((-112) |#5| |#5|) 53)) (-2915 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2568 (((-112) (-655 |#4|) (-655 |#4|)) 64)) (-4212 (((-112) (-655 |#4|) (-655 |#4|)) 66)) (-2687 (((-112) (-655 |#4|) (-655 |#4|)) 67)) (-2849 (((-3 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3695 (((-655 |#5|) (-655 |#5|)) 49))) +(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2988 ((-1290) (-1176) (-1176) (-1176))) (-15 -2751 ((-1290))) (-15 -2221 ((-112) |#5| |#5|)) (-15 -3695 ((-655 |#5|) (-655 |#5|))) (-15 -2222 ((-112) |#5| |#5|)) (-15 -2193 ((-112) |#5| |#5|)) (-15 -3992 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2568 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -4212 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2687 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2915 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4333 ((-112) |#5| |#5|)) (-15 -4333 ((-112) |#5| (-655 |#5|))) (-15 -4017 ((-655 |#5|) (-655 |#5|))) (-15 -2063 ((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2934 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-15 -2605 ((-655 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -2849 ((-3 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -1124)) +((-2849 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| -2571 (-655 *9)) (|:| -4270 *4) (|:| |ineq| (-655 *9)))) (-5 *1 (-1124 *6 *7 *8 *9 *4)) (-5 *3 (-655 *9)) (-4 *4 (-1088 *6 *7 *8 *9)))) (-2605 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-655 *10)) (-5 *5 (-112)) (-4 *10 (-1088 *6 *7 *8 *9)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8)) (-5 *2 (-655 (-2 (|:| -2571 (-655 *9)) (|:| -4270 *10) (|:| |ineq| (-655 *9))))) (-5 *1 (-1124 *6 *7 *8 *9 *10)) (-5 *3 (-655 *9)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-655 (-2 (|:| |val| (-655 *6)) (|:| -4270 *7)))) (-4 *6 (-1082 *3 *4 *5)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1124 *3 *4 *5 *6 *7)))) (-2063 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *8)))) (-4017 (*1 *2 *2) (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-1124 *3 *4 *5 *6 *7)))) (-4333 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1124 *5 *6 *7 *8 *3)))) (-4333 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2915 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2687 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-4212 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-2568 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-3992 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-2193 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2222 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-1124 *3 *4 *5 *6 *7)))) (-2221 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2751 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-2988 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))) +(-10 -7 (-15 -2988 ((-1290) (-1176) (-1176) (-1176))) (-15 -2751 ((-1290))) (-15 -2221 ((-112) |#5| |#5|)) (-15 -3695 ((-655 |#5|) (-655 |#5|))) (-15 -2222 ((-112) |#5| |#5|)) (-15 -2193 ((-112) |#5| |#5|)) (-15 -3992 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2568 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -4212 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2687 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2915 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4333 ((-112) |#5| |#5|)) (-15 -4333 ((-112) |#5| (-655 |#5|))) (-15 -4017 ((-655 |#5|) (-655 |#5|))) (-15 -2063 ((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2934 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-15 -2605 ((-655 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -2849 ((-3 (-2 (|:| -2571 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2453 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|) 108)) (-4305 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|) 80)) (-4415 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|) 102)) (-2747 (((-655 |#5|) |#4| |#5|) 124)) (-2966 (((-655 |#5|) |#4| |#5|) 131)) (-3656 (((-655 |#5|) |#4| |#5|) 132)) (-3225 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|) 109)) (-4220 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|) 130)) (-1700 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3907 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112)) 92) (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-1744 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|) 87)) (-1709 (((-1290)) 36)) (-3721 (((-1290)) 25)) (-3428 (((-1290) (-1176) (-1176) (-1176)) 32)) (-2163 (((-1290) (-1176) (-1176) (-1176)) 21))) +(((-1125 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2163 ((-1290) (-1176) (-1176) (-1176))) (-15 -3721 ((-1290))) (-15 -3428 ((-1290) (-1176) (-1176) (-1176))) (-15 -1709 ((-1290))) (-15 -4305 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -3907 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3907 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112))) (-15 -1744 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -4415 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -1700 ((-112) |#4| |#5|)) (-15 -3225 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -2747 ((-655 |#5|) |#4| |#5|)) (-15 -4220 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -2966 ((-655 |#5|) |#4| |#5|)) (-15 -1700 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -3656 ((-655 |#5|) |#4| |#5|)) (-15 -2453 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -1125)) +((-2453 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-3656 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-1700 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2966 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-4220 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2747 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-3225 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-1700 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-4415 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-1744 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-3907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) (-5 *5 (-112)) (-4 *8 (-1082 *6 *7 *4)) (-4 *9 (-1088 *6 *7 *4 *8)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *4 (-861)) (-5 *2 (-655 (-2 (|:| |val| *8) (|:| -4270 *9)))) (-5 *1 (-1125 *6 *7 *4 *8 *9)))) (-3907 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1125 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-4305 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-1709 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-3428 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-3721 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-2163 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))) +(-10 -7 (-15 -2163 ((-1290) (-1176) (-1176) (-1176))) (-15 -3721 ((-1290))) (-15 -3428 ((-1290) (-1176) (-1176) (-1176))) (-15 -1709 ((-1290))) (-15 -4305 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -3907 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3907 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112))) (-15 -1744 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -4415 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -1700 ((-112) |#4| |#5|)) (-15 -3225 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -2747 ((-655 |#5|) |#4| |#5|)) (-15 -4220 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -2966 ((-655 |#5|) |#4| |#5|)) (-15 -1700 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -3656 ((-655 |#5|) |#4| |#5|)) (-15 -2453 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|))) +((-2861 (((-112) $ $) 7)) (-3303 (((-655 (-2 (|:| -2458 $) (|:| -2978 (-655 |#4|)))) (-655 |#4|)) 86)) (-1740 (((-655 $) (-655 |#4|)) 87) (((-655 $) (-655 |#4|) (-112)) 112)) (-1606 (((-655 |#3|) $) 34)) (-2210 (((-112) $) 27)) (-3036 (((-112) $) 18 (|has| |#1| (-567)))) (-3309 (((-112) |#4| $) 102) (((-112) $) 98)) (-2749 ((|#4| |#4| $) 93)) (-2058 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 127)) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#3|) 28)) (-1845 (((-112) $ (-782)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 80)) (-3011 (($) 46 T CONST)) (-1437 (((-112) $) 23 (|has| |#1| (-567)))) (-2365 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4289 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1812 (((-112) $) 26 (|has| |#1| (-567)))) (-3376 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3629 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-3563 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 |#4|)) 37)) (-4399 (($ (-655 |#4|)) 36)) (-1975 (((-3 $ "failed") $) 83)) (-2690 ((|#4| |#4| $) 90)) (-1748 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-2249 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4183 ((|#4| |#4| $) 88)) (-2308 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2029 (((-2 (|:| -2458 (-655 |#4|)) (|:| -2978 (-655 |#4|))) $) 106)) (-4355 (((-112) |#4| $) 137)) (-1718 (((-112) |#4| $) 134)) (-2986 (((-112) |#4| $) 138) (((-112) $) 135)) (-4001 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-2548 (((-112) |#4| $) 105) (((-112) $) 104)) (-3838 ((|#3| $) 35)) (-3896 (((-112) $ (-782)) 44)) (-3955 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) 48)) (-1444 (((-655 |#3|) $) 33)) (-1808 (((-112) |#3| $) 32)) (-4026 (((-112) $ (-782)) 43)) (-2288 (((-1176) $) 10)) (-2053 (((-3 |#4| (-655 $)) |#4| |#4| $) 129)) (-2896 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 128)) (-3653 (((-3 |#4| "failed") $) 84)) (-2463 (((-655 $) |#4| $) 130)) (-2192 (((-3 (-112) (-655 $)) |#4| $) 133)) (-1658 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1479 (((-655 $) |#4| $) 126) (((-655 $) (-655 |#4|) $) 125) (((-655 $) (-655 |#4|) (-655 $)) 124) (((-655 $) |#4| (-655 $)) 123)) (-2233 (($ |#4| $) 118) (($ (-655 |#4|) $) 117)) (-1590 (((-655 |#4|) $) 108)) (-1411 (((-112) |#4| $) 100) (((-112) $) 96)) (-4367 ((|#4| |#4| $) 91)) (-2687 (((-112) $ $) 111)) (-4395 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-3188 (((-112) |#4| $) 101) (((-112) $) 97)) (-2973 ((|#4| |#4| $) 92)) (-3912 (((-1137) $) 11)) (-1961 (((-3 |#4| "failed") $) 85)) (-3704 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2500 (((-3 $ "failed") $ |#4|) 79)) (-4276 (($ $ |#4|) 78) (((-655 $) |#4| $) 116) (((-655 $) |#4| (-655 $)) 115) (((-655 $) (-655 |#4|) $) 114) (((-655 $) (-655 |#4|) (-655 $)) 113)) (-3207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) 39)) (-4076 (((-112) $) 42)) (-1938 (($) 41)) (-2645 (((-782) $) 107)) (-3925 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3078 (($ $) 40)) (-2615 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2894 (($ (-655 |#4|)) 61)) (-1879 (($ $ |#3|) 29)) (-3427 (($ $ |#3|) 31)) (-2921 (($ $) 89)) (-3608 (($ $ |#3|) 30)) (-2883 (((-873) $) 12) (((-655 |#4|) $) 38)) (-3706 (((-782) $) 77 (|has| |#3| (-378)))) (-4400 (((-112) $ $) 9)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2994 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) 99)) (-3556 (((-655 $) |#4| $) 122) (((-655 $) |#4| (-655 $)) 121) (((-655 $) (-655 |#4|) $) 120) (((-655 $) (-655 |#4|) (-655 $)) 119)) (-3771 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-1359 (((-655 |#3|) $) 82)) (-2722 (((-112) |#4| $) 136)) (-1591 (((-112) |#3| $) 81)) (-3914 (((-112) $ $) 6)) (-2871 (((-782) $) 47 (|has| $ (-6 -4460))))) +(((-1126 |#1| |#2| |#3| |#4|) (-141) (-463) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -1126)) +NIL +(-13 (-1088 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-993 |#1| |#2| |#3| |#4|) . T) ((-1088 |#1| |#2| |#3| |#4|) . T) ((-1117) . T) ((-1228 |#1| |#2| |#3| |#4|) . T) ((-1235) . T)) +((-2136 (((-655 (-575)) (-575) (-575) (-575)) 38)) (-2073 (((-655 (-575)) (-575) (-575) (-575)) 28)) (-3538 (((-655 (-575)) (-575) (-575) (-575)) 33)) (-3637 (((-575) (-575) (-575)) 21)) (-1953 (((-1285 (-575)) (-655 (-575)) (-1285 (-575)) (-575)) 76) (((-1285 (-575)) (-1285 (-575)) (-1285 (-575)) (-575)) 71)) (-2320 (((-655 (-575)) (-655 (-936)) (-655 (-575)) (-112)) 54)) (-3166 (((-700 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575))) 75)) (-4086 (((-700 (-575)) (-655 (-936)) (-655 (-575))) 59)) (-1552 (((-655 (-700 (-575))) (-655 (-936))) 64)) (-1735 (((-655 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575))) 79)) (-3327 (((-700 (-575)) (-655 (-575)) (-655 (-575)) (-655 (-575))) 89))) +(((-1127) (-10 -7 (-15 -3327 ((-700 (-575)) (-655 (-575)) (-655 (-575)) (-655 (-575)))) (-15 -1735 ((-655 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575)))) (-15 -1552 ((-655 (-700 (-575))) (-655 (-936)))) (-15 -4086 ((-700 (-575)) (-655 (-936)) (-655 (-575)))) (-15 -3166 ((-700 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575)))) (-15 -2320 ((-655 (-575)) (-655 (-936)) (-655 (-575)) (-112))) (-15 -1953 ((-1285 (-575)) (-1285 (-575)) (-1285 (-575)) (-575))) (-15 -1953 ((-1285 (-575)) (-655 (-575)) (-1285 (-575)) (-575))) (-15 -3637 ((-575) (-575) (-575))) (-15 -3538 ((-655 (-575)) (-575) (-575) (-575))) (-15 -2073 ((-655 (-575)) (-575) (-575) (-575))) (-15 -2136 ((-655 (-575)) (-575) (-575) (-575))))) (T -1127)) +((-2136 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575)))) (-2073 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575)))) (-3538 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575)))) (-3637 (*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1127)))) (-1953 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1285 (-575))) (-5 *3 (-655 (-575))) (-5 *4 (-575)) (-5 *1 (-1127)))) (-1953 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1285 (-575))) (-5 *3 (-575)) (-5 *1 (-1127)))) (-2320 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-655 (-575))) (-5 *3 (-655 (-936))) (-5 *4 (-112)) (-5 *1 (-1127)))) (-3166 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-700 (-575))) (-5 *3 (-655 (-575))) (-5 *1 (-1127)))) (-4086 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-936))) (-5 *4 (-655 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-1127)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-655 (-700 (-575)))) (-5 *1 (-1127)))) (-1735 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-655 (-575))) (-5 *3 (-700 (-575))) (-5 *1 (-1127)))) (-3327 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-1127))))) +(-10 -7 (-15 -3327 ((-700 (-575)) (-655 (-575)) (-655 (-575)) (-655 (-575)))) (-15 -1735 ((-655 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575)))) (-15 -1552 ((-655 (-700 (-575))) (-655 (-936)))) (-15 -4086 ((-700 (-575)) (-655 (-936)) (-655 (-575)))) (-15 -3166 ((-700 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575)))) (-15 -2320 ((-655 (-575)) (-655 (-936)) (-655 (-575)) (-112))) (-15 -1953 ((-1285 (-575)) (-1285 (-575)) (-1285 (-575)) (-575))) (-15 -1953 ((-1285 (-575)) (-655 (-575)) (-1285 (-575)) (-575))) (-15 -3637 ((-575) (-575) (-575))) (-15 -3538 ((-655 (-575)) (-575) (-575) (-575))) (-15 -2073 ((-655 (-575)) (-575) (-575) (-575))) (-15 -2136 ((-655 (-575)) (-575) (-575) (-575)))) +((** (($ $ (-936)) 10))) +(((-1128 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-936)))) (-1129)) (T -1128)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-936)))) +((-2861 (((-112) $ $) 7)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6)) (** (($ $ (-936)) 14)) (* (($ $ $) 15))) +(((-1129) (-141)) (T -1129)) +((* (*1 *1 *1 *1) (-4 *1 (-1129))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-936))))) +(-13 (-1117) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-936))))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL (|has| |#3| (-1117)))) (-3799 (((-112) $) NIL (-3765 (|has| |#3| (-23)) (|has| |#3| (-737))))) (-4176 (($ (-936)) NIL (|has| |#3| (-1066)))) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3605 (($ $ $) NIL (|has| |#3| (-804)))) (-2597 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-1845 (((-112) $ (-782)) NIL)) (-2415 (((-782)) NIL (|has| |#3| (-378)))) (-3054 ((|#3| $ (-575) |#3|) NIL (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1117)))) (-4399 (((-575) $) NIL (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117)))) ((|#3| $) NIL (|has| |#3| (-1117)))) (-1749 (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (((-2 (|:| -2412 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 $) (-1285 $)) NIL (|has| |#3| (-1066))) (((-700 |#3|) (-700 $)) NIL (|has| |#3| (-1066))) (((-700 |#3|) (-1285 $)) NIL (|has| |#3| (-1066)))) (-1747 (((-3 $ "failed") $) NIL (|has| |#3| (-1066)))) (-2079 (($) NIL (|has| |#3| (-378)))) (-2859 ((|#3| $ (-575) |#3|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#3| $ (-575)) 12)) (-4001 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-1542 (((-112) $) NIL (|has| |#3| (-1066)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#3| (-861)))) (-3955 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#3| (-861)))) (-2847 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#3| |#3|) $) NIL)) (-4084 (((-936) $) NIL (|has| |#3| (-378)))) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#3| (-1117)))) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#3| (-378)))) (-3912 (((-1137) $) NIL (|has| |#3| (-1117)))) (-1961 ((|#3| $) NIL (|has| (-575) (-861)))) (-3954 (($ $ |#3|) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#3|))) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-303 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-655 |#3|) (-655 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-1691 (((-655 |#3|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#3| $ (-575) |#3|) NIL) ((|#3| $ (-575)) NIL)) (-1886 ((|#3| $ $) NIL (|has| |#3| (-1066)))) (-1981 (($ (-1285 |#3|)) NIL)) (-4386 (((-135)) NIL (|has| |#3| (-373)))) (-2389 (($ $ (-782)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1066))) (($ $ (-1 |#3| |#3|) (-782)) NIL (|has| |#3| (-1066)))) (-3925 (((-782) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460))) (((-782) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-3078 (($ $) NIL)) (-2883 (((-1285 |#3|) $) NIL) (($ (-575)) NIL (-3765 (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (|has| |#3| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117)))) (($ |#3|) NIL (|has| |#3| (-1117))) (((-873) $) NIL (|has| |#3| (-624 (-873))))) (-3759 (((-782)) NIL (|has| |#3| (-1066)) CONST)) (-4400 (((-112) $ $) NIL (|has| |#3| (-1117)))) (-3771 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-1996 (($) NIL (-3765 (|has| |#3| (-23)) (|has| |#3| (-737))) CONST)) (-2009 (($) NIL (|has| |#3| (-1066)) CONST)) (-3430 (($ $ (-782)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1066))) (($ $ (-1 |#3| |#3|) (-782)) NIL (|has| |#3| (-1066)))) (-3981 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#3| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3943 (((-112) $ $) 24 (|has| |#3| (-861)))) (-4038 (($ $ |#3|) NIL (|has| |#3| (-373)))) (-4028 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-4016 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-782)) NIL (|has| |#3| (-1066))) (($ $ (-936)) NIL (|has| |#3| (-1066)))) (* (($ $ $) NIL (|has| |#3| (-1066))) (($ $ |#3|) NIL (|has| |#3| (-737))) (($ |#3| $) NIL (|has| |#3| (-737))) (($ (-575) $) NIL (|has| |#3| (-21))) (($ (-782) $) NIL (|has| |#3| (-23))) (($ (-936) $) NIL (|has| |#3| (-25)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1130 |#1| |#2| |#3|) (-243 |#1| |#3|) (-782) (-782) (-804)) (T -1130)) +NIL +(-243 |#1| |#3|) +((-1902 (((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|)) 50)) (-3075 (((-575) (-1258 |#2| |#1|)) 94 (|has| |#1| (-463)))) (-3860 (((-575) (-1258 |#2| |#1|)) 76)) (-3730 (((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|)) 58)) (-4409 (((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|)) 93 (|has| |#1| (-463)))) (-2399 (((-655 |#1|) (-1258 |#2| |#1|) (-1258 |#2| |#1|)) 61)) (-4136 (((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|)) 75))) +(((-1131 |#1| |#2|) (-10 -7 (-15 -1902 ((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -3730 ((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -2399 ((-655 |#1|) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -4136 ((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -3860 ((-575) (-1258 |#2| |#1|))) (IF (|has| |#1| (-463)) (PROGN (-15 -4409 ((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -3075 ((-575) (-1258 |#2| |#1|)))) |%noBranch|)) (-831) (-1194)) (T -1131)) +((-3075 (*1 *2 *3) (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-463)) (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))) (-4409 (*1 *2 *3 *3) (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-463)) (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))) (-4136 (*1 *2 *3 *3) (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))) (-2399 (*1 *2 *3 *3) (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-655 *4)) (-5 *1 (-1131 *4 *5)))) (-3730 (*1 *2 *3 *3) (-12 (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-655 (-1258 *5 *4))) (-5 *1 (-1131 *4 *5)) (-5 *3 (-1258 *5 *4)))) (-1902 (*1 *2 *3 *3) (-12 (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-655 (-1258 *5 *4))) (-5 *1 (-1131 *4 *5)) (-5 *3 (-1258 *5 *4))))) +(-10 -7 (-15 -1902 ((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -3730 ((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -2399 ((-655 |#1|) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -4136 ((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -3860 ((-575) (-1258 |#2| |#1|))) (IF (|has| |#1| (-463)) (PROGN (-15 -4409 ((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -3075 ((-575) (-1258 |#2| |#1|)))) |%noBranch|)) +((-2861 (((-112) $ $) NIL)) (-1940 (($ (-517) (-1135)) 13)) (-1381 (((-1135) $) 19)) (-1777 (((-517) $) 16)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 26) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1132) (-13 (-1100) (-10 -8 (-15 -1940 ($ (-517) (-1135))) (-15 -1777 ((-517) $)) (-15 -1381 ((-1135) $))))) (T -1132)) +((-1940 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1135)) (-5 *1 (-1132)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1132)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1132))))) +(-13 (-1100) (-10 -8 (-15 -1940 ($ (-517) (-1135))) (-15 -1777 ((-517) $)) (-15 -1381 ((-1135) $)))) +((-4428 (((-3 (-575) "failed") |#2| (-1194) |#2| (-1176)) 19) (((-3 (-575) "failed") |#2| (-1194) (-854 |#2|)) 17) (((-3 (-575) "failed") |#2|) 60))) +(((-1133 |#1| |#2|) (-10 -7 (-15 -4428 ((-3 (-575) "failed") |#2|)) (-15 -4428 ((-3 (-575) "failed") |#2| (-1194) (-854 |#2|))) (-15 -4428 ((-3 (-575) "failed") |#2| (-1194) |#2| (-1176)))) (-13 (-567) (-1055 (-575)) (-650 (-575)) (-463)) (-13 (-27) (-1220) (-441 |#1|))) (T -1133)) +((-4428 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-1176)) (-4 *6 (-13 (-567) (-1055 *2) (-650 *2) (-463))) (-5 *2 (-575)) (-5 *1 (-1133 *6 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))))) (-4428 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-854 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 *2) (-650 *2) (-463))) (-5 *2 (-575)) (-5 *1 (-1133 *6 *3)))) (-4428 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-567) (-1055 *2) (-650 *2) (-463))) (-5 *2 (-575)) (-5 *1 (-1133 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4)))))) +(-10 -7 (-15 -4428 ((-3 (-575) "failed") |#2|)) (-15 -4428 ((-3 (-575) "failed") |#2| (-1194) (-854 |#2|))) (-15 -4428 ((-3 (-575) "failed") |#2| (-1194) |#2| (-1176)))) +((-4428 (((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|)) (-1176)) 38) (((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-854 (-418 (-967 |#1|)))) 33) (((-3 (-575) "failed") (-418 (-967 |#1|))) 14))) +(((-1134 |#1|) (-10 -7 (-15 -4428 ((-3 (-575) "failed") (-418 (-967 |#1|)))) (-15 -4428 ((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-854 (-418 (-967 |#1|))))) (-15 -4428 ((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|)) (-1176)))) (-463)) (T -1134)) +((-4428 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-418 (-967 *6))) (-5 *4 (-1194)) (-5 *5 (-1176)) (-4 *6 (-463)) (-5 *2 (-575)) (-5 *1 (-1134 *6)))) (-4428 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-854 (-418 (-967 *6)))) (-5 *3 (-418 (-967 *6))) (-4 *6 (-463)) (-5 *2 (-575)) (-5 *1 (-1134 *6)))) (-4428 (*1 *2 *3) (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-463)) (-5 *2 (-575)) (-5 *1 (-1134 *4))))) +(-10 -7 (-15 -4428 ((-3 (-575) "failed") (-418 (-967 |#1|)))) (-15 -4428 ((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-854 (-418 (-967 |#1|))))) (-15 -4428 ((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|)) (-1176)))) +((-2861 (((-112) $ $) NIL)) (-2939 (((-1199) $) 12)) (-2890 (((-655 (-1199)) $) 14)) (-1381 (($ (-655 (-1199)) (-1199)) 10)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 29)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 17))) +(((-1135) (-13 (-1117) (-10 -8 (-15 -1381 ($ (-655 (-1199)) (-1199))) (-15 -2939 ((-1199) $)) (-15 -2890 ((-655 (-1199)) $))))) (T -1135)) +((-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-655 (-1199))) (-5 *3 (-1199)) (-5 *1 (-1135)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-1135)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1135))))) +(-13 (-1117) (-10 -8 (-15 -1381 ($ (-655 (-1199)) (-1199))) (-15 -2939 ((-1199) $)) (-15 -2890 ((-655 (-1199)) $)))) +((-2598 (((-325 (-575)) (-48)) 12))) +(((-1136) (-10 -7 (-15 -2598 ((-325 (-575)) (-48))))) (T -1136)) +((-2598 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-325 (-575))) (-5 *1 (-1136))))) +(-10 -7 (-15 -2598 ((-325 (-575)) (-48)))) +((-2861 (((-112) $ $) NIL)) (-2881 (($ $) 44)) (-3799 (((-112) $) 70)) (-1971 (($ $ $) 53)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 98)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1349 (($ $ $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3949 (($ $ $ $) 81)) (-2058 (($ $) NIL)) (-2330 (((-429 $) $) NIL)) (-2279 (((-112) $ $) NIL)) (-2415 (((-782)) 83)) (-4428 (((-575) $) NIL)) (-3624 (($ $ $) 78)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL)) (-4399 (((-575) $) NIL)) (-2802 (($ $ $) 64)) (-1749 (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 92) (((-700 (-575)) (-700 $)) 32) (((-700 (-575)) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2446 (((-3 (-418 (-575)) "failed") $) NIL)) (-3405 (((-112) $) NIL)) (-3100 (((-418 (-575)) $) NIL)) (-2079 (($) 95) (($ $) 96)) (-2813 (($ $ $) 63)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL)) (-1336 (((-112) $) NIL)) (-1455 (($ $ $ $) NIL)) (-4149 (($ $ $) 93)) (-4075 (((-112) $) NIL)) (-3747 (($ $ $) NIL)) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL)) (-3238 (($ $ $) 52)) (-1542 (((-112) $) 72)) (-2437 (((-112) $) 69)) (-3215 (($ $) 45)) (-2607 (((-3 $ "failed") $) NIL)) (-4087 (((-112) $) 82)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1993 (($ $ $ $) 79)) (-1920 (($ $ $) 74) (($) 42 T CONST)) (-1425 (($ $ $) 73) (($) 41 T CONST)) (-3537 (($ $) NIL)) (-4084 (((-936) $) 88)) (-1839 (($ $) 77)) (-3887 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2288 (((-1176) $) NIL)) (-1619 (($ $ $) NIL)) (-3474 (($) NIL T CONST)) (-4317 (($ (-936)) 87)) (-3047 (($ $) 57)) (-3912 (((-1137) $) 76)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3926 (($ $ $) 67) (($ (-655 $)) NIL)) (-2217 (($ $) NIL)) (-2353 (((-429 $) $) NIL)) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL)) (-2851 (((-3 $ "failed") $ $) NIL)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2185 (((-112) $) NIL)) (-3708 (((-782) $) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 66)) (-2389 (($ $) NIL) (($ $ (-782)) NIL)) (-3353 (($ $) 58)) (-3078 (($ $) NIL)) (-2615 (((-575) $) 17) (((-547) $) NIL) (((-904 (-575)) $) NIL) (((-389) $) NIL) (((-227) $) NIL)) (-2883 (((-873) $) 35) (($ (-575)) 94) (($ $) NIL) (($ (-575)) 94)) (-3759 (((-782)) NIL T CONST)) (-2830 (((-112) $ $) NIL)) (-3820 (($ $ $) NIL)) (-4400 (((-112) $ $) NIL)) (-1548 (($) 40)) (-1780 (((-112) $ $) NIL)) (-3226 (($ $ $) 50)) (-2755 (($ $ $ $) 80)) (-2705 (($ $) 68)) (-2924 (($ $ $) 47)) (-1996 (($) 7 T CONST)) (-2912 (($ $ $) 51)) (-2009 (($) 39 T CONST)) (-4196 (((-1176) $) 26) (((-1176) $ (-112)) 27) (((-1290) (-833) $) 28) (((-1290) (-833) $ (-112)) 29)) (-2923 (($ $) 48)) (-3430 (($ $) NIL) (($ $ (-782)) NIL)) (-2900 (($ $ $) 49)) (-3981 (((-112) $ $) 56)) (-3956 (((-112) $ $) 54)) (-3914 (((-112) $ $) 43)) (-3970 (((-112) $ $) 55)) (-3943 (((-112) $ $) 10)) (-2911 (($ $ $) 46)) (-4028 (($ $) 16) (($ $ $) 60)) (-4016 (($ $ $) 59)) (** (($ $ (-936)) NIL) (($ $ (-782)) 62)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 38) (($ $ $) 37) (($ (-575) $) 38))) +(((-1137) (-13 (-556) (-855) (-113) (-672) (-839) (-10 -8 (-6 -4447) (-6 -4452) (-6 -4448) (-15 -1971 ($ $ $)) (-15 -2923 ($ $)) (-15 -2900 ($ $ $)) (-15 -2912 ($ $ $))))) (T -1137)) +((-1971 (*1 *1 *1 *1) (-5 *1 (-1137))) (-2923 (*1 *1 *1) (-5 *1 (-1137))) (-2900 (*1 *1 *1 *1) (-5 *1 (-1137))) (-2912 (*1 *1 *1 *1) (-5 *1 (-1137)))) +(-13 (-556) (-855) (-113) (-672) (-839) (-10 -8 (-6 -4447) (-6 -4452) (-6 -4448) (-15 -1971 ($ $ $)) (-15 -2923 ($ $)) (-15 -2900 ($ $ $)) (-15 -2912 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2012 ((|#1| $) 45)) (-2970 (((-112) $ (-783)) 8)) (-2473 (($) 7 T CONST)) (-3295 ((|#1| |#1| $) 47)) (-3285 ((|#1| $) 46)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3449 ((|#1| $) 40)) (-3807 (($ |#1| $) 41)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-3458 ((|#1| $) 42)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-3324 (((-783) $) 44)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) 43)) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-1139 |#1|) (-141) (-1236)) (T -1139)) -((-3295 (*1 *2 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236)))) (-3285 (*1 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1236)) (-5 *2 (-783))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4461) (-15 -3295 (|t#1| |t#1| $)) (-15 -3285 (|t#1| $)) (-15 -2012 (|t#1| $)) (-15 -3324 ((-783) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-1448 ((|#3| $) 87)) (-2449 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-4401 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-2613 (((-701 (-576)) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2869 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) 84) (((-701 |#3|) (-701 $)) 76) (((-701 |#3|) (-1286 $)) NIL)) (-2390 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-3323 ((|#3| $) 89)) (-3333 ((|#4| $) 43)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-937)) NIL) (($ $ (-783)) 24) (($ $ (-576)) 95))) -(((-1140 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 -3323 (|#3| |#1|)) (-15 -1448 (|#3| |#1|)) (-15 -3333 (|#4| |#1|)) (-15 -2613 ((-701 |#3|) (-1286 |#1|))) (-15 -2613 ((-701 |#3|) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2884 (|#1| |#3|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4401 (|#3| |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2390 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2884 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937))) (-15 -2884 ((-874) |#1|))) (-1141 |#2| |#3| |#4| |#5|) (-783) (-1067) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1140)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 -3323 (|#3| |#1|)) (-15 -1448 (|#3| |#1|)) (-15 -3333 (|#4| |#1|)) (-15 -2613 ((-701 |#3|) (-1286 |#1|))) (-15 -2613 ((-701 |#3|) (-701 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2613 ((-701 (-576)) (-701 |#1|))) (-15 -2613 ((-701 (-576)) (-1286 |#1|))) (-15 -2884 (|#1| |#3|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4401 (|#3| |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2390 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2884 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937))) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1448 ((|#2| $) 79)) (-1825 (((-112) $) 121)) (-1459 (((-3 $ "failed") $ $) 20)) (-1847 (((-112) $) 119)) (-2970 (((-112) $ (-783)) 111)) (-3353 (($ |#2|) 82)) (-2473 (($) 18 T CONST)) (-1735 (($ $) 138 (|has| |#2| (-317)))) (-1759 ((|#3| $ (-576)) 133)) (-2449 (((-3 (-576) "failed") $) 96 (|has| |#2| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 93 (|has| |#2| (-1056 (-419 (-576))))) (((-3 |#2| "failed") $) 90)) (-4401 (((-576) $) 95 (|has| |#2| (-1056 (-576)))) (((-419 (-576)) $) 92 (|has| |#2| (-1056 (-419 (-576))))) ((|#2| $) 91)) (-2613 (((-701 (-576)) (-1286 $)) 88 (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) 87 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 86 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 85) (((-701 |#2|) (-701 $)) 84) (((-701 |#2|) (-1286 $)) 83)) (-1999 (((-3 $ "failed") $) 37)) (-4423 (((-783) $) 139 (|has| |#2| (-568)))) (-2789 ((|#2| $ (-576) (-576)) 131)) (-4001 (((-656 |#2|) $) 104 (|has| $ (-6 -4461)))) (-1439 (((-112) $) 35)) (-1724 (((-783) $) 140 (|has| |#2| (-568)))) (-1714 (((-656 |#4|) $) 141 (|has| |#2| (-568)))) (-4244 (((-783) $) 127)) (-4256 (((-783) $) 128)) (-2408 (((-112) $ (-783)) 112)) (-3304 ((|#2| $) 74 (|has| |#2| (-6 (-4463 "*"))))) (-1805 (((-576) $) 123)) (-1782 (((-576) $) 125)) (-1496 (((-656 |#2|) $) 103 (|has| $ (-6 -4461)))) (-3743 (((-112) |#2| $) 101 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-1793 (((-576) $) 124)) (-1771 (((-576) $) 126)) (-4317 (($ (-656 (-656 |#2|))) 118)) (-2848 (($ (-1 |#2| |#2|) $) 108 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#2| |#2| |#2|) $ $) 135) (($ (-1 |#2| |#2|) $) 109)) (-3667 (((-656 (-656 |#2|)) $) 129)) (-2374 (((-112) $ (-783)) 113)) (-3733 (((-1177) $) 10)) (-3633 (((-3 $ "failed") $) 73 (|has| |#2| (-374)))) (-3914 (((-1138) $) 11)) (-2852 (((-3 $ "failed") $ |#2|) 136 (|has| |#2| (-568)))) (-2476 (((-112) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#2|))) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) 99 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) 98 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) 97 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) 117)) (-2809 (((-112) $) 114)) (-1458 (($) 115)) (-2071 ((|#2| $ (-576) (-576) |#2|) 132) ((|#2| $ (-576) (-576)) 130)) (-2390 (($ $ (-1 |#2| |#2|)) 58) (($ $ (-1 |#2| |#2|) (-783)) 57) (($ $ (-1195)) 54 (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) 52 (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) 51 (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 50 (|has| |#2| (-914 (-1195)))) (($ $) 46 (|has| |#2| (-239))) (($ $ (-783)) 44 (|has| |#2| (-239)))) (-3323 ((|#2| $) 78)) (-3344 (($ (-656 |#2|)) 81)) (-1835 (((-112) $) 120)) (-3333 ((|#3| $) 80)) (-3314 ((|#2| $) 75 (|has| |#2| (-6 (-4463 "*"))))) (-3926 (((-783) (-1 (-112) |#2|) $) 105 (|has| $ (-6 -4461))) (((-783) |#2| $) 102 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 116)) (-1747 ((|#4| $ (-576)) 134)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 94 (|has| |#2| (-1056 (-419 (-576))))) (($ |#2|) 89)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-2492 (((-112) (-1 (-112) |#2|) $) 107 (|has| $ (-6 -4461)))) (-1815 (((-112) $) 122)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-783)) 55) (($ $ (-1195)) 53 (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) 49 (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) 48 (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 47 (|has| |#2| (-914 (-1195)))) (($ $) 45 (|has| |#2| (-239))) (($ $ (-783)) 43 (|has| |#2| (-239)))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#2|) 137 (|has| |#2| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 72 (|has| |#2| (-374)))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 143) (($ |#2| $) 142) ((|#4| $ |#4|) 77) ((|#3| |#3| $) 76)) (-2872 (((-783) $) 110 (|has| $ (-6 -4461))))) -(((-1141 |#1| |#2| |#3| |#4|) (-141) (-783) (-1067) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1141)) -((-3353 (*1 *1 *2) (-12 (-4 *2 (-1067)) (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-656 *4)) (-4 *4 (-1067)) (-4 *1 (-1141 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *4 *2 *5)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1067)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1067)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1141 *3 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1141 *3 *4 *2 *5)) (-4 *4 (-1067)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-3314 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))) (-3633 (*1 *1 *1) (|partial| -12 (-4 *1 (-1141 *2 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-374))))) -(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1071 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (-15 -3353 ($ |t#2|)) (-15 -3344 ($ (-656 |t#2|))) (-15 -3333 (|t#3| $)) (-15 -1448 (|t#2| $)) (-15 -3323 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4463 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3314 (|t#2| $)) (-15 -3304 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -3633 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4463 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1056 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-235 $) |has| |#2| (-239)) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-238) |has| |#2| (-239)) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 #1=(-576)) |has| |#2| (-651 (-576))) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-6 (-4463 "*")))) ((-651 #1#) |has| |#2| (-651 (-576))) ((-651 |#2|) . T) ((-729 |#2|) -3766 (|has| |#2| (-174)) (|has| |#2| (-6 (-4463 "*")))) ((-738) . T) ((-909 $ #2=(-1195)) |has| |#2| (-914 (-1195))) ((-914 #2#) |has| |#2| (-914 (-1195))) ((-916 #2#) |has| |#2| (-914 (-1195))) ((-1071 |#1| |#1| |#2| |#3| |#4|) . T) ((-1056 #0#) |has| |#2| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#2| (-1056 (-576))) ((-1056 |#2|) . T) ((-1069 |#2|) . T) ((-1074 |#2|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T)) -((-3382 ((|#4| |#4|) 81)) (-3363 ((|#4| |#4|) 76)) (-3401 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1898 (-656 |#3|))) |#4| |#3|) 91)) (-3392 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3372 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1142 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3363 (|#4| |#4|)) (-15 -3372 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3382 (|#4| |#4|)) (-15 -3392 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3401 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1898 (-656 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1142)) -((-3401 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) (-5 *1 (-1142 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-3392 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1142 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1142 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3372 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1142 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3363 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1142 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -3363 (|#4| |#4|)) (-15 -3372 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3382 (|#4| |#4|)) (-15 -3392 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3401 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1898 (-656 |#3|))) |#4| |#3|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 18)) (-1607 (((-656 |#2|) $) 174)) (-3467 (((-1191 $) $ |#2|) 60) (((-1191 |#1|) $) 49)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-4241 (($ $) 118 (|has| |#1| (-568)))) (-4221 (((-112) $) 120 (|has| |#1| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 |#2|)) 213)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2944 (($ $) NIL (|has| |#1| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 |#2| "failed") $) NIL)) (-4401 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) ((|#2| $) NIL)) (-2778 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-4407 (($ $) 217)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) 90)) (-2192 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#1| (-925)))) (-3098 (($ $ |#1| (-543 |#2|) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1439 (((-112) $) 20)) (-1518 (((-783) $) 30)) (-2437 (($ (-1191 |#1|) |#2|) 54) (($ (-1191 $) |#2|) 71)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) 38)) (-2421 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-783)) 58) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ |#2|) NIL)) (-1864 (((-543 |#2|) $) 205) (((-783) $ |#2|) 206) (((-656 (-783)) $ (-656 |#2|)) 207)) (-3109 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) 128)) (-2788 (((-3 |#2| "failed") $) 177)) (-4371 (($ $) 216)) (-4383 ((|#1| $) 43)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3733 (((-1177) $) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| |#2|) (|:| -1359 (-783))) "failed") $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) 39)) (-4359 ((|#1| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 148 (|has| |#1| (-464)))) (-3928 (($ (-656 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-925)))) (-2852 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-656 |#2|) (-656 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-656 |#2|) (-656 $)) 194)) (-2790 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2390 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 215)) (-3813 (((-543 |#2|) $) 201) (((-783) $ |#2|) 196) (((-656 (-783)) $ (-656 |#2|)) 199)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1841 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2884 (((-874) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-1993 (((-656 |#1|) $) 162)) (-3245 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) 87 T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) 123 (|has| |#1| (-568)))) (-1996 (($) 12 T CONST)) (-2011 (($) 14 T CONST)) (-3431 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3915 (((-112) $ $) 106)) (-4039 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-4029 (($ $) 93) (($ $ $) 104)) (-4017 (($ $ $) 55)) (** (($ $ (-937)) 110) (($ $ (-783)) 109)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) -(((-1143 |#1| |#2|) (-965 |#1| (-543 |#2|) |#2|) (-1067) (-862)) (T -1143)) -NIL -(-965 |#1| (-543 |#2|) |#2|) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 |#2|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-3924 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3898 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-1522 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2486 (((-968 |#1|) $ (-783)) NIL) (((-968 |#1|) $ (-783) (-783)) NIL)) (-1355 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-783) $ |#2|) NIL) (((-783) $ |#2| (-783)) NIL)) (-1439 (((-112) $) NIL)) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3734 (((-112) $) NIL)) (-2421 (($ $ (-656 |#2|) (-656 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 63) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-3464 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-1956 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3914 (((-1138) $) NIL)) (-3232 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2904 (($ $ (-783)) 16)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2666 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (($ $ |#2| $) 106) (($ $ (-656 |#2|) (-656 $)) 99) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2390 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 109)) (-3813 (((-543 |#2|) $) NIL)) (-3410 (((-1 (-1175 |#3|) |#3|) (-656 |#2|) (-656 (-1175 |#3|))) 87)) (-1532 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) 18)) (-2884 (((-874) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-3245 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL) ((|#3| $ (-783)) 43)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1545 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2915 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) 52 T CONST)) (-2011 (($) 62 T CONST)) (-3431 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 66)) (** (($ $ (-937)) NIL) (($ $ (-783)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1144 |#1| |#2| |#3|) (-13 (-752 |#1| |#2|) (-10 -8 (-15 -3245 (|#3| $ (-783))) (-15 -2884 ($ |#2|)) (-15 -2884 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3410 ((-1 (-1175 |#3|) |#3|) (-656 |#2|) (-656 (-1175 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ($ $ |#2| |#1|)) (-15 -3232 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1067) (-862) (-965 |#1| (-543 |#2|) |#2|)) (T -1144)) -((-3245 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-965 *4 (-543 *5) *5)) (-5 *1 (-1144 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-862)))) (-2884 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-4 *2 (-862)) (-5 *1 (-1144 *3 *2 *4)) (-4 *4 (-965 *3 (-543 *2) *2)))) (-2884 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-4 *4 (-862)) (-5 *1 (-1144 *3 *4 *2)) (-4 *2 (-965 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-862)) (-5 *1 (-1144 *3 *4 *2)) (-4 *2 (-965 *3 (-543 *4) *4)))) (-3410 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1175 *7))) (-4 *6 (-862)) (-4 *7 (-965 *5 (-543 *6) *6)) (-4 *5 (-1067)) (-5 *2 (-1 (-1175 *7) *7)) (-5 *1 (-1144 *5 *6 *7)))) (-1956 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-4 *2 (-862)) (-5 *1 (-1144 *3 *2 *4)) (-4 *4 (-965 *3 (-543 *2) *2)))) (-3232 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1144 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1067)) (-4 *3 (-862)) (-5 *1 (-1144 *4 *3 *5)) (-4 *5 (-965 *4 (-543 *3) *3))))) -(-13 (-752 |#1| |#2|) (-10 -8 (-15 -3245 (|#3| $ (-783))) (-15 -2884 ($ |#2|)) (-15 -2884 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3410 ((-1 (-1175 |#3|) |#3|) (-656 |#2|) (-656 (-1175 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ($ $ |#2| |#1|)) (-15 -3232 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2862 (((-112) $ $) 7)) (-3289 (((-656 (-2 (|:| -2459 $) (|:| -2980 (-656 |#4|)))) (-656 |#4|)) 86)) (-3299 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1607 (((-656 |#3|) $) 34)) (-1470 (((-112) $) 27)) (-1374 (((-112) $) 18 (|has| |#1| (-568)))) (-3405 (((-112) |#4| $) 102) (((-112) $) 98)) (-3358 ((|#4| |#4| $) 93)) (-2944 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| $) 127)) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#3|) 28)) (-2970 (((-112) $ (-783)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-2473 (($) 46 T CONST)) (-1425 (((-112) $) 23 (|has| |#1| (-568)))) (-1445 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1435 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1457 (((-112) $) 26 (|has| |#1| (-568)))) (-3367 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1384 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1394 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 |#4|)) 37)) (-4401 (($ (-656 |#4|)) 36)) (-1976 (((-3 $ "failed") $) 83)) (-3328 ((|#4| |#4| $) 90)) (-1919 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3414 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3308 ((|#4| |#4| $) 88)) (-2309 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3435 (((-2 (|:| -2459 (-656 |#4|)) (|:| -2980 (-656 |#4|))) $) 106)) (-1489 (((-112) |#4| $) 137)) (-1463 (((-112) |#4| $) 134)) (-1498 (((-112) |#4| $) 138) (((-112) $) 135)) (-4001 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-3425 (((-112) |#4| $) 105) (((-112) $) 104)) (-1323 ((|#3| $) 35)) (-2408 (((-112) $ (-783)) 44)) (-1496 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) 48)) (-1524 (((-656 |#3|) $) 33)) (-1513 (((-112) |#3| $) 32)) (-2374 (((-112) $ (-783)) 43)) (-3733 (((-1177) $) 10)) (-1421 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-1411 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| |#4| $) 128)) (-3654 (((-3 |#4| "failed") $) 84)) (-1431 (((-656 $) |#4| $) 130)) (-1451 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1440 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3703 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1800 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3443 (((-656 |#4|) $) 108)) (-3387 (((-112) |#4| $) 100) (((-112) $) 96)) (-3338 ((|#4| |#4| $) 91)) (-3461 (((-112) $ $) 111)) (-1415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3396 (((-112) |#4| $) 101) (((-112) $) 97)) (-3348 ((|#4| |#4| $) 92)) (-3914 (((-1138) $) 11)) (-1962 (((-3 |#4| "failed") $) 85)) (-1932 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3266 (((-3 $ "failed") $ |#4|) 79)) (-2904 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-2476 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) 39)) (-2809 (((-112) $) 42)) (-1458 (($) 41)) (-3813 (((-783) $) 107)) (-3926 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3079 (($ $) 40)) (-2616 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2895 (($ (-656 |#4|)) 61)) (-1483 (($ $ |#3|) 29)) (-1504 (($ $ |#3|) 31)) (-3318 (($ $) 89)) (-1493 (($ $ |#3|) 30)) (-2884 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3255 (((-783) $) 77 (|has| |#3| (-379)))) (-3722 (((-112) $ $) 9)) (-3453 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3377 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1400 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2492 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-3278 (((-656 |#3|) $) 82)) (-1479 (((-112) |#4| $) 136)) (-3704 (((-112) |#3| $) 81)) (-3915 (((-112) $ $) 6)) (-2872 (((-783) $) 47 (|has| $ (-6 -4461))))) -(((-1145 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -1145)) -NIL -(-13 (-1127 |t#1| |t#2| |t#3| |t#4|) (-796 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-796 |#1| |#2| |#3| |#4|) . T) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1089 |#1| |#2| |#3| |#4|) . T) ((-1118) . T) ((-1127 |#1| |#2| |#3| |#4|) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) -((-1525 (((-656 |#2|) |#1|) 15)) (-3457 (((-656 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-656 |#2|) |#1|) 61)) (-3439 (((-656 |#2|) |#2| |#2| |#2|) 45) (((-656 |#2|) |#1|) 59)) (-3419 ((|#2| |#1|) 54)) (-3429 (((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2462 (((-656 |#2|) |#2| |#2|) 42) (((-656 |#2|) |#1|) 58)) (-3447 (((-656 |#2|) |#2| |#2| |#2| |#2|) 46) (((-656 |#2|) |#1|) 60)) (-3500 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-3479 ((|#2| |#2| |#2| |#2|) 51)) (-3470 ((|#2| |#2| |#2|) 50)) (-3490 ((|#2| |#2| |#2| |#2| |#2|) 52))) -(((-1146 |#1| |#2|) (-10 -7 (-15 -1525 ((-656 |#2|) |#1|)) (-15 -3419 (|#2| |#1|)) (-15 -3429 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2462 ((-656 |#2|) |#1|)) (-15 -3439 ((-656 |#2|) |#1|)) (-15 -3447 ((-656 |#2|) |#1|)) (-15 -3457 ((-656 |#2|) |#1|)) (-15 -2462 ((-656 |#2|) |#2| |#2|)) (-15 -3439 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -3447 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3457 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3470 (|#2| |#2| |#2|)) (-15 -3479 (|#2| |#2| |#2| |#2|)) (-15 -3490 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3500 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1262 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1146)) -((-3500 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))) (-3490 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))) (-3479 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))) (-3470 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))) (-3457 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))) (-3447 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))) (-3439 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))) (-2462 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))) (-3457 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) (-3447 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) (-3439 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) (-2462 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-656 *5)) (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1146 *3 *5)) (-4 *3 (-1262 *5)))) (-3419 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))) (-1525 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4))))) -(-10 -7 (-15 -1525 ((-656 |#2|) |#1|)) (-15 -3419 (|#2| |#1|)) (-15 -3429 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2462 ((-656 |#2|) |#1|)) (-15 -3439 ((-656 |#2|) |#1|)) (-15 -3447 ((-656 |#2|) |#1|)) (-15 -3457 ((-656 |#2|) |#1|)) (-15 -2462 ((-656 |#2|) |#2| |#2|)) (-15 -3439 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -3447 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3457 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3470 (|#2| |#2| |#2|)) (-15 -3479 (|#2| |#2| |#2| |#2|)) (-15 -3490 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3500 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3511 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|))))) 118) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195))) 117) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|)))) 115) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|))) (-656 (-1195))) 113) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|)))) 97) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|))) (-1195)) 98) (((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|))) 92) (((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|)) (-1195)) 82)) (-3519 (((-656 (-656 (-326 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195))) 111) (((-656 (-326 |#1|)) (-419 (-968 |#1|)) (-1195)) 54)) (-3530 (((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-968 |#1|)) (-1195)) 122) (((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195)) 121))) -(((-1147 |#1|) (-10 -7 (-15 -3511 ((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -3511 ((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|)))) (-15 -3511 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -3511 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|))))) (-15 -3511 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -3511 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|))))) (-15 -3511 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195)))) (-15 -3511 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -3519 ((-656 (-326 |#1|)) (-419 (-968 |#1|)) (-1195))) (-15 -3519 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -3530 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -3530 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-968 |#1|)) (-1195)))) (-13 (-317) (-148))) (T -1147)) -((-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1147 *5)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-968 *5)))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1147 *5)))) (-3519 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) (-5 *1 (-1147 *5)))) (-3519 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) (-5 *1 (-1147 *5)))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-968 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1147 *4)))) (-3511 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-968 *5))))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1147 *5)))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-968 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1147 *4)))) (-3511 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1147 *5)))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-968 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1147 *4)))) (-3511 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-968 *5)))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1147 *5)))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1147 *4)))) (-3511 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1147 *5))))) -(-10 -7 (-15 -3511 ((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -3511 ((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|)))) (-15 -3511 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -3511 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|))))) (-15 -3511 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -3511 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|))))) (-15 -3511 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195)))) (-15 -3511 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -3519 ((-656 (-326 |#1|)) (-419 (-968 |#1|)) (-1195))) (-15 -3519 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -3530 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -3530 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-968 |#1|)) (-1195)))) -((-3549 (((-419 (-1191 (-326 |#1|))) (-1286 (-326 |#1|)) (-419 (-1191 (-326 |#1|))) (-576)) 36)) (-3539 (((-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|)))) 48))) -(((-1148 |#1|) (-10 -7 (-15 -3539 ((-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))))) (-15 -3549 ((-419 (-1191 (-326 |#1|))) (-1286 (-326 |#1|)) (-419 (-1191 (-326 |#1|))) (-576)))) (-568)) (T -1148)) -((-3549 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1191 (-326 *5)))) (-5 *3 (-1286 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1148 *5)))) (-3539 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1191 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1148 *3))))) -(-10 -7 (-15 -3539 ((-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))))) (-15 -3549 ((-419 (-1191 (-326 |#1|))) (-1286 (-326 |#1|)) (-419 (-1191 (-326 |#1|))) (-576)))) -((-1525 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1195))) 244) (((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1195)) 23) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1195)) 29) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-656 (-304 (-326 |#1|))) (-326 |#1|)) 24))) -(((-1149 |#1|) (-10 -7 (-15 -1525 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -1525 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -1525 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1195))) (-15 -1525 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1195))) (-15 -1525 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1195))))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (T -1149)) -((-1525 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1149 *5)) (-5 *3 (-656 (-304 (-326 *5)))))) (-1525 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1149 *5)) (-5 *3 (-326 *5)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1149 *5)) (-5 *3 (-304 (-326 *5))))) (-1525 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4)) (-5 *3 (-304 (-326 *4))))) (-1525 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4)) (-5 *3 (-326 *4))))) -(-10 -7 (-15 -1525 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -1525 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -1525 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1195))) (-15 -1525 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1195))) (-15 -1525 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1195))))) -((-2328 ((|#2| |#2|) 28 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-3558 ((|#2| |#2|) 27 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1150 |#1| |#2|) (-10 -7 (-15 -3558 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2328 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -3558 (|#2| |#2|)) (-15 -2328 (|#2| |#2|))) |%noBranch|)) (-1236) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4461) (-6 -4462)))) (T -1150)) -((-2328 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1150 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462)))))) (-3558 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1150 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462)))))) (-2328 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1150 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462)))))) (-3558 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1150 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462))))))) -(-10 -7 (-15 -3558 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2328 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -3558 (|#2| |#2|)) (-15 -2328 (|#2| |#2|))) |%noBranch|)) -((-2862 (((-112) $ $) NIL)) (-4437 (((-1183 3 |#1|) $) 141)) (-2414 (((-112) $) 101)) (-2430 (($ $ (-656 (-959 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 104) (($ (-656 (-959 |#1|))) 103) (((-656 (-959 |#1|)) $) 102)) (-2495 (((-112) $) 72)) (-1839 (($ $ (-959 |#1|)) 76) (($ $ (-656 |#1|)) 81) (($ $ (-783)) 83) (($ (-959 |#1|)) 77) (((-959 |#1|) $) 75)) (-1538 (((-2 (|:| -2237 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 139)) (-2544 (((-783) $) 53)) (-2556 (((-783) $) 52)) (-4428 (($ $ (-783) (-959 |#1|)) 67)) (-2392 (((-112) $) 111)) (-2403 (($ $ (-656 (-656 (-959 |#1|))) (-656 (-173)) (-173)) 118) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 120) (($ $ (-656 (-656 (-959 |#1|))) (-112) (-112)) 115) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 127) (($ (-656 (-656 (-959 |#1|)))) 116) (($ (-656 (-656 (-959 |#1|))) (-112) (-112)) 117) (((-656 (-656 (-959 |#1|))) $) 114)) (-4214 (($ (-656 $)) 56) (($ $ $) 57)) (-2349 (((-656 (-173)) $) 133)) (-3942 (((-656 (-959 |#1|)) $) 130)) (-2359 (((-656 (-656 (-173))) $) 132)) (-2369 (((-656 (-656 (-656 (-959 |#1|)))) $) NIL)) (-2381 (((-656 (-656 (-656 (-783)))) $) 131)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2508 (((-783) $ (-656 (-959 |#1|))) 65)) (-2468 (((-112) $) 84)) (-2479 (($ $ (-656 (-959 |#1|))) 86) (($ $ (-656 (-656 |#1|))) 92) (($ (-656 (-959 |#1|))) 87) (((-656 (-959 |#1|)) $) 85)) (-2570 (($) 48) (($ (-1183 3 |#1|)) 49)) (-3079 (($ $) 63)) (-2519 (((-656 $) $) 62)) (-2758 (($ (-656 $)) 59)) (-2532 (((-656 $) $) 61)) (-2884 (((-874) $) 146)) (-2444 (((-112) $) 94)) (-2456 (($ $ (-656 (-959 |#1|))) 96) (($ $ (-656 (-656 |#1|))) 99) (($ (-656 (-959 |#1|))) 97) (((-656 (-959 |#1|)) $) 95)) (-2339 (($ $) 140)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1151 |#1|) (-1152 |#1|) (-1067)) (T -1151)) -NIL -(-1152 |#1|) -((-2862 (((-112) $ $) 7)) (-4437 (((-1183 3 |#1|) $) 14)) (-2414 (((-112) $) 30)) (-2430 (($ $ (-656 (-959 |#1|))) 34) (($ $ (-656 (-656 |#1|))) 33) (($ (-656 (-959 |#1|))) 32) (((-656 (-959 |#1|)) $) 31)) (-2495 (((-112) $) 45)) (-1839 (($ $ (-959 |#1|)) 50) (($ $ (-656 |#1|)) 49) (($ $ (-783)) 48) (($ (-959 |#1|)) 47) (((-959 |#1|) $) 46)) (-1538 (((-2 (|:| -2237 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 16)) (-2544 (((-783) $) 59)) (-2556 (((-783) $) 60)) (-4428 (($ $ (-783) (-959 |#1|)) 51)) (-2392 (((-112) $) 22)) (-2403 (($ $ (-656 (-656 (-959 |#1|))) (-656 (-173)) (-173)) 29) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 28) (($ $ (-656 (-656 (-959 |#1|))) (-112) (-112)) 27) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 26) (($ (-656 (-656 (-959 |#1|)))) 25) (($ (-656 (-656 (-959 |#1|))) (-112) (-112)) 24) (((-656 (-656 (-959 |#1|))) $) 23)) (-4214 (($ (-656 $)) 58) (($ $ $) 57)) (-2349 (((-656 (-173)) $) 17)) (-3942 (((-656 (-959 |#1|)) $) 21)) (-2359 (((-656 (-656 (-173))) $) 18)) (-2369 (((-656 (-656 (-656 (-959 |#1|)))) $) 19)) (-2381 (((-656 (-656 (-656 (-783)))) $) 20)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2508 (((-783) $ (-656 (-959 |#1|))) 52)) (-2468 (((-112) $) 40)) (-2479 (($ $ (-656 (-959 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 43) (($ (-656 (-959 |#1|))) 42) (((-656 (-959 |#1|)) $) 41)) (-2570 (($) 62) (($ (-1183 3 |#1|)) 61)) (-3079 (($ $) 53)) (-2519 (((-656 $) $) 54)) (-2758 (($ (-656 $)) 56)) (-2532 (((-656 $) $) 55)) (-2884 (((-874) $) 12)) (-2444 (((-112) $) 35)) (-2456 (($ $ (-656 (-959 |#1|))) 39) (($ $ (-656 (-656 |#1|))) 38) (($ (-656 (-959 |#1|))) 37) (((-656 (-959 |#1|)) $) 36)) (-2339 (($ $) 15)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-1152 |#1|) (-141) (-1067)) (T -1152)) -((-2884 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-874)))) (-2570 (*1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-1183 3 *3)) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-2544 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-4214 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-4214 (*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))) (-2758 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-2532 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)))) (-2519 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)))) (-3079 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))) (-2508 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-959 *4))) (-4 *1 (-1152 *4)) (-4 *4 (-1067)) (-5 *2 (-783)))) (-4428 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-959 *4)) (-4 *1 (-1152 *4)) (-4 *4 (-1067)))) (-1839 (*1 *1 *1 *2) (-12 (-5 *2 (-959 *3)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-1839 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-1839 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-1839 (*1 *1 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-959 *3)))) (-2495 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-2479 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-2479 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))) (-2468 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-2456 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-2456 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-2456 (*1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-2456 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-2430 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-2430 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-2403 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-959 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1152 *5)) (-4 *5 (-1067)))) (-2403 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1152 *5)) (-4 *5 (-1067)))) (-2403 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-959 *4)))) (-5 *3 (-112)) (-4 *1 (-1152 *4)) (-4 *4 (-1067)))) (-2403 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) (-4 *1 (-1152 *4)) (-4 *4 (-1067)))) (-2403 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-959 *3)))) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-2403 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-959 *4)))) (-5 *3 (-112)) (-4 *4 (-1067)) (-4 *1 (-1152 *4)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-656 (-959 *3)))))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))) (-2381 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-656 (-656 (-783))))))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-656 (-656 (-959 *3))))))) (-2359 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-656 (-173)))))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-173))))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -2237 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783)))))) (-2339 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))) (-4437 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-1183 3 *3))))) -(-13 (-1118) (-10 -8 (-15 -2570 ($)) (-15 -2570 ($ (-1183 3 |t#1|))) (-15 -2556 ((-783) $)) (-15 -2544 ((-783) $)) (-15 -4214 ($ (-656 $))) (-15 -4214 ($ $ $)) (-15 -2758 ($ (-656 $))) (-15 -2532 ((-656 $) $)) (-15 -2519 ((-656 $) $)) (-15 -3079 ($ $)) (-15 -2508 ((-783) $ (-656 (-959 |t#1|)))) (-15 -4428 ($ $ (-783) (-959 |t#1|))) (-15 -1839 ($ $ (-959 |t#1|))) (-15 -1839 ($ $ (-656 |t#1|))) (-15 -1839 ($ $ (-783))) (-15 -1839 ($ (-959 |t#1|))) (-15 -1839 ((-959 |t#1|) $)) (-15 -2495 ((-112) $)) (-15 -2479 ($ $ (-656 (-959 |t#1|)))) (-15 -2479 ($ $ (-656 (-656 |t#1|)))) (-15 -2479 ($ (-656 (-959 |t#1|)))) (-15 -2479 ((-656 (-959 |t#1|)) $)) (-15 -2468 ((-112) $)) (-15 -2456 ($ $ (-656 (-959 |t#1|)))) (-15 -2456 ($ $ (-656 (-656 |t#1|)))) (-15 -2456 ($ (-656 (-959 |t#1|)))) (-15 -2456 ((-656 (-959 |t#1|)) $)) (-15 -2444 ((-112) $)) (-15 -2430 ($ $ (-656 (-959 |t#1|)))) (-15 -2430 ($ $ (-656 (-656 |t#1|)))) (-15 -2430 ($ (-656 (-959 |t#1|)))) (-15 -2430 ((-656 (-959 |t#1|)) $)) (-15 -2414 ((-112) $)) (-15 -2403 ($ $ (-656 (-656 (-959 |t#1|))) (-656 (-173)) (-173))) (-15 -2403 ($ $ (-656 (-656 (-656 |t#1|))) (-656 (-173)) (-173))) (-15 -2403 ($ $ (-656 (-656 (-959 |t#1|))) (-112) (-112))) (-15 -2403 ($ $ (-656 (-656 (-656 |t#1|))) (-112) (-112))) (-15 -2403 ($ (-656 (-656 (-959 |t#1|))))) (-15 -2403 ($ (-656 (-656 (-959 |t#1|))) (-112) (-112))) (-15 -2403 ((-656 (-656 (-959 |t#1|))) $)) (-15 -2392 ((-112) $)) (-15 -3942 ((-656 (-959 |t#1|)) $)) (-15 -2381 ((-656 (-656 (-656 (-783)))) $)) (-15 -2369 ((-656 (-656 (-656 (-959 |t#1|)))) $)) (-15 -2359 ((-656 (-656 (-173))) $)) (-15 -2349 ((-656 (-173)) $)) (-15 -1538 ((-2 (|:| -2237 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $)) (-15 -2339 ($ $)) (-15 -4437 ((-1183 3 |t#1|) $)) (-15 -2884 ((-874) $)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 184) (($ (-1200)) NIL) (((-1200) $) 7)) (-1985 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-688))) 27) (((-112) $ (|[\|\|]| (-1296))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1133))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-693))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1084))) 63) (((-112) $ (|[\|\|]| (-1297))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1169))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-683))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1054))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-988))) 99) (((-112) $ (|[\|\|]| (-1091))) 103) (((-112) $ (|[\|\|]| (-1108))) 107) (((-112) $ (|[\|\|]| (-1114))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1185))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1177))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-3722 (((-112) $ $) NIL)) (-3135 (((-536) $) 20) (((-220) $) 24) (((-688) $) 28) (((-1296) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1133) $) 48) (((-96) $) 52) (((-693) $) 56) (((-529) $) 60) (((-1084) $) 64) (((-1297) $) 68) (((-537) $) 72) (((-1169) $) 76) (((-155) $) 80) (((-683) $) 84) (((-321) $) 88) (((-1054) $) 92) (((-182) $) 96) (((-988) $) 100) (((-1091) $) 104) (((-1108) $) 108) (((-1114) $) 112) (((-638) $) 116) (((-1185) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1177) $) 144) (((-576) $) 148)) (-3915 (((-112) $ $) NIL))) -(((-1153) (-1155)) (T -1153)) -NIL -(-1155) -((-4206 (((-656 (-1200)) (-1177)) 9))) -(((-1154) (-10 -7 (-15 -4206 ((-656 (-1200)) (-1177))))) (T -1154)) -((-4206 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-1154))))) -(-10 -7 (-15 -4206 ((-656 (-1200)) (-1177)))) -((-2862 (((-112) $ $) 7)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-1200)) 17) (((-1200) $) 16)) (-1985 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-688))) 81) (((-112) $ (|[\|\|]| (-1296))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1133))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-693))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1084))) 63) (((-112) $ (|[\|\|]| (-1297))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1169))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-683))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1054))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-988))) 45) (((-112) $ (|[\|\|]| (-1091))) 43) (((-112) $ (|[\|\|]| (-1108))) 41) (((-112) $ (|[\|\|]| (-1114))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1185))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1177))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-3722 (((-112) $ $) 9)) (-3135 (((-536) $) 84) (((-220) $) 82) (((-688) $) 80) (((-1296) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1133) $) 70) (((-96) $) 68) (((-693) $) 66) (((-529) $) 64) (((-1084) $) 62) (((-1297) $) 60) (((-537) $) 58) (((-1169) $) 56) (((-155) $) 54) (((-683) $) 52) (((-321) $) 50) (((-1054) $) 48) (((-182) $) 46) (((-988) $) 44) (((-1091) $) 42) (((-1108) $) 40) (((-1114) $) 38) (((-638) $) 36) (((-1185) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1177) $) 22) (((-576) $) 20)) (-3915 (((-112) $ $) 6))) -(((-1155) (-141)) (T -1155)) -((-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-536)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-220)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-688)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1296))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1296)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-139)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-618)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-134)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1133))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1133)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-96)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-693)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-529)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1084)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1297)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-537)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1169)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-155)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-683)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-321)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1054))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1054)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-182)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-988))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-988)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1091)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1108)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1114)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-638)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1185))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1185)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-157)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-138)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-490)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-604)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-518)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1177)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-576))))) -(-13 (-1101) (-1281) (-10 -8 (-15 -1985 ((-112) $ (|[\|\|]| (-536)))) (-15 -3135 ((-536) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-220)))) (-15 -3135 ((-220) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-688)))) (-15 -3135 ((-688) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1296)))) (-15 -3135 ((-1296) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-139)))) (-15 -3135 ((-139) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-618)))) (-15 -3135 ((-618) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-134)))) (-15 -3135 ((-134) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1133)))) (-15 -3135 ((-1133) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-96)))) (-15 -3135 ((-96) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-693)))) (-15 -3135 ((-693) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-529)))) (-15 -3135 ((-529) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1084)))) (-15 -3135 ((-1084) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1297)))) (-15 -3135 ((-1297) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-537)))) (-15 -3135 ((-537) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1169)))) (-15 -3135 ((-1169) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-155)))) (-15 -3135 ((-155) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-683)))) (-15 -3135 ((-683) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-321)))) (-15 -3135 ((-321) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1054)))) (-15 -3135 ((-1054) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-182)))) (-15 -3135 ((-182) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-988)))) (-15 -3135 ((-988) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1091)))) (-15 -3135 ((-1091) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1108)))) (-15 -3135 ((-1108) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1114)))) (-15 -3135 ((-1114) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-638)))) (-15 -3135 ((-638) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1185)))) (-15 -3135 ((-1185) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-157)))) (-15 -3135 ((-157) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-138)))) (-15 -3135 ((-138) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-490)))) (-15 -3135 ((-490) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-604)))) (-15 -3135 ((-604) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-518)))) (-15 -3135 ((-518) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-1177)))) (-15 -3135 ((-1177) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-576)))) (-15 -3135 ((-576) $)))) -(((-93) . T) ((-102) . T) ((-628 #0=(-1200)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1118) . T) ((-1101) . T) ((-1281) . T)) -((-2599 (((-1291) (-656 (-874))) 22) (((-1291) (-874)) 21)) (-2586 (((-1291) (-656 (-874))) 20) (((-1291) (-874)) 19)) (-2251 (((-1291) (-656 (-874))) 18) (((-1291) (-874)) 10) (((-1291) (-1177) (-874)) 16))) -(((-1156) (-10 -7 (-15 -2251 ((-1291) (-1177) (-874))) (-15 -2251 ((-1291) (-874))) (-15 -2586 ((-1291) (-874))) (-15 -2599 ((-1291) (-874))) (-15 -2251 ((-1291) (-656 (-874)))) (-15 -2586 ((-1291) (-656 (-874)))) (-15 -2599 ((-1291) (-656 (-874)))))) (T -1156)) -((-2599 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-2599 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-2251 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156))))) -(-10 -7 (-15 -2251 ((-1291) (-1177) (-874))) (-15 -2251 ((-1291) (-874))) (-15 -2586 ((-1291) (-874))) (-15 -2599 ((-1291) (-874))) (-15 -2251 ((-1291) (-656 (-874)))) (-15 -2586 ((-1291) (-656 (-874)))) (-15 -2599 ((-1291) (-656 (-874))))) -((-2644 (($ $ $) 10)) (-2633 (($ $) 9)) (-2676 (($ $ $) 13)) (-2699 (($ $ $) 15)) (-2665 (($ $ $) 12)) (-2688 (($ $ $) 14)) (-2720 (($ $) 17)) (-2709 (($ $) 16)) (-2610 (($ $) 6)) (-2654 (($ $ $) 11) (($ $) 7)) (-2621 (($ $ $) 8))) -(((-1157) (-141)) (T -1157)) -((-2720 (*1 *1 *1) (-4 *1 (-1157))) (-2709 (*1 *1 *1) (-4 *1 (-1157))) (-2699 (*1 *1 *1 *1) (-4 *1 (-1157))) (-2688 (*1 *1 *1 *1) (-4 *1 (-1157))) (-2676 (*1 *1 *1 *1) (-4 *1 (-1157))) (-2665 (*1 *1 *1 *1) (-4 *1 (-1157))) (-2654 (*1 *1 *1 *1) (-4 *1 (-1157))) (-2644 (*1 *1 *1 *1) (-4 *1 (-1157))) (-2633 (*1 *1 *1) (-4 *1 (-1157))) (-2621 (*1 *1 *1 *1) (-4 *1 (-1157))) (-2654 (*1 *1 *1) (-4 *1 (-1157))) (-2610 (*1 *1 *1) (-4 *1 (-1157)))) -(-13 (-10 -8 (-15 -2610 ($ $)) (-15 -2654 ($ $)) (-15 -2621 ($ $ $)) (-15 -2633 ($ $)) (-15 -2644 ($ $ $)) (-15 -2654 ($ $ $)) (-15 -2665 ($ $ $)) (-15 -2676 ($ $ $)) (-15 -2688 ($ $ $)) (-15 -2699 ($ $ $)) (-15 -2709 ($ $)) (-15 -2720 ($ $)))) -((-2862 (((-112) $ $) 44)) (-4183 ((|#1| $) 17)) (-2731 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2795 (((-112) $) 19)) (-2783 (($ $ |#1|) 30)) (-2763 (($ $ (-112)) 32)) (-2752 (($ $) 33)) (-2773 (($ $ |#2|) 31)) (-3733 (((-1177) $) NIL)) (-2741 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3914 (((-1138) $) NIL)) (-2809 (((-112) $) 16)) (-1458 (($) 13)) (-3079 (($ $) 29)) (-2895 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4271 |#2|))) 23) (((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4271 |#2|)))) 26) (((-656 $) |#1| (-656 |#2|)) 28)) (-3690 ((|#2| $) 18)) (-2884 (((-874) $) 53)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 42))) -(((-1158 |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -1458 ($)) (-15 -2809 ((-112) $)) (-15 -4183 (|#1| $)) (-15 -3690 (|#2| $)) (-15 -2795 ((-112) $)) (-15 -2895 ($ |#1| |#2| (-112))) (-15 -2895 ($ |#1| |#2|)) (-15 -2895 ($ (-2 (|:| |val| |#1|) (|:| -4271 |#2|)))) (-15 -2895 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4271 |#2|))))) (-15 -2895 ((-656 $) |#1| (-656 |#2|))) (-15 -3079 ($ $)) (-15 -2783 ($ $ |#1|)) (-15 -2773 ($ $ |#2|)) (-15 -2763 ($ $ (-112))) (-15 -2752 ($ $)) (-15 -2741 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2731 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1118) (-34)) (-13 (-1118) (-34))) (T -1158)) -((-1458 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))))) (-4183 (*1 *2 *1) (-12 (-4 *2 (-13 (-1118) (-34))) (-5 *1 (-1158 *2 *3)) (-4 *3 (-13 (-1118) (-34))))) (-3690 (*1 *2 *1) (-12 (-4 *2 (-13 (-1118) (-34))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-13 (-1118) (-34))))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))))) (-2895 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2895 (*1 *1 *2 *3) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2895 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4271 *4))) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1158 *3 *4)))) (-2895 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4271 *5)))) (-4 *4 (-13 (-1118) (-34))) (-4 *5 (-13 (-1118) (-34))) (-5 *2 (-656 (-1158 *4 *5))) (-5 *1 (-1158 *4 *5)))) (-2895 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1118) (-34))) (-5 *2 (-656 (-1158 *3 *5))) (-5 *1 (-1158 *3 *5)) (-4 *3 (-13 (-1118) (-34))))) (-3079 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2783 (*1 *1 *1 *2) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2773 (*1 *1 *1 *2) (-12 (-5 *1 (-1158 *3 *2)) (-4 *3 (-13 (-1118) (-34))) (-4 *2 (-13 (-1118) (-34))))) (-2763 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))))) (-2752 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2741 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1118) (-34))) (-4 *6 (-13 (-1118) (-34))) (-5 *2 (-112)) (-5 *1 (-1158 *5 *6)))) (-2731 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1118) (-34))) (-5 *2 (-112)) (-5 *1 (-1158 *4 *5)) (-4 *4 (-13 (-1118) (-34)))))) -(-13 (-1118) (-10 -8 (-15 -1458 ($)) (-15 -2809 ((-112) $)) (-15 -4183 (|#1| $)) (-15 -3690 (|#2| $)) (-15 -2795 ((-112) $)) (-15 -2895 ($ |#1| |#2| (-112))) (-15 -2895 ($ |#1| |#2|)) (-15 -2895 ($ (-2 (|:| |val| |#1|) (|:| -4271 |#2|)))) (-15 -2895 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4271 |#2|))))) (-15 -2895 ((-656 $) |#1| (-656 |#2|))) (-15 -3079 ($ $)) (-15 -2783 ($ $ |#1|)) (-15 -2773 ($ $ |#2|)) (-15 -2763 ($ $ (-112))) (-15 -2752 ($ $)) (-15 -2741 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2731 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2862 (((-112) $ $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-4183 (((-1158 |#1| |#2|) $) 27)) (-2868 (($ $) 91)) (-2846 (((-112) (-1158 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2821 (($ $ $ (-656 (-1158 |#1| |#2|))) 108) (($ $ $ (-656 (-1158 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2970 (((-112) $ (-783)) NIL)) (-3434 (((-1158 |#1| |#2|) $ (-1158 |#1| |#2|)) 46 (|has| $ (-6 -4462)))) (-3055 (((-1158 |#1| |#2|) $ "value" (-1158 |#1| |#2|)) NIL (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) 44 (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-4245 (((-656 (-2 (|:| |val| |#1|) (|:| -4271 |#2|))) $) 95)) (-2833 (($ (-1158 |#1| |#2|) $) 42)) (-3634 (($ (-1158 |#1| |#2|) $) 34)) (-4001 (((-656 (-1158 |#1| |#2|)) $) NIL (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) 54)) (-2858 (((-112) (-1158 |#1| |#2|) $) 97)) (-3452 (((-112) $ $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 (-1158 |#1| |#2|)) $) 58 (|has| $ (-6 -4461)))) (-3743 (((-112) (-1158 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-1158 |#1| |#2|) (-1118))))) (-2848 (($ (-1 (-1158 |#1| |#2|) (-1158 |#1| |#2|)) $) 50 (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-1158 |#1| |#2|) (-1158 |#1| |#2|)) $) 49)) (-2374 (((-112) $ (-783)) NIL)) (-2482 (((-656 (-1158 |#1| |#2|)) $) 56)) (-4306 (((-112) $) 45)) (-3733 (((-1177) $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-3914 (((-1138) $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-2878 (((-3 $ "failed") $) 89)) (-2476 (((-112) (-1 (-112) (-1158 |#1| |#2|)) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-1158 |#1| |#2|)))) NIL (-12 (|has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|))) (|has| (-1158 |#1| |#2|) (-1118)))) (($ $ (-304 (-1158 |#1| |#2|))) NIL (-12 (|has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|))) (|has| (-1158 |#1| |#2|) (-1118)))) (($ $ (-1158 |#1| |#2|) (-1158 |#1| |#2|)) NIL (-12 (|has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|))) (|has| (-1158 |#1| |#2|) (-1118)))) (($ $ (-656 (-1158 |#1| |#2|)) (-656 (-1158 |#1| |#2|))) NIL (-12 (|has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|))) (|has| (-1158 |#1| |#2|) (-1118))))) (-2983 (((-112) $ $) 53)) (-2809 (((-112) $) 24)) (-1458 (($) 26)) (-2071 (((-1158 |#1| |#2|) $ "value") NIL)) (-3473 (((-576) $ $) NIL)) (-4053 (((-112) $) 47)) (-3926 (((-783) (-1 (-112) (-1158 |#1| |#2|)) $) NIL (|has| $ (-6 -4461))) (((-783) (-1158 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-1158 |#1| |#2|) (-1118))))) (-3079 (($ $) 52)) (-2895 (($ (-1158 |#1| |#2|)) 10) (($ |#1| |#2| (-656 $)) 13) (($ |#1| |#2| (-656 (-1158 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-656 |#2|)) 18)) (-1605 (((-656 |#2|) $) 96)) (-2884 (((-874) $) 87 (|has| (-1158 |#1| |#2|) (-625 (-874))))) (-4255 (((-656 $) $) 31)) (-3462 (((-112) $ $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-3722 (((-112) $ $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-2492 (((-112) (-1 (-112) (-1158 |#1| |#2|)) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 70 (|has| (-1158 |#1| |#2|) (-1118)))) (-2872 (((-783) $) 64 (|has| $ (-6 -4461))))) -(((-1159 |#1| |#2|) (-13 (-1028 (-1158 |#1| |#2|)) (-10 -8 (-6 -4462) (-6 -4461) (-15 -2878 ((-3 $ "failed") $)) (-15 -2868 ($ $)) (-15 -2895 ($ (-1158 |#1| |#2|))) (-15 -2895 ($ |#1| |#2| (-656 $))) (-15 -2895 ($ |#1| |#2| (-656 (-1158 |#1| |#2|)))) (-15 -2895 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1605 ((-656 |#2|) $)) (-15 -4245 ((-656 (-2 (|:| |val| |#1|) (|:| -4271 |#2|))) $)) (-15 -2858 ((-112) (-1158 |#1| |#2|) $)) (-15 -2846 ((-112) (-1158 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3634 ($ (-1158 |#1| |#2|) $)) (-15 -2833 ($ (-1158 |#1| |#2|) $)) (-15 -2821 ($ $ $ (-656 (-1158 |#1| |#2|)))) (-15 -2821 ($ $ $ (-656 (-1158 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1118) (-34)) (-13 (-1118) (-34))) (T -1159)) -((-2878 (*1 *1 *1) (|partial| -12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2868 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2895 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))) (-2895 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1159 *2 *3))) (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2895 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1158 *2 *3))) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))) (-5 *1 (-1159 *2 *3)))) (-2895 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1118) (-34))) (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34))))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-656 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))))) (-4245 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))))) (-2858 (*1 *2 *3 *1) (-12 (-5 *3 (-1158 *4 *5)) (-4 *4 (-13 (-1118) (-34))) (-4 *5 (-13 (-1118) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *4 *5)))) (-2846 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1158 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1118) (-34))) (-4 *6 (-13 (-1118) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *5 *6)))) (-3634 (*1 *1 *2 *1) (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))) (-2833 (*1 *1 *2 *1) (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))) (-2821 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-656 (-1158 *3 *4))) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))) (-2821 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1158 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1118) (-34))) (-4 *5 (-13 (-1118) (-34))) (-5 *1 (-1159 *4 *5))))) -(-13 (-1028 (-1158 |#1| |#2|)) (-10 -8 (-6 -4462) (-6 -4461) (-15 -2878 ((-3 $ "failed") $)) (-15 -2868 ($ $)) (-15 -2895 ($ (-1158 |#1| |#2|))) (-15 -2895 ($ |#1| |#2| (-656 $))) (-15 -2895 ($ |#1| |#2| (-656 (-1158 |#1| |#2|)))) (-15 -2895 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1605 ((-656 |#2|) $)) (-15 -4245 ((-656 (-2 (|:| |val| |#1|) (|:| -4271 |#2|))) $)) (-15 -2858 ((-112) (-1158 |#1| |#2|) $)) (-15 -2846 ((-112) (-1158 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3634 ($ (-1158 |#1| |#2|) $)) (-15 -2833 ($ (-1158 |#1| |#2|) $)) (-15 -2821 ($ $ $ (-656 (-1158 |#1| |#2|)))) (-15 -2821 ($ $ $ (-656 (-1158 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2899 (($ $) NIL)) (-1448 ((|#2| $) NIL)) (-1825 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2890 (($ (-701 |#2|)) 56)) (-1847 (((-112) $) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3353 (($ |#2|) 14)) (-2473 (($) NIL T CONST)) (-1735 (($ $) 69 (|has| |#2| (-317)))) (-1759 (((-246 |#1| |#2|) $ (-576)) 42)) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) ((|#2| $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) 83)) (-4423 (((-783) $) 71 (|has| |#2| (-568)))) (-2789 ((|#2| $ (-576) (-576)) NIL)) (-4001 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-1439 (((-112) $) NIL)) (-1724 (((-783) $) 73 (|has| |#2| (-568)))) (-1714 (((-656 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-4244 (((-783) $) NIL)) (-2310 (($ |#2|) 25)) (-4256 (((-783) $) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3304 ((|#2| $) 67 (|has| |#2| (-6 (-4463 "*"))))) (-1805 (((-576) $) NIL)) (-1782 (((-576) $) NIL)) (-1496 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1793 (((-576) $) NIL)) (-1771 (((-576) $) NIL)) (-4317 (($ (-656 (-656 |#2|))) 37)) (-2848 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3667 (((-656 (-656 |#2|)) $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-3633 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-3914 (((-1138) $) NIL)) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-2476 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-2390 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-3323 ((|#2| $) NIL)) (-3344 (($ (-656 |#2|)) 50)) (-1835 (((-112) $) NIL)) (-3333 (((-246 |#1| |#2|) $) NIL)) (-3314 ((|#2| $) 65 (|has| |#2| (-6 (-4463 "*"))))) (-3926 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3079 (($ $) NIL)) (-2616 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-1747 (((-246 |#1| |#2|) $ (-576)) 44)) (-2884 (((-874) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1056 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) 52)) (-1871 (((-783)) 23 T CONST)) (-3722 (((-112) $ $) NIL)) (-2492 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1815 (((-112) $) NIL)) (-1996 (($) 16 T CONST)) (-2011 (($) 21 T CONST)) (-3431 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1160 |#1| |#2|) (-13 (-1141 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -2310 ($ |#2|)) (-15 -2899 ($ $)) (-15 -2890 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4463 "*"))) (-6 -4450) |%noBranch|) (IF (|has| |#2| (-6 (-4463 "*"))) (IF (|has| |#2| (-6 -4458)) (-6 -4458) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-783) (-1067)) (T -1160)) -((-2310 (*1 *1 *2) (-12 (-5 *1 (-1160 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1067)))) (-2899 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1067)))) (-2890 (*1 *1 *2) (-12 (-5 *2 (-701 *4)) (-4 *4 (-1067)) (-5 *1 (-1160 *3 *4)) (-14 *3 (-783))))) -(-13 (-1141 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -2310 ($ |#2|)) (-15 -2899 ($ $)) (-15 -2890 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4463 "*"))) (-6 -4450) |%noBranch|) (IF (|has| |#2| (-6 (-4463 "*"))) (IF (|has| |#2| (-6 -4458)) (-6 -4458) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-2949 (($ $) 19)) (-2909 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3469 (((-112) $ $) 24)) (-1684 (($ $) 17)) (-2071 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1253 (-576))) NIL) (($ $ $) 31)) (-2884 (($ (-145)) 29) (((-874) $) NIL))) -(((-1161 |#1|) (-10 -8 (-15 -2884 ((-874) |#1|)) (-15 -2071 (|#1| |#1| |#1|)) (-15 -2909 (|#1| |#1| (-142))) (-15 -2909 (|#1| |#1| (-145))) (-15 -2884 (|#1| (-145))) (-15 -3469 ((-112) |#1| |#1|)) (-15 -2949 (|#1| |#1|)) (-15 -1684 (|#1| |#1|)) (-15 -2071 (|#1| |#1| (-1253 (-576)))) (-15 -2071 ((-145) |#1| (-576))) (-15 -2071 ((-145) |#1| (-576) (-145)))) (-1162)) (T -1161)) -NIL -(-10 -8 (-15 -2884 ((-874) |#1|)) (-15 -2071 (|#1| |#1| |#1|)) (-15 -2909 (|#1| |#1| (-142))) (-15 -2909 (|#1| |#1| (-145))) (-15 -2884 (|#1| (-145))) (-15 -3469 ((-112) |#1| |#1|)) (-15 -2949 (|#1| |#1|)) (-15 -1684 (|#1| |#1|)) (-15 -2071 (|#1| |#1| (-1253 (-576)))) (-15 -2071 ((-145) |#1| (-576))) (-15 -2071 ((-145) |#1| (-576) (-145)))) -((-2862 (((-112) $ $) 19 (|has| (-145) (-1118)))) (-2939 (($ $) 123)) (-2949 (($ $) 124)) (-2909 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3336 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-3448 (((-112) $ $) 121)) (-3430 (((-112) $ $ (-576)) 120)) (-2921 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-1913 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-862)))) (-1891 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| (-145) (-862)) (|has| $ (-6 -4462))))) (-2032 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-862)))) (-2970 (((-112) $ (-783)) 8)) (-3055 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4462))) (((-145) $ (-1253 (-576)) (-145)) 60 (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-3781 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2745 (($ $) 93 (|has| $ (-6 -4462)))) (-4379 (($ $) 103)) (-2932 (($ $ (-1253 (-576)) $) 117)) (-1919 (($ $) 80 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ (-145) $) 79 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4461)))) (-2309 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4461)))) (-2859 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4462)))) (-2789 (((-145) $ (-576)) 52)) (-3469 (((-112) $ $) 122)) (-2634 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1118))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1118))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-4001 (((-656 (-145)) $) 31 (|has| $ (-6 -4461)))) (-2310 (($ (-783) (-145)) 70)) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 44 (|has| (-576) (-862)))) (-1921 (($ $ $) 90 (|has| (-145) (-862)))) (-4214 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-862)))) (-1496 (((-656 (-145)) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 45 (|has| (-576) (-862)))) (-4137 (($ $ $) 89 (|has| (-145) (-862)))) (-3129 (((-112) $ $ (-145)) 118)) (-1616 (((-783) $ $ (-145)) 119)) (-2848 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2958 (($ $) 125)) (-1684 (($ $) 126)) (-2374 (((-112) $ (-783)) 10)) (-3792 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3733 (((-1177) $) 22 (|has| (-145) (-1118)))) (-2134 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-3385 (((-656 (-576)) $) 47)) (-3394 (((-112) (-576) $) 48)) (-3914 (((-1138) $) 21 (|has| (-145) (-1118)))) (-1962 (((-145) $) 43 (|has| (-576) (-862)))) (-1932 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-3346 (($ $ (-145)) 42 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-3403 (((-656 (-145)) $) 49)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1253 (-576))) 71) (($ $ $) 105)) (-3240 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3926 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4461))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-1902 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3079 (($ $) 13)) (-2616 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-2895 (($ (-656 (-145))) 72)) (-1514 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2884 (($ (-145)) 114) (((-874) $) 18 (|has| (-145) (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| (-145) (-1118)))) (-2492 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) 87 (|has| (-145) (-862)))) (-3957 (((-112) $ $) 86 (|has| (-145) (-862)))) (-3915 (((-112) $ $) 20 (|has| (-145) (-1118)))) (-3970 (((-112) $ $) 88 (|has| (-145) (-862)))) (-3943 (((-112) $ $) 85 (|has| (-145) (-862)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-1162) (-141)) (T -1162)) -((-1684 (*1 *1 *1) (-4 *1 (-1162))) (-2958 (*1 *1 *1) (-4 *1 (-1162))) (-2949 (*1 *1 *1) (-4 *1 (-1162))) (-2939 (*1 *1 *1) (-4 *1 (-1162))) (-3469 (*1 *2 *1 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-112)))) (-3448 (*1 *2 *1 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-112)))) (-3430 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-576)) (-5 *2 (-112)))) (-1616 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-145)) (-5 *2 (-783)))) (-3129 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-145)) (-5 *2 (-112)))) (-2932 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1253 (-576))))) (-2634 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-576)))) (-2634 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-576)) (-5 *3 (-142)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1162)))) (-2921 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1162)))) (-2921 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1162)))) (-2909 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145)))) (-2909 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142)))) (-3792 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145)))) (-3792 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142)))) (-3781 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145)))) (-3781 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142)))) (-2071 (*1 *1 *1 *1) (-4 *1 (-1162)))) -(-13 (-19 (-145)) (-10 -8 (-15 -1684 ($ $)) (-15 -2958 ($ $)) (-15 -2949 ($ $)) (-15 -2939 ($ $)) (-15 -3469 ((-112) $ $)) (-15 -3448 ((-112) $ $)) (-15 -3430 ((-112) $ $ (-576))) (-15 -1616 ((-783) $ $ (-145))) (-15 -3129 ((-112) $ $ (-145))) (-15 -2932 ($ $ (-1253 (-576)) $)) (-15 -2634 ((-576) $ $ (-576))) (-15 -2634 ((-576) (-142) $ (-576))) (-15 -2884 ($ (-145))) (-15 -2921 ((-656 $) $ (-145))) (-15 -2921 ((-656 $) $ (-142))) (-15 -2909 ($ $ (-145))) (-15 -2909 ($ $ (-142))) (-15 -3792 ($ $ (-145))) (-15 -3792 ($ $ (-142))) (-15 -3781 ($ $ (-145))) (-15 -3781 ($ $ (-142))) (-15 -2071 ($ $ $)))) -(((-34) . T) ((-102) -3766 (|has| (-145) (-1118)) (|has| (-145) (-862))) ((-625 (-874)) -3766 (|has| (-145) (-1118)) (|has| (-145) (-862)) (|has| (-145) (-625 (-874)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))) ((-663 #0#) . T) ((-19 #0#) . T) ((-862) |has| (-145) (-862)) ((-1118) -3766 (|has| (-145) (-1118)) (|has| (-145) (-862))) ((-1236) . T)) -((-1766 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) (-783)) 112)) (-1730 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783)) 61)) (-2722 (((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-783)) 97)) (-1710 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-1741 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783)) 63) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783) (-112)) 65)) (-1754 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 85)) (-2616 (((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) 90)) (-1719 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|) 60)) (-1698 (((-783) (-656 |#4|) (-656 |#5|)) 21))) -(((-1163 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1698 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1710 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1719 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|)) (-15 -1730 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783))) (-15 -1730 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|)) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783))) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|)) (-15 -1754 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -1754 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1766 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) (-783))) (-15 -2616 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)))) (-15 -2722 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-783)))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1127 |#1| |#2| |#3| |#4|)) (T -1163)) -((-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4271 *9)))) (-5 *4 (-783)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4271 *8))) (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1127 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177)) (-5 *1 (-1163 *4 *5 *6 *7 *8)))) (-1766 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4271 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4271 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1083 *7 *8 *9)) (-4 *11 (-1127 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-5 *1 (-1163 *7 *8 *9 *10 *11)))) (-1754 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))) (-1754 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))) (-1741 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3)))) (-1741 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1163 *6 *7 *8 *3 *4)) (-4 *4 (-1127 *6 *7 *8 *3)))) (-1741 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-4 *3 (-1083 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1163 *7 *8 *9 *3 *4)) (-4 *4 (-1127 *7 *8 *9 *3)))) (-1730 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3)))) (-1730 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1163 *6 *7 *8 *3 *4)) (-4 *4 (-1127 *6 *7 *8 *3)))) (-1719 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3)))) (-1710 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1163 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1698 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1710 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1719 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|)) (-15 -1730 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783))) (-15 -1730 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|)) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5| (-783))) (-15 -1741 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) |#4| |#5|)) (-15 -1754 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -1754 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1766 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))))) (-783))) (-15 -2616 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|)))) (-15 -2722 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4271 |#5|))) (-783)))) -((-2862 (((-112) $ $) NIL)) (-3289 (((-656 (-2 (|:| -2459 $) (|:| -2980 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3299 (((-656 $) (-656 |#4|)) 124) (((-656 $) (-656 |#4|) (-112)) 125) (((-656 $) (-656 |#4|) (-112) (-112)) 123) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1607 (((-656 |#3|) $) NIL)) (-1470 (((-112) $) NIL)) (-1374 (((-112) $) NIL (|has| |#1| (-568)))) (-3405 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3358 ((|#4| |#4| $) NIL)) (-2944 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| $) 97)) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#3|) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3985 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 75)) (-2473 (($) NIL T CONST)) (-1425 (((-112) $) 29 (|has| |#1| (-568)))) (-1445 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1435 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1457 (((-112) $) NIL (|has| |#1| (-568)))) (-3367 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1384 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1394 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4401 (($ (-656 |#4|)) NIL)) (-1976 (((-3 $ "failed") $) 45)) (-3328 ((|#4| |#4| $) 78)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3634 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-3414 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3308 ((|#4| |#4| $) NIL)) (-2309 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3435 (((-2 (|:| -2459 (-656 |#4|)) (|:| -2980 (-656 |#4|))) $) NIL)) (-1489 (((-112) |#4| $) NIL)) (-1463 (((-112) |#4| $) NIL)) (-1498 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1777 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 139)) (-4001 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-3425 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1323 ((|#3| $) 38)) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#4|) $) 19 (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-2848 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) 23)) (-1524 (((-656 |#3|) $) NIL)) (-1513 (((-112) |#3| $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-1421 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-1411 (((-656 (-2 (|:| |val| |#4|) (|:| -4271 $))) |#4| |#4| $) 117)) (-3654 (((-3 |#4| "failed") $) 42)) (-1431 (((-656 $) |#4| $) 102)) (-1451 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-1440 (((-656 (-2 (|:| |val| (-112)) (|:| -4271 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3703 (((-656 $) |#4| $) 121) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 122) (((-656 $) |#4| (-656 $)) NIL)) (-1788 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 134)) (-1800 (($ |#4| $) 88) (($ (-656 |#4|) $) 89) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-3443 (((-656 |#4|) $) NIL)) (-3387 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#4| |#4| $) NIL)) (-3461 (((-112) $ $) NIL)) (-1415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3396 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3348 ((|#4| |#4| $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 (((-3 |#4| "failed") $) 40)) (-1932 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3266 (((-3 $ "failed") $ |#4|) 59)) (-2904 (($ $ |#4|) NIL) (((-656 $) |#4| $) 104) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 99)) (-2476 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 17)) (-1458 (($) 14)) (-3813 (((-783) $) NIL)) (-3926 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) 13)) (-2616 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2895 (($ (-656 |#4|)) 22)) (-1483 (($ $ |#3|) 52)) (-1504 (($ $ |#3|) 54)) (-3318 (($ $) NIL)) (-1493 (($ $ |#3|) NIL)) (-2884 (((-874) $) 35) (((-656 |#4|) $) 46)) (-3255 (((-783) $) NIL (|has| |#3| (-379)))) (-3722 (((-112) $ $) NIL)) (-3453 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3377 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-1400 (((-656 $) |#4| $) 66) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2492 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3278 (((-656 |#3|) $) NIL)) (-1479 (((-112) |#4| $) NIL)) (-3704 (((-112) |#3| $) 74)) (-3915 (((-112) $ $) NIL)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1164 |#1| |#2| |#3| |#4|) (-13 (-1127 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1800 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3299 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3299 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -1788 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -1777 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -1164)) -((-1800 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1164 *5 *6 *7 *3))) (-5 *1 (-1164 *5 *6 *7 *3)) (-4 *3 (-1083 *5 *6 *7)))) (-3299 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8)))) (-3299 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8)))) (-1788 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8)))) (-1777 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1164 *5 *6 *7 *8))))) (-5 *1 (-1164 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(-13 (-1127 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1800 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3299 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3299 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -1788 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -1777 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2012 ((|#1| $) 37)) (-1760 (($ (-656 |#1|)) 45)) (-2970 (((-112) $ (-783)) NIL)) (-2473 (($) NIL T CONST)) (-3295 ((|#1| |#1| $) 40)) (-3285 ((|#1| $) 35)) (-4001 (((-656 |#1|) $) 18 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2848 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 22)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3449 ((|#1| $) 38)) (-3807 (($ |#1| $) 41)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3458 ((|#1| $) 36)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 32)) (-1458 (($) 43)) (-3324 (((-783) $) 30)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) 27)) (-2884 (((-874) $) 14 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3541 (($ (-656 |#1|)) NIL)) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 17 (|has| |#1| (-1118)))) (-2872 (((-783) $) 31 (|has| $ (-6 -4461))))) -(((-1165 |#1|) (-13 (-1139 |#1|) (-10 -8 (-15 -1760 ($ (-656 |#1|))))) (-1236)) (T -1165)) -((-1760 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1165 *3))))) -(-13 (-1139 |#1|) (-10 -8 (-15 -1760 ($ (-656 |#1|))))) -((-3055 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1253 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-1811 (((-112) $) 12)) (-2848 (($ (-1 |#2| |#2|) $) 48)) (-1962 ((|#2| $) NIL) (($ $ (-783)) 17)) (-3346 (($ $ |#2|) 49)) (-1821 (((-112) $) 11)) (-2071 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1253 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-1806 (($ $ $) 56) (($ $ |#2|) NIL)) (-1514 (($ $ $) 38) (($ |#2| $) NIL) (($ (-656 $)) 45) (($ $ |#2|) NIL))) -(((-1166 |#1| |#2|) (-10 -8 (-15 -1811 ((-112) |#1|)) (-15 -1821 ((-112) |#1|)) (-15 -3055 (|#2| |#1| (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576))) (-15 -3346 (|#1| |#1| |#2|)) (-15 -2071 (|#1| |#1| (-1253 (-576)))) (-15 -1514 (|#1| |#1| |#2|)) (-15 -1514 (|#1| (-656 |#1|))) (-15 -3055 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -3055 (|#2| |#1| "last" |#2|)) (-15 -3055 (|#1| |#1| "rest" |#1|)) (-15 -3055 (|#2| |#1| "first" |#2|)) (-15 -1806 (|#1| |#1| |#2|)) (-15 -1806 (|#1| |#1| |#1|)) (-15 -2071 (|#2| |#1| "last")) (-15 -2071 (|#1| |#1| "rest")) (-15 -1962 (|#1| |#1| (-783))) (-15 -2071 (|#2| |#1| "first")) (-15 -1962 (|#2| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -3055 (|#2| |#1| "value" |#2|)) (-15 -2071 (|#2| |#1| "value")) (-15 -2848 (|#1| (-1 |#2| |#2|) |#1|))) (-1167 |#2|) (-1236)) (T -1166)) -NIL -(-10 -8 (-15 -1811 ((-112) |#1|)) (-15 -1821 ((-112) |#1|)) (-15 -3055 (|#2| |#1| (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576) |#2|)) (-15 -2071 (|#2| |#1| (-576))) (-15 -3346 (|#1| |#1| |#2|)) (-15 -2071 (|#1| |#1| (-1253 (-576)))) (-15 -1514 (|#1| |#1| |#2|)) (-15 -1514 (|#1| (-656 |#1|))) (-15 -3055 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -3055 (|#2| |#1| "last" |#2|)) (-15 -3055 (|#1| |#1| "rest" |#1|)) (-15 -3055 (|#2| |#1| "first" |#2|)) (-15 -1806 (|#1| |#1| |#2|)) (-15 -1806 (|#1| |#1| |#1|)) (-15 -2071 (|#2| |#1| "last")) (-15 -2071 (|#1| |#1| "rest")) (-15 -1962 (|#1| |#1| (-783))) (-15 -2071 (|#2| |#1| "first")) (-15 -1962 (|#2| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -3055 (|#2| |#1| "value" |#2|)) (-15 -2071 (|#2| |#1| "value")) (-15 -2848 (|#1| (-1 |#2| |#2|) |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-4183 ((|#1| $) 49)) (-2990 ((|#1| $) 66)) (-3463 (($ $) 68)) (-3336 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-1748 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) 8)) (-3434 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-1772 (($ $ $) 57 (|has| $ (-6 -4462)))) (-1761 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1783 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 119 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4461)))) (-2978 ((|#1| $) 67)) (-2473 (($) 7 T CONST)) (-1976 (($ $) 74) (($ $ (-783)) 72)) (-1919 (($ $) 101 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4461))) (($ |#1| $) 102 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2859 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) 89)) (-1811 (((-112) $) 85)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) 51)) (-3452 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-2310 (($ (-783) |#1|) 111)) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 97 (|has| (-576) (-862)))) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 96 (|has| (-576) (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2374 (((-112) $ (-783)) 10)) (-2482 (((-656 |#1|) $) 46)) (-4306 (((-112) $) 50)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3654 ((|#1| $) 71) (($ $ (-783)) 69)) (-2134 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3385 (((-656 (-576)) $) 94)) (-3394 (((-112) (-576) $) 93)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1962 ((|#1| $) 77) (($ $ (-783)) 75)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3346 (($ $ |#1|) 98 (|has| $ (-6 -4462)))) (-1821 (((-112) $) 86)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) 92)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1253 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3473 (((-576) $ $) 45)) (-3240 (($ $ (-1253 (-576))) 116) (($ $ (-576)) 115)) (-4053 (((-112) $) 47)) (-1816 (($ $) 63)) (-1794 (($ $) 60 (|has| $ (-6 -4462)))) (-1826 (((-783) $) 64)) (-1836 (($ $) 65)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-2616 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 109)) (-1806 (($ $ $) 62 (|has| $ (-6 -4462))) (($ $ |#1|) 61 (|has| $ (-6 -4462)))) (-1514 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) 52)) (-3462 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-1167 |#1|) (-141) (-1236)) (T -1167)) -((-1821 (*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) -(-13 (-1274 |t#1|) (-663 |t#1|) (-10 -8 (-15 -1821 ((-112) $)) (-15 -1811 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T) ((-1274 |#1|) . T)) -((-2862 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2298 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3336 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#2| $ |#1| |#2|) NIL)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1397 (((-3 |#2| "failed") |#1| $) NIL)) (-2473 (($) NIL T CONST)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2833 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3634 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#2| $ |#1|) NIL)) (-4001 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 ((|#1| $) NIL (|has| |#1| (-862)))) (-1496 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3365 ((|#1| $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2002 (((-656 |#1|) $) NIL)) (-3412 (((-112) |#1| $) NIL)) (-3449 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3807 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3385 (((-656 |#1|) $) NIL)) (-3394 (((-112) |#1| $) NIL)) (-3914 (((-1138) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1962 ((|#2| $) NIL (|has| |#1| (-862)))) (-1932 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL)) (-3346 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1581 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2884 (((-874) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3722 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1168 |#1| |#2| |#3|) (-1212 |#1| |#2|) (-1118) (-1118) |#2|) (T -1168)) -NIL -(-1212 |#1| |#2|) -((-2862 (((-112) $ $) NIL)) (-1843 (((-703 (-1153)) $) 27)) (-4108 (((-1153) $) 15)) (-1855 (((-1153) $) 17)) (-3733 (((-1177) $) NIL)) (-1866 (((-518) $) 13)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 37) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1169) (-13 (-1101) (-10 -8 (-15 -1866 ((-518) $)) (-15 -1855 ((-1153) $)) (-15 -1843 ((-703 (-1153)) $)) (-15 -4108 ((-1153) $))))) (T -1169)) -((-1866 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1169)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1169)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-703 (-1153))) (-5 *1 (-1169)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1169))))) -(-13 (-1101) (-10 -8 (-15 -1866 ((-518) $)) (-15 -1855 ((-1153) $)) (-15 -1843 ((-703 (-1153)) $)) (-15 -4108 ((-1153) $)))) -((-2862 (((-112) $ $) 7)) (-1831 (((-3 $ "failed") $) 14)) (-3733 (((-1177) $) 10)) (-3475 (($) 15 T CONST)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-3915 (((-112) $ $) 6))) -(((-1170) (-141)) (T -1170)) -((-3475 (*1 *1) (-4 *1 (-1170))) (-1831 (*1 *1 *1) (|partial| -4 *1 (-1170)))) -(-13 (-1118) (-10 -8 (-15 -3475 ($) -3739) (-15 -1831 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-874)) . T) ((-1118) . T)) -((-1901 (((-1175 |#1|) (-1175 |#1|)) 17)) (-1878 (((-1175 |#1|) (-1175 |#1|)) 13)) (-1912 (((-1175 |#1|) (-1175 |#1|) (-576) (-576)) 20)) (-1889 (((-1175 |#1|) (-1175 |#1|)) 15))) -(((-1171 |#1|) (-10 -7 (-15 -1878 ((-1175 |#1|) (-1175 |#1|))) (-15 -1889 ((-1175 |#1|) (-1175 |#1|))) (-15 -1901 ((-1175 |#1|) (-1175 |#1|))) (-15 -1912 ((-1175 |#1|) (-1175 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1171)) -((-1912 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1171 *4)))) (-1901 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1171 *3)))) (-1889 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1171 *3)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1171 *3))))) -(-10 -7 (-15 -1878 ((-1175 |#1|) (-1175 |#1|))) (-15 -1889 ((-1175 |#1|) (-1175 |#1|))) (-15 -1901 ((-1175 |#1|) (-1175 |#1|))) (-15 -1912 ((-1175 |#1|) (-1175 |#1|) (-576) (-576)))) -((-1514 (((-1175 |#1|) (-1175 (-1175 |#1|))) 15))) -(((-1172 |#1|) (-10 -7 (-15 -1514 ((-1175 |#1|) (-1175 (-1175 |#1|))))) (-1236)) (T -1172)) -((-1514 (*1 *2 *3) (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1172 *4)) (-4 *4 (-1236))))) -(-10 -7 (-15 -1514 ((-1175 |#1|) (-1175 (-1175 |#1|))))) -((-2176 (((-1175 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|)) 25)) (-2309 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|)) 26)) (-2551 (((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|)) 16))) -(((-1173 |#1| |#2|) (-10 -7 (-15 -2551 ((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|))) (-15 -2176 ((-1175 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|))) (-15 -2309 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|)))) (-1236) (-1236)) (T -1173)) -((-2309 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1175 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-1173 *5 *2)))) (-2176 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1175 *6)) (-4 *6 (-1236)) (-4 *3 (-1236)) (-5 *2 (-1175 *3)) (-5 *1 (-1173 *6 *3)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6))))) -(-10 -7 (-15 -2551 ((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|))) (-15 -2176 ((-1175 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|))) (-15 -2309 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|)))) -((-2551 (((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-1175 |#2|)) 21))) -(((-1174 |#1| |#2| |#3|) (-10 -7 (-15 -2551 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-1175 |#2|)))) (-1236) (-1236) (-1236)) (T -1174)) -((-2551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-1175 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8)) (-5 *1 (-1174 *6 *7 *8))))) -(-10 -7 (-15 -2551 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-1175 |#2|)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4183 ((|#1| $) NIL)) (-2990 ((|#1| $) NIL)) (-3463 (($ $) 67)) (-3336 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-1748 (($ $ (-576)) 128 (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-1937 (((-874) $) 56 (|has| |#1| (-1118)))) (-1925 (((-112)) 55 (|has| |#1| (-1118)))) (-3434 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1772 (($ $ $) 115 (|has| $ (-6 -4462))) (($ $ (-576) $) 141)) (-1761 ((|#1| $ |#1|) 125 (|has| $ (-6 -4462)))) (-1783 ((|#1| $ |#1|) 120 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4462))) (($ $ "rest" $) 124 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 112 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) 80)) (-2978 ((|#1| $) NIL)) (-2473 (($) NIL T CONST)) (-1677 (($ $) 14)) (-1976 (($ $) 40) (($ $ (-783)) 111)) (-1975 (((-112) (-656 |#1|) $) 134 (|has| |#1| (-1118)))) (-1988 (($ (-656 |#1|)) 130)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) 79)) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2859 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) NIL)) (-1811 (((-112) $) NIL)) (-4001 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3723 (((-1291) (-576) $) 140 (|has| |#1| (-1118)))) (-1667 (((-783) $) 137)) (-3484 (((-656 $) $) NIL)) (-3452 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2310 (($ (-783) |#1|) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2374 (((-112) $ (-783)) NIL)) (-2482 (((-656 |#1|) $) NIL)) (-4306 (((-112) $) NIL)) (-1702 (($ $) 113)) (-1713 (((-112) $) 13)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3654 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2134 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) 96)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3903 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-1689 ((|#1| $) 10)) (-1962 ((|#1| $) 39) (($ $ (-783)) 65)) (-1961 (((-2 (|:| |cycle?| (-112)) (|:| -2500 (-783)) (|:| |period| (-783))) (-783) $) 34)) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3959 (($ (-1 (-112) |#1|) $) 145)) (-3972 (($ (-1 (-112) |#1|) $) 146)) (-3346 (($ $ |#1|) 90 (|has| $ (-6 -4462)))) (-2904 (($ $ (-576)) 45)) (-1821 (((-112) $) 94)) (-1723 (((-112) $) 12)) (-1734 (((-112) $) 136)) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 30)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) 20)) (-1458 (($) 60)) (-2071 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-3473 (((-576) $ $) 64)) (-3240 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-1948 (($ (-1 $)) 63)) (-4053 (((-112) $) 91)) (-1816 (($ $) 92)) (-1794 (($ $) 116 (|has| $ (-6 -4462)))) (-1826 (((-783) $) NIL)) (-1836 (($ $) NIL)) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) 59)) (-2616 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 73)) (-2822 (($ |#1| $) 114)) (-1806 (($ $ $) 118 (|has| $ (-6 -4462))) (($ $ |#1|) 119 (|has| $ (-6 -4462)))) (-1514 (($ $ $) 101) (($ |#1| $) 61) (($ (-656 $)) 106) (($ $ |#1|) 100)) (-1346 (($ $) 66)) (-2884 (($ (-656 |#1|)) 129) (((-874) $) 57 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) NIL)) (-3462 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 132 (|has| |#1| (-1118)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1175 |#1|) (-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4462) (-15 -1988 ($ (-656 |#1|))) (IF (|has| |#1| (-1118)) (-15 -1975 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -1961 ((-2 (|:| |cycle?| (-112)) (|:| -2500 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -1948 ($ (-1 $))) (-15 -2822 ($ |#1| $)) (IF (|has| |#1| (-1118)) (PROGN (-15 -3723 ((-1291) (-576) $)) (-15 -1937 ((-874) $)) (-15 -1925 ((-112)))) |%noBranch|) (-15 -1772 ($ $ (-576) $)) (-15 -3903 ($ (-1 |#1|))) (-15 -3903 ($ (-1 |#1| |#1|) |#1|)) (-15 -3959 ($ (-1 (-112) |#1|) $)) (-15 -3972 ($ (-1 (-112) |#1|) $)))) (-1236)) (T -1175)) -((-1988 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))) (-1975 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-4 *4 (-1236)) (-5 *2 (-112)) (-5 *1 (-1175 *4)))) (-1961 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2500 (-783)) (|:| |period| (-783)))) (-5 *1 (-1175 *4)) (-4 *4 (-1236)) (-5 *3 (-783)))) (-1948 (*1 *1 *2) (-12 (-5 *2 (-1 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1236)))) (-2822 (*1 *1 *2 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1236)))) (-3723 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1175 *4)) (-4 *4 (-1118)) (-4 *4 (-1236)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1175 *3)) (-4 *3 (-1118)) (-4 *3 (-1236)))) (-1925 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1175 *3)) (-4 *3 (-1118)) (-4 *3 (-1236)))) (-1772 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1175 *3)) (-4 *3 (-1236)))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))) (-3903 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3))))) -(-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4462) (-15 -1988 ($ (-656 |#1|))) (IF (|has| |#1| (-1118)) (-15 -1975 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -1961 ((-2 (|:| |cycle?| (-112)) (|:| -2500 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -1948 ($ (-1 $))) (-15 -2822 ($ |#1| $)) (IF (|has| |#1| (-1118)) (PROGN (-15 -3723 ((-1291) (-576) $)) (-15 -1937 ((-874) $)) (-15 -1925 ((-112)))) |%noBranch|) (-15 -1772 ($ $ (-576) $)) (-15 -3903 ($ (-1 |#1|))) (-15 -3903 ($ (-1 |#1| |#1|) |#1|)) (-15 -3959 ($ (-1 (-112) |#1|) $)) (-15 -3972 ($ (-1 (-112) |#1|) $)))) -((-2862 (((-112) $ $) 19)) (-2939 (($ $) 123)) (-2949 (($ $) 124)) (-2909 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3336 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-3448 (((-112) $ $) 121)) (-3430 (((-112) $ $ (-576)) 120)) (-1651 (($ (-576)) 130)) (-2921 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-1913 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-862)))) (-1891 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| (-145) (-862)) (|has| $ (-6 -4462))))) (-2032 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-862)))) (-2970 (((-112) $ (-783)) 8)) (-3055 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4462))) (((-145) $ (-1253 (-576)) (-145)) 60 (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-3781 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2745 (($ $) 93 (|has| $ (-6 -4462)))) (-4379 (($ $) 103)) (-2932 (($ $ (-1253 (-576)) $) 117)) (-1919 (($ $) 80 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ (-145) $) 79 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4461)))) (-2309 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4461)))) (-2859 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4462)))) (-2789 (((-145) $ (-576)) 52)) (-3469 (((-112) $ $) 122)) (-2634 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1118))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1118))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-4001 (((-656 (-145)) $) 31 (|has| $ (-6 -4461)))) (-2310 (($ (-783) (-145)) 70)) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 44 (|has| (-576) (-862)))) (-1921 (($ $ $) 90 (|has| (-145) (-862)))) (-4214 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-862)))) (-1496 (((-656 (-145)) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 45 (|has| (-576) (-862)))) (-4137 (($ $ $) 89 (|has| (-145) (-862)))) (-3129 (((-112) $ $ (-145)) 118)) (-1616 (((-783) $ $ (-145)) 119)) (-2848 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2958 (($ $) 125)) (-1684 (($ $) 126)) (-2374 (((-112) $ (-783)) 10)) (-3792 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3733 (((-1177) $) 22)) (-2134 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-3385 (((-656 (-576)) $) 47)) (-3394 (((-112) (-576) $) 48)) (-3914 (((-1138) $) 21)) (-1962 (((-145) $) 43 (|has| (-576) (-862)))) (-1932 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-3346 (($ $ (-145)) 42 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-3403 (((-656 (-145)) $) 49)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1253 (-576))) 71) (($ $ $) 105)) (-3240 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3926 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4461))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-1902 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3079 (($ $) 13)) (-2616 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-2895 (($ (-656 (-145))) 72)) (-1514 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2884 (($ (-145)) 114) (((-874) $) 18)) (-3722 (((-112) $ $) 23)) (-2492 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4461)))) (-1813 (((-1177) $) 134) (((-1177) $ (-112)) 133) (((-1291) (-834) $) 132) (((-1291) (-834) $ (-112)) 131)) (-3983 (((-112) $ $) 87 (|has| (-145) (-862)))) (-3957 (((-112) $ $) 86 (|has| (-145) (-862)))) (-3915 (((-112) $ $) 20)) (-3970 (((-112) $ $) 88 (|has| (-145) (-862)))) (-3943 (((-112) $ $) 85 (|has| (-145) (-862)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-1176) (-141)) (T -1176)) -((-1651 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1176))))) -(-13 (-1162) (-1118) (-840) (-10 -8 (-15 -1651 ($ (-576))))) -(((-34) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))) ((-663 #0#) . T) ((-19 #0#) . T) ((-840) . T) ((-862) |has| (-145) (-862)) ((-1118) . T) ((-1162) . T) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-2939 (($ $) NIL)) (-2949 (($ $) NIL)) (-2909 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-3448 (((-112) $ $) NIL)) (-3430 (((-112) $ $ (-576)) NIL)) (-1651 (($ (-576)) 8)) (-2921 (((-656 $) $ (-145)) NIL) (((-656 $) $ (-142)) NIL)) (-1913 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-1891 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-862))))) (-2032 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4462))) (((-145) $ (-1253 (-576)) (-145)) NIL (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-3781 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-2932 (($ $ (-1253 (-576)) $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-3634 (($ (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2859 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4462)))) (-2789 (((-145) $ (-576)) NIL)) (-3469 (((-112) $ $) NIL)) (-2634 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1118))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1118))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-4001 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-2310 (($ (-783) (-145)) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| (-145) (-862)))) (-4214 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-1496 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-3365 (((-576) $) NIL (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| (-145) (-862)))) (-3129 (((-112) $ $ (-145)) NIL)) (-1616 (((-783) $ $ (-145)) NIL)) (-2848 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2958 (($ $) NIL)) (-1684 (($ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3792 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3733 (((-1177) $) NIL)) (-2134 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 (((-145) $) NIL (|has| (-576) (-862)))) (-1932 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3346 (($ $ (-145)) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-3403 (((-656 (-145)) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1253 (-576))) NIL) (($ $ $) NIL)) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3926 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-2895 (($ (-656 (-145))) NIL)) (-1514 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2884 (($ (-145)) NIL) (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-2492 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-1813 (((-1177) $) 19) (((-1177) $ (-112)) 21) (((-1291) (-834) $) 22) (((-1291) (-834) $ (-112)) 23)) (-3983 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3957 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3943 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1177) (-1176)) (T -1177)) -NIL -(-1176) -((-2862 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)) (|has| |#1| (-1118))))) (-2298 (($) NIL) (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL)) (-3336 (((-1291) $ (-1177) (-1177)) NIL (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#1| $ (-1177) |#1|) NIL)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-1397 (((-3 |#1| "failed") (-1177) $) NIL)) (-2473 (($) NIL T CONST)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118))))) (-2833 (($ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#1| "failed") (-1177) $) NIL)) (-3634 (($ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-1177) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-1177)) NIL)) (-4001 (((-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-1177) $) NIL (|has| (-1177) (-862)))) (-1496 (((-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (-3766 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)) (|has| |#1| (-1118))))) (-2002 (((-656 (-1177)) $) NIL)) (-3412 (((-112) (-1177) $) NIL)) (-3449 (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL)) (-3807 (($ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL)) (-3385 (((-656 (-1177)) $) NIL)) (-3394 (((-112) (-1177) $) NIL)) (-3914 (((-1138) $) NIL (-3766 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)) (|has| |#1| (-1118))))) (-1962 ((|#1| $) NIL (|has| (-1177) (-862)))) (-1932 (((-3 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) "failed") (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL)) (-3346 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (($ $ (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (($ $ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-319 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-1177)) NIL) ((|#1| $ (-1177) |#1|) NIL)) (-1581 (($) NIL) (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL)) (-2884 (((-874) $) NIL (-3766 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-625 (-874))) (|has| |#1| (-625 (-874)))))) (-3722 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)) (|has| |#1| (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)))) NIL)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 (-1177)) (|:| -3180 |#1|)) (-1118)) (|has| |#1| (-1118))))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1178 |#1|) (-13 (-1212 (-1177) |#1|) (-10 -7 (-6 -4461))) (-1118)) (T -1178)) -NIL -(-13 (-1212 (-1177) |#1|) (-10 -7 (-6 -4461))) -((-1872 (((-1175 |#1|) (-1175 |#1|)) 83)) (-1999 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 39)) (-2116 (((-1175 |#1|) (-419 (-576)) (-1175 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2147 (((-1175 |#1|) |#1| (-1175 |#1|)) 139 (|has| |#1| (-374)))) (-1906 (((-1175 |#1|) (-1175 |#1|)) 97)) (-2026 (((-1175 (-576)) (-576)) 63)) (-2106 (((-1175 |#1|) (-1175 (-1175 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-1861 (((-1175 |#1|) (-576) (-576) (-1175 |#1|)) 102)) (-3694 (((-1175 |#1|) |#1| (-576)) 51)) (-2038 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 66)) (-2126 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 136 (|has| |#1| (-374)))) (-2096 (((-1175 |#1|) |#1| (-1 (-1175 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (((-1175 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1175 |#1|))) 137 (|has| |#1| (-374)))) (-1917 (((-1175 |#1|) (-1175 |#1|)) 96)) (-1930 (((-1175 |#1|) (-1175 |#1|)) 82)) (-1848 (((-1175 |#1|) (-576) (-576) (-1175 |#1|)) 103)) (-1956 (((-1175 |#1|) |#1| (-1175 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2015 (((-1175 (-576)) (-576)) 62)) (-2523 (((-1175 |#1|) |#1|) 65)) (-1883 (((-1175 |#1|) (-1175 |#1|) (-576) (-576)) 99)) (-2061 (((-1175 |#1|) (-1 |#1| (-576)) (-1175 |#1|)) 72)) (-2852 (((-3 (-1175 |#1|) "failed") (-1175 |#1|) (-1175 |#1|)) 37)) (-1895 (((-1175 |#1|) (-1175 |#1|)) 98)) (-3049 (((-1175 |#1|) (-1175 |#1|) |#1|) 77)) (-2049 (((-1175 |#1|) (-1175 |#1|)) 68)) (-2074 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 78)) (-2884 (((-1175 |#1|) |#1|) 73)) (-2085 (((-1175 |#1|) (-1175 (-1175 |#1|))) 88)) (-4039 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 38)) (-4029 (((-1175 |#1|) (-1175 |#1|)) 21) (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 23)) (-4017 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 17)) (* (((-1175 |#1|) (-1175 |#1|) |#1|) 29) (((-1175 |#1|) |#1| (-1175 |#1|)) 26) (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 27))) -(((-1179 |#1|) (-10 -7 (-15 -4017 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4029 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4029 ((-1175 |#1|) (-1175 |#1|))) (-15 * ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 * ((-1175 |#1|) |#1| (-1175 |#1|))) (-15 * ((-1175 |#1|) (-1175 |#1|) |#1|)) (-15 -2852 ((-3 (-1175 |#1|) "failed") (-1175 |#1|) (-1175 |#1|))) (-15 -4039 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -1999 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -3694 ((-1175 |#1|) |#1| (-576))) (-15 -2015 ((-1175 (-576)) (-576))) (-15 -2026 ((-1175 (-576)) (-576))) (-15 -2523 ((-1175 |#1|) |#1|)) (-15 -2038 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2049 ((-1175 |#1|) (-1175 |#1|))) (-15 -2061 ((-1175 |#1|) (-1 |#1| (-576)) (-1175 |#1|))) (-15 -2884 ((-1175 |#1|) |#1|)) (-15 -3049 ((-1175 |#1|) (-1175 |#1|) |#1|)) (-15 -2074 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -1930 ((-1175 |#1|) (-1175 |#1|))) (-15 -1872 ((-1175 |#1|) (-1175 |#1|))) (-15 -2085 ((-1175 |#1|) (-1175 (-1175 |#1|)))) (-15 -1917 ((-1175 |#1|) (-1175 |#1|))) (-15 -1906 ((-1175 |#1|) (-1175 |#1|))) (-15 -1895 ((-1175 |#1|) (-1175 |#1|))) (-15 -1883 ((-1175 |#1|) (-1175 |#1|) (-576) (-576))) (-15 -1861 ((-1175 |#1|) (-576) (-576) (-1175 |#1|))) (-15 -1848 ((-1175 |#1|) (-576) (-576) (-1175 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ((-1175 |#1|) |#1| (-1175 |#1|))) (-15 -2096 ((-1175 |#1|) |#1| (-1 (-1175 |#1|)))) (-15 -2106 ((-1175 |#1|) (-1175 (-1175 |#1|)))) (-15 -2116 ((-1175 |#1|) (-419 (-576)) (-1175 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2126 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2137 ((-1175 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1175 |#1|)))) (-15 -2147 ((-1175 |#1|) |#1| (-1175 |#1|)))) |%noBranch|)) (-1067)) (T -1179)) -((-2147 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1175 *4))) (-4 *4 (-374)) (-4 *4 (-1067)) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4)))) (-2126 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2116 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1067)) (-5 *3 (-419 (-576))) (-5 *1 (-1179 *4)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1067)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1175 *3))) (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)))) (-1956 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-1848 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067)) (-5 *1 (-1179 *4)))) (-1861 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067)) (-5 *1 (-1179 *4)))) (-1883 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067)) (-5 *1 (-1179 *4)))) (-1895 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-1906 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-1917 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4)) (-4 *4 (-1067)))) (-1872 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2074 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2884 (*1 *2 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1067)))) (-2061 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1067)) (-5 *1 (-1179 *4)))) (-2049 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2038 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2523 (*1 *2 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1067)))) (-2026 (*1 *2 *3) (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1067)) (-5 *3 (-576)))) (-2015 (*1 *2 *3) (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1067)) (-5 *3 (-576)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1067)))) (-1999 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-4039 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2852 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-4029 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-4017 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))) -(-10 -7 (-15 -4017 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4029 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4029 ((-1175 |#1|) (-1175 |#1|))) (-15 * ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 * ((-1175 |#1|) |#1| (-1175 |#1|))) (-15 * ((-1175 |#1|) (-1175 |#1|) |#1|)) (-15 -2852 ((-3 (-1175 |#1|) "failed") (-1175 |#1|) (-1175 |#1|))) (-15 -4039 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -1999 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -3694 ((-1175 |#1|) |#1| (-576))) (-15 -2015 ((-1175 (-576)) (-576))) (-15 -2026 ((-1175 (-576)) (-576))) (-15 -2523 ((-1175 |#1|) |#1|)) (-15 -2038 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2049 ((-1175 |#1|) (-1175 |#1|))) (-15 -2061 ((-1175 |#1|) (-1 |#1| (-576)) (-1175 |#1|))) (-15 -2884 ((-1175 |#1|) |#1|)) (-15 -3049 ((-1175 |#1|) (-1175 |#1|) |#1|)) (-15 -2074 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -1930 ((-1175 |#1|) (-1175 |#1|))) (-15 -1872 ((-1175 |#1|) (-1175 |#1|))) (-15 -2085 ((-1175 |#1|) (-1175 (-1175 |#1|)))) (-15 -1917 ((-1175 |#1|) (-1175 |#1|))) (-15 -1906 ((-1175 |#1|) (-1175 |#1|))) (-15 -1895 ((-1175 |#1|) (-1175 |#1|))) (-15 -1883 ((-1175 |#1|) (-1175 |#1|) (-576) (-576))) (-15 -1861 ((-1175 |#1|) (-576) (-576) (-1175 |#1|))) (-15 -1848 ((-1175 |#1|) (-576) (-576) (-1175 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ((-1175 |#1|) |#1| (-1175 |#1|))) (-15 -2096 ((-1175 |#1|) |#1| (-1 (-1175 |#1|)))) (-15 -2106 ((-1175 |#1|) (-1175 (-1175 |#1|)))) (-15 -2116 ((-1175 |#1|) (-419 (-576)) (-1175 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2126 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2137 ((-1175 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1175 |#1|)))) (-15 -2147 ((-1175 |#1|) |#1| (-1175 |#1|)))) |%noBranch|)) -((-3924 (((-1175 |#1|) (-1175 |#1|)) 60)) (-3787 (((-1175 |#1|) (-1175 |#1|)) 42)) (-3898 (((-1175 |#1|) (-1175 |#1|)) 56)) (-3762 (((-1175 |#1|) (-1175 |#1|)) 38)) (-1522 (((-1175 |#1|) (-1175 |#1|)) 63)) (-3808 (((-1175 |#1|) (-1175 |#1|)) 45)) (-3464 (((-1175 |#1|) (-1175 |#1|)) 34)) (-2666 (((-1175 |#1|) (-1175 |#1|)) 29)) (-1532 (((-1175 |#1|) (-1175 |#1|)) 64)) (-3818 (((-1175 |#1|) (-1175 |#1|)) 46)) (-3938 (((-1175 |#1|) (-1175 |#1|)) 61)) (-3798 (((-1175 |#1|) (-1175 |#1|)) 43)) (-3910 (((-1175 |#1|) (-1175 |#1|)) 58)) (-3775 (((-1175 |#1|) (-1175 |#1|)) 40)) (-1570 (((-1175 |#1|) (-1175 |#1|)) 68)) (-3853 (((-1175 |#1|) (-1175 |#1|)) 50)) (-1545 (((-1175 |#1|) (-1175 |#1|)) 66)) (-3829 (((-1175 |#1|) (-1175 |#1|)) 48)) (-1594 (((-1175 |#1|) (-1175 |#1|)) 71)) (-3874 (((-1175 |#1|) (-1175 |#1|)) 53)) (-2915 (((-1175 |#1|) (-1175 |#1|)) 72)) (-3886 (((-1175 |#1|) (-1175 |#1|)) 54)) (-1584 (((-1175 |#1|) (-1175 |#1|)) 70)) (-3864 (((-1175 |#1|) (-1175 |#1|)) 52)) (-1555 (((-1175 |#1|) (-1175 |#1|)) 69)) (-3840 (((-1175 |#1|) (-1175 |#1|)) 51)) (** (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 36))) -(((-1180 |#1|) (-10 -7 (-15 -2666 ((-1175 |#1|) (-1175 |#1|))) (-15 -3464 ((-1175 |#1|) (-1175 |#1|))) (-15 ** ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3762 ((-1175 |#1|) (-1175 |#1|))) (-15 -3775 ((-1175 |#1|) (-1175 |#1|))) (-15 -3787 ((-1175 |#1|) (-1175 |#1|))) (-15 -3798 ((-1175 |#1|) (-1175 |#1|))) (-15 -3808 ((-1175 |#1|) (-1175 |#1|))) (-15 -3818 ((-1175 |#1|) (-1175 |#1|))) (-15 -3829 ((-1175 |#1|) (-1175 |#1|))) (-15 -3840 ((-1175 |#1|) (-1175 |#1|))) (-15 -3853 ((-1175 |#1|) (-1175 |#1|))) (-15 -3864 ((-1175 |#1|) (-1175 |#1|))) (-15 -3874 ((-1175 |#1|) (-1175 |#1|))) (-15 -3886 ((-1175 |#1|) (-1175 |#1|))) (-15 -3898 ((-1175 |#1|) (-1175 |#1|))) (-15 -3910 ((-1175 |#1|) (-1175 |#1|))) (-15 -3924 ((-1175 |#1|) (-1175 |#1|))) (-15 -3938 ((-1175 |#1|) (-1175 |#1|))) (-15 -1522 ((-1175 |#1|) (-1175 |#1|))) (-15 -1532 ((-1175 |#1|) (-1175 |#1|))) (-15 -1545 ((-1175 |#1|) (-1175 |#1|))) (-15 -1555 ((-1175 |#1|) (-1175 |#1|))) (-15 -1570 ((-1175 |#1|) (-1175 |#1|))) (-15 -1584 ((-1175 |#1|) (-1175 |#1|))) (-15 -1594 ((-1175 |#1|) (-1175 |#1|))) (-15 -2915 ((-1175 |#1|) (-1175 |#1|)))) (-38 (-419 (-576)))) (T -1180)) -((-2915 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-1570 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-1545 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-1532 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3874 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3818 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3775 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3762 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2666 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3))))) -(-10 -7 (-15 -2666 ((-1175 |#1|) (-1175 |#1|))) (-15 -3464 ((-1175 |#1|) (-1175 |#1|))) (-15 ** ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3762 ((-1175 |#1|) (-1175 |#1|))) (-15 -3775 ((-1175 |#1|) (-1175 |#1|))) (-15 -3787 ((-1175 |#1|) (-1175 |#1|))) (-15 -3798 ((-1175 |#1|) (-1175 |#1|))) (-15 -3808 ((-1175 |#1|) (-1175 |#1|))) (-15 -3818 ((-1175 |#1|) (-1175 |#1|))) (-15 -3829 ((-1175 |#1|) (-1175 |#1|))) (-15 -3840 ((-1175 |#1|) (-1175 |#1|))) (-15 -3853 ((-1175 |#1|) (-1175 |#1|))) (-15 -3864 ((-1175 |#1|) (-1175 |#1|))) (-15 -3874 ((-1175 |#1|) (-1175 |#1|))) (-15 -3886 ((-1175 |#1|) (-1175 |#1|))) (-15 -3898 ((-1175 |#1|) (-1175 |#1|))) (-15 -3910 ((-1175 |#1|) (-1175 |#1|))) (-15 -3924 ((-1175 |#1|) (-1175 |#1|))) (-15 -3938 ((-1175 |#1|) (-1175 |#1|))) (-15 -1522 ((-1175 |#1|) (-1175 |#1|))) (-15 -1532 ((-1175 |#1|) (-1175 |#1|))) (-15 -1545 ((-1175 |#1|) (-1175 |#1|))) (-15 -1555 ((-1175 |#1|) (-1175 |#1|))) (-15 -1570 ((-1175 |#1|) (-1175 |#1|))) (-15 -1584 ((-1175 |#1|) (-1175 |#1|))) (-15 -1594 ((-1175 |#1|) (-1175 |#1|))) (-15 -2915 ((-1175 |#1|) (-1175 |#1|)))) -((-3924 (((-1175 |#1|) (-1175 |#1|)) 102)) (-3787 (((-1175 |#1|) (-1175 |#1|)) 61)) (-2169 (((-2 (|:| -3898 (-1175 |#1|)) (|:| -3910 (-1175 |#1|))) (-1175 |#1|)) 98)) (-3898 (((-1175 |#1|) (-1175 |#1|)) 99)) (-2159 (((-2 (|:| -3762 (-1175 |#1|)) (|:| -3775 (-1175 |#1|))) (-1175 |#1|)) 54)) (-3762 (((-1175 |#1|) (-1175 |#1|)) 55)) (-1522 (((-1175 |#1|) (-1175 |#1|)) 104)) (-3808 (((-1175 |#1|) (-1175 |#1|)) 68)) (-3464 (((-1175 |#1|) (-1175 |#1|)) 40)) (-2666 (((-1175 |#1|) (-1175 |#1|)) 37)) (-1532 (((-1175 |#1|) (-1175 |#1|)) 105)) (-3818 (((-1175 |#1|) (-1175 |#1|)) 69)) (-3938 (((-1175 |#1|) (-1175 |#1|)) 103)) (-3798 (((-1175 |#1|) (-1175 |#1|)) 64)) (-3910 (((-1175 |#1|) (-1175 |#1|)) 100)) (-3775 (((-1175 |#1|) (-1175 |#1|)) 56)) (-1570 (((-1175 |#1|) (-1175 |#1|)) 113)) (-3853 (((-1175 |#1|) (-1175 |#1|)) 88)) (-1545 (((-1175 |#1|) (-1175 |#1|)) 107)) (-3829 (((-1175 |#1|) (-1175 |#1|)) 84)) (-1594 (((-1175 |#1|) (-1175 |#1|)) 117)) (-3874 (((-1175 |#1|) (-1175 |#1|)) 92)) (-2915 (((-1175 |#1|) (-1175 |#1|)) 119)) (-3886 (((-1175 |#1|) (-1175 |#1|)) 94)) (-1584 (((-1175 |#1|) (-1175 |#1|)) 115)) (-3864 (((-1175 |#1|) (-1175 |#1|)) 90)) (-1555 (((-1175 |#1|) (-1175 |#1|)) 109)) (-3840 (((-1175 |#1|) (-1175 |#1|)) 86)) (** (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 41))) -(((-1181 |#1|) (-10 -7 (-15 -2666 ((-1175 |#1|) (-1175 |#1|))) (-15 -3464 ((-1175 |#1|) (-1175 |#1|))) (-15 ** ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2159 ((-2 (|:| -3762 (-1175 |#1|)) (|:| -3775 (-1175 |#1|))) (-1175 |#1|))) (-15 -3762 ((-1175 |#1|) (-1175 |#1|))) (-15 -3775 ((-1175 |#1|) (-1175 |#1|))) (-15 -3787 ((-1175 |#1|) (-1175 |#1|))) (-15 -3798 ((-1175 |#1|) (-1175 |#1|))) (-15 -3808 ((-1175 |#1|) (-1175 |#1|))) (-15 -3818 ((-1175 |#1|) (-1175 |#1|))) (-15 -3829 ((-1175 |#1|) (-1175 |#1|))) (-15 -3840 ((-1175 |#1|) (-1175 |#1|))) (-15 -3853 ((-1175 |#1|) (-1175 |#1|))) (-15 -3864 ((-1175 |#1|) (-1175 |#1|))) (-15 -3874 ((-1175 |#1|) (-1175 |#1|))) (-15 -3886 ((-1175 |#1|) (-1175 |#1|))) (-15 -2169 ((-2 (|:| -3898 (-1175 |#1|)) (|:| -3910 (-1175 |#1|))) (-1175 |#1|))) (-15 -3898 ((-1175 |#1|) (-1175 |#1|))) (-15 -3910 ((-1175 |#1|) (-1175 |#1|))) (-15 -3924 ((-1175 |#1|) (-1175 |#1|))) (-15 -3938 ((-1175 |#1|) (-1175 |#1|))) (-15 -1522 ((-1175 |#1|) (-1175 |#1|))) (-15 -1532 ((-1175 |#1|) (-1175 |#1|))) (-15 -1545 ((-1175 |#1|) (-1175 |#1|))) (-15 -1555 ((-1175 |#1|) (-1175 |#1|))) (-15 -1570 ((-1175 |#1|) (-1175 |#1|))) (-15 -1584 ((-1175 |#1|) (-1175 |#1|))) (-15 -1594 ((-1175 |#1|) (-1175 |#1|))) (-15 -2915 ((-1175 |#1|) (-1175 |#1|)))) (-38 (-419 (-576)))) (T -1181)) -((-2915 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1570 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1545 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1532 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2169 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3898 (-1175 *4)) (|:| -3910 (-1175 *4)))) (-5 *1 (-1181 *4)) (-5 *3 (-1175 *4)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3874 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3818 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3775 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3762 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2159 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3762 (-1175 *4)) (|:| -3775 (-1175 *4)))) (-5 *1 (-1181 *4)) (-5 *3 (-1175 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2666 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3))))) -(-10 -7 (-15 -2666 ((-1175 |#1|) (-1175 |#1|))) (-15 -3464 ((-1175 |#1|) (-1175 |#1|))) (-15 ** ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2159 ((-2 (|:| -3762 (-1175 |#1|)) (|:| -3775 (-1175 |#1|))) (-1175 |#1|))) (-15 -3762 ((-1175 |#1|) (-1175 |#1|))) (-15 -3775 ((-1175 |#1|) (-1175 |#1|))) (-15 -3787 ((-1175 |#1|) (-1175 |#1|))) (-15 -3798 ((-1175 |#1|) (-1175 |#1|))) (-15 -3808 ((-1175 |#1|) (-1175 |#1|))) (-15 -3818 ((-1175 |#1|) (-1175 |#1|))) (-15 -3829 ((-1175 |#1|) (-1175 |#1|))) (-15 -3840 ((-1175 |#1|) (-1175 |#1|))) (-15 -3853 ((-1175 |#1|) (-1175 |#1|))) (-15 -3864 ((-1175 |#1|) (-1175 |#1|))) (-15 -3874 ((-1175 |#1|) (-1175 |#1|))) (-15 -3886 ((-1175 |#1|) (-1175 |#1|))) (-15 -2169 ((-2 (|:| -3898 (-1175 |#1|)) (|:| -3910 (-1175 |#1|))) (-1175 |#1|))) (-15 -3898 ((-1175 |#1|) (-1175 |#1|))) (-15 -3910 ((-1175 |#1|) (-1175 |#1|))) (-15 -3924 ((-1175 |#1|) (-1175 |#1|))) (-15 -3938 ((-1175 |#1|) (-1175 |#1|))) (-15 -1522 ((-1175 |#1|) (-1175 |#1|))) (-15 -1532 ((-1175 |#1|) (-1175 |#1|))) (-15 -1545 ((-1175 |#1|) (-1175 |#1|))) (-15 -1555 ((-1175 |#1|) (-1175 |#1|))) (-15 -1570 ((-1175 |#1|) (-1175 |#1|))) (-15 -1584 ((-1175 |#1|) (-1175 |#1|))) (-15 -1594 ((-1175 |#1|) (-1175 |#1|))) (-15 -2915 ((-1175 |#1|) (-1175 |#1|)))) -((-2181 (((-974 |#2|) |#2| |#2|) 50)) (-2192 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317))))) -(((-1182 |#1| |#2|) (-10 -7 (-15 -2181 ((-974 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -2192 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1262 |#1|)) (T -1182)) -((-2192 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1182 *3 *2)) (-4 *2 (-1262 *3)))) (-2181 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-974 *3)) (-5 *1 (-1182 *4 *3)) (-4 *3 (-1262 *4))))) -(-10 -7 (-15 -2181 ((-974 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -2192 (|#2| |#2| |#1|)) |%noBranch|)) -((-2862 (((-112) $ $) NIL)) (-2265 (($ $ (-656 (-783))) 79)) (-4437 (($) 33)) (-4234 (($ $) 51)) (-2726 (((-656 $) $) 60)) (-4296 (((-112) $) 19)) (-2202 (((-656 (-959 |#2|)) $) 86)) (-2211 (($ $) 80)) (-4243 (((-783) $) 47)) (-2310 (($) 32)) (-2294 (($ $ (-656 (-783)) (-959 |#2|)) 72) (($ $ (-656 (-783)) (-783)) 73) (($ $ (-783) (-959 |#2|)) 75)) (-4214 (($ $ $) 57) (($ (-656 $)) 59)) (-2628 (((-783) $) 87)) (-4306 (((-112) $) 15)) (-3733 (((-1177) $) NIL)) (-4285 (((-112) $) 22)) (-3914 (((-1138) $) NIL)) (-2221 (((-173) $) 85)) (-2254 (((-959 |#2|) $) 81)) (-2242 (((-783) $) 82)) (-2232 (((-112) $) 84)) (-2275 (($ $ (-656 (-783)) (-173)) 78)) (-4225 (($ $) 52)) (-2884 (((-874) $) 99)) (-2283 (($ $ (-656 (-783)) (-112)) 77)) (-4255 (((-656 $) $) 11)) (-4266 (($ $ (-783)) 46)) (-4276 (($ $) 43)) (-3722 (((-112) $ $) NIL)) (-2306 (($ $ $ (-959 |#2|) (-783)) 68)) (-4196 (($ $ (-959 |#2|)) 67)) (-4204 (($ $ (-656 (-783)) (-959 |#2|)) 66) (($ $ (-656 (-783)) (-783)) 70) (((-783) $ (-959 |#2|)) 71)) (-3915 (((-112) $ $) 92))) -(((-1183 |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -4306 ((-112) $)) (-15 -4296 ((-112) $)) (-15 -4285 ((-112) $)) (-15 -2310 ($)) (-15 -4437 ($)) (-15 -4276 ($ $)) (-15 -4266 ($ $ (-783))) (-15 -4255 ((-656 $) $)) (-15 -4243 ((-783) $)) (-15 -4234 ($ $)) (-15 -4225 ($ $)) (-15 -4214 ($ $ $)) (-15 -4214 ($ (-656 $))) (-15 -2726 ((-656 $) $)) (-15 -4204 ($ $ (-656 (-783)) (-959 |#2|))) (-15 -4196 ($ $ (-959 |#2|))) (-15 -2306 ($ $ $ (-959 |#2|) (-783))) (-15 -2294 ($ $ (-656 (-783)) (-959 |#2|))) (-15 -4204 ($ $ (-656 (-783)) (-783))) (-15 -2294 ($ $ (-656 (-783)) (-783))) (-15 -4204 ((-783) $ (-959 |#2|))) (-15 -2294 ($ $ (-783) (-959 |#2|))) (-15 -2283 ($ $ (-656 (-783)) (-112))) (-15 -2275 ($ $ (-656 (-783)) (-173))) (-15 -2265 ($ $ (-656 (-783)))) (-15 -2254 ((-959 |#2|) $)) (-15 -2242 ((-783) $)) (-15 -2232 ((-112) $)) (-15 -2221 ((-173) $)) (-15 -2628 ((-783) $)) (-15 -2211 ($ $)) (-15 -2202 ((-656 (-959 |#2|)) $)))) (-937) (-1067)) (T -1183)) -((-4306 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-2310 (*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-4437 (*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-4276 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-4266 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-4255 (*1 *2 *1) (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-4234 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-4225 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-4214 (*1 *1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-4214 (*1 *1 *2) (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-4204 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-959 *5)) (-4 *5 (-1067)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-959 *4)) (-4 *4 (-1067)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)))) (-2306 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-959 *5)) (-5 *3 (-783)) (-4 *5 (-1067)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) (-2294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-959 *5)) (-4 *5 (-1067)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) (-4204 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1067)))) (-2294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1067)))) (-4204 (*1 *2 *1 *3) (-12 (-5 *3 (-959 *5)) (-4 *5 (-1067)) (-5 *2 (-783)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) (-2294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-959 *5)) (-4 *5 (-1067)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) (-2283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1067)))) (-2275 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1067)))) (-2265 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-959 *4)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-2211 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-656 (-959 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067))))) -(-13 (-1118) (-10 -8 (-15 -4306 ((-112) $)) (-15 -4296 ((-112) $)) (-15 -4285 ((-112) $)) (-15 -2310 ($)) (-15 -4437 ($)) (-15 -4276 ($ $)) (-15 -4266 ($ $ (-783))) (-15 -4255 ((-656 $) $)) (-15 -4243 ((-783) $)) (-15 -4234 ($ $)) (-15 -4225 ($ $)) (-15 -4214 ($ $ $)) (-15 -4214 ($ (-656 $))) (-15 -2726 ((-656 $) $)) (-15 -4204 ($ $ (-656 (-783)) (-959 |#2|))) (-15 -4196 ($ $ (-959 |#2|))) (-15 -2306 ($ $ $ (-959 |#2|) (-783))) (-15 -2294 ($ $ (-656 (-783)) (-959 |#2|))) (-15 -4204 ($ $ (-656 (-783)) (-783))) (-15 -2294 ($ $ (-656 (-783)) (-783))) (-15 -4204 ((-783) $ (-959 |#2|))) (-15 -2294 ($ $ (-783) (-959 |#2|))) (-15 -2283 ($ $ (-656 (-783)) (-112))) (-15 -2275 ($ $ (-656 (-783)) (-173))) (-15 -2265 ($ $ (-656 (-783)))) (-15 -2254 ((-959 |#2|) $)) (-15 -2242 ((-783) $)) (-15 -2232 ((-112) $)) (-15 -2221 ((-173) $)) (-15 -2628 ((-783) $)) (-15 -2211 ($ $)) (-15 -2202 ((-656 (-959 |#2|)) $)))) -((-2862 (((-112) $ $) NIL)) (-3892 ((|#2| $) 11)) (-3880 ((|#1| $) 10)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2895 (($ |#1| |#2|) 9)) (-2884 (((-874) $) 16)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1184 |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -2895 ($ |#1| |#2|)) (-15 -3880 (|#1| $)) (-15 -3892 (|#2| $)))) (-1118) (-1118)) (T -1184)) -((-2895 (*1 *1 *2 *3) (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-3880 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-1184 *2 *3)) (-4 *3 (-1118)))) (-3892 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-1118))))) -(-13 (-1118) (-10 -8 (-15 -2895 ($ |#1| |#2|)) (-15 -3880 (|#1| $)) (-15 -3892 (|#2| $)))) -((-2862 (((-112) $ $) NIL)) (-2398 (((-1153) $) 9)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1185) (-13 (-1101) (-10 -8 (-15 -2398 ((-1153) $))))) (T -1185)) -((-2398 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1185))))) -(-13 (-1101) (-10 -8 (-15 -2398 ((-1153) $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1905 (((-1193 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1607 (((-656 (-1100)) $) NIL)) (-1441 (((-1195) $) 11)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4241 (($ $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4221 (((-112) $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2916 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-2934 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-2526 (((-1193 |#1| |#2| |#3|) $) 42)) (-2502 (((-3 (-1193 |#1| |#2| |#3|) "failed") $) 32)) (-4290 (((-1193 |#1| |#2| |#3|) $) 33)) (-3924 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-2944 (($ $) NIL (|has| |#1| (-374)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3898 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-3966 (((-576) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1874 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-1522 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-1193 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1195) "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))))) (-4401 (((-1193 |#1| |#2| |#3|) $) 140) (((-1195) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))))) (-2514 (($ $) 37) (($ (-576) $) 38)) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) NIL)) (-2613 (((-701 (-1193 |#1| |#2| |#3|)) (-1286 $)) NIL (|has| |#1| (-374))) (((-701 (-1193 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2869 (-701 (-1193 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1193 |#1| |#2| |#3|)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1999 (((-3 $ "failed") $) 54)) (-2487 (((-419 (-968 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-968 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-2080 (($) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2463 (((-112) $) NIL (|has| |#1| (-374)))) (-1370 (((-112) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1355 (((-112) $) 28)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-899 (-576))) (|has| |#1| (-374))))) (-2927 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-1439 (((-112) $) NIL)) (-3154 (($ $) NIL (|has| |#1| (-374)))) (-1595 (((-1193 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1831 (((-3 $ "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1170)) (|has| |#1| (-374))))) (-1379 (((-112) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2962 (($ $ (-937)) NIL)) (-1968 (($ (-1 |#1| (-576)) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-576)) 19) (($ $ (-1100) (-576)) NIL) (($ $ (-656 (-1100)) (-656 (-576))) NIL)) (-1921 (($ $ $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4137 (($ $ $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3464 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4301 (($ (-576) (-1193 |#1| |#2| |#3|)) 36)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL (|has| |#1| (-374)))) (-1956 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-3766 (-12 (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3475 (($) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1170)) (|has| |#1| (-374))) CONST)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1894 (($ $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1916 (((-1193 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-2354 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2904 (($ $ (-576)) 158)) (-2852 (((-3 $ "failed") $ $) 55 (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2666 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) (-1193 |#1| |#2| |#3|)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-526 (-1195) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 (-1193 |#1| |#2| |#3|))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-526 (-1195) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1193 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1193 |#1| |#2| |#3|))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1193 |#1| |#2| |#3|)) (-656 (-1193 |#1| |#2| |#3|))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-2071 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1130))) (($ $ (-1193 |#1| |#2| |#3|)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-296 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2390 (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1282 |#2|)) 57) (($ $) 56 (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3143 (($ $) NIL (|has| |#1| (-374)))) (-1608 (((-1193 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-3813 (((-576) $) 43)) (-1532 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-2616 (((-548) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-1346 (($ $) NIL)) (-2884 (((-874) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1193 |#1| |#2| |#3|)) 30) (($ (-1282 |#2|)) 25) (($ (-1195)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (($ $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-3245 ((|#1| $ (-576)) 77)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1871 (((-783)) NIL T CONST)) (-1752 ((|#1| $) 12)) (-1929 (((-1193 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1545 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-2610 (($ $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1996 (($) 21 T CONST)) (-2011 (($) 16 T CONST)) (-3431 (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3983 (((-112) $ $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3957 (((-112) $ $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3943 (((-112) $ $) NIL (-3766 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 23)) (** (($ $ (-937)) NIL) (($ $ (-783)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1193 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1193 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1186 |#1| |#2| |#3|) (-13 (-1248 |#1| (-1193 |#1| |#2| |#3|)) (-10 -8 (-15 -2884 ($ (-1282 |#2|))) (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1186)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-1956 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))) -(-13 (-1248 |#1| (-1193 |#1| |#2| |#3|)) (-10 -8 (-15 -2884 ($ (-1282 |#2|))) (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) -((-4377 ((|#2| |#2| (-1110 |#2|)) 26) ((|#2| |#2| (-1195)) 28))) -(((-1187 |#1| |#2|) (-10 -7 (-15 -4377 (|#2| |#2| (-1195))) (-15 -4377 (|#2| |#2| (-1110 |#2|)))) (-13 (-568) (-1056 (-576)) (-651 (-576))) (-13 (-442 |#1|) (-161) (-27) (-1221))) (T -1187)) -((-4377 (*1 *2 *2 *3) (-12 (-5 *3 (-1110 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221))) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1187 *4 *2)))) (-4377 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1187 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221)))))) -(-10 -7 (-15 -4377 (|#2| |#2| (-1195))) (-15 -4377 (|#2| |#2| (-1110 |#2|)))) -((-4377 (((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1110 (-419 (-968 |#1|)))) 31) (((-419 (-968 |#1|)) (-968 |#1|) (-1110 (-968 |#1|))) 44) (((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1195)) 33) (((-419 (-968 |#1|)) (-968 |#1|) (-1195)) 36))) -(((-1188 |#1|) (-10 -7 (-15 -4377 ((-419 (-968 |#1|)) (-968 |#1|) (-1195))) (-15 -4377 ((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1195))) (-15 -4377 ((-419 (-968 |#1|)) (-968 |#1|) (-1110 (-968 |#1|)))) (-15 -4377 ((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1110 (-419 (-968 |#1|)))))) (-13 (-568) (-1056 (-576)))) (T -1188)) -((-4377 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5))) (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1188 *5)))) (-4377 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-968 *5))) (-5 *3 (-968 *5)) (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-419 *3)) (-5 *1 (-1188 *5)))) (-4377 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-3 (-419 (-968 *5)) (-326 *5))) (-5 *1 (-1188 *5)) (-5 *3 (-419 (-968 *5))))) (-4377 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-419 (-968 *5))) (-5 *1 (-1188 *5)) (-5 *3 (-968 *5))))) -(-10 -7 (-15 -4377 ((-419 (-968 |#1|)) (-968 |#1|) (-1195))) (-15 -4377 ((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1195))) (-15 -4377 ((-419 (-968 |#1|)) (-968 |#1|) (-1110 (-968 |#1|)))) (-15 -4377 ((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1110 (-419 (-968 |#1|)))))) -((-2551 (((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)) 13))) -(((-1189 |#1| |#2|) (-10 -7 (-15 -2551 ((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)))) (-1067) (-1067)) (T -1189)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1191 *6)) (-5 *1 (-1189 *5 *6))))) -(-10 -7 (-15 -2551 ((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)))) -((-3986 (((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))) 51)) (-2354 (((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))) 52))) -(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2354 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|)))) (-15 -3986 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))))) (-805) (-862) (-464) (-965 |#3| |#1| |#2|)) (T -1190)) -((-3986 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7)))) (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7))))) (-2354 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7)))) (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7)))))) -(-10 -7 (-15 -2354 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|)))) (-15 -3986 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))))) -((-2862 (((-112) $ $) 171)) (-1389 (((-112) $) 43)) (-2896 (((-1286 |#1|) $ (-783)) NIL)) (-1607 (((-656 (-1100)) $) NIL)) (-2873 (($ (-1191 |#1|)) NIL)) (-3467 (((-1191 $) $ (-1100)) 82) (((-1191 |#1|) $) 71)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) 164 (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 (-1100))) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2768 (($ $ $) 158 (|has| |#1| (-568)))) (-3203 (((-430 (-1191 $)) (-1191 $)) 95 (|has| |#1| (-925)))) (-2944 (($ $) NIL (|has| |#1| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 115 (|has| |#1| (-925)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2828 (($ $ (-783)) 61)) (-2816 (($ $ (-783)) 63)) (-2726 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-1100) "failed") $) NIL)) (-4401 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-1100) $) NIL)) (-2778 (($ $ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) 80)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-2804 (($ $ $) 131)) (-2747 (($ $ $) NIL (|has| |#1| (-568)))) (-2736 (((-2 (|:| -1755 |#1|) (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2192 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#1| (-925)))) (-3098 (($ $ |#1| (-783) $) 69)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1100) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1100) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-4316 (((-874) $ (-874)) 148)) (-2927 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1439 (((-112) $) 48)) (-1518 (((-783) $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| |#1| (-1170)))) (-2437 (($ (-1191 |#1|) (-1100)) 73) (($ (-1191 $) (-1100)) 89)) (-2962 (($ $ (-783)) 51)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-783)) 87) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-1100)) NIL) (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 153)) (-1864 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-3109 (($ (-1 (-783) (-783)) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2885 (((-1191 |#1|) $) NIL)) (-2788 (((-3 (-1100) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) 76)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3733 (((-1177) $) NIL)) (-2841 (((-2 (|:| -2770 $) (|:| -1406 $)) $ (-783)) 60)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| (-1100)) (|:| -1359 (-783))) "failed") $) NIL)) (-1956 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3475 (($) NIL (|has| |#1| (-1170)) CONST)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) 50)) (-4359 ((|#1| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 103 (|has| |#1| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-2581 (($ $ (-783) |#1| $) 123)) (-3181 (((-430 (-1191 $)) (-1191 $)) 101 (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) 100 (|has| |#1| (-925)))) (-2354 (((-430 $) $) 108 (|has| |#1| (-925)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2852 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1100) |#1|) NIL) (($ $ (-656 (-1100)) (-656 |#1|)) NIL) (($ $ (-1100) $) NIL) (($ $ (-656 (-1100)) (-656 $)) NIL)) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-2071 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2863 (((-3 $ "failed") $ (-783)) 54)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 172 (|has| |#1| (-374)))) (-2790 (($ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2390 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3813 (((-783) $) 78) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1100) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1841 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2758 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-2884 (((-874) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1100)) NIL) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-783)) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) 41 (|has| |#1| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1996 (($) 17 T CONST)) (-2011 (($) 19 T CONST)) (-3431 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3915 (((-112) $ $) 120)) (-4039 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 90)) (** (($ $ (-937)) 14) (($ $ (-783)) 12)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1191 |#1|) (-13 (-1262 |#1|) (-10 -8 (-15 -4316 ((-874) $ (-874))) (-15 -2581 ($ $ (-783) |#1| $)))) (-1067)) (T -1191)) -((-4316 (*1 *2 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1191 *3)) (-4 *3 (-1067)))) (-2581 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1191 *3)) (-4 *3 (-1067))))) -(-13 (-1262 |#1|) (-10 -8 (-15 -4316 ((-874) $ (-874))) (-15 -2581 ($ $ (-783) |#1| $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 (-1100)) $) NIL)) (-1441 (((-1195) $) 11)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-2916 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2934 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3924 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL (|has| |#1| (-374)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3898 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1874 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-1522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-1186 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1193 |#1| |#2| |#3|) "failed") $) 36)) (-4401 (((-1186 |#1| |#2| |#3|) $) NIL) (((-1193 |#1| |#2| |#3|) $) NIL)) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2995 (((-419 (-576)) $) 59)) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-4311 (($ (-419 (-576)) (-1186 |#1| |#2| |#3|)) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2463 (((-112) $) NIL (|has| |#1| (-374)))) (-1355 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1439 (((-112) $) NIL)) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2962 (($ $ (-937)) NIL) (($ $ (-419 (-576))) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-419 (-576))) 20) (($ $ (-1100) (-419 (-576))) NIL) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-3464 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2984 (((-1186 |#1| |#2| |#3|) $) 41)) (-2971 (((-3 (-1186 |#1| |#2| |#3|) "failed") $) NIL)) (-4301 (((-1186 |#1| |#2| |#3|) $) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL (|has| |#1| (-374)))) (-1956 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-3766 (-12 (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2904 (($ $ (-419 (-576))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2666 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-2071 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1130)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2390 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) 38)) (-3813 (((-419 (-576)) $) NIL)) (-1532 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) NIL)) (-2884 (((-874) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1186 |#1| |#2| |#3|)) 30) (($ (-1193 |#1| |#2| |#3|)) 31) (($ (-1282 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3245 ((|#1| $ (-419 (-576))) NIL)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-1752 ((|#1| $) 12)) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1545 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) 22 T CONST)) (-2011 (($) 16 T CONST)) (-3431 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 24)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1192 |#1| |#2| |#3|) (-13 (-1269 |#1| (-1186 |#1| |#2| |#3|)) (-1056 (-1193 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1192)) -((-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-1956 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))) -(-13 (-1269 |#1| (-1186 |#1| |#2| |#3|)) (-1056 (-1193 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 129)) (-1607 (((-656 (-1100)) $) NIL)) (-1441 (((-1195) $) 119)) (-1942 (((-1259 |#2| |#1|) $ (-783)) 69)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-2916 (($ $ (-783)) 85) (($ $ (-783) (-783)) 82)) (-2934 (((-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 105)) (-3924 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3898 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-1874 (($ (-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 118) (($ (-1175 |#1|)) 113)) (-1522 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) 25)) (-1981 (($ $) 28)) (-2486 (((-968 |#1|) $ (-783)) 81) (((-968 |#1|) $ (-783) (-783)) 83)) (-1355 (((-112) $) 124)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-783) $) 126) (((-783) $ (-783)) 128)) (-1439 (((-112) $) NIL)) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2962 (($ $ (-937)) NIL)) (-1968 (($ (-1 |#1| (-576)) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-783)) 13) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-3464 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-1956 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-3766 (-12 (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3914 (((-1138) $) NIL)) (-2904 (($ $ (-783)) 15)) (-2852 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-2666 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2071 ((|#1| $ (-783)) 122) (($ $ $) 132 (|has| (-783) (-1130)))) (-2390 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1282 |#2|)) 31)) (-3813 (((-783) $) NIL)) (-1532 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) NIL)) (-2884 (((-874) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1259 |#2| |#1|)) 55) (($ (-1282 |#2|)) 36)) (-1993 (((-1175 |#1|) $) 101)) (-3245 ((|#1| $ (-783)) 121)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-1752 ((|#1| $) 58)) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1545 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-783)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) 17 T CONST)) (-2011 (($) 20 T CONST)) (-3431 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) 198)) (-4017 (($ $ $) 35)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1193 |#1| |#2| |#3|) (-13 (-1277 |#1|) (-10 -8 (-15 -2884 ($ (-1259 |#2| |#1|))) (-15 -1942 ((-1259 |#2| |#1|) $ (-783))) (-15 -2884 ($ (-1282 |#2|))) (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1193)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-1193 *3 *4 *5)))) (-1942 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1193 *4 *5 *6)) (-4 *4 (-1067)) (-14 *5 (-1195)) (-14 *6 *4))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-1956 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))) -(-13 (-1277 |#1|) (-10 -8 (-15 -2884 ($ (-1259 |#2| |#1|))) (-15 -1942 ((-1259 |#2| |#1|) $ (-783))) (-15 -2884 ($ (-1282 |#2|))) (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) -((-2884 (((-874) $) 33) (($ (-1195)) 35)) (-3766 (($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-3753 (($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-3601 (($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-3592 (($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-3581 (($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-3571 (($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-3094 (($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45))) -(((-1194) (-13 (-625 (-874)) (-10 -8 (-15 -2884 ($ (-1195))) (-15 -3601 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3581 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3592 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3571 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3766 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3094 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3753 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3753 ($ $))))) (T -1194)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1194)))) (-3601 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-3581 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-3592 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-3571 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-3766 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-3094 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-3753 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-3753 (*1 *1 *1) (-5 *1 (-1194)))) -(-13 (-625 (-874)) (-10 -8 (-15 -2884 ($ (-1195))) (-15 -3601 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3581 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3592 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3571 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3766 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3094 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3753 ($ (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3753 ($ $)))) -((-2862 (((-112) $ $) NIL)) (-4339 (($ $ (-656 (-874))) 62)) (-4351 (($ $ (-656 (-874))) 60)) (-1651 (((-1177) $) 101)) (-1852 (((-2 (|:| -1321 (-656 (-874))) (|:| -2158 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -4434 (-656 (-874))) (|:| |args| (-656 (-874)))) $) 108)) (-4364 (((-112) $) 23)) (-2712 (($ $ (-656 (-656 (-874)))) 59) (($ $ (-2 (|:| -1321 (-656 (-874))) (|:| -2158 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -4434 (-656 (-874))) (|:| |args| (-656 (-874))))) 99)) (-2473 (($) 163 T CONST)) (-4376 (((-1291)) 135)) (-1606 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 69) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 76)) (-2310 (($) 122) (($ $) 131)) (-1778 (($ $) 100)) (-1921 (($ $ $) NIL)) (-4137 (($ $ $) NIL)) (-1685 (((-656 $) $) 136)) (-3733 (((-1177) $) 114)) (-3914 (((-1138) $) NIL)) (-2071 (($ $ (-656 (-874))) 61)) (-2616 (((-548) $) 48) (((-1195) $) 49) (((-905 (-576)) $) 80) (((-905 (-390)) $) 78)) (-2884 (((-874) $) 55) (($ (-1177)) 50)) (-3722 (((-112) $ $) NIL)) (-4327 (($ $ (-656 (-874))) 63)) (-1813 (((-1177) $) 34) (((-1177) $ (-112)) 35) (((-1291) (-834) $) 36) (((-1291) (-834) $ (-112)) 37)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 51)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 52))) -(((-1195) (-13 (-862) (-626 (-548)) (-840) (-626 (-1195)) (-628 (-1177)) (-626 (-905 (-576))) (-626 (-905 (-390))) (-899 (-576)) (-899 (-390)) (-10 -8 (-15 -2310 ($)) (-15 -2310 ($ $)) (-15 -4376 ((-1291))) (-15 -1778 ($ $)) (-15 -4364 ((-112) $)) (-15 -1852 ((-2 (|:| -1321 (-656 (-874))) (|:| -2158 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -4434 (-656 (-874))) (|:| |args| (-656 (-874)))) $)) (-15 -2712 ($ $ (-656 (-656 (-874))))) (-15 -2712 ($ $ (-2 (|:| -1321 (-656 (-874))) (|:| -2158 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -4434 (-656 (-874))) (|:| |args| (-656 (-874)))))) (-15 -4351 ($ $ (-656 (-874)))) (-15 -4339 ($ $ (-656 (-874)))) (-15 -4327 ($ $ (-656 (-874)))) (-15 -2071 ($ $ (-656 (-874)))) (-15 -1651 ((-1177) $)) (-15 -1685 ((-656 $) $)) (-15 -2473 ($) -3739)))) (T -1195)) -((-2310 (*1 *1) (-5 *1 (-1195))) (-2310 (*1 *1 *1) (-5 *1 (-1195))) (-4376 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1195)))) (-1778 (*1 *1 *1) (-5 *1 (-1195))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1321 (-656 (-874))) (|:| -2158 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -4434 (-656 (-874))) (|:| |args| (-656 (-874))))) (-5 *1 (-1195)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-1195)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1321 (-656 (-874))) (|:| -2158 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -4434 (-656 (-874))) (|:| |args| (-656 (-874))))) (-5 *1 (-1195)))) (-4351 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-4339 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-4327 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-2071 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1195)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1195)))) (-2473 (*1 *1) (-5 *1 (-1195)))) -(-13 (-862) (-626 (-548)) (-840) (-626 (-1195)) (-628 (-1177)) (-626 (-905 (-576))) (-626 (-905 (-390))) (-899 (-576)) (-899 (-390)) (-10 -8 (-15 -2310 ($)) (-15 -2310 ($ $)) (-15 -4376 ((-1291))) (-15 -1778 ($ $)) (-15 -4364 ((-112) $)) (-15 -1852 ((-2 (|:| -1321 (-656 (-874))) (|:| -2158 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -4434 (-656 (-874))) (|:| |args| (-656 (-874)))) $)) (-15 -2712 ($ $ (-656 (-656 (-874))))) (-15 -2712 ($ $ (-2 (|:| -1321 (-656 (-874))) (|:| -2158 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -4434 (-656 (-874))) (|:| |args| (-656 (-874)))))) (-15 -4351 ($ $ (-656 (-874)))) (-15 -4339 ($ $ (-656 (-874)))) (-15 -4327 ($ $ (-656 (-874)))) (-15 -2071 ($ $ (-656 (-874)))) (-15 -1651 ((-1177) $)) (-15 -1685 ((-656 $) $)) (-15 -2473 ($) -3739))) -((-4388 (((-1286 |#1|) |#1| (-937)) 18) (((-1286 |#1|) (-656 |#1|)) 25))) -(((-1196 |#1|) (-10 -7 (-15 -4388 ((-1286 |#1|) (-656 |#1|))) (-15 -4388 ((-1286 |#1|) |#1| (-937)))) (-1067)) (T -1196)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-1286 *3)) (-5 *1 (-1196 *3)) (-4 *3 (-1067)))) (-4388 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1067)) (-5 *2 (-1286 *4)) (-5 *1 (-1196 *4))))) -(-10 -7 (-15 -4388 ((-1286 |#1|) (-656 |#1|))) (-15 -4388 ((-1286 |#1|) |#1| (-937)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4401 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-464)))) (-3098 (($ $ |#1| (-989) $) NIL)) (-1439 (((-112) $) 17)) (-1518 (((-783) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-989)) NIL)) (-1864 (((-989) $) NIL)) (-3109 (($ (-1 (-989) (-989)) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) NIL)) (-4359 ((|#1| $) NIL)) (-2581 (($ $ (-989) |#1| $) NIL (-12 (|has| (-989) (-132)) (|has| |#1| (-568))))) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3813 (((-989) $) NIL)) (-1841 ((|#1| $) NIL (|has| |#1| (-464)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-3766 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ (-989)) NIL)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1996 (($) 10 T CONST)) (-2011 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 21)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1197 |#1|) (-13 (-336 |#1| (-989)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-989) (-132)) (-15 -2581 ($ $ (-989) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) (-1067)) (T -1197)) -((-2581 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-989)) (-4 *2 (-132)) (-5 *1 (-1197 *3)) (-4 *3 (-568)) (-4 *3 (-1067))))) -(-13 (-336 |#1| (-989)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-989) (-132)) (-15 -2581 ($ $ (-989) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) -((-4399 (((-1199) (-1195) $) 25)) (-1375 (($) 29)) (-4422 (((-3 (|:| |fst| (-446)) (|:| -2008 "void")) (-1195) $) 22)) (-4441 (((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2008 "void")) $) 41) (((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) 42) (((-1291) (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) 43)) (-1385 (((-1291) (-1195)) 58)) (-4432 (((-1291) (-1195) $) 55) (((-1291) (-1195)) 56) (((-1291)) 57)) (-1356 (((-1291) (-1195)) 37)) (-1338 (((-1195)) 36)) (-1458 (($) 34)) (-4067 (((-449) (-1195) (-449) (-1195) $) 45) (((-449) (-656 (-1195)) (-449) (-1195) $) 49) (((-449) (-1195) (-449)) 46) (((-449) (-1195) (-449) (-1195)) 50)) (-1347 (((-1195)) 35)) (-2884 (((-874) $) 28)) (-1365 (((-1291)) 30) (((-1291) (-1195)) 33)) (-4412 (((-656 (-1195)) (-1195) $) 24)) (-1328 (((-1291) (-1195) (-656 (-1195)) $) 38) (((-1291) (-1195) (-656 (-1195))) 39) (((-1291) (-656 (-1195))) 40))) -(((-1198) (-13 (-625 (-874)) (-10 -8 (-15 -1375 ($)) (-15 -1365 ((-1291))) (-15 -1365 ((-1291) (-1195))) (-15 -4067 ((-449) (-1195) (-449) (-1195) $)) (-15 -4067 ((-449) (-656 (-1195)) (-449) (-1195) $)) (-15 -4067 ((-449) (-1195) (-449))) (-15 -4067 ((-449) (-1195) (-449) (-1195))) (-15 -1356 ((-1291) (-1195))) (-15 -1347 ((-1195))) (-15 -1338 ((-1195))) (-15 -1328 ((-1291) (-1195) (-656 (-1195)) $)) (-15 -1328 ((-1291) (-1195) (-656 (-1195)))) (-15 -1328 ((-1291) (-656 (-1195)))) (-15 -4441 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2008 "void")) $)) (-15 -4441 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2008 "void")))) (-15 -4441 ((-1291) (-3 (|:| |fst| (-446)) (|:| -2008 "void")))) (-15 -4432 ((-1291) (-1195) $)) (-15 -4432 ((-1291) (-1195))) (-15 -4432 ((-1291))) (-15 -1385 ((-1291) (-1195))) (-15 -1458 ($)) (-15 -4422 ((-3 (|:| |fst| (-446)) (|:| -2008 "void")) (-1195) $)) (-15 -4412 ((-656 (-1195)) (-1195) $)) (-15 -4399 ((-1199) (-1195) $))))) (T -1198)) -((-1375 (*1 *1) (-5 *1 (-1198))) (-1365 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4067 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) (-4067 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *4 (-1195)) (-5 *1 (-1198)))) (-4067 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) (-4067 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-1347 (*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198)))) (-1338 (*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198)))) (-1328 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-1328 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-1328 (*1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4441 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1195)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4441 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4441 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4432 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4432 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4432 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-1458 (*1 *1) (-5 *1 (-1198))) (-4422 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-5 *1 (-1198)))) (-4412 (*1 *2 *3 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1198)) (-5 *3 (-1195)))) (-4399 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1199)) (-5 *1 (-1198))))) -(-13 (-625 (-874)) (-10 -8 (-15 -1375 ($)) (-15 -1365 ((-1291))) (-15 -1365 ((-1291) (-1195))) (-15 -4067 ((-449) (-1195) (-449) (-1195) $)) (-15 -4067 ((-449) (-656 (-1195)) (-449) (-1195) $)) (-15 -4067 ((-449) (-1195) (-449))) (-15 -4067 ((-449) (-1195) (-449) (-1195))) (-15 -1356 ((-1291) (-1195))) (-15 -1347 ((-1195))) (-15 -1338 ((-1195))) (-15 -1328 ((-1291) (-1195) (-656 (-1195)) $)) (-15 -1328 ((-1291) (-1195) (-656 (-1195)))) (-15 -1328 ((-1291) (-656 (-1195)))) (-15 -4441 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2008 "void")) $)) (-15 -4441 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2008 "void")))) (-15 -4441 ((-1291) (-3 (|:| |fst| (-446)) (|:| -2008 "void")))) (-15 -4432 ((-1291) (-1195) $)) (-15 -4432 ((-1291) (-1195))) (-15 -4432 ((-1291))) (-15 -1385 ((-1291) (-1195))) (-15 -1458 ($)) (-15 -4422 ((-3 (|:| |fst| (-446)) (|:| -2008 "void")) (-1195) $)) (-15 -4412 ((-656 (-1195)) (-1195) $)) (-15 -4399 ((-1199) (-1195) $)))) -((-1407 (((-656 (-656 (-3 (|:| -1778 (-1195)) (|:| -3638 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576))))))))) $) 66)) (-1426 (((-656 (-3 (|:| -1778 (-1195)) (|:| -3638 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576)))))))) (-446) $) 47)) (-2207 (($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-449))))) 17)) (-1385 (((-1291) $) 73)) (-1436 (((-656 (-1195)) $) 22)) (-1395 (((-1122) $) 60)) (-1446 (((-449) (-1195) $) 27)) (-1416 (((-656 (-1195)) $) 30)) (-1458 (($) 19)) (-4067 (((-449) (-656 (-1195)) (-449) $) 25) (((-449) (-1195) (-449) $) 24)) (-2884 (((-874) $) 9) (((-1208 (-1195) (-449)) $) 13))) -(((-1199) (-13 (-625 (-874)) (-10 -8 (-15 -2884 ((-1208 (-1195) (-449)) $)) (-15 -1458 ($)) (-15 -4067 ((-449) (-656 (-1195)) (-449) $)) (-15 -4067 ((-449) (-1195) (-449) $)) (-15 -1446 ((-449) (-1195) $)) (-15 -1436 ((-656 (-1195)) $)) (-15 -1426 ((-656 (-3 (|:| -1778 (-1195)) (|:| -3638 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576)))))))) (-446) $)) (-15 -1416 ((-656 (-1195)) $)) (-15 -1407 ((-656 (-656 (-3 (|:| -1778 (-1195)) (|:| -3638 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576))))))))) $)) (-15 -1395 ((-1122) $)) (-15 -1385 ((-1291) $)) (-15 -2207 ($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-449))))))))) (T -1199)) -((-2884 (*1 *2 *1) (-12 (-5 *2 (-1208 (-1195) (-449))) (-5 *1 (-1199)))) (-1458 (*1 *1) (-5 *1 (-1199))) (-4067 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *1 (-1199)))) (-4067 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1199)))) (-1446 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-449)) (-5 *1 (-1199)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199)))) (-1426 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-656 (-3 (|:| -1778 (-1195)) (|:| -3638 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576))))))))) (-5 *1 (-1199)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-3 (|:| -1778 (-1195)) (|:| -3638 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576)))))))))) (-5 *1 (-1199)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1199)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1199)))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-449))))) (-5 *1 (-1199))))) -(-13 (-625 (-874)) (-10 -8 (-15 -2884 ((-1208 (-1195) (-449)) $)) (-15 -1458 ($)) (-15 -4067 ((-449) (-656 (-1195)) (-449) $)) (-15 -4067 ((-449) (-1195) (-449) $)) (-15 -1446 ((-449) (-1195) $)) (-15 -1436 ((-656 (-1195)) $)) (-15 -1426 ((-656 (-3 (|:| -1778 (-1195)) (|:| -3638 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576)))))))) (-446) $)) (-15 -1416 ((-656 (-1195)) $)) (-15 -1407 ((-656 (-656 (-3 (|:| -1778 (-1195)) (|:| -3638 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576))))))))) $)) (-15 -1395 ((-1122) $)) (-15 -1385 ((-1291) $)) (-15 -2207 ($ (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-449)))))))) -((-2862 (((-112) $ $) NIL)) (-2449 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1177) "failed") $) 47)) (-4401 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1177) $) 48)) (-1505 (((-112) $) 53)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-1494 (((-3 (-576) (-227) (-518) (-1177) $) $) 55)) (-1484 (((-656 $) $) 57)) (-2616 (((-1122) $) 24) (($ (-1122)) 25)) (-1471 (((-112) $) 56)) (-2884 (((-874) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1177)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1177) $) 49)) (-1985 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1177))) 16)) (-1515 (($ (-518) (-656 $)) 51) (($ $ (-656 $)) 52)) (-3722 (((-112) $ $) NIL)) (-3135 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1177) $) 45)) (-3915 (((-112) $ $) 7))) -(((-1200) (-13 (-1281) (-1118) (-1056 (-576)) (-1056 (-227)) (-1056 (-518)) (-1056 (-1177)) (-625 (-548)) (-10 -8 (-15 -2616 ((-1122) $)) (-15 -2616 ($ (-1122))) (-15 -2884 ((-576) $)) (-15 -3135 ((-576) $)) (-15 -2884 ((-227) $)) (-15 -3135 ((-227) $)) (-15 -2884 ((-518) $)) (-15 -3135 ((-518) $)) (-15 -2884 ((-1177) $)) (-15 -3135 ((-1177) $)) (-15 -1515 ($ (-518) (-656 $))) (-15 -1515 ($ $ (-656 $))) (-15 -1505 ((-112) $)) (-15 -1494 ((-3 (-576) (-227) (-518) (-1177) $) $)) (-15 -1484 ((-656 $) $)) (-15 -1471 ((-112) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-576)))) (-15 -1985 ((-112) $ (|[\|\|]| (-227)))) (-15 -1985 ((-112) $ (|[\|\|]| (-518)))) (-15 -1985 ((-112) $ (|[\|\|]| (-1177))))))) (T -1200)) -((-2616 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1200)))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-1200)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200)))) (-1515 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1200))) (-5 *1 (-1200)))) (-1515 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200)))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1177) (-1200))) (-5 *1 (-1200)))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1200)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1200)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1200)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-1200))))) -(-13 (-1281) (-1118) (-1056 (-576)) (-1056 (-227)) (-1056 (-518)) (-1056 (-1177)) (-625 (-548)) (-10 -8 (-15 -2616 ((-1122) $)) (-15 -2616 ($ (-1122))) (-15 -2884 ((-576) $)) (-15 -3135 ((-576) $)) (-15 -2884 ((-227) $)) (-15 -3135 ((-227) $)) (-15 -2884 ((-518) $)) (-15 -3135 ((-518) $)) (-15 -2884 ((-1177) $)) (-15 -3135 ((-1177) $)) (-15 -1515 ($ (-518) (-656 $))) (-15 -1515 ($ $ (-656 $))) (-15 -1505 ((-112) $)) (-15 -1494 ((-3 (-576) (-227) (-518) (-1177) $) $)) (-15 -1484 ((-656 $) $)) (-15 -1471 ((-112) $)) (-15 -1985 ((-112) $ (|[\|\|]| (-576)))) (-15 -1985 ((-112) $ (|[\|\|]| (-227)))) (-15 -1985 ((-112) $ (|[\|\|]| (-518)))) (-15 -1985 ((-112) $ (|[\|\|]| (-1177)))))) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) 22)) (-2473 (($) 12 T CONST)) (-2080 (($) 26)) (-1921 (($ $ $) NIL) (($) 19 T CONST)) (-4137 (($ $ $) NIL) (($) 20 T CONST)) (-1875 (((-937) $) 24)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) 23)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) -(((-1201 |#1|) (-13 (-856) (-10 -8 (-15 -2473 ($) -3739))) (-937)) (T -1201)) -((-2473 (*1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-937))))) -(-13 (-856) (-10 -8 (-15 -2473 ($) -3739))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-2010 ((|#1| $) 45)) (-1845 (((-112) $ (-782)) 8)) (-3011 (($) 7 T CONST)) (-2620 ((|#1| |#1| $) 47)) (-4065 ((|#1| $) 46)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4012 ((|#1| $) 40)) (-3862 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-2454 ((|#1| $) 42)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-3323 (((-782) $) 44)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) 43)) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-1138 |#1|) (-141) (-1235)) (T -1138)) +((-2620 (*1 *2 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235)))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1235)) (-5 *2 (-782))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4460) (-15 -2620 (|t#1| |t#1| $)) (-15 -4065 (|t#1| $)) (-15 -2010 (|t#1| $)) (-15 -3323 ((-782) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-1447 ((|#3| $) 87)) (-2449 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-4399 (((-575) $) NIL) (((-418 (-575)) $) NIL) ((|#3| $) 47)) (-1749 (((-700 (-575)) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -2412 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 $) (-1285 $)) 84) (((-700 |#3|) (-700 $)) 76) (((-700 |#3|) (-1285 $)) NIL)) (-2389 (($ $ (-1 |#3| |#3|) (-782)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-3439 ((|#3| $) 89)) (-2050 ((|#4| $) 43)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL) (($ |#3|) 25)) (** (($ $ (-936)) NIL) (($ $ (-782)) 24) (($ $ (-575)) 95))) +(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -3439 (|#3| |#1|)) (-15 -1447 (|#3| |#1|)) (-15 -2050 (|#4| |#1|)) (-15 -1749 ((-700 |#3|) (-1285 |#1|))) (-15 -1749 ((-700 |#3|) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -2883 (|#1| |#3|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4399 (|#3| |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2389 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2389 (|#1| |#1| (-1 |#3| |#3|) (-782))) (-15 -2883 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936))) (-15 -2883 ((-873) |#1|))) (-1140 |#2| |#3| |#4| |#5|) (-782) (-1066) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1139)) +NIL +(-10 -8 (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -3439 (|#3| |#1|)) (-15 -1447 (|#3| |#1|)) (-15 -2050 (|#4| |#1|)) (-15 -1749 ((-700 |#3|) (-1285 |#1|))) (-15 -1749 ((-700 |#3|) (-700 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -1749 ((-700 (-575)) (-700 |#1|))) (-15 -1749 ((-700 (-575)) (-1285 |#1|))) (-15 -2883 (|#1| |#3|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4399 (|#3| |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -2389 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2389 (|#1| |#1| (-1 |#3| |#3|) (-782))) (-15 -2883 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936))) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1447 ((|#2| $) 80)) (-3158 (((-112) $) 122)) (-2597 (((-3 $ "failed") $ $) 20)) (-1503 (((-112) $) 120)) (-1845 (((-112) $ (-782)) 112)) (-2271 (($ |#2|) 83)) (-3011 (($) 18 T CONST)) (-3356 (($ $) 139 (|has| |#2| (-316)))) (-1565 ((|#3| $ (-575)) 134)) (-2449 (((-3 (-575) "failed") $) 97 (|has| |#2| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 94 (|has| |#2| (-1055 (-418 (-575))))) (((-3 |#2| "failed") $) 91)) (-4399 (((-575) $) 96 (|has| |#2| (-1055 (-575)))) (((-418 (-575)) $) 93 (|has| |#2| (-1055 (-418 (-575))))) ((|#2| $) 92)) (-1749 (((-700 (-575)) (-1285 $)) 89 (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) 88 (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 87 (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 86) (((-700 |#2|) (-700 $)) 85) (((-700 |#2|) (-1285 $)) 84)) (-1747 (((-3 $ "failed") $) 37)) (-4422 (((-782) $) 140 (|has| |#2| (-567)))) (-2788 ((|#2| $ (-575) (-575)) 132)) (-4001 (((-655 |#2|) $) 105 (|has| $ (-6 -4460)))) (-1542 (((-112) $) 35)) (-1911 (((-782) $) 141 (|has| |#2| (-567)))) (-3264 (((-655 |#4|) $) 142 (|has| |#2| (-567)))) (-4243 (((-782) $) 128)) (-4255 (((-782) $) 129)) (-3896 (((-112) $ (-782)) 113)) (-1907 ((|#2| $) 75 (|has| |#2| (-6 (-4462 "*"))))) (-2667 (((-575) $) 124)) (-1775 (((-575) $) 126)) (-3955 (((-655 |#2|) $) 104 (|has| $ (-6 -4460)))) (-2625 (((-112) |#2| $) 102 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-1776 (((-575) $) 125)) (-3293 (((-575) $) 127)) (-4316 (($ (-655 (-655 |#2|))) 119)) (-2847 (($ (-1 |#2| |#2|) $) 109 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#2| |#2| |#2|) $ $) 136) (($ (-1 |#2| |#2|) $) 110)) (-3487 (((-655 (-655 |#2|)) $) 130)) (-4026 (((-112) $ (-782)) 114)) (-2288 (((-1176) $) 10)) (-3205 (((-3 $ "failed") $) 74 (|has| |#2| (-373)))) (-3912 (((-1137) $) 11)) (-2851 (((-3 $ "failed") $ |#2|) 137 (|has| |#2| (-567)))) (-3207 (((-112) (-1 (-112) |#2|) $) 107 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#2|))) 101 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) 100 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) 99 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) 98 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) 118)) (-4076 (((-112) $) 115)) (-1938 (($) 116)) (-2070 ((|#2| $ (-575) (-575) |#2|) 133) ((|#2| $ (-575) (-575)) 131)) (-2389 (($ $ (-1 |#2| |#2|) (-782)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-782)) 45 (|has| |#2| (-237))) (($ $ (-1194)) 55 (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) 53 (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) 52 (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 51 (|has| |#2| (-915 (-1194))))) (-3439 ((|#2| $) 79)) (-3740 (($ (-655 |#2|)) 82)) (-1763 (((-112) $) 121)) (-2050 ((|#3| $) 81)) (-3674 ((|#2| $) 76 (|has| |#2| (-6 (-4462 "*"))))) (-3925 (((-782) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4460))) (((-782) |#2| $) 103 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 117)) (-1792 ((|#4| $ (-575)) 135)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 95 (|has| |#2| (-1055 (-418 (-575))))) (($ |#2|) 90)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-3771 (((-112) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4460)))) (-4412 (((-112) $) 123)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1 |#2| |#2|) (-782)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-782)) 44 (|has| |#2| (-237))) (($ $ (-1194)) 54 (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) 50 (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) 49 (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 48 (|has| |#2| (-915 (-1194))))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#2|) 138 (|has| |#2| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 73 (|has| |#2| (-373)))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#2|) 144) (($ |#2| $) 143) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-2871 (((-782) $) 111 (|has| $ (-6 -4460))))) +(((-1140 |#1| |#2| |#3| |#4|) (-141) (-782) (-1066) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1140)) +((-2271 (*1 *1 *2) (-12 (-4 *2 (-1066)) (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-655 *4)) (-4 *4 (-1066)) (-4 *1 (-1140 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-2050 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *4 *2 *5)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1066)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1066)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1140 *3 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1140 *3 *4 *2 *5)) (-4 *4 (-1066)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))) (-3205 (*1 *1 *1) (|partial| -12 (-4 *1 (-1140 *2 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-373)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-373))))) +(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1070 |t#1| |t#1| |t#2| |t#3| |t#4|) (-422 |t#2|) (-387 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-728 |t#2|)) |%noBranch|) (-15 -2271 ($ |t#2|)) (-15 -3740 ($ (-655 |t#2|))) (-15 -2050 (|t#3| $)) (-15 -1447 (|t#2| $)) (-15 -3439 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4462 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3674 (|t#2| $)) (-15 -1907 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-373)) (PROGN (-15 -3205 ((-3 $ "failed") $)) (-15 ** ($ $ (-575)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4462 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-627 #0=(-418 (-575))) |has| |#2| (-1055 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#2|) . T) ((-624 (-873)) . T) ((-234 $) -3765 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -3765 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-271 |#2|) . T) ((-318 |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-387 |#2|) . T) ((-422 |#2|) . T) ((-500 |#2|) . T) ((-525 |#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-657 (-575)) . T) ((-657 |#2|) . T) ((-657 $) . T) ((-659 #1=(-575)) |has| |#2| (-650 (-575))) ((-659 |#2|) . T) ((-659 $) . T) ((-651 |#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-6 (-4462 "*")))) ((-650 #1#) |has| |#2| (-650 (-575))) ((-650 |#2|) . T) ((-728 |#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-6 (-4462 "*")))) ((-737) . T) ((-908 $ #2=(-1194)) -3765 (|has| |#2| (-915 (-1194))) (|has| |#2| (-913 (-1194)))) ((-913 (-1194)) |has| |#2| (-913 (-1194))) ((-915 #2#) -3765 (|has| |#2| (-915 (-1194))) (|has| |#2| (-913 (-1194)))) ((-1070 |#1| |#1| |#2| |#3| |#4|) . T) ((-1055 #0#) |has| |#2| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#2| (-1055 (-575))) ((-1055 |#2|) . T) ((-1068 |#2|) . T) ((-1073 |#2|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T)) +((-2225 ((|#4| |#4|) 81)) (-3053 ((|#4| |#4|) 76)) (-2051 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1624 (-655 |#3|))) |#4| |#3|) 91)) (-3891 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2580 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1141 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3053 (|#4| |#4|)) (-15 -2580 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2225 (|#4| |#4|)) (-15 -3891 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2051 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1624 (-655 |#3|))) |#4| |#3|))) (-316) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|)) (T -1141)) +((-2051 (*1 *2 *3 *4) (-12 (-4 *5 (-316)) (-4 *6 (-383 *5)) (-4 *4 (-383 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) (-5 *1 (-1141 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4)))) (-3891 (*1 *2 *3) (-12 (-4 *4 (-316)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1141 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-316)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-1141 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-2580 (*1 *2 *3) (-12 (-4 *4 (-316)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1141 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-3053 (*1 *2 *2) (-12 (-4 *3 (-316)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-1141 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5))))) +(-10 -7 (-15 -3053 (|#4| |#4|)) (-15 -2580 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2225 (|#4| |#4|)) (-15 -3891 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2051 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1624 (-655 |#3|))) |#4| |#3|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 18)) (-1606 (((-655 |#2|) $) 174)) (-3466 (((-1190 $) $ |#2|) 60) (((-1190 |#1|) $) 49)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 116 (|has| |#1| (-567)))) (-1540 (($ $) 118 (|has| |#1| (-567)))) (-3286 (((-112) $) 120 (|has| |#1| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 |#2|)) 213)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2058 (($ $) NIL (|has| |#1| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) 167) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 |#2| "failed") $) NIL)) (-4399 ((|#1| $) 165) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) ((|#2| $) NIL)) (-4232 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-4406 (($ $) 217)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) 90)) (-1824 (($ $) NIL (|has| |#1| (-463))) (($ $ |#2|) NIL (|has| |#1| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#1| (-924)))) (-3703 (($ $ |#1| (-542 |#2|) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| |#1| (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| |#1| (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-1542 (((-112) $) 20)) (-2218 (((-782) $) 30)) (-2433 (($ (-1190 |#1|) |#2|) 54) (($ (-1190 $) |#2|) 71)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) 38)) (-2417 (($ |#1| (-542 |#2|)) 78) (($ $ |#2| (-782)) 58) (($ $ (-655 |#2|) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ |#2|) NIL)) (-4337 (((-542 |#2|) $) 205) (((-782) $ |#2|) 206) (((-655 (-782)) $ (-655 |#2|)) 207)) (-2520 (($ (-1 (-542 |#2|) (-542 |#2|)) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) 128)) (-3976 (((-3 |#2| "failed") $) 177)) (-4371 (($ $) 216)) (-4383 ((|#1| $) 43)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-2288 (((-1176) $) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| |#2|) (|:| -2398 (-782))) "failed") $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) 39)) (-4353 ((|#1| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 148 (|has| |#1| (-463)))) (-3926 (($ (-655 $)) 153 (|has| |#1| (-463))) (($ $ $) 138 (|has| |#1| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2851 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-567)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-655 |#2|) (-655 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-655 |#2|) (-655 $)) 194)) (-4060 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2389 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) 215)) (-2645 (((-542 |#2|) $) 201) (((-782) $ |#2|) 196) (((-655 (-782)) $ (-655 |#2|)) 199)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| |#1| (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-2178 ((|#1| $) 134 (|has| |#1| (-463))) (($ $ |#2|) 137 (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2883 (((-873) $) 159) (($ (-575)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-567))) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-2501 (((-655 |#1|) $) 162)) (-2012 ((|#1| $ (-542 |#2|)) 80) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) 87 T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) 123 (|has| |#1| (-567)))) (-1996 (($) 12 T CONST)) (-2009 (($) 14 T CONST)) (-3430 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) NIL)) (-3914 (((-112) $ $) 106)) (-4038 (($ $ |#1|) 132 (|has| |#1| (-373)))) (-4028 (($ $) 93) (($ $ $) 104)) (-4016 (($ $ $) 55)) (** (($ $ (-936)) 110) (($ $ (-782)) 109)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 96) (($ $ $) 72) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1142 |#1| |#2|) (-964 |#1| (-542 |#2|) |#2|) (-1066) (-861)) (T -1142)) +NIL +(-964 |#1| (-542 |#2|) |#2|) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 |#2|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-3923 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) 128 (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3897 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) 124 (|has| |#1| (-38 (-418 (-575)))))) (-1521 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2485 (((-967 |#1|) $ (-782)) NIL) (((-967 |#1|) $ (-782) (-782)) NIL)) (-2789 (((-112) $) NIL)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-782) $ |#2|) NIL) (((-782) $ |#2| (-782)) NIL)) (-1542 (((-112) $) NIL)) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2376 (((-112) $) NIL)) (-2417 (($ $ (-655 |#2|) (-655 (-542 |#2|))) NIL) (($ $ |#2| (-542 |#2|)) NIL) (($ |#1| (-542 |#2|)) NIL) (($ $ |#2| (-782)) 63) (($ $ (-655 |#2|) (-655 (-782))) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3463 (($ $) 122 (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-4413 (($ $ |#2|) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-1469 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-418 (-575)))))) (-4276 (($ $ (-782)) 16)) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2665 (($ $) 120 (|has| |#1| (-38 (-418 (-575)))))) (-3048 (($ $ |#2| $) 106) (($ $ (-655 |#2|) (-655 $)) 99) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL)) (-2389 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) 109)) (-2645 (((-542 |#2|) $) NIL)) (-3123 (((-1 (-1174 |#3|) |#3|) (-655 |#2|) (-655 (-1174 |#3|))) 87)) (-1530 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) 130 (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) 126 (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) 18)) (-2883 (((-873) $) 198) (($ (-575)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-567))) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#2|) 70) (($ |#3|) 68)) (-2012 ((|#1| $ (-542 |#2|)) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|) (-655 (-782))) NIL) ((|#3| $ (-782)) 43)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) 164 (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) 160 (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) 168 (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-2914 (($ $) 170 (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 166 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 162 (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) 52 T CONST)) (-2009 (($) 62 T CONST)) (-3430 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) NIL)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) 200 (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 66)) (** (($ $ (-936)) NIL) (($ $ (-782)) 77) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 112 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 65) (($ $ (-418 (-575))) 117 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 115 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1143 |#1| |#2| |#3|) (-13 (-751 |#1| |#2|) (-10 -8 (-15 -2012 (|#3| $ (-782))) (-15 -2883 ($ |#2|)) (-15 -2883 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3123 ((-1 (-1174 |#3|) |#3|) (-655 |#2|) (-655 (-1174 |#3|)))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ($ $ |#2| |#1|)) (-15 -1469 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1066) (-861) (-964 |#1| (-542 |#2|) |#2|)) (T -1143)) +((-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *2 (-964 *4 (-542 *5) *5)) (-5 *1 (-1143 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-861)))) (-2883 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-4 *2 (-861)) (-5 *1 (-1143 *3 *2 *4)) (-4 *4 (-964 *3 (-542 *2) *2)))) (-2883 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-4 *4 (-861)) (-5 *1 (-1143 *3 *4 *2)) (-4 *2 (-964 *3 (-542 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-861)) (-5 *1 (-1143 *3 *4 *2)) (-4 *2 (-964 *3 (-542 *4) *4)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-1174 *7))) (-4 *6 (-861)) (-4 *7 (-964 *5 (-542 *6) *6)) (-4 *5 (-1066)) (-5 *2 (-1 (-1174 *7) *7)) (-5 *1 (-1143 *5 *6 *7)))) (-4413 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-4 *2 (-861)) (-5 *1 (-1143 *3 *2 *4)) (-4 *4 (-964 *3 (-542 *2) *2)))) (-1469 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1143 *4 *3 *5))) (-4 *4 (-38 (-418 (-575)))) (-4 *4 (-1066)) (-4 *3 (-861)) (-5 *1 (-1143 *4 *3 *5)) (-4 *5 (-964 *4 (-542 *3) *3))))) +(-13 (-751 |#1| |#2|) (-10 -8 (-15 -2012 (|#3| $ (-782))) (-15 -2883 ($ |#2|)) (-15 -2883 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3123 ((-1 (-1174 |#3|) |#3|) (-655 |#2|) (-655 (-1174 |#3|)))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ($ $ |#2| |#1|)) (-15 -1469 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2861 (((-112) $ $) 7)) (-3303 (((-655 (-2 (|:| -2458 $) (|:| -2978 (-655 |#4|)))) (-655 |#4|)) 86)) (-1740 (((-655 $) (-655 |#4|)) 87) (((-655 $) (-655 |#4|) (-112)) 112)) (-1606 (((-655 |#3|) $) 34)) (-2210 (((-112) $) 27)) (-3036 (((-112) $) 18 (|has| |#1| (-567)))) (-3309 (((-112) |#4| $) 102) (((-112) $) 98)) (-2749 ((|#4| |#4| $) 93)) (-2058 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 127)) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#3|) 28)) (-1845 (((-112) $ (-782)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 80)) (-3011 (($) 46 T CONST)) (-1437 (((-112) $) 23 (|has| |#1| (-567)))) (-2365 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4289 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1812 (((-112) $) 26 (|has| |#1| (-567)))) (-3376 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3629 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-3563 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 |#4|)) 37)) (-4399 (($ (-655 |#4|)) 36)) (-1975 (((-3 $ "failed") $) 83)) (-2690 ((|#4| |#4| $) 90)) (-1748 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-2249 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4183 ((|#4| |#4| $) 88)) (-2308 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2029 (((-2 (|:| -2458 (-655 |#4|)) (|:| -2978 (-655 |#4|))) $) 106)) (-4355 (((-112) |#4| $) 137)) (-1718 (((-112) |#4| $) 134)) (-2986 (((-112) |#4| $) 138) (((-112) $) 135)) (-4001 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-2548 (((-112) |#4| $) 105) (((-112) $) 104)) (-3838 ((|#3| $) 35)) (-3896 (((-112) $ (-782)) 44)) (-3955 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) 48)) (-1444 (((-655 |#3|) $) 33)) (-1808 (((-112) |#3| $) 32)) (-4026 (((-112) $ (-782)) 43)) (-2288 (((-1176) $) 10)) (-2053 (((-3 |#4| (-655 $)) |#4| |#4| $) 129)) (-2896 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 128)) (-3653 (((-3 |#4| "failed") $) 84)) (-2463 (((-655 $) |#4| $) 130)) (-2192 (((-3 (-112) (-655 $)) |#4| $) 133)) (-1658 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1479 (((-655 $) |#4| $) 126) (((-655 $) (-655 |#4|) $) 125) (((-655 $) (-655 |#4|) (-655 $)) 124) (((-655 $) |#4| (-655 $)) 123)) (-2233 (($ |#4| $) 118) (($ (-655 |#4|) $) 117)) (-1590 (((-655 |#4|) $) 108)) (-1411 (((-112) |#4| $) 100) (((-112) $) 96)) (-4367 ((|#4| |#4| $) 91)) (-2687 (((-112) $ $) 111)) (-4395 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-3188 (((-112) |#4| $) 101) (((-112) $) 97)) (-2973 ((|#4| |#4| $) 92)) (-3912 (((-1137) $) 11)) (-1961 (((-3 |#4| "failed") $) 85)) (-3704 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2500 (((-3 $ "failed") $ |#4|) 79)) (-4276 (($ $ |#4|) 78) (((-655 $) |#4| $) 116) (((-655 $) |#4| (-655 $)) 115) (((-655 $) (-655 |#4|) $) 114) (((-655 $) (-655 |#4|) (-655 $)) 113)) (-3207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) 39)) (-4076 (((-112) $) 42)) (-1938 (($) 41)) (-2645 (((-782) $) 107)) (-3925 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3078 (($ $) 40)) (-2615 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2894 (($ (-655 |#4|)) 61)) (-1879 (($ $ |#3|) 29)) (-3427 (($ $ |#3|) 31)) (-2921 (($ $) 89)) (-3608 (($ $ |#3|) 30)) (-2883 (((-873) $) 12) (((-655 |#4|) $) 38)) (-3706 (((-782) $) 77 (|has| |#3| (-378)))) (-4400 (((-112) $ $) 9)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2994 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) 99)) (-3556 (((-655 $) |#4| $) 122) (((-655 $) |#4| (-655 $)) 121) (((-655 $) (-655 |#4|) $) 120) (((-655 $) (-655 |#4|) (-655 $)) 119)) (-3771 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-1359 (((-655 |#3|) $) 82)) (-2722 (((-112) |#4| $) 136)) (-1591 (((-112) |#3| $) 81)) (-3914 (((-112) $ $) 6)) (-2871 (((-782) $) 47 (|has| $ (-6 -4460))))) +(((-1144 |#1| |#2| |#3| |#4|) (-141) (-463) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -1144)) +NIL +(-13 (-1126 |t#1| |t#2| |t#3| |t#4|) (-795 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-795 |#1| |#2| |#3| |#4|) . T) ((-993 |#1| |#2| |#3| |#4|) . T) ((-1088 |#1| |#2| |#3| |#4|) . T) ((-1117) . T) ((-1126 |#1| |#2| |#3| |#4|) . T) ((-1228 |#1| |#2| |#3| |#4|) . T) ((-1235) . T)) +((-1546 (((-655 |#2|) |#1|) 15)) (-2357 (((-655 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-655 |#2|) |#1|) 61)) (-4321 (((-655 |#2|) |#2| |#2| |#2|) 45) (((-655 |#2|) |#1|) 59)) (-3440 ((|#2| |#1|) 54)) (-2925 (((-2 (|:| |solns| (-655 |#2|)) (|:| |maps| (-655 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2461 (((-655 |#2|) |#2| |#2|) 42) (((-655 |#2|) |#1|) 58)) (-3915 (((-655 |#2|) |#2| |#2| |#2| |#2|) 46) (((-655 |#2|) |#1|) 60)) (-4123 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-1415 ((|#2| |#2| |#2| |#2|) 51)) (-1900 ((|#2| |#2| |#2|) 50)) (-2459 ((|#2| |#2| |#2| |#2| |#2|) 52))) +(((-1145 |#1| |#2|) (-10 -7 (-15 -1546 ((-655 |#2|) |#1|)) (-15 -3440 (|#2| |#1|)) (-15 -2925 ((-2 (|:| |solns| (-655 |#2|)) (|:| |maps| (-655 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2461 ((-655 |#2|) |#1|)) (-15 -4321 ((-655 |#2|) |#1|)) (-15 -3915 ((-655 |#2|) |#1|)) (-15 -2357 ((-655 |#2|) |#1|)) (-15 -2461 ((-655 |#2|) |#2| |#2|)) (-15 -4321 ((-655 |#2|) |#2| |#2| |#2|)) (-15 -3915 ((-655 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2357 ((-655 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1900 (|#2| |#2| |#2|)) (-15 -1415 (|#2| |#2| |#2| |#2|)) (-15 -2459 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4123 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1261 |#2|) (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (T -1145)) +((-4123 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))) (-2459 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))) (-1415 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))) (-1900 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))) (-2357 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))) (-3915 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))) (-4321 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))) (-2461 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))) (-2357 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) (-3915 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) (-4321 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) (-2461 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-2 (|:| |solns| (-655 *5)) (|:| |maps| (-655 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1145 *3 *5)) (-4 *3 (-1261 *5)))) (-3440 (*1 *2 *3) (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4))))) +(-10 -7 (-15 -1546 ((-655 |#2|) |#1|)) (-15 -3440 (|#2| |#1|)) (-15 -2925 ((-2 (|:| |solns| (-655 |#2|)) (|:| |maps| (-655 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2461 ((-655 |#2|) |#1|)) (-15 -4321 ((-655 |#2|) |#1|)) (-15 -3915 ((-655 |#2|) |#1|)) (-15 -2357 ((-655 |#2|) |#1|)) (-15 -2461 ((-655 |#2|) |#2| |#2|)) (-15 -4321 ((-655 |#2|) |#2| |#2| |#2|)) (-15 -3915 ((-655 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2357 ((-655 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1900 (|#2| |#2| |#2|)) (-15 -1415 (|#2| |#2| |#2| |#2|)) (-15 -2459 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4123 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-4025 (((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|))))) 118) (((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194))) 117) (((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|)))) 115) (((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|))) (-655 (-1194))) 113) (((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|)))) 97) (((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|))) (-1194)) 98) (((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|))) 92) (((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|)) (-1194)) 82)) (-2476 (((-655 (-655 (-325 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194))) 111) (((-655 (-325 |#1|)) (-418 (-967 |#1|)) (-1194)) 54)) (-2093 (((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-418 (-967 |#1|)) (-1194)) 122) (((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194)) 121))) +(((-1146 |#1|) (-10 -7 (-15 -4025 ((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -4025 ((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|)))) (-15 -4025 ((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -4025 ((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|))))) (-15 -4025 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -4025 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|))))) (-15 -4025 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194)))) (-15 -4025 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -2476 ((-655 (-325 |#1|)) (-418 (-967 |#1|)) (-1194))) (-15 -2476 ((-655 (-655 (-325 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -2093 ((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -2093 ((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-418 (-967 |#1|)) (-1194)))) (-13 (-316) (-148))) (T -1146)) +((-2093 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-1183 (-655 (-325 *5)) (-655 (-303 (-325 *5))))) (-5 *1 (-1146 *5)))) (-2093 (*1 *2 *3 *4) (-12 (-5 *3 (-303 (-418 (-967 *5)))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-1183 (-655 (-325 *5)) (-655 (-303 (-325 *5))))) (-5 *1 (-1146 *5)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-325 *5)))) (-5 *1 (-1146 *5)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-325 *5))) (-5 *1 (-1146 *5)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-655 (-303 (-418 (-967 *4))))) (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *4))))) (-5 *1 (-1146 *4)))) (-4025 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-303 (-418 (-967 *5))))) (-5 *4 (-655 (-1194))) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *5))))) (-5 *1 (-1146 *5)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-655 (-418 (-967 *4)))) (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *4))))) (-5 *1 (-1146 *4)))) (-4025 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *5))))) (-5 *1 (-1146 *5)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-303 (-418 (-967 *4)))) (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1146 *4)))) (-4025 (*1 *2 *3 *4) (-12 (-5 *3 (-303 (-418 (-967 *5)))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1146 *5)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1146 *4)))) (-4025 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1146 *5))))) +(-10 -7 (-15 -4025 ((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -4025 ((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|)))) (-15 -4025 ((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -4025 ((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|))))) (-15 -4025 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -4025 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|))))) (-15 -4025 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194)))) (-15 -4025 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -2476 ((-655 (-325 |#1|)) (-418 (-967 |#1|)) (-1194))) (-15 -2476 ((-655 (-655 (-325 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -2093 ((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -2093 ((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-418 (-967 |#1|)) (-1194)))) +((-3002 (((-418 (-1190 (-325 |#1|))) (-1285 (-325 |#1|)) (-418 (-1190 (-325 |#1|))) (-575)) 36)) (-1424 (((-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|)))) 48))) +(((-1147 |#1|) (-10 -7 (-15 -1424 ((-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))))) (-15 -3002 ((-418 (-1190 (-325 |#1|))) (-1285 (-325 |#1|)) (-418 (-1190 (-325 |#1|))) (-575)))) (-567)) (T -1147)) +((-3002 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-418 (-1190 (-325 *5)))) (-5 *3 (-1285 (-325 *5))) (-5 *4 (-575)) (-4 *5 (-567)) (-5 *1 (-1147 *5)))) (-1424 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-418 (-1190 (-325 *3)))) (-4 *3 (-567)) (-5 *1 (-1147 *3))))) +(-10 -7 (-15 -1424 ((-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))))) (-15 -3002 ((-418 (-1190 (-325 |#1|))) (-1285 (-325 |#1|)) (-418 (-1190 (-325 |#1|))) (-575)))) +((-1546 (((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-325 |#1|))) (-655 (-1194))) 244) (((-655 (-303 (-325 |#1|))) (-325 |#1|) (-1194)) 23) (((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|)) (-1194)) 29) (((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|))) 28) (((-655 (-303 (-325 |#1|))) (-325 |#1|)) 24))) +(((-1148 |#1|) (-10 -7 (-15 -1546 ((-655 (-303 (-325 |#1|))) (-325 |#1|))) (-15 -1546 ((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|)))) (-15 -1546 ((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|)) (-1194))) (-15 -1546 ((-655 (-303 (-325 |#1|))) (-325 |#1|) (-1194))) (-15 -1546 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-325 |#1|))) (-655 (-1194))))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (T -1148)) +((-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-1194))) (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *5))))) (-5 *1 (-1148 *5)) (-5 *3 (-655 (-303 (-325 *5)))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1148 *5)) (-5 *3 (-325 *5)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1148 *5)) (-5 *3 (-303 (-325 *5))))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1148 *4)) (-5 *3 (-303 (-325 *4))))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1148 *4)) (-5 *3 (-325 *4))))) +(-10 -7 (-15 -1546 ((-655 (-303 (-325 |#1|))) (-325 |#1|))) (-15 -1546 ((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|)))) (-15 -1546 ((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|)) (-1194))) (-15 -1546 ((-655 (-303 (-325 |#1|))) (-325 |#1|) (-1194))) (-15 -1546 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-325 |#1|))) (-655 (-1194))))) +((-1746 ((|#2| |#2|) 28 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-1534 ((|#2| |#2|) 27 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1149 |#1| |#2|) (-10 -7 (-15 -1534 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1746 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -1534 (|#2| |#2|)) (-15 -1746 (|#2| |#2|))) |%noBranch|)) (-1235) (-13 (-615 (-575) |#1|) (-10 -7 (-6 -4460) (-6 -4461)))) (T -1149)) +((-1746 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1235)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-615 (-575) *3) (-10 -7 (-6 -4460) (-6 -4461)))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1235)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-615 (-575) *3) (-10 -7 (-6 -4460) (-6 -4461)))))) (-1746 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-615 (-575) *4) (-10 -7 (-6 -4460) (-6 -4461)))))) (-1534 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-615 (-575) *4) (-10 -7 (-6 -4460) (-6 -4461))))))) +(-10 -7 (-15 -1534 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1746 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -1534 (|#2| |#2|)) (-15 -1746 (|#2| |#2|))) |%noBranch|)) +((-2861 (((-112) $ $) NIL)) (-1765 (((-1182 3 |#1|) $) 141)) (-2800 (((-112) $) 101)) (-1418 (($ $ (-655 (-958 |#1|))) 44) (($ $ (-655 (-655 |#1|))) 104) (($ (-655 (-958 |#1|))) 103) (((-655 (-958 |#1|)) $) 102)) (-4111 (((-112) $) 72)) (-1838 (($ $ (-958 |#1|)) 76) (($ $ (-655 |#1|)) 81) (($ $ (-782)) 83) (($ (-958 |#1|)) 77) (((-958 |#1|) $) 75)) (-1537 (((-2 (|:| -3793 (-782)) (|:| |curves| (-782)) (|:| |polygons| (-782)) (|:| |constructs| (-782))) $) 139)) (-1987 (((-782) $) 53)) (-1454 (((-782) $) 52)) (-3380 (($ $ (-782) (-958 |#1|)) 67)) (-1799 (((-112) $) 111)) (-1504 (($ $ (-655 (-655 (-958 |#1|))) (-655 (-173)) (-173)) 118) (($ $ (-655 (-655 (-655 |#1|))) (-655 (-173)) (-173)) 120) (($ $ (-655 (-655 (-958 |#1|))) (-112) (-112)) 115) (($ $ (-655 (-655 (-655 |#1|))) (-112) (-112)) 127) (($ (-655 (-655 (-958 |#1|)))) 116) (($ (-655 (-655 (-958 |#1|))) (-112) (-112)) 117) (((-655 (-655 (-958 |#1|))) $) 114)) (-3794 (($ (-655 $)) 56) (($ $ $) 57)) (-2286 (((-655 (-173)) $) 133)) (-3940 (((-655 (-958 |#1|)) $) 130)) (-1814 (((-655 (-655 (-173))) $) 132)) (-1579 (((-655 (-655 (-655 (-958 |#1|)))) $) NIL)) (-3313 (((-655 (-655 (-655 (-782)))) $) 131)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2835 (((-782) $ (-655 (-958 |#1|))) 65)) (-3727 (((-112) $) 84)) (-4240 (($ $ (-655 (-958 |#1|))) 86) (($ $ (-655 (-655 |#1|))) 92) (($ (-655 (-958 |#1|))) 87) (((-655 (-958 |#1|)) $) 85)) (-3314 (($) 48) (($ (-1182 3 |#1|)) 49)) (-3078 (($ $) 63)) (-1420 (((-655 $) $) 62)) (-3875 (($ (-655 $)) 59)) (-3362 (((-655 $) $) 61)) (-2883 (((-873) $) 146)) (-3388 (((-112) $) 94)) (-2103 (($ $ (-655 (-958 |#1|))) 96) (($ $ (-655 (-655 |#1|))) 99) (($ (-655 (-958 |#1|))) 97) (((-655 (-958 |#1|)) $) 95)) (-3135 (($ $) 140)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1150 |#1|) (-1151 |#1|) (-1066)) (T -1150)) +NIL +(-1151 |#1|) +((-2861 (((-112) $ $) 7)) (-1765 (((-1182 3 |#1|) $) 14)) (-2800 (((-112) $) 30)) (-1418 (($ $ (-655 (-958 |#1|))) 34) (($ $ (-655 (-655 |#1|))) 33) (($ (-655 (-958 |#1|))) 32) (((-655 (-958 |#1|)) $) 31)) (-4111 (((-112) $) 45)) (-1838 (($ $ (-958 |#1|)) 50) (($ $ (-655 |#1|)) 49) (($ $ (-782)) 48) (($ (-958 |#1|)) 47) (((-958 |#1|) $) 46)) (-1537 (((-2 (|:| -3793 (-782)) (|:| |curves| (-782)) (|:| |polygons| (-782)) (|:| |constructs| (-782))) $) 16)) (-1987 (((-782) $) 59)) (-1454 (((-782) $) 60)) (-3380 (($ $ (-782) (-958 |#1|)) 51)) (-1799 (((-112) $) 22)) (-1504 (($ $ (-655 (-655 (-958 |#1|))) (-655 (-173)) (-173)) 29) (($ $ (-655 (-655 (-655 |#1|))) (-655 (-173)) (-173)) 28) (($ $ (-655 (-655 (-958 |#1|))) (-112) (-112)) 27) (($ $ (-655 (-655 (-655 |#1|))) (-112) (-112)) 26) (($ (-655 (-655 (-958 |#1|)))) 25) (($ (-655 (-655 (-958 |#1|))) (-112) (-112)) 24) (((-655 (-655 (-958 |#1|))) $) 23)) (-3794 (($ (-655 $)) 58) (($ $ $) 57)) (-2286 (((-655 (-173)) $) 17)) (-3940 (((-655 (-958 |#1|)) $) 21)) (-1814 (((-655 (-655 (-173))) $) 18)) (-1579 (((-655 (-655 (-655 (-958 |#1|)))) $) 19)) (-3313 (((-655 (-655 (-655 (-782)))) $) 20)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2835 (((-782) $ (-655 (-958 |#1|))) 52)) (-3727 (((-112) $) 40)) (-4240 (($ $ (-655 (-958 |#1|))) 44) (($ $ (-655 (-655 |#1|))) 43) (($ (-655 (-958 |#1|))) 42) (((-655 (-958 |#1|)) $) 41)) (-3314 (($) 62) (($ (-1182 3 |#1|)) 61)) (-3078 (($ $) 53)) (-1420 (((-655 $) $) 54)) (-3875 (($ (-655 $)) 56)) (-3362 (((-655 $) $) 55)) (-2883 (((-873) $) 12)) (-3388 (((-112) $) 35)) (-2103 (($ $ (-655 (-958 |#1|))) 39) (($ $ (-655 (-655 |#1|))) 38) (($ (-655 (-958 |#1|))) 37) (((-655 (-958 |#1|)) $) 36)) (-3135 (($ $) 15)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-1151 |#1|) (-141) (-1066)) (T -1151)) +((-2883 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-873)))) (-3314 (*1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-1182 3 *3)) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-3794 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-3362 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)))) (-1420 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)))) (-3078 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 (-655 (-958 *4))) (-4 *1 (-1151 *4)) (-4 *4 (-1066)) (-5 *2 (-782)))) (-3380 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *3 (-958 *4)) (-4 *1 (-1151 *4)) (-4 *4 (-1066)))) (-1838 (*1 *1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-1838 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-1838 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-1838 (*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-958 *3)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-4240 (*1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-2103 (*1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-1418 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-1418 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-1418 (*1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-1418 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-1504 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-655 (-655 (-958 *5)))) (-5 *3 (-655 (-173))) (-5 *4 (-173)) (-4 *1 (-1151 *5)) (-4 *5 (-1066)))) (-1504 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-655 (-655 (-655 *5)))) (-5 *3 (-655 (-173))) (-5 *4 (-173)) (-4 *1 (-1151 *5)) (-4 *5 (-1066)))) (-1504 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-655 (-655 (-958 *4)))) (-5 *3 (-112)) (-4 *1 (-1151 *4)) (-4 *4 (-1066)))) (-1504 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-655 (-655 (-655 *4)))) (-5 *3 (-112)) (-4 *1 (-1151 *4)) (-4 *4 (-1066)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-958 *3)))) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-1504 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-655 (-655 (-958 *4)))) (-5 *3 (-112)) (-4 *4 (-1066)) (-4 *1 (-1151 *4)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-655 (-958 *3)))))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))) (-3313 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-655 (-655 (-782))))))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-655 (-655 (-958 *3))))))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-655 (-173)))))) (-2286 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-173))))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -3793 (-782)) (|:| |curves| (-782)) (|:| |polygons| (-782)) (|:| |constructs| (-782)))))) (-3135 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-1182 3 *3))))) +(-13 (-1117) (-10 -8 (-15 -3314 ($)) (-15 -3314 ($ (-1182 3 |t#1|))) (-15 -1454 ((-782) $)) (-15 -1987 ((-782) $)) (-15 -3794 ($ (-655 $))) (-15 -3794 ($ $ $)) (-15 -3875 ($ (-655 $))) (-15 -3362 ((-655 $) $)) (-15 -1420 ((-655 $) $)) (-15 -3078 ($ $)) (-15 -2835 ((-782) $ (-655 (-958 |t#1|)))) (-15 -3380 ($ $ (-782) (-958 |t#1|))) (-15 -1838 ($ $ (-958 |t#1|))) (-15 -1838 ($ $ (-655 |t#1|))) (-15 -1838 ($ $ (-782))) (-15 -1838 ($ (-958 |t#1|))) (-15 -1838 ((-958 |t#1|) $)) (-15 -4111 ((-112) $)) (-15 -4240 ($ $ (-655 (-958 |t#1|)))) (-15 -4240 ($ $ (-655 (-655 |t#1|)))) (-15 -4240 ($ (-655 (-958 |t#1|)))) (-15 -4240 ((-655 (-958 |t#1|)) $)) (-15 -3727 ((-112) $)) (-15 -2103 ($ $ (-655 (-958 |t#1|)))) (-15 -2103 ($ $ (-655 (-655 |t#1|)))) (-15 -2103 ($ (-655 (-958 |t#1|)))) (-15 -2103 ((-655 (-958 |t#1|)) $)) (-15 -3388 ((-112) $)) (-15 -1418 ($ $ (-655 (-958 |t#1|)))) (-15 -1418 ($ $ (-655 (-655 |t#1|)))) (-15 -1418 ($ (-655 (-958 |t#1|)))) (-15 -1418 ((-655 (-958 |t#1|)) $)) (-15 -2800 ((-112) $)) (-15 -1504 ($ $ (-655 (-655 (-958 |t#1|))) (-655 (-173)) (-173))) (-15 -1504 ($ $ (-655 (-655 (-655 |t#1|))) (-655 (-173)) (-173))) (-15 -1504 ($ $ (-655 (-655 (-958 |t#1|))) (-112) (-112))) (-15 -1504 ($ $ (-655 (-655 (-655 |t#1|))) (-112) (-112))) (-15 -1504 ($ (-655 (-655 (-958 |t#1|))))) (-15 -1504 ($ (-655 (-655 (-958 |t#1|))) (-112) (-112))) (-15 -1504 ((-655 (-655 (-958 |t#1|))) $)) (-15 -1799 ((-112) $)) (-15 -3940 ((-655 (-958 |t#1|)) $)) (-15 -3313 ((-655 (-655 (-655 (-782)))) $)) (-15 -1579 ((-655 (-655 (-655 (-958 |t#1|)))) $)) (-15 -1814 ((-655 (-655 (-173))) $)) (-15 -2286 ((-655 (-173)) $)) (-15 -1537 ((-2 (|:| -3793 (-782)) (|:| |curves| (-782)) (|:| |polygons| (-782)) (|:| |constructs| (-782))) $)) (-15 -3135 ($ $)) (-15 -1765 ((-1182 3 |t#1|) $)) (-15 -2883 ((-873) $)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 184) (($ (-1199)) NIL) (((-1199) $) 7)) (-1984 (((-112) $ (|[\|\|]| (-535))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-687))) 27) (((-112) $ (|[\|\|]| (-1295))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-617))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1132))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-692))) 55) (((-112) $ (|[\|\|]| (-528))) 59) (((-112) $ (|[\|\|]| (-1083))) 63) (((-112) $ (|[\|\|]| (-1296))) 67) (((-112) $ (|[\|\|]| (-536))) 71) (((-112) $ (|[\|\|]| (-1168))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-682))) 83) (((-112) $ (|[\|\|]| (-320))) 87) (((-112) $ (|[\|\|]| (-1053))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-987))) 99) (((-112) $ (|[\|\|]| (-1090))) 103) (((-112) $ (|[\|\|]| (-1107))) 107) (((-112) $ (|[\|\|]| (-1113))) 111) (((-112) $ (|[\|\|]| (-637))) 115) (((-112) $ (|[\|\|]| (-1184))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-489))) 131) (((-112) $ (|[\|\|]| (-603))) 135) (((-112) $ (|[\|\|]| (-517))) 139) (((-112) $ (|[\|\|]| (-1176))) 143) (((-112) $ (|[\|\|]| (-575))) 147)) (-4400 (((-112) $ $) NIL)) (-3134 (((-535) $) 20) (((-220) $) 24) (((-687) $) 28) (((-1295) $) 32) (((-139) $) 36) (((-617) $) 40) (((-134) $) 44) (((-1132) $) 48) (((-96) $) 52) (((-692) $) 56) (((-528) $) 60) (((-1083) $) 64) (((-1296) $) 68) (((-536) $) 72) (((-1168) $) 76) (((-155) $) 80) (((-682) $) 84) (((-320) $) 88) (((-1053) $) 92) (((-182) $) 96) (((-987) $) 100) (((-1090) $) 104) (((-1107) $) 108) (((-1113) $) 112) (((-637) $) 116) (((-1184) $) 120) (((-157) $) 124) (((-138) $) 128) (((-489) $) 132) (((-603) $) 136) (((-517) $) 140) (((-1176) $) 144) (((-575) $) 148)) (-3914 (((-112) $ $) NIL))) +(((-1152) (-1154)) (T -1152)) +NIL +(-1154) +((-4205 (((-655 (-1199)) (-1176)) 9))) +(((-1153) (-10 -7 (-15 -4205 ((-655 (-1199)) (-1176))))) (T -1153)) +((-4205 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-1199))) (-5 *1 (-1153))))) +(-10 -7 (-15 -4205 ((-655 (-1199)) (-1176)))) +((-2861 (((-112) $ $) 7)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-1199)) 17) (((-1199) $) 16)) (-1984 (((-112) $ (|[\|\|]| (-535))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-687))) 81) (((-112) $ (|[\|\|]| (-1295))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-617))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1132))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-692))) 67) (((-112) $ (|[\|\|]| (-528))) 65) (((-112) $ (|[\|\|]| (-1083))) 63) (((-112) $ (|[\|\|]| (-1296))) 61) (((-112) $ (|[\|\|]| (-536))) 59) (((-112) $ (|[\|\|]| (-1168))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-682))) 53) (((-112) $ (|[\|\|]| (-320))) 51) (((-112) $ (|[\|\|]| (-1053))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-987))) 45) (((-112) $ (|[\|\|]| (-1090))) 43) (((-112) $ (|[\|\|]| (-1107))) 41) (((-112) $ (|[\|\|]| (-1113))) 39) (((-112) $ (|[\|\|]| (-637))) 37) (((-112) $ (|[\|\|]| (-1184))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-489))) 29) (((-112) $ (|[\|\|]| (-603))) 27) (((-112) $ (|[\|\|]| (-517))) 25) (((-112) $ (|[\|\|]| (-1176))) 23) (((-112) $ (|[\|\|]| (-575))) 21)) (-4400 (((-112) $ $) 9)) (-3134 (((-535) $) 84) (((-220) $) 82) (((-687) $) 80) (((-1295) $) 78) (((-139) $) 76) (((-617) $) 74) (((-134) $) 72) (((-1132) $) 70) (((-96) $) 68) (((-692) $) 66) (((-528) $) 64) (((-1083) $) 62) (((-1296) $) 60) (((-536) $) 58) (((-1168) $) 56) (((-155) $) 54) (((-682) $) 52) (((-320) $) 50) (((-1053) $) 48) (((-182) $) 46) (((-987) $) 44) (((-1090) $) 42) (((-1107) $) 40) (((-1113) $) 38) (((-637) $) 36) (((-1184) $) 34) (((-157) $) 32) (((-138) $) 30) (((-489) $) 28) (((-603) $) 26) (((-517) $) 24) (((-1176) $) 22) (((-575) $) 20)) (-3914 (((-112) $ $) 6))) +(((-1154) (-141)) (T -1154)) +((-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-535)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-220)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-687)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1295))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1295)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-139)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-617)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-134)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1132))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1132)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-96)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-692)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-528)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1083)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1296))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1296)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-536)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1168)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-155)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-682)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-320))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-320)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1053))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1053)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-182)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-987))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-987)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1090)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1107)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1113))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1113)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-637))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-637)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1184))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1184)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-157)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-138)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-489))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-489)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-603))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-603)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-517)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1176)))) (-1984 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-575))))) +(-13 (-1100) (-1280) (-10 -8 (-15 -1984 ((-112) $ (|[\|\|]| (-535)))) (-15 -3134 ((-535) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-220)))) (-15 -3134 ((-220) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-687)))) (-15 -3134 ((-687) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1295)))) (-15 -3134 ((-1295) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-139)))) (-15 -3134 ((-139) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-617)))) (-15 -3134 ((-617) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-134)))) (-15 -3134 ((-134) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1132)))) (-15 -3134 ((-1132) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-96)))) (-15 -3134 ((-96) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-692)))) (-15 -3134 ((-692) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-528)))) (-15 -3134 ((-528) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1083)))) (-15 -3134 ((-1083) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1296)))) (-15 -3134 ((-1296) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-536)))) (-15 -3134 ((-536) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1168)))) (-15 -3134 ((-1168) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-155)))) (-15 -3134 ((-155) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-682)))) (-15 -3134 ((-682) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-320)))) (-15 -3134 ((-320) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1053)))) (-15 -3134 ((-1053) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-182)))) (-15 -3134 ((-182) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-987)))) (-15 -3134 ((-987) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1090)))) (-15 -3134 ((-1090) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1107)))) (-15 -3134 ((-1107) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1113)))) (-15 -3134 ((-1113) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-637)))) (-15 -3134 ((-637) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1184)))) (-15 -3134 ((-1184) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-157)))) (-15 -3134 ((-157) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-138)))) (-15 -3134 ((-138) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-489)))) (-15 -3134 ((-489) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-603)))) (-15 -3134 ((-603) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-517)))) (-15 -3134 ((-517) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-1176)))) (-15 -3134 ((-1176) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-575)))) (-15 -3134 ((-575) $)))) +(((-93) . T) ((-102) . T) ((-627 #0=(-1199)) . T) ((-624 (-873)) . T) ((-624 #0#) . T) ((-501 #0#) . T) ((-1117) . T) ((-1100) . T) ((-1280) . T)) +((-4034 (((-1290) (-655 (-873))) 22) (((-1290) (-873)) 21)) (-2116 (((-1290) (-655 (-873))) 20) (((-1290) (-873)) 19)) (-2248 (((-1290) (-655 (-873))) 18) (((-1290) (-873)) 10) (((-1290) (-1176) (-873)) 16))) +(((-1155) (-10 -7 (-15 -2248 ((-1290) (-1176) (-873))) (-15 -2248 ((-1290) (-873))) (-15 -2116 ((-1290) (-873))) (-15 -4034 ((-1290) (-873))) (-15 -2248 ((-1290) (-655 (-873)))) (-15 -2116 ((-1290) (-655 (-873)))) (-15 -4034 ((-1290) (-655 (-873)))))) (T -1155)) +((-4034 (*1 *2 *3) (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-4034 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155))))) +(-10 -7 (-15 -2248 ((-1290) (-1176) (-873))) (-15 -2248 ((-1290) (-873))) (-15 -2116 ((-1290) (-873))) (-15 -4034 ((-1290) (-873))) (-15 -2248 ((-1290) (-655 (-873)))) (-15 -2116 ((-1290) (-655 (-873)))) (-15 -4034 ((-1290) (-655 (-873))))) +((-1703 (($ $ $) 10)) (-1860 (($ $) 9)) (-1553 (($ $ $) 13)) (-3581 (($ $ $) 15)) (-3091 (($ $ $) 12)) (-1870 (($ $ $) 14)) (-1854 (($ $) 17)) (-3371 (($ $) 16)) (-2705 (($ $) 6)) (-4138 (($ $ $) 11) (($ $) 7)) (-3413 (($ $ $) 8))) +(((-1156) (-141)) (T -1156)) +((-1854 (*1 *1 *1) (-4 *1 (-1156))) (-3371 (*1 *1 *1) (-4 *1 (-1156))) (-3581 (*1 *1 *1 *1) (-4 *1 (-1156))) (-1870 (*1 *1 *1 *1) (-4 *1 (-1156))) (-1553 (*1 *1 *1 *1) (-4 *1 (-1156))) (-3091 (*1 *1 *1 *1) (-4 *1 (-1156))) (-4138 (*1 *1 *1 *1) (-4 *1 (-1156))) (-1703 (*1 *1 *1 *1) (-4 *1 (-1156))) (-1860 (*1 *1 *1) (-4 *1 (-1156))) (-3413 (*1 *1 *1 *1) (-4 *1 (-1156))) (-4138 (*1 *1 *1) (-4 *1 (-1156))) (-2705 (*1 *1 *1) (-4 *1 (-1156)))) +(-13 (-10 -8 (-15 -2705 ($ $)) (-15 -4138 ($ $)) (-15 -3413 ($ $ $)) (-15 -1860 ($ $)) (-15 -1703 ($ $ $)) (-15 -4138 ($ $ $)) (-15 -3091 ($ $ $)) (-15 -1553 ($ $ $)) (-15 -1870 ($ $ $)) (-15 -3581 ($ $ $)) (-15 -3371 ($ $)) (-15 -1854 ($ $)))) +((-2861 (((-112) $ $) 44)) (-4182 ((|#1| $) 17)) (-1557 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3346 (((-112) $) 19)) (-3543 (($ $ |#1|) 30)) (-3257 (($ $ (-112)) 32)) (-1376 (($ $) 33)) (-1852 (($ $ |#2|) 31)) (-2288 (((-1176) $) NIL)) (-2764 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3912 (((-1137) $) NIL)) (-4076 (((-112) $) 16)) (-1938 (($) 13)) (-3078 (($ $) 29)) (-2894 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4270 |#2|))) 23) (((-655 $) (-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|)))) 26) (((-655 $) |#1| (-655 |#2|)) 28)) (-3690 ((|#2| $) 18)) (-2883 (((-873) $) 53)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 42))) +(((-1157 |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -1938 ($)) (-15 -4076 ((-112) $)) (-15 -4182 (|#1| $)) (-15 -3690 (|#2| $)) (-15 -3346 ((-112) $)) (-15 -2894 ($ |#1| |#2| (-112))) (-15 -2894 ($ |#1| |#2|)) (-15 -2894 ($ (-2 (|:| |val| |#1|) (|:| -4270 |#2|)))) (-15 -2894 ((-655 $) (-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|))))) (-15 -2894 ((-655 $) |#1| (-655 |#2|))) (-15 -3078 ($ $)) (-15 -3543 ($ $ |#1|)) (-15 -1852 ($ $ |#2|)) (-15 -3257 ($ $ (-112))) (-15 -1376 ($ $)) (-15 -2764 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1557 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1117) (-34)) (-13 (-1117) (-34))) (T -1157)) +((-1938 (*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))))) (-4182 (*1 *2 *1) (-12 (-4 *2 (-13 (-1117) (-34))) (-5 *1 (-1157 *2 *3)) (-4 *3 (-13 (-1117) (-34))))) (-3690 (*1 *2 *1) (-12 (-4 *2 (-13 (-1117) (-34))) (-5 *1 (-1157 *3 *2)) (-4 *3 (-13 (-1117) (-34))))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))))) (-2894 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2894 (*1 *1 *2 *3) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4270 *4))) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1157 *3 *4)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| |val| *4) (|:| -4270 *5)))) (-4 *4 (-13 (-1117) (-34))) (-4 *5 (-13 (-1117) (-34))) (-5 *2 (-655 (-1157 *4 *5))) (-5 *1 (-1157 *4 *5)))) (-2894 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *5)) (-4 *5 (-13 (-1117) (-34))) (-5 *2 (-655 (-1157 *3 *5))) (-5 *1 (-1157 *3 *5)) (-4 *3 (-13 (-1117) (-34))))) (-3078 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-3543 (*1 *1 *1 *2) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-1852 (*1 *1 *1 *2) (-12 (-5 *1 (-1157 *3 *2)) (-4 *3 (-13 (-1117) (-34))) (-4 *2 (-13 (-1117) (-34))))) (-3257 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))))) (-1376 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2764 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1117) (-34))) (-4 *6 (-13 (-1117) (-34))) (-5 *2 (-112)) (-5 *1 (-1157 *5 *6)))) (-1557 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1117) (-34))) (-5 *2 (-112)) (-5 *1 (-1157 *4 *5)) (-4 *4 (-13 (-1117) (-34)))))) +(-13 (-1117) (-10 -8 (-15 -1938 ($)) (-15 -4076 ((-112) $)) (-15 -4182 (|#1| $)) (-15 -3690 (|#2| $)) (-15 -3346 ((-112) $)) (-15 -2894 ($ |#1| |#2| (-112))) (-15 -2894 ($ |#1| |#2|)) (-15 -2894 ($ (-2 (|:| |val| |#1|) (|:| -4270 |#2|)))) (-15 -2894 ((-655 $) (-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|))))) (-15 -2894 ((-655 $) |#1| (-655 |#2|))) (-15 -3078 ($ $)) (-15 -3543 ($ $ |#1|)) (-15 -1852 ($ $ |#2|)) (-15 -3257 ($ $ (-112))) (-15 -1376 ($ $)) (-15 -2764 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1557 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2861 (((-112) $ $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-4182 (((-1157 |#1| |#2|) $) 27)) (-2307 (($ $) 91)) (-3095 (((-112) (-1157 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2657 (($ $ $ (-655 (-1157 |#1| |#2|))) 108) (($ $ $ (-655 (-1157 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1845 (((-112) $ (-782)) NIL)) (-1915 (((-1157 |#1| |#2|) $ (-1157 |#1| |#2|)) 46 (|has| $ (-6 -4461)))) (-3054 (((-1157 |#1| |#2|) $ "value" (-1157 |#1| |#2|)) NIL (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) 44 (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-4244 (((-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|))) $) 95)) (-4404 (($ (-1157 |#1| |#2|) $) 42)) (-3633 (($ (-1157 |#1| |#2|) $) 34)) (-4001 (((-655 (-1157 |#1| |#2|)) $) NIL (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) 54)) (-2948 (((-112) (-1157 |#1| |#2|) $) 97)) (-3117 (((-112) $ $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 (-1157 |#1| |#2|)) $) 58 (|has| $ (-6 -4460)))) (-2625 (((-112) (-1157 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-1157 |#1| |#2|) (-1117))))) (-2847 (($ (-1 (-1157 |#1| |#2|) (-1157 |#1| |#2|)) $) 50 (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-1157 |#1| |#2|) (-1157 |#1| |#2|)) $) 49)) (-4026 (((-112) $ (-782)) NIL)) (-2482 (((-655 (-1157 |#1| |#2|)) $) 56)) (-1526 (((-112) $) 45)) (-2288 (((-1176) $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-3912 (((-1137) $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-3782 (((-3 $ "failed") $) 89)) (-3207 (((-112) (-1 (-112) (-1157 |#1| |#2|)) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-1157 |#1| |#2|)))) NIL (-12 (|has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|))) (|has| (-1157 |#1| |#2|) (-1117)))) (($ $ (-303 (-1157 |#1| |#2|))) NIL (-12 (|has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|))) (|has| (-1157 |#1| |#2|) (-1117)))) (($ $ (-1157 |#1| |#2|) (-1157 |#1| |#2|)) NIL (-12 (|has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|))) (|has| (-1157 |#1| |#2|) (-1117)))) (($ $ (-655 (-1157 |#1| |#2|)) (-655 (-1157 |#1| |#2|))) NIL (-12 (|has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|))) (|has| (-1157 |#1| |#2|) (-1117))))) (-3753 (((-112) $ $) 53)) (-4076 (((-112) $) 24)) (-1938 (($) 26)) (-2070 (((-1157 |#1| |#2|) $ "value") NIL)) (-2220 (((-575) $ $) NIL)) (-1648 (((-112) $) 47)) (-3925 (((-782) (-1 (-112) (-1157 |#1| |#2|)) $) NIL (|has| $ (-6 -4460))) (((-782) (-1157 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-1157 |#1| |#2|) (-1117))))) (-3078 (($ $) 52)) (-2894 (($ (-1157 |#1| |#2|)) 10) (($ |#1| |#2| (-655 $)) 13) (($ |#1| |#2| (-655 (-1157 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-655 |#2|)) 18)) (-1602 (((-655 |#2|) $) 96)) (-2883 (((-873) $) 87 (|has| (-1157 |#1| |#2|) (-624 (-873))))) (-2348 (((-655 $) $) 31)) (-2781 (((-112) $ $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-4400 (((-112) $ $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-3771 (((-112) (-1 (-112) (-1157 |#1| |#2|)) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 70 (|has| (-1157 |#1| |#2|) (-1117)))) (-2871 (((-782) $) 64 (|has| $ (-6 -4460))))) +(((-1158 |#1| |#2|) (-13 (-1027 (-1157 |#1| |#2|)) (-10 -8 (-6 -4461) (-6 -4460) (-15 -3782 ((-3 $ "failed") $)) (-15 -2307 ($ $)) (-15 -2894 ($ (-1157 |#1| |#2|))) (-15 -2894 ($ |#1| |#2| (-655 $))) (-15 -2894 ($ |#1| |#2| (-655 (-1157 |#1| |#2|)))) (-15 -2894 ($ |#1| |#2| |#1| (-655 |#2|))) (-15 -1602 ((-655 |#2|) $)) (-15 -4244 ((-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|))) $)) (-15 -2948 ((-112) (-1157 |#1| |#2|) $)) (-15 -3095 ((-112) (-1157 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3633 ($ (-1157 |#1| |#2|) $)) (-15 -4404 ($ (-1157 |#1| |#2|) $)) (-15 -2657 ($ $ $ (-655 (-1157 |#1| |#2|)))) (-15 -2657 ($ $ $ (-655 (-1157 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1117) (-34)) (-13 (-1117) (-34))) (T -1158)) +((-3782 (*1 *1 *1) (|partial| -12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2307 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))) (-2894 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-655 (-1158 *2 *3))) (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2894 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-655 (-1157 *2 *3))) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))) (-5 *1 (-1158 *2 *3)))) (-2894 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-13 (-1117) (-34))) (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34))))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-655 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))))) (-4244 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))))) (-2948 (*1 *2 *3 *1) (-12 (-5 *3 (-1157 *4 *5)) (-4 *4 (-13 (-1117) (-34))) (-4 *5 (-13 (-1117) (-34))) (-5 *2 (-112)) (-5 *1 (-1158 *4 *5)))) (-3095 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1157 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1117) (-34))) (-4 *6 (-13 (-1117) (-34))) (-5 *2 (-112)) (-5 *1 (-1158 *5 *6)))) (-3633 (*1 *1 *2 *1) (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))) (-4404 (*1 *1 *2 *1) (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))) (-2657 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-655 (-1157 *3 *4))) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))) (-2657 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1157 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1117) (-34))) (-4 *5 (-13 (-1117) (-34))) (-5 *1 (-1158 *4 *5))))) +(-13 (-1027 (-1157 |#1| |#2|)) (-10 -8 (-6 -4461) (-6 -4460) (-15 -3782 ((-3 $ "failed") $)) (-15 -2307 ($ $)) (-15 -2894 ($ (-1157 |#1| |#2|))) (-15 -2894 ($ |#1| |#2| (-655 $))) (-15 -2894 ($ |#1| |#2| (-655 (-1157 |#1| |#2|)))) (-15 -2894 ($ |#1| |#2| |#1| (-655 |#2|))) (-15 -1602 ((-655 |#2|) $)) (-15 -4244 ((-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|))) $)) (-15 -2948 ((-112) (-1157 |#1| |#2|) $)) (-15 -3095 ((-112) (-1157 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3633 ($ (-1157 |#1| |#2|) $)) (-15 -4404 ($ (-1157 |#1| |#2|) $)) (-15 -2657 ($ $ $ (-655 (-1157 |#1| |#2|)))) (-15 -2657 ($ $ $ (-655 (-1157 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1926 (($ $) NIL)) (-1447 ((|#2| $) NIL)) (-3158 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2317 (($ (-700 |#2|)) 56)) (-1503 (((-112) $) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-2271 (($ |#2|) 14)) (-3011 (($) NIL T CONST)) (-3356 (($ $) 69 (|has| |#2| (-316)))) (-1565 (((-245 |#1| |#2|) $ (-575)) 42)) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 |#2| "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) ((|#2| $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) 83)) (-4422 (((-782) $) 71 (|has| |#2| (-567)))) (-2788 ((|#2| $ (-575) (-575)) NIL)) (-4001 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1542 (((-112) $) NIL)) (-1911 (((-782) $) 73 (|has| |#2| (-567)))) (-3264 (((-655 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-567)))) (-4243 (((-782) $) NIL)) (-2309 (($ |#2|) 25)) (-4255 (((-782) $) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-1907 ((|#2| $) 67 (|has| |#2| (-6 (-4462 "*"))))) (-2667 (((-575) $) NIL)) (-1775 (((-575) $) NIL)) (-3955 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1776 (((-575) $) NIL)) (-3293 (((-575) $) NIL)) (-4316 (($ (-655 (-655 |#2|))) 37)) (-2847 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3487 (((-655 (-655 |#2|)) $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-3205 (((-3 $ "failed") $) 80 (|has| |#2| (-373)))) (-3912 (((-1137) $) NIL)) (-2851 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567)))) (-3207 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#2| $ (-575) (-575) |#2|) NIL) ((|#2| $ (-575) (-575)) NIL)) (-2389 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-3439 ((|#2| $) NIL)) (-3740 (($ (-655 |#2|)) 50)) (-1763 (((-112) $) NIL)) (-2050 (((-245 |#1| |#2|) $) NIL)) (-3674 ((|#2| $) 65 (|has| |#2| (-6 (-4462 "*"))))) (-3925 (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3078 (($ $) NIL)) (-2615 (((-547) $) 89 (|has| |#2| (-625 (-547))))) (-1792 (((-245 |#1| |#2|) $ (-575)) 44)) (-2883 (((-873) $) 47) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#2| (-1055 (-418 (-575))))) (($ |#2|) NIL) (((-700 |#2|) $) 52)) (-3759 (((-782)) 23 T CONST)) (-4400 (((-112) $ $) NIL)) (-3771 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-4412 (((-112) $) NIL)) (-1996 (($) 16 T CONST)) (-2009 (($) 21 T CONST)) (-3430 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) 63) (($ $ (-575)) 82 (|has| |#2| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1159 |#1| |#2|) (-13 (-1140 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-624 (-700 |#2|)) (-10 -8 (-15 -2309 ($ |#2|)) (-15 -1926 ($ $)) (-15 -2317 ($ (-700 |#2|))) (IF (|has| |#2| (-6 (-4462 "*"))) (-6 -4449) |%noBranch|) (IF (|has| |#2| (-6 (-4462 "*"))) (IF (|has| |#2| (-6 -4457)) (-6 -4457) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|))) (-782) (-1066)) (T -1159)) +((-2309 (*1 *1 *2) (-12 (-5 *1 (-1159 *3 *2)) (-14 *3 (-782)) (-4 *2 (-1066)))) (-1926 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-14 *2 (-782)) (-4 *3 (-1066)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-700 *4)) (-4 *4 (-1066)) (-5 *1 (-1159 *3 *4)) (-14 *3 (-782))))) +(-13 (-1140 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-624 (-700 |#2|)) (-10 -8 (-15 -2309 ($ |#2|)) (-15 -1926 ($ $)) (-15 -2317 ($ (-700 |#2|))) (IF (|has| |#2| (-6 (-4462 "*"))) (-6 -4449) |%noBranch|) (IF (|has| |#2| (-6 (-4462 "*"))) (IF (|has| |#2| (-6 -4457)) (-6 -4457) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|))) +((-4430 (($ $) 19)) (-3635 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3468 (((-112) $ $) 24)) (-3506 (($ $) 17)) (-2070 (((-145) $ (-575) (-145)) NIL) (((-145) $ (-575)) NIL) (($ $ (-1252 (-575))) NIL) (($ $ $) 31)) (-2883 (($ (-145)) 29) (((-873) $) NIL))) +(((-1160 |#1|) (-10 -8 (-15 -2883 ((-873) |#1|)) (-15 -2070 (|#1| |#1| |#1|)) (-15 -3635 (|#1| |#1| (-142))) (-15 -3635 (|#1| |#1| (-145))) (-15 -2883 (|#1| (-145))) (-15 -3468 ((-112) |#1| |#1|)) (-15 -4430 (|#1| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -2070 (|#1| |#1| (-1252 (-575)))) (-15 -2070 ((-145) |#1| (-575))) (-15 -2070 ((-145) |#1| (-575) (-145)))) (-1161)) (T -1160)) +NIL +(-10 -8 (-15 -2883 ((-873) |#1|)) (-15 -2070 (|#1| |#1| |#1|)) (-15 -3635 (|#1| |#1| (-142))) (-15 -3635 (|#1| |#1| (-145))) (-15 -2883 (|#1| (-145))) (-15 -3468 ((-112) |#1| |#1|)) (-15 -4430 (|#1| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -2070 (|#1| |#1| (-1252 (-575)))) (-15 -2070 ((-145) |#1| (-575))) (-15 -2070 ((-145) |#1| (-575) (-145)))) +((-2861 (((-112) $ $) 19 (|has| (-145) (-1117)))) (-1605 (($ $) 123)) (-4430 (($ $) 124)) (-3635 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-4161 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-3447 (((-112) $ $) 121)) (-3429 (((-112) $ $ (-575)) 120)) (-3436 (((-655 $) $ (-145)) 113) (((-655 $) $ (-142)) 112)) (-2762 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-861)))) (-2119 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| (-145) (-861)) (|has| $ (-6 -4461))))) (-2031 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-861)))) (-1845 (((-112) $ (-782)) 8)) (-3054 (((-145) $ (-575) (-145)) 53 (|has| $ (-6 -4461))) (((-145) $ (-1252 (-575)) (-145)) 60 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-3780 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-1789 (($ $) 93 (|has| $ (-6 -4461)))) (-4381 (($ $) 103)) (-1908 (($ $ (-1252 (-575)) $) 117)) (-1748 (($ $) 80 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ (-145) $) 79 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4460)))) (-2308 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4460)))) (-2859 (((-145) $ (-575) (-145)) 54 (|has| $ (-6 -4461)))) (-2788 (((-145) $ (-575)) 52)) (-3468 (((-112) $ $) 122)) (-2632 (((-575) (-1 (-112) (-145)) $) 100) (((-575) (-145) $) 99 (|has| (-145) (-1117))) (((-575) (-145) $ (-575)) 98 (|has| (-145) (-1117))) (((-575) $ $ (-575)) 116) (((-575) (-142) $ (-575)) 115)) (-4001 (((-655 (-145)) $) 31 (|has| $ (-6 -4460)))) (-2309 (($ (-782) (-145)) 70)) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 44 (|has| (-575) (-861)))) (-1920 (($ $ $) 90 (|has| (-145) (-861)))) (-3794 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-861)))) (-3955 (((-655 (-145)) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 45 (|has| (-575) (-861)))) (-1425 (($ $ $) 89 (|has| (-145) (-861)))) (-3128 (((-112) $ $ (-145)) 118)) (-1616 (((-782) $ $ (-145)) 119)) (-2847 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-3025 (($ $) 125)) (-3506 (($ $) 126)) (-4026 (((-112) $ (-782)) 10)) (-3791 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2288 (((-1176) $) 22 (|has| (-145) (-1117)))) (-2135 (($ (-145) $ (-575)) 62) (($ $ $ (-575)) 61)) (-4310 (((-655 (-575)) $) 47)) (-2969 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| (-145) (-1117)))) (-1961 (((-145) $) 43 (|has| (-575) (-861)))) (-3704 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-3954 (($ $ (-145)) 42 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-145)))) 27 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-303 (-145))) 26 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-655 (-145)) (-655 (-145))) 24 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-1691 (((-655 (-145)) $) 49)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 (((-145) $ (-575) (-145)) 51) (((-145) $ (-575)) 50) (($ $ (-1252 (-575))) 71) (($ $ $) 105)) (-3239 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3925 (((-782) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4460))) (((-782) (-145) $) 29 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-4005 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3078 (($ $) 13)) (-2615 (((-547) $) 81 (|has| (-145) (-625 (-547))))) (-2894 (($ (-655 (-145))) 72)) (-1514 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2883 (($ (-145)) 114) (((-873) $) 18 (|has| (-145) (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| (-145) (-1117)))) (-3771 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) 87 (|has| (-145) (-861)))) (-3956 (((-112) $ $) 86 (|has| (-145) (-861)))) (-3914 (((-112) $ $) 20 (|has| (-145) (-1117)))) (-3970 (((-112) $ $) 88 (|has| (-145) (-861)))) (-3943 (((-112) $ $) 85 (|has| (-145) (-861)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-1161) (-141)) (T -1161)) +((-3506 (*1 *1 *1) (-4 *1 (-1161))) (-3025 (*1 *1 *1) (-4 *1 (-1161))) (-4430 (*1 *1 *1) (-4 *1 (-1161))) (-1605 (*1 *1 *1) (-4 *1 (-1161))) (-3468 (*1 *2 *1 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-112)))) (-3447 (*1 *2 *1 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-112)))) (-3429 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-575)) (-5 *2 (-112)))) (-1616 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-145)) (-5 *2 (-782)))) (-3128 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-145)) (-5 *2 (-112)))) (-1908 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-1252 (-575))))) (-2632 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-575)))) (-2632 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-575)) (-5 *3 (-142)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1161)))) (-3436 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-655 *1)) (-4 *1 (-1161)))) (-3436 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-655 *1)) (-4 *1 (-1161)))) (-3635 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145)))) (-3635 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142)))) (-3791 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145)))) (-3791 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142)))) (-3780 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145)))) (-3780 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142)))) (-2070 (*1 *1 *1 *1) (-4 *1 (-1161)))) +(-13 (-19 (-145)) (-10 -8 (-15 -3506 ($ $)) (-15 -3025 ($ $)) (-15 -4430 ($ $)) (-15 -1605 ($ $)) (-15 -3468 ((-112) $ $)) (-15 -3447 ((-112) $ $)) (-15 -3429 ((-112) $ $ (-575))) (-15 -1616 ((-782) $ $ (-145))) (-15 -3128 ((-112) $ $ (-145))) (-15 -1908 ($ $ (-1252 (-575)) $)) (-15 -2632 ((-575) $ $ (-575))) (-15 -2632 ((-575) (-142) $ (-575))) (-15 -2883 ($ (-145))) (-15 -3436 ((-655 $) $ (-145))) (-15 -3436 ((-655 $) $ (-142))) (-15 -3635 ($ $ (-145))) (-15 -3635 ($ $ (-142))) (-15 -3791 ($ $ (-145))) (-15 -3791 ($ $ (-142))) (-15 -3780 ($ $ (-145))) (-15 -3780 ($ $ (-142))) (-15 -2070 ($ $ $)))) +(((-34) . T) ((-102) -3765 (|has| (-145) (-1117)) (|has| (-145) (-861))) ((-624 (-873)) -3765 (|has| (-145) (-1117)) (|has| (-145) (-861)) (|has| (-145) (-624 (-873)))) ((-152 #0=(-145)) . T) ((-625 (-547)) |has| (-145) (-625 (-547))) ((-295 #1=(-575) #0#) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #1# #0#) . T) ((-318 #0#) -12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))) ((-383 #0#) . T) ((-500 #0#) . T) ((-615 #1# #0#) . T) ((-525 #0# #0#) -12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))) ((-662 #0#) . T) ((-19 #0#) . T) ((-861) |has| (-145) (-861)) ((-1117) -3765 (|has| (-145) (-1117)) (|has| (-145) (-861))) ((-1235) . T)) +((-4091 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782)) 112)) (-4085 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782)) 61)) (-2721 (((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782)) 97)) (-3984 (((-782) (-655 |#4|) (-655 |#5|)) 30)) (-2647 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782)) 63) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112)) 65)) (-4299 (((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112)) 85)) (-2615 (((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) 90)) (-3665 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|) 60)) (-2110 (((-782) (-655 |#4|) (-655 |#5|)) 21))) +(((-1162 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2110 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3984 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3665 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -4085 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -4085 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112))) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -4299 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -4299 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4091 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782))) (-15 -2615 ((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2721 ((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782)))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1126 |#1| |#2| |#3| |#4|)) (T -1162)) +((-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) (-5 *4 (-782)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-1290)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1126 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1176)) (-5 *1 (-1162 *4 *5 *6 *7 *8)))) (-4091 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-655 *11)) (|:| |todo| (-655 (-2 (|:| |val| *3) (|:| -4270 *11)))))) (-5 *6 (-782)) (-5 *2 (-655 (-2 (|:| |val| (-655 *10)) (|:| -4270 *11)))) (-5 *3 (-655 *10)) (-5 *4 (-655 *11)) (-4 *10 (-1082 *7 *8 *9)) (-4 *11 (-1126 *7 *8 *9 *10)) (-4 *7 (-463)) (-4 *8 (-804)) (-4 *9 (-861)) (-5 *1 (-1162 *7 *8 *9 *10 *11)))) (-4299 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))) (-4299 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))) (-2647 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3)))) (-2647 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *6 *7 *8 *3 *4)) (-4 *4 (-1126 *6 *7 *8 *3)))) (-2647 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-782)) (-5 *6 (-112)) (-4 *7 (-463)) (-4 *8 (-804)) (-4 *9 (-861)) (-4 *3 (-1082 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *7 *8 *9 *3 *4)) (-4 *4 (-1126 *7 *8 *9 *3)))) (-4085 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3)))) (-4085 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *6 *7 *8 *3 *4)) (-4 *4 (-1126 *6 *7 *8 *3)))) (-3665 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3)))) (-3984 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))) (-2110 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1162 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2110 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3984 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3665 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -4085 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -4085 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112))) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -2647 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -4299 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -4299 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4091 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782))) (-15 -2615 ((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2721 ((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782)))) +((-2861 (((-112) $ $) NIL)) (-3303 (((-655 (-2 (|:| -2458 $) (|:| -2978 (-655 |#4|)))) (-655 |#4|)) NIL)) (-1740 (((-655 $) (-655 |#4|)) 124) (((-655 $) (-655 |#4|) (-112)) 125) (((-655 $) (-655 |#4|) (-112) (-112)) 123) (((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1606 (((-655 |#3|) $) NIL)) (-2210 (((-112) $) NIL)) (-3036 (((-112) $) NIL (|has| |#1| (-567)))) (-3309 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2749 ((|#4| |#4| $) NIL)) (-2058 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 97)) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#3|) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3985 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 75)) (-3011 (($) NIL T CONST)) (-1437 (((-112) $) 29 (|has| |#1| (-567)))) (-2365 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4289 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1812 (((-112) $) NIL (|has| |#1| (-567)))) (-3376 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3629 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-3563 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 |#4|)) NIL)) (-4399 (($ (-655 |#4|)) NIL)) (-1975 (((-3 $ "failed") $) 45)) (-2690 ((|#4| |#4| $) 78)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3633 (($ |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-567)))) (-2249 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4183 ((|#4| |#4| $) NIL)) (-2308 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2029 (((-2 (|:| -2458 (-655 |#4|)) (|:| -2978 (-655 |#4|))) $) NIL)) (-4355 (((-112) |#4| $) NIL)) (-1718 (((-112) |#4| $) NIL)) (-2986 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2675 (((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112)) 139)) (-4001 (((-655 |#4|) $) 18 (|has| $ (-6 -4460)))) (-2548 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3838 ((|#3| $) 38)) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#4|) $) 19 (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-2847 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) 23)) (-1444 (((-655 |#3|) $) NIL)) (-1808 (((-112) |#3| $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-2053 (((-3 |#4| (-655 $)) |#4| |#4| $) NIL)) (-2896 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 117)) (-3653 (((-3 |#4| "failed") $) 42)) (-2463 (((-655 $) |#4| $) 102)) (-2192 (((-3 (-112) (-655 $)) |#4| $) NIL)) (-1658 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-1479 (((-655 $) |#4| $) 121) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) 122) (((-655 $) |#4| (-655 $)) NIL)) (-4284 (((-655 $) (-655 |#4|) (-112) (-112) (-112)) 134)) (-2233 (($ |#4| $) 88) (($ (-655 |#4|) $) 89) (((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-1590 (((-655 |#4|) $) NIL)) (-1411 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4367 ((|#4| |#4| $) NIL)) (-2687 (((-112) $ $) NIL)) (-4395 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-3188 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2973 ((|#4| |#4| $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 (((-3 |#4| "failed") $) 40)) (-3704 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2500 (((-3 $ "failed") $ |#4|) 59)) (-4276 (($ $ |#4|) NIL) (((-655 $) |#4| $) 104) (((-655 $) |#4| (-655 $)) NIL) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) 99)) (-3207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 17)) (-1938 (($) 14)) (-2645 (((-782) $) NIL)) (-3925 (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) 13)) (-2615 (((-547) $) NIL (|has| |#4| (-625 (-547))))) (-2894 (($ (-655 |#4|)) 22)) (-1879 (($ $ |#3|) 52)) (-3427 (($ $ |#3|) 54)) (-2921 (($ $) NIL)) (-3608 (($ $ |#3|) NIL)) (-2883 (((-873) $) 35) (((-655 |#4|) $) 46)) (-3706 (((-782) $) NIL (|has| |#3| (-378)))) (-4400 (((-112) $ $) NIL)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2994 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) NIL)) (-3556 (((-655 $) |#4| $) 66) (((-655 $) |#4| (-655 $)) NIL) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) NIL)) (-3771 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-1359 (((-655 |#3|) $) NIL)) (-2722 (((-112) |#4| $) NIL)) (-1591 (((-112) |#3| $) 74)) (-3914 (((-112) $ $) NIL)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1163 |#1| |#2| |#3| |#4|) (-13 (-1126 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2233 ((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1740 ((-655 $) (-655 |#4|) (-112) (-112))) (-15 -1740 ((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112))) (-15 -4284 ((-655 $) (-655 |#4|) (-112) (-112) (-112))) (-15 -2675 ((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112))))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -1163)) +((-2233 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1163 *5 *6 *7 *3))) (-5 *1 (-1163 *5 *6 *7 *3)) (-4 *3 (-1082 *5 *6 *7)))) (-1740 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8)))) (-1740 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8)))) (-4284 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8)))) (-2675 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-655 *8)) (|:| |towers| (-655 (-1163 *5 *6 *7 *8))))) (-5 *1 (-1163 *5 *6 *7 *8)) (-5 *3 (-655 *8))))) +(-13 (-1126 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2233 ((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1740 ((-655 $) (-655 |#4|) (-112) (-112))) (-15 -1740 ((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112))) (-15 -4284 ((-655 $) (-655 |#4|) (-112) (-112) (-112))) (-15 -2675 ((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112))))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2010 ((|#1| $) 37)) (-1760 (($ (-655 |#1|)) 45)) (-1845 (((-112) $ (-782)) NIL)) (-3011 (($) NIL T CONST)) (-2620 ((|#1| |#1| $) 40)) (-4065 ((|#1| $) 35)) (-4001 (((-655 |#1|) $) 18 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2847 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 22)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4012 ((|#1| $) 38)) (-3862 (($ |#1| $) 41)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2454 ((|#1| $) 36)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 32)) (-1938 (($) 43)) (-3323 (((-782) $) 30)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) 27)) (-2883 (((-873) $) 14 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1511 (($ (-655 |#1|)) NIL)) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 17 (|has| |#1| (-1117)))) (-2871 (((-782) $) 31 (|has| $ (-6 -4460))))) +(((-1164 |#1|) (-13 (-1138 |#1|) (-10 -8 (-15 -1760 ($ (-655 |#1|))))) (-1235)) (T -1164)) +((-1760 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1164 *3))))) +(-13 (-1138 |#1|) (-10 -8 (-15 -1760 ($ (-655 |#1|))))) +((-3054 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1252 (-575)) |#2|) 53) ((|#2| $ (-575) |#2|) 50)) (-2087 (((-112) $) 12)) (-2847 (($ (-1 |#2| |#2|) $) 48)) (-1961 ((|#2| $) NIL) (($ $ (-782)) 17)) (-3954 (($ $ |#2|) 49)) (-3888 (((-112) $) 11)) (-2070 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1252 (-575))) 36) ((|#2| $ (-575)) 26) ((|#2| $ (-575) |#2|) NIL)) (-2774 (($ $ $) 56) (($ $ |#2|) NIL)) (-1514 (($ $ $) 38) (($ |#2| $) NIL) (($ (-655 $)) 45) (($ $ |#2|) NIL))) +(((-1165 |#1| |#2|) (-10 -8 (-15 -2087 ((-112) |#1|)) (-15 -3888 ((-112) |#1|)) (-15 -3054 (|#2| |#1| (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575))) (-15 -3954 (|#1| |#1| |#2|)) (-15 -2070 (|#1| |#1| (-1252 (-575)))) (-15 -1514 (|#1| |#1| |#2|)) (-15 -1514 (|#1| (-655 |#1|))) (-15 -3054 (|#2| |#1| (-1252 (-575)) |#2|)) (-15 -3054 (|#2| |#1| "last" |#2|)) (-15 -3054 (|#1| |#1| "rest" |#1|)) (-15 -3054 (|#2| |#1| "first" |#2|)) (-15 -2774 (|#1| |#1| |#2|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2070 (|#2| |#1| "last")) (-15 -2070 (|#1| |#1| "rest")) (-15 -1961 (|#1| |#1| (-782))) (-15 -2070 (|#2| |#1| "first")) (-15 -1961 (|#2| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -3054 (|#2| |#1| "value" |#2|)) (-15 -2070 (|#2| |#1| "value")) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|))) (-1166 |#2|) (-1235)) (T -1165)) +NIL +(-10 -8 (-15 -2087 ((-112) |#1|)) (-15 -3888 ((-112) |#1|)) (-15 -3054 (|#2| |#1| (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575) |#2|)) (-15 -2070 (|#2| |#1| (-575))) (-15 -3954 (|#1| |#1| |#2|)) (-15 -2070 (|#1| |#1| (-1252 (-575)))) (-15 -1514 (|#1| |#1| |#2|)) (-15 -1514 (|#1| (-655 |#1|))) (-15 -3054 (|#2| |#1| (-1252 (-575)) |#2|)) (-15 -3054 (|#2| |#1| "last" |#2|)) (-15 -3054 (|#1| |#1| "rest" |#1|)) (-15 -3054 (|#2| |#1| "first" |#2|)) (-15 -2774 (|#1| |#1| |#2|)) (-15 -2774 (|#1| |#1| |#1|)) (-15 -2070 (|#2| |#1| "last")) (-15 -2070 (|#1| |#1| "rest")) (-15 -1961 (|#1| |#1| (-782))) (-15 -2070 (|#2| |#1| "first")) (-15 -1961 (|#2| |#1|)) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -3054 (|#2| |#1| "value" |#2|)) (-15 -2070 (|#2| |#1| "value")) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4182 ((|#1| $) 49)) (-2989 ((|#1| $) 66)) (-3462 (($ $) 68)) (-4161 (((-1290) $ (-575) (-575)) 99 (|has| $ (-6 -4461)))) (-1893 (($ $ (-575)) 53 (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) 8)) (-1915 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-3391 (($ $ $) 57 (|has| $ (-6 -4461)))) (-3602 ((|#1| $ |#1|) 55 (|has| $ (-6 -4461)))) (-1876 ((|#1| $ |#1|) 59 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4461))) (($ $ "rest" $) 56 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 119 (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) 88 (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4460)))) (-2977 ((|#1| $) 67)) (-3011 (($) 7 T CONST)) (-1975 (($ $) 74) (($ $ (-782)) 72)) (-1748 (($ $) 101 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4460))) (($ |#1| $) 102 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2859 ((|#1| $ (-575) |#1|) 87 (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) 89)) (-2087 (((-112) $) 85)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) 51)) (-3117 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-2309 (($ (-782) |#1|) 111)) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 97 (|has| (-575) (-861)))) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 96 (|has| (-575) (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-4026 (((-112) $ (-782)) 10)) (-2482 (((-655 |#1|) $) 46)) (-1526 (((-112) $) 50)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3653 ((|#1| $) 71) (($ $ (-782)) 69)) (-2135 (($ $ $ (-575)) 118) (($ |#1| $ (-575)) 117)) (-4310 (((-655 (-575)) $) 94)) (-2969 (((-112) (-575) $) 93)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1961 ((|#1| $) 77) (($ $ (-782)) 75)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3954 (($ $ |#1|) 98 (|has| $ (-6 -4461)))) (-3888 (((-112) $) 86)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) 92)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1252 (-575))) 110) ((|#1| $ (-575)) 91) ((|#1| $ (-575) |#1|) 90)) (-2220 (((-575) $ $) 45)) (-3239 (($ $ (-1252 (-575))) 116) (($ $ (-575)) 115)) (-1648 (((-112) $) 47)) (-1397 (($ $) 63)) (-1877 (($ $) 60 (|has| $ (-6 -4461)))) (-3269 (((-782) $) 64)) (-1863 (($ $) 65)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2615 (((-547) $) 100 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 109)) (-2774 (($ $ $) 62 (|has| $ (-6 -4461))) (($ $ |#1|) 61 (|has| $ (-6 -4461)))) (-1514 (($ $ $) 79) (($ |#1| $) 78) (($ (-655 $)) 113) (($ $ |#1|) 112)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) 52)) (-2781 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-1166 |#1|) (-141) (-1235)) (T -1166)) +((-3888 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-2087 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1235)) (-5 *2 (-112))))) +(-13 (-1273 |t#1|) (-662 |t#1|) (-10 -8 (-15 -3888 ((-112) $)) (-15 -2087 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T) ((-1273 |#1|) . T)) +((-2861 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2297 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4161 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#2| $ |#1| |#2|) NIL)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1399 (((-3 |#2| "failed") |#1| $) NIL)) (-3011 (($) NIL T CONST)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-4404 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) NIL)) (-3633 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#2| $ |#1|) NIL)) (-4001 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 ((|#1| $) NIL (|has| |#1| (-861)))) (-3955 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3197 ((|#1| $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2001 (((-655 |#1|) $) NIL)) (-3308 (((-112) |#1| $) NIL)) (-4012 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3862 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4310 (((-655 |#1|) $) NIL)) (-2969 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1961 ((|#2| $) NIL (|has| |#1| (-861)))) (-3704 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-3954 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3601 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2883 (((-873) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-4400 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1167 |#1| |#2| |#3|) (-1211 |#1| |#2|) (-1117) (-1117) |#2|) (T -1167)) +NIL +(-1211 |#1| |#2|) +((-2861 (((-112) $ $) NIL)) (-4241 (((-702 (-1152)) $) 27)) (-4108 (((-1152) $) 15)) (-1620 (((-1152) $) 17)) (-2288 (((-1176) $) NIL)) (-1405 (((-517) $) 13)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 37) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1168) (-13 (-1100) (-10 -8 (-15 -1405 ((-517) $)) (-15 -1620 ((-1152) $)) (-15 -4241 ((-702 (-1152)) $)) (-15 -4108 ((-1152) $))))) (T -1168)) +((-1405 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1168)))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1168)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-702 (-1152))) (-5 *1 (-1168)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1168))))) +(-13 (-1100) (-10 -8 (-15 -1405 ((-517) $)) (-15 -1620 ((-1152) $)) (-15 -4241 ((-702 (-1152)) $)) (-15 -4108 ((-1152) $)))) +((-2861 (((-112) $ $) 7)) (-2607 (((-3 $ "failed") $) 14)) (-2288 (((-1176) $) 10)) (-3474 (($) 15 T CONST)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-3914 (((-112) $ $) 6))) +(((-1169) (-141)) (T -1169)) +((-3474 (*1 *1) (-4 *1 (-1169))) (-2607 (*1 *1 *1) (|partial| -4 *1 (-1169)))) +(-13 (-1117) (-10 -8 (-15 -3474 ($) -3738) (-15 -2607 ((-3 $ "failed") $)))) +(((-102) . T) ((-624 (-873)) . T) ((-1117) . T)) +((-3866 (((-1174 |#1|) (-1174 |#1|)) 17)) (-3252 (((-1174 |#1|) (-1174 |#1|)) 13)) (-2686 (((-1174 |#1|) (-1174 |#1|) (-575) (-575)) 20)) (-1979 (((-1174 |#1|) (-1174 |#1|)) 15))) +(((-1170 |#1|) (-10 -7 (-15 -3252 ((-1174 |#1|) (-1174 |#1|))) (-15 -1979 ((-1174 |#1|) (-1174 |#1|))) (-15 -3866 ((-1174 |#1|) (-1174 |#1|))) (-15 -2686 ((-1174 |#1|) (-1174 |#1|) (-575) (-575)))) (-13 (-567) (-148))) (T -1170)) +((-2686 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-13 (-567) (-148))) (-5 *1 (-1170 *4)))) (-3866 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148))) (-5 *1 (-1170 *3)))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148))) (-5 *1 (-1170 *3)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148))) (-5 *1 (-1170 *3))))) +(-10 -7 (-15 -3252 ((-1174 |#1|) (-1174 |#1|))) (-15 -1979 ((-1174 |#1|) (-1174 |#1|))) (-15 -3866 ((-1174 |#1|) (-1174 |#1|))) (-15 -2686 ((-1174 |#1|) (-1174 |#1|) (-575) (-575)))) +((-1514 (((-1174 |#1|) (-1174 (-1174 |#1|))) 15))) +(((-1171 |#1|) (-10 -7 (-15 -1514 ((-1174 |#1|) (-1174 (-1174 |#1|))))) (-1235)) (T -1171)) +((-1514 (*1 *2 *3) (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1171 *4)) (-4 *4 (-1235))))) +(-10 -7 (-15 -1514 ((-1174 |#1|) (-1174 (-1174 |#1|))))) +((-3715 (((-1174 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|)) 25)) (-2308 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|)) 26)) (-2550 (((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 16))) +(((-1172 |#1| |#2|) (-10 -7 (-15 -2550 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) (-15 -3715 ((-1174 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|))) (-15 -2308 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|)))) (-1235) (-1235)) (T -1172)) +((-2308 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1174 *5)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-1172 *5 *2)))) (-3715 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1174 *6)) (-4 *6 (-1235)) (-4 *3 (-1235)) (-5 *2 (-1174 *3)) (-5 *1 (-1172 *6 *3)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1174 *6)) (-5 *1 (-1172 *5 *6))))) +(-10 -7 (-15 -2550 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) (-15 -3715 ((-1174 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|))) (-15 -2308 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|)))) +((-2550 (((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-1174 |#2|)) 21))) +(((-1173 |#1| |#2| |#3|) (-10 -7 (-15 -2550 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-1174 |#2|)))) (-1235) (-1235) (-1235)) (T -1173)) +((-2550 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-1174 *7)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8)) (-5 *1 (-1173 *6 *7 *8))))) +(-10 -7 (-15 -2550 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-1174 |#2|)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4182 ((|#1| $) NIL)) (-2989 ((|#1| $) NIL)) (-3462 (($ $) 67)) (-4161 (((-1290) $ (-575) (-575)) 99 (|has| $ (-6 -4461)))) (-1893 (($ $ (-575)) 128 (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-3073 (((-873) $) 56 (|has| |#1| (-1117)))) (-4143 (((-112)) 55 (|has| |#1| (-1117)))) (-1915 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3391 (($ $ $) 115 (|has| $ (-6 -4461))) (($ $ (-575) $) 141)) (-3602 ((|#1| $ |#1|) 125 (|has| $ (-6 -4461)))) (-1876 ((|#1| $ |#1|) 120 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4461))) (($ $ "rest" $) 124 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 112 (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) 77 (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 80)) (-2977 ((|#1| $) NIL)) (-3011 (($) NIL T CONST)) (-4129 (($ $) 14)) (-1975 (($ $) 40) (($ $ (-782)) 111)) (-2596 (((-112) (-655 |#1|) $) 134 (|has| |#1| (-1117)))) (-3337 (($ (-655 |#1|)) 130)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) 79)) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2859 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) NIL)) (-2087 (((-112) $) NIL)) (-4001 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3722 (((-1290) (-575) $) 140 (|has| |#1| (-1117)))) (-1483 (((-782) $) 137)) (-3698 (((-655 $) $) NIL)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2309 (($ (-782) |#1|) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4026 (((-112) $ (-782)) NIL)) (-2482 (((-655 |#1|) $) NIL)) (-1526 (((-112) $) NIL)) (-4300 (($ $) 113)) (-3165 (((-112) $) 13)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3653 ((|#1| $) NIL) (($ $ (-782)) NIL)) (-2135 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) 96)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3903 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-2549 ((|#1| $) 10)) (-1961 ((|#1| $) 39) (($ $ (-782)) 65)) (-3777 (((-2 (|:| |cycle?| (-112)) (|:| -2499 (-782)) (|:| |period| (-782))) (-782) $) 34)) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3958 (($ (-1 (-112) |#1|) $) 145)) (-3972 (($ (-1 (-112) |#1|) $) 146)) (-3954 (($ $ |#1|) 90 (|has| $ (-6 -4461)))) (-4276 (($ $ (-575)) 45)) (-3888 (((-112) $) 94)) (-1954 (((-112) $) 12)) (-3274 (((-112) $) 136)) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 30)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) 20)) (-1938 (($) 60)) (-2070 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1252 (-575))) NIL) ((|#1| $ (-575)) 75) ((|#1| $ (-575) |#1|) NIL)) (-2220 (((-575) $ $) 64)) (-3239 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-1832 (($ (-1 $)) 63)) (-1648 (((-112) $) 91)) (-1397 (($ $) 92)) (-1877 (($ $) 116 (|has| $ (-6 -4461)))) (-3269 (((-782) $) NIL)) (-1863 (($ $) NIL)) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) 59)) (-2615 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 73)) (-2821 (($ |#1| $) 114)) (-2774 (($ $ $) 118 (|has| $ (-6 -4461))) (($ $ |#1|) 119 (|has| $ (-6 -4461)))) (-1514 (($ $ $) 101) (($ |#1| $) 61) (($ (-655 $)) 106) (($ $ |#1|) 100)) (-2972 (($ $) 66)) (-2883 (($ (-655 |#1|)) 129) (((-873) $) 57 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) NIL)) (-2781 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 132 (|has| |#1| (-1117)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1174 |#1|) (-13 (-685 |#1|) (-627 (-655 |#1|)) (-10 -8 (-6 -4461) (-15 -3337 ($ (-655 |#1|))) (IF (|has| |#1| (-1117)) (-15 -2596 ((-112) (-655 |#1|) $)) |%noBranch|) (-15 -3777 ((-2 (|:| |cycle?| (-112)) (|:| -2499 (-782)) (|:| |period| (-782))) (-782) $)) (-15 -1832 ($ (-1 $))) (-15 -2821 ($ |#1| $)) (IF (|has| |#1| (-1117)) (PROGN (-15 -3722 ((-1290) (-575) $)) (-15 -3073 ((-873) $)) (-15 -4143 ((-112)))) |%noBranch|) (-15 -3391 ($ $ (-575) $)) (-15 -3903 ($ (-1 |#1|))) (-15 -3903 ($ (-1 |#1| |#1|) |#1|)) (-15 -3958 ($ (-1 (-112) |#1|) $)) (-15 -3972 ($ (-1 (-112) |#1|) $)))) (-1235)) (T -1174)) +((-3337 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))) (-2596 (*1 *2 *3 *1) (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-4 *4 (-1235)) (-5 *2 (-112)) (-5 *1 (-1174 *4)))) (-3777 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2499 (-782)) (|:| |period| (-782)))) (-5 *1 (-1174 *4)) (-4 *4 (-1235)) (-5 *3 (-782)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-1 (-1174 *3))) (-5 *1 (-1174 *3)) (-4 *3 (-1235)))) (-2821 (*1 *1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1235)))) (-3722 (*1 *2 *3 *1) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1174 *4)) (-4 *4 (-1117)) (-4 *4 (-1235)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-1174 *3)) (-4 *3 (-1117)) (-4 *3 (-1235)))) (-4143 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-1117)) (-4 *3 (-1235)))) (-3391 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1174 *3)) (-4 *3 (-1235)))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))) (-3903 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))) (-3972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3))))) +(-13 (-685 |#1|) (-627 (-655 |#1|)) (-10 -8 (-6 -4461) (-15 -3337 ($ (-655 |#1|))) (IF (|has| |#1| (-1117)) (-15 -2596 ((-112) (-655 |#1|) $)) |%noBranch|) (-15 -3777 ((-2 (|:| |cycle?| (-112)) (|:| -2499 (-782)) (|:| |period| (-782))) (-782) $)) (-15 -1832 ($ (-1 $))) (-15 -2821 ($ |#1| $)) (IF (|has| |#1| (-1117)) (PROGN (-15 -3722 ((-1290) (-575) $)) (-15 -3073 ((-873) $)) (-15 -4143 ((-112)))) |%noBranch|) (-15 -3391 ($ $ (-575) $)) (-15 -3903 ($ (-1 |#1|))) (-15 -3903 ($ (-1 |#1| |#1|) |#1|)) (-15 -3958 ($ (-1 (-112) |#1|) $)) (-15 -3972 ($ (-1 (-112) |#1|) $)))) +((-2861 (((-112) $ $) 19)) (-1605 (($ $) 123)) (-4430 (($ $) 124)) (-3635 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-4161 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-3447 (((-112) $ $) 121)) (-3429 (((-112) $ $ (-575)) 120)) (-1650 (($ (-575)) 130)) (-3436 (((-655 $) $ (-145)) 113) (((-655 $) $ (-142)) 112)) (-2762 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-861)))) (-2119 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| (-145) (-861)) (|has| $ (-6 -4461))))) (-2031 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-861)))) (-1845 (((-112) $ (-782)) 8)) (-3054 (((-145) $ (-575) (-145)) 53 (|has| $ (-6 -4461))) (((-145) $ (-1252 (-575)) (-145)) 60 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-3780 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-1789 (($ $) 93 (|has| $ (-6 -4461)))) (-4381 (($ $) 103)) (-1908 (($ $ (-1252 (-575)) $) 117)) (-1748 (($ $) 80 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ (-145) $) 79 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4460)))) (-2308 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4460)))) (-2859 (((-145) $ (-575) (-145)) 54 (|has| $ (-6 -4461)))) (-2788 (((-145) $ (-575)) 52)) (-3468 (((-112) $ $) 122)) (-2632 (((-575) (-1 (-112) (-145)) $) 100) (((-575) (-145) $) 99 (|has| (-145) (-1117))) (((-575) (-145) $ (-575)) 98 (|has| (-145) (-1117))) (((-575) $ $ (-575)) 116) (((-575) (-142) $ (-575)) 115)) (-4001 (((-655 (-145)) $) 31 (|has| $ (-6 -4460)))) (-2309 (($ (-782) (-145)) 70)) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 44 (|has| (-575) (-861)))) (-1920 (($ $ $) 90 (|has| (-145) (-861)))) (-3794 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-861)))) (-3955 (((-655 (-145)) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 45 (|has| (-575) (-861)))) (-1425 (($ $ $) 89 (|has| (-145) (-861)))) (-3128 (((-112) $ $ (-145)) 118)) (-1616 (((-782) $ $ (-145)) 119)) (-2847 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-3025 (($ $) 125)) (-3506 (($ $) 126)) (-4026 (((-112) $ (-782)) 10)) (-3791 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2288 (((-1176) $) 22)) (-2135 (($ (-145) $ (-575)) 62) (($ $ $ (-575)) 61)) (-4310 (((-655 (-575)) $) 47)) (-2969 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21)) (-1961 (((-145) $) 43 (|has| (-575) (-861)))) (-3704 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-3954 (($ $ (-145)) 42 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-145)))) 27 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-303 (-145))) 26 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-655 (-145)) (-655 (-145))) 24 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-1691 (((-655 (-145)) $) 49)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 (((-145) $ (-575) (-145)) 51) (((-145) $ (-575)) 50) (($ $ (-1252 (-575))) 71) (($ $ $) 105)) (-3239 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3925 (((-782) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4460))) (((-782) (-145) $) 29 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-4005 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3078 (($ $) 13)) (-2615 (((-547) $) 81 (|has| (-145) (-625 (-547))))) (-2894 (($ (-655 (-145))) 72)) (-1514 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2883 (($ (-145)) 114) (((-873) $) 18)) (-4400 (((-112) $ $) 23)) (-3771 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4460)))) (-4196 (((-1176) $) 134) (((-1176) $ (-112)) 133) (((-1290) (-833) $) 132) (((-1290) (-833) $ (-112)) 131)) (-3981 (((-112) $ $) 87 (|has| (-145) (-861)))) (-3956 (((-112) $ $) 86 (|has| (-145) (-861)))) (-3914 (((-112) $ $) 20)) (-3970 (((-112) $ $) 88 (|has| (-145) (-861)))) (-3943 (((-112) $ $) 85 (|has| (-145) (-861)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-1175) (-141)) (T -1175)) +((-1650 (*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1175))))) +(-13 (-1161) (-1117) (-839) (-10 -8 (-15 -1650 ($ (-575))))) +(((-34) . T) ((-102) . T) ((-624 (-873)) . T) ((-152 #0=(-145)) . T) ((-625 (-547)) |has| (-145) (-625 (-547))) ((-295 #1=(-575) #0#) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #1# #0#) . T) ((-318 #0#) -12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))) ((-383 #0#) . T) ((-500 #0#) . T) ((-615 #1# #0#) . T) ((-525 #0# #0#) -12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))) ((-662 #0#) . T) ((-19 #0#) . T) ((-839) . T) ((-861) |has| (-145) (-861)) ((-1117) . T) ((-1161) . T) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-1605 (($ $) NIL)) (-4430 (($ $) NIL)) (-3635 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3447 (((-112) $ $) NIL)) (-3429 (((-112) $ $ (-575)) NIL)) (-1650 (($ (-575)) 8)) (-3436 (((-655 $) $ (-145)) NIL) (((-655 $) $ (-142)) NIL)) (-2762 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-2119 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-861))))) (-2031 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 (((-145) $ (-575) (-145)) NIL (|has| $ (-6 -4461))) (((-145) $ (-1252 (-575)) (-145)) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-3780 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1908 (($ $ (-1252 (-575)) $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-3633 (($ (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4460)))) (-2859 (((-145) $ (-575) (-145)) NIL (|has| $ (-6 -4461)))) (-2788 (((-145) $ (-575)) NIL)) (-3468 (((-112) $ $) NIL)) (-2632 (((-575) (-1 (-112) (-145)) $) NIL) (((-575) (-145) $) NIL (|has| (-145) (-1117))) (((-575) (-145) $ (-575)) NIL (|has| (-145) (-1117))) (((-575) $ $ (-575)) NIL) (((-575) (-142) $ (-575)) NIL)) (-4001 (((-655 (-145)) $) NIL (|has| $ (-6 -4460)))) (-2309 (($ (-782) (-145)) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| (-145) (-861)))) (-3794 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-3955 (((-655 (-145)) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-3197 (((-575) $) NIL (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| (-145) (-861)))) (-3128 (((-112) $ $ (-145)) NIL)) (-1616 (((-782) $ $ (-145)) NIL)) (-2847 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3025 (($ $) NIL)) (-3506 (($ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-3791 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2288 (((-1176) $) NIL)) (-2135 (($ (-145) $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 (((-145) $) NIL (|has| (-575) (-861)))) (-3704 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3954 (($ $ (-145)) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-145)))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-303 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-655 (-145)) (-655 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-1691 (((-655 (-145)) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 (((-145) $ (-575) (-145)) NIL) (((-145) $ (-575)) NIL) (($ $ (-1252 (-575))) NIL) (($ $ $) NIL)) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3925 (((-782) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460))) (((-782) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-145) (-625 (-547))))) (-2894 (($ (-655 (-145))) NIL)) (-1514 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2883 (($ (-145)) NIL) (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3771 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-4196 (((-1176) $) 19) (((-1176) $ (-112)) 21) (((-1290) (-833) $) 22) (((-1290) (-833) $ (-112)) 23)) (-3981 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3956 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3943 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1176) (-1175)) (T -1176)) +NIL +(-1175) +((-2861 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)) (|has| |#1| (-1117))))) (-2297 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-4161 (((-1290) $ (-1176) (-1176)) NIL (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#1| $ (-1176) |#1|) NIL)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-1399 (((-3 |#1| "failed") (-1176) $) NIL)) (-3011 (($) NIL T CONST)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-4404 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#1| "failed") (-1176) $) NIL)) (-3633 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-1176) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-1176)) NIL)) (-4001 (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-1176) $) NIL (|has| (-1176) (-861)))) (-3955 (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-1176) $) NIL (|has| (-1176) (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (-3765 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)) (|has| |#1| (-1117))))) (-2001 (((-655 (-1176)) $) NIL)) (-3308 (((-112) (-1176) $) NIL)) (-4012 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-3862 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-4310 (((-655 (-1176)) $) NIL)) (-2969 (((-112) (-1176) $) NIL)) (-3912 (((-1137) $) NIL (-3765 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)) (|has| |#1| (-1117))))) (-1961 ((|#1| $) NIL (|has| (-1176) (-861)))) (-3704 (((-3 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) "failed") (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL)) (-3954 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-1176)) NIL) ((|#1| $ (-1176) |#1|) NIL)) (-3601 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-2883 (((-873) $) NIL (-3765 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-624 (-873))) (|has| |#1| (-624 (-873)))))) (-4400 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)) (|has| |#1| (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)) (|has| |#1| (-1117))))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1177 |#1|) (-13 (-1211 (-1176) |#1|) (-10 -7 (-6 -4460))) (-1117)) (T -1177)) +NIL +(-13 (-1211 (-1176) |#1|) (-10 -7 (-6 -4460))) +((-3871 (((-1174 |#1|) (-1174 |#1|)) 83)) (-1747 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 39)) (-1561 (((-1174 |#1|) (-418 (-575)) (-1174 |#1|)) 133 (|has| |#1| (-38 (-418 (-575)))))) (-1934 (((-1174 |#1|) |#1| (-1174 |#1|)) 139 (|has| |#1| (-373)))) (-3237 (((-1174 |#1|) (-1174 |#1|)) 97)) (-1603 (((-1174 (-575)) (-575)) 63)) (-1653 (((-1174 |#1|) (-1174 (-1174 |#1|))) 116 (|has| |#1| (-38 (-418 (-575)))))) (-2166 (((-1174 |#1|) (-575) (-575) (-1174 |#1|)) 102)) (-3693 (((-1174 |#1|) |#1| (-575)) 51)) (-2962 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 66)) (-1475 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 136 (|has| |#1| (-373)))) (-1946 (((-1174 |#1|) |#1| (-1 (-1174 |#1|))) 115 (|has| |#1| (-38 (-418 (-575)))))) (-3350 (((-1174 |#1|) (-1 |#1| (-575)) |#1| (-1 (-1174 |#1|))) 137 (|has| |#1| (-373)))) (-1531 (((-1174 |#1|) (-1174 |#1|)) 96)) (-3511 (((-1174 |#1|) (-1174 |#1|)) 82)) (-3552 (((-1174 |#1|) (-575) (-575) (-1174 |#1|)) 103)) (-4413 (((-1174 |#1|) |#1| (-1174 |#1|)) 112 (|has| |#1| (-38 (-418 (-575)))))) (-1566 (((-1174 (-575)) (-575)) 62)) (-2521 (((-1174 |#1|) |#1|) 65)) (-2562 (((-1174 |#1|) (-1174 |#1|) (-575) (-575)) 99)) (-1846 (((-1174 |#1|) (-1 |#1| (-575)) (-1174 |#1|)) 72)) (-2851 (((-3 (-1174 |#1|) "failed") (-1174 |#1|) (-1174 |#1|)) 37)) (-4426 (((-1174 |#1|) (-1174 |#1|)) 98)) (-3048 (((-1174 |#1|) (-1174 |#1|) |#1|) 77)) (-3384 (((-1174 |#1|) (-1174 |#1|)) 68)) (-3646 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 78)) (-2883 (((-1174 |#1|) |#1|) 73)) (-3446 (((-1174 |#1|) (-1174 (-1174 |#1|))) 88)) (-4038 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 38)) (-4028 (((-1174 |#1|) (-1174 |#1|)) 21) (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 23)) (-4016 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 17)) (* (((-1174 |#1|) (-1174 |#1|) |#1|) 29) (((-1174 |#1|) |#1| (-1174 |#1|)) 26) (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 27))) +(((-1178 |#1|) (-10 -7 (-15 -4016 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4028 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4028 ((-1174 |#1|) (-1174 |#1|))) (-15 * ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 * ((-1174 |#1|) |#1| (-1174 |#1|))) (-15 * ((-1174 |#1|) (-1174 |#1|) |#1|)) (-15 -2851 ((-3 (-1174 |#1|) "failed") (-1174 |#1|) (-1174 |#1|))) (-15 -4038 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -1747 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3693 ((-1174 |#1|) |#1| (-575))) (-15 -1566 ((-1174 (-575)) (-575))) (-15 -1603 ((-1174 (-575)) (-575))) (-15 -2521 ((-1174 |#1|) |#1|)) (-15 -2962 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3384 ((-1174 |#1|) (-1174 |#1|))) (-15 -1846 ((-1174 |#1|) (-1 |#1| (-575)) (-1174 |#1|))) (-15 -2883 ((-1174 |#1|) |#1|)) (-15 -3048 ((-1174 |#1|) (-1174 |#1|) |#1|)) (-15 -3646 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3511 ((-1174 |#1|) (-1174 |#1|))) (-15 -3871 ((-1174 |#1|) (-1174 |#1|))) (-15 -3446 ((-1174 |#1|) (-1174 (-1174 |#1|)))) (-15 -1531 ((-1174 |#1|) (-1174 |#1|))) (-15 -3237 ((-1174 |#1|) (-1174 |#1|))) (-15 -4426 ((-1174 |#1|) (-1174 |#1|))) (-15 -2562 ((-1174 |#1|) (-1174 |#1|) (-575) (-575))) (-15 -2166 ((-1174 |#1|) (-575) (-575) (-1174 |#1|))) (-15 -3552 ((-1174 |#1|) (-575) (-575) (-1174 |#1|))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ((-1174 |#1|) |#1| (-1174 |#1|))) (-15 -1946 ((-1174 |#1|) |#1| (-1 (-1174 |#1|)))) (-15 -1653 ((-1174 |#1|) (-1174 (-1174 |#1|)))) (-15 -1561 ((-1174 |#1|) (-418 (-575)) (-1174 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -1475 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3350 ((-1174 |#1|) (-1 |#1| (-575)) |#1| (-1 (-1174 |#1|)))) (-15 -1934 ((-1174 |#1|) |#1| (-1174 |#1|)))) |%noBranch|)) (-1066)) (T -1178)) +((-1934 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-3350 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-575))) (-5 *5 (-1 (-1174 *4))) (-4 *4 (-373)) (-4 *4 (-1066)) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4)))) (-1475 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-1561 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1066)) (-5 *3 (-418 (-575))) (-5 *1 (-1178 *4)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4)) (-4 *4 (-38 (-418 (-575)))) (-4 *4 (-1066)))) (-1946 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1174 *3))) (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)))) (-4413 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-3552 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066)) (-5 *1 (-1178 *4)))) (-2166 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066)) (-5 *1 (-1178 *4)))) (-2562 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066)) (-5 *1 (-1178 *4)))) (-4426 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-3237 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-1531 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4)) (-4 *4 (-1066)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-3511 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-3646 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-3048 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-2883 (*1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-1066)))) (-1846 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1 *4 (-575))) (-4 *4 (-1066)) (-5 *1 (-1178 *4)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-2962 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-2521 (*1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-1066)))) (-1603 (*1 *2 *3) (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1178 *4)) (-4 *4 (-1066)) (-5 *3 (-575)))) (-1566 (*1 *2 *3) (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1178 *4)) (-4 *4 (-1066)) (-5 *3 (-575)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-1066)))) (-1747 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-4038 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-2851 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-4028 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-4028 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-4016 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))) +(-10 -7 (-15 -4016 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4028 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4028 ((-1174 |#1|) (-1174 |#1|))) (-15 * ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 * ((-1174 |#1|) |#1| (-1174 |#1|))) (-15 * ((-1174 |#1|) (-1174 |#1|) |#1|)) (-15 -2851 ((-3 (-1174 |#1|) "failed") (-1174 |#1|) (-1174 |#1|))) (-15 -4038 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -1747 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3693 ((-1174 |#1|) |#1| (-575))) (-15 -1566 ((-1174 (-575)) (-575))) (-15 -1603 ((-1174 (-575)) (-575))) (-15 -2521 ((-1174 |#1|) |#1|)) (-15 -2962 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3384 ((-1174 |#1|) (-1174 |#1|))) (-15 -1846 ((-1174 |#1|) (-1 |#1| (-575)) (-1174 |#1|))) (-15 -2883 ((-1174 |#1|) |#1|)) (-15 -3048 ((-1174 |#1|) (-1174 |#1|) |#1|)) (-15 -3646 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3511 ((-1174 |#1|) (-1174 |#1|))) (-15 -3871 ((-1174 |#1|) (-1174 |#1|))) (-15 -3446 ((-1174 |#1|) (-1174 (-1174 |#1|)))) (-15 -1531 ((-1174 |#1|) (-1174 |#1|))) (-15 -3237 ((-1174 |#1|) (-1174 |#1|))) (-15 -4426 ((-1174 |#1|) (-1174 |#1|))) (-15 -2562 ((-1174 |#1|) (-1174 |#1|) (-575) (-575))) (-15 -2166 ((-1174 |#1|) (-575) (-575) (-1174 |#1|))) (-15 -3552 ((-1174 |#1|) (-575) (-575) (-1174 |#1|))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ((-1174 |#1|) |#1| (-1174 |#1|))) (-15 -1946 ((-1174 |#1|) |#1| (-1 (-1174 |#1|)))) (-15 -1653 ((-1174 |#1|) (-1174 (-1174 |#1|)))) (-15 -1561 ((-1174 |#1|) (-418 (-575)) (-1174 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -1475 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3350 ((-1174 |#1|) (-1 |#1| (-575)) |#1| (-1 (-1174 |#1|)))) (-15 -1934 ((-1174 |#1|) |#1| (-1174 |#1|)))) |%noBranch|)) +((-3923 (((-1174 |#1|) (-1174 |#1|)) 60)) (-3786 (((-1174 |#1|) (-1174 |#1|)) 42)) (-3897 (((-1174 |#1|) (-1174 |#1|)) 56)) (-3761 (((-1174 |#1|) (-1174 |#1|)) 38)) (-1521 (((-1174 |#1|) (-1174 |#1|)) 63)) (-3807 (((-1174 |#1|) (-1174 |#1|)) 45)) (-3463 (((-1174 |#1|) (-1174 |#1|)) 34)) (-2665 (((-1174 |#1|) (-1174 |#1|)) 29)) (-1530 (((-1174 |#1|) (-1174 |#1|)) 64)) (-3817 (((-1174 |#1|) (-1174 |#1|)) 46)) (-3937 (((-1174 |#1|) (-1174 |#1|)) 61)) (-3797 (((-1174 |#1|) (-1174 |#1|)) 43)) (-3909 (((-1174 |#1|) (-1174 |#1|)) 58)) (-3774 (((-1174 |#1|) (-1174 |#1|)) 40)) (-1568 (((-1174 |#1|) (-1174 |#1|)) 68)) (-3852 (((-1174 |#1|) (-1174 |#1|)) 50)) (-1544 (((-1174 |#1|) (-1174 |#1|)) 66)) (-3828 (((-1174 |#1|) (-1174 |#1|)) 48)) (-1592 (((-1174 |#1|) (-1174 |#1|)) 71)) (-3873 (((-1174 |#1|) (-1174 |#1|)) 53)) (-2914 (((-1174 |#1|) (-1174 |#1|)) 72)) (-3885 (((-1174 |#1|) (-1174 |#1|)) 54)) (-1583 (((-1174 |#1|) (-1174 |#1|)) 70)) (-3863 (((-1174 |#1|) (-1174 |#1|)) 52)) (-1554 (((-1174 |#1|) (-1174 |#1|)) 69)) (-3839 (((-1174 |#1|) (-1174 |#1|)) 51)) (** (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 36))) +(((-1179 |#1|) (-10 -7 (-15 -2665 ((-1174 |#1|) (-1174 |#1|))) (-15 -3463 ((-1174 |#1|) (-1174 |#1|))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3761 ((-1174 |#1|) (-1174 |#1|))) (-15 -3774 ((-1174 |#1|) (-1174 |#1|))) (-15 -3786 ((-1174 |#1|) (-1174 |#1|))) (-15 -3797 ((-1174 |#1|) (-1174 |#1|))) (-15 -3807 ((-1174 |#1|) (-1174 |#1|))) (-15 -3817 ((-1174 |#1|) (-1174 |#1|))) (-15 -3828 ((-1174 |#1|) (-1174 |#1|))) (-15 -3839 ((-1174 |#1|) (-1174 |#1|))) (-15 -3852 ((-1174 |#1|) (-1174 |#1|))) (-15 -3863 ((-1174 |#1|) (-1174 |#1|))) (-15 -3873 ((-1174 |#1|) (-1174 |#1|))) (-15 -3885 ((-1174 |#1|) (-1174 |#1|))) (-15 -3897 ((-1174 |#1|) (-1174 |#1|))) (-15 -3909 ((-1174 |#1|) (-1174 |#1|))) (-15 -3923 ((-1174 |#1|) (-1174 |#1|))) (-15 -3937 ((-1174 |#1|) (-1174 |#1|))) (-15 -1521 ((-1174 |#1|) (-1174 |#1|))) (-15 -1530 ((-1174 |#1|) (-1174 |#1|))) (-15 -1544 ((-1174 |#1|) (-1174 |#1|))) (-15 -1554 ((-1174 |#1|) (-1174 |#1|))) (-15 -1568 ((-1174 |#1|) (-1174 |#1|))) (-15 -1583 ((-1174 |#1|) (-1174 |#1|))) (-15 -1592 ((-1174 |#1|) (-1174 |#1|))) (-15 -2914 ((-1174 |#1|) (-1174 |#1|)))) (-38 (-418 (-575)))) (T -1179)) +((-2914 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1568 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1554 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1530 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3817 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3786 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3761 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-2665 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3))))) +(-10 -7 (-15 -2665 ((-1174 |#1|) (-1174 |#1|))) (-15 -3463 ((-1174 |#1|) (-1174 |#1|))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3761 ((-1174 |#1|) (-1174 |#1|))) (-15 -3774 ((-1174 |#1|) (-1174 |#1|))) (-15 -3786 ((-1174 |#1|) (-1174 |#1|))) (-15 -3797 ((-1174 |#1|) (-1174 |#1|))) (-15 -3807 ((-1174 |#1|) (-1174 |#1|))) (-15 -3817 ((-1174 |#1|) (-1174 |#1|))) (-15 -3828 ((-1174 |#1|) (-1174 |#1|))) (-15 -3839 ((-1174 |#1|) (-1174 |#1|))) (-15 -3852 ((-1174 |#1|) (-1174 |#1|))) (-15 -3863 ((-1174 |#1|) (-1174 |#1|))) (-15 -3873 ((-1174 |#1|) (-1174 |#1|))) (-15 -3885 ((-1174 |#1|) (-1174 |#1|))) (-15 -3897 ((-1174 |#1|) (-1174 |#1|))) (-15 -3909 ((-1174 |#1|) (-1174 |#1|))) (-15 -3923 ((-1174 |#1|) (-1174 |#1|))) (-15 -3937 ((-1174 |#1|) (-1174 |#1|))) (-15 -1521 ((-1174 |#1|) (-1174 |#1|))) (-15 -1530 ((-1174 |#1|) (-1174 |#1|))) (-15 -1544 ((-1174 |#1|) (-1174 |#1|))) (-15 -1554 ((-1174 |#1|) (-1174 |#1|))) (-15 -1568 ((-1174 |#1|) (-1174 |#1|))) (-15 -1583 ((-1174 |#1|) (-1174 |#1|))) (-15 -1592 ((-1174 |#1|) (-1174 |#1|))) (-15 -2914 ((-1174 |#1|) (-1174 |#1|)))) +((-3923 (((-1174 |#1|) (-1174 |#1|)) 102)) (-3786 (((-1174 |#1|) (-1174 |#1|)) 61)) (-4193 (((-2 (|:| -3897 (-1174 |#1|)) (|:| -3909 (-1174 |#1|))) (-1174 |#1|)) 98)) (-3897 (((-1174 |#1|) (-1174 |#1|)) 99)) (-3676 (((-2 (|:| -3761 (-1174 |#1|)) (|:| -3774 (-1174 |#1|))) (-1174 |#1|)) 54)) (-3761 (((-1174 |#1|) (-1174 |#1|)) 55)) (-1521 (((-1174 |#1|) (-1174 |#1|)) 104)) (-3807 (((-1174 |#1|) (-1174 |#1|)) 68)) (-3463 (((-1174 |#1|) (-1174 |#1|)) 40)) (-2665 (((-1174 |#1|) (-1174 |#1|)) 37)) (-1530 (((-1174 |#1|) (-1174 |#1|)) 105)) (-3817 (((-1174 |#1|) (-1174 |#1|)) 69)) (-3937 (((-1174 |#1|) (-1174 |#1|)) 103)) (-3797 (((-1174 |#1|) (-1174 |#1|)) 64)) (-3909 (((-1174 |#1|) (-1174 |#1|)) 100)) (-3774 (((-1174 |#1|) (-1174 |#1|)) 56)) (-1568 (((-1174 |#1|) (-1174 |#1|)) 113)) (-3852 (((-1174 |#1|) (-1174 |#1|)) 88)) (-1544 (((-1174 |#1|) (-1174 |#1|)) 107)) (-3828 (((-1174 |#1|) (-1174 |#1|)) 84)) (-1592 (((-1174 |#1|) (-1174 |#1|)) 117)) (-3873 (((-1174 |#1|) (-1174 |#1|)) 92)) (-2914 (((-1174 |#1|) (-1174 |#1|)) 119)) (-3885 (((-1174 |#1|) (-1174 |#1|)) 94)) (-1583 (((-1174 |#1|) (-1174 |#1|)) 115)) (-3863 (((-1174 |#1|) (-1174 |#1|)) 90)) (-1554 (((-1174 |#1|) (-1174 |#1|)) 109)) (-3839 (((-1174 |#1|) (-1174 |#1|)) 86)) (** (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 41))) +(((-1180 |#1|) (-10 -7 (-15 -2665 ((-1174 |#1|) (-1174 |#1|))) (-15 -3463 ((-1174 |#1|) (-1174 |#1|))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3676 ((-2 (|:| -3761 (-1174 |#1|)) (|:| -3774 (-1174 |#1|))) (-1174 |#1|))) (-15 -3761 ((-1174 |#1|) (-1174 |#1|))) (-15 -3774 ((-1174 |#1|) (-1174 |#1|))) (-15 -3786 ((-1174 |#1|) (-1174 |#1|))) (-15 -3797 ((-1174 |#1|) (-1174 |#1|))) (-15 -3807 ((-1174 |#1|) (-1174 |#1|))) (-15 -3817 ((-1174 |#1|) (-1174 |#1|))) (-15 -3828 ((-1174 |#1|) (-1174 |#1|))) (-15 -3839 ((-1174 |#1|) (-1174 |#1|))) (-15 -3852 ((-1174 |#1|) (-1174 |#1|))) (-15 -3863 ((-1174 |#1|) (-1174 |#1|))) (-15 -3873 ((-1174 |#1|) (-1174 |#1|))) (-15 -3885 ((-1174 |#1|) (-1174 |#1|))) (-15 -4193 ((-2 (|:| -3897 (-1174 |#1|)) (|:| -3909 (-1174 |#1|))) (-1174 |#1|))) (-15 -3897 ((-1174 |#1|) (-1174 |#1|))) (-15 -3909 ((-1174 |#1|) (-1174 |#1|))) (-15 -3923 ((-1174 |#1|) (-1174 |#1|))) (-15 -3937 ((-1174 |#1|) (-1174 |#1|))) (-15 -1521 ((-1174 |#1|) (-1174 |#1|))) (-15 -1530 ((-1174 |#1|) (-1174 |#1|))) (-15 -1544 ((-1174 |#1|) (-1174 |#1|))) (-15 -1554 ((-1174 |#1|) (-1174 |#1|))) (-15 -1568 ((-1174 |#1|) (-1174 |#1|))) (-15 -1583 ((-1174 |#1|) (-1174 |#1|))) (-15 -1592 ((-1174 |#1|) (-1174 |#1|))) (-15 -2914 ((-1174 |#1|) (-1174 |#1|)))) (-38 (-418 (-575)))) (T -1180)) +((-2914 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1568 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1554 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1530 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-4193 (*1 *2 *3) (-12 (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-2 (|:| -3897 (-1174 *4)) (|:| -3909 (-1174 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-1174 *4)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3817 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3786 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3761 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3676 (*1 *2 *3) (-12 (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-2 (|:| -3761 (-1174 *4)) (|:| -3774 (-1174 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-1174 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-2665 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3))))) +(-10 -7 (-15 -2665 ((-1174 |#1|) (-1174 |#1|))) (-15 -3463 ((-1174 |#1|) (-1174 |#1|))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3676 ((-2 (|:| -3761 (-1174 |#1|)) (|:| -3774 (-1174 |#1|))) (-1174 |#1|))) (-15 -3761 ((-1174 |#1|) (-1174 |#1|))) (-15 -3774 ((-1174 |#1|) (-1174 |#1|))) (-15 -3786 ((-1174 |#1|) (-1174 |#1|))) (-15 -3797 ((-1174 |#1|) (-1174 |#1|))) (-15 -3807 ((-1174 |#1|) (-1174 |#1|))) (-15 -3817 ((-1174 |#1|) (-1174 |#1|))) (-15 -3828 ((-1174 |#1|) (-1174 |#1|))) (-15 -3839 ((-1174 |#1|) (-1174 |#1|))) (-15 -3852 ((-1174 |#1|) (-1174 |#1|))) (-15 -3863 ((-1174 |#1|) (-1174 |#1|))) (-15 -3873 ((-1174 |#1|) (-1174 |#1|))) (-15 -3885 ((-1174 |#1|) (-1174 |#1|))) (-15 -4193 ((-2 (|:| -3897 (-1174 |#1|)) (|:| -3909 (-1174 |#1|))) (-1174 |#1|))) (-15 -3897 ((-1174 |#1|) (-1174 |#1|))) (-15 -3909 ((-1174 |#1|) (-1174 |#1|))) (-15 -3923 ((-1174 |#1|) (-1174 |#1|))) (-15 -3937 ((-1174 |#1|) (-1174 |#1|))) (-15 -1521 ((-1174 |#1|) (-1174 |#1|))) (-15 -1530 ((-1174 |#1|) (-1174 |#1|))) (-15 -1544 ((-1174 |#1|) (-1174 |#1|))) (-15 -1554 ((-1174 |#1|) (-1174 |#1|))) (-15 -1568 ((-1174 |#1|) (-1174 |#1|))) (-15 -1583 ((-1174 |#1|) (-1174 |#1|))) (-15 -1592 ((-1174 |#1|) (-1174 |#1|))) (-15 -2914 ((-1174 |#1|) (-1174 |#1|)))) +((-3087 (((-973 |#2|) |#2| |#2|) 50)) (-1824 ((|#2| |#2| |#1|) 19 (|has| |#1| (-316))))) +(((-1181 |#1| |#2|) (-10 -7 (-15 -3087 ((-973 |#2|) |#2| |#2|)) (IF (|has| |#1| (-316)) (-15 -1824 (|#2| |#2| |#1|)) |%noBranch|)) (-567) (-1261 |#1|)) (T -1181)) +((-1824 (*1 *2 *2 *3) (-12 (-4 *3 (-316)) (-4 *3 (-567)) (-5 *1 (-1181 *3 *2)) (-4 *2 (-1261 *3)))) (-3087 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-973 *3)) (-5 *1 (-1181 *4 *3)) (-4 *3 (-1261 *4))))) +(-10 -7 (-15 -3087 ((-973 |#2|) |#2| |#2|)) (IF (|has| |#1| (-316)) (-15 -1824 (|#2| |#2| |#1|)) |%noBranch|)) +((-2861 (((-112) $ $) NIL)) (-1448 (($ $ (-655 (-782))) 79)) (-1765 (($) 33)) (-2041 (($ $) 51)) (-4265 (((-655 $) $) 60)) (-1732 (((-112) $) 19)) (-3619 (((-655 (-958 |#2|)) $) 86)) (-3294 (($ $) 80)) (-3692 (((-782) $) 47)) (-2309 (($) 32)) (-2363 (($ $ (-655 (-782)) (-958 |#2|)) 72) (($ $ (-655 (-782)) (-782)) 73) (($ $ (-782) (-958 |#2|)) 75)) (-3794 (($ $ $) 57) (($ (-655 $)) 59)) (-2627 (((-782) $) 87)) (-1526 (((-112) $) 15)) (-2288 (((-1176) $) NIL)) (-3216 (((-112) $) 22)) (-3912 (((-1137) $) NIL)) (-1842 (((-173) $) 85)) (-2811 (((-958 |#2|) $) 81)) (-2910 (((-782) $) 82)) (-4417 (((-112) $) 84)) (-3310 (($ $ (-655 (-782)) (-173)) 78)) (-3495 (($ $) 52)) (-2883 (((-873) $) 99)) (-1680 (($ $ (-655 (-782)) (-112)) 77)) (-2348 (((-655 $) $) 11)) (-2105 (($ $ (-782)) 46)) (-1467 (($ $) 43)) (-4400 (((-112) $ $) NIL)) (-2130 (($ $ $ (-958 |#2|) (-782)) 68)) (-3837 (($ $ (-958 |#2|)) 67)) (-3365 (($ $ (-655 (-782)) (-958 |#2|)) 66) (($ $ (-655 (-782)) (-782)) 70) (((-782) $ (-958 |#2|)) 71)) (-3914 (((-112) $ $) 92))) +(((-1182 |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -1526 ((-112) $)) (-15 -1732 ((-112) $)) (-15 -3216 ((-112) $)) (-15 -2309 ($)) (-15 -1765 ($)) (-15 -1467 ($ $)) (-15 -2105 ($ $ (-782))) (-15 -2348 ((-655 $) $)) (-15 -3692 ((-782) $)) (-15 -2041 ($ $)) (-15 -3495 ($ $)) (-15 -3794 ($ $ $)) (-15 -3794 ($ (-655 $))) (-15 -4265 ((-655 $) $)) (-15 -3365 ($ $ (-655 (-782)) (-958 |#2|))) (-15 -3837 ($ $ (-958 |#2|))) (-15 -2130 ($ $ $ (-958 |#2|) (-782))) (-15 -2363 ($ $ (-655 (-782)) (-958 |#2|))) (-15 -3365 ($ $ (-655 (-782)) (-782))) (-15 -2363 ($ $ (-655 (-782)) (-782))) (-15 -3365 ((-782) $ (-958 |#2|))) (-15 -2363 ($ $ (-782) (-958 |#2|))) (-15 -1680 ($ $ (-655 (-782)) (-112))) (-15 -3310 ($ $ (-655 (-782)) (-173))) (-15 -1448 ($ $ (-655 (-782)))) (-15 -2811 ((-958 |#2|) $)) (-15 -2910 ((-782) $)) (-15 -4417 ((-112) $)) (-15 -1842 ((-173) $)) (-15 -2627 ((-782) $)) (-15 -3294 ($ $)) (-15 -3619 ((-655 (-958 |#2|)) $)))) (-936) (-1066)) (T -1182)) +((-1526 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2309 (*1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-1765 (*1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-1467 (*1 *1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-2105 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2041 (*1 *1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-3495 (*1 *1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-3794 (*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-3794 (*1 *1 *2) (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-3365 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-958 *5)) (-4 *5 (-1066)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-958 *4)) (-4 *4 (-1066)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)))) (-2130 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-958 *5)) (-5 *3 (-782)) (-4 *5 (-1066)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) (-2363 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-958 *5)) (-4 *5 (-1066)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) (-3365 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-782)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1066)))) (-2363 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-782)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1066)))) (-3365 (*1 *2 *1 *3) (-12 (-5 *3 (-958 *5)) (-4 *5 (-1066)) (-5 *2 (-782)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) (-2363 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *3 (-958 *5)) (-4 *5 (-1066)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) (-1680 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-112)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1066)))) (-3310 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-173)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1066)))) (-1448 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-958 *4)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2910 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-3294 (*1 *1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-655 (-958 *4))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066))))) +(-13 (-1117) (-10 -8 (-15 -1526 ((-112) $)) (-15 -1732 ((-112) $)) (-15 -3216 ((-112) $)) (-15 -2309 ($)) (-15 -1765 ($)) (-15 -1467 ($ $)) (-15 -2105 ($ $ (-782))) (-15 -2348 ((-655 $) $)) (-15 -3692 ((-782) $)) (-15 -2041 ($ $)) (-15 -3495 ($ $)) (-15 -3794 ($ $ $)) (-15 -3794 ($ (-655 $))) (-15 -4265 ((-655 $) $)) (-15 -3365 ($ $ (-655 (-782)) (-958 |#2|))) (-15 -3837 ($ $ (-958 |#2|))) (-15 -2130 ($ $ $ (-958 |#2|) (-782))) (-15 -2363 ($ $ (-655 (-782)) (-958 |#2|))) (-15 -3365 ($ $ (-655 (-782)) (-782))) (-15 -2363 ($ $ (-655 (-782)) (-782))) (-15 -3365 ((-782) $ (-958 |#2|))) (-15 -2363 ($ $ (-782) (-958 |#2|))) (-15 -1680 ($ $ (-655 (-782)) (-112))) (-15 -3310 ($ $ (-655 (-782)) (-173))) (-15 -1448 ($ $ (-655 (-782)))) (-15 -2811 ((-958 |#2|) $)) (-15 -2910 ((-782) $)) (-15 -4417 ((-112) $)) (-15 -1842 ((-173) $)) (-15 -2627 ((-782) $)) (-15 -3294 ($ $)) (-15 -3619 ((-655 (-958 |#2|)) $)))) +((-2861 (((-112) $ $) NIL)) (-3892 ((|#2| $) 11)) (-3880 ((|#1| $) 10)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2894 (($ |#1| |#2|) 9)) (-2883 (((-873) $) 16)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1183 |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -2894 ($ |#1| |#2|)) (-15 -3880 (|#1| $)) (-15 -3892 (|#2| $)))) (-1117) (-1117)) (T -1183)) +((-2894 (*1 *1 *2 *3) (-12 (-5 *1 (-1183 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-3880 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-1183 *2 *3)) (-4 *3 (-1117)))) (-3892 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-1183 *3 *2)) (-4 *3 (-1117))))) +(-13 (-1117) (-10 -8 (-15 -2894 ($ |#1| |#2|)) (-15 -3880 (|#1| $)) (-15 -3892 (|#2| $)))) +((-2861 (((-112) $ $) NIL)) (-2397 (((-1152) $) 9)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 15) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1184) (-13 (-1100) (-10 -8 (-15 -2397 ((-1152) $))))) (T -1184)) +((-2397 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1184))))) +(-13 (-1100) (-10 -8 (-15 -2397 ((-1152) $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3127 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-316)) (|has| |#1| (-373))))) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 11)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-1540 (($ $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-3286 (((-112) $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-4080 (($ $ (-575)) NIL) (($ $ (-575) (-575)) 75)) (-2144 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) NIL)) (-4027 (((-1192 |#1| |#2| |#3|) $) 42)) (-3483 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) 32)) (-4290 (((-1192 |#1| |#2| |#3|) $) 33)) (-3923 (($ $) 116 (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) 92 (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-2058 (($ $) NIL (|has| |#1| (-373)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3897 (($ $) 112 (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) 88 (|has| |#1| (-38 (-418 (-575)))))) (-4428 (((-575) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) 120 (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) 96 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1194) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-575) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))))) (-4399 (((-1192 |#1| |#2| |#3|) $) 140) (((-1194) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (((-418 (-575)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373)))) (((-575) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))))) (-2140 (($ $) 37) (($ (-575) $) 38)) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-1749 (((-700 (-1192 |#1| |#2| |#3|)) (-1285 $)) NIL (|has| |#1| (-373))) (((-700 (-1192 |#1| |#2| |#3|)) (-700 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -2412 (-700 (-1192 |#1| |#2| |#3|))) (|:| |vec| (-1285 (-1192 |#1| |#2| |#3|)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373))))) (-1747 (((-3 $ "failed") $) 54)) (-3586 (((-418 (-967 |#1|)) $ (-575)) 74 (|has| |#1| (-567))) (((-418 (-967 |#1|)) $ (-575) (-575)) 76 (|has| |#1| (-567)))) (-2079 (($) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1336 (((-112) $) NIL (|has| |#1| (-373)))) (-4075 (((-112) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-2789 (((-112) $) 28)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-898 (-389))) (|has| |#1| (-373)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-898 (-575))) (|has| |#1| (-373))))) (-2673 (((-575) $) NIL) (((-575) $ (-575)) 26)) (-1542 (((-112) $) NIL)) (-4046 (($ $) NIL (|has| |#1| (-373)))) (-1595 (((-1192 |#1| |#2| |#3|) $) 44 (|has| |#1| (-373)))) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2607 (((-3 $ "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1169)) (|has| |#1| (-373))))) (-4087 (((-112) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-3461 (($ $ (-936)) NIL)) (-3247 (($ (-1 |#1| (-575)) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-575)) 19) (($ $ (-1099) (-575)) NIL) (($ $ (-655 (-1099)) (-655 (-575))) NIL)) (-1920 (($ $ $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-1425 (($ $ $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-373)))) (-3463 (($ $) 81 (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4301 (($ (-575) (-1192 |#1| |#2| |#3|)) 36)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4413 (($ $) 79 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 80 (|has| |#1| (-38 (-418 (-575)))))) (-3474 (($) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1169)) (|has| |#1| (-373))) CONST)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4309 (($ $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-316)) (|has| |#1| (-373))))) (-2736 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-2353 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-4276 (($ $ (-575)) 158)) (-2851 (((-3 $ "failed") $ $) 55 (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2665 (($ $) 82 (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-575))))) (($ $ (-1194) (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-525 (-1194) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-1194)) (-655 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-525 (-1194) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-303 (-1192 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-303 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-1192 |#1| |#2| |#3|)) (-655 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373))))) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2070 ((|#1| $ (-575)) NIL) (($ $ $) 61 (|has| (-575) (-1129))) (($ $ (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-295 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-2389 (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) NIL (|has| |#1| (-373))) (($ $ (-1281 |#2|)) 57) (($ $) 56 (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-4172 (($ $) NIL (|has| |#1| (-373)))) (-1608 (((-1192 |#1| |#2| |#3|) $) 46 (|has| |#1| (-373)))) (-2645 (((-575) $) 43)) (-1530 (($ $) 122 (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) 98 (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) 118 (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) 94 (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) 114 (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) 90 (|has| |#1| (-38 (-418 (-575)))))) (-2615 (((-547) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-625 (-547))) (|has| |#1| (-373)))) (((-389) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-373)))) (((-227) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-373)))) (((-904 (-389)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-625 (-904 (-389)))) (|has| |#1| (-373)))) (((-904 (-575)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-625 (-904 (-575)))) (|has| |#1| (-373))))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-2972 (($ $) NIL)) (-2883 (((-873) $) 162) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1192 |#1| |#2| |#3|)) 30) (($ (-1281 |#2|)) 25) (($ (-1194)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (($ $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567)))) (($ (-418 (-575))) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))) (|has| |#1| (-38 (-418 (-575))))))) (-2012 ((|#1| $ (-575)) 77)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-146)) (|has| |#1| (-373))) (|has| |#1| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 12)) (-1432 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) 128 (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) 104 (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-1544 (($ $) 124 (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) 100 (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) 108 (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-575)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) 110 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 130 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 106 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 126 (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) 102 (|has| |#1| (-38 (-418 (-575)))))) (-2705 (($ $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-1996 (($) 21 T CONST)) (-2009 (($) 16 T CONST)) (-3430 (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) NIL (|has| |#1| (-373))) (($ $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-3981 (((-112) $ $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3956 (((-112) $ $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3943 (((-112) $ $) NIL (-3765 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) 49 (|has| |#1| (-373))) (($ (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) 50 (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 23)) (** (($ $ (-936)) NIL) (($ $ (-782)) 60) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) 83 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 137 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1192 |#1| |#2| |#3|)) 48 (|has| |#1| (-373))) (($ (-1192 |#1| |#2| |#3|) $) 47 (|has| |#1| (-373))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-1185 |#1| |#2| |#3|) (-13 (-1247 |#1| (-1192 |#1| |#2| |#3|)) (-10 -8 (-15 -2883 ($ (-1281 |#2|))) (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1185)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-4413 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))) +(-13 (-1247 |#1| (-1192 |#1| |#2| |#3|)) (-10 -8 (-15 -2883 ($ (-1281 |#2|))) (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) +((-4376 ((|#2| |#2| (-1109 |#2|)) 26) ((|#2| |#2| (-1194)) 28))) +(((-1186 |#1| |#2|) (-10 -7 (-15 -4376 (|#2| |#2| (-1194))) (-15 -4376 (|#2| |#2| (-1109 |#2|)))) (-13 (-567) (-1055 (-575)) (-650 (-575))) (-13 (-441 |#1|) (-161) (-27) (-1220))) (T -1186)) +((-4376 (*1 *2 *2 *3) (-12 (-5 *3 (-1109 *2)) (-4 *2 (-13 (-441 *4) (-161) (-27) (-1220))) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1186 *4 *2)))) (-4376 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1186 *4 *2)) (-4 *2 (-13 (-441 *4) (-161) (-27) (-1220)))))) +(-10 -7 (-15 -4376 (|#2| |#2| (-1194))) (-15 -4376 (|#2| |#2| (-1109 |#2|)))) +((-4376 (((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1109 (-418 (-967 |#1|)))) 31) (((-418 (-967 |#1|)) (-967 |#1|) (-1109 (-967 |#1|))) 44) (((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1194)) 33) (((-418 (-967 |#1|)) (-967 |#1|) (-1194)) 36))) +(((-1187 |#1|) (-10 -7 (-15 -4376 ((-418 (-967 |#1|)) (-967 |#1|) (-1194))) (-15 -4376 ((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1194))) (-15 -4376 ((-418 (-967 |#1|)) (-967 |#1|) (-1109 (-967 |#1|)))) (-15 -4376 ((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1109 (-418 (-967 |#1|)))))) (-13 (-567) (-1055 (-575)))) (T -1187)) +((-4376 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5))) (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-3 *3 (-325 *5))) (-5 *1 (-1187 *5)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-967 *5))) (-5 *3 (-967 *5)) (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-418 *3)) (-5 *1 (-1187 *5)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-3 (-418 (-967 *5)) (-325 *5))) (-5 *1 (-1187 *5)) (-5 *3 (-418 (-967 *5))))) (-4376 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-418 (-967 *5))) (-5 *1 (-1187 *5)) (-5 *3 (-967 *5))))) +(-10 -7 (-15 -4376 ((-418 (-967 |#1|)) (-967 |#1|) (-1194))) (-15 -4376 ((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1194))) (-15 -4376 ((-418 (-967 |#1|)) (-967 |#1|) (-1109 (-967 |#1|)))) (-15 -4376 ((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1109 (-418 (-967 |#1|)))))) +((-2550 (((-1190 |#2|) (-1 |#2| |#1|) (-1190 |#1|)) 13))) +(((-1188 |#1| |#2|) (-10 -7 (-15 -2550 ((-1190 |#2|) (-1 |#2| |#1|) (-1190 |#1|)))) (-1066) (-1066)) (T -1188)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1190 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-1190 *6)) (-5 *1 (-1188 *5 *6))))) +(-10 -7 (-15 -2550 ((-1190 |#2|) (-1 |#2| |#1|) (-1190 |#1|)))) +((-2330 (((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|))) 51)) (-2353 (((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|))) 52))) +(((-1189 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2353 ((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|)))) (-15 -2330 ((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|))))) (-804) (-861) (-463) (-964 |#3| |#1| |#2|)) (T -1189)) +((-2330 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-463)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 (-418 *7)))) (-5 *1 (-1189 *4 *5 *6 *7)) (-5 *3 (-1190 (-418 *7))))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-463)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 (-418 *7)))) (-5 *1 (-1189 *4 *5 *6 *7)) (-5 *3 (-1190 (-418 *7)))))) +(-10 -7 (-15 -2353 ((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|)))) (-15 -2330 ((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|))))) +((-2861 (((-112) $ $) 171)) (-3799 (((-112) $) 43)) (-2836 (((-1285 |#1|) $ (-782)) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-4437 (($ (-1190 |#1|)) NIL)) (-3466 (((-1190 $) $ (-1099)) 82) (((-1190 |#1|) $) 71)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) 164 (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 (-1099))) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2583 (($ $ $) 158 (|has| |#1| (-567)))) (-3535 (((-429 (-1190 $)) (-1190 $)) 95 (|has| |#1| (-924)))) (-2058 (($ $) NIL (|has| |#1| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 115 (|has| |#1| (-924)))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-1965 (($ $ (-782)) 61)) (-3441 (($ $ (-782)) 63)) (-4265 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-463)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-1099) "failed") $) NIL)) (-4399 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-1099) $) NIL)) (-4232 (($ $ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) 80)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-3551 (($ $ $) 131)) (-2062 (($ $ $) NIL (|has| |#1| (-567)))) (-3965 (((-2 (|:| -1754 |#1|) (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-567)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1824 (($ $) 165 (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#1| (-924)))) (-3703 (($ $ |#1| (-782) $) 69)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1099) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1099) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-3282 (((-873) $ (-873)) 148)) (-2673 (((-782) $ $) NIL (|has| |#1| (-567)))) (-1542 (((-112) $) 48)) (-2218 (((-782) $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| |#1| (-1169)))) (-2433 (($ (-1190 |#1|) (-1099)) 73) (($ (-1190 $) (-1099)) 89)) (-3461 (($ $ (-782)) 51)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-782)) 87) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-1099)) NIL) (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 153)) (-4337 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2520 (($ (-1 (-782) (-782)) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3049 (((-1190 |#1|) $) NIL)) (-3976 (((-3 (-1099) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) 76)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-2288 (((-1176) $) NIL)) (-3742 (((-2 (|:| -2829 $) (|:| -1635 $)) $ (-782)) 60)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| (-1099)) (|:| -2398 (-782))) "failed") $) NIL)) (-4413 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3474 (($) NIL (|has| |#1| (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) 50)) (-4353 ((|#1| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 103 (|has| |#1| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) 167 (|has| |#1| (-463)))) (-2754 (($ $ (-782) |#1| $) 123)) (-1641 (((-429 (-1190 $)) (-1190 $)) 101 (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) 100 (|has| |#1| (-924)))) (-2353 (((-429 $) $) 108 (|has| |#1| (-924)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-2851 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1099) |#1|) NIL) (($ $ (-655 (-1099)) (-655 |#1|)) NIL) (($ $ (-1099) $) NIL) (($ $ (-655 (-1099)) (-655 $)) NIL)) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2070 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-418 $) (-418 $) (-418 $)) NIL (|has| |#1| (-567))) ((|#1| (-418 $) |#1|) NIL (|has| |#1| (-373))) (((-418 $) $ (-418 $)) NIL (|has| |#1| (-567)))) (-1947 (((-3 $ "failed") $ (-782)) 54)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 172 (|has| |#1| (-373)))) (-4060 (($ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2389 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-2645 (((-782) $) 78) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1099) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-2178 ((|#1| $) 162 (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-3875 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567))) (((-3 (-418 $) "failed") (-418 $) $) NIL (|has| |#1| (-567)))) (-2883 (((-873) $) 149) (($ (-575)) NIL) (($ |#1|) 77) (($ (-1099)) NIL) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-782)) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) 41 (|has| |#1| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1996 (($) 17 T CONST)) (-2009 (($) 19 T CONST)) (-3430 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-3914 (((-112) $ $) 120)) (-4038 (($ $ |#1|) 173 (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 90)) (** (($ $ (-936)) 14) (($ $ (-782)) 12)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 39) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1190 |#1|) (-13 (-1261 |#1|) (-10 -8 (-15 -3282 ((-873) $ (-873))) (-15 -2754 ($ $ (-782) |#1| $)))) (-1066)) (T -1190)) +((-3282 (*1 *2 *1 *2) (-12 (-5 *2 (-873)) (-5 *1 (-1190 *3)) (-4 *3 (-1066)))) (-2754 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1190 *3)) (-4 *3 (-1066))))) +(-13 (-1261 |#1|) (-10 -8 (-15 -3282 ((-873) $ (-873))) (-15 -2754 ($ $ (-782) |#1| $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 11)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-4080 (($ $ (-418 (-575))) NIL) (($ $ (-418 (-575)) (-418 (-575))) NIL)) (-2144 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL (|has| |#1| (-373)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3897 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-1185 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1192 |#1| |#2| |#3|) "failed") $) 36)) (-4399 (((-1185 |#1| |#2| |#3|) $) NIL) (((-1192 |#1| |#2| |#3|) $) NIL)) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2555 (((-418 (-575)) $) 59)) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-4311 (($ (-418 (-575)) (-1185 |#1| |#2| |#3|)) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1336 (((-112) $) NIL (|has| |#1| (-373)))) (-2789 (((-112) $) NIL)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-418 (-575)) $) NIL) (((-418 (-575)) $ (-418 (-575))) NIL)) (-1542 (((-112) $) NIL)) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3461 (($ $ (-936)) NIL) (($ $ (-418 (-575))) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-418 (-575))) 20) (($ $ (-1099) (-418 (-575))) NIL) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3463 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-3878 (((-1185 |#1| |#2| |#3|) $) 41)) (-1991 (((-3 (-1185 |#1| |#2| |#3|) "failed") $) NIL)) (-4301 (((-1185 |#1| |#2| |#3|) $) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4413 (($ $) 39 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 40 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-4276 (($ $ (-418 (-575))) NIL)) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2665 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2070 ((|#1| $ (-418 (-575))) NIL) (($ $ $) NIL (|has| (-418 (-575)) (-1129)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-2389 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-1281 |#2|)) 38)) (-2645 (((-418 (-575)) $) NIL)) (-1530 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) NIL)) (-2883 (((-873) $) 62) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1185 |#1| |#2| |#3|)) 30) (($ (-1192 |#1| |#2| |#3|)) 31) (($ (-1281 |#2|)) 26) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-2012 ((|#1| $ (-418 (-575))) NIL)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 12)) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-418 (-575))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) 22 T CONST)) (-2009 (($) 16 T CONST)) (-3430 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 24)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-1191 |#1| |#2| |#3|) (-13 (-1268 |#1| (-1185 |#1| |#2| |#3|)) (-1055 (-1192 |#1| |#2| |#3|)) (-627 (-1281 |#2|)) (-10 -8 (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1191)) +((-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-4413 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))) +(-13 (-1268 |#1| (-1185 |#1| |#2| |#3|)) (-1055 (-1192 |#1| |#2| |#3|)) (-627 (-1281 |#2|)) (-10 -8 (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 129)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 119)) (-2350 (((-1258 |#2| |#1|) $ (-782)) 69)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-4080 (($ $ (-782)) 85) (($ $ (-782) (-782)) 82)) (-2144 (((-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|))) $) 105)) (-3923 (($ $) 173 (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3897 (($ $) 169 (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|)))) 118) (($ (-1174 |#1|)) 113)) (-1521 (($ $) 177 (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) 25)) (-4102 (($ $) 28)) (-2485 (((-967 |#1|) $ (-782)) 81) (((-967 |#1|) $ (-782) (-782)) 83)) (-2789 (((-112) $) 124)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-782) $) 126) (((-782) $ (-782)) 128)) (-1542 (((-112) $) NIL)) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3461 (($ $ (-936)) NIL)) (-3247 (($ (-1 |#1| (-575)) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-782)) 13) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3463 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-4413 (($ $) 133 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 134 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-4276 (($ $ (-782)) 15)) (-2851 (((-3 $ "failed") $ $) 26 (|has| |#1| (-567)))) (-2665 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-782)))))) (-2070 ((|#1| $ (-782)) 122) (($ $ $) 132 (|has| (-782) (-1129)))) (-2389 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-1281 |#2|)) 31)) (-2645 (((-782) $) NIL)) (-1530 (($ $) 179 (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) 175 (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) 171 (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) NIL)) (-2883 (((-873) $) 206) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1258 |#2| |#1|)) 55) (($ (-1281 |#2|)) 36)) (-2501 (((-1174 |#1|) $) 101)) (-2012 ((|#1| $ (-782)) 121)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 58)) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) 185 (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) 161 (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) 181 (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) 189 (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) 165 (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-782)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-782)))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) 191 (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) 167 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 187 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 163 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 183 (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) 159 (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) 17 T CONST)) (-2009 (($) 20 T CONST)) (-3430 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) 198)) (-4016 (($ $ $) 35)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ |#1|) 203 (|has| |#1| (-373))) (($ $ $) 138 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 141 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-1192 |#1| |#2| |#3|) (-13 (-1276 |#1|) (-10 -8 (-15 -2883 ($ (-1258 |#2| |#1|))) (-15 -2350 ((-1258 |#2| |#1|) $ (-782))) (-15 -2883 ($ (-1281 |#2|))) (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1192)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1258 *4 *3)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3) (-5 *1 (-1192 *3 *4 *5)))) (-2350 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1258 *5 *4)) (-5 *1 (-1192 *4 *5 *6)) (-4 *4 (-1066)) (-14 *5 (-1194)) (-14 *6 *4))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-4413 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))) +(-13 (-1276 |#1|) (-10 -8 (-15 -2883 ($ (-1258 |#2| |#1|))) (-15 -2350 ((-1258 |#2| |#1|) $ (-782))) (-15 -2883 ($ (-1281 |#2|))) (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) +((-2883 (((-873) $) 33) (($ (-1194)) 35)) (-3765 (($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 46)) (-3752 (($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 39) (($ $) 40)) (-3599 (($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 41)) (-3591 (($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 43)) (-3579 (($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 42)) (-3570 (($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 44)) (-3092 (($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 45))) +(((-1193) (-13 (-624 (-873)) (-10 -8 (-15 -2883 ($ (-1194))) (-15 -3599 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3579 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3591 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3570 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3765 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3092 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3752 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3752 ($ $))))) (T -1193)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1193)))) (-3599 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3579 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3591 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3570 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3765 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3092 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3752 (*1 *1 *1) (-5 *1 (-1193)))) +(-13 (-624 (-873)) (-10 -8 (-15 -2883 ($ (-1194))) (-15 -3599 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3579 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3591 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3570 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3765 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3092 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3752 ($ (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3752 ($ $)))) +((-2861 (((-112) $ $) NIL)) (-1545 (($ $ (-655 (-873))) 62)) (-2300 (($ $ (-655 (-873))) 60)) (-1650 (((-1176) $) 101)) (-1851 (((-2 (|:| -4242 (-655 (-873))) (|:| -3605 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -2750 (-655 (-873))) (|:| |args| (-655 (-873)))) $) 108)) (-3052 (((-112) $) 23)) (-2711 (($ $ (-655 (-655 (-873)))) 59) (($ $ (-2 (|:| -4242 (-655 (-873))) (|:| -3605 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -2750 (-655 (-873))) (|:| |args| (-655 (-873))))) 99)) (-3011 (($) 163 T CONST)) (-1572 (((-1290)) 135)) (-1704 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 69) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 76)) (-2309 (($) 122) (($ $) 131)) (-1777 (($ $) 100)) (-1920 (($ $ $) NIL)) (-1425 (($ $ $) NIL)) (-1684 (((-655 $) $) 136)) (-2288 (((-1176) $) 114)) (-3912 (((-1137) $) NIL)) (-2070 (($ $ (-655 (-873))) 61)) (-2615 (((-547) $) 48) (((-1194) $) 49) (((-904 (-575)) $) 80) (((-904 (-389)) $) 78)) (-2883 (((-873) $) 55) (($ (-1176)) 50)) (-4400 (((-112) $ $) NIL)) (-1764 (($ $ (-655 (-873))) 63)) (-4196 (((-1176) $) 34) (((-1176) $ (-112)) 35) (((-1290) (-833) $) 36) (((-1290) (-833) $ (-112)) 37)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 51)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 52))) +(((-1194) (-13 (-861) (-625 (-547)) (-839) (-625 (-1194)) (-627 (-1176)) (-625 (-904 (-575))) (-625 (-904 (-389))) (-898 (-575)) (-898 (-389)) (-10 -8 (-15 -2309 ($)) (-15 -2309 ($ $)) (-15 -1572 ((-1290))) (-15 -1777 ($ $)) (-15 -3052 ((-112) $)) (-15 -1851 ((-2 (|:| -4242 (-655 (-873))) (|:| -3605 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -2750 (-655 (-873))) (|:| |args| (-655 (-873)))) $)) (-15 -2711 ($ $ (-655 (-655 (-873))))) (-15 -2711 ($ $ (-2 (|:| -4242 (-655 (-873))) (|:| -3605 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -2750 (-655 (-873))) (|:| |args| (-655 (-873)))))) (-15 -2300 ($ $ (-655 (-873)))) (-15 -1545 ($ $ (-655 (-873)))) (-15 -1764 ($ $ (-655 (-873)))) (-15 -2070 ($ $ (-655 (-873)))) (-15 -1650 ((-1176) $)) (-15 -1684 ((-655 $) $)) (-15 -3011 ($) -3738)))) (T -1194)) +((-2309 (*1 *1) (-5 *1 (-1194))) (-2309 (*1 *1 *1) (-5 *1 (-1194))) (-1572 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1194)))) (-1777 (*1 *1 *1) (-5 *1 (-1194))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194)))) (-1851 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4242 (-655 (-873))) (|:| -3605 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -2750 (-655 (-873))) (|:| |args| (-655 (-873))))) (-5 *1 (-1194)))) (-2711 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-655 (-873)))) (-5 *1 (-1194)))) (-2711 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -4242 (-655 (-873))) (|:| -3605 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -2750 (-655 (-873))) (|:| |args| (-655 (-873))))) (-5 *1 (-1194)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))) (-1764 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1194)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1194)))) (-3011 (*1 *1) (-5 *1 (-1194)))) +(-13 (-861) (-625 (-547)) (-839) (-625 (-1194)) (-627 (-1176)) (-625 (-904 (-575))) (-625 (-904 (-389))) (-898 (-575)) (-898 (-389)) (-10 -8 (-15 -2309 ($)) (-15 -2309 ($ $)) (-15 -1572 ((-1290))) (-15 -1777 ($ $)) (-15 -3052 ((-112) $)) (-15 -1851 ((-2 (|:| -4242 (-655 (-873))) (|:| -3605 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -2750 (-655 (-873))) (|:| |args| (-655 (-873)))) $)) (-15 -2711 ($ $ (-655 (-655 (-873))))) (-15 -2711 ($ $ (-2 (|:| -4242 (-655 (-873))) (|:| -3605 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -2750 (-655 (-873))) (|:| |args| (-655 (-873)))))) (-15 -2300 ($ $ (-655 (-873)))) (-15 -1545 ($ $ (-655 (-873)))) (-15 -1764 ($ $ (-655 (-873)))) (-15 -2070 ($ $ (-655 (-873)))) (-15 -1650 ((-1176) $)) (-15 -1684 ((-655 $) $)) (-15 -3011 ($) -3738))) +((-2216 (((-1285 |#1|) |#1| (-936)) 18) (((-1285 |#1|) (-655 |#1|)) 25))) +(((-1195 |#1|) (-10 -7 (-15 -2216 ((-1285 |#1|) (-655 |#1|))) (-15 -2216 ((-1285 |#1|) |#1| (-936)))) (-1066)) (T -1195)) +((-2216 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-1285 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-1066)))) (-2216 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-1066)) (-5 *2 (-1285 *4)) (-5 *1 (-1195 *4))))) +(-10 -7 (-15 -2216 ((-1285 |#1|) (-655 |#1|))) (-15 -2216 ((-1285 |#1|) |#1| (-936)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4399 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-1824 (($ $) NIL (|has| |#1| (-463)))) (-3703 (($ $ |#1| (-988) $) NIL)) (-1542 (((-112) $) 17)) (-2218 (((-782) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-988)) NIL)) (-4337 (((-988) $) NIL)) (-2520 (($ (-1 (-988) (-988)) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-2754 (($ $ (-988) |#1| $) NIL (-12 (|has| (-988) (-132)) (|has| |#1| (-567))))) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-2645 (((-988) $) NIL)) (-2178 ((|#1| $) NIL (|has| |#1| (-463)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL (|has| |#1| (-567))) (($ |#1|) NIL) (($ (-418 (-575))) NIL (-3765 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ (-988)) NIL)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1996 (($) 10 T CONST)) (-2009 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 21)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-1196 |#1|) (-13 (-335 |#1| (-988)) (-10 -8 (IF (|has| |#1| (-567)) (IF (|has| (-988) (-132)) (-15 -2754 ($ $ (-988) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|))) (-1066)) (T -1196)) +((-2754 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-988)) (-4 *2 (-132)) (-5 *1 (-1196 *3)) (-4 *3 (-567)) (-4 *3 (-1066))))) +(-13 (-335 |#1| (-988)) (-10 -8 (IF (|has| |#1| (-567)) (IF (|has| (-988) (-132)) (-15 -2754 ($ $ (-988) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|))) +((-1983 (((-1198) (-1194) $) 25)) (-3163 (($) 29)) (-4082 (((-3 (|:| |fst| (-445)) (|:| -2007 "void")) (-1194) $) 22)) (-2201 (((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2007 "void")) $) 41) (((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) 42) (((-1290) (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) 43)) (-3795 (((-1290) (-1194)) 58)) (-2543 (((-1290) (-1194) $) 55) (((-1290) (-1194)) 56) (((-1290)) 57)) (-2903 (((-1290) (-1194)) 37)) (-1330 (((-1194)) 36)) (-1938 (($) 34)) (-4066 (((-448) (-1194) (-448) (-1194) $) 45) (((-448) (-655 (-1194)) (-448) (-1194) $) 49) (((-448) (-1194) (-448)) 46) (((-448) (-1194) (-448) (-1194)) 50)) (-3093 (((-1194)) 35)) (-2883 (((-873) $) 28)) (-2593 (((-1290)) 30) (((-1290) (-1194)) 33)) (-4288 (((-655 (-1194)) (-1194) $) 24)) (-2812 (((-1290) (-1194) (-655 (-1194)) $) 38) (((-1290) (-1194) (-655 (-1194))) 39) (((-1290) (-655 (-1194))) 40))) +(((-1197) (-13 (-624 (-873)) (-10 -8 (-15 -3163 ($)) (-15 -2593 ((-1290))) (-15 -2593 ((-1290) (-1194))) (-15 -4066 ((-448) (-1194) (-448) (-1194) $)) (-15 -4066 ((-448) (-655 (-1194)) (-448) (-1194) $)) (-15 -4066 ((-448) (-1194) (-448))) (-15 -4066 ((-448) (-1194) (-448) (-1194))) (-15 -2903 ((-1290) (-1194))) (-15 -3093 ((-1194))) (-15 -1330 ((-1194))) (-15 -2812 ((-1290) (-1194) (-655 (-1194)) $)) (-15 -2812 ((-1290) (-1194) (-655 (-1194)))) (-15 -2812 ((-1290) (-655 (-1194)))) (-15 -2201 ((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2007 "void")) $)) (-15 -2201 ((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2007 "void")))) (-15 -2201 ((-1290) (-3 (|:| |fst| (-445)) (|:| -2007 "void")))) (-15 -2543 ((-1290) (-1194) $)) (-15 -2543 ((-1290) (-1194))) (-15 -2543 ((-1290))) (-15 -3795 ((-1290) (-1194))) (-15 -1938 ($)) (-15 -4082 ((-3 (|:| |fst| (-445)) (|:| -2007 "void")) (-1194) $)) (-15 -4288 ((-655 (-1194)) (-1194) $)) (-15 -1983 ((-1198) (-1194) $))))) (T -1197)) +((-3163 (*1 *1) (-5 *1 (-1197))) (-2593 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1197)))) (-2593 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-4066 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197)))) (-4066 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-448)) (-5 *3 (-655 (-1194))) (-5 *4 (-1194)) (-5 *1 (-1197)))) (-4066 (*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197)))) (-4066 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-3093 (*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1197)))) (-1330 (*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1197)))) (-2812 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-2812 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-2201 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1194)) (-5 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-2543 (*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-2543 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1197)))) (-3795 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-1938 (*1 *1) (-5 *1 (-1197))) (-4082 (*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-5 *1 (-1197)))) (-4288 (*1 *2 *3 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1197)) (-5 *3 (-1194)))) (-1983 (*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-1198)) (-5 *1 (-1197))))) +(-13 (-624 (-873)) (-10 -8 (-15 -3163 ($)) (-15 -2593 ((-1290))) (-15 -2593 ((-1290) (-1194))) (-15 -4066 ((-448) (-1194) (-448) (-1194) $)) (-15 -4066 ((-448) (-655 (-1194)) (-448) (-1194) $)) (-15 -4066 ((-448) (-1194) (-448))) (-15 -4066 ((-448) (-1194) (-448) (-1194))) (-15 -2903 ((-1290) (-1194))) (-15 -3093 ((-1194))) (-15 -1330 ((-1194))) (-15 -2812 ((-1290) (-1194) (-655 (-1194)) $)) (-15 -2812 ((-1290) (-1194) (-655 (-1194)))) (-15 -2812 ((-1290) (-655 (-1194)))) (-15 -2201 ((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2007 "void")) $)) (-15 -2201 ((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2007 "void")))) (-15 -2201 ((-1290) (-3 (|:| |fst| (-445)) (|:| -2007 "void")))) (-15 -2543 ((-1290) (-1194) $)) (-15 -2543 ((-1290) (-1194))) (-15 -2543 ((-1290))) (-15 -3795 ((-1290) (-1194))) (-15 -1938 ($)) (-15 -4082 ((-3 (|:| |fst| (-445)) (|:| -2007 "void")) (-1194) $)) (-15 -4288 ((-655 (-1194)) (-1194) $)) (-15 -1983 ((-1198) (-1194) $)))) +((-1768 (((-655 (-655 (-3 (|:| -1777 (-1194)) (|:| -2370 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575))))))))) $) 66)) (-3037 (((-655 (-3 (|:| -1777 (-1194)) (|:| -2370 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575)))))))) (-445) $) 47)) (-2206 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-448))))) 17)) (-3795 (((-1290) $) 73)) (-4405 (((-655 (-1194)) $) 22)) (-3669 (((-1121) $) 60)) (-2505 (((-448) (-1194) $) 27)) (-3389 (((-655 (-1194)) $) 30)) (-1938 (($) 19)) (-4066 (((-448) (-655 (-1194)) (-448) $) 25) (((-448) (-1194) (-448) $) 24)) (-2883 (((-873) $) 9) (((-1207 (-1194) (-448)) $) 13))) +(((-1198) (-13 (-624 (-873)) (-10 -8 (-15 -2883 ((-1207 (-1194) (-448)) $)) (-15 -1938 ($)) (-15 -4066 ((-448) (-655 (-1194)) (-448) $)) (-15 -4066 ((-448) (-1194) (-448) $)) (-15 -2505 ((-448) (-1194) $)) (-15 -4405 ((-655 (-1194)) $)) (-15 -3037 ((-655 (-3 (|:| -1777 (-1194)) (|:| -2370 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575)))))))) (-445) $)) (-15 -3389 ((-655 (-1194)) $)) (-15 -1768 ((-655 (-655 (-3 (|:| -1777 (-1194)) (|:| -2370 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575))))))))) $)) (-15 -3669 ((-1121) $)) (-15 -3795 ((-1290) $)) (-15 -2206 ($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-448))))))))) (T -1198)) +((-2883 (*1 *2 *1) (-12 (-5 *2 (-1207 (-1194) (-448))) (-5 *1 (-1198)))) (-1938 (*1 *1) (-5 *1 (-1198))) (-4066 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-655 (-1194))) (-5 *1 (-1198)))) (-4066 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1198)))) (-2505 (*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-448)) (-5 *1 (-1198)))) (-4405 (*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1198)))) (-3037 (*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-655 (-3 (|:| -1777 (-1194)) (|:| -2370 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575))))))))) (-5 *1 (-1198)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1198)))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-3 (|:| -1777 (-1194)) (|:| -2370 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575)))))))))) (-5 *1 (-1198)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-1198)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1198)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-448))))) (-5 *1 (-1198))))) +(-13 (-624 (-873)) (-10 -8 (-15 -2883 ((-1207 (-1194) (-448)) $)) (-15 -1938 ($)) (-15 -4066 ((-448) (-655 (-1194)) (-448) $)) (-15 -4066 ((-448) (-1194) (-448) $)) (-15 -2505 ((-448) (-1194) $)) (-15 -4405 ((-655 (-1194)) $)) (-15 -3037 ((-655 (-3 (|:| -1777 (-1194)) (|:| -2370 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575)))))))) (-445) $)) (-15 -3389 ((-655 (-1194)) $)) (-15 -1768 ((-655 (-655 (-3 (|:| -1777 (-1194)) (|:| -2370 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575))))))))) $)) (-15 -3669 ((-1121) $)) (-15 -3795 ((-1290) $)) (-15 -2206 ($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-448)))))))) +((-2861 (((-112) $ $) NIL)) (-2449 (((-3 (-575) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-517) "failed") $) 43) (((-3 (-1176) "failed") $) 47)) (-4399 (((-575) $) 30) (((-227) $) 36) (((-517) $) 40) (((-1176) $) 48)) (-2272 (((-112) $) 53)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3709 (((-3 (-575) (-227) (-517) (-1176) $) $) 55)) (-2027 (((-655 $) $) 57)) (-2615 (((-1121) $) 24) (($ (-1121)) 25)) (-2282 (((-112) $) 56)) (-2883 (((-873) $) 23) (($ (-575)) 26) (($ (-227)) 32) (($ (-517)) 38) (($ (-1176)) 44) (((-547) $) 59) (((-575) $) 31) (((-227) $) 37) (((-517) $) 41) (((-1176) $) 49)) (-1984 (((-112) $ (|[\|\|]| (-575))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-517))) 19) (((-112) $ (|[\|\|]| (-1176))) 16)) (-1909 (($ (-517) (-655 $)) 51) (($ $ (-655 $)) 52)) (-4400 (((-112) $ $) NIL)) (-3134 (((-575) $) 27) (((-227) $) 33) (((-517) $) 39) (((-1176) $) 45)) (-3914 (((-112) $ $) 7))) +(((-1199) (-13 (-1280) (-1117) (-1055 (-575)) (-1055 (-227)) (-1055 (-517)) (-1055 (-1176)) (-624 (-547)) (-10 -8 (-15 -2615 ((-1121) $)) (-15 -2615 ($ (-1121))) (-15 -2883 ((-575) $)) (-15 -3134 ((-575) $)) (-15 -2883 ((-227) $)) (-15 -3134 ((-227) $)) (-15 -2883 ((-517) $)) (-15 -3134 ((-517) $)) (-15 -2883 ((-1176) $)) (-15 -3134 ((-1176) $)) (-15 -1909 ($ (-517) (-655 $))) (-15 -1909 ($ $ (-655 $))) (-15 -2272 ((-112) $)) (-15 -3709 ((-3 (-575) (-227) (-517) (-1176) $) $)) (-15 -2027 ((-655 $) $)) (-15 -2282 ((-112) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-575)))) (-15 -1984 ((-112) $ (|[\|\|]| (-227)))) (-15 -1984 ((-112) $ (|[\|\|]| (-517)))) (-15 -1984 ((-112) $ (|[\|\|]| (-1176))))))) (T -1199)) +((-2615 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-1199)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-1199)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1199)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1199)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1199)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1199)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1199)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1199)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1199)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1199)))) (-1909 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-655 (-1199))) (-5 *1 (-1199)))) (-1909 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1199)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-3 (-575) (-227) (-517) (-1176) (-1199))) (-5 *1 (-1199)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1199)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)) (-5 *1 (-1199)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1199)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)) (-5 *1 (-1199)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)) (-5 *1 (-1199))))) +(-13 (-1280) (-1117) (-1055 (-575)) (-1055 (-227)) (-1055 (-517)) (-1055 (-1176)) (-624 (-547)) (-10 -8 (-15 -2615 ((-1121) $)) (-15 -2615 ($ (-1121))) (-15 -2883 ((-575) $)) (-15 -3134 ((-575) $)) (-15 -2883 ((-227) $)) (-15 -3134 ((-227) $)) (-15 -2883 ((-517) $)) (-15 -3134 ((-517) $)) (-15 -2883 ((-1176) $)) (-15 -3134 ((-1176) $)) (-15 -1909 ($ (-517) (-655 $))) (-15 -1909 ($ $ (-655 $))) (-15 -2272 ((-112) $)) (-15 -3709 ((-3 (-575) (-227) (-517) (-1176) $) $)) (-15 -2027 ((-655 $) $)) (-15 -2282 ((-112) $)) (-15 -1984 ((-112) $ (|[\|\|]| (-575)))) (-15 -1984 ((-112) $ (|[\|\|]| (-227)))) (-15 -1984 ((-112) $ (|[\|\|]| (-517)))) (-15 -1984 ((-112) $ (|[\|\|]| (-1176)))))) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) 22)) (-3011 (($) 12 T CONST)) (-2079 (($) 26)) (-1920 (($ $ $) NIL) (($) 19 T CONST)) (-1425 (($ $ $) NIL) (($) 20 T CONST)) (-4084 (((-936) $) 24)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) 23)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) +(((-1200 |#1|) (-13 (-855) (-10 -8 (-15 -3011 ($) -3738))) (-936)) (T -1200)) +((-3011 (*1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-936))))) +(-13 (-855) (-10 -8 (-15 -3011 ($) -3738))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) NIL)) (-2473 (($) 19 T CONST)) (-2080 (($) NIL)) (-1921 (($ $ $) NIL) (($) 12 T CONST)) (-4137 (($ $ $) NIL) (($) 18 T CONST)) (-1875 (((-937) $) NIL)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-1485 (($ $ $) 21)) (-3383 (($ $ $) 20)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) -(((-1202 |#1|) (-13 (-856) (-10 -8 (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739))) (-937)) (T -1202)) -((-3383 (*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937)))) (-1485 (*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937)))) (-2473 (*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937))))) -(-13 (-856) (-10 -8 (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739))) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) NIL)) (-3011 (($) 19 T CONST)) (-2079 (($) NIL)) (-1920 (($ $ $) NIL) (($) 12 T CONST)) (-1425 (($ $ $) NIL) (($) 18 T CONST)) (-4084 (((-936) $) NIL)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-1484 (($ $ $) 21)) (-3382 (($ $ $) 20)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) +(((-1201 |#1|) (-13 (-855) (-10 -8 (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738))) (-936)) (T -1201)) +((-3382 (*1 *1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936)))) (-1484 (*1 *1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936)))) (-3011 (*1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936))))) +(-13 (-855) (-10 -8 (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 9)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 7))) -(((-1203) (-1118)) (T -1203)) -NIL -(-1118) -((-1536 (((-656 (-656 (-968 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195))) 69)) (-1525 (((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|)))) 80) (((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|))) 76) (((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195)) 81) (((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195)) 75) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|))))) 106) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|)))) 105) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195))) 107) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|))) (-656 (-1195))) 104))) -(((-1204 |#1|) (-10 -7 (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195)))) (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|))))) (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -1525 ((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195))) (-15 -1525 ((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -1525 ((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|)))) (-15 -1525 ((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|))))) (-15 -1536 ((-656 (-656 (-968 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195))))) (-568)) (T -1204)) -((-1536 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-968 *5)))) (-5 *1 (-1204 *5)))) (-1525 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *4))))) (-5 *1 (-1204 *4)) (-5 *3 (-304 (-419 (-968 *4)))))) (-1525 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *4))))) (-5 *1 (-1204 *4)) (-5 *3 (-419 (-968 *4))))) (-1525 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *5))))) (-5 *1 (-1204 *5)) (-5 *3 (-304 (-419 (-968 *5)))))) (-1525 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *5))))) (-5 *1 (-1204 *5)) (-5 *3 (-419 (-968 *5))))) (-1525 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-1204 *4)) (-5 *3 (-656 (-304 (-419 (-968 *4))))))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-968 *4)))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-1204 *4)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-1204 *5)) (-5 *3 (-656 (-304 (-419 (-968 *5))))))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-1204 *5))))) -(-10 -7 (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195)))) (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|))))) (-15 -1525 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -1525 ((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195))) (-15 -1525 ((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -1525 ((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|)))) (-15 -1525 ((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|))))) (-15 -1536 ((-656 (-656 (-968 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195))))) -((-1587 (((-1177)) 7)) (-1548 (((-1177)) 11 T CONST)) (-3965 (((-1291) (-1177)) 13)) (-1574 (((-1177)) 8 T CONST)) (-1559 (((-131)) 10 T CONST))) -(((-1205) (-13 (-1236) (-10 -7 (-15 -1587 ((-1177))) (-15 -1574 ((-1177)) -3739) (-15 -1559 ((-131)) -3739) (-15 -1548 ((-1177)) -3739) (-15 -3965 ((-1291) (-1177)))))) (T -1205)) -((-1587 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))) (-1574 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))) (-1559 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1205)))) (-1548 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1205))))) -(-13 (-1236) (-10 -7 (-15 -1587 ((-1177))) (-15 -1574 ((-1177)) -3739) (-15 -1559 ((-131)) -3739) (-15 -1548 ((-1177)) -3739) (-15 -3965 ((-1291) (-1177))))) -((-1633 (((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 56)) (-1664 (((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|))) 38)) (-3607 (((-1207 (-656 |#1|)) (-656 |#1|)) 49)) (-3624 (((-656 (-656 |#1|)) (-656 |#1|)) 45)) (-4223 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))) 53)) (-3643 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|)))) 52)) (-3616 (((-656 (-656 |#1|)) (-656 (-656 |#1|))) 43)) (-3633 (((-656 |#1|) (-656 |#1|)) 46)) (-1622 (((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 32)) (-1609 (((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 29)) (-1596 (((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|))) 24)) (-1642 (((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 58)) (-1654 (((-656 (-656 |#1|)) (-1207 (-656 |#1|))) 60))) -(((-1206 |#1|) (-10 -7 (-15 -1596 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -1609 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1622 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1633 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1642 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1654 ((-656 (-656 |#1|)) (-1207 (-656 |#1|)))) (-15 -1664 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -3607 ((-1207 (-656 |#1|)) (-656 |#1|))) (-15 -3616 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3624 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -3633 ((-656 |#1|) (-656 |#1|))) (-15 -3643 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -4223 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) (-862)) (T -1206)) -((-4223 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 (-656 *4)))))) (-3643 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-862)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) (|:| |f4| (-656 *5)))) (-5 *1 (-1206 *6)) (-5 *4 (-656 *5)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-1206 *3)))) (-3624 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)) (-5 *3 (-656 *4)))) (-3616 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-862)) (-5 *1 (-1206 *3)))) (-3607 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-1207 (-656 *4))) (-5 *1 (-1206 *4)) (-5 *3 (-656 *4)))) (-1664 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 (-656 *4)))) (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 *4))))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-1207 (-656 *4))) (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)) (-4 *4 (-862)))) (-1633 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-4 *4 (-862)) (-5 *1 (-1206 *4)))) (-1622 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *1 (-1206 *4)))) (-1609 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-656 *5)) (-4 *5 (-862)) (-5 *1 (-1206 *5)))) (-1596 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-656 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) (-5 *1 (-1206 *6)) (-5 *5 (-656 *4))))) -(-10 -7 (-15 -1596 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -1609 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1622 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1633 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1642 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1654 ((-656 (-656 |#1|)) (-1207 (-656 |#1|)))) (-15 -1664 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -3607 ((-1207 (-656 |#1|)) (-656 |#1|))) (-15 -3616 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3624 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -3633 ((-656 |#1|) (-656 |#1|))) (-15 -3643 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -4223 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) -((-3653 (($ (-656 (-656 |#1|))) 10)) (-3667 (((-656 (-656 |#1|)) $) 11)) (-2884 (((-874) $) 33))) -(((-1207 |#1|) (-10 -8 (-15 -3653 ($ (-656 (-656 |#1|)))) (-15 -3667 ((-656 (-656 |#1|)) $)) (-15 -2884 ((-874) $))) (-1118)) (T -1207)) -((-2884 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1207 *3)) (-4 *3 (-1118)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1207 *3)) (-4 *3 (-1118)))) (-3653 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-1207 *3))))) -(-10 -8 (-15 -3653 ($ (-656 (-656 |#1|)))) (-15 -3667 ((-656 (-656 |#1|)) $)) (-15 -2884 ((-874) $))) -((-2862 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2298 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3336 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#2| $ |#1| |#2|) NIL)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1397 (((-3 |#2| "failed") |#1| $) NIL)) (-2473 (($) NIL T CONST)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2833 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3634 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#2| $ |#1|) NIL)) (-4001 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) NIL)) (-3356 ((|#1| $) NIL (|has| |#1| (-862)))) (-1496 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3365 ((|#1| $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2002 (((-656 |#1|) $) NIL)) (-3412 (((-112) |#1| $) NIL)) (-3449 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3807 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-3385 (((-656 |#1|) $) NIL)) (-3394 (((-112) |#1| $) NIL)) (-3914 (((-1138) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1962 ((|#2| $) NIL (|has| |#1| (-862)))) (-1932 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL)) (-3346 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1581 (($) NIL) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2884 (((-874) $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3722 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) NIL)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) NIL (-3766 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1208 |#1| |#2|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1118) (-1118)) (T -1208)) -NIL -(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) -((-2862 (((-112) $ $) NIL)) (-2573 (($ |#1| (-55)) 10)) (-1778 ((|#1| $) 12)) (-3733 (((-1177) $) NIL)) (-3657 (((-112) $ |#1|) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-3722 (((-112) $ $) NIL)) (-2040 (((-55) $) 14)) (-3915 (((-112) $ $) NIL))) -(((-1209 |#1|) (-13 (-847 |#1|) (-10 -8 (-15 -2573 ($ |#1| (-55))))) (-1118)) (T -1209)) -((-2573 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1209 *2)) (-4 *2 (-1118))))) -(-13 (-847 |#1|) (-10 -8 (-15 -2573 ($ |#1| (-55))))) -((-3678 ((|#1| (-656 |#1|)) 46)) (-3699 ((|#1| |#1| (-576)) 24)) (-3688 (((-1191 |#1|) |#1| (-937)) 20))) -(((-1210 |#1|) (-10 -7 (-15 -3678 (|#1| (-656 |#1|))) (-15 -3688 ((-1191 |#1|) |#1| (-937))) (-15 -3699 (|#1| |#1| (-576)))) (-374)) (T -1210)) -((-3699 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1210 *2)) (-4 *2 (-374)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-1191 *3)) (-5 *1 (-1210 *3)) (-4 *3 (-374)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-374))))) -(-10 -7 (-15 -3678 (|#1| (-656 |#1|))) (-15 -3688 ((-1191 |#1|) |#1| (-937))) (-15 -3699 (|#1| |#1| (-576)))) -((-2298 (($) 10) (($ (-656 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)))) 14)) (-2833 (($ (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-4001 (((-656 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) $) 39) (((-656 |#3|) $) 41)) (-2848 (($ (-1 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2551 (($ (-1 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3449 (((-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) $) 60)) (-3807 (($ (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) $) 16)) (-3385 (((-656 |#2|) $) 19)) (-3394 (((-112) |#2| $) 65)) (-1932 (((-3 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) "failed") (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) $) 64)) (-3458 (((-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) $) 69)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-3403 (((-656 |#3|) $) 43)) (-2071 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) $) NIL) (((-783) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) $) NIL) (((-783) |#3| $) NIL) (((-783) (-1 (-112) |#3|) $) 79)) (-2884 (((-874) $) 27)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3915 (((-112) $ $) 51))) -(((-1211 |#1| |#2| |#3|) (-10 -8 (-15 -3915 ((-112) |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -2551 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2298 (|#1| (-656 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))))) (-15 -2298 (|#1|)) (-15 -2551 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2848 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2476 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3926 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -4001 ((-656 |#3|) |#1|)) (-15 -3926 ((-783) |#3| |#1|)) (-15 -2071 (|#3| |#1| |#2| |#3|)) (-15 -2071 (|#3| |#1| |#2|)) (-15 -3403 ((-656 |#3|) |#1|)) (-15 -3394 ((-112) |#2| |#1|)) (-15 -3385 ((-656 |#2|) |#1|)) (-15 -2833 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2833 (|#1| (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -2833 (|#1| (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|)) (-15 -1932 ((-3 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) "failed") (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -3449 ((-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|)) (-15 -3807 (|#1| (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|)) (-15 -3458 ((-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|)) (-15 -3926 ((-783) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|)) (-15 -4001 ((-656 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -3926 ((-783) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -2476 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -2492 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -2848 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -2551 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|))) (-1212 |#2| |#3|) (-1118) (-1118)) (T -1211)) -NIL -(-10 -8 (-15 -3915 ((-112) |#1| |#1|)) (-15 -2884 ((-874) |#1|)) (-15 -2551 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2298 (|#1| (-656 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))))) (-15 -2298 (|#1|)) (-15 -2551 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2848 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2492 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2476 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3926 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -4001 ((-656 |#3|) |#1|)) (-15 -3926 ((-783) |#3| |#1|)) (-15 -2071 (|#3| |#1| |#2| |#3|)) (-15 -2071 (|#3| |#1| |#2|)) (-15 -3403 ((-656 |#3|) |#1|)) (-15 -3394 ((-112) |#2| |#1|)) (-15 -3385 ((-656 |#2|) |#1|)) (-15 -2833 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2833 (|#1| (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -2833 (|#1| (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|)) (-15 -1932 ((-3 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) "failed") (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -3449 ((-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|)) (-15 -3807 (|#1| (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|)) (-15 -3458 ((-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|)) (-15 -3926 ((-783) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) |#1|)) (-15 -4001 ((-656 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -3926 ((-783) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -2476 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -2492 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -2848 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|)) (-15 -2551 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3180 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3180 |#3|))) |#1|))) -((-2862 (((-112) $ $) 19 (-3766 (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2298 (($) 73) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 72)) (-3336 (((-1291) $ |#1| |#1|) 100 (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) 8)) (-3055 ((|#2| $ |#1| |#2|) 74)) (-1443 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 46 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 56 (|has| $ (-6 -4461)))) (-1397 (((-3 |#2| "failed") |#1| $) 62)) (-2473 (($) 7 T CONST)) (-1919 (($ $) 59 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461))))) (-2833 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 47 (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 63)) (-3634 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 55 (|has| $ (-6 -4461)))) (-2309 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 57 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 54 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 53 (|has| $ (-6 -4461)))) (-2859 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4462)))) (-2789 ((|#2| $ |#1|) 89)) (-4001 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 31 (|has| $ (-6 -4461))) (((-656 |#2|) $) 80 (|has| $ (-6 -4461)))) (-2408 (((-112) $ (-783)) 9)) (-3356 ((|#1| $) 97 (|has| |#1| (-862)))) (-1496 (((-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 30 (|has| $ (-6 -4461))) (((-656 |#2|) $) 81 (|has| $ (-6 -4461)))) (-3743 (((-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-3365 ((|#1| $) 96 (|has| |#1| (-862)))) (-2848 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 35 (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4462)))) (-2551 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2374 (((-112) $ (-783)) 10)) (-3733 (((-1177) $) 22 (-3766 (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2002 (((-656 |#1|) $) 64)) (-3412 (((-112) |#1| $) 65)) (-3449 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 40)) (-3807 (($ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 41)) (-3385 (((-656 |#1|) $) 94)) (-3394 (((-112) |#1| $) 93)) (-3914 (((-1138) $) 21 (-3766 (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-1962 ((|#2| $) 98 (|has| |#1| (-862)))) (-1932 (((-3 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 52)) (-3346 (($ $ |#2|) 99 (|has| $ (-6 -4462)))) (-3458 (((-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 42)) (-2476 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 33 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))))) 27 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 26 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) 25 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 24 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3403 (((-656 |#2|) $) 92)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1581 (($) 50) (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 49)) (-3926 (((-783) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 32 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4461)))) (-3079 (($ $) 13)) (-2616 (((-548) $) 60 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))))) (-2895 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 51)) (-2884 (((-874) $) 18 (-3766 (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874)))))) (-3722 (((-112) $ $) 23 (-3766 (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-3541 (($ (-656 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) 43)) (-2492 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) $) 34 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (-3766 (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-1212 |#1| |#2|) (-141) (-1118) (-1118)) (T -1212)) -((-3055 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1212 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))) (-2298 (*1 *1) (-12 (-4 *1 (-1212 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-2298 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4169 *3) (|:| -3180 *4)))) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *1 (-1212 *3 *4)))) (-2551 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1212 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118))))) -(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -3055 (|t#2| $ |t#1| |t#2|)) (-15 -2298 ($)) (-15 -2298 ($ (-656 (-2 (|:| -4169 |t#1|) (|:| -3180 |t#2|))))) (-15 -2551 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4169 |#1|) (|:| -3180 |#2|))) . T) ((-102) -3766 (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))) ((-625 (-874)) -3766 (|has| |#2| (-1118)) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-625 (-874)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-241 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-319 (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-622 |#1| |#2|) . T) ((-1118) -3766 (|has| |#2| (-1118)) (|has| (-2 (|:| -4169 |#1|) (|:| -3180 |#2|)) (-1118))) ((-1236) . T)) -((-3761 (((-112)) 29)) (-3729 (((-1291) (-1177)) 31)) (-3774 (((-112)) 41)) (-3738 (((-1291)) 39)) (-3717 (((-1291) (-1177) (-1177)) 30)) (-3786 (((-112)) 42)) (-3807 (((-1291) |#1| |#2|) 53)) (-3708 (((-1291)) 26)) (-3797 (((-3 |#2| "failed") |#1|) 51)) (-3749 (((-1291)) 40))) -(((-1213 |#1| |#2|) (-10 -7 (-15 -3708 ((-1291))) (-15 -3717 ((-1291) (-1177) (-1177))) (-15 -3729 ((-1291) (-1177))) (-15 -3738 ((-1291))) (-15 -3749 ((-1291))) (-15 -3761 ((-112))) (-15 -3774 ((-112))) (-15 -3786 ((-112))) (-15 -3797 ((-3 |#2| "failed") |#1|)) (-15 -3807 ((-1291) |#1| |#2|))) (-1118) (-1118)) (T -1213)) -((-3807 (*1 *2 *3 *4) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-3797 (*1 *2 *3) (|partial| -12 (-4 *2 (-1118)) (-5 *1 (-1213 *3 *2)) (-4 *3 (-1118)))) (-3786 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-3774 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-3761 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-3749 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-3738 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118)))) (-3717 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118)))) (-3708 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118))))) -(-10 -7 (-15 -3708 ((-1291))) (-15 -3717 ((-1291) (-1177) (-1177))) (-15 -3729 ((-1291) (-1177))) (-15 -3738 ((-1291))) (-15 -3749 ((-1291))) (-15 -3761 ((-112))) (-15 -3774 ((-112))) (-15 -3786 ((-112))) (-15 -3797 ((-3 |#2| "failed") |#1|)) (-15 -3807 ((-1291) |#1| |#2|))) -((-3828 (((-1177) (-1177)) 22)) (-3817 (((-52) (-1177)) 25))) -(((-1214) (-10 -7 (-15 -3817 ((-52) (-1177))) (-15 -3828 ((-1177) (-1177))))) (T -1214)) -((-3828 (*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1214)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-1214))))) -(-10 -7 (-15 -3817 ((-52) (-1177))) (-15 -3828 ((-1177) (-1177)))) -((-2884 (((-1216) |#1|) 11))) -(((-1215 |#1|) (-10 -7 (-15 -2884 ((-1216) |#1|))) (-1118)) (T -1215)) -((-2884 (*1 *2 *3) (-12 (-5 *2 (-1216)) (-5 *1 (-1215 *3)) (-4 *3 (-1118))))) -(-10 -7 (-15 -2884 ((-1216) |#1|))) -((-2862 (((-112) $ $) NIL)) (-2744 (((-656 (-1177)) $) 39)) (-3852 (((-656 (-1177)) $ (-656 (-1177))) 42)) (-3839 (((-656 (-1177)) $ (-656 (-1177))) 41)) (-3863 (((-656 (-1177)) $ (-656 (-1177))) 43)) (-3873 (((-656 (-1177)) $) 38)) (-2310 (($) 28)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3885 (((-656 (-1177)) $) 40)) (-2483 (((-1291) $ (-576)) 35) (((-1291) $) 36)) (-2616 (($ (-874) (-576)) 33) (($ (-874) (-576) (-874)) NIL)) (-2884 (((-874) $) 49) (($ (-874)) 32)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1216) (-13 (-1118) (-628 (-874)) (-10 -8 (-15 -2616 ($ (-874) (-576))) (-15 -2616 ($ (-874) (-576) (-874))) (-15 -2483 ((-1291) $ (-576))) (-15 -2483 ((-1291) $)) (-15 -3885 ((-656 (-1177)) $)) (-15 -2744 ((-656 (-1177)) $)) (-15 -2310 ($)) (-15 -3873 ((-656 (-1177)) $)) (-15 -3863 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3852 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3839 ((-656 (-1177)) $ (-656 (-1177))))))) (T -1216)) -((-2616 (*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216)))) (-2616 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216)))) (-2483 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1216)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1216)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-2310 (*1 *1) (-5 *1 (-1216))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-3863 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-3852 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-3839 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) -(-13 (-1118) (-628 (-874)) (-10 -8 (-15 -2616 ($ (-874) (-576))) (-15 -2616 ($ (-874) (-576) (-874))) (-15 -2483 ((-1291) $ (-576))) (-15 -2483 ((-1291) $)) (-15 -3885 ((-656 (-1177)) $)) (-15 -2744 ((-656 (-1177)) $)) (-15 -2310 ($)) (-15 -3873 ((-656 (-1177)) $)) (-15 -3863 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3852 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3839 ((-656 (-1177)) $ (-656 (-1177)))))) -((-2862 (((-112) $ $) NIL)) (-3952 (((-1177) $ (-1177)) 17) (((-1177) $) 16)) (-2823 (((-1177) $ (-1177)) 15)) (-1575 (($ $ (-1177)) NIL)) (-3923 (((-3 (-1177) "failed") $) 11)) (-3936 (((-1177) $) 8)) (-3908 (((-3 (-1177) "failed") $) 12)) (-2835 (((-1177) $) 9)) (-2980 (($ (-400)) NIL) (($ (-400) (-1177)) NIL)) (-1778 (((-400) $) NIL)) (-3733 (((-1177) $) NIL)) (-2847 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3897 (((-112) $) 21)) (-2884 (((-874) $) NIL)) (-1561 (($ $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1217) (-13 (-375 (-400) (-1177)) (-10 -8 (-15 -3952 ((-1177) $ (-1177))) (-15 -3952 ((-1177) $)) (-15 -3936 ((-1177) $)) (-15 -3923 ((-3 (-1177) "failed") $)) (-15 -3908 ((-3 (-1177) "failed") $)) (-15 -3897 ((-112) $))))) (T -1217)) -((-3952 (*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-3923 (*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-3908 (*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217))))) -(-13 (-375 (-400) (-1177)) (-10 -8 (-15 -3952 ((-1177) $ (-1177))) (-15 -3952 ((-1177) $)) (-15 -3936 ((-1177) $)) (-15 -3923 ((-3 (-1177) "failed") $)) (-15 -3908 ((-3 (-1177) "failed") $)) (-15 -3897 ((-112) $)))) -((-3966 (((-3 (-576) "failed") |#1|) 19)) (-3979 (((-3 (-576) "failed") |#1|) 14)) (-3990 (((-576) (-1177)) 33))) -(((-1218 |#1|) (-10 -7 (-15 -3966 ((-3 (-576) "failed") |#1|)) (-15 -3979 ((-3 (-576) "failed") |#1|)) (-15 -3990 ((-576) (-1177)))) (-1067)) (T -1218)) -((-3990 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-1218 *4)) (-4 *4 (-1067)))) (-3979 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1067)))) (-3966 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1067))))) -(-10 -7 (-15 -3966 ((-3 (-576) "failed") |#1|)) (-15 -3979 ((-3 (-576) "failed") |#1|)) (-15 -3990 ((-576) (-1177)))) -((-4002 (((-1151 (-227))) 9))) -(((-1219) (-10 -7 (-15 -4002 ((-1151 (-227)))))) (T -1219)) -((-4002 (*1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1219))))) -(-10 -7 (-15 -4002 ((-1151 (-227))))) -((-1632 (($) 12)) (-1570 (($ $) 36)) (-1545 (($ $) 34)) (-3829 (($ $) 26)) (-1594 (($ $) 18)) (-2915 (($ $) 16)) (-1584 (($ $) 20)) (-3864 (($ $) 31)) (-1555 (($ $) 35)) (-3840 (($ $) 30))) -(((-1220 |#1|) (-10 -8 (-15 -1632 (|#1|)) (-15 -1570 (|#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1594 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1555 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3840 (|#1| |#1|))) (-1221)) (T -1220)) -NIL -(-10 -8 (-15 -1632 (|#1|)) (-15 -1570 (|#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1594 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1555 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3840 (|#1| |#1|))) -((-3924 (($ $) 26)) (-3787 (($ $) 11)) (-3898 (($ $) 27)) (-3762 (($ $) 10)) (-1522 (($ $) 28)) (-3808 (($ $) 9)) (-1632 (($) 16)) (-3464 (($ $) 19)) (-2666 (($ $) 18)) (-1532 (($ $) 29)) (-3818 (($ $) 8)) (-3938 (($ $) 30)) (-3798 (($ $) 7)) (-3910 (($ $) 31)) (-3775 (($ $) 6)) (-1570 (($ $) 20)) (-3853 (($ $) 32)) (-1545 (($ $) 21)) (-3829 (($ $) 33)) (-1594 (($ $) 22)) (-3874 (($ $) 34)) (-2915 (($ $) 23)) (-3886 (($ $) 35)) (-1584 (($ $) 24)) (-3864 (($ $) 36)) (-1555 (($ $) 25)) (-3840 (($ $) 37)) (** (($ $ $) 17))) -(((-1221) (-141)) (T -1221)) -((-1632 (*1 *1) (-4 *1 (-1221)))) -(-13 (-1224) (-95) (-505) (-35) (-294) (-10 -8 (-15 -1632 ($)))) -(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-1224) . T)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4183 ((|#1| $) 19)) (-1634 (($ |#1| (-656 $)) 28) (($ (-656 |#1|)) 35) (($ |#1|) 30)) (-2970 (((-112) $ (-783)) 72)) (-3434 ((|#1| $ |#1|) 14 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) 13 (|has| $ (-6 -4462)))) (-2473 (($) NIL T CONST)) (-4001 (((-656 |#1|) $) 77 (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) 64)) (-3452 (((-112) $ $) 50 (|has| |#1| (-1118)))) (-2408 (((-112) $ (-783)) 62)) (-1496 (((-656 |#1|) $) 78 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2848 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 27)) (-2374 (((-112) $ (-783)) 60)) (-2482 (((-656 |#1|) $) 55)) (-4306 (((-112) $) 53)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2476 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 107)) (-2809 (((-112) $) 9)) (-1458 (($) 10)) (-2071 ((|#1| $ "value") NIL)) (-3473 (((-576) $ $) 48)) (-4012 (((-656 $) $) 89)) (-4022 (((-112) $ $) 110)) (-4033 (((-656 $) $) 105)) (-4044 (($ $) 106)) (-4053 (((-112) $) 84)) (-3926 (((-783) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4461))) (((-783) |#1| $) 17 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3079 (($ $) 88)) (-2884 (((-874) $) 91 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) 12)) (-3462 (((-112) $ $) 39 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 37 (|has| |#1| (-1118)))) (-2872 (((-783) $) 58 (|has| $ (-6 -4461))))) -(((-1222 |#1|) (-13 (-1028 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -1634 ($ |#1| (-656 $))) (-15 -1634 ($ (-656 |#1|))) (-15 -1634 ($ |#1|)) (-15 -4053 ((-112) $)) (-15 -4044 ($ $)) (-15 -4033 ((-656 $) $)) (-15 -4022 ((-112) $ $)) (-15 -4012 ((-656 $) $)))) (-1118)) (T -1222)) -((-4053 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1118)))) (-1634 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1222 *2))) (-5 *1 (-1222 *2)) (-4 *2 (-1118)))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-1222 *3)))) (-1634 (*1 *1 *2) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1118)))) (-4044 (*1 *1 *1) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1118)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1118)))) (-4022 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1118)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1118))))) -(-13 (-1028 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -1634 ($ |#1| (-656 $))) (-15 -1634 ($ (-656 |#1|))) (-15 -1634 ($ |#1|)) (-15 -4053 ((-112) $)) (-15 -4044 ($ $)) (-15 -4033 ((-656 $) $)) (-15 -4022 ((-112) $ $)) (-15 -4012 ((-656 $) $)))) -((-3787 (($ $) 15)) (-3808 (($ $) 12)) (-3818 (($ $) 10)) (-3798 (($ $) 17))) -(((-1223 |#1|) (-10 -8 (-15 -3798 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3787 (|#1| |#1|))) (-1224)) (T -1223)) -NIL -(-10 -8 (-15 -3798 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3787 (|#1| |#1|))) -((-3787 (($ $) 11)) (-3762 (($ $) 10)) (-3808 (($ $) 9)) (-3818 (($ $) 8)) (-3798 (($ $) 7)) (-3775 (($ $) 6))) -(((-1224) (-141)) (T -1224)) -((-3787 (*1 *1 *1) (-4 *1 (-1224))) (-3762 (*1 *1 *1) (-4 *1 (-1224))) (-3808 (*1 *1 *1) (-4 *1 (-1224))) (-3818 (*1 *1 *1) (-4 *1 (-1224))) (-3798 (*1 *1 *1) (-4 *1 (-1224))) (-3775 (*1 *1 *1) (-4 *1 (-1224)))) -(-13 (-10 -8 (-15 -3775 ($ $)) (-15 -3798 ($ $)) (-15 -3818 ($ $)) (-15 -3808 ($ $)) (-15 -3762 ($ $)) (-15 -3787 ($ $)))) -((-4079 ((|#2| |#2|) 98)) (-4088 (((-112) |#2|) 29)) (-2488 ((|#2| |#2|) 33)) (-1972 ((|#2| |#2|) 35)) (-4062 ((|#2| |#2| (-1195)) 92) ((|#2| |#2|) 93)) (-4097 (((-171 |#2|) |#2|) 31)) (-4070 ((|#2| |#2| (-1195)) 94) ((|#2| |#2|) 95))) -(((-1225 |#1| |#2|) (-10 -7 (-15 -4062 (|#2| |#2|)) (-15 -4062 (|#2| |#2| (-1195))) (-15 -4070 (|#2| |#2|)) (-15 -4070 (|#2| |#2| (-1195))) (-15 -4079 (|#2| |#2|)) (-15 -2488 (|#2| |#2|)) (-15 -1972 (|#2| |#2|)) (-15 -4088 ((-112) |#2|)) (-15 -4097 ((-171 |#2|) |#2|))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -1225)) -((-4097 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1225 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1225 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-2488 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-4070 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-4062 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-4062 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))) -(-10 -7 (-15 -4062 (|#2| |#2|)) (-15 -4062 (|#2| |#2| (-1195))) (-15 -4070 (|#2| |#2|)) (-15 -4070 (|#2| |#2| (-1195))) (-15 -4079 (|#2| |#2|)) (-15 -2488 (|#2| |#2|)) (-15 -1972 (|#2| |#2|)) (-15 -4088 ((-112) |#2|)) (-15 -4097 ((-171 |#2|) |#2|))) -((-4103 ((|#4| |#4| |#1|) 31)) (-4113 ((|#4| |#4| |#1|) 32))) -(((-1226 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4103 (|#4| |#4| |#1|)) (-15 -4113 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1226)) -((-4113 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-4103 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -4103 (|#4| |#4| |#1|)) (-15 -4113 (|#4| |#4| |#1|))) -((-3123 ((|#2| |#2|) 148)) (-3145 ((|#2| |#2|) 145)) (-3113 ((|#2| |#2|) 136)) (-3134 ((|#2| |#2|) 133)) (-3102 ((|#2| |#2|) 141)) (-3090 ((|#2| |#2|) 129)) (-4147 ((|#2| |#2|) 44)) (-4139 ((|#2| |#2|) 105)) (-4122 ((|#2| |#2|) 88)) (-3078 ((|#2| |#2|) 143)) (-3067 ((|#2| |#2|) 131)) (-3210 ((|#2| |#2|) 153)) (-3189 ((|#2| |#2|) 151)) (-3199 ((|#2| |#2|) 152)) (-3177 ((|#2| |#2|) 150)) (-4130 ((|#2| |#2|) 163)) (-3221 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-905 |#1|))) (|has| |#2| (-899 |#1|)) (|has| |#1| (-626 (-905 |#1|))) (|has| |#1| (-899 |#1|))))) (-4155 ((|#2| |#2|) 89)) (-4161 ((|#2| |#2|) 154)) (-3945 ((|#2| |#2|) 155)) (-3054 ((|#2| |#2|) 142)) (-3040 ((|#2| |#2|) 130)) (-3028 ((|#2| |#2|) 149)) (-3166 ((|#2| |#2|) 147)) (-3014 ((|#2| |#2|) 137)) (-3156 ((|#2| |#2|) 135)) (-4178 ((|#2| |#2|) 139)) (-4170 ((|#2| |#2|) 127))) -(((-1227 |#1| |#2|) (-10 -7 (-15 -3945 (|#2| |#2|)) (-15 -4122 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -4139 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -4170 (|#2| |#2|)) (-15 -4178 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3028 (|#2| |#2|)) (-15 -3040 (|#2| |#2|)) (-15 -3054 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -3078 (|#2| |#2|)) (-15 -3090 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -3113 (|#2| |#2|)) (-15 -3123 (|#2| |#2|)) (-15 -3134 (|#2| |#2|)) (-15 -3145 (|#2| |#2|)) (-15 -3156 (|#2| |#2|)) (-15 -3166 (|#2| |#2|)) (-15 -3177 (|#2| |#2|)) (-15 -3189 (|#2| |#2|)) (-15 -3199 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (IF (|has| |#1| (-899 |#1|)) (IF (|has| |#1| (-626 (-905 |#1|))) (IF (|has| |#2| (-626 (-905 |#1|))) (IF (|has| |#2| (-899 |#1|)) (-15 -3221 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1221))) (T -1227)) -((-3221 (*1 *2 *2) (-12 (-4 *3 (-626 (-905 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-626 (-905 *3))) (-4 *2 (-899 *3)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3199 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3189 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3177 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3166 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3145 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3134 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3123 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3102 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3090 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3078 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3054 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3040 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3028 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4178 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4170 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4139 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4122 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221)))))) -(-10 -7 (-15 -3945 (|#2| |#2|)) (-15 -4122 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -4139 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -4170 (|#2| |#2|)) (-15 -4178 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3028 (|#2| |#2|)) (-15 -3040 (|#2| |#2|)) (-15 -3054 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -3078 (|#2| |#2|)) (-15 -3090 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -3113 (|#2| |#2|)) (-15 -3123 (|#2| |#2|)) (-15 -3134 (|#2| |#2|)) (-15 -3145 (|#2| |#2|)) (-15 -3156 (|#2| |#2|)) (-15 -3166 (|#2| |#2|)) (-15 -3177 (|#2| |#2|)) (-15 -3189 (|#2| |#2|)) (-15 -3199 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (IF (|has| |#1| (-899 |#1|)) (IF (|has| |#1| (-626 (-905 |#1|))) (IF (|has| |#2| (-626 (-905 |#1|))) (IF (|has| |#2| (-899 |#1|)) (-15 -3221 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3405 (((-112) |#5| $) 68) (((-112) $) 110)) (-3358 ((|#5| |#5| $) 83)) (-3985 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3367 (((-656 |#5|) (-656 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2449 (((-3 $ "failed") (-656 |#5|)) 135)) (-1976 (((-3 $ "failed") $) 120)) (-3328 ((|#5| |#5| $) 102)) (-3414 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3308 ((|#5| |#5| $) 106)) (-2309 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-3435 (((-2 (|:| -2459 (-656 |#5|)) (|:| -2980 (-656 |#5|))) $) 63)) (-3425 (((-112) |#5| $) 66) (((-112) $) 111)) (-1323 ((|#4| $) 116)) (-3654 (((-3 |#5| "failed") $) 118)) (-3443 (((-656 |#5|) $) 55)) (-3387 (((-112) |#5| $) 75) (((-112) $) 115)) (-3338 ((|#5| |#5| $) 89)) (-3461 (((-112) $ $) 29)) (-3396 (((-112) |#5| $) 71) (((-112) $) 113)) (-3348 ((|#5| |#5| $) 86)) (-1962 (((-3 |#5| "failed") $) 117)) (-2904 (($ $ |#5|) 136)) (-3813 (((-783) $) 60)) (-2895 (($ (-656 |#5|)) 133)) (-1483 (($ $ |#4|) 131)) (-1504 (($ $ |#4|) 129)) (-3318 (($ $) 128)) (-2884 (((-874) $) NIL) (((-656 |#5|) $) 121)) (-3255 (((-783) $) 140)) (-3453 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3377 (((-112) $ (-1 (-112) |#5| (-656 |#5|))) 108)) (-3278 (((-656 |#4|) $) 123)) (-3704 (((-112) |#4| $) 126)) (-3915 (((-112) $ $) 20))) -(((-1228 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3255 ((-783) |#1|)) (-15 -2904 (|#1| |#1| |#5|)) (-15 -3985 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3704 ((-112) |#4| |#1|)) (-15 -3278 ((-656 |#4|) |#1|)) (-15 -1976 ((-3 |#1| "failed") |#1|)) (-15 -3654 ((-3 |#5| "failed") |#1|)) (-15 -1962 ((-3 |#5| "failed") |#1|)) (-15 -3308 (|#5| |#5| |#1|)) (-15 -3318 (|#1| |#1|)) (-15 -3328 (|#5| |#5| |#1|)) (-15 -3338 (|#5| |#5| |#1|)) (-15 -3348 (|#5| |#5| |#1|)) (-15 -3358 (|#5| |#5| |#1|)) (-15 -3367 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2309 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3387 ((-112) |#1|)) (-15 -3396 ((-112) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -3377 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -3387 ((-112) |#5| |#1|)) (-15 -3396 ((-112) |#5| |#1|)) (-15 -3405 ((-112) |#5| |#1|)) (-15 -3414 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3425 ((-112) |#1|)) (-15 -3425 ((-112) |#5| |#1|)) (-15 -3435 ((-2 (|:| -2459 (-656 |#5|)) (|:| -2980 (-656 |#5|))) |#1|)) (-15 -3813 ((-783) |#1|)) (-15 -3443 ((-656 |#5|) |#1|)) (-15 -3453 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3453 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3461 ((-112) |#1| |#1|)) (-15 -1483 (|#1| |#1| |#4|)) (-15 -1504 (|#1| |#1| |#4|)) (-15 -1323 (|#4| |#1|)) (-15 -2449 ((-3 |#1| "failed") (-656 |#5|))) (-15 -2884 ((-656 |#5|) |#1|)) (-15 -2895 (|#1| (-656 |#5|))) (-15 -2309 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2309 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3985 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2309 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) (-1229 |#2| |#3| |#4| |#5|) (-568) (-805) (-862) (-1083 |#2| |#3| |#4|)) (T -1228)) -NIL -(-10 -8 (-15 -3255 ((-783) |#1|)) (-15 -2904 (|#1| |#1| |#5|)) (-15 -3985 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3704 ((-112) |#4| |#1|)) (-15 -3278 ((-656 |#4|) |#1|)) (-15 -1976 ((-3 |#1| "failed") |#1|)) (-15 -3654 ((-3 |#5| "failed") |#1|)) (-15 -1962 ((-3 |#5| "failed") |#1|)) (-15 -3308 (|#5| |#5| |#1|)) (-15 -3318 (|#1| |#1|)) (-15 -3328 (|#5| |#5| |#1|)) (-15 -3338 (|#5| |#5| |#1|)) (-15 -3348 (|#5| |#5| |#1|)) (-15 -3358 (|#5| |#5| |#1|)) (-15 -3367 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2309 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3387 ((-112) |#1|)) (-15 -3396 ((-112) |#1|)) (-15 -3405 ((-112) |#1|)) (-15 -3377 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -3387 ((-112) |#5| |#1|)) (-15 -3396 ((-112) |#5| |#1|)) (-15 -3405 ((-112) |#5| |#1|)) (-15 -3414 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3425 ((-112) |#1|)) (-15 -3425 ((-112) |#5| |#1|)) (-15 -3435 ((-2 (|:| -2459 (-656 |#5|)) (|:| -2980 (-656 |#5|))) |#1|)) (-15 -3813 ((-783) |#1|)) (-15 -3443 ((-656 |#5|) |#1|)) (-15 -3453 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3453 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3461 ((-112) |#1| |#1|)) (-15 -1483 (|#1| |#1| |#4|)) (-15 -1504 (|#1| |#1| |#4|)) (-15 -1323 (|#4| |#1|)) (-15 -2449 ((-3 |#1| "failed") (-656 |#5|))) (-15 -2884 ((-656 |#5|) |#1|)) (-15 -2895 (|#1| (-656 |#5|))) (-15 -2309 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2309 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3985 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2309 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2884 ((-874) |#1|)) (-15 -3915 ((-112) |#1| |#1|))) -((-2862 (((-112) $ $) 7)) (-3289 (((-656 (-2 (|:| -2459 $) (|:| -2980 (-656 |#4|)))) (-656 |#4|)) 86)) (-3299 (((-656 $) (-656 |#4|)) 87)) (-1607 (((-656 |#3|) $) 34)) (-1470 (((-112) $) 27)) (-1374 (((-112) $) 18 (|has| |#1| (-568)))) (-3405 (((-112) |#4| $) 102) (((-112) $) 98)) (-3358 ((|#4| |#4| $) 93)) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#3|) 28)) (-2970 (((-112) $ (-783)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-2473 (($) 46 T CONST)) (-1425 (((-112) $) 23 (|has| |#1| (-568)))) (-1445 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1435 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1457 (((-112) $) 26 (|has| |#1| (-568)))) (-3367 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1384 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1394 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 |#4|)) 37)) (-4401 (($ (-656 |#4|)) 36)) (-1976 (((-3 $ "failed") $) 83)) (-3328 ((|#4| |#4| $) 90)) (-1919 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3414 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3308 ((|#4| |#4| $) 88)) (-2309 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3435 (((-2 (|:| -2459 (-656 |#4|)) (|:| -2980 (-656 |#4|))) $) 106)) (-4001 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-3425 (((-112) |#4| $) 105) (((-112) $) 104)) (-1323 ((|#3| $) 35)) (-2408 (((-112) $ (-783)) 44)) (-1496 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) 48)) (-1524 (((-656 |#3|) $) 33)) (-1513 (((-112) |#3| $) 32)) (-2374 (((-112) $ (-783)) 43)) (-3733 (((-1177) $) 10)) (-3654 (((-3 |#4| "failed") $) 84)) (-3443 (((-656 |#4|) $) 108)) (-3387 (((-112) |#4| $) 100) (((-112) $) 96)) (-3338 ((|#4| |#4| $) 91)) (-3461 (((-112) $ $) 111)) (-1415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3396 (((-112) |#4| $) 101) (((-112) $) 97)) (-3348 ((|#4| |#4| $) 92)) (-3914 (((-1138) $) 11)) (-1962 (((-3 |#4| "failed") $) 85)) (-1932 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3266 (((-3 $ "failed") $ |#4|) 79)) (-2904 (($ $ |#4|) 78)) (-2476 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) 39)) (-2809 (((-112) $) 42)) (-1458 (($) 41)) (-3813 (((-783) $) 107)) (-3926 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3079 (($ $) 40)) (-2616 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2895 (($ (-656 |#4|)) 61)) (-1483 (($ $ |#3|) 29)) (-1504 (($ $ |#3|) 31)) (-3318 (($ $) 89)) (-1493 (($ $ |#3|) 30)) (-2884 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3255 (((-783) $) 77 (|has| |#3| (-379)))) (-3722 (((-112) $ $) 9)) (-3453 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3377 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2492 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-3278 (((-656 |#3|) $) 82)) (-3704 (((-112) |#3| $) 81)) (-3915 (((-112) $ $) 6)) (-2872 (((-783) $) 47 (|has| $ (-6 -4461))))) -(((-1229 |#1| |#2| |#3| |#4|) (-141) (-568) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -1229)) -((-3461 (*1 *2 *1 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-3453 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-656 *8)))) (-5 *3 (-656 *8)) (-4 *1 (-1229 *5 *6 *7 *8)))) (-3453 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-656 *9)))) (-5 *3 (-656 *9)) (-4 *1 (-1229 *6 *7 *8 *9)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *6)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-783)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-2 (|:| -2459 (-656 *6)) (|:| -2980 (-656 *6)))))) (-3425 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-3414 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1229 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112)))) (-3405 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-3396 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-3387 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-3377 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1229 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-3396 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-2309 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1229 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *2 (-1083 *5 *6 *7)))) (-3367 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1229 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)))) (-3358 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3348 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3338 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3328 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3318 (*1 *1 *1) (-12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1083 *2 *3 *4)))) (-3308 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1229 *4 *5 *6 *7)))) (-3289 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| -2459 *1) (|:| -2980 (-656 *7))))) (-5 *3 (-656 *7)) (-4 *1 (-1229 *4 *5 *6 *7)))) (-1962 (*1 *2 *1) (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3654 (*1 *2 *1) (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-1976 (*1 *1 *1) (|partial| -12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1083 *2 *3 *4)))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5)))) (-3704 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1083 *4 *5 *3)) (-5 *2 (-112)))) (-3985 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1229 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *2 (-1083 *4 *5 *3)))) (-3266 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-2904 (*1 *1 *1 *2) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-783))))) -(-13 (-994 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -3461 ((-112) $ $)) (-15 -3453 ((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3453 ((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3443 ((-656 |t#4|) $)) (-15 -3813 ((-783) $)) (-15 -3435 ((-2 (|:| -2459 (-656 |t#4|)) (|:| -2980 (-656 |t#4|))) $)) (-15 -3425 ((-112) |t#4| $)) (-15 -3425 ((-112) $)) (-15 -3414 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3405 ((-112) |t#4| $)) (-15 -3396 ((-112) |t#4| $)) (-15 -3387 ((-112) |t#4| $)) (-15 -3377 ((-112) $ (-1 (-112) |t#4| (-656 |t#4|)))) (-15 -3405 ((-112) $)) (-15 -3396 ((-112) $)) (-15 -3387 ((-112) $)) (-15 -2309 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3367 ((-656 |t#4|) (-656 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3358 (|t#4| |t#4| $)) (-15 -3348 (|t#4| |t#4| $)) (-15 -3338 (|t#4| |t#4| $)) (-15 -3328 (|t#4| |t#4| $)) (-15 -3318 ($ $)) (-15 -3308 (|t#4| |t#4| $)) (-15 -3299 ((-656 $) (-656 |t#4|))) (-15 -3289 ((-656 (-2 (|:| -2459 $) (|:| -2980 (-656 |t#4|)))) (-656 |t#4|))) (-15 -1962 ((-3 |t#4| "failed") $)) (-15 -3654 ((-3 |t#4| "failed") $)) (-15 -1976 ((-3 $ "failed") $)) (-15 -3278 ((-656 |t#3|) $)) (-15 -3704 ((-112) |t#3| $)) (-15 -3985 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3266 ((-3 $ "failed") $ |t#4|)) (-15 -2904 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -3255 ((-783) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1118) . T) ((-1236) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 (-1195)) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-3924 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2486 (((-968 |#1|) $ (-783)) 17) (((-968 |#1|) $ (-783) (-783)) NIL)) (-1355 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-783) $ (-1195)) NIL) (((-783) $ (-1195) (-783)) NIL)) (-1439 (((-112) $) NIL)) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3734 (((-112) $) NIL)) (-2421 (($ $ (-656 (-1195)) (-656 (-543 (-1195)))) NIL) (($ $ (-1195) (-543 (-1195))) NIL) (($ |#1| (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-3464 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-1956 (($ $ (-1195)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3914 (((-1138) $) NIL)) (-3232 (($ (-1 $) (-1195) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2904 (($ $ (-783)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2666 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3049 (($ $ (-1195) $) NIL) (($ $ (-656 (-1195)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2390 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-3813 (((-543 (-1195)) $) NIL)) (-1532 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1195)) NIL) (($ (-968 |#1|)) NIL)) (-3245 ((|#1| $ (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (((-968 |#1|) $ (-783)) NIL)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1545 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2915 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3431 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1230 |#1|) (-13 (-752 |#1| (-1195)) (-10 -8 (-15 -3245 ((-968 |#1|) $ (-783))) (-15 -2884 ($ (-1195))) (-15 -2884 ($ (-968 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ($ $ (-1195) |#1|)) (-15 -3232 ($ (-1 $) (-1195) |#1|))) |%noBranch|))) (-1067)) (T -1230)) -((-3245 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-968 *4)) (-5 *1 (-1230 *4)) (-4 *4 (-1067)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-1067)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-968 *3)) (-4 *3 (-1067)) (-5 *1 (-1230 *3)))) (-1956 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)))) (-3232 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1230 *4))) (-5 *3 (-1195)) (-5 *1 (-1230 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1067))))) -(-13 (-752 |#1| (-1195)) (-10 -8 (-15 -3245 ((-968 |#1|) $ (-783))) (-15 -2884 ($ (-1195))) (-15 -2884 ($ (-968 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ($ $ (-1195) |#1|)) (-15 -3232 ($ (-1 $) (-1195) |#1|))) |%noBranch|))) -((-3524 (($ |#1| (-656 (-656 (-959 (-227)))) (-112)) 19)) (-3515 (((-112) $ (-112)) 18)) (-3507 (((-112) $) 17)) (-3485 (((-656 (-656 (-959 (-227)))) $) 13)) (-3474 ((|#1| $) 8)) (-3498 (((-112) $) 15))) -(((-1231 |#1|) (-10 -8 (-15 -3474 (|#1| $)) (-15 -3485 ((-656 (-656 (-959 (-227)))) $)) (-15 -3498 ((-112) $)) (-15 -3507 ((-112) $)) (-15 -3515 ((-112) $ (-112))) (-15 -3524 ($ |#1| (-656 (-656 (-959 (-227)))) (-112)))) (-992)) (T -1231)) -((-3524 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-112)) (-5 *1 (-1231 *2)) (-4 *2 (-992)))) (-3515 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-1231 *3)) (-4 *3 (-992)))) (-3474 (*1 *2 *1) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-992))))) -(-10 -8 (-15 -3474 (|#1| $)) (-15 -3485 ((-656 (-656 (-959 (-227)))) $)) (-15 -3498 ((-112) $)) (-15 -3507 ((-112) $)) (-15 -3515 ((-112) $ (-112))) (-15 -3524 ($ |#1| (-656 (-656 (-959 (-227)))) (-112)))) -((-3533 (((-959 (-227)) (-959 (-227))) 31)) (-1839 (((-959 (-227)) (-227) (-227) (-227) (-227)) 10)) (-3554 (((-656 (-959 (-227))) (-959 (-227)) (-959 (-227)) (-959 (-227)) (-227) (-656 (-656 (-227)))) 56)) (-2165 (((-227) (-959 (-227)) (-959 (-227))) 27)) (-2153 (((-959 (-227)) (-959 (-227)) (-959 (-227))) 28)) (-3545 (((-656 (-656 (-227))) (-576)) 44)) (-4029 (((-959 (-227)) (-959 (-227)) (-959 (-227))) 26)) (-4017 (((-959 (-227)) (-959 (-227)) (-959 (-227))) 24)) (* (((-959 (-227)) (-227) (-959 (-227))) 22))) -(((-1232) (-10 -7 (-15 -1839 ((-959 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-959 (-227)) (-227) (-959 (-227)))) (-15 -4017 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -4029 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -2165 ((-227) (-959 (-227)) (-959 (-227)))) (-15 -2153 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -3533 ((-959 (-227)) (-959 (-227)))) (-15 -3545 ((-656 (-656 (-227))) (-576))) (-15 -3554 ((-656 (-959 (-227))) (-959 (-227)) (-959 (-227)) (-959 (-227)) (-227) (-656 (-656 (-227))))))) (T -1232)) -((-3554 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 (-959 *4))) (-5 *1 (-1232)) (-5 *3 (-959 *4)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1232)))) (-3533 (*1 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))) (-2153 (*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))) (-2165 (*1 *2 *3 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-227)) (-5 *1 (-1232)))) (-4029 (*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))) (-4017 (*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-959 (-227))) (-5 *3 (-227)) (-5 *1 (-1232)))) (-1839 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)) (-5 *3 (-227))))) -(-10 -7 (-15 -1839 ((-959 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-959 (-227)) (-227) (-959 (-227)))) (-15 -4017 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -4029 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -2165 ((-227) (-959 (-227)) (-959 (-227)))) (-15 -2153 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -3533 ((-959 (-227)) (-959 (-227)))) (-15 -3545 ((-656 (-656 (-227))) (-576))) (-15 -3554 ((-656 (-959 (-227))) (-959 (-227)) (-959 (-227)) (-959 (-227)) (-227) (-656 (-656 (-227)))))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3985 ((|#1| $ (-783)) 18)) (-1840 (((-783) $) 13)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2884 (((-974 |#1|) $) 12) (($ (-974 |#1|)) 11) (((-874) $) 29 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3915 (((-112) $ $) 22 (|has| |#1| (-1118))))) -(((-1233 |#1|) (-13 (-502 (-974 |#1|)) (-10 -8 (-15 -3985 (|#1| $ (-783))) (-15 -1840 ((-783) $)) (IF (|has| |#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|))) (-1236)) (T -1233)) -((-3985 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-1233 *2)) (-4 *2 (-1236)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1233 *3)) (-4 *3 (-1236))))) -(-13 (-502 (-974 |#1|)) (-10 -8 (-15 -3985 (|#1| $ (-783))) (-15 -1840 ((-783) $)) (IF (|has| |#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|))) -((-3578 (((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)) (-576)) 94)) (-3562 (((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|))) 86)) (-3568 (((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|))) 70))) -(((-1234 |#1|) (-10 -7 (-15 -3562 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -3568 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -3578 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)) (-576)))) (-360)) (T -1234)) -((-3578 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1191 (-1191 *5)))) (-5 *1 (-1234 *5)) (-5 *3 (-1191 (-1191 *5))))) (-3568 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4)))) (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4))))) (-3562 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4)))) (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4)))))) -(-10 -7 (-15 -3562 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -3568 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -3578 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)) (-576)))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 9) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1235) (-1101)) (T -1235)) -NIL -(-1101) -NIL -(((-1236) (-141)) (T -1236)) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 9)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 7))) +(((-1202) (-1117)) (T -1202)) +NIL +(-1117) +((-1985 (((-655 (-655 (-967 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194))) 69)) (-1546 (((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|)))) 80) (((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|))) 76) (((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194)) 81) (((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194)) 75) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|))))) 106) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|)))) 105) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194))) 107) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|))) (-655 (-1194))) 104))) +(((-1203 |#1|) (-10 -7 (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194)))) (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|))))) (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -1546 ((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194))) (-15 -1546 ((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -1546 ((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|)))) (-15 -1546 ((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|))))) (-15 -1985 ((-655 (-655 (-967 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194))))) (-567)) (T -1203)) +((-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-967 *5)))) (-5 *1 (-1203 *5)))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *4))))) (-5 *1 (-1203 *4)) (-5 *3 (-303 (-418 (-967 *4)))))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *4))))) (-5 *1 (-1203 *4)) (-5 *3 (-418 (-967 *4))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *5))))) (-5 *1 (-1203 *5)) (-5 *3 (-303 (-418 (-967 *5)))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *5))))) (-5 *1 (-1203 *5)) (-5 *3 (-418 (-967 *5))))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-1203 *4)) (-5 *3 (-655 (-303 (-418 (-967 *4))))))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-655 (-418 (-967 *4)))) (-4 *4 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-1203 *4)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-1194))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-1203 *5)) (-5 *3 (-655 (-303 (-418 (-967 *5))))))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-1203 *5))))) +(-10 -7 (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194)))) (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|))))) (-15 -1546 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -1546 ((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194))) (-15 -1546 ((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -1546 ((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|)))) (-15 -1546 ((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|))))) (-15 -1985 ((-655 (-655 (-967 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194))))) +((-4047 (((-1176)) 7)) (-3597 (((-1176)) 11 T CONST)) (-3964 (((-1290) (-1176)) 13)) (-2268 (((-1176)) 8 T CONST)) (-3403 (((-131)) 10 T CONST))) +(((-1204) (-13 (-1235) (-10 -7 (-15 -4047 ((-1176))) (-15 -2268 ((-1176)) -3738) (-15 -3403 ((-131)) -3738) (-15 -3597 ((-1176)) -3738) (-15 -3964 ((-1290) (-1176)))))) (T -1204)) +((-4047 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204)))) (-2268 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204)))) (-3403 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1204)))) (-3597 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1204))))) +(-13 (-1235) (-10 -7 (-15 -4047 ((-1176))) (-15 -2268 ((-1176)) -3738) (-15 -3403 ((-131)) -3738) (-15 -3597 ((-1176)) -3738) (-15 -3964 ((-1290) (-1176))))) +((-3344 (((-655 (-655 |#1|)) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|)))) 56)) (-3191 (((-655 (-655 (-655 |#1|))) (-655 (-655 |#1|))) 38)) (-2782 (((-1206 (-655 |#1|)) (-655 |#1|)) 49)) (-3531 (((-655 (-655 |#1|)) (-655 |#1|)) 45)) (-4222 (((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 (-655 (-655 |#1|)))) 53)) (-1721 (((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 |#1|) (-655 (-655 (-655 |#1|))) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|)))) 52)) (-1970 (((-655 (-655 |#1|)) (-655 (-655 |#1|))) 43)) (-3205 (((-655 |#1|) (-655 |#1|)) 46)) (-3550 (((-655 (-655 (-655 |#1|))) (-655 |#1|) (-655 (-655 (-655 |#1|)))) 32)) (-1806 (((-655 (-655 (-655 |#1|))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 (-655 |#1|)))) 29)) (-2358 (((-2 (|:| |fs| (-112)) (|:| |sd| (-655 |#1|)) (|:| |td| (-655 (-655 |#1|)))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 |#1|))) 24)) (-1623 (((-655 (-655 |#1|)) (-655 (-655 (-655 |#1|)))) 58)) (-1428 (((-655 (-655 |#1|)) (-1206 (-655 |#1|))) 60))) +(((-1205 |#1|) (-10 -7 (-15 -2358 ((-2 (|:| |fs| (-112)) (|:| |sd| (-655 |#1|)) (|:| |td| (-655 (-655 |#1|)))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 |#1|)))) (-15 -1806 ((-655 (-655 (-655 |#1|))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 (-655 |#1|))))) (-15 -3550 ((-655 (-655 (-655 |#1|))) (-655 |#1|) (-655 (-655 (-655 |#1|))))) (-15 -3344 ((-655 (-655 |#1|)) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))))) (-15 -1623 ((-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))))) (-15 -1428 ((-655 (-655 |#1|)) (-1206 (-655 |#1|)))) (-15 -3191 ((-655 (-655 (-655 |#1|))) (-655 (-655 |#1|)))) (-15 -2782 ((-1206 (-655 |#1|)) (-655 |#1|))) (-15 -1970 ((-655 (-655 |#1|)) (-655 (-655 |#1|)))) (-15 -3531 ((-655 (-655 |#1|)) (-655 |#1|))) (-15 -3205 ((-655 |#1|) (-655 |#1|))) (-15 -1721 ((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 |#1|) (-655 (-655 (-655 |#1|))) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|))))) (-15 -4222 ((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 (-655 (-655 |#1|)))))) (-861)) (T -1205)) +((-4222 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-2 (|:| |f1| (-655 *4)) (|:| |f2| (-655 (-655 (-655 *4)))) (|:| |f3| (-655 (-655 *4))) (|:| |f4| (-655 (-655 (-655 *4)))))) (-5 *1 (-1205 *4)) (-5 *3 (-655 (-655 (-655 *4)))))) (-1721 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-861)) (-5 *3 (-655 *6)) (-5 *5 (-655 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-655 *5)) (|:| |f3| *5) (|:| |f4| (-655 *5)))) (-5 *1 (-1205 *6)) (-5 *4 (-655 *5)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-1205 *3)))) (-3531 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-655 (-655 *4))) (-5 *1 (-1205 *4)) (-5 *3 (-655 *4)))) (-1970 (*1 *2 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-861)) (-5 *1 (-1205 *3)))) (-2782 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-1206 (-655 *4))) (-5 *1 (-1205 *4)) (-5 *3 (-655 *4)))) (-3191 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-655 (-655 (-655 *4)))) (-5 *1 (-1205 *4)) (-5 *3 (-655 (-655 *4))))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1206 (-655 *4))) (-4 *4 (-861)) (-5 *2 (-655 (-655 *4))) (-5 *1 (-1205 *4)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-655 (-655 (-655 *4)))) (-5 *2 (-655 (-655 *4))) (-5 *1 (-1205 *4)) (-4 *4 (-861)))) (-3344 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-655 (-655 *4)))) (-5 *2 (-655 (-655 *4))) (-4 *4 (-861)) (-5 *1 (-1205 *4)))) (-3550 (*1 *2 *3 *2) (-12 (-5 *2 (-655 (-655 (-655 *4)))) (-5 *3 (-655 *4)) (-4 *4 (-861)) (-5 *1 (-1205 *4)))) (-1806 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-655 (-655 (-655 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-655 *5)) (-4 *5 (-861)) (-5 *1 (-1205 *5)))) (-2358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-655 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-655 *4)))) (-5 *1 (-1205 *6)) (-5 *5 (-655 *4))))) +(-10 -7 (-15 -2358 ((-2 (|:| |fs| (-112)) (|:| |sd| (-655 |#1|)) (|:| |td| (-655 (-655 |#1|)))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 |#1|)))) (-15 -1806 ((-655 (-655 (-655 |#1|))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 (-655 |#1|))))) (-15 -3550 ((-655 (-655 (-655 |#1|))) (-655 |#1|) (-655 (-655 (-655 |#1|))))) (-15 -3344 ((-655 (-655 |#1|)) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))))) (-15 -1623 ((-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))))) (-15 -1428 ((-655 (-655 |#1|)) (-1206 (-655 |#1|)))) (-15 -3191 ((-655 (-655 (-655 |#1|))) (-655 (-655 |#1|)))) (-15 -2782 ((-1206 (-655 |#1|)) (-655 |#1|))) (-15 -1970 ((-655 (-655 |#1|)) (-655 (-655 |#1|)))) (-15 -3531 ((-655 (-655 |#1|)) (-655 |#1|))) (-15 -3205 ((-655 |#1|) (-655 |#1|))) (-15 -1721 ((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 |#1|) (-655 (-655 (-655 |#1|))) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|))))) (-15 -4222 ((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 (-655 (-655 |#1|)))))) +((-1506 (($ (-655 (-655 |#1|))) 10)) (-3487 (((-655 (-655 |#1|)) $) 11)) (-2883 (((-873) $) 33))) +(((-1206 |#1|) (-10 -8 (-15 -1506 ($ (-655 (-655 |#1|)))) (-15 -3487 ((-655 (-655 |#1|)) $)) (-15 -2883 ((-873) $))) (-1117)) (T -1206)) +((-2883 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-1206 *3)) (-4 *3 (-1117)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1117)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-1206 *3))))) +(-10 -8 (-15 -1506 ($ (-655 (-655 |#1|)))) (-15 -3487 ((-655 (-655 |#1|)) $)) (-15 -2883 ((-873) $))) +((-2861 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2297 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4161 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#2| $ |#1| |#2|) NIL)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1399 (((-3 |#2| "failed") |#1| $) NIL)) (-3011 (($) NIL T CONST)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-4404 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) NIL)) (-3633 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#2| $ |#1|) NIL)) (-4001 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) NIL)) (-2541 ((|#1| $) NIL (|has| |#1| (-861)))) (-3955 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3197 ((|#1| $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2001 (((-655 |#1|) $) NIL)) (-3308 (((-112) |#1| $) NIL)) (-4012 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3862 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4310 (((-655 |#1|) $) NIL)) (-2969 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1961 ((|#2| $) NIL (|has| |#1| (-861)))) (-3704 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-3954 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3601 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2883 (((-873) $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-4400 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1207 |#1| |#2|) (-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) (-1117) (-1117)) (T -1207)) +NIL +(-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) +((-2861 (((-112) $ $) NIL)) (-2572 (($ |#1| (-55)) 10)) (-1777 ((|#1| $) 12)) (-2288 (((-1176) $) NIL)) (-3789 (((-112) $ |#1|) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3156 (((-55) $) 14)) (-3914 (((-112) $ $) NIL))) +(((-1208 |#1|) (-13 (-846 |#1|) (-10 -8 (-15 -2572 ($ |#1| (-55))))) (-1117)) (T -1208)) +((-2572 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1208 *2)) (-4 *2 (-1117))))) +(-13 (-846 |#1|) (-10 -8 (-15 -2572 ($ |#1| (-55))))) +((-2082 ((|#1| (-655 |#1|)) 46)) (-2287 ((|#1| |#1| (-575)) 24)) (-2626 (((-1190 |#1|) |#1| (-936)) 20))) +(((-1209 |#1|) (-10 -7 (-15 -2082 (|#1| (-655 |#1|))) (-15 -2626 ((-1190 |#1|) |#1| (-936))) (-15 -2287 (|#1| |#1| (-575)))) (-373)) (T -1209)) +((-2287 (*1 *2 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-1209 *2)) (-4 *2 (-373)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-1190 *3)) (-5 *1 (-1209 *3)) (-4 *3 (-373)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-5 *1 (-1209 *2)) (-4 *2 (-373))))) +(-10 -7 (-15 -2082 (|#1| (-655 |#1|))) (-15 -2626 ((-1190 |#1|) |#1| (-936))) (-15 -2287 (|#1| |#1| (-575)))) +((-2297 (($) 10) (($ (-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)))) 14)) (-4404 (($ (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-4001 (((-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) 39) (((-655 |#3|) $) 41)) (-2847 (($ (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2550 (($ (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4012 (((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) 60)) (-3862 (($ (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) 16)) (-4310 (((-655 |#2|) $) 19)) (-2969 (((-112) |#2| $) 65)) (-3704 (((-3 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) "failed") (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) 64)) (-2454 (((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) 69)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-1691 (((-655 |#3|) $) 43)) (-2070 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) NIL) (((-782) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) NIL) (((-782) |#3| $) NIL) (((-782) (-1 (-112) |#3|) $) 79)) (-2883 (((-873) $) 27)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3914 (((-112) $ $) 51))) +(((-1210 |#1| |#2| |#3|) (-10 -8 (-15 -3914 ((-112) |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -2550 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2297 (|#1| (-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))))) (-15 -2297 (|#1|)) (-15 -2550 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2847 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3207 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3925 ((-782) (-1 (-112) |#3|) |#1|)) (-15 -4001 ((-655 |#3|) |#1|)) (-15 -3925 ((-782) |#3| |#1|)) (-15 -2070 (|#3| |#1| |#2| |#3|)) (-15 -2070 (|#3| |#1| |#2|)) (-15 -1691 ((-655 |#3|) |#1|)) (-15 -2969 ((-112) |#2| |#1|)) (-15 -4310 ((-655 |#2|) |#1|)) (-15 -4404 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4404 (|#1| (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -4404 (|#1| (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3704 ((-3 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) "failed") (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -4012 ((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3862 (|#1| (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -2454 ((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3925 ((-782) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -4001 ((-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -3925 ((-782) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -3207 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -3771 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2847 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2550 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|))) (-1211 |#2| |#3|) (-1117) (-1117)) (T -1210)) +NIL +(-10 -8 (-15 -3914 ((-112) |#1| |#1|)) (-15 -2883 ((-873) |#1|)) (-15 -2550 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2297 (|#1| (-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))))) (-15 -2297 (|#1|)) (-15 -2550 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2847 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3771 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3207 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3925 ((-782) (-1 (-112) |#3|) |#1|)) (-15 -4001 ((-655 |#3|) |#1|)) (-15 -3925 ((-782) |#3| |#1|)) (-15 -2070 (|#3| |#1| |#2| |#3|)) (-15 -2070 (|#3| |#1| |#2|)) (-15 -1691 ((-655 |#3|) |#1|)) (-15 -2969 ((-112) |#2| |#1|)) (-15 -4310 ((-655 |#2|) |#1|)) (-15 -4404 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4404 (|#1| (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -4404 (|#1| (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3704 ((-3 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) "failed") (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -4012 ((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3862 (|#1| (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -2454 ((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3925 ((-782) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -4001 ((-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -3925 ((-782) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -3207 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -3771 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2847 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2550 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|))) +((-2861 (((-112) $ $) 19 (-3765 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2297 (($) 73) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 72)) (-4161 (((-1290) $ |#1| |#1|) 100 (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) 8)) (-3054 ((|#2| $ |#1| |#2|) 74)) (-1999 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 46 (|has| $ (-6 -4460)))) (-3985 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 56 (|has| $ (-6 -4460)))) (-1399 (((-3 |#2| "failed") |#1| $) 62)) (-3011 (($) 7 T CONST)) (-1748 (($ $) 59 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))))) (-4404 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 47 (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 63)) (-3633 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 55 (|has| $ (-6 -4460)))) (-2308 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 57 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 54 (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 53 (|has| $ (-6 -4460)))) (-2859 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4461)))) (-2788 ((|#2| $ |#1|) 89)) (-4001 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 31 (|has| $ (-6 -4460))) (((-655 |#2|) $) 80 (|has| $ (-6 -4460)))) (-3896 (((-112) $ (-782)) 9)) (-2541 ((|#1| $) 97 (|has| |#1| (-861)))) (-3955 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 30 (|has| $ (-6 -4460))) (((-655 |#2|) $) 81 (|has| $ (-6 -4460)))) (-2625 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-3197 ((|#1| $) 96 (|has| |#1| (-861)))) (-2847 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 35 (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4461)))) (-2550 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4026 (((-112) $ (-782)) 10)) (-2288 (((-1176) $) 22 (-3765 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2001 (((-655 |#1|) $) 64)) (-3308 (((-112) |#1| $) 65)) (-4012 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 40)) (-3862 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 41)) (-4310 (((-655 |#1|) $) 94)) (-2969 (((-112) |#1| $) 93)) (-3912 (((-1137) $) 21 (-3765 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-1961 ((|#2| $) 98 (|has| |#1| (-861)))) (-3704 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 52)) (-3954 (($ $ |#2|) 99 (|has| $ (-6 -4461)))) (-2454 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 42)) (-3207 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 33 (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) 27 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 26 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 25 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 24 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) 87 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) 85 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) 84 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-1691 (((-655 |#2|) $) 92)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3601 (($) 50) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 49)) (-3925 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 32 (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-782) |#2| $) 82 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4460)))) (-3078 (($ $) 13)) (-2615 (((-547) $) 60 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2894 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 51)) (-2883 (((-873) $) 18 (-3765 (|has| |#2| (-624 (-873))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873)))))) (-4400 (((-112) $ $) 23 (-3765 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-1511 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 43)) (-3771 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 34 (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (-3765 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-1211 |#1| |#2|) (-141) (-1117) (-1117)) (T -1211)) +((-3054 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1211 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))) (-2297 (*1 *1) (-12 (-4 *1 (-1211 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-2297 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -4169 *3) (|:| -3179 *4)))) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *1 (-1211 *3 *4)))) (-2550 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1211 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117))))) +(-13 (-621 |t#1| |t#2|) (-615 |t#1| |t#2|) (-10 -8 (-15 -3054 (|t#2| $ |t#1| |t#2|)) (-15 -2297 ($)) (-15 -2297 ($ (-655 (-2 (|:| -4169 |t#1|) (|:| -3179 |t#2|))))) (-15 -2550 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((-102) -3765 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-624 (-873)) -3765 (|has| |#2| (-1117)) (|has| |#2| (-624 (-873))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873)))) ((-152 #0#) . T) ((-625 (-547)) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))) ((-231 #0#) . T) ((-240 #0#) . T) ((-295 |#1| |#2|) . T) ((-297 |#1| |#2|) . T) ((-318 #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-318 |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-500 #0#) . T) ((-500 |#2|) . T) ((-615 |#1| |#2|) . T) ((-525 #0# #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-525 |#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-621 |#1| |#2|) . T) ((-1117) -3765 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-1235) . T)) +((-1439 (((-112)) 29)) (-3189 (((-1290) (-1176)) 31)) (-3071 (((-112)) 41)) (-1569 (((-1290)) 39)) (-2799 (((-1290) (-1176) (-1176)) 30)) (-2740 (((-112)) 42)) (-3862 (((-1290) |#1| |#2|) 53)) (-3959 (((-1290)) 26)) (-4254 (((-3 |#2| "failed") |#1|) 51)) (-1781 (((-1290)) 40))) +(((-1212 |#1| |#2|) (-10 -7 (-15 -3959 ((-1290))) (-15 -2799 ((-1290) (-1176) (-1176))) (-15 -3189 ((-1290) (-1176))) (-15 -1569 ((-1290))) (-15 -1781 ((-1290))) (-15 -1439 ((-112))) (-15 -3071 ((-112))) (-15 -2740 ((-112))) (-15 -4254 ((-3 |#2| "failed") |#1|)) (-15 -3862 ((-1290) |#1| |#2|))) (-1117) (-1117)) (T -1212)) +((-3862 (*1 *2 *3 *4) (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-4254 (*1 *2 *3) (|partial| -12 (-4 *2 (-1117)) (-5 *1 (-1212 *3 *2)) (-4 *3 (-1117)))) (-2740 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-3071 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-1439 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-1781 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-1569 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-3189 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1212 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117)))) (-2799 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1212 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117)))) (-3959 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117))))) +(-10 -7 (-15 -3959 ((-1290))) (-15 -2799 ((-1290) (-1176) (-1176))) (-15 -3189 ((-1290) (-1176))) (-15 -1569 ((-1290))) (-15 -1781 ((-1290))) (-15 -1439 ((-112))) (-15 -3071 ((-112))) (-15 -2740 ((-112))) (-15 -4254 ((-3 |#2| "failed") |#1|)) (-15 -3862 ((-1290) |#1| |#2|))) +((-3555 (((-1176) (-1176)) 22)) (-1802 (((-52) (-1176)) 25))) +(((-1213) (-10 -7 (-15 -1802 ((-52) (-1176))) (-15 -3555 ((-1176) (-1176))))) (T -1213)) +((-3555 (*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1213)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-1213))))) +(-10 -7 (-15 -1802 ((-52) (-1176))) (-15 -3555 ((-1176) (-1176)))) +((-2883 (((-1215) |#1|) 11))) +(((-1214 |#1|) (-10 -7 (-15 -2883 ((-1215) |#1|))) (-1117)) (T -1214)) +((-2883 (*1 *2 *3) (-12 (-5 *2 (-1215)) (-5 *1 (-1214 *3)) (-4 *3 (-1117))))) +(-10 -7 (-15 -2883 ((-1215) |#1|))) +((-2861 (((-112) $ $) NIL)) (-2743 (((-655 (-1176)) $) 39)) (-1957 (((-655 (-1176)) $ (-655 (-1176))) 42)) (-3360 (((-655 (-1176)) $ (-655 (-1176))) 41)) (-3614 (((-655 (-1176)) $ (-655 (-1176))) 43)) (-3263 (((-655 (-1176)) $) 38)) (-2309 (($) 28)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3736 (((-655 (-1176)) $) 40)) (-2484 (((-1290) $ (-575)) 35) (((-1290) $) 36)) (-2615 (($ (-873) (-575)) 33) (($ (-873) (-575) (-873)) NIL)) (-2883 (((-873) $) 49) (($ (-873)) 32)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1215) (-13 (-1117) (-627 (-873)) (-10 -8 (-15 -2615 ($ (-873) (-575))) (-15 -2615 ($ (-873) (-575) (-873))) (-15 -2484 ((-1290) $ (-575))) (-15 -2484 ((-1290) $)) (-15 -3736 ((-655 (-1176)) $)) (-15 -2743 ((-655 (-1176)) $)) (-15 -2309 ($)) (-15 -3263 ((-655 (-1176)) $)) (-15 -3614 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -1957 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3360 ((-655 (-1176)) $ (-655 (-1176))))))) (T -1215)) +((-2615 (*1 *1 *2 *3) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-1215)))) (-2615 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-1215)))) (-2484 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1215)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1215)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))) (-2309 (*1 *1) (-5 *1 (-1215))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))) (-3614 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))) (-1957 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))) (-3360 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215))))) +(-13 (-1117) (-627 (-873)) (-10 -8 (-15 -2615 ($ (-873) (-575))) (-15 -2615 ($ (-873) (-575) (-873))) (-15 -2484 ((-1290) $ (-575))) (-15 -2484 ((-1290) $)) (-15 -3736 ((-655 (-1176)) $)) (-15 -2743 ((-655 (-1176)) $)) (-15 -2309 ($)) (-15 -3263 ((-655 (-1176)) $)) (-15 -3614 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -1957 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3360 ((-655 (-1176)) $ (-655 (-1176)))))) +((-2861 (((-112) $ $) NIL)) (-1936 (((-1176) $ (-1176)) 17) (((-1176) $) 16)) (-2766 (((-1176) $ (-1176)) 15)) (-4248 (($ $ (-1176)) NIL)) (-3732 (((-3 (-1176) "failed") $) 11)) (-3529 (((-1176) $) 8)) (-2099 (((-3 (-1176) "failed") $) 12)) (-1368 (((-1176) $) 9)) (-2978 (($ (-399)) NIL) (($ (-399) (-1176)) NIL)) (-1777 (((-399) $) NIL)) (-2288 (((-1176) $) NIL)) (-3212 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2299 (((-112) $) 21)) (-2883 (((-873) $) NIL)) (-3504 (($ $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1216) (-13 (-374 (-399) (-1176)) (-10 -8 (-15 -1936 ((-1176) $ (-1176))) (-15 -1936 ((-1176) $)) (-15 -3529 ((-1176) $)) (-15 -3732 ((-3 (-1176) "failed") $)) (-15 -2099 ((-3 (-1176) "failed") $)) (-15 -2299 ((-112) $))))) (T -1216)) +((-1936 (*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1216)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1216)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1216)))) (-3732 (*1 *2 *1) (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-1216)))) (-2099 (*1 *2 *1) (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-1216)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216))))) +(-13 (-374 (-399) (-1176)) (-10 -8 (-15 -1936 ((-1176) $ (-1176))) (-15 -1936 ((-1176) $)) (-15 -3529 ((-1176) $)) (-15 -3732 ((-3 (-1176) "failed") $)) (-15 -2099 ((-3 (-1176) "failed") $)) (-15 -2299 ((-112) $)))) +((-4428 (((-3 (-575) "failed") |#1|) 19)) (-3035 (((-3 (-575) "failed") |#1|) 14)) (-2824 (((-575) (-1176)) 33))) +(((-1217 |#1|) (-10 -7 (-15 -4428 ((-3 (-575) "failed") |#1|)) (-15 -3035 ((-3 (-575) "failed") |#1|)) (-15 -2824 ((-575) (-1176)))) (-1066)) (T -1217)) +((-2824 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-575)) (-5 *1 (-1217 *4)) (-4 *4 (-1066)))) (-3035 (*1 *2 *3) (|partial| -12 (-5 *2 (-575)) (-5 *1 (-1217 *3)) (-4 *3 (-1066)))) (-4428 (*1 *2 *3) (|partial| -12 (-5 *2 (-575)) (-5 *1 (-1217 *3)) (-4 *3 (-1066))))) +(-10 -7 (-15 -4428 ((-3 (-575) "failed") |#1|)) (-15 -3035 ((-3 (-575) "failed") |#1|)) (-15 -2824 ((-575) (-1176)))) +((-1476 (((-1150 (-227))) 9))) +(((-1218) (-10 -7 (-15 -1476 ((-1150 (-227)))))) (T -1218)) +((-1476 (*1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1218))))) +(-10 -7 (-15 -1476 ((-1150 (-227))))) +((-1631 (($) 12)) (-1568 (($ $) 36)) (-1544 (($ $) 34)) (-3828 (($ $) 26)) (-1592 (($ $) 18)) (-2914 (($ $) 16)) (-1583 (($ $) 20)) (-3863 (($ $) 31)) (-1554 (($ $) 35)) (-3839 (($ $) 30))) +(((-1219 |#1|) (-10 -8 (-15 -1631 (|#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3839 (|#1| |#1|))) (-1220)) (T -1219)) +NIL +(-10 -8 (-15 -1631 (|#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3839 (|#1| |#1|))) +((-3923 (($ $) 26)) (-3786 (($ $) 11)) (-3897 (($ $) 27)) (-3761 (($ $) 10)) (-1521 (($ $) 28)) (-3807 (($ $) 9)) (-1631 (($) 16)) (-3463 (($ $) 19)) (-2665 (($ $) 18)) (-1530 (($ $) 29)) (-3817 (($ $) 8)) (-3937 (($ $) 30)) (-3797 (($ $) 7)) (-3909 (($ $) 31)) (-3774 (($ $) 6)) (-1568 (($ $) 20)) (-3852 (($ $) 32)) (-1544 (($ $) 21)) (-3828 (($ $) 33)) (-1592 (($ $) 22)) (-3873 (($ $) 34)) (-2914 (($ $) 23)) (-3885 (($ $) 35)) (-1583 (($ $) 24)) (-3863 (($ $) 36)) (-1554 (($ $) 25)) (-3839 (($ $) 37)) (** (($ $ $) 17))) +(((-1220) (-141)) (T -1220)) +((-1631 (*1 *1) (-4 *1 (-1220)))) +(-13 (-1223) (-95) (-504) (-35) (-293) (-10 -8 (-15 -1631 ($)))) +(((-35) . T) ((-95) . T) ((-293) . T) ((-504) . T) ((-1223) . T)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4182 ((|#1| $) 19)) (-1633 (($ |#1| (-655 $)) 28) (($ (-655 |#1|)) 35) (($ |#1|) 30)) (-1845 (((-112) $ (-782)) 72)) (-1915 ((|#1| $ |#1|) 14 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) 13 (|has| $ (-6 -4461)))) (-3011 (($) NIL T CONST)) (-4001 (((-655 |#1|) $) 77 (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) 64)) (-3117 (((-112) $ $) 50 (|has| |#1| (-1117)))) (-3896 (((-112) $ (-782)) 62)) (-3955 (((-655 |#1|) $) 78 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2847 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 27)) (-4026 (((-112) $ (-782)) 60)) (-2482 (((-655 |#1|) $) 55)) (-1526 (((-112) $) 53)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3207 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 107)) (-4076 (((-112) $) 9)) (-1938 (($) 10)) (-2070 ((|#1| $ "value") NIL)) (-2220 (((-575) $ $) 48)) (-3330 (((-655 $) $) 89)) (-1797 (((-112) $ $) 110)) (-2373 (((-655 $) $) 105)) (-2042 (($ $) 106)) (-1648 (((-112) $) 84)) (-3925 (((-782) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4460))) (((-782) |#1| $) 17 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3078 (($ $) 88)) (-2883 (((-873) $) 91 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) 12)) (-2781 (((-112) $ $) 39 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 37 (|has| |#1| (-1117)))) (-2871 (((-782) $) 58 (|has| $ (-6 -4460))))) +(((-1221 |#1|) (-13 (-1027 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -1633 ($ |#1| (-655 $))) (-15 -1633 ($ (-655 |#1|))) (-15 -1633 ($ |#1|)) (-15 -1648 ((-112) $)) (-15 -2042 ($ $)) (-15 -2373 ((-655 $) $)) (-15 -1797 ((-112) $ $)) (-15 -3330 ((-655 $) $)))) (-1117)) (T -1221)) +((-1648 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1117)))) (-1633 (*1 *1 *2 *3) (-12 (-5 *3 (-655 (-1221 *2))) (-5 *1 (-1221 *2)) (-4 *2 (-1117)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-1221 *3)))) (-1633 (*1 *1 *2) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1117)))) (-2042 (*1 *1 *1) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1117)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-655 (-1221 *3))) (-5 *1 (-1221 *3)) (-4 *3 (-1117)))) (-1797 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1117)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-655 (-1221 *3))) (-5 *1 (-1221 *3)) (-4 *3 (-1117))))) +(-13 (-1027 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -1633 ($ |#1| (-655 $))) (-15 -1633 ($ (-655 |#1|))) (-15 -1633 ($ |#1|)) (-15 -1648 ((-112) $)) (-15 -2042 ($ $)) (-15 -2373 ((-655 $) $)) (-15 -1797 ((-112) $ $)) (-15 -3330 ((-655 $) $)))) +((-3786 (($ $) 15)) (-3807 (($ $) 12)) (-3817 (($ $) 10)) (-3797 (($ $) 17))) +(((-1222 |#1|) (-10 -8 (-15 -3797 (|#1| |#1|)) (-15 -3817 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3786 (|#1| |#1|))) (-1223)) (T -1222)) +NIL +(-10 -8 (-15 -3797 (|#1| |#1|)) (-15 -3817 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3786 (|#1| |#1|))) +((-3786 (($ $) 11)) (-3761 (($ $) 10)) (-3807 (($ $) 9)) (-3817 (($ $) 8)) (-3797 (($ $) 7)) (-3774 (($ $) 6))) +(((-1223) (-141)) (T -1223)) +((-3786 (*1 *1 *1) (-4 *1 (-1223))) (-3761 (*1 *1 *1) (-4 *1 (-1223))) (-3807 (*1 *1 *1) (-4 *1 (-1223))) (-3817 (*1 *1 *1) (-4 *1 (-1223))) (-3797 (*1 *1 *1) (-4 *1 (-1223))) (-3774 (*1 *1 *1) (-4 *1 (-1223)))) +(-13 (-10 -8 (-15 -3774 ($ $)) (-15 -3797 ($ $)) (-15 -3817 ($ $)) (-15 -3807 ($ $)) (-15 -3761 ($ $)) (-15 -3786 ($ $)))) +((-3414 ((|#2| |#2|) 98)) (-1837 (((-112) |#2|) 29)) (-2487 ((|#2| |#2|) 33)) (-1972 ((|#2| |#2|) 35)) (-4264 ((|#2| |#2| (-1194)) 92) ((|#2| |#2|) 93)) (-1928 (((-171 |#2|) |#2|) 31)) (-3496 ((|#2| |#2| (-1194)) 94) ((|#2| |#2|) 95))) +(((-1224 |#1| |#2|) (-10 -7 (-15 -4264 (|#2| |#2|)) (-15 -4264 (|#2| |#2| (-1194))) (-15 -3496 (|#2| |#2|)) (-15 -3496 (|#2| |#2| (-1194))) (-15 -3414 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -1972 (|#2| |#2|)) (-15 -1837 ((-112) |#2|)) (-15 -1928 ((-171 |#2|) |#2|))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -1224)) +((-1928 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-171 *3)) (-5 *1 (-1224 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-1837 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-112)) (-5 *1 (-1224 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) (-2487 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) (-3414 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) (-3496 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) (-4264 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-4264 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3)))))) +(-10 -7 (-15 -4264 (|#2| |#2|)) (-15 -4264 (|#2| |#2| (-1194))) (-15 -3496 (|#2| |#2|)) (-15 -3496 (|#2| |#2| (-1194))) (-15 -3414 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -1972 (|#2| |#2|)) (-15 -1837 ((-112) |#2|)) (-15 -1928 ((-171 |#2|) |#2|))) +((-4435 ((|#4| |#4| |#1|) 31)) (-4117 ((|#4| |#4| |#1|) 32))) +(((-1225 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4435 (|#4| |#4| |#1|)) (-15 -4117 (|#4| |#4| |#1|))) (-567) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|)) (T -1225)) +((-4117 (*1 *2 *2 *3) (-12 (-4 *3 (-567)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-1225 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-4435 (*1 *2 *2 *3) (-12 (-4 *3 (-567)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-1225 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5))))) +(-10 -7 (-15 -4435 (|#4| |#4| |#1|)) (-15 -4117 (|#4| |#4| |#1|))) +((-3153 ((|#2| |#2|) 148)) (-4344 ((|#2| |#2|) 145)) (-4004 ((|#2| |#2|) 136)) (-2776 ((|#2| |#2|) 133)) (-3012 ((|#2| |#2|) 141)) (-2258 ((|#2| |#2|) 129)) (-3066 ((|#2| |#2|) 44)) (-1632 ((|#2| |#2|) 105)) (-2598 ((|#2| |#2|) 88)) (-2486 ((|#2| |#2|) 143)) (-4096 ((|#2| |#2|) 131)) (-3137 ((|#2| |#2|) 153)) (-2623 ((|#2| |#2|) 151)) (-4366 ((|#2| |#2|) 152)) (-1374 ((|#2| |#2|) 150)) (-2037 ((|#2| |#2|) 163)) (-1727 ((|#2| |#2|) 30 (-12 (|has| |#2| (-625 (-904 |#1|))) (|has| |#2| (-898 |#1|)) (|has| |#1| (-625 (-904 |#1|))) (|has| |#1| (-898 |#1|))))) (-4140 ((|#2| |#2|) 89)) (-3600 ((|#2| |#2|) 154)) (-3945 ((|#2| |#2|) 155)) (-3136 ((|#2| |#2|) 142)) (-4297 ((|#2| |#2|) 130)) (-2340 ((|#2| |#2|) 149)) (-2832 ((|#2| |#2|) 147)) (-3612 ((|#2| |#2|) 137)) (-3044 ((|#2| |#2|) 135)) (-1681 ((|#2| |#2|) 139)) (-3311 ((|#2| |#2|) 127))) +(((-1226 |#1| |#2|) (-10 -7 (-15 -3945 (|#2| |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -3311 (|#2| |#2|)) (-15 -1681 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -4297 (|#2| |#2|)) (-15 -3136 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -2486 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -3153 (|#2| |#2|)) (-15 -2776 (|#2| |#2|)) (-15 -4344 (|#2| |#2|)) (-15 -3044 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -1374 (|#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -4366 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (IF (|has| |#1| (-898 |#1|)) (IF (|has| |#1| (-625 (-904 |#1|))) (IF (|has| |#2| (-625 (-904 |#1|))) (IF (|has| |#2| (-898 |#1|)) (-15 -1727 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-463) (-13 (-441 |#1|) (-1220))) (T -1226)) +((-1727 (*1 *2 *2) (-12 (-4 *3 (-625 (-904 *3))) (-4 *3 (-898 *3)) (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-625 (-904 *3))) (-4 *2 (-898 *3)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-4366 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2623 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-1374 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3044 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-4344 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2776 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3153 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2486 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3136 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-4297 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-1681 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3311 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3600 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2037 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2598 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220)))))) +(-10 -7 (-15 -3945 (|#2| |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -3311 (|#2| |#2|)) (-15 -1681 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -4297 (|#2| |#2|)) (-15 -3136 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -2486 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -3153 (|#2| |#2|)) (-15 -2776 (|#2| |#2|)) (-15 -4344 (|#2| |#2|)) (-15 -3044 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -1374 (|#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -4366 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (IF (|has| |#1| (-898 |#1|)) (IF (|has| |#1| (-625 (-904 |#1|))) (IF (|has| |#2| (-625 (-904 |#1|))) (IF (|has| |#2| (-898 |#1|)) (-15 -1727 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-3309 (((-112) |#5| $) 68) (((-112) $) 110)) (-2749 ((|#5| |#5| $) 83)) (-3985 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3376 (((-655 |#5|) (-655 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2449 (((-3 $ "failed") (-655 |#5|)) 135)) (-1975 (((-3 $ "failed") $) 120)) (-2690 ((|#5| |#5| $) 102)) (-2249 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-4183 ((|#5| |#5| $) 106)) (-2308 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-2029 (((-2 (|:| -2458 (-655 |#5|)) (|:| -2978 (-655 |#5|))) $) 63)) (-2548 (((-112) |#5| $) 66) (((-112) $) 111)) (-3838 ((|#4| $) 116)) (-3653 (((-3 |#5| "failed") $) 118)) (-1590 (((-655 |#5|) $) 55)) (-1411 (((-112) |#5| $) 75) (((-112) $) 115)) (-4367 ((|#5| |#5| $) 89)) (-2687 (((-112) $ $) 29)) (-3188 (((-112) |#5| $) 71) (((-112) $) 113)) (-2973 ((|#5| |#5| $) 86)) (-1961 (((-3 |#5| "failed") $) 117)) (-4276 (($ $ |#5|) 136)) (-2645 (((-782) $) 60)) (-2894 (($ (-655 |#5|)) 133)) (-1879 (($ $ |#4|) 131)) (-3427 (($ $ |#4|) 129)) (-2921 (($ $) 128)) (-2883 (((-873) $) NIL) (((-655 |#5|) $) 121)) (-3706 (((-782) $) 140)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2994 (((-112) $ (-1 (-112) |#5| (-655 |#5|))) 108)) (-1359 (((-655 |#4|) $) 123)) (-1591 (((-112) |#4| $) 126)) (-3914 (((-112) $ $) 20))) +(((-1227 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3706 ((-782) |#1|)) (-15 -4276 (|#1| |#1| |#5|)) (-15 -3985 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1591 ((-112) |#4| |#1|)) (-15 -1359 ((-655 |#4|) |#1|)) (-15 -1975 ((-3 |#1| "failed") |#1|)) (-15 -3653 ((-3 |#5| "failed") |#1|)) (-15 -1961 ((-3 |#5| "failed") |#1|)) (-15 -4183 (|#5| |#5| |#1|)) (-15 -2921 (|#1| |#1|)) (-15 -2690 (|#5| |#5| |#1|)) (-15 -4367 (|#5| |#5| |#1|)) (-15 -2973 (|#5| |#5| |#1|)) (-15 -2749 (|#5| |#5| |#1|)) (-15 -3376 ((-655 |#5|) (-655 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2308 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1411 ((-112) |#1|)) (-15 -3188 ((-112) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -2994 ((-112) |#1| (-1 (-112) |#5| (-655 |#5|)))) (-15 -1411 ((-112) |#5| |#1|)) (-15 -3188 ((-112) |#5| |#1|)) (-15 -3309 ((-112) |#5| |#1|)) (-15 -2249 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2548 ((-112) |#1|)) (-15 -2548 ((-112) |#5| |#1|)) (-15 -2029 ((-2 (|:| -2458 (-655 |#5|)) (|:| -2978 (-655 |#5|))) |#1|)) (-15 -2645 ((-782) |#1|)) (-15 -1590 ((-655 |#5|) |#1|)) (-15 -3214 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3214 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2687 ((-112) |#1| |#1|)) (-15 -1879 (|#1| |#1| |#4|)) (-15 -3427 (|#1| |#1| |#4|)) (-15 -3838 (|#4| |#1|)) (-15 -2449 ((-3 |#1| "failed") (-655 |#5|))) (-15 -2883 ((-655 |#5|) |#1|)) (-15 -2894 (|#1| (-655 |#5|))) (-15 -2308 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2308 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3985 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2308 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) (-1228 |#2| |#3| |#4| |#5|) (-567) (-804) (-861) (-1082 |#2| |#3| |#4|)) (T -1227)) +NIL +(-10 -8 (-15 -3706 ((-782) |#1|)) (-15 -4276 (|#1| |#1| |#5|)) (-15 -3985 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1591 ((-112) |#4| |#1|)) (-15 -1359 ((-655 |#4|) |#1|)) (-15 -1975 ((-3 |#1| "failed") |#1|)) (-15 -3653 ((-3 |#5| "failed") |#1|)) (-15 -1961 ((-3 |#5| "failed") |#1|)) (-15 -4183 (|#5| |#5| |#1|)) (-15 -2921 (|#1| |#1|)) (-15 -2690 (|#5| |#5| |#1|)) (-15 -4367 (|#5| |#5| |#1|)) (-15 -2973 (|#5| |#5| |#1|)) (-15 -2749 (|#5| |#5| |#1|)) (-15 -3376 ((-655 |#5|) (-655 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2308 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1411 ((-112) |#1|)) (-15 -3188 ((-112) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -2994 ((-112) |#1| (-1 (-112) |#5| (-655 |#5|)))) (-15 -1411 ((-112) |#5| |#1|)) (-15 -3188 ((-112) |#5| |#1|)) (-15 -3309 ((-112) |#5| |#1|)) (-15 -2249 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2548 ((-112) |#1|)) (-15 -2548 ((-112) |#5| |#1|)) (-15 -2029 ((-2 (|:| -2458 (-655 |#5|)) (|:| -2978 (-655 |#5|))) |#1|)) (-15 -2645 ((-782) |#1|)) (-15 -1590 ((-655 |#5|) |#1|)) (-15 -3214 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3214 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2687 ((-112) |#1| |#1|)) (-15 -1879 (|#1| |#1| |#4|)) (-15 -3427 (|#1| |#1| |#4|)) (-15 -3838 (|#4| |#1|)) (-15 -2449 ((-3 |#1| "failed") (-655 |#5|))) (-15 -2883 ((-655 |#5|) |#1|)) (-15 -2894 (|#1| (-655 |#5|))) (-15 -2308 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2308 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3985 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2308 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2883 ((-873) |#1|)) (-15 -3914 ((-112) |#1| |#1|))) +((-2861 (((-112) $ $) 7)) (-3303 (((-655 (-2 (|:| -2458 $) (|:| -2978 (-655 |#4|)))) (-655 |#4|)) 86)) (-1740 (((-655 $) (-655 |#4|)) 87)) (-1606 (((-655 |#3|) $) 34)) (-2210 (((-112) $) 27)) (-3036 (((-112) $) 18 (|has| |#1| (-567)))) (-3309 (((-112) |#4| $) 102) (((-112) $) 98)) (-2749 ((|#4| |#4| $) 93)) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#3|) 28)) (-1845 (((-112) $ (-782)) 45)) (-3985 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 80)) (-3011 (($) 46 T CONST)) (-1437 (((-112) $) 23 (|has| |#1| (-567)))) (-2365 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4289 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1812 (((-112) $) 26 (|has| |#1| (-567)))) (-3376 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3629 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-3563 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 |#4|)) 37)) (-4399 (($ (-655 |#4|)) 36)) (-1975 (((-3 $ "failed") $) 83)) (-2690 ((|#4| |#4| $) 90)) (-1748 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-2249 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4183 ((|#4| |#4| $) 88)) (-2308 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2029 (((-2 (|:| -2458 (-655 |#4|)) (|:| -2978 (-655 |#4|))) $) 106)) (-4001 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-2548 (((-112) |#4| $) 105) (((-112) $) 104)) (-3838 ((|#3| $) 35)) (-3896 (((-112) $ (-782)) 44)) (-3955 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) 48)) (-1444 (((-655 |#3|) $) 33)) (-1808 (((-112) |#3| $) 32)) (-4026 (((-112) $ (-782)) 43)) (-2288 (((-1176) $) 10)) (-3653 (((-3 |#4| "failed") $) 84)) (-1590 (((-655 |#4|) $) 108)) (-1411 (((-112) |#4| $) 100) (((-112) $) 96)) (-4367 ((|#4| |#4| $) 91)) (-2687 (((-112) $ $) 111)) (-4395 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-3188 (((-112) |#4| $) 101) (((-112) $) 97)) (-2973 ((|#4| |#4| $) 92)) (-3912 (((-1137) $) 11)) (-1961 (((-3 |#4| "failed") $) 85)) (-3704 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2500 (((-3 $ "failed") $ |#4|) 79)) (-4276 (($ $ |#4|) 78)) (-3207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) 39)) (-4076 (((-112) $) 42)) (-1938 (($) 41)) (-2645 (((-782) $) 107)) (-3925 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3078 (($ $) 40)) (-2615 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2894 (($ (-655 |#4|)) 61)) (-1879 (($ $ |#3|) 29)) (-3427 (($ $ |#3|) 31)) (-2921 (($ $) 89)) (-3608 (($ $ |#3|) 30)) (-2883 (((-873) $) 12) (((-655 |#4|) $) 38)) (-3706 (((-782) $) 77 (|has| |#3| (-378)))) (-4400 (((-112) $ $) 9)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2994 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) 99)) (-3771 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-1359 (((-655 |#3|) $) 82)) (-1591 (((-112) |#3| $) 81)) (-3914 (((-112) $ $) 6)) (-2871 (((-782) $) 47 (|has| $ (-6 -4460))))) +(((-1228 |#1| |#2| |#3| |#4|) (-141) (-567) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -1228)) +((-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-3214 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-655 *8)))) (-5 *3 (-655 *8)) (-4 *1 (-1228 *5 *6 *7 *8)))) (-3214 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567)) (-4 *7 (-804)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-655 *9)))) (-5 *3 (-655 *9)) (-4 *1 (-1228 *6 *7 *8 *9)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *6)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-782)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-2 (|:| -2458 (-655 *6)) (|:| -2978 (-655 *6)))))) (-2548 (*1 *2 *3 *1) (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-2249 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1228 *5 *6 *7 *3)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112)))) (-3309 (*1 *2 *3 *1) (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-1411 (*1 *2 *3 *1) (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-2994 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-655 *7))) (-4 *1 (-1228 *4 *5 *6 *7)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-1411 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-2308 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1228 *5 *6 *7 *2)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *2 (-1082 *5 *6 *7)))) (-3376 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-655 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1228 *5 *6 *7 *8)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)))) (-2749 (*1 *2 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-2973 (*1 *2 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-4367 (*1 *2 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-2690 (*1 *2 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-2921 (*1 *1 *1) (-12 (-4 *1 (-1228 *2 *3 *4 *5)) (-4 *2 (-567)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-1082 *2 *3 *4)))) (-4183 (*1 *2 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1228 *4 *5 *6 *7)))) (-3303 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-655 (-2 (|:| -2458 *1) (|:| -2978 (-655 *7))))) (-5 *3 (-655 *7)) (-4 *1 (-1228 *4 *5 *6 *7)))) (-1961 (*1 *2 *1) (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-3653 (*1 *2 *1) (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-1975 (*1 *1 *1) (|partial| -12 (-4 *1 (-1228 *2 *3 *4 *5)) (-4 *2 (-567)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-1082 *2 *3 *4)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5)))) (-1591 (*1 *2 *3 *1) (-12 (-4 *1 (-1228 *4 *5 *3 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *3 (-861)) (-4 *6 (-1082 *4 *5 *3)) (-5 *2 (-112)))) (-3985 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1228 *4 *5 *3 *2)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *3 (-861)) (-4 *2 (-1082 *4 *5 *3)))) (-2500 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-4276 (*1 *1 *1 *2) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *5 (-378)) (-5 *2 (-782))))) +(-13 (-993 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -2687 ((-112) $ $)) (-15 -3214 ((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |t#4|))) "failed") (-655 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3214 ((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |t#4|))) "failed") (-655 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1590 ((-655 |t#4|) $)) (-15 -2645 ((-782) $)) (-15 -2029 ((-2 (|:| -2458 (-655 |t#4|)) (|:| -2978 (-655 |t#4|))) $)) (-15 -2548 ((-112) |t#4| $)) (-15 -2548 ((-112) $)) (-15 -2249 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3309 ((-112) |t#4| $)) (-15 -3188 ((-112) |t#4| $)) (-15 -1411 ((-112) |t#4| $)) (-15 -2994 ((-112) $ (-1 (-112) |t#4| (-655 |t#4|)))) (-15 -3309 ((-112) $)) (-15 -3188 ((-112) $)) (-15 -1411 ((-112) $)) (-15 -2308 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3376 ((-655 |t#4|) (-655 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2749 (|t#4| |t#4| $)) (-15 -2973 (|t#4| |t#4| $)) (-15 -4367 (|t#4| |t#4| $)) (-15 -2690 (|t#4| |t#4| $)) (-15 -2921 ($ $)) (-15 -4183 (|t#4| |t#4| $)) (-15 -1740 ((-655 $) (-655 |t#4|))) (-15 -3303 ((-655 (-2 (|:| -2458 $) (|:| -2978 (-655 |t#4|)))) (-655 |t#4|))) (-15 -1961 ((-3 |t#4| "failed") $)) (-15 -3653 ((-3 |t#4| "failed") $)) (-15 -1975 ((-3 $ "failed") $)) (-15 -1359 ((-655 |t#3|) $)) (-15 -1591 ((-112) |t#3| $)) (-15 -3985 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2500 ((-3 $ "failed") $ |t#4|)) (-15 -4276 ($ $ |t#4|)) (IF (|has| |t#3| (-378)) (-15 -3706 ((-782) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-993 |#1| |#2| |#3| |#4|) . T) ((-1117) . T) ((-1235) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 (-1194)) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-3923 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3897 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2485 (((-967 |#1|) $ (-782)) 17) (((-967 |#1|) $ (-782) (-782)) NIL)) (-2789 (((-112) $) NIL)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-782) $ (-1194)) NIL) (((-782) $ (-1194) (-782)) NIL)) (-1542 (((-112) $) NIL)) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2376 (((-112) $) NIL)) (-2417 (($ $ (-655 (-1194)) (-655 (-542 (-1194)))) NIL) (($ $ (-1194) (-542 (-1194))) NIL) (($ |#1| (-542 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3463 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-4413 (($ $ (-1194)) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-1469 (($ (-1 $) (-1194) |#1|) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4276 (($ $ (-782)) NIL)) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2665 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3048 (($ $ (-1194) $) NIL) (($ $ (-655 (-1194)) (-655 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL)) (-2389 (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL)) (-2645 (((-542 (-1194)) $) NIL)) (-1530 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-567))) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-1194)) NIL) (($ (-967 |#1|)) NIL)) (-2012 ((|#1| $ (-542 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (((-967 |#1|) $ (-782)) NIL)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2914 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3430 (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1229 |#1|) (-13 (-751 |#1| (-1194)) (-10 -8 (-15 -2012 ((-967 |#1|) $ (-782))) (-15 -2883 ($ (-1194))) (-15 -2883 ($ (-967 |#1|))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ($ $ (-1194) |#1|)) (-15 -1469 ($ (-1 $) (-1194) |#1|))) |%noBranch|))) (-1066)) (T -1229)) +((-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-967 *4)) (-5 *1 (-1229 *4)) (-4 *4 (-1066)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1229 *3)) (-4 *3 (-1066)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-967 *3)) (-4 *3 (-1066)) (-5 *1 (-1229 *3)))) (-4413 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *1 (-1229 *3)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)))) (-1469 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1229 *4))) (-5 *3 (-1194)) (-5 *1 (-1229 *4)) (-4 *4 (-38 (-418 (-575)))) (-4 *4 (-1066))))) +(-13 (-751 |#1| (-1194)) (-10 -8 (-15 -2012 ((-967 |#1|) $ (-782))) (-15 -2883 ($ (-1194))) (-15 -2883 ($ (-967 |#1|))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ($ $ (-1194) |#1|)) (-15 -1469 ($ (-1 $) (-1194) |#1|))) |%noBranch|))) +((-1671 (($ |#1| (-655 (-655 (-958 (-227)))) (-112)) 19)) (-3292 (((-112) $ (-112)) 18)) (-3580 (((-112) $) 17)) (-3796 (((-655 (-655 (-958 (-227)))) $) 13)) (-4195 ((|#1| $) 8)) (-1977 (((-112) $) 15))) +(((-1230 |#1|) (-10 -8 (-15 -4195 (|#1| $)) (-15 -3796 ((-655 (-655 (-958 (-227)))) $)) (-15 -1977 ((-112) $)) (-15 -3580 ((-112) $)) (-15 -3292 ((-112) $ (-112))) (-15 -1671 ($ |#1| (-655 (-655 (-958 (-227)))) (-112)))) (-991)) (T -1230)) +((-1671 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-112)) (-5 *1 (-1230 *2)) (-4 *2 (-991)))) (-3292 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991)))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-1230 *3)) (-4 *3 (-991)))) (-4195 (*1 *2 *1) (-12 (-5 *1 (-1230 *2)) (-4 *2 (-991))))) +(-10 -8 (-15 -4195 (|#1| $)) (-15 -3796 ((-655 (-655 (-958 (-227)))) $)) (-15 -1977 ((-112) $)) (-15 -3580 ((-112) $)) (-15 -3292 ((-112) $ (-112))) (-15 -1671 ($ |#1| (-655 (-655 (-958 (-227)))) (-112)))) +((-4176 (((-958 (-227)) (-958 (-227))) 31)) (-1838 (((-958 (-227)) (-227) (-227) (-227) (-227)) 10)) (-4253 (((-655 (-958 (-227))) (-958 (-227)) (-958 (-227)) (-958 (-227)) (-227) (-655 (-655 (-227)))) 56)) (-1886 (((-227) (-958 (-227)) (-958 (-227))) 27)) (-4304 (((-958 (-227)) (-958 (-227)) (-958 (-227))) 28)) (-3826 (((-655 (-655 (-227))) (-575)) 44)) (-4028 (((-958 (-227)) (-958 (-227)) (-958 (-227))) 26)) (-4016 (((-958 (-227)) (-958 (-227)) (-958 (-227))) 24)) (* (((-958 (-227)) (-227) (-958 (-227))) 22))) +(((-1231) (-10 -7 (-15 -1838 ((-958 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-958 (-227)) (-227) (-958 (-227)))) (-15 -4016 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -4028 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -1886 ((-227) (-958 (-227)) (-958 (-227)))) (-15 -4304 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -4176 ((-958 (-227)) (-958 (-227)))) (-15 -3826 ((-655 (-655 (-227))) (-575))) (-15 -4253 ((-655 (-958 (-227))) (-958 (-227)) (-958 (-227)) (-958 (-227)) (-227) (-655 (-655 (-227))))))) (T -1231)) +((-4253 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-655 (-655 (-227)))) (-5 *4 (-227)) (-5 *2 (-655 (-958 *4))) (-5 *1 (-1231)) (-5 *3 (-958 *4)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-575)) (-5 *2 (-655 (-655 (-227)))) (-5 *1 (-1231)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))) (-4304 (*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))) (-1886 (*1 *2 *3 *3) (-12 (-5 *3 (-958 (-227))) (-5 *2 (-227)) (-5 *1 (-1231)))) (-4028 (*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))) (-4016 (*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-958 (-227))) (-5 *3 (-227)) (-5 *1 (-1231)))) (-1838 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)) (-5 *3 (-227))))) +(-10 -7 (-15 -1838 ((-958 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-958 (-227)) (-227) (-958 (-227)))) (-15 -4016 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -4028 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -1886 ((-227) (-958 (-227)) (-958 (-227)))) (-15 -4304 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -4176 ((-958 (-227)) (-958 (-227)))) (-15 -3826 ((-655 (-655 (-227))) (-575))) (-15 -4253 ((-655 (-958 (-227))) (-958 (-227)) (-958 (-227)) (-958 (-227)) (-227) (-655 (-655 (-227)))))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3985 ((|#1| $ (-782)) 18)) (-1839 (((-782) $) 13)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2883 (((-973 |#1|) $) 12) (($ (-973 |#1|)) 11) (((-873) $) 29 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3914 (((-112) $ $) 22 (|has| |#1| (-1117))))) +(((-1232 |#1|) (-13 (-501 (-973 |#1|)) (-10 -8 (-15 -3985 (|#1| $ (-782))) (-15 -1839 ((-782) $)) (IF (|has| |#1| (-624 (-873))) (-6 (-624 (-873))) |%noBranch|) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|))) (-1235)) (T -1232)) +((-3985 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-1232 *2)) (-4 *2 (-1235)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1232 *3)) (-4 *3 (-1235))))) +(-13 (-501 (-973 |#1|)) (-10 -8 (-15 -3985 (|#1| $ (-782))) (-15 -1839 ((-782) $)) (IF (|has| |#1| (-624 (-873))) (-6 (-624 (-873))) |%noBranch|) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|))) +((-1880 (((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)) (-575)) 94)) (-3895 (((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|))) 86)) (-3385 (((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|))) 70))) +(((-1233 |#1|) (-10 -7 (-15 -3895 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)))) (-15 -3385 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)))) (-15 -1880 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)) (-575)))) (-359)) (T -1233)) +((-1880 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-4 *5 (-359)) (-5 *2 (-429 (-1190 (-1190 *5)))) (-5 *1 (-1233 *5)) (-5 *3 (-1190 (-1190 *5))))) (-3385 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-429 (-1190 (-1190 *4)))) (-5 *1 (-1233 *4)) (-5 *3 (-1190 (-1190 *4))))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-429 (-1190 (-1190 *4)))) (-5 *1 (-1233 *4)) (-5 *3 (-1190 (-1190 *4)))))) +(-10 -7 (-15 -3895 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)))) (-15 -3385 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)))) (-15 -1880 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)) (-575)))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 9) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1234) (-1100)) (T -1234)) +NIL +(-1100) +NIL +(((-1235) (-141)) (T -1235)) NIL (-13 (-10 -7 (-6 -3460))) -((-2386 (((-112)) 18)) (-3588 (((-1291) (-656 |#1|) (-656 |#1|)) 22) (((-1291) (-656 |#1|)) 23)) (-2408 (((-112) |#1| |#1|) 37 (|has| |#1| (-862)))) (-2374 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2397 ((|#1| (-656 |#1|)) 38 (|has| |#1| (-862))) ((|#1| (-656 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-2364 (((-2 (|:| -3659 (-656 |#1|)) (|:| -3647 (-656 |#1|)))) 20))) -(((-1237 |#1|) (-10 -7 (-15 -3588 ((-1291) (-656 |#1|))) (-15 -3588 ((-1291) (-656 |#1|) (-656 |#1|))) (-15 -2364 ((-2 (|:| -3659 (-656 |#1|)) (|:| -3647 (-656 |#1|))))) (-15 -2374 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2374 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2397 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2386 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -2397 (|#1| (-656 |#1|))) (-15 -2408 ((-112) |#1| |#1|))) |%noBranch|)) (-1118)) (T -1237)) -((-2408 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-862)) (-4 *3 (-1118)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-862)) (-5 *1 (-1237 *2)))) (-2386 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1118)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1237 *2)) (-4 *2 (-1118)))) (-2374 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-1237 *3)))) (-2374 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1118)))) (-2364 (*1 *2) (-12 (-5 *2 (-2 (|:| -3659 (-656 *3)) (|:| -3647 (-656 *3)))) (-5 *1 (-1237 *3)) (-4 *3 (-1118)))) (-3588 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-5 *2 (-1291)) (-5 *1 (-1237 *4)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-5 *2 (-1291)) (-5 *1 (-1237 *4))))) -(-10 -7 (-15 -3588 ((-1291) (-656 |#1|))) (-15 -3588 ((-1291) (-656 |#1|) (-656 |#1|))) (-15 -2364 ((-2 (|:| -3659 (-656 |#1|)) (|:| -3647 (-656 |#1|))))) (-15 -2374 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2374 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2397 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2386 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -2397 (|#1| (-656 |#1|))) (-15 -2408 ((-112) |#1| |#1|))) |%noBranch|)) -((-2423 (((-1291) (-656 (-1195)) (-656 (-1195))) 14) (((-1291) (-656 (-1195))) 12)) (-2450 (((-1291)) 16)) (-2439 (((-2 (|:| -3647 (-656 (-1195))) (|:| -3659 (-656 (-1195))))) 20))) -(((-1238) (-10 -7 (-15 -2423 ((-1291) (-656 (-1195)))) (-15 -2423 ((-1291) (-656 (-1195)) (-656 (-1195)))) (-15 -2439 ((-2 (|:| -3647 (-656 (-1195))) (|:| -3659 (-656 (-1195)))))) (-15 -2450 ((-1291))))) (T -1238)) -((-2450 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1238)))) (-2439 (*1 *2) (-12 (-5 *2 (-2 (|:| -3647 (-656 (-1195))) (|:| -3659 (-656 (-1195))))) (-5 *1 (-1238)))) (-2423 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238))))) -(-10 -7 (-15 -2423 ((-1291) (-656 (-1195)))) (-15 -2423 ((-1291) (-656 (-1195)) (-656 (-1195)))) (-15 -2439 ((-2 (|:| -3647 (-656 (-1195))) (|:| -3659 (-656 (-1195)))))) (-15 -2450 ((-1291)))) -((-2944 (($ $) 17)) (-2463 (((-112) $) 28))) -(((-1239 |#1|) (-10 -8 (-15 -2944 (|#1| |#1|)) (-15 -2463 ((-112) |#1|))) (-1240)) (T -1239)) -NIL -(-10 -8 (-15 -2944 (|#1| |#1|)) (-15 -2463 ((-112) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 57)) (-3986 (((-430 $) $) 58)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-2463 (((-112) $) 59)) (-1439 (((-112) $) 35)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2354 (((-430 $) $) 56)) (-2852 (((-3 $ "failed") $ $) 48)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1240) (-141)) (T -1240)) -((-2463 (*1 *2 *1) (-12 (-4 *1 (-1240)) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240)))) (-2944 (*1 *1 *1) (-4 *1 (-1240))) (-2354 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240))))) -(-13 (-464) (-10 -8 (-15 -2463 ((-112) $)) (-15 -3986 ((-430 $) $)) (-15 -2944 ($ $)) (-15 -2354 ((-430 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) NIL)) (-2473 (($) NIL T CONST)) (-2080 (($) NIL)) (-1921 (($ $ $) NIL) (($) NIL T CONST)) (-4137 (($ $ $) NIL) (($) NIL T CONST)) (-1875 (((-937) $) NIL)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-1485 (($ $ $) NIL)) (-3383 (($ $ $) NIL)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) -(((-1241) (-13 (-856) (-10 -8 (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739)))) (T -1241)) -((-3383 (*1 *1 *1 *1) (-5 *1 (-1241))) (-1485 (*1 *1 *1 *1) (-5 *1 (-1241))) (-2473 (*1 *1) (-5 *1 (-1241)))) -(-13 (-856) (-10 -8 (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739))) +((-2585 (((-112)) 18)) (-3582 (((-1290) (-655 |#1|) (-655 |#1|)) 22) (((-1290) (-655 |#1|)) 23)) (-3896 (((-112) |#1| |#1|) 37 (|has| |#1| (-861)))) (-4026 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-4203 ((|#1| (-655 |#1|)) 38 (|has| |#1| (-861))) ((|#1| (-655 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-4228 (((-2 (|:| -4024 (-655 |#1|)) (|:| -4131 (-655 |#1|)))) 20))) +(((-1236 |#1|) (-10 -7 (-15 -3582 ((-1290) (-655 |#1|))) (-15 -3582 ((-1290) (-655 |#1|) (-655 |#1|))) (-15 -4228 ((-2 (|:| -4024 (-655 |#1|)) (|:| -4131 (-655 |#1|))))) (-15 -4026 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4026 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4203 (|#1| (-655 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2585 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -4203 (|#1| (-655 |#1|))) (-15 -3896 ((-112) |#1| |#1|))) |%noBranch|)) (-1117)) (T -1236)) +((-3896 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-861)) (-4 *3 (-1117)))) (-4203 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-861)) (-5 *1 (-1236 *2)))) (-2585 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1117)))) (-4203 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1236 *2)) (-4 *2 (-1117)))) (-4026 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1117)) (-5 *2 (-112)) (-5 *1 (-1236 *3)))) (-4026 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1117)))) (-4228 (*1 *2) (-12 (-5 *2 (-2 (|:| -4024 (-655 *3)) (|:| -4131 (-655 *3)))) (-5 *1 (-1236 *3)) (-4 *3 (-1117)))) (-3582 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-5 *2 (-1290)) (-5 *1 (-1236 *4)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-5 *2 (-1290)) (-5 *1 (-1236 *4))))) +(-10 -7 (-15 -3582 ((-1290) (-655 |#1|))) (-15 -3582 ((-1290) (-655 |#1|) (-655 |#1|))) (-15 -4228 ((-2 (|:| -4024 (-655 |#1|)) (|:| -4131 (-655 |#1|))))) (-15 -4026 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4026 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4203 (|#1| (-655 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2585 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -4203 (|#1| (-655 |#1|))) (-15 -3896 ((-112) |#1| |#1|))) |%noBranch|)) +((-2107 (((-1290) (-655 (-1194)) (-655 (-1194))) 14) (((-1290) (-655 (-1194))) 12)) (-2760 (((-1290)) 16)) (-4035 (((-2 (|:| -4131 (-655 (-1194))) (|:| -4024 (-655 (-1194))))) 20))) +(((-1237) (-10 -7 (-15 -2107 ((-1290) (-655 (-1194)))) (-15 -2107 ((-1290) (-655 (-1194)) (-655 (-1194)))) (-15 -4035 ((-2 (|:| -4131 (-655 (-1194))) (|:| -4024 (-655 (-1194)))))) (-15 -2760 ((-1290))))) (T -1237)) +((-2760 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1237)))) (-4035 (*1 *2) (-12 (-5 *2 (-2 (|:| -4131 (-655 (-1194))) (|:| -4024 (-655 (-1194))))) (-5 *1 (-1237)))) (-2107 (*1 *2 *3 *3) (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1237)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1237))))) +(-10 -7 (-15 -2107 ((-1290) (-655 (-1194)))) (-15 -2107 ((-1290) (-655 (-1194)) (-655 (-1194)))) (-15 -4035 ((-2 (|:| -4131 (-655 (-1194))) (|:| -4024 (-655 (-1194)))))) (-15 -2760 ((-1290)))) +((-2058 (($ $) 17)) (-1336 (((-112) $) 28))) +(((-1238 |#1|) (-10 -8 (-15 -2058 (|#1| |#1|)) (-15 -1336 ((-112) |#1|))) (-1239)) (T -1238)) +NIL +(-10 -8 (-15 -2058 (|#1| |#1|)) (-15 -1336 ((-112) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 57)) (-2330 (((-429 $) $) 58)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1336 (((-112) $) 59)) (-1542 (((-112) $) 35)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2353 (((-429 $) $) 56)) (-2851 (((-3 $ "failed") $ $) 48)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27))) +(((-1239) (-141)) (T -1239)) +((-1336 (*1 *2 *1) (-12 (-4 *1 (-1239)) (-5 *2 (-112)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-429 *1)) (-4 *1 (-1239)))) (-2058 (*1 *1 *1) (-4 *1 (-1239))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-429 *1)) (-4 *1 (-1239))))) +(-13 (-463) (-10 -8 (-15 -1336 ((-112) $)) (-15 -2330 ((-429 $) $)) (-15 -2058 ($ $)) (-15 -2353 ((-429 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) NIL)) (-3011 (($) NIL T CONST)) (-2079 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-1425 (($ $ $) NIL) (($) NIL T CONST)) (-4084 (((-936) $) NIL)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-1484 (($ $ $) NIL)) (-3382 (($ $ $) NIL)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) +(((-1240) (-13 (-855) (-10 -8 (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738)))) (T -1240)) +((-3382 (*1 *1 *1 *1) (-5 *1 (-1240))) (-1484 (*1 *1 *1 *1) (-5 *1 (-1240))) (-3011 (*1 *1) (-5 *1 (-1240)))) +(-13 (-855) (-10 -8 (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) NIL)) (-2473 (($) NIL T CONST)) (-2080 (($) NIL)) (-1921 (($ $ $) NIL) (($) NIL T CONST)) (-4137 (($ $ $) NIL) (($) NIL T CONST)) (-1875 (((-937) $) NIL)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-1485 (($ $ $) NIL)) (-3383 (($ $ $) NIL)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) -(((-1242) (-13 (-856) (-10 -8 (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739)))) (T -1242)) -((-3383 (*1 *1 *1 *1) (-5 *1 (-1242))) (-1485 (*1 *1 *1 *1) (-5 *1 (-1242))) (-2473 (*1 *1) (-5 *1 (-1242)))) -(-13 (-856) (-10 -8 (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739))) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) NIL)) (-3011 (($) NIL T CONST)) (-2079 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-1425 (($ $ $) NIL) (($) NIL T CONST)) (-4084 (((-936) $) NIL)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-1484 (($ $ $) NIL)) (-3382 (($ $ $) NIL)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) +(((-1241) (-13 (-855) (-10 -8 (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738)))) (T -1241)) +((-3382 (*1 *1 *1 *1) (-5 *1 (-1241))) (-1484 (*1 *1 *1 *1) (-5 *1 (-1241))) (-3011 (*1 *1) (-5 *1 (-1241)))) +(-13 (-855) (-10 -8 (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) NIL)) (-2473 (($) NIL T CONST)) (-2080 (($) NIL)) (-1921 (($ $ $) NIL) (($) NIL T CONST)) (-4137 (($ $ $) NIL) (($) NIL T CONST)) (-1875 (((-937) $) NIL)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-1485 (($ $ $) NIL)) (-3383 (($ $ $) NIL)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) -(((-1243) (-13 (-856) (-10 -8 (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739)))) (T -1243)) -((-3383 (*1 *1 *1 *1) (-5 *1 (-1243))) (-1485 (*1 *1 *1 *1) (-5 *1 (-1243))) (-2473 (*1 *1) (-5 *1 (-1243)))) -(-13 (-856) (-10 -8 (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739))) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) NIL)) (-3011 (($) NIL T CONST)) (-2079 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-1425 (($ $ $) NIL) (($) NIL T CONST)) (-4084 (((-936) $) NIL)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-1484 (($ $ $) NIL)) (-3382 (($ $ $) NIL)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) +(((-1242) (-13 (-855) (-10 -8 (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738)))) (T -1242)) +((-3382 (*1 *1 *1 *1) (-5 *1 (-1242))) (-1484 (*1 *1 *1 *1) (-5 *1 (-1242))) (-3011 (*1 *1) (-5 *1 (-1242)))) +(-13 (-855) (-10 -8 (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-2862 (((-112) $ $) NIL)) (-2416 (((-783)) NIL)) (-2473 (($) NIL T CONST)) (-2080 (($) NIL)) (-1921 (($ $ $) NIL) (($) NIL T CONST)) (-4137 (($ $ $) NIL) (($) NIL T CONST)) (-1875 (((-937) $) NIL)) (-3733 (((-1177) $) NIL)) (-4318 (($ (-937)) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) NIL)) (-1485 (($ $ $) NIL)) (-3383 (($ $ $) NIL)) (-3722 (((-112) $ $) NIL)) (-3983 (((-112) $ $) NIL)) (-3957 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) -(((-1244) (-13 (-856) (-10 -8 (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739)))) (T -1244)) -((-3383 (*1 *1 *1 *1) (-5 *1 (-1244))) (-1485 (*1 *1 *1 *1) (-5 *1 (-1244))) (-2473 (*1 *1) (-5 *1 (-1244)))) -(-13 (-856) (-10 -8 (-15 -3383 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -2473 ($) -3739))) +((-2861 (((-112) $ $) NIL)) (-2415 (((-782)) NIL)) (-3011 (($) NIL T CONST)) (-2079 (($) NIL)) (-1920 (($ $ $) NIL) (($) NIL T CONST)) (-1425 (($ $ $) NIL) (($) NIL T CONST)) (-4084 (((-936) $) NIL)) (-2288 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) NIL)) (-1484 (($ $ $) NIL)) (-3382 (($ $ $) NIL)) (-4400 (((-112) $ $) NIL)) (-3981 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL))) +(((-1243) (-13 (-855) (-10 -8 (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738)))) (T -1243)) +((-3382 (*1 *1 *1 *1) (-5 *1 (-1243))) (-1484 (*1 *1 *1 *1) (-5 *1 (-1243))) (-3011 (*1 *1) (-5 *1 (-1243)))) +(-13 (-855) (-10 -8 (-15 -3382 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3011 ($) -3738))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-2551 (((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)) 23))) -(((-1245 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2551 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)))) (-1067) (-1067) (-1195) (-1195) |#1| |#2|) (T -1245)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1245 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1195))))) -(-10 -7 (-15 -2551 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1607 (((-656 (-1100)) $) 86)) (-1441 (((-1195) $) 118)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4241 (($ $) 64 (|has| |#1| (-568)))) (-4221 (((-112) $) 66 (|has| |#1| (-568)))) (-2916 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-2934 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-3924 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 177 (|has| |#1| (-374)))) (-3986 (((-430 $) $) 178 (|has| |#1| (-374)))) (-2474 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2922 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3898 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1874 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-1522 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) 18 T CONST)) (-2803 (($ $ $) 172 (|has| |#1| (-374)))) (-4407 (($ $) 72)) (-1999 (((-3 $ "failed") $) 37)) (-2487 (((-419 (-968 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-968 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-2814 (($ $ $) 171 (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2463 (((-112) $) 179 (|has| |#1| (-374)))) (-1355 (((-112) $) 85)) (-1632 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-576) $) 115) (((-576) $ (-576)) 114)) (-1439 (((-112) $) 35)) (-3298 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2962 (($ $ (-937)) 116)) (-1968 (($ (-1 |#1| (-576)) $) 187)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3734 (((-112) $) 74)) (-2421 (($ |#1| (-576)) 73) (($ $ (-1100) (-576)) 88) (($ $ (-656 (-1100)) (-656 (-576))) 87)) (-2551 (($ (-1 |#1| |#1|) $) 75)) (-3464 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3888 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-3733 (((-1177) $) 10)) (-4333 (($ $) 180 (|has| |#1| (-374)))) (-1956 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-3766 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-975)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-3928 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-2354 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 173 (|has| |#1| (-374)))) (-2904 (($ $ (-576)) 110)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2666 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2910 (((-783) $) 169 (|has| |#1| (-374)))) (-2071 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1130)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 170 (|has| |#1| (-374)))) (-2390 (($ $ (-1195)) 108 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3813 (((-576) $) 76)) (-1532 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) 84)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3245 ((|#1| $ (-576)) 71)) (-3148 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-1752 ((|#1| $) 117)) (-3722 (((-112) $ $) 9)) (-1570 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1545 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-1195)) 107 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1246 |#1|) (-141) (-1067)) (T -1246)) -((-1874 (*1 *1 *2) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1067)) (-4 *1 (-1246 *3)))) (-1968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1246 *3)) (-4 *3 (-1067)))) (-2487 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1067)) (-4 *4 (-568)) (-5 *2 (-419 (-968 *4))))) (-2487 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1067)) (-4 *4 (-568)) (-5 *2 (-419 (-968 *4))))) (-1956 (*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576)))))) (-1956 (*1 *1 *1 *2) (-3766 (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1067)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1067)) (-12 (|has| *3 (-15 -1607 ((-656 *2) *3))) (|has| *3 (-15 -1956 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1264 |t#1| (-576)) (-10 -8 (-15 -1874 ($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -1968 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -2487 ((-419 (-968 |t#1|)) $ (-576))) (-15 -2487 ((-419 (-968 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ($ $)) (IF (|has| |t#1| (-15 -1956 (|t#1| |t#1| (-1195)))) (IF (|has| |t#1| (-15 -1607 ((-656 (-1195)) |t#1|))) (-15 -1956 ($ $ (-1195))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1221)) (IF (|has| |t#1| (-975)) (IF (|has| |t#1| (-29 (-576))) (-15 -1956 ($ $ (-1195))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1020)) (-6 (-1221))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-249) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1130)) ((-300) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) ((-991 |#1| #0# (-1100)) . T) ((-936) |has| |#1| (-374)) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1069 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1074 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1264 |#1| #0#) . T)) -((-1389 (((-112) $) 12)) (-2449 (((-3 |#3| "failed") $) 17) (((-3 (-1195) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-4401 ((|#3| $) 14) (((-1195) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL))) -(((-1247 |#1| |#2| |#3|) (-10 -8 (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-1195) "failed") |#1|)) (-15 -4401 ((-1195) |#1|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4401 (|#3| |#1|)) (-15 -1389 ((-112) |#1|))) (-1248 |#2| |#3|) (-1067) (-1277 |#2|)) (T -1247)) -NIL -(-10 -8 (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -2449 ((-3 (-1195) "failed") |#1|)) (-15 -4401 ((-1195) |#1|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4401 (|#3| |#1|)) (-15 -1389 ((-112) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1905 ((|#2| $) 247 (-3227 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1607 (((-656 (-1100)) $) 86)) (-1441 (((-1195) $) 118)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4241 (($ $) 64 (|has| |#1| (-568)))) (-4221 (((-112) $) 66 (|has| |#1| (-568)))) (-2916 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-2934 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-2526 ((|#2| $) 283)) (-2502 (((-3 |#2| "failed") $) 279)) (-4290 ((|#2| $) 280)) (-3924 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) 20)) (-3203 (((-430 (-1191 $)) (-1191 $)) 256 (-3227 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-2944 (($ $) 177 (|has| |#1| (-374)))) (-3986 (((-430 $) $) 178 (|has| |#1| (-374)))) (-2474 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 253 (-3227 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-2922 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3898 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3966 (((-576) $) 265 (-3227 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1874 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-1522 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) 18 T CONST)) (-2449 (((-3 |#2| "failed") $) 286) (((-3 (-576) "failed") $) 276 (-3227 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 274 (-3227 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-1195) "failed") $) 258 (-3227 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374))))) (-4401 ((|#2| $) 287) (((-576) $) 275 (-3227 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 273 (-3227 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-1195) $) 257 (-3227 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374))))) (-2514 (($ $) 282) (($ (-576) $) 281)) (-2803 (($ $ $) 172 (|has| |#1| (-374)))) (-4407 (($ $) 72)) (-2613 (((-701 |#2|) (-1286 $)) 237 (|has| |#1| (-374))) (((-701 |#2|) (-701 $)) 236 (|has| |#1| (-374))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 235 (|has| |#1| (-374))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 234 (-3227 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) 233 (-3227 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) 232 (-3227 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1999 (((-3 $ "failed") $) 37)) (-2487 (((-419 (-968 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-968 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-2080 (($) 249 (-3227 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2814 (($ $ $) 171 (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2463 (((-112) $) 179 (|has| |#1| (-374)))) (-1370 (((-112) $) 263 (-3227 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1355 (((-112) $) 85)) (-1632 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 241 (-3227 (|has| |#2| (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 240 (-3227 (|has| |#2| (-899 (-576))) (|has| |#1| (-374))))) (-2927 (((-576) $) 115) (((-576) $ (-576)) 114)) (-1439 (((-112) $) 35)) (-3154 (($ $) 245 (|has| |#1| (-374)))) (-1595 ((|#2| $) 243 (|has| |#1| (-374)))) (-3298 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-1831 (((-3 $ "failed") $) 277 (-3227 (|has| |#2| (-1170)) (|has| |#1| (-374))))) (-1379 (((-112) $) 264 (-3227 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2962 (($ $ (-937)) 116)) (-1968 (($ (-1 |#1| (-576)) $) 187)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3734 (((-112) $) 74)) (-2421 (($ |#1| (-576)) 73) (($ $ (-1100) (-576)) 88) (($ $ (-656 (-1100)) (-656 (-576))) 87)) (-1921 (($ $ $) 267 (-3227 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4137 (($ $ $) 268 (-3227 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2551 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 227 (|has| |#1| (-374)))) (-3464 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3888 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-4301 (($ (-576) |#2|) 284)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 180 (|has| |#1| (-374)))) (-1956 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-3766 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-975)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3475 (($) 278 (-3227 (|has| |#2| (-1170)) (|has| |#1| (-374))) CONST)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-3928 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1894 (($ $) 248 (-3227 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1916 ((|#2| $) 251 (-3227 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3181 (((-430 (-1191 $)) (-1191 $)) 254 (-3227 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-3192 (((-430 (-1191 $)) (-1191 $)) 255 (-3227 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-2354 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 173 (|has| |#1| (-374)))) (-2904 (($ $ (-576)) 110)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2666 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) |#2|) 226 (-3227 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 |#2|)) 225 (-3227 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) 224 (-3227 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 223 (-3227 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 222 (-3227 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) 221 (-3227 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-2910 (((-783) $) 169 (|has| |#1| (-374)))) (-2071 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1130))) (($ $ |#2|) 220 (-3227 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 170 (|has| |#1| (-374)))) (-2390 (($ $ (-1 |#2| |#2|)) 231 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|) (-783)) 230 (|has| |#1| (-374))) (($ $) 100 (-3766 (-3227 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 98 (-3766 (-3227 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) 108 (-3766 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195))) 106 (-3766 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1195) (-783)) 105 (-3766 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-3766 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3143 (($ $) 246 (|has| |#1| (-374)))) (-1608 ((|#2| $) 244 (|has| |#1| (-374)))) (-3813 (((-576) $) 76)) (-1532 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2616 (((-227) $) 262 (-3227 (|has| |#2| (-1040)) (|has| |#1| (-374)))) (((-390) $) 261 (-3227 (|has| |#2| (-1040)) (|has| |#1| (-374)))) (((-548) $) 260 (-3227 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-905 (-390)) $) 239 (-3227 (|has| |#2| (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) 238 (-3227 (|has| |#2| (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 252 (-3227 (-3227 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#1| (-374))))) (-1346 (($ $) 84)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 285) (($ (-1195)) 259 (-3227 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3245 ((|#1| $ (-576)) 71)) (-3148 (((-3 $ "failed") $) 60 (-3766 (-3227 (-3766 (|has| |#2| (-146)) (-3227 (|has| $ (-146)) (|has| |#2| (-925)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1871 (((-783)) 32 T CONST)) (-1752 ((|#1| $) 117)) (-1929 ((|#2| $) 250 (-3227 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3722 (((-112) $ $) 9)) (-1570 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1545 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2610 (($ $) 266 (-3227 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-1 |#2| |#2|)) 229 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|) (-783)) 228 (|has| |#1| (-374))) (($ $) 99 (-3766 (-3227 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 97 (-3766 (-3227 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) 107 (-3766 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195))) 103 (-3766 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1195) (-783)) 102 (-3766 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-3766 (-3227 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3983 (((-112) $ $) 270 (-3227 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3957 (((-112) $ $) 271 (-3227 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3915 (((-112) $ $) 6)) (-3970 (((-112) $ $) 269 (-3227 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3943 (((-112) $ $) 272 (-3227 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4039 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 242 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 219 (|has| |#1| (-374))) (($ |#2| $) 218 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1248 |#1| |#2|) (-141) (-1067) (-1277 |t#1|)) (T -1248)) -((-3813 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1277 *3)) (-5 *2 (-576)))) (-4301 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1067)) (-4 *1 (-1248 *4 *3)) (-4 *3 (-1277 *4)))) (-2526 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1277 *3)))) (-2514 (*1 *1 *1) (-12 (-4 *1 (-1248 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1277 *2)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1277 *3)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1277 *3)))) (-2502 (*1 *2 *1) (|partial| -12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1277 *3))))) -(-13 (-1246 |t#1|) (-1056 |t#2|) (-628 |t#2|) (-10 -8 (-15 -4301 ($ (-576) |t#2|)) (-15 -3813 ((-576) $)) (-15 -2526 (|t#2| $)) (-15 -2514 ($ $)) (-15 -2514 ($ (-576) $)) (-15 -4290 (|t#2| $)) (-15 -2502 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1010 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -3766 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -3766 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1195)) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-1195)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1040))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1040))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-576))))) ((-235 $) -3766 (-12 (|has| |#1| (-374)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-233 |#2|) |has| |#1| (-374)) ((-239) -3766 (-12 (|has| |#1| (-374)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-238) -3766 (-12 (|has| |#1| (-374)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-249) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1130)) ((-300) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1195) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1195) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-374)) ((-658 $) . T) ((-660 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-660 |#1|) . T) ((-660 |#2|) |has| |#1| (-374)) ((-660 $) . T) ((-652 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 |#2|) |has| |#1| (-374)) ((-652 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-651 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-651 |#2|) |has| |#1| (-374)) ((-729 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 |#2|) |has| |#1| (-374)) ((-729 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-803) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-806) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-832) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-860) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-862) -3766 (-12 (|has| |#1| (-374)) (|has| |#2| (-862))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-909 $ #4=(-1195)) -3766 (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) ((-914 #4#) -3766 (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) ((-916 #4#) -3766 (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) ((-899 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-576)))) ((-897 |#2|) |has| |#1| (-374)) ((-925) -12 (|has| |#1| (-374)) (|has| |#2| (-925))) ((-991 |#1| #0# (-1100)) . T) ((-936) |has| |#1| (-374)) ((-1010 |#2|) |has| |#1| (-374)) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1040) -12 (|has| |#1| (-374)) (|has| |#2| (-1040))) ((-1056 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-576)))) ((-1056 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-576)))) ((-1056 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-1195)))) ((-1056 |#2|) . T) ((-1069 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1069 |#1|) . T) ((-1069 |#2|) |has| |#1| (-374)) ((-1069 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1074 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1074 |#1|) . T) ((-1074 |#2|) |has| |#1| (-374)) ((-1074 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) -12 (|has| |#1| (-374)) (|has| |#2| (-1170))) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1246 |#1|) . T) ((-1264 |#1| #0#) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 81)) (-1905 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1607 (((-656 (-1100)) $) NIL)) (-1441 (((-1195) $) 100)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-2916 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-2934 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-2526 ((|#2| $) 11)) (-2502 (((-3 |#2| "failed") $) 35)) (-4290 ((|#2| $) 36)) (-3924 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-2944 (($ $) NIL (|has| |#1| (-374)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3898 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-3966 (((-576) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1874 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-1522 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-1195) "failed") $) NIL (-12 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374))))) (-4401 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-1195) $) NIL (-12 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374))))) (-2514 (($ $) 65) (($ (-576) $) 28)) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) NIL)) (-2613 (((-701 |#2|) (-1286 $)) NIL (|has| |#1| (-374))) (((-701 |#2|) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1999 (((-3 $ "failed") $) 88)) (-2487 (((-419 (-968 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-968 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-2080 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2463 (((-112) $) NIL (|has| |#1| (-374)))) (-1370 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1355 (((-112) $) 74)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#2| (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#2| (-899 (-576))) (|has| |#1| (-374))))) (-2927 (((-576) $) 105) (((-576) $ (-576)) 107)) (-1439 (((-112) $) NIL)) (-3154 (($ $) NIL (|has| |#1| (-374)))) (-1595 ((|#2| $) 165 (|has| |#1| (-374)))) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1831 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1170)) (|has| |#1| (-374))))) (-1379 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2962 (($ $ (-937)) 148)) (-1968 (($ (-1 |#1| (-576)) $) 144)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-576)) 20) (($ $ (-1100) (-576)) NIL) (($ $ (-656 (-1100)) (-656 (-576))) NIL)) (-1921 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4137 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2551 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-3464 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4301 (($ (-576) |#2|) 10)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 159 (|has| |#1| (-374)))) (-1956 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 233 (-3766 (-12 (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221)))))) (-3475 (($) NIL (-12 (|has| |#2| (-1170)) (|has| |#1| (-374))) CONST)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1894 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1916 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-2354 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2904 (($ $ (-576)) 138)) (-2852 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2666 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) |#2|) NIL (-12 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 |#2|)) NIL (-12 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-2071 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1130))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2390 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $) 149 (-3766 (-12 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3766 (-12 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) 153 (-3766 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-3766 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-3766 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-3766 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3143 (($ $) NIL (|has| |#1| (-374)))) (-1608 ((|#2| $) 166 (|has| |#1| (-374)))) (-3813 (((-576) $) 12)) (-1532 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-2616 (((-227) $) NIL (-12 (|has| |#2| (-1040)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1040)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| |#2| (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| |#2| (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925)) (|has| |#1| (-374))))) (-1346 (($ $) 136)) (-2884 (((-874) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1195)) NIL (-12 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3245 ((|#1| $ (-576)) 85)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#2| (-925)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1871 (((-783)) 155 T CONST)) (-1752 ((|#1| $) 102)) (-1929 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1545 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-2610 (($ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1996 (($) 13 T CONST)) (-2011 (($) 18 T CONST)) (-3431 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $) NIL (-3766 (-12 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3766 (-12 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-3766 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-3766 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-3766 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-3766 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3983 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3957 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3915 (((-112) $ $) 72)) (-3970 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3943 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-4029 (($ $) 227) (($ $ $) 78)) (-4017 (($ $ $) 76)) (** (($ $ (-937)) NIL) (($ $ (-783)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1249 |#1| |#2|) (-1248 |#1| |#2|) (-1067) (-1277 |#1|)) (T -1249)) -NIL -(-1248 |#1| |#2|) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1905 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1607 (((-656 (-1100)) $) NIL)) (-1441 (((-1195) $) 10)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4241 (($ $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4221 (((-112) $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2916 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-2934 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-2526 (((-1278 |#1| |#2| |#3|) $) NIL)) (-2502 (((-3 (-1278 |#1| |#2| |#3|) "failed") $) NIL)) (-4290 (((-1278 |#1| |#2| |#3|) $) NIL)) (-3924 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-2944 (($ $) NIL (|has| |#1| (-374)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3898 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3966 (((-576) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1874 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-1522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-1278 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))))) (-4401 (((-1278 |#1| |#2| |#3|) $) NIL) (((-1195) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))))) (-2514 (($ $) NIL) (($ (-576) $) NIL)) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) NIL)) (-2613 (((-701 (-1278 |#1| |#2| |#3|)) (-1286 $)) NIL (|has| |#1| (-374))) (((-701 (-1278 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2869 (-701 (-1278 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1278 |#1| |#2| |#3|)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1999 (((-3 $ "failed") $) NIL)) (-2487 (((-419 (-968 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-968 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-2080 (($) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2463 (((-112) $) NIL (|has| |#1| (-374)))) (-1370 (((-112) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1355 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-899 (-576))) (|has| |#1| (-374))))) (-2927 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-1439 (((-112) $) NIL)) (-3154 (($ $) NIL (|has| |#1| (-374)))) (-1595 (((-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1831 (((-3 $ "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1170)) (|has| |#1| (-374))))) (-1379 (((-112) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2962 (($ $ (-937)) NIL)) (-1968 (($ (-1 |#1| (-576)) $) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-576)) 18) (($ $ (-1100) (-576)) NIL) (($ $ (-656 (-1100)) (-656 (-576))) NIL)) (-1921 (($ $ $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4137 (($ $ $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3464 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4301 (($ (-576) (-1278 |#1| |#2| |#3|)) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL (|has| |#1| (-374)))) (-1956 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-3766 (-12 (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-3475 (($) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1170)) (|has| |#1| (-374))) CONST)) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1894 (($ $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1916 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-2354 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2904 (($ $ (-576)) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2666 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-526 (-1195) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-526 (-1195) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1278 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1278 |#1| |#2| |#3|)) (-656 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-2071 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1130))) (($ $ (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-296 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2390 (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1282 |#2|)) 26) (($ $) 25 (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3143 (($ $) NIL (|has| |#1| (-374)))) (-1608 (((-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-3813 (((-576) $) NIL)) (-1532 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2616 (((-548) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-1346 (($ $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1278 |#1| |#2| |#3|)) NIL) (($ (-1282 |#2|)) 24) (($ (-1195)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (($ $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-3245 ((|#1| $ (-576)) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1871 (((-783)) NIL T CONST)) (-1752 ((|#1| $) 11)) (-1929 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1545 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2610 (($ $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1996 (($) 20 T CONST)) (-2011 (($) 15 T CONST)) (-3431 (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3983 (((-112) $ $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3957 (((-112) $ $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3915 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3943 (((-112) $ $) NIL (-3766 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 22)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1278 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1250 |#1| |#2| |#3|) (-13 (-1248 |#1| (-1278 |#1| |#2| |#3|)) (-10 -8 (-15 -2884 ($ (-1282 |#2|))) (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1250)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-1956 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))) -(-13 (-1248 |#1| (-1278 |#1| |#2| |#3|)) (-10 -8 (-15 -2884 ($ (-1282 |#2|))) (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) -((-2550 (((-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576)))))) |#1| (-112)) 13)) (-2539 (((-430 |#1|) |#1|) 26)) (-2354 (((-430 |#1|) |#1|) 24))) -(((-1251 |#1|) (-10 -7 (-15 -2354 ((-430 |#1|) |#1|)) (-15 -2539 ((-430 |#1|) |#1|)) (-15 -2550 ((-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576)))))) |#1| (-112)))) (-1262 (-576))) (T -1251)) -((-2550 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| *3) (|:| -4435 (-576))))))) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576))))) (-2539 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576))))) (-2354 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576)))))) -(-10 -7 (-15 -2354 ((-430 |#1|) |#1|)) (-15 -2539 ((-430 |#1|) |#1|)) (-15 -2550 ((-2 (|:| |contp| (-576)) (|:| -4319 (-656 (-2 (|:| |irr| |#1|) (|:| -4435 (-576)))))) |#1| (-112)))) -((-2551 (((-1175 |#2|) (-1 |#2| |#1|) (-1253 |#1|)) 23 (|has| |#1| (-860))) (((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|)) 17))) -(((-1252 |#1| |#2|) (-10 -7 (-15 -2551 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (IF (|has| |#1| (-860)) (-15 -2551 ((-1175 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) |%noBranch|)) (-1236) (-1236)) (T -1252)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-860)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1175 *6)) (-5 *1 (-1252 *5 *6)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1253 *6)) (-5 *1 (-1252 *5 *6))))) -(-10 -7 (-15 -2551 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (IF (|has| |#1| (-860)) (-15 -2551 ((-1175 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) |%noBranch|)) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4128 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2551 (((-1175 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)))) (-3659 ((|#1| $) 15)) (-2073 ((|#1| $) 12)) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3756 (((-576) $) 19)) (-3647 ((|#1| $) 18)) (-3769 ((|#1| $) 13)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2565 (((-112) $) 17)) (-3945 (((-1175 |#1|) $) 41 (|has| |#1| (-860))) (((-1175 |#1|) (-656 $)) 40 (|has| |#1| (-860)))) (-2616 (($ |#1|) 26)) (-2884 (($ (-1112 |#1|)) 25) (((-874) $) 37 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1860 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3685 (($ $ (-576)) 14)) (-3915 (((-112) $ $) 30 (|has| |#1| (-1118))))) -(((-1253 |#1|) (-13 (-1111 |#1|) (-10 -8 (-15 -1860 ($ |#1|)) (-15 -4128 ($ |#1|)) (-15 -2884 ($ (-1112 |#1|))) (-15 -2565 ((-112) $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1113 |#1| (-1175 |#1|))) |%noBranch|))) (-1236)) (T -1253)) -((-1860 (*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236)))) (-4128 (*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1112 *3)) (-4 *3 (-1236)) (-5 *1 (-1253 *3)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3)) (-4 *3 (-1236))))) -(-13 (-1111 |#1|) (-10 -8 (-15 -1860 ($ |#1|)) (-15 -4128 ($ |#1|)) (-15 -2884 ($ (-1112 |#1|))) (-15 -2565 ((-112) $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1113 |#1| (-1175 |#1|))) |%noBranch|))) -((-2551 (((-1259 |#3| |#4|) (-1 |#4| |#2|) (-1259 |#1| |#2|)) 15))) -(((-1254 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2551 ((-1259 |#3| |#4|) (-1 |#4| |#2|) (-1259 |#1| |#2|)))) (-1195) (-1067) (-1195) (-1067)) (T -1254)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1259 *5 *6)) (-14 *5 (-1195)) (-4 *6 (-1067)) (-4 *8 (-1067)) (-5 *2 (-1259 *7 *8)) (-5 *1 (-1254 *5 *6 *7 *8)) (-14 *7 (-1195))))) -(-10 -7 (-15 -2551 ((-1259 |#3| |#4|) (-1 |#4| |#2|) (-1259 |#1| |#2|)))) -((-2615 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2594 ((|#1| |#3|) 13)) (-2604 ((|#3| |#3|) 19))) -(((-1255 |#1| |#2| |#3|) (-10 -7 (-15 -2594 (|#1| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2615 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1010 |#1|) (-1262 |#2|)) (T -1255)) -((-2615 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1255 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-1255 *3 *4 *2)) (-4 *2 (-1262 *4)))) (-2594 (*1 *2 *3) (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-1255 *2 *4 *3)) (-4 *3 (-1262 *4))))) -(-10 -7 (-15 -2594 (|#1| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2615 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2639 (((-3 |#2| "failed") |#2| (-783) |#1|) 35)) (-2627 (((-3 |#2| "failed") |#2| (-783)) 36)) (-2659 (((-3 (-2 (|:| -2419 |#2|) (|:| -2436 |#2|)) "failed") |#2|) 50)) (-2671 (((-656 |#2|) |#2|) 52)) (-2649 (((-3 |#2| "failed") |#2| |#2|) 46))) -(((-1256 |#1| |#2|) (-10 -7 (-15 -2627 ((-3 |#2| "failed") |#2| (-783))) (-15 -2639 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -2649 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2659 ((-3 (-2 (|:| -2419 |#2|) (|:| -2436 |#2|)) "failed") |#2|)) (-15 -2671 ((-656 |#2|) |#2|))) (-13 (-568) (-148)) (-1262 |#1|)) (T -1256)) -((-2671 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) (-5 *1 (-1256 *4 *3)) (-4 *3 (-1262 *4)))) (-2659 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -2419 *3) (|:| -2436 *3))) (-5 *1 (-1256 *4 *3)) (-4 *3 (-1262 *4)))) (-2649 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1256 *3 *2)) (-4 *2 (-1262 *3)))) (-2639 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4)))) (-2627 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4))))) -(-10 -7 (-15 -2627 ((-3 |#2| "failed") |#2| (-783))) (-15 -2639 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -2649 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2659 ((-3 (-2 (|:| -2419 |#2|) (|:| -2436 |#2|)) "failed") |#2|)) (-15 -2671 ((-656 |#2|) |#2|))) -((-2683 (((-3 (-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) "failed") |#2| |#2|) 30))) -(((-1257 |#1| |#2|) (-10 -7 (-15 -2683 ((-3 (-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) "failed") |#2| |#2|))) (-568) (-1262 |#1|)) (T -1257)) -((-2683 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-1257 *4 *3)) (-4 *3 (-1262 *4))))) -(-10 -7 (-15 -2683 ((-3 (-2 (|:| -2770 |#2|) (|:| -1406 |#2|)) "failed") |#2| |#2|))) -((-2694 ((|#2| |#2| |#2|) 22)) (-2704 ((|#2| |#2| |#2|) 36)) (-2715 ((|#2| |#2| |#2| (-783) (-783)) 44))) -(((-1258 |#1| |#2|) (-10 -7 (-15 -2694 (|#2| |#2| |#2|)) (-15 -2704 (|#2| |#2| |#2|)) (-15 -2715 (|#2| |#2| |#2| (-783) (-783)))) (-1067) (-1262 |#1|)) (T -1258)) -((-2715 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1067)) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1262 *4)))) (-2704 (*1 *2 *2 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3)))) (-2694 (*1 *2 *2 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3))))) -(-10 -7 (-15 -2694 (|#2| |#2| |#2|)) (-15 -2704 (|#2| |#2| |#2|)) (-15 -2715 (|#2| |#2| |#2| (-783) (-783)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-2896 (((-1286 |#2|) $ (-783)) NIL)) (-1607 (((-656 (-1100)) $) NIL)) (-2873 (($ (-1191 |#2|)) NIL)) (-3467 (((-1191 $) $ (-1100)) NIL) (((-1191 |#2|) $) NIL)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4241 (($ $) NIL (|has| |#2| (-568)))) (-4221 (((-112) $) NIL (|has| |#2| (-568)))) (-1853 (((-783) $) NIL) (((-783) $ (-656 (-1100))) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2768 (($ $ $) NIL (|has| |#2| (-568)))) (-3203 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2944 (($ $) NIL (|has| |#2| (-464)))) (-3986 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2922 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2828 (($ $ (-783)) NIL)) (-2816 (($ $ (-783)) NIL)) (-2726 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-1100) "failed") $) NIL)) (-4401 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-1100) $) NIL)) (-2778 (($ $ $ (-1100)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2803 (($ $ $) NIL (|has| |#2| (-374)))) (-4407 (($ $) NIL)) (-2613 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2814 (($ $ $) NIL (|has| |#2| (-374)))) (-2804 (($ $ $) NIL)) (-2747 (($ $ $) NIL (|has| |#2| (-568)))) (-2736 (((-2 (|:| -1755 |#2|) (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#2| (-568)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-2192 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1100)) NIL (|has| |#2| (-464)))) (-4394 (((-656 $) $) NIL)) (-2463 (((-112) $) NIL (|has| |#2| (-925)))) (-3098 (($ $ |#2| (-783) $) NIL)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1100) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1100) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-2927 (((-783) $ $) NIL (|has| |#2| (-568)))) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-1831 (((-3 $ "failed") $) NIL (|has| |#2| (-1170)))) (-2437 (($ (-1191 |#2|) (-1100)) NIL) (($ (-1191 $) (-1100)) NIL)) (-2962 (($ $ (-783)) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-2421 (($ |#2| (-783)) 18) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-1100)) NIL) (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL)) (-1864 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-3109 (($ (-1 (-783) (-783)) $) NIL)) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-2885 (((-1191 |#2|) $) NIL)) (-2788 (((-3 (-1100) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3733 (((-1177) $) NIL)) (-2841 (((-2 (|:| -2770 $) (|:| -1406 $)) $ (-783)) NIL)) (-1899 (((-3 (-656 $) "failed") $) NIL)) (-1887 (((-3 (-656 $) "failed") $) NIL)) (-1910 (((-3 (-2 (|:| |var| (-1100)) (|:| -1359 (-783))) "failed") $) NIL)) (-1956 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-3475 (($) NIL (|has| |#2| (-1170)) CONST)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) NIL)) (-4359 ((|#2| $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-3928 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2581 (($ $ (-783) |#2| $) NIL)) (-3181 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2354 (((-430 $) $) NIL (|has| |#2| (-925)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#2| (-374)))) (-2852 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3049 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1100) |#2|) NIL) (($ $ (-656 (-1100)) (-656 |#2|)) NIL) (($ $ (-1100) $) NIL) (($ $ (-656 (-1100)) (-656 $)) NIL)) (-2910 (((-783) $) NIL (|has| |#2| (-374)))) (-2071 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-2863 (((-3 $ "failed") $ (-783)) NIL)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#2| (-374)))) (-2790 (($ $ (-1100)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2390 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3813 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-2616 (((-905 (-390)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1100) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1841 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1100)) NIL (|has| |#2| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-2758 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-2884 (((-874) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1100)) NIL) (($ (-1282 |#1|)) 20) (($ (-419 (-576))) NIL (-3766 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-1993 (((-656 |#2|) $) NIL)) (-3245 ((|#2| $ (-783)) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-3148 (((-3 $ "failed") $) NIL (-3766 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL (|has| |#2| (-568)))) (-1996 (($) NIL T CONST)) (-2011 (($) 14 T CONST)) (-3431 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1259 |#1| |#2|) (-13 (-1262 |#2|) (-628 (-1282 |#1|)) (-10 -8 (-15 -2581 ($ $ (-783) |#2| $)))) (-1195) (-1067)) (T -1259)) -((-2581 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1259 *4 *3)) (-14 *4 (-1195)) (-4 *3 (-1067))))) -(-13 (-1262 |#2|) (-628 (-1282 |#1|)) (-10 -8 (-15 -2581 ($ $ (-783) |#2| $)))) -((-2551 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1260 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2551 (|#4| (-1 |#3| |#1|) |#2|))) (-1067) (-1262 |#1|) (-1067) (-1262 |#3|)) (T -1260)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1262 *6)) (-5 *1 (-1260 *5 *4 *6 *2)) (-4 *4 (-1262 *5))))) -(-10 -7 (-15 -2551 (|#4| (-1 |#3| |#1|) |#2|))) -((-2896 (((-1286 |#2|) $ (-783)) 129)) (-1607 (((-656 (-1100)) $) 16)) (-2873 (($ (-1191 |#2|)) 80)) (-1853 (((-783) $) NIL) (((-783) $ (-656 (-1100))) 21)) (-3203 (((-430 (-1191 $)) (-1191 $)) 204)) (-2944 (($ $) 194)) (-3986 (((-430 $) $) 192)) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 95)) (-2828 (($ $ (-783)) 84)) (-2816 (($ $ (-783)) 86)) (-2726 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2449 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1100) "failed") $) NIL)) (-4401 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1100) $) NIL)) (-2747 (($ $ $) 170)) (-2736 (((-2 (|:| -1755 |#2|) (|:| -2770 $) (|:| -1406 $)) $ $) 172)) (-2927 (((-783) $ $) 189)) (-1831 (((-3 $ "failed") $) 138)) (-2421 (($ |#2| (-783)) NIL) (($ $ (-1100) (-783)) 59) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-1864 (((-783) $) NIL) (((-783) $ (-1100)) 54) (((-656 (-783)) $ (-656 (-1100))) 55)) (-2885 (((-1191 |#2|) $) 72)) (-2788 (((-3 (-1100) "failed") $) 52)) (-2841 (((-2 (|:| -2770 $) (|:| -1406 $)) $ (-783)) 83)) (-1956 (($ $) 219)) (-3475 (($) 134)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 201)) (-3181 (((-430 (-1191 $)) (-1191 $)) 101)) (-3192 (((-430 (-1191 $)) (-1191 $)) 99)) (-2354 (((-430 $) $) 120)) (-3049 (($ $ (-656 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1100) |#2|) 39) (($ $ (-656 (-1100)) (-656 |#2|)) 36) (($ $ (-1100) $) 32) (($ $ (-656 (-1100)) (-656 $)) 30)) (-2910 (((-783) $) 207)) (-2071 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 212)) (-2390 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) 157) (($ $) 155) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3813 (((-783) $) NIL) (((-783) $ (-1100)) 17) (((-656 (-783)) $ (-656 (-1100))) 23)) (-1841 ((|#2| $) NIL) (($ $ (-1100)) 140)) (-2758 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1100)) 64) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-1261 |#1| |#2|) (-10 -8 (-15 -2884 (|#1| |#1|)) (-15 -3214 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -3986 ((-430 |#1|) |#1|)) (-15 -2944 (|#1| |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -3475 (|#1|)) (-15 -1831 ((-3 |#1| "failed") |#1|)) (-15 -2071 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -2910 ((-783) |#1|)) (-15 -4350 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -1956 (|#1| |#1|)) (-15 -2071 (|#2| (-419 |#1|) |#2|)) (-15 -2726 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2736 ((-2 (|:| -1755 |#2|) (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -2747 (|#1| |#1| |#1|)) (-15 -2758 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -2758 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2927 ((-783) |#1| |#1|)) (-15 -2071 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2816 (|#1| |#1| (-783))) (-15 -2828 (|#1| |#1| (-783))) (-15 -2841 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| (-783))) (-15 -2873 (|#1| (-1191 |#2|))) (-15 -2885 ((-1191 |#2|) |#1|)) (-15 -2896 ((-1286 |#2|) |#1| (-783))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2071 (|#1| |#1| |#1|)) (-15 -2071 (|#2| |#1| |#2|)) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -3203 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3192 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3181 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3169 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -1841 (|#1| |#1| (-1100))) (-15 -1607 ((-656 (-1100)) |#1|)) (-15 -1853 ((-783) |#1| (-656 (-1100)))) (-15 -1853 ((-783) |#1|)) (-15 -2421 (|#1| |#1| (-656 (-1100)) (-656 (-783)))) (-15 -2421 (|#1| |#1| (-1100) (-783))) (-15 -1864 ((-656 (-783)) |#1| (-656 (-1100)))) (-15 -1864 ((-783) |#1| (-1100))) (-15 -2788 ((-3 (-1100) "failed") |#1|)) (-15 -3813 ((-656 (-783)) |#1| (-656 (-1100)))) (-15 -3813 ((-783) |#1| (-1100))) (-15 -2884 (|#1| (-1100))) (-15 -2449 ((-3 (-1100) "failed") |#1|)) (-15 -4401 ((-1100) |#1|)) (-15 -3049 (|#1| |#1| (-656 (-1100)) (-656 |#1|))) (-15 -3049 (|#1| |#1| (-1100) |#1|)) (-15 -3049 (|#1| |#1| (-656 (-1100)) (-656 |#2|))) (-15 -3049 (|#1| |#1| (-1100) |#2|)) (-15 -3049 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| (-304 |#1|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3813 ((-783) |#1|)) (-15 -2421 (|#1| |#2| (-783))) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -1864 ((-783) |#1|)) (-15 -1841 (|#2| |#1|)) (-15 -2390 (|#1| |#1| (-1100))) (-15 -2390 (|#1| |#1| (-656 (-1100)))) (-15 -2390 (|#1| |#1| (-1100) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1100)) (-656 (-783)))) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) (-1262 |#2|) (-1067)) (T -1261)) -NIL -(-10 -8 (-15 -2884 (|#1| |#1|)) (-15 -3214 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -3986 ((-430 |#1|) |#1|)) (-15 -2944 (|#1| |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -3475 (|#1|)) (-15 -1831 ((-3 |#1| "failed") |#1|)) (-15 -2071 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -2910 ((-783) |#1|)) (-15 -4350 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -1956 (|#1| |#1|)) (-15 -2071 (|#2| (-419 |#1|) |#2|)) (-15 -2726 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2736 ((-2 (|:| -1755 |#2|) (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| |#1|)) (-15 -2747 (|#1| |#1| |#1|)) (-15 -2758 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -2758 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2927 ((-783) |#1| |#1|)) (-15 -2071 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2816 (|#1| |#1| (-783))) (-15 -2828 (|#1| |#1| (-783))) (-15 -2841 ((-2 (|:| -2770 |#1|) (|:| -1406 |#1|)) |#1| (-783))) (-15 -2873 (|#1| (-1191 |#2|))) (-15 -2885 ((-1191 |#2|) |#1|)) (-15 -2896 ((-1286 |#2|) |#1| (-783))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2390 (|#1| |#1| (-1195))) (-15 -2390 (|#1| |#1| (-656 (-1195)))) (-15 -2390 (|#1| |#1| (-1195) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2390 (|#1| |#1| (-783))) (-15 -2390 (|#1| |#1|)) (-15 -2071 (|#1| |#1| |#1|)) (-15 -2071 (|#2| |#1| |#2|)) (-15 -2354 ((-430 |#1|) |#1|)) (-15 -3203 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3192 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3181 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3169 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -1841 (|#1| |#1| (-1100))) (-15 -1607 ((-656 (-1100)) |#1|)) (-15 -1853 ((-783) |#1| (-656 (-1100)))) (-15 -1853 ((-783) |#1|)) (-15 -2421 (|#1| |#1| (-656 (-1100)) (-656 (-783)))) (-15 -2421 (|#1| |#1| (-1100) (-783))) (-15 -1864 ((-656 (-783)) |#1| (-656 (-1100)))) (-15 -1864 ((-783) |#1| (-1100))) (-15 -2788 ((-3 (-1100) "failed") |#1|)) (-15 -3813 ((-656 (-783)) |#1| (-656 (-1100)))) (-15 -3813 ((-783) |#1| (-1100))) (-15 -2884 (|#1| (-1100))) (-15 -2449 ((-3 (-1100) "failed") |#1|)) (-15 -4401 ((-1100) |#1|)) (-15 -3049 (|#1| |#1| (-656 (-1100)) (-656 |#1|))) (-15 -3049 (|#1| |#1| (-1100) |#1|)) (-15 -3049 (|#1| |#1| (-656 (-1100)) (-656 |#2|))) (-15 -3049 (|#1| |#1| (-1100) |#2|)) (-15 -3049 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3049 (|#1| |#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| (-304 |#1|))) (-15 -3049 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3813 ((-783) |#1|)) (-15 -2421 (|#1| |#2| (-783))) (-15 -2449 ((-3 (-576) "failed") |#1|)) (-15 -4401 ((-576) |#1|)) (-15 -2449 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4401 ((-419 (-576)) |#1|)) (-15 -4401 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#1| |#2|)) (-15 -1864 ((-783) |#1|)) (-15 -1841 (|#2| |#1|)) (-15 -2390 (|#1| |#1| (-1100))) (-15 -2390 (|#1| |#1| (-656 (-1100)))) (-15 -2390 (|#1| |#1| (-1100) (-783))) (-15 -2390 (|#1| |#1| (-656 (-1100)) (-656 (-783)))) (-15 -2884 (|#1| (-576))) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-2896 (((-1286 |#1|) $ (-783)) 245)) (-1607 (((-656 (-1100)) $) 113)) (-2873 (($ (-1191 |#1|)) 243)) (-3467 (((-1191 $) $ (-1100)) 128) (((-1191 |#1|) $) 127)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4241 (($ $) 91 (|has| |#1| (-568)))) (-4221 (((-112) $) 93 (|has| |#1| (-568)))) (-1853 (((-783) $) 115) (((-783) $ (-656 (-1100))) 114)) (-1459 (((-3 $ "failed") $ $) 20)) (-2768 (($ $ $) 230 (|has| |#1| (-568)))) (-3203 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-925)))) (-2944 (($ $) 101 (|has| |#1| (-464)))) (-3986 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3169 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-925)))) (-2922 (((-112) $ $) 215 (|has| |#1| (-374)))) (-2828 (($ $ (-783)) 238)) (-2816 (($ $ (-783)) 237)) (-2726 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 225 (|has| |#1| (-464)))) (-2473 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1056 (-576)))) (((-3 (-1100) "failed") $) 141)) (-4401 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1056 (-576)))) (((-1100) $) 142)) (-2778 (($ $ $ (-1100)) 111 (|has| |#1| (-174))) ((|#1| $ $) 233 (|has| |#1| (-174)))) (-2803 (($ $ $) 219 (|has| |#1| (-374)))) (-4407 (($ $) 159)) (-2613 (((-701 (-576)) (-1286 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2869 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1286 $)) 134)) (-1999 (((-3 $ "failed") $) 37)) (-2814 (($ $ $) 218 (|has| |#1| (-374)))) (-2804 (($ $ $) 236)) (-2747 (($ $ $) 227 (|has| |#1| (-568)))) (-2736 (((-2 (|:| -1755 |#1|) (|:| -2770 $) (|:| -1406 $)) $ $) 226 (|has| |#1| (-568)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 213 (|has| |#1| (-374)))) (-2192 (($ $) 181 (|has| |#1| (-464))) (($ $ (-1100)) 108 (|has| |#1| (-464)))) (-4394 (((-656 $) $) 112)) (-2463 (((-112) $) 99 (|has| |#1| (-925)))) (-3098 (($ $ |#1| (-783) $) 177)) (-1606 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| (-1100) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| (-1100) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2927 (((-783) $ $) 231 (|has| |#1| (-568)))) (-1439 (((-112) $) 35)) (-1518 (((-783) $) 174)) (-1831 (((-3 $ "failed") $) 211 (|has| |#1| (-1170)))) (-2437 (($ (-1191 |#1|) (-1100)) 120) (($ (-1191 $) (-1100)) 119)) (-2962 (($ $ (-783)) 242)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 222 (|has| |#1| (-374)))) (-1876 (((-656 $) $) 129)) (-3734 (((-112) $) 157)) (-2421 (($ |#1| (-783)) 158) (($ $ (-1100) (-783)) 122) (($ $ (-656 (-1100)) (-656 (-783))) 121)) (-2853 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $ (-1100)) 123) (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 240)) (-1864 (((-783) $) 175) (((-783) $ (-1100)) 125) (((-656 (-783)) $ (-656 (-1100))) 124)) (-3109 (($ (-1 (-783) (-783)) $) 176)) (-2551 (($ (-1 |#1| |#1|) $) 156)) (-2885 (((-1191 |#1|) $) 244)) (-2788 (((-3 (-1100) "failed") $) 126)) (-4371 (($ $) 154)) (-4383 ((|#1| $) 153)) (-3888 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3733 (((-1177) $) 10)) (-2841 (((-2 (|:| -2770 $) (|:| -1406 $)) $ (-783)) 239)) (-1899 (((-3 (-656 $) "failed") $) 117)) (-1887 (((-3 (-656 $) "failed") $) 118)) (-1910 (((-3 (-2 (|:| |var| (-1100)) (|:| -1359 (-783))) "failed") $) 116)) (-1956 (($ $) 223 (|has| |#1| (-38 (-419 (-576)))))) (-3475 (($) 210 (|has| |#1| (-1170)) CONST)) (-3914 (((-1138) $) 11)) (-4346 (((-112) $) 171)) (-4359 ((|#1| $) 172)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-3928 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3181 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-925)))) (-3192 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-925)))) (-2354 (((-430 $) $) 102 (|has| |#1| (-925)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 221 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 220 (|has| |#1| (-374)))) (-2852 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 214 (|has| |#1| (-374)))) (-3049 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ (-1100) |#1|) 146) (($ $ (-656 (-1100)) (-656 |#1|)) 145) (($ $ (-1100) $) 144) (($ $ (-656 (-1100)) (-656 $)) 143)) (-2910 (((-783) $) 216 (|has| |#1| (-374)))) (-2071 ((|#1| $ |#1|) 263) (($ $ $) 262) (((-419 $) (-419 $) (-419 $)) 232 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 224 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 212 (|has| |#1| (-568)))) (-2863 (((-3 $ "failed") $ (-783)) 241)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 217 (|has| |#1| (-374)))) (-2790 (($ $ (-1100)) 110 (|has| |#1| (-174))) ((|#1| $) 234 (|has| |#1| (-174)))) (-2390 (($ $ (-656 (-1100)) (-656 (-783))) 44) (($ $ (-1100) (-783)) 43) (($ $ (-656 (-1100))) 42) (($ $ (-1100)) 40) (($ $) 261) (($ $ (-783)) 259) (($ $ (-656 (-1195)) (-656 (-783))) 254 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 253 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 252 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 250 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 247) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) $) 235)) (-3813 (((-783) $) 155) (((-783) $ (-1100)) 133) (((-656 (-783)) $ (-656 (-1100))) 132)) (-2616 (((-905 (-390)) $) 85 (-12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| (-1100) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1841 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ (-1100)) 109 (|has| |#1| (-464)))) (-3159 (((-3 (-1286 $) "failed") (-701 $)) 107 (-3227 (|has| $ (-146)) (|has| |#1| (-925))))) (-2758 (((-3 $ "failed") $ $) 229 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 228 (|has| |#1| (-568)))) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ (-1100)) 140) (($ (-419 (-576))) 81 (-3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-1993 (((-656 |#1|) $) 173)) (-3245 ((|#1| $ (-783)) 160) (($ $ (-1100) (-783)) 131) (($ $ (-656 (-1100)) (-656 (-783))) 130)) (-3148 (((-3 $ "failed") $) 82 (-3766 (-3227 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-1871 (((-783)) 32 T CONST)) (-3086 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 92 (|has| |#1| (-568)))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-656 (-1100)) (-656 (-783))) 47) (($ $ (-1100) (-783)) 46) (($ $ (-656 (-1100))) 45) (($ $ (-1100)) 41) (($ $) 260) (($ $ (-783)) 258) (($ $ (-656 (-1195)) (-656 (-783))) 257 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 256 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 255 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 251 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 249) (($ $ (-1 |#1| |#1|)) 248)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151))) -(((-1262 |#1|) (-141) (-1067)) (T -1262)) -((-2896 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1262 *4)) (-4 *4 (-1067)) (-5 *2 (-1286 *4)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-5 *2 (-1191 *3)))) (-2873 (*1 *1 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-1067)) (-4 *1 (-1262 *3)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) (-2863 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) (-2853 (*1 *2 *1 *1) (-12 (-4 *3 (-1067)) (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-1262 *3)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1067)) (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-1262 *4)))) (-2828 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) (-2816 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) (-2804 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)))) (-2390 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-174)))) (-2778 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-174)))) (-2071 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-4 *3 (-568)))) (-2927 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2768 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))) (-2758 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))) (-2758 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-4 *3 (-568)))) (-2747 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))) (-2736 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -1755 *3) (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-1262 *3)))) (-2726 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1262 *3)))) (-2071 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-1956 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576))))))) -(-13 (-965 |t#1| (-783) (-1100)) (-296 |t#1| |t#1|) (-296 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -2896 ((-1286 |t#1|) $ (-783))) (-15 -2885 ((-1191 |t#1|) $)) (-15 -2873 ($ (-1191 |t#1|))) (-15 -2962 ($ $ (-783))) (-15 -2863 ((-3 $ "failed") $ (-783))) (-15 -2853 ((-2 (|:| -2770 $) (|:| -1406 $)) $ $)) (-15 -2841 ((-2 (|:| -2770 $) (|:| -1406 $)) $ (-783))) (-15 -2828 ($ $ (-783))) (-15 -2816 ($ $ (-783))) (-15 -2804 ($ $ $)) (-15 -2390 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1170)) (-6 (-1170)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2790 (|t#1| $)) (-15 -2778 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -2071 ((-419 $) (-419 $) (-419 $))) (-15 -2927 ((-783) $ $)) (-15 -2768 ($ $ $)) (-15 -2758 ((-3 $ "failed") $ $)) (-15 -2758 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -2747 ($ $ $)) (-15 -2736 ((-2 (|:| -1755 |t#1|) (|:| -2770 $) (|:| -1406 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -2726 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4457) (-15 -2071 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -1956 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3766 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1100)) . T) ((-628 |#1|) . T) ((-628 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1100) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-238) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3766 (|has| |#1| (-925)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 #3=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-651 #3#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2#) . T) ((-909 $ #4=(-1195)) |has| |#1| (-914 (-1195))) ((-914 #2#) . T) ((-914 #4#) |has| |#1| (-914 (-1195))) ((-916 #2#) . T) ((-916 #4#) |has| |#1| (-914 (-1195))) ((-899 (-390)) -12 (|has| (-1100) (-899 (-390))) (|has| |#1| (-899 (-390)))) ((-899 (-576)) -12 (|has| (-1100) (-899 (-576))) (|has| |#1| (-899 (-576)))) ((-965 |#1| #0# #2#) . T) ((-925) |has| |#1| (-925)) ((-936) |has| |#1| (-374)) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 #2#) . T) ((-1056 |#1|) . T) ((-1069 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1074 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| |#1| (-1170)) ((-1236) . T) ((-1240) |has| |#1| (-925))) -((-1607 (((-656 (-1100)) $) 34)) (-4407 (($ $) 31)) (-2421 (($ |#2| |#3|) NIL) (($ $ (-1100) |#3|) 28) (($ $ (-656 (-1100)) (-656 |#3|)) 27)) (-4371 (($ $) 14)) (-4383 ((|#2| $) 12)) (-3813 ((|#3| $) 10))) -(((-1263 |#1| |#2| |#3|) (-10 -8 (-15 -1607 ((-656 (-1100)) |#1|)) (-15 -2421 (|#1| |#1| (-656 (-1100)) (-656 |#3|))) (-15 -2421 (|#1| |#1| (-1100) |#3|)) (-15 -4407 (|#1| |#1|)) (-15 -2421 (|#1| |#2| |#3|)) (-15 -3813 (|#3| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -4383 (|#2| |#1|))) (-1264 |#2| |#3|) (-1067) (-804)) (T -1263)) -NIL -(-10 -8 (-15 -1607 ((-656 (-1100)) |#1|)) (-15 -2421 (|#1| |#1| (-656 (-1100)) (-656 |#3|))) (-15 -2421 (|#1| |#1| (-1100) |#3|)) (-15 -4407 (|#1| |#1|)) (-15 -2421 (|#1| |#2| |#3|)) (-15 -3813 (|#3| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -4383 (|#2| |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1607 (((-656 (-1100)) $) 86)) (-1441 (((-1195) $) 118)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4241 (($ $) 64 (|has| |#1| (-568)))) (-4221 (((-112) $) 66 (|has| |#1| (-568)))) (-2916 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-2934 (((-1175 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-4407 (($ $) 72)) (-1999 (((-3 $ "failed") $) 37)) (-1355 (((-112) $) 85)) (-2927 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-1439 (((-112) $) 35)) (-2962 (($ $ (-937)) 116)) (-3734 (((-112) $) 74)) (-2421 (($ |#1| |#2|) 73) (($ $ (-1100) |#2|) 88) (($ $ (-656 (-1100)) (-656 |#2|)) 87)) (-2551 (($ (-1 |#1| |#1|) $) 75)) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2904 (($ $ |#2|) 110)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3049 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2071 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1130)))) (-2390 (($ $ (-1195)) 108 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3813 ((|#2| $) 76)) (-1346 (($ $) 84)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3245 ((|#1| $ |#2|) 71)) (-3148 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-1752 ((|#1| $) 117)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3495 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-1195)) 107 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1264 |#1| |#2|) (-141) (-1067) (-804)) (T -1264)) -((-2934 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-1175 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-1195)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-2927 (*1 *2 *1 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-2916 (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-2916 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-3495 (*1 *2 *1 *3) (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2884 (*2 (-1195)))) (-4 *2 (-1067)))) (-2904 (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-3049 (*1 *2 *1 *3) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1175 *3))))) -(-13 (-991 |t#1| |t#2| (-1100)) (-296 |t#2| |t#1|) (-10 -8 (-15 -2934 ((-1175 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1441 ((-1195) $)) (-15 -1752 (|t#1| $)) (-15 -2962 ($ $ (-937))) (-15 -2927 (|t#2| $)) (-15 -2927 (|t#2| $ |t#2|)) (-15 -2916 ($ $ |t#2|)) (-15 -2916 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2884 (|t#1| (-1195)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3495 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2904 ($ $ |t#2|)) (IF (|has| |t#2| (-1130)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-914 (-1195))) (-6 (-914 (-1195))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3049 ((-1175 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1130)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ #1=(-1195)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-914 (-1195)))) ((-914 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-914 (-1195)))) ((-916 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-914 (-1195)))) ((-991 |#1| |#2| (-1100)) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T)) -((-2944 ((|#2| |#2|) 12)) (-3986 (((-430 |#2|) |#2|) 14)) (-2953 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30))) -(((-1265 |#1| |#2|) (-10 -7 (-15 -3986 ((-430 |#2|) |#2|)) (-15 -2944 (|#2| |#2|)) (-15 -2953 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1262 |#1|) (-568) (-10 -8 (-15 -3928 ($ $ $))))) (T -1265)) -((-2953 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3928 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1265 *3 *4)))) (-2944 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1265 *3 *2)) (-4 *2 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3928 ($ $ $))))))) (-3986 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1265 *4 *3)) (-4 *3 (-13 (-1262 *4) (-568) (-10 -8 (-15 -3928 ($ $ $)))))))) -(-10 -7 (-15 -3986 ((-430 |#2|) |#2|)) (-15 -2944 (|#2| |#2|)) (-15 -2953 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) -((-2551 (((-1271 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1271 |#1| |#3| |#5|)) 24))) -(((-1266 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2551 ((-1271 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1271 |#1| |#3| |#5|)))) (-1067) (-1067) (-1195) (-1195) |#1| |#2|) (T -1266)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1271 *5 *7 *9)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1271 *6 *8 *10)) (-5 *1 (-1266 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1195))))) -(-10 -7 (-15 -2551 ((-1271 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1271 |#1| |#3| |#5|)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1607 (((-656 (-1100)) $) 86)) (-1441 (((-1195) $) 118)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4241 (($ $) 64 (|has| |#1| (-568)))) (-4221 (((-112) $) 66 (|has| |#1| (-568)))) (-2916 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-2934 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-3924 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 177 (|has| |#1| (-374)))) (-3986 (((-430 $) $) 178 (|has| |#1| (-374)))) (-2474 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2922 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3898 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1874 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-1522 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) 18 T CONST)) (-2803 (($ $ $) 172 (|has| |#1| (-374)))) (-4407 (($ $) 72)) (-1999 (((-3 $ "failed") $) 37)) (-2814 (($ $ $) 171 (|has| |#1| (-374)))) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2463 (((-112) $) 179 (|has| |#1| (-374)))) (-1355 (((-112) $) 85)) (-1632 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-1439 (((-112) $) 35)) (-3298 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2962 (($ $ (-937)) 116) (($ $ (-419 (-576))) 185)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3734 (((-112) $) 74)) (-2421 (($ |#1| (-419 (-576))) 73) (($ $ (-1100) (-419 (-576))) 88) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) 87)) (-2551 (($ (-1 |#1| |#1|) $) 75)) (-3464 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3888 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-3733 (((-1177) $) 10)) (-4333 (($ $) 180 (|has| |#1| (-374)))) (-1956 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-3766 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-975)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-3928 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-2354 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 173 (|has| |#1| (-374)))) (-2904 (($ $ (-419 (-576))) 110)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2666 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2910 (((-783) $) 169 (|has| |#1| (-374)))) (-2071 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1130)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 170 (|has| |#1| (-374)))) (-2390 (($ $ (-1195)) 108 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3813 (((-419 (-576)) $) 76)) (-1532 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) 84)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3245 ((|#1| $ (-419 (-576))) 71)) (-3148 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-1752 ((|#1| $) 117)) (-3722 (((-112) $ $) 9)) (-1570 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1545 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-1195)) 107 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1267 |#1|) (-141) (-1067)) (T -1267)) -((-1874 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1067)) (-4 *1 (-1267 *4)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1267 *3)) (-4 *3 (-1067)))) (-1956 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576)))))) (-1956 (*1 *1 *1 *2) (-3766 (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1067)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1067)) (-12 (|has| *3 (-15 -1607 ((-656 *2) *3))) (|has| *3 (-15 -1956 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1264 |t#1| (-419 (-576))) (-10 -8 (-15 -1874 ($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -2962 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ($ $)) (IF (|has| |t#1| (-15 -1956 (|t#1| |t#1| (-1195)))) (IF (|has| |t#1| (-15 -1607 ((-656 (-1195)) |t#1|))) (-15 -1956 ($ $ (-1195))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1221)) (IF (|has| |t#1| (-975)) (IF (|has| |t#1| (-29 (-576))) (-15 -1956 ($ $ (-1195))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1020)) (-6 (-1221))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-249) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1130)) ((-300) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-991 |#1| #0# (-1100)) . T) ((-936) |has| |#1| (-374)) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1069 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1074 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1264 |#1| #0#) . T)) -((-1389 (((-112) $) 12)) (-2449 (((-3 |#3| "failed") $) 17)) (-4401 ((|#3| $) 14))) -(((-1268 |#1| |#2| |#3|) (-10 -8 (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4401 (|#3| |#1|)) (-15 -1389 ((-112) |#1|))) (-1269 |#2| |#3|) (-1067) (-1246 |#2|)) (T -1268)) -NIL -(-10 -8 (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4401 (|#3| |#1|)) (-15 -1389 ((-112) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1607 (((-656 (-1100)) $) 86)) (-1441 (((-1195) $) 118)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4241 (($ $) 64 (|has| |#1| (-568)))) (-4221 (((-112) $) 66 (|has| |#1| (-568)))) (-2916 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-2934 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-3924 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 177 (|has| |#1| (-374)))) (-3986 (((-430 $) $) 178 (|has| |#1| (-374)))) (-2474 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2922 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3898 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1874 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-1522 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) 18 T CONST)) (-2449 (((-3 |#2| "failed") $) 197)) (-4401 ((|#2| $) 198)) (-2803 (($ $ $) 172 (|has| |#1| (-374)))) (-4407 (($ $) 72)) (-1999 (((-3 $ "failed") $) 37)) (-2995 (((-419 (-576)) $) 194)) (-2814 (($ $ $) 171 (|has| |#1| (-374)))) (-4311 (($ (-419 (-576)) |#2|) 195)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2463 (((-112) $) 179 (|has| |#1| (-374)))) (-1355 (((-112) $) 85)) (-1632 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-1439 (((-112) $) 35)) (-3298 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2962 (($ $ (-937)) 116) (($ $ (-419 (-576))) 185)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-3734 (((-112) $) 74)) (-2421 (($ |#1| (-419 (-576))) 73) (($ $ (-1100) (-419 (-576))) 88) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) 87)) (-2551 (($ (-1 |#1| |#1|) $) 75)) (-3464 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3888 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2984 ((|#2| $) 193)) (-2971 (((-3 |#2| "failed") $) 191)) (-4301 ((|#2| $) 192)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 180 (|has| |#1| (-374)))) (-1956 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-3766 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-975)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-3928 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-2354 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 173 (|has| |#1| (-374)))) (-2904 (($ $ (-419 (-576))) 110)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2666 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2910 (((-783) $) 169 (|has| |#1| (-374)))) (-2071 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1130)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 170 (|has| |#1| (-374)))) (-2390 (($ $ (-1195)) 108 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3813 (((-419 (-576)) $) 76)) (-1532 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) 84)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-3245 ((|#1| $ (-419 (-576))) 71)) (-3148 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-1752 ((|#1| $) 117)) (-3722 (((-112) $ $) 9)) (-1570 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1545 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-1195)) 107 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1269 |#1| |#2|) (-141) (-1067) (-1246 |t#1|)) (T -1269)) -((-3813 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1246 *3)) (-5 *2 (-419 (-576))))) (-4311 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1067)) (-4 *1 (-1269 *4 *3)) (-4 *3 (-1246 *4)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1246 *3)) (-5 *2 (-419 (-576))))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1246 *3)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1246 *3)))) (-2971 (*1 *2 *1) (|partial| -12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1246 *3))))) -(-13 (-1267 |t#1|) (-1056 |t#2|) (-628 |t#2|) (-10 -8 (-15 -4311 ($ (-419 (-576)) |t#2|)) (-15 -2995 ((-419 (-576)) $)) (-15 -2984 (|t#2| $)) (-15 -3813 ((-419 (-576)) $)) (-15 -4301 (|t#2| $)) (-15 -2971 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-249) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1130)) ((-300) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-991 |#1| #0# (-1100)) . T) ((-936) |has| |#1| (-374)) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1056 |#2|) . T) ((-1069 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1074 #1#) -3766 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1264 |#1| #0#) . T) ((-1267 |#1|) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 (-1100)) $) NIL)) (-1441 (((-1195) $) 104)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-2916 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-2934 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-3924 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL (|has| |#1| (-374)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3898 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-1874 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-1522 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL)) (-4401 ((|#2| $) NIL)) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) 85)) (-2995 (((-419 (-576)) $) 13)) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-4311 (($ (-419 (-576)) |#2|) 11)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2463 (((-112) $) NIL (|has| |#1| (-374)))) (-1355 (((-112) $) 74)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-1439 (((-112) $) NIL)) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2962 (($ $ (-937)) 130) (($ $ (-419 (-576))) 128)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-419 (-576))) 33) (($ $ (-1100) (-419 (-576))) NIL) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) NIL)) (-2551 (($ (-1 |#1| |#1|) $) 125)) (-3464 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2984 ((|#2| $) 12)) (-2971 (((-3 |#2| "failed") $) 44)) (-4301 ((|#2| $) 45)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) 101 (|has| |#1| (-374)))) (-1956 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 151 (-3766 (-12 (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221)))))) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2904 (($ $ (-419 (-576))) 122)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2666 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-2071 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1130)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2390 (($ $ (-1195)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3813 (((-419 (-576)) $) 16)) (-1532 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) 120)) (-2884 (((-874) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3245 ((|#1| $ (-419 (-576))) 107)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) 127 T CONST)) (-1752 ((|#1| $) 106)) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1545 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) 21 T CONST)) (-2011 (($) 17 T CONST)) (-3431 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3915 (((-112) $ $) 72)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-4029 (($ $) 142) (($ $ $) 78)) (-4017 (($ $ $) 76)) (** (($ $ (-937)) NIL) (($ $ (-783)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1270 |#1| |#2|) (-1269 |#1| |#2|) (-1067) (-1246 |#1|)) (T -1270)) -NIL -(-1269 |#1| |#2|) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 (-1100)) $) NIL)) (-1441 (((-1195) $) 11)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) NIL (|has| |#1| (-568)))) (-2916 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2934 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3924 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2944 (($ $) NIL (|has| |#1| (-374)))) (-3986 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3898 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1874 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-1522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-1250 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1278 |#1| |#2| |#3|) "failed") $) 22)) (-4401 (((-1250 |#1| |#2| |#3|) $) NIL) (((-1278 |#1| |#2| |#3|) $) NIL)) (-2803 (($ $ $) NIL (|has| |#1| (-374)))) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-2995 (((-419 (-576)) $) 69)) (-2814 (($ $ $) NIL (|has| |#1| (-374)))) (-4311 (($ (-419 (-576)) (-1250 |#1| |#2| |#3|)) NIL)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2463 (((-112) $) NIL (|has| |#1| (-374)))) (-1355 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1439 (((-112) $) NIL)) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2962 (($ $ (-937)) NIL) (($ $ (-419 (-576))) NIL)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-419 (-576))) 30) (($ $ (-1100) (-419 (-576))) NIL) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-3464 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3888 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2984 (((-1250 |#1| |#2| |#3|) $) 72)) (-2971 (((-3 (-1250 |#1| |#2| |#3|) "failed") $) NIL)) (-4301 (((-1250 |#1| |#2| |#3|) $) NIL)) (-3733 (((-1177) $) NIL)) (-4333 (($ $) NIL (|has| |#1| (-374)))) (-1956 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-3766 (-12 (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3914 (((-1138) $) NIL)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3928 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2354 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2900 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) NIL (|has| |#1| (-374)))) (-2904 (($ $ (-419 (-576))) NIL)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2291 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2666 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2910 (((-783) $) NIL (|has| |#1| (-374)))) (-2071 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1130)))) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) NIL (|has| |#1| (-374)))) (-2390 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) 38)) (-3813 (((-419 (-576)) $) NIL)) (-1532 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) NIL)) (-2884 (((-874) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1250 |#1| |#2| |#3|)) 16) (($ (-1278 |#1| |#2| |#3|)) 17) (($ (-1282 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-3245 ((|#1| $ (-419 (-576))) NIL)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-1752 ((|#1| $) 12)) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1545 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) 32 T CONST)) (-2011 (($) 26 T CONST)) (-3431 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 34)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1271 |#1| |#2| |#3|) (-13 (-1269 |#1| (-1250 |#1| |#2| |#3|)) (-1056 (-1278 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1271)) -((-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-1956 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))) -(-13 (-1269 |#1| (-1250 |#1| |#2| |#3|)) (-1056 (-1278 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (-15 -2390 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 37)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4241 (($ $) NIL)) (-4221 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 (-576) "failed") $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1056 (-419 (-576))))) (((-3 (-1271 |#2| |#3| |#4|) "failed") $) 22)) (-4401 (((-576) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1056 (-419 (-576))))) (((-1271 |#2| |#3| |#4|) $) NIL)) (-4407 (($ $) 41)) (-1999 (((-3 $ "failed") $) 27)) (-2192 (($ $) NIL (|has| (-1271 |#2| |#3| |#4|) (-464)))) (-3098 (($ $ (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) 11)) (-3734 (((-112) $) NIL)) (-2421 (($ (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-1864 (((-329 |#2| |#3| |#4|) $) NIL)) (-3109 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-2551 (($ (-1 (-1271 |#2| |#3| |#4|) (-1271 |#2| |#3| |#4|)) $) NIL)) (-1736 (((-3 (-855 |#2|) "failed") $) 90)) (-4371 (($ $) NIL)) (-4383 (((-1271 |#2| |#3| |#4|) $) 20)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-4346 (((-112) $) NIL)) (-4359 (((-1271 |#2| |#3| |#4|) $) NIL)) (-2852 (((-3 $ "failed") $ (-1271 |#2| |#3| |#4|)) NIL (|has| (-1271 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-1725 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1177))) "failed") $) 74)) (-3813 (((-329 |#2| |#3| |#4|) $) 17)) (-1841 (((-1271 |#2| |#3| |#4|) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-464)))) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ (-1271 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-3766 (|has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1271 |#2| |#3| |#4|) (-1056 (-419 (-576))))))) (-1993 (((-656 (-1271 |#2| |#3| |#4|)) $) NIL)) (-3245 (((-1271 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-3148 (((-3 $ "failed") $) NIL (|has| (-1271 |#2| |#3| |#4|) (-146)))) (-1871 (((-783)) NIL T CONST)) (-3086 (($ $ $ (-783)) NIL (|has| (-1271 |#2| |#3| |#4|) (-174)))) (-3722 (((-112) $ $) NIL)) (-4232 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ (-1271 |#2| |#3| |#4|)) NIL (|has| (-1271 |#2| |#3| |#4|) (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1271 |#2| |#3| |#4|)) NIL) (($ (-1271 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576))))))) -(((-1272 |#1| |#2| |#3| |#4|) (-13 (-336 (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -1736 ((-3 (-855 |#2|) "failed") $)) (-15 -1725 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1177))) "failed") $)))) (-13 (-1056 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1221) (-442 |#1|)) (-1195) |#2|) (T -1272)) -((-1736 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-1272 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4))) (-1725 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1177)))) (-5 *1 (-1272 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4)))) -(-13 (-336 (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -1736 ((-3 (-855 |#2|) "failed") $)) (-15 -1725 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1177))) "failed") $)))) -((-4183 ((|#2| $) 34)) (-2990 ((|#2| $) 18)) (-3463 (($ $) 53)) (-1748 (($ $ (-576)) 85)) (-2970 (((-112) $ (-783)) 46)) (-3434 ((|#2| $ |#2|) 82)) (-1761 ((|#2| $ |#2|) 78)) (-3055 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3442 (($ $ (-656 $)) 81)) (-2978 ((|#2| $) 17)) (-1976 (($ $) NIL) (($ $ (-783)) 59)) (-3484 (((-656 $) $) 31)) (-3452 (((-112) $ $) 69)) (-2408 (((-112) $ (-783)) 45)) (-2374 (((-112) $ (-783)) 43)) (-4306 (((-112) $) 33)) (-3654 ((|#2| $) 25) (($ $ (-783)) 64)) (-2071 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4053 (((-112) $) 23)) (-1816 (($ $) 56)) (-1794 (($ $) 86)) (-1826 (((-783) $) 58)) (-1836 (($ $) 57)) (-1514 (($ $ $) 77) (($ |#2| $) NIL)) (-4255 (((-656 $) $) 32)) (-3915 (((-112) $ $) 67)) (-2872 (((-783) $) 52))) -(((-1273 |#1| |#2|) (-10 -8 (-15 -1748 (|#1| |#1| (-576))) (-15 -3055 (|#2| |#1| "last" |#2|)) (-15 -1761 (|#2| |#1| |#2|)) (-15 -3055 (|#1| |#1| "rest" |#1|)) (-15 -3055 (|#2| |#1| "first" |#2|)) (-15 -1794 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1826 ((-783) |#1|)) (-15 -1836 (|#1| |#1|)) (-15 -2990 (|#2| |#1|)) (-15 -2978 (|#2| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3654 (|#1| |#1| (-783))) (-15 -2071 (|#2| |#1| "last")) (-15 -3654 (|#2| |#1|)) (-15 -1976 (|#1| |#1| (-783))) (-15 -2071 (|#1| |#1| "rest")) (-15 -1976 (|#1| |#1|)) (-15 -2071 (|#2| |#1| "first")) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -3434 (|#2| |#1| |#2|)) (-15 -3055 (|#2| |#1| "value" |#2|)) (-15 -3442 (|#1| |#1| (-656 |#1|))) (-15 -3452 ((-112) |#1| |#1|)) (-15 -4053 ((-112) |#1|)) (-15 -2071 (|#2| |#1| "value")) (-15 -4183 (|#2| |#1|)) (-15 -4306 ((-112) |#1|)) (-15 -3484 ((-656 |#1|) |#1|)) (-15 -4255 ((-656 |#1|) |#1|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -2872 ((-783) |#1|)) (-15 -2970 ((-112) |#1| (-783))) (-15 -2408 ((-112) |#1| (-783))) (-15 -2374 ((-112) |#1| (-783)))) (-1274 |#2|) (-1236)) (T -1273)) -NIL -(-10 -8 (-15 -1748 (|#1| |#1| (-576))) (-15 -3055 (|#2| |#1| "last" |#2|)) (-15 -1761 (|#2| |#1| |#2|)) (-15 -3055 (|#1| |#1| "rest" |#1|)) (-15 -3055 (|#2| |#1| "first" |#2|)) (-15 -1794 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1826 ((-783) |#1|)) (-15 -1836 (|#1| |#1|)) (-15 -2990 (|#2| |#1|)) (-15 -2978 (|#2| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3654 (|#1| |#1| (-783))) (-15 -2071 (|#2| |#1| "last")) (-15 -3654 (|#2| |#1|)) (-15 -1976 (|#1| |#1| (-783))) (-15 -2071 (|#1| |#1| "rest")) (-15 -1976 (|#1| |#1|)) (-15 -2071 (|#2| |#1| "first")) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -3434 (|#2| |#1| |#2|)) (-15 -3055 (|#2| |#1| "value" |#2|)) (-15 -3442 (|#1| |#1| (-656 |#1|))) (-15 -3452 ((-112) |#1| |#1|)) (-15 -4053 ((-112) |#1|)) (-15 -2071 (|#2| |#1| "value")) (-15 -4183 (|#2| |#1|)) (-15 -4306 ((-112) |#1|)) (-15 -3484 ((-656 |#1|) |#1|)) (-15 -4255 ((-656 |#1|) |#1|)) (-15 -3915 ((-112) |#1| |#1|)) (-15 -2872 ((-783) |#1|)) (-15 -2970 ((-112) |#1| (-783))) (-15 -2408 ((-112) |#1| (-783))) (-15 -2374 ((-112) |#1| (-783)))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-4183 ((|#1| $) 49)) (-2990 ((|#1| $) 66)) (-3463 (($ $) 68)) (-1748 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-2970 (((-112) $ (-783)) 8)) (-3434 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-1772 (($ $ $) 57 (|has| $ (-6 -4462)))) (-1761 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1783 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3055 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462)))) (-3442 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-2978 ((|#1| $) 67)) (-2473 (($) 7 T CONST)) (-1976 (($ $) 74) (($ $ (-783)) 72)) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3484 (((-656 $) $) 51)) (-3452 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-2408 (((-112) $ (-783)) 9)) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36)) (-2374 (((-112) $ (-783)) 10)) (-2482 (((-656 |#1|) $) 46)) (-4306 (((-112) $) 50)) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3654 ((|#1| $) 71) (($ $ (-783)) 69)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1962 ((|#1| $) 77) (($ $ (-783)) 75)) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3473 (((-576) $ $) 45)) (-4053 (((-112) $) 47)) (-1816 (($ $) 63)) (-1794 (($ $) 60 (|has| $ (-6 -4462)))) (-1826 (((-783) $) 64)) (-1836 (($ $) 65)) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3079 (($ $) 13)) (-1806 (($ $ $) 62 (|has| $ (-6 -4462))) (($ $ |#1|) 61 (|has| $ (-6 -4462)))) (-1514 (($ $ $) 79) (($ |#1| $) 78)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4255 (((-656 $) $) 52)) (-3462 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-1274 |#1|) (-141) (-1236)) (T -1274)) -((-1514 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1514 (*1 *1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2071 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1962 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-1976 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2071 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-1976 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2071 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-3463 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2978 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2990 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1836 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-1816 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1806 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1806 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1794 (*1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1783 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3055 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1772 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3055 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-1761 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3055 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1748 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3)) (-4 *3 (-1236))))) -(-13 (-1028 |t#1|) (-10 -8 (-15 -1514 ($ $ $)) (-15 -1514 ($ |t#1| $)) (-15 -1962 (|t#1| $)) (-15 -2071 (|t#1| $ "first")) (-15 -1962 ($ $ (-783))) (-15 -1976 ($ $)) (-15 -2071 ($ $ "rest")) (-15 -1976 ($ $ (-783))) (-15 -3654 (|t#1| $)) (-15 -2071 (|t#1| $ "last")) (-15 -3654 ($ $ (-783))) (-15 -3463 ($ $)) (-15 -2978 (|t#1| $)) (-15 -2990 (|t#1| $)) (-15 -1836 ($ $)) (-15 -1826 ((-783) $)) (-15 -1816 ($ $)) (IF (|has| $ (-6 -4462)) (PROGN (-15 -1806 ($ $ $)) (-15 -1806 ($ $ |t#1|)) (-15 -1794 ($ $)) (-15 -1783 (|t#1| $ |t#1|)) (-15 -3055 (|t#1| $ "first" |t#1|)) (-15 -1772 ($ $ $)) (-15 -3055 ($ $ "rest" $)) (-15 -1761 (|t#1| $ |t#1|)) (-15 -3055 (|t#1| $ "last" |t#1|)) (-15 -1748 ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T)) -((-2551 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1275 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2551 (|#4| (-1 |#2| |#1|) |#3|))) (-1067) (-1067) (-1277 |#1|) (-1277 |#2|)) (T -1275)) -((-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1277 *6)) (-5 *1 (-1275 *5 *6 *4 *2)) (-4 *4 (-1277 *5))))) -(-10 -7 (-15 -2551 (|#4| (-1 |#2| |#1|) |#3|))) -((-1389 (((-112) $) 17)) (-3924 (($ $) 105)) (-3787 (($ $) 81)) (-3898 (($ $) 101)) (-3762 (($ $) 77)) (-1522 (($ $) 109)) (-3808 (($ $) 85)) (-3464 (($ $) 75)) (-2666 (($ $) 73)) (-1532 (($ $) 111)) (-3818 (($ $) 87)) (-3938 (($ $) 107)) (-3798 (($ $) 83)) (-3910 (($ $) 103)) (-3775 (($ $) 79)) (-2884 (((-874) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1570 (($ $) 117)) (-3853 (($ $) 93)) (-1545 (($ $) 113)) (-3829 (($ $) 89)) (-1594 (($ $) 121)) (-3874 (($ $) 97)) (-2915 (($ $) 123)) (-3886 (($ $) 99)) (-1584 (($ $) 119)) (-3864 (($ $) 95)) (-1555 (($ $) 115)) (-3840 (($ $) 91)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71))) -(((-1276 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3787 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3874 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -1555 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -1594 (|#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -3464 (|#1| |#1|)) (-15 -2666 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2884 (|#1| |#2|)) (-15 -2884 (|#1| |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937))) (-15 -1389 ((-112) |#1|)) (-15 -2884 ((-874) |#1|))) (-1277 |#2|) (-1067)) (T -1276)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3787 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3874 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -1555 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -1594 (|#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -3464 (|#1| |#1|)) (-15 -2666 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2884 (|#1| |#2|)) (-15 -2884 (|#1| |#1|)) (-15 -2884 (|#1| (-419 (-576)))) (-15 -2884 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937))) (-15 -1389 ((-112) |#1|)) (-15 -2884 ((-874) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1607 (((-656 (-1100)) $) 86)) (-1441 (((-1195) $) 118)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4241 (($ $) 64 (|has| |#1| (-568)))) (-4221 (((-112) $) 66 (|has| |#1| (-568)))) (-2916 (($ $ (-783)) 113) (($ $ (-783) (-783)) 112)) (-2934 (((-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 119)) (-3924 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) 20)) (-2474 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3898 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1874 (($ (-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 170) (($ (-1175 |#1|)) 168)) (-1522 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) 18 T CONST)) (-4407 (($ $) 72)) (-1999 (((-3 $ "failed") $) 37)) (-1981 (($ $) 167)) (-2486 (((-968 |#1|) $ (-783)) 165) (((-968 |#1|) $ (-783) (-783)) 164)) (-1355 (((-112) $) 85)) (-1632 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-783) $) 115) (((-783) $ (-783)) 114)) (-1439 (((-112) $) 35)) (-3298 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2962 (($ $ (-937)) 116)) (-1968 (($ (-1 |#1| (-576)) $) 166)) (-3734 (((-112) $) 74)) (-2421 (($ |#1| (-783)) 73) (($ $ (-1100) (-783)) 88) (($ $ (-656 (-1100)) (-656 (-783))) 87)) (-2551 (($ (-1 |#1| |#1|) $) 75)) (-3464 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3733 (((-1177) $) 10)) (-1956 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 161 (-3766 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-975)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3914 (((-1138) $) 11)) (-2904 (($ $ (-783)) 110)) (-2852 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2666 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2071 ((|#1| $ (-783)) 120) (($ $ $) 96 (|has| (-783) (-1130)))) (-2390 (($ $ (-1195)) 108 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-3813 (((-783) $) 76)) (-1532 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) 84)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1993 (((-1175 |#1|) $) 169)) (-3245 ((|#1| $ (-783)) 71)) (-3148 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1871 (((-783)) 32 T CONST)) (-1752 ((|#1| $) 117)) (-3722 (((-112) $ $) 9)) (-1570 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1545 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-783)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3431 (($ $ (-1195)) 107 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1277 |#1|) (-141) (-1067)) (T -1277)) -((-1874 (*1 *1 *2) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-783)) (|:| |c| *3)))) (-4 *3 (-1067)) (-4 *1 (-1277 *3)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1067)) (-5 *2 (-1175 *3)))) (-1874 (*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-4 *1 (-1277 *3)))) (-1981 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067)))) (-1968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1277 *3)) (-4 *3 (-1067)))) (-2486 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1067)) (-5 *2 (-968 *4)))) (-2486 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1067)) (-5 *2 (-968 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-1956 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576)))))) (-1956 (*1 *1 *1 *2) (-3766 (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1067)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1067)) (-12 (|has| *3 (-15 -1607 ((-656 *2) *3))) (|has| *3 (-15 -1956 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1264 |t#1| (-783)) (-10 -8 (-15 -1874 ($ (-1175 (-2 (|:| |k| (-783)) (|:| |c| |t#1|))))) (-15 -1993 ((-1175 |t#1|) $)) (-15 -1874 ($ (-1175 |t#1|))) (-15 -1981 ($ $)) (-15 -1968 ($ (-1 |t#1| (-576)) $)) (-15 -2486 ((-968 |t#1|) $ (-783))) (-15 -2486 ((-968 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1956 ($ $)) (IF (|has| |t#1| (-15 -1956 (|t#1| |t#1| (-1195)))) (IF (|has| |t#1| (-15 -1607 ((-656 (-1195)) |t#1|))) (-15 -1956 ($ $ (-1195))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1221)) (IF (|has| |t#1| (-975)) (IF (|has| |t#1| (-29 (-576))) (-15 -1956 ($ $ (-1195))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1020)) (-6 (-1221))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-783) (-1130)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))) ((-991 |#1| #0# (-1100)) . T) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1069 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -3766 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1264 |#1| #0#) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1607 (((-656 (-1100)) $) NIL)) (-1441 (((-1195) $) 90)) (-1942 (((-1259 |#2| |#1|) $ (-783)) 73)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4241 (($ $) NIL (|has| |#1| (-568)))) (-4221 (((-112) $) 142 (|has| |#1| (-568)))) (-2916 (($ $ (-783)) 127) (($ $ (-783) (-783)) 130)) (-2934 (((-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 43)) (-3924 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3787 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1459 (((-3 $ "failed") $ $) NIL)) (-2474 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3762 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1874 (($ (-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 52) (($ (-1175 |#1|)) NIL)) (-1522 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($) NIL T CONST)) (-1872 (($ $) 134)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-1981 (($ $) 140)) (-2486 (((-968 |#1|) $ (-783)) 63) (((-968 |#1|) $ (-783) (-783)) 65)) (-1355 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2927 (((-783) $) NIL) (((-783) $ (-783)) NIL)) (-1439 (((-112) $) NIL)) (-1906 (($ $) 117)) (-3298 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1861 (($ (-576) (-576) $) 136)) (-2962 (($ $ (-937)) 139)) (-1968 (($ (-1 |#1| (-576)) $) 111)) (-3734 (((-112) $) NIL)) (-2421 (($ |#1| (-783)) 16) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-2551 (($ (-1 |#1| |#1|) $) 98)) (-3464 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-1917 (($ $) 115)) (-1930 (($ $) 113)) (-1848 (($ (-576) (-576) $) 138)) (-1956 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 156 (-3766 (-12 (|has| |#1| (-15 -1956 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1607 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3914 (((-1138) $) NIL)) (-1883 (($ $ (-576) (-576)) 121)) (-2904 (($ $ (-783)) 123)) (-2852 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2666 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1895 (($ $) 119)) (-3049 (((-1175 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2071 ((|#1| $ (-783)) 95) (($ $ $) 132 (|has| (-783) (-1130)))) (-2390 (($ $ (-1195)) 108 (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1282 |#2|)) 103)) (-3813 (((-783) $) NIL)) (-1532 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3818 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3938 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3775 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1346 (($ $) 125)) (-2884 (((-874) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1259 |#2| |#1|)) 81) (($ (-1282 |#2|)) 22)) (-1993 (((-1175 |#1|) $) NIL)) (-3245 ((|#1| $ (-783)) 94)) (-3148 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1871 (((-783)) NIL T CONST)) (-1752 ((|#1| $) 91)) (-3722 (((-112) $ $) NIL)) (-1570 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4232 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1545 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3829 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1594 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3874 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3495 ((|#1| $ (-783)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -2884 (|#1| (-1195))))))) (-2915 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1584 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1555 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1996 (($) 18 T CONST)) (-2011 (($) 13 T CONST)) (-3431 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-3915 (((-112) $ $) NIL)) (-4039 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) 107)) (-4017 (($ $ $) 20)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1278 |#1| |#2| |#3|) (-13 (-1277 |#1|) (-10 -8 (-15 -2884 ($ (-1259 |#2| |#1|))) (-15 -1942 ((-1259 |#2| |#1|) $ (-783))) (-15 -2884 ($ (-1282 |#2|))) (-15 -2390 ($ $ (-1282 |#2|))) (-15 -1930 ($ $)) (-15 -1917 ($ $)) (-15 -1906 ($ $)) (-15 -1895 ($ $)) (-15 -1883 ($ $ (-576) (-576))) (-15 -1872 ($ $)) (-15 -1861 ($ (-576) (-576) $)) (-15 -1848 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1278)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-1278 *3 *4 *5)))) (-1942 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1278 *4 *5 *6)) (-4 *4 (-1067)) (-14 *5 (-1195)) (-14 *6 *4))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-1930 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) (-14 *4 *2))) (-1917 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) (-14 *4 *2))) (-1906 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) (-14 *4 *2))) (-1895 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) (-14 *4 *2))) (-1883 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) (-14 *4 *2))) (-1861 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3))) (-1848 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3))) (-1956 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))) -(-13 (-1277 |#1|) (-10 -8 (-15 -2884 ($ (-1259 |#2| |#1|))) (-15 -1942 ((-1259 |#2| |#1|) $ (-783))) (-15 -2884 ($ (-1282 |#2|))) (-15 -2390 ($ $ (-1282 |#2|))) (-15 -1930 ($ $)) (-15 -1917 ($ $)) (-15 -1906 ($ $)) (-15 -1895 ($ $)) (-15 -1883 ($ $ (-576) (-576))) (-15 -1872 ($ $)) (-15 -1861 ($ (-576) (-576) $)) (-15 -1848 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1956 ($ $ (-1282 |#2|))) |%noBranch|))) -((-2031 (((-1 (-1175 |#1|) (-656 (-1175 |#1|))) (-1 |#2| (-656 |#2|))) 24)) (-2020 (((-1 (-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2007 (((-1 (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2|)) 13)) (-2067 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2055 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2079 ((|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|)) 60)) (-2091 (((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))) 66)) (-2043 ((|#2| |#2| |#2|) 43))) -(((-1279 |#1| |#2|) (-10 -7 (-15 -2007 ((-1 (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2|))) (-15 -2020 ((-1 (-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2031 ((-1 (-1175 |#1|) (-656 (-1175 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -2043 (|#2| |#2| |#2|)) (-15 -2055 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2067 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2079 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -2091 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) (-38 (-419 (-576))) (-1277 |#1|)) (T -1279)) -((-2091 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1277 *5)) (-5 *2 (-656 *6)) (-5 *1 (-1279 *5 *6)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1277 *5)) (-5 *1 (-1279 *5 *2)))) (-2067 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-2055 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-2043 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1279 *3 *2)) (-4 *2 (-1277 *3)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1277 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1175 *4) (-656 (-1175 *4)))) (-5 *1 (-1279 *4 *5)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1277 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1175 *4) (-1175 *4) (-1175 *4))) (-5 *1 (-1279 *4 *5)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1277 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1175 *4) (-1175 *4))) (-5 *1 (-1279 *4 *5))))) -(-10 -7 (-15 -2007 ((-1 (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2|))) (-15 -2020 ((-1 (-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2031 ((-1 (-1175 |#1|) (-656 (-1175 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -2043 (|#2| |#2| |#2|)) (-15 -2055 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2067 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2079 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -2091 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) -((-2111 ((|#2| |#4| (-783)) 31)) (-2101 ((|#4| |#2|) 26)) (-2131 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-2121 (((-1 |#4| (-656 |#4|)) |#3|) 43))) -(((-1280 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2101 (|#4| |#2|)) (-15 -2111 (|#2| |#4| (-783))) (-15 -2121 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -2131 (|#4| (-419 |#2|))) |%noBranch|)) (-1067) (-1262 |#1|) (-668 |#2|) (-1277 |#1|)) (T -1280)) -((-2131 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-568)) (-4 *4 (-1067)) (-4 *2 (-1277 *4)) (-5 *1 (-1280 *4 *5 *6 *2)) (-4 *6 (-668 *5)))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-1262 *4)) (-5 *2 (-1 *6 (-656 *6))) (-5 *1 (-1280 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1277 *4)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1067)) (-4 *2 (-1262 *5)) (-5 *1 (-1280 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1277 *5)))) (-2101 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *3 (-1262 *4)) (-4 *2 (-1277 *4)) (-5 *1 (-1280 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) -(-10 -7 (-15 -2101 (|#4| |#2|)) (-15 -2111 (|#2| |#4| (-783))) (-15 -2121 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -2131 (|#4| (-419 |#2|))) |%noBranch|)) -NIL -(((-1281) (-141)) (T -1281)) +((-2550 (((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)) 23))) +(((-1244 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2550 ((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)))) (-1066) (-1066) (-1194) (-1194) |#1| |#2|) (T -1244)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1249 *5 *7 *9)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-14 *7 (-1194)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1249 *6 *8 *10)) (-5 *1 (-1244 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1194))))) +(-10 -7 (-15 -2550 ((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-1540 (($ $) 64 (|has| |#1| (-567)))) (-3286 (((-112) $) 66 (|has| |#1| (-567)))) (-4080 (($ $ (-575)) 113) (($ $ (-575) (-575)) 112)) (-2144 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) 119)) (-3923 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) 133 (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 177 (|has| |#1| (-373)))) (-2330 (((-429 $) $) 178 (|has| |#1| (-373)))) (-2473 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-2279 (((-112) $ $) 168 (|has| |#1| (-373)))) (-3897 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) 188)) (-1521 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) 18 T CONST)) (-2802 (($ $ $) 172 (|has| |#1| (-373)))) (-4406 (($ $) 72)) (-1747 (((-3 $ "failed") $) 37)) (-3586 (((-418 (-967 |#1|)) $ (-575)) 186 (|has| |#1| (-567))) (((-418 (-967 |#1|)) $ (-575) (-575)) 185 (|has| |#1| (-567)))) (-2813 (($ $ $) 171 (|has| |#1| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 166 (|has| |#1| (-373)))) (-1336 (((-112) $) 179 (|has| |#1| (-373)))) (-2789 (((-112) $) 85)) (-1631 (($) 160 (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-575) $) 115) (((-575) $ (-575)) 114)) (-1542 (((-112) $) 35)) (-2931 (($ $ (-575)) 131 (|has| |#1| (-38 (-418 (-575)))))) (-3461 (($ $ (-936)) 116)) (-3247 (($ (-1 |#1| (-575)) $) 187)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 175 (|has| |#1| (-373)))) (-2376 (((-112) $) 74)) (-2417 (($ |#1| (-575)) 73) (($ $ (-1099) (-575)) 88) (($ $ (-655 (-1099)) (-655 (-575))) 87)) (-2550 (($ (-1 |#1| |#1|) $) 75)) (-3463 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3887 (($ (-655 $)) 164 (|has| |#1| (-373))) (($ $ $) 163 (|has| |#1| (-373)))) (-2288 (((-1176) $) 10)) (-4332 (($ $) 180 (|has| |#1| (-373)))) (-4413 (($ $) 184 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 183 (-3765 (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-974)) (|has| |#1| (-1220)) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-38 (-418 (-575)))))))) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 165 (|has| |#1| (-373)))) (-3926 (($ (-655 $)) 162 (|has| |#1| (-373))) (($ $ $) 161 (|has| |#1| (-373)))) (-2353 (((-429 $) $) 176 (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 173 (|has| |#1| (-373)))) (-4276 (($ $ (-575)) 110)) (-2851 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 167 (|has| |#1| (-373)))) (-2665 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-575)))))) (-3708 (((-782) $) 169 (|has| |#1| (-373)))) (-2070 ((|#1| $ (-575)) 120) (($ $ $) 96 (|has| (-575) (-1129)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 170 (|has| |#1| (-373)))) (-2389 (($ $ (-1194)) 108 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-655 (-1194))) 106 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194) (-782)) 105 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-575) |#1|)))) (($ $ (-782)) 98 (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (-2645 (((-575) $) 76)) (-1530 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) 84)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567)))) (-2012 ((|#1| $ (-575)) 71)) (-1518 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-4400 (((-112) $ $) 9)) (-1568 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1544 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) 143 (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-575)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) 141 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) 139 (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1194)) 107 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-655 (-1194))) 103 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194) (-782)) 102 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-575) |#1|)))) (($ $ (-782)) 97 (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373))) (($ $ $) 182 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 181 (|has| |#1| (-373))) (($ $ $) 159 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 130 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575))))))) +(((-1245 |#1|) (-141) (-1066)) (T -1245)) +((-1873 (*1 *1 *2) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3)))) (-4 *3 (-1066)) (-4 *1 (-1245 *3)))) (-3247 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-575))) (-4 *1 (-1245 *3)) (-4 *3 (-1066)))) (-3586 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1245 *4)) (-4 *4 (-1066)) (-4 *4 (-567)) (-5 *2 (-418 (-967 *4))))) (-3586 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1245 *4)) (-4 *4 (-1066)) (-4 *4 (-567)) (-5 *2 (-418 (-967 *4))))) (-4413 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575)))))) (-4413 (*1 *1 *1 *2) (-3765 (-12 (-5 *2 (-1194)) (-4 *1 (-1245 *3)) (-4 *3 (-1066)) (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220)) (-4 *3 (-38 (-418 (-575)))))) (-12 (-5 *2 (-1194)) (-4 *1 (-1245 *3)) (-4 *3 (-1066)) (-12 (|has| *3 (-15 -1606 ((-655 *2) *3))) (|has| *3 (-15 -4413 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575))))))))) +(-13 (-1263 |t#1| (-575)) (-10 -8 (-15 -1873 ($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |t#1|))))) (-15 -3247 ($ (-1 |t#1| (-575)) $)) (IF (|has| |t#1| (-567)) (PROGN (-15 -3586 ((-418 (-967 |t#1|)) $ (-575))) (-15 -3586 ((-418 (-967 |t#1|)) $ (-575) (-575)))) |%noBranch|) (IF (|has| |t#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ($ $)) (IF (|has| |t#1| (-15 -4413 (|t#1| |t#1| (-1194)))) (IF (|has| |t#1| (-15 -1606 ((-655 (-1194)) |t#1|))) (-15 -4413 ($ $ (-1194))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1220)) (IF (|has| |t#1| (-974)) (IF (|has| |t#1| (-29 (-575))) (-15 -4413 ($ $ (-1194))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1019)) (-6 (-1220))) |%noBranch|) (IF (|has| |t#1| (-373)) (-6 (-373)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-575)) . T) ((-25) . T) ((-38 #1=(-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-575) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-575) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-575) |#1|))) ((-248) |has| |#1| (-373)) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-295 #0# |#1|) . T) ((-295 $ $) |has| (-575) (-1129)) ((-299) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-316) |has| |#1| (-373)) ((-373) |has| |#1| (-373)) ((-463) |has| |#1| (-373)) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-567) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-657 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-728 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-737) . T) ((-908 $ #2=(-1194)) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) ((-913 #2#) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) ((-990 |#1| #0# (-1099)) . T) ((-935) |has| |#1| (-373)) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1068 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1073 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T) ((-1239) |has| |#1| (-373)) ((-1263 |#1| #0#) . T)) +((-3799 (((-112) $) 12)) (-2449 (((-3 |#3| "failed") $) 17) (((-3 (-1194) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) NIL)) (-4399 ((|#3| $) 14) (((-1194) $) NIL) (((-418 (-575)) $) NIL) (((-575) $) NIL))) +(((-1246 |#1| |#2| |#3|) (-10 -8 (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-1194) "failed") |#1|)) (-15 -4399 ((-1194) |#1|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4399 (|#3| |#1|)) (-15 -3799 ((-112) |#1|))) (-1247 |#2| |#3|) (-1066) (-1276 |#2|)) (T -1246)) +NIL +(-10 -8 (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -2449 ((-3 (-1194) "failed") |#1|)) (-15 -4399 ((-1194) |#1|)) (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4399 (|#3| |#1|)) (-15 -3799 ((-112) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3127 ((|#2| $) 248 (-3226 (|has| |#2| (-316)) (|has| |#1| (-373))))) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-1540 (($ $) 64 (|has| |#1| (-567)))) (-3286 (((-112) $) 66 (|has| |#1| (-567)))) (-4080 (($ $ (-575)) 113) (($ $ (-575) (-575)) 112)) (-2144 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) 119)) (-4027 ((|#2| $) 284)) (-3483 (((-3 |#2| "failed") $) 280)) (-4290 ((|#2| $) 281)) (-3923 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) 133 (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) 20)) (-3535 (((-429 (-1190 $)) (-1190 $)) 257 (-3226 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-2058 (($ $) 177 (|has| |#1| (-373)))) (-2330 (((-429 $) $) 178 (|has| |#1| (-373)))) (-2473 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 254 (-3226 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-2279 (((-112) $ $) 168 (|has| |#1| (-373)))) (-3897 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-4428 (((-575) $) 266 (-3226 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) 188)) (-1521 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) 18 T CONST)) (-2449 (((-3 |#2| "failed") $) 287) (((-3 (-575) "failed") $) 277 (-3226 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-418 (-575)) "failed") $) 275 (-3226 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-1194) "failed") $) 259 (-3226 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373))))) (-4399 ((|#2| $) 288) (((-575) $) 276 (-3226 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-418 (-575)) $) 274 (-3226 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-1194) $) 258 (-3226 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373))))) (-2140 (($ $) 283) (($ (-575) $) 282)) (-2802 (($ $ $) 172 (|has| |#1| (-373)))) (-4406 (($ $) 72)) (-1749 (((-700 |#2|) (-1285 $)) 238 (|has| |#1| (-373))) (((-700 |#2|) (-700 $)) 237 (|has| |#1| (-373))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 236 (|has| |#1| (-373))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 235 (-3226 (|has| |#2| (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-700 $)) 234 (-3226 (|has| |#2| (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-1285 $)) 233 (-3226 (|has| |#2| (-650 (-575))) (|has| |#1| (-373))))) (-1747 (((-3 $ "failed") $) 37)) (-3586 (((-418 (-967 |#1|)) $ (-575)) 186 (|has| |#1| (-567))) (((-418 (-967 |#1|)) $ (-575) (-575)) 185 (|has| |#1| (-567)))) (-2079 (($) 250 (-3226 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-2813 (($ $ $) 171 (|has| |#1| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 166 (|has| |#1| (-373)))) (-1336 (((-112) $) 179 (|has| |#1| (-373)))) (-4075 (((-112) $) 264 (-3226 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-2789 (((-112) $) 85)) (-1631 (($) 160 (|has| |#1| (-38 (-418 (-575)))))) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 242 (-3226 (|has| |#2| (-898 (-389))) (|has| |#1| (-373)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 241 (-3226 (|has| |#2| (-898 (-575))) (|has| |#1| (-373))))) (-2673 (((-575) $) 115) (((-575) $ (-575)) 114)) (-1542 (((-112) $) 35)) (-4046 (($ $) 246 (|has| |#1| (-373)))) (-1595 ((|#2| $) 244 (|has| |#1| (-373)))) (-2931 (($ $ (-575)) 131 (|has| |#1| (-38 (-418 (-575)))))) (-2607 (((-3 $ "failed") $) 278 (-3226 (|has| |#2| (-1169)) (|has| |#1| (-373))))) (-4087 (((-112) $) 265 (-3226 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-3461 (($ $ (-936)) 116)) (-3247 (($ (-1 |#1| (-575)) $) 187)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 175 (|has| |#1| (-373)))) (-2376 (((-112) $) 74)) (-2417 (($ |#1| (-575)) 73) (($ $ (-1099) (-575)) 88) (($ $ (-655 (-1099)) (-655 (-575))) 87)) (-1920 (($ $ $) 268 (-3226 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-1425 (($ $ $) 269 (-3226 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-2550 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 228 (|has| |#1| (-373)))) (-3463 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3887 (($ (-655 $)) 164 (|has| |#1| (-373))) (($ $ $) 163 (|has| |#1| (-373)))) (-4301 (($ (-575) |#2|) 285)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 180 (|has| |#1| (-373)))) (-4413 (($ $) 184 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 183 (-3765 (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-974)) (|has| |#1| (-1220)) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-38 (-418 (-575)))))))) (-3474 (($) 279 (-3226 (|has| |#2| (-1169)) (|has| |#1| (-373))) CONST)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 165 (|has| |#1| (-373)))) (-3926 (($ (-655 $)) 162 (|has| |#1| (-373))) (($ $ $) 161 (|has| |#1| (-373)))) (-4309 (($ $) 249 (-3226 (|has| |#2| (-316)) (|has| |#1| (-373))))) (-2736 ((|#2| $) 252 (-3226 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-1641 (((-429 (-1190 $)) (-1190 $)) 255 (-3226 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-1665 (((-429 (-1190 $)) (-1190 $)) 256 (-3226 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-2353 (((-429 $) $) 176 (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 173 (|has| |#1| (-373)))) (-4276 (($ $ (-575)) 110)) (-2851 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 167 (|has| |#1| (-373)))) (-2665 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-575))))) (($ $ (-1194) |#2|) 227 (-3226 (|has| |#2| (-525 (-1194) |#2|)) (|has| |#1| (-373)))) (($ $ (-655 (-1194)) (-655 |#2|)) 226 (-3226 (|has| |#2| (-525 (-1194) |#2|)) (|has| |#1| (-373)))) (($ $ (-655 (-303 |#2|))) 225 (-3226 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ (-303 |#2|)) 224 (-3226 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ |#2| |#2|) 223 (-3226 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ (-655 |#2|) (-655 |#2|)) 222 (-3226 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373))))) (-3708 (((-782) $) 169 (|has| |#1| (-373)))) (-2070 ((|#1| $ (-575)) 120) (($ $ $) 96 (|has| (-575) (-1129))) (($ $ |#2|) 221 (-3226 (|has| |#2| (-295 |#2| |#2|)) (|has| |#1| (-373))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 170 (|has| |#1| (-373)))) (-2389 (($ $ (-1 |#2| |#2|) (-782)) 230 (|has| |#1| (-373))) (($ $ (-1 |#2| |#2|)) 229 (|has| |#1| (-373))) (($ $) 100 (-3765 (-3226 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) 98 (-3765 (-3226 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) 108 (-3765 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-655 (-1194))) 106 (-3765 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-1194) (-782)) 105 (-3765 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-3765 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))))) (-4172 (($ $) 247 (|has| |#1| (-373)))) (-1608 ((|#2| $) 245 (|has| |#1| (-373)))) (-2645 (((-575) $) 76)) (-1530 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-2615 (((-227) $) 263 (-3226 (|has| |#2| (-1039)) (|has| |#1| (-373)))) (((-389) $) 262 (-3226 (|has| |#2| (-1039)) (|has| |#1| (-373)))) (((-547) $) 261 (-3226 (|has| |#2| (-625 (-547))) (|has| |#1| (-373)))) (((-904 (-389)) $) 240 (-3226 (|has| |#2| (-625 (-904 (-389)))) (|has| |#1| (-373)))) (((-904 (-575)) $) 239 (-3226 (|has| |#2| (-625 (-904 (-575)))) (|has| |#1| (-373))))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 253 (-3226 (-3226 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#1| (-373))))) (-2972 (($ $) 84)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 286) (($ (-1194)) 260 (-3226 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373)))) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567)))) (-2012 ((|#1| $ (-575)) 71)) (-1518 (((-3 $ "failed") $) 60 (-3765 (-3226 (-3765 (|has| |#2| (-146)) (-3226 (|has| $ (-146)) (|has| |#2| (-924)))) (|has| |#1| (-373))) (|has| |#1| (-146))))) (-3759 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-1432 ((|#2| $) 251 (-3226 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-4400 (((-112) $ $) 9)) (-1568 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1544 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) 143 (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-575)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) 141 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) 139 (|has| |#1| (-38 (-418 (-575)))))) (-2705 (($ $) 267 (-3226 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1 |#2| |#2|) (-782)) 232 (|has| |#1| (-373))) (($ $ (-1 |#2| |#2|)) 231 (|has| |#1| (-373))) (($ $) 99 (-3765 (-3226 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) 97 (-3765 (-3226 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) 107 (-3765 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-655 (-1194))) 103 (-3765 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-1194) (-782)) 102 (-3765 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-3765 (-3226 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))))) (-3981 (((-112) $ $) 271 (-3226 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3956 (((-112) $ $) 272 (-3226 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3914 (((-112) $ $) 6)) (-3970 (((-112) $ $) 270 (-3226 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3943 (((-112) $ $) 273 (-3226 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373))) (($ $ $) 182 (|has| |#1| (-373))) (($ |#2| |#2|) 243 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 181 (|has| |#1| (-373))) (($ $ $) 159 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 130 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 220 (|has| |#1| (-373))) (($ |#2| $) 219 (|has| |#1| (-373))) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575))))))) +(((-1247 |#1| |#2|) (-141) (-1066) (-1276 |t#1|)) (T -1247)) +((-2645 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1276 *3)) (-5 *2 (-575)))) (-4301 (*1 *1 *2 *3) (-12 (-5 *2 (-575)) (-4 *4 (-1066)) (-4 *1 (-1247 *4 *3)) (-4 *3 (-1276 *4)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1276 *3)))) (-2140 (*1 *1 *1) (-12 (-4 *1 (-1247 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1276 *2)))) (-2140 (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1276 *3)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1276 *3)))) (-3483 (*1 *2 *1) (|partial| -12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1276 *3))))) +(-13 (-1245 |t#1|) (-1055 |t#2|) (-627 |t#2|) (-10 -8 (-15 -4301 ($ (-575) |t#2|)) (-15 -2645 ((-575) $)) (-15 -4027 (|t#2| $)) (-15 -2140 ($ $)) (-15 -2140 ($ (-575) $)) (-15 -4290 (|t#2| $)) (-15 -3483 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-373)) (-6 (-1009 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-575)) . T) ((-25) . T) ((-38 #1=(-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-373)) ((-38 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-373)) ((-111 $ $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-132) . T) ((-146) -3765 (-12 (|has| |#1| (-373)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -3765 (-12 (|has| |#1| (-373)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-627 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 #2=(-1194)) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-1194)))) ((-627 |#1|) |has| |#1| (-174)) ((-627 |#2|) . T) ((-627 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-625 (-227)) -12 (|has| |#1| (-373)) (|has| |#2| (-1039))) ((-625 (-389)) -12 (|has| |#1| (-373)) (|has| |#2| (-1039))) ((-625 (-547)) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-547)))) ((-625 (-904 (-389))) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-904 (-389))))) ((-625 (-904 (-575))) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-904 (-575))))) ((-234 $) -3765 (-12 (|has| |#1| (-373)) (|has| |#2| (-237))) (-12 (|has| |#1| (-373)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))) ((-232 |#2|) |has| |#1| (-373)) ((-238) -3765 (-12 (|has| |#1| (-373)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))) ((-237) -3765 (-12 (|has| |#1| (-373)) (|has| |#2| (-237))) (-12 (|has| |#1| (-373)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))) ((-271 |#2|) |has| |#1| (-373)) ((-248) |has| |#1| (-373)) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-295 #0# |#1|) . T) ((-295 |#2| $) -12 (|has| |#1| (-373)) (|has| |#2| (-295 |#2| |#2|))) ((-295 $ $) |has| (-575) (-1129)) ((-299) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-316) |has| |#1| (-373)) ((-318 |#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-318 |#2|))) ((-373) |has| |#1| (-373)) ((-348 |#2|) |has| |#1| (-373)) ((-387 |#2|) |has| |#1| (-373)) ((-411 |#2|) |has| |#1| (-373)) ((-463) |has| |#1| (-373)) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-525 (-1194) |#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-525 (-1194) |#2|))) ((-525 |#2| |#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-318 |#2|))) ((-567) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-657 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 |#2|) |has| |#1| (-373)) ((-657 $) . T) ((-659 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-659 #3=(-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-650 (-575)))) ((-659 |#1|) . T) ((-659 |#2|) |has| |#1| (-373)) ((-659 $) . T) ((-651 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-651 |#1|) |has| |#1| (-174)) ((-651 |#2|) |has| |#1| (-373)) ((-651 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-650 #3#) -12 (|has| |#1| (-373)) (|has| |#2| (-650 (-575)))) ((-650 |#2|) |has| |#1| (-373)) ((-728 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-728 |#1|) |has| |#1| (-174)) ((-728 |#2|) |has| |#1| (-373)) ((-728 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-737) . T) ((-802) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-803) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-805) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-806) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-831) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-859) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-861) -3765 (-12 (|has| |#1| (-373)) (|has| |#2| (-861))) (-12 (|has| |#1| (-373)) (|has| |#2| (-831)))) ((-908 $ #4=(-1194)) -3765 (-12 (|has| |#1| (-373)) (|has| |#2| (-915 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194)))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) ((-913 (-1194)) -3765 (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194)))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) ((-915 #4#) -3765 (-12 (|has| |#1| (-373)) (|has| |#2| (-915 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194)))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) ((-898 (-389)) -12 (|has| |#1| (-373)) (|has| |#2| (-898 (-389)))) ((-898 (-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-898 (-575)))) ((-896 |#2|) |has| |#1| (-373)) ((-924) -12 (|has| |#1| (-373)) (|has| |#2| (-924))) ((-990 |#1| #0# (-1099)) . T) ((-935) |has| |#1| (-373)) ((-1009 |#2|) |has| |#1| (-373)) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1039) -12 (|has| |#1| (-373)) (|has| |#2| (-1039))) ((-1055 (-418 (-575))) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-575)))) ((-1055 (-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-575)))) ((-1055 #2#) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-1194)))) ((-1055 |#2|) . T) ((-1068 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1068 |#1|) . T) ((-1068 |#2|) |has| |#1| (-373)) ((-1068 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1073 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1073 |#1|) . T) ((-1073 |#2|) |has| |#1| (-373)) ((-1073 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) -12 (|has| |#1| (-373)) (|has| |#2| (-1169))) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T) ((-1239) |has| |#1| (-373)) ((-1245 |#1|) . T) ((-1263 |#1| #0#) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 81)) (-3127 ((|#2| $) NIL (-12 (|has| |#2| (-316)) (|has| |#1| (-373))))) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 100)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-4080 (($ $ (-575)) 109) (($ $ (-575) (-575)) 111)) (-2144 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) 51)) (-4027 ((|#2| $) 11)) (-3483 (((-3 |#2| "failed") $) 35)) (-4290 ((|#2| $) 36)) (-3923 (($ $) 206 (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) 182 (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-2058 (($ $) NIL (|has| |#1| (-373)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3897 (($ $) 202 (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) 178 (|has| |#1| (-38 (-418 (-575)))))) (-4428 (((-575) $) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) 59)) (-1521 (($ $) 210 (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) 186 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) 157) (((-3 (-575) "failed") $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-1194) "failed") $) NIL (-12 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373))))) (-4399 ((|#2| $) 156) (((-575) $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-418 (-575)) $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-1194) $) NIL (-12 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373))))) (-2140 (($ $) 65) (($ (-575) $) 28)) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-1749 (((-700 |#2|) (-1285 $)) NIL (|has| |#1| (-373))) (((-700 |#2|) (-700 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#1| (-373))))) (-1747 (((-3 $ "failed") $) 88)) (-3586 (((-418 (-967 |#1|)) $ (-575)) 124 (|has| |#1| (-567))) (((-418 (-967 |#1|)) $ (-575) (-575)) 126 (|has| |#1| (-567)))) (-2079 (($) NIL (-12 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1336 (((-112) $) NIL (|has| |#1| (-373)))) (-4075 (((-112) $) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-2789 (((-112) $) 74)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| |#2| (-898 (-389))) (|has| |#1| (-373)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| |#2| (-898 (-575))) (|has| |#1| (-373))))) (-2673 (((-575) $) 105) (((-575) $ (-575)) 107)) (-1542 (((-112) $) NIL)) (-4046 (($ $) NIL (|has| |#1| (-373)))) (-1595 ((|#2| $) 165 (|has| |#1| (-373)))) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2607 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1169)) (|has| |#1| (-373))))) (-4087 (((-112) $) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-3461 (($ $ (-936)) 148)) (-3247 (($ (-1 |#1| (-575)) $) 144)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-575)) 20) (($ $ (-1099) (-575)) NIL) (($ $ (-655 (-1099)) (-655 (-575))) NIL)) (-1920 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-1425 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-2550 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-373)))) (-3463 (($ $) 176 (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4301 (($ (-575) |#2|) 10)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 159 (|has| |#1| (-373)))) (-4413 (($ $) 228 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 233 (-3765 (-12 (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220)))))) (-3474 (($) NIL (-12 (|has| |#2| (-1169)) (|has| |#1| (-373))) CONST)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4309 (($ $) NIL (-12 (|has| |#2| (-316)) (|has| |#1| (-373))))) (-2736 ((|#2| $) NIL (-12 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-2353 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-4276 (($ $ (-575)) 138)) (-2851 (((-3 $ "failed") $ $) 128 (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2665 (($ $) 174 (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-575))))) (($ $ (-1194) |#2|) NIL (-12 (|has| |#2| (-525 (-1194) |#2|)) (|has| |#1| (-373)))) (($ $ (-655 (-1194)) (-655 |#2|)) NIL (-12 (|has| |#2| (-525 (-1194) |#2|)) (|has| |#1| (-373)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373))))) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2070 ((|#1| $ (-575)) 103) (($ $ $) 90 (|has| (-575) (-1129))) (($ $ |#2|) NIL (-12 (|has| |#2| (-295 |#2| |#2|)) (|has| |#1| (-373))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-2389 (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-373))) (($ $) 149 (-3765 (-12 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3765 (-12 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) 153 (-3765 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-4172 (($ $) NIL (|has| |#1| (-373)))) (-1608 ((|#2| $) 166 (|has| |#1| (-373)))) (-2645 (((-575) $) 12)) (-1530 (($ $) 212 (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) 188 (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) 208 (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) 184 (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) 204 (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) 180 (|has| |#1| (-38 (-418 (-575)))))) (-2615 (((-227) $) NIL (-12 (|has| |#2| (-1039)) (|has| |#1| (-373)))) (((-389) $) NIL (-12 (|has| |#2| (-1039)) (|has| |#1| (-373)))) (((-547) $) NIL (-12 (|has| |#2| (-625 (-547))) (|has| |#1| (-373)))) (((-904 (-389)) $) NIL (-12 (|has| |#2| (-625 (-904 (-389)))) (|has| |#1| (-373)))) (((-904 (-575)) $) NIL (-12 (|has| |#2| (-625 (-904 (-575)))) (|has| |#1| (-373))))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924)) (|has| |#1| (-373))))) (-2972 (($ $) 136)) (-2883 (((-873) $) 266) (($ (-575)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1194)) NIL (-12 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373)))) (($ (-418 (-575))) 169 (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-2012 ((|#1| $ (-575)) 85)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-924)) (|has| |#1| (-373))) (-12 (|has| |#2| (-146)) (|has| |#1| (-373))) (|has| |#1| (-146))))) (-3759 (((-782)) 155 T CONST)) (-1751 ((|#1| $) 102)) (-1432 ((|#2| $) NIL (-12 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) 218 (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) 194 (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) 214 (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) 190 (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) 222 (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) 198 (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-575)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) 224 (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) 200 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 220 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 196 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 216 (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) 192 (|has| |#1| (-38 (-418 (-575)))))) (-2705 (($ $) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-1996 (($) 13 T CONST)) (-2009 (($) 18 T CONST)) (-3430 (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-373))) (($ $) NIL (-3765 (-12 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3765 (-12 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-3981 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3956 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3914 (((-112) $ $) 72)) (-3970 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3943 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) 163 (|has| |#1| (-373))) (($ |#2| |#2|) 164 (|has| |#1| (-373)))) (-4028 (($ $) 227) (($ $ $) 78)) (-4016 (($ $ $) 76)) (** (($ $ (-936)) NIL) (($ $ (-782)) 84) (($ $ (-575)) 160 (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 172 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-373))) (($ |#2| $) 161 (|has| |#1| (-373))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-1248 |#1| |#2|) (-1247 |#1| |#2|) (-1066) (-1276 |#1|)) (T -1248)) +NIL +(-1247 |#1| |#2|) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3127 (((-1277 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-316)) (|has| |#1| (-373))))) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 10)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-1540 (($ $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-3286 (((-112) $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-4080 (($ $ (-575)) NIL) (($ $ (-575) (-575)) NIL)) (-2144 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) NIL)) (-4027 (((-1277 |#1| |#2| |#3|) $) NIL)) (-3483 (((-3 (-1277 |#1| |#2| |#3|) "failed") $) NIL)) (-4290 (((-1277 |#1| |#2| |#3|) $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-2058 (($ $) NIL (|has| |#1| (-373)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3897 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4428 (((-575) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-1277 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-575) "failed") $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))))) (-4399 (((-1277 |#1| |#2| |#3|) $) NIL) (((-1194) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (((-418 (-575)) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373)))) (((-575) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))))) (-2140 (($ $) NIL) (($ (-575) $) NIL)) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-1749 (((-700 (-1277 |#1| |#2| |#3|)) (-1285 $)) NIL (|has| |#1| (-373))) (((-700 (-1277 |#1| |#2| |#3|)) (-700 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -2412 (-700 (-1277 |#1| |#2| |#3|))) (|:| |vec| (-1285 (-1277 |#1| |#2| |#3|)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373))))) (-1747 (((-3 $ "failed") $) NIL)) (-3586 (((-418 (-967 |#1|)) $ (-575)) NIL (|has| |#1| (-567))) (((-418 (-967 |#1|)) $ (-575) (-575)) NIL (|has| |#1| (-567)))) (-2079 (($) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1336 (((-112) $) NIL (|has| |#1| (-373)))) (-4075 (((-112) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-2789 (((-112) $) NIL)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-898 (-389))) (|has| |#1| (-373)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-898 (-575))) (|has| |#1| (-373))))) (-2673 (((-575) $) NIL) (((-575) $ (-575)) NIL)) (-1542 (((-112) $) NIL)) (-4046 (($ $) NIL (|has| |#1| (-373)))) (-1595 (((-1277 |#1| |#2| |#3|) $) NIL (|has| |#1| (-373)))) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2607 (((-3 $ "failed") $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1169)) (|has| |#1| (-373))))) (-4087 (((-112) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-3461 (($ $ (-936)) NIL)) (-3247 (($ (-1 |#1| (-575)) $) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-575)) 18) (($ $ (-1099) (-575)) NIL) (($ $ (-655 (-1099)) (-655 (-575))) NIL)) (-1920 (($ $ $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-1425 (($ $ $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-373)))) (-3463 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4301 (($ (-575) (-1277 |#1| |#2| |#3|)) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4413 (($ $) 27 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 28 (|has| |#1| (-38 (-418 (-575)))))) (-3474 (($) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1169)) (|has| |#1| (-373))) CONST)) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4309 (($ $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-316)) (|has| |#1| (-373))))) (-2736 (((-1277 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-2353 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-4276 (($ $ (-575)) NIL)) (-2851 (((-3 $ "failed") $ $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2665 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-575))))) (($ $ (-1194) (-1277 |#1| |#2| |#3|)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-525 (-1194) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-1194)) (-655 (-1277 |#1| |#2| |#3|))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-525 (-1194) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-303 (-1277 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-303 (-1277 |#1| |#2| |#3|))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-1277 |#1| |#2| |#3|)) (-655 (-1277 |#1| |#2| |#3|))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373))))) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2070 ((|#1| $ (-575)) NIL) (($ $ $) NIL (|has| (-575) (-1129))) (($ $ (-1277 |#1| |#2| |#3|)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-295 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373))))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-2389 (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) NIL (|has| |#1| (-373))) (($ $ (-1281 |#2|)) 26) (($ $) 25 (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-4172 (($ $) NIL (|has| |#1| (-373)))) (-1608 (((-1277 |#1| |#2| |#3|) $) NIL (|has| |#1| (-373)))) (-2645 (((-575) $) NIL)) (-1530 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2615 (((-547) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-625 (-547))) (|has| |#1| (-373)))) (((-389) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-373)))) (((-227) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-373)))) (((-904 (-389)) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-625 (-904 (-389)))) (|has| |#1| (-373)))) (((-904 (-575)) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-625 (-904 (-575)))) (|has| |#1| (-373))))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-2972 (($ $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1277 |#1| |#2| |#3|)) NIL) (($ (-1281 |#2|)) 24) (($ (-1194)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (($ $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567)))) (($ (-418 (-575))) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))) (|has| |#1| (-38 (-418 (-575))))))) (-2012 ((|#1| $ (-575)) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-146)) (|has| |#1| (-373))) (|has| |#1| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 11)) (-1432 (((-1277 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-575)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2705 (($ $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-1996 (($) 20 T CONST)) (-2009 (($) 15 T CONST)) (-3430 (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) NIL (|has| |#1| (-373))) (($ $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-3981 (((-112) $ $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3956 (((-112) $ $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3914 (((-112) $ $) NIL)) (-3970 (((-112) $ $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3943 (((-112) $ $) NIL (-3765 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373))) (($ (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 22)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1277 |#1| |#2| |#3|)) NIL (|has| |#1| (-373))) (($ (-1277 |#1| |#2| |#3|) $) NIL (|has| |#1| (-373))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-1249 |#1| |#2| |#3|) (-13 (-1247 |#1| (-1277 |#1| |#2| |#3|)) (-10 -8 (-15 -2883 ($ (-1281 |#2|))) (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1249)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-4413 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))) +(-13 (-1247 |#1| (-1277 |#1| |#2| |#3|)) (-10 -8 (-15 -2883 ($ (-1281 |#2|))) (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) +((-4083 (((-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575)))))) |#1| (-112)) 13)) (-2794 (((-429 |#1|) |#1|) 26)) (-2353 (((-429 |#1|) |#1|) 24))) +(((-1250 |#1|) (-10 -7 (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2794 ((-429 |#1|) |#1|)) (-15 -4083 ((-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575)))))) |#1| (-112)))) (-1261 (-575))) (T -1250)) +((-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| *3) (|:| -2856 (-575))))))) (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575))))) (-2794 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575))))) (-2353 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575)))))) +(-10 -7 (-15 -2353 ((-429 |#1|) |#1|)) (-15 -2794 ((-429 |#1|) |#1|)) (-15 -4083 ((-2 (|:| |contp| (-575)) (|:| -3378 (-655 (-2 (|:| |irr| |#1|) (|:| -2856 (-575)))))) |#1| (-112)))) +((-2550 (((-1174 |#2|) (-1 |#2| |#1|) (-1252 |#1|)) 23 (|has| |#1| (-859))) (((-1252 |#2|) (-1 |#2| |#1|) (-1252 |#1|)) 17))) +(((-1251 |#1| |#2|) (-10 -7 (-15 -2550 ((-1252 |#2|) (-1 |#2| |#1|) (-1252 |#1|))) (IF (|has| |#1| (-859)) (-15 -2550 ((-1174 |#2|) (-1 |#2| |#1|) (-1252 |#1|))) |%noBranch|)) (-1235) (-1235)) (T -1251)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5)) (-4 *5 (-859)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1174 *6)) (-5 *1 (-1251 *5 *6)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1252 *6)) (-5 *1 (-1251 *5 *6))))) +(-10 -7 (-15 -2550 ((-1252 |#2|) (-1 |#2| |#1|) (-1252 |#1|))) (IF (|has| |#1| (-859)) (-15 -2550 ((-1174 |#2|) (-1 |#2| |#1|) (-1252 |#1|))) |%noBranch|)) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4127 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2550 (((-1174 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-859)))) (-4024 ((|#1| $) 15)) (-2072 ((|#1| $) 12)) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3756 (((-575) $) 19)) (-4131 ((|#1| $) 18)) (-3769 ((|#1| $) 13)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3974 (((-112) $) 17)) (-3945 (((-1174 |#1|) $) 41 (|has| |#1| (-859))) (((-1174 |#1|) (-655 $)) 40 (|has| |#1| (-859)))) (-2615 (($ |#1|) 26)) (-2883 (($ (-1111 |#1|)) 25) (((-873) $) 37 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1859 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3684 (($ $ (-575)) 14)) (-3914 (((-112) $ $) 30 (|has| |#1| (-1117))))) +(((-1252 |#1|) (-13 (-1110 |#1|) (-10 -8 (-15 -1859 ($ |#1|)) (-15 -4127 ($ |#1|)) (-15 -2883 ($ (-1111 |#1|))) (-15 -3974 ((-112) $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-1112 |#1| (-1174 |#1|))) |%noBranch|))) (-1235)) (T -1252)) +((-1859 (*1 *1 *2) (-12 (-5 *1 (-1252 *2)) (-4 *2 (-1235)))) (-4127 (*1 *1 *2) (-12 (-5 *1 (-1252 *2)) (-4 *2 (-1235)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-1235)) (-5 *1 (-1252 *3)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1252 *3)) (-4 *3 (-1235))))) +(-13 (-1110 |#1|) (-10 -8 (-15 -1859 ($ |#1|)) (-15 -4127 ($ |#1|)) (-15 -2883 ($ (-1111 |#1|))) (-15 -3974 ((-112) $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-1112 |#1| (-1174 |#1|))) |%noBranch|))) +((-2550 (((-1258 |#3| |#4|) (-1 |#4| |#2|) (-1258 |#1| |#2|)) 15))) +(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 ((-1258 |#3| |#4|) (-1 |#4| |#2|) (-1258 |#1| |#2|)))) (-1194) (-1066) (-1194) (-1066)) (T -1253)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1258 *5 *6)) (-14 *5 (-1194)) (-4 *6 (-1066)) (-4 *8 (-1066)) (-5 *2 (-1258 *7 *8)) (-5 *1 (-1253 *5 *6 *7 *8)) (-14 *7 (-1194))))) +(-10 -7 (-15 -2550 ((-1258 |#3| |#4|) (-1 |#4| |#2|) (-1258 |#1| |#2|)))) +((-1958 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1516 ((|#1| |#3|) 13)) (-3369 ((|#3| |#3|) 19))) +(((-1254 |#1| |#2| |#3|) (-10 -7 (-15 -1516 (|#1| |#3|)) (-15 -3369 (|#3| |#3|)) (-15 -1958 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-567) (-1009 |#1|) (-1261 |#2|)) (T -1254)) +((-1958 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1254 *4 *5 *3)) (-4 *3 (-1261 *5)))) (-3369 (*1 *2 *2) (-12 (-4 *3 (-567)) (-4 *4 (-1009 *3)) (-5 *1 (-1254 *3 *4 *2)) (-4 *2 (-1261 *4)))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-1254 *2 *4 *3)) (-4 *3 (-1261 *4))))) +(-10 -7 (-15 -1516 (|#1| |#3|)) (-15 -3369 (|#3| |#3|)) (-15 -1958 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4280 (((-3 |#2| "failed") |#2| (-782) |#1|) 35)) (-2638 (((-3 |#2| "failed") |#2| (-782)) 36)) (-1558 (((-3 (-2 (|:| -2418 |#2|) (|:| -2435 |#2|)) "failed") |#2|) 50)) (-2301 (((-655 |#2|) |#2|) 52)) (-3039 (((-3 |#2| "failed") |#2| |#2|) 46))) +(((-1255 |#1| |#2|) (-10 -7 (-15 -2638 ((-3 |#2| "failed") |#2| (-782))) (-15 -4280 ((-3 |#2| "failed") |#2| (-782) |#1|)) (-15 -3039 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1558 ((-3 (-2 (|:| -2418 |#2|) (|:| -2435 |#2|)) "failed") |#2|)) (-15 -2301 ((-655 |#2|) |#2|))) (-13 (-567) (-148)) (-1261 |#1|)) (T -1255)) +((-2301 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-148))) (-5 *2 (-655 *3)) (-5 *1 (-1255 *4 *3)) (-4 *3 (-1261 *4)))) (-1558 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-567) (-148))) (-5 *2 (-2 (|:| -2418 *3) (|:| -2435 *3))) (-5 *1 (-1255 *4 *3)) (-4 *3 (-1261 *4)))) (-3039 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1261 *3)))) (-4280 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-782)) (-4 *4 (-13 (-567) (-148))) (-5 *1 (-1255 *4 *2)) (-4 *2 (-1261 *4)))) (-2638 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-782)) (-4 *4 (-13 (-567) (-148))) (-5 *1 (-1255 *4 *2)) (-4 *2 (-1261 *4))))) +(-10 -7 (-15 -2638 ((-3 |#2| "failed") |#2| (-782))) (-15 -4280 ((-3 |#2| "failed") |#2| (-782) |#1|)) (-15 -3039 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1558 ((-3 (-2 (|:| -2418 |#2|) (|:| -2435 |#2|)) "failed") |#2|)) (-15 -2301 ((-655 |#2|) |#2|))) +((-2713 (((-3 (-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) "failed") |#2| |#2|) 30))) +(((-1256 |#1| |#2|) (-10 -7 (-15 -2713 ((-3 (-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) "failed") |#2| |#2|))) (-567) (-1261 |#1|)) (T -1256)) +((-2713 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-567)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-1256 *4 *3)) (-4 *3 (-1261 *4))))) +(-10 -7 (-15 -2713 ((-3 (-2 (|:| -2829 |#2|) (|:| -1635 |#2|)) "failed") |#2| |#2|))) +((-4279 ((|#2| |#2| |#2|) 22)) (-4073 ((|#2| |#2| |#2|) 36)) (-2643 ((|#2| |#2| |#2| (-782) (-782)) 44))) +(((-1257 |#1| |#2|) (-10 -7 (-15 -4279 (|#2| |#2| |#2|)) (-15 -4073 (|#2| |#2| |#2|)) (-15 -2643 (|#2| |#2| |#2| (-782) (-782)))) (-1066) (-1261 |#1|)) (T -1257)) +((-2643 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-782)) (-4 *4 (-1066)) (-5 *1 (-1257 *4 *2)) (-4 *2 (-1261 *4)))) (-4073 (*1 *2 *2 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1261 *3)))) (-4279 (*1 *2 *2 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1261 *3))))) +(-10 -7 (-15 -4279 (|#2| |#2| |#2|)) (-15 -4073 (|#2| |#2| |#2|)) (-15 -2643 (|#2| |#2| |#2| (-782) (-782)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2836 (((-1285 |#2|) $ (-782)) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-4437 (($ (-1190 |#2|)) NIL)) (-3466 (((-1190 $) $ (-1099)) NIL) (((-1190 |#2|) $) NIL)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-567)))) (-1540 (($ $) NIL (|has| |#2| (-567)))) (-3286 (((-112) $) NIL (|has| |#2| (-567)))) (-3805 (((-782) $) NIL) (((-782) $ (-655 (-1099))) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2583 (($ $ $) NIL (|has| |#2| (-567)))) (-3535 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2058 (($ $) NIL (|has| |#2| (-463)))) (-2330 (((-429 $) $) NIL (|has| |#2| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2279 (((-112) $ $) NIL (|has| |#2| (-373)))) (-1965 (($ $ (-782)) NIL)) (-3441 (($ $ (-782)) NIL)) (-4265 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-463)))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-1099) "failed") $) NIL)) (-4399 ((|#2| $) NIL) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-1099) $) NIL)) (-4232 (($ $ $ (-1099)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2802 (($ $ $) NIL (|has| |#2| (-373)))) (-4406 (($ $) NIL)) (-1749 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2813 (($ $ $) NIL (|has| |#2| (-373)))) (-3551 (($ $ $) NIL)) (-2062 (($ $ $) NIL (|has| |#2| (-567)))) (-3965 (((-2 (|:| -1754 |#2|) (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#2| (-567)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#2| (-373)))) (-1824 (($ $) NIL (|has| |#2| (-463))) (($ $ (-1099)) NIL (|has| |#2| (-463)))) (-4394 (((-655 $) $) NIL)) (-1336 (((-112) $) NIL (|has| |#2| (-924)))) (-3703 (($ $ |#2| (-782) $) NIL)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1099) (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1099) (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-2673 (((-782) $ $) NIL (|has| |#2| (-567)))) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-2607 (((-3 $ "failed") $) NIL (|has| |#2| (-1169)))) (-2433 (($ (-1190 |#2|) (-1099)) NIL) (($ (-1190 $) (-1099)) NIL)) (-3461 (($ $ (-782)) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#2| (-373)))) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-2417 (($ |#2| (-782)) 18) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-1099)) NIL) (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL)) (-4337 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2520 (($ (-1 (-782) (-782)) $) NIL)) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-3049 (((-1190 |#2|) $) NIL)) (-3976 (((-3 (-1099) "failed") $) NIL)) (-4371 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-2288 (((-1176) $) NIL)) (-3742 (((-2 (|:| -2829 $) (|:| -1635 $)) $ (-782)) NIL)) (-3658 (((-3 (-655 $) "failed") $) NIL)) (-1734 (((-3 (-655 $) "failed") $) NIL)) (-2455 (((-3 (-2 (|:| |var| (-1099)) (|:| -2398 (-782))) "failed") $) NIL)) (-4413 (($ $) NIL (|has| |#2| (-38 (-418 (-575)))))) (-3474 (($) NIL (|has| |#2| (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) NIL)) (-4353 ((|#2| $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-463)))) (-3926 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-2754 (($ $ (-782) |#2| $) NIL)) (-1641 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2353 (((-429 $) $) NIL (|has| |#2| (-924)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#2| (-373)))) (-2851 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#2| (-373)))) (-3048 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1099) |#2|) NIL) (($ $ (-655 (-1099)) (-655 |#2|)) NIL) (($ $ (-1099) $) NIL) (($ $ (-655 (-1099)) (-655 $)) NIL)) (-3708 (((-782) $) NIL (|has| |#2| (-373)))) (-2070 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-418 $) (-418 $) (-418 $)) NIL (|has| |#2| (-567))) ((|#2| (-418 $) |#2|) NIL (|has| |#2| (-373))) (((-418 $) $ (-418 $)) NIL (|has| |#2| (-567)))) (-1947 (((-3 $ "failed") $ (-782)) NIL)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#2| (-373)))) (-4060 (($ $ (-1099)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2389 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-2645 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2615 (((-904 (-389)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1099) (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-2178 ((|#2| $) NIL (|has| |#2| (-463))) (($ $ (-1099)) NIL (|has| |#2| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-3875 (((-3 $ "failed") $ $) NIL (|has| |#2| (-567))) (((-3 (-418 $) "failed") (-418 $) $) NIL (|has| |#2| (-567)))) (-2883 (((-873) $) 13) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-1099)) NIL) (($ (-1281 |#1|)) 20) (($ (-418 (-575))) NIL (-3765 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#2| (-567)))) (-2501 (((-655 |#2|) $) NIL)) (-2012 ((|#2| $ (-782)) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-1518 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| |#2| (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL (|has| |#2| (-567)))) (-1996 (($) NIL T CONST)) (-2009 (($) 14 T CONST)) (-3430 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#2| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#2| (-38 (-418 (-575))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1258 |#1| |#2|) (-13 (-1261 |#2|) (-627 (-1281 |#1|)) (-10 -8 (-15 -2754 ($ $ (-782) |#2| $)))) (-1194) (-1066)) (T -1258)) +((-2754 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1258 *4 *3)) (-14 *4 (-1194)) (-4 *3 (-1066))))) +(-13 (-1261 |#2|) (-627 (-1281 |#1|)) (-10 -8 (-15 -2754 ($ $ (-782) |#2| $)))) +((-2550 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1259 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 (|#4| (-1 |#3| |#1|) |#2|))) (-1066) (-1261 |#1|) (-1066) (-1261 |#3|)) (T -1259)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1261 *6)) (-5 *1 (-1259 *5 *4 *6 *2)) (-4 *4 (-1261 *5))))) +(-10 -7 (-15 -2550 (|#4| (-1 |#3| |#1|) |#2|))) +((-2836 (((-1285 |#2|) $ (-782)) 129)) (-1606 (((-655 (-1099)) $) 16)) (-4437 (($ (-1190 |#2|)) 80)) (-3805 (((-782) $) NIL) (((-782) $ (-655 (-1099))) 21)) (-3535 (((-429 (-1190 $)) (-1190 $)) 204)) (-2058 (($ $) 194)) (-2330 (((-429 $) $) 192)) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 95)) (-1965 (($ $ (-782)) 84)) (-3441 (($ $ (-782)) 86)) (-4265 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2449 (((-3 |#2| "failed") $) 132) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL)) (-4399 ((|#2| $) 130) (((-418 (-575)) $) NIL) (((-575) $) NIL) (((-1099) $) NIL)) (-2062 (($ $ $) 170)) (-3965 (((-2 (|:| -1754 |#2|) (|:| -2829 $) (|:| -1635 $)) $ $) 172)) (-2673 (((-782) $ $) 189)) (-2607 (((-3 $ "failed") $) 138)) (-2417 (($ |#2| (-782)) NIL) (($ $ (-1099) (-782)) 59) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-4337 (((-782) $) NIL) (((-782) $ (-1099)) 54) (((-655 (-782)) $ (-655 (-1099))) 55)) (-3049 (((-1190 |#2|) $) 72)) (-3976 (((-3 (-1099) "failed") $) 52)) (-3742 (((-2 (|:| -2829 $) (|:| -1635 $)) $ (-782)) 83)) (-4413 (($ $) 219)) (-3474 (($) 134)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 201)) (-1641 (((-429 (-1190 $)) (-1190 $)) 101)) (-1665 (((-429 (-1190 $)) (-1190 $)) 99)) (-2353 (((-429 $) $) 120)) (-3048 (($ $ (-655 (-303 $))) 51) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1099) |#2|) 39) (($ $ (-655 (-1099)) (-655 |#2|)) 36) (($ $ (-1099) $) 32) (($ $ (-655 (-1099)) (-655 $)) 30)) (-3708 (((-782) $) 207)) (-2070 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-418 $) (-418 $) (-418 $)) 164) ((|#2| (-418 $) |#2|) 206) (((-418 $) $ (-418 $)) 188)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 212)) (-2389 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) 157) (($ $) 155) (($ $ (-782)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-2645 (((-782) $) NIL) (((-782) $ (-1099)) 17) (((-655 (-782)) $ (-655 (-1099))) 23)) (-2178 ((|#2| $) NIL) (($ $ (-1099)) 140)) (-3875 (((-3 $ "failed") $ $) 180) (((-3 (-418 $) "failed") (-418 $) $) 176)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-1099)) 64) (($ (-418 (-575))) NIL) (($ $) NIL))) +(((-1260 |#1| |#2|) (-10 -8 (-15 -2883 (|#1| |#1|)) (-15 -2290 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2330 ((-429 |#1|) |#1|)) (-15 -2058 (|#1| |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -3474 (|#1|)) (-15 -2607 ((-3 |#1| "failed") |#1|)) (-15 -2070 ((-418 |#1|) |#1| (-418 |#1|))) (-15 -3708 ((-782) |#1|)) (-15 -2196 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -4413 (|#1| |#1|)) (-15 -2070 (|#2| (-418 |#1|) |#2|)) (-15 -4265 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3965 ((-2 (|:| -1754 |#2|) (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -2062 (|#1| |#1| |#1|)) (-15 -3875 ((-3 (-418 |#1|) "failed") (-418 |#1|) |#1|)) (-15 -3875 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2673 ((-782) |#1| |#1|)) (-15 -2070 ((-418 |#1|) (-418 |#1|) (-418 |#1|))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3441 (|#1| |#1| (-782))) (-15 -1965 (|#1| |#1| (-782))) (-15 -3742 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| (-782))) (-15 -4437 (|#1| (-1190 |#2|))) (-15 -3049 ((-1190 |#2|) |#1|)) (-15 -2836 ((-1285 |#2|) |#1| (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -2070 (|#1| |#1| |#1|)) (-15 -2070 (|#2| |#1| |#2|)) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -3535 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1665 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1641 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1830 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -2178 (|#1| |#1| (-1099))) (-15 -1606 ((-655 (-1099)) |#1|)) (-15 -3805 ((-782) |#1| (-655 (-1099)))) (-15 -3805 ((-782) |#1|)) (-15 -2417 (|#1| |#1| (-655 (-1099)) (-655 (-782)))) (-15 -2417 (|#1| |#1| (-1099) (-782))) (-15 -4337 ((-655 (-782)) |#1| (-655 (-1099)))) (-15 -4337 ((-782) |#1| (-1099))) (-15 -3976 ((-3 (-1099) "failed") |#1|)) (-15 -2645 ((-655 (-782)) |#1| (-655 (-1099)))) (-15 -2645 ((-782) |#1| (-1099))) (-15 -2883 (|#1| (-1099))) (-15 -2449 ((-3 (-1099) "failed") |#1|)) (-15 -4399 ((-1099) |#1|)) (-15 -3048 (|#1| |#1| (-655 (-1099)) (-655 |#1|))) (-15 -3048 (|#1| |#1| (-1099) |#1|)) (-15 -3048 (|#1| |#1| (-655 (-1099)) (-655 |#2|))) (-15 -3048 (|#1| |#1| (-1099) |#2|)) (-15 -3048 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| (-303 |#1|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -2645 ((-782) |#1|)) (-15 -2417 (|#1| |#2| (-782))) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -4337 ((-782) |#1|)) (-15 -2178 (|#2| |#1|)) (-15 -2389 (|#1| |#1| (-1099))) (-15 -2389 (|#1| |#1| (-655 (-1099)))) (-15 -2389 (|#1| |#1| (-1099) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1099)) (-655 (-782)))) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) (-1261 |#2|) (-1066)) (T -1260)) +NIL +(-10 -8 (-15 -2883 (|#1| |#1|)) (-15 -2290 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -2389 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2389 (|#1| |#1| (-1194) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1194)))) (-15 -2389 (|#1| |#1| (-1194))) (-15 -2330 ((-429 |#1|) |#1|)) (-15 -2058 (|#1| |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -3474 (|#1|)) (-15 -2607 ((-3 |#1| "failed") |#1|)) (-15 -2070 ((-418 |#1|) |#1| (-418 |#1|))) (-15 -3708 ((-782) |#1|)) (-15 -2196 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -4413 (|#1| |#1|)) (-15 -2070 (|#2| (-418 |#1|) |#2|)) (-15 -4265 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3965 ((-2 (|:| -1754 |#2|) (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| |#1|)) (-15 -2062 (|#1| |#1| |#1|)) (-15 -3875 ((-3 (-418 |#1|) "failed") (-418 |#1|) |#1|)) (-15 -3875 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2673 ((-782) |#1| |#1|)) (-15 -2070 ((-418 |#1|) (-418 |#1|) (-418 |#1|))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3441 (|#1| |#1| (-782))) (-15 -1965 (|#1| |#1| (-782))) (-15 -3742 ((-2 (|:| -2829 |#1|) (|:| -1635 |#1|)) |#1| (-782))) (-15 -4437 (|#1| (-1190 |#2|))) (-15 -3049 ((-1190 |#2|) |#1|)) (-15 -2836 ((-1285 |#2|) |#1| (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2389 (|#1| |#1| (-782))) (-15 -2389 (|#1| |#1|)) (-15 -2070 (|#1| |#1| |#1|)) (-15 -2070 (|#2| |#1| |#2|)) (-15 -2353 ((-429 |#1|) |#1|)) (-15 -3535 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1665 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1641 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1830 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -2178 (|#1| |#1| (-1099))) (-15 -1606 ((-655 (-1099)) |#1|)) (-15 -3805 ((-782) |#1| (-655 (-1099)))) (-15 -3805 ((-782) |#1|)) (-15 -2417 (|#1| |#1| (-655 (-1099)) (-655 (-782)))) (-15 -2417 (|#1| |#1| (-1099) (-782))) (-15 -4337 ((-655 (-782)) |#1| (-655 (-1099)))) (-15 -4337 ((-782) |#1| (-1099))) (-15 -3976 ((-3 (-1099) "failed") |#1|)) (-15 -2645 ((-655 (-782)) |#1| (-655 (-1099)))) (-15 -2645 ((-782) |#1| (-1099))) (-15 -2883 (|#1| (-1099))) (-15 -2449 ((-3 (-1099) "failed") |#1|)) (-15 -4399 ((-1099) |#1|)) (-15 -3048 (|#1| |#1| (-655 (-1099)) (-655 |#1|))) (-15 -3048 (|#1| |#1| (-1099) |#1|)) (-15 -3048 (|#1| |#1| (-655 (-1099)) (-655 |#2|))) (-15 -3048 (|#1| |#1| (-1099) |#2|)) (-15 -3048 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3048 (|#1| |#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| (-303 |#1|))) (-15 -3048 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -2645 ((-782) |#1|)) (-15 -2417 (|#1| |#2| (-782))) (-15 -2449 ((-3 (-575) "failed") |#1|)) (-15 -4399 ((-575) |#1|)) (-15 -2449 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4399 ((-418 (-575)) |#1|)) (-15 -4399 (|#2| |#1|)) (-15 -2449 ((-3 |#2| "failed") |#1|)) (-15 -2883 (|#1| |#2|)) (-15 -4337 ((-782) |#1|)) (-15 -2178 (|#2| |#1|)) (-15 -2389 (|#1| |#1| (-1099))) (-15 -2389 (|#1| |#1| (-655 (-1099)))) (-15 -2389 (|#1| |#1| (-1099) (-782))) (-15 -2389 (|#1| |#1| (-655 (-1099)) (-655 (-782)))) (-15 -2883 (|#1| (-575))) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2836 (((-1285 |#1|) $ (-782)) 254)) (-1606 (((-655 (-1099)) $) 113)) (-4437 (($ (-1190 |#1|)) 252)) (-3466 (((-1190 $) $ (-1099)) 128) (((-1190 |#1|) $) 127)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 90 (|has| |#1| (-567)))) (-1540 (($ $) 91 (|has| |#1| (-567)))) (-3286 (((-112) $) 93 (|has| |#1| (-567)))) (-3805 (((-782) $) 115) (((-782) $ (-655 (-1099))) 114)) (-2597 (((-3 $ "failed") $ $) 20)) (-2583 (($ $ $) 239 (|has| |#1| (-567)))) (-3535 (((-429 (-1190 $)) (-1190 $)) 103 (|has| |#1| (-924)))) (-2058 (($ $) 101 (|has| |#1| (-463)))) (-2330 (((-429 $) $) 100 (|has| |#1| (-463)))) (-1830 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 106 (|has| |#1| (-924)))) (-2279 (((-112) $ $) 224 (|has| |#1| (-373)))) (-1965 (($ $ (-782)) 247)) (-3441 (($ $ (-782)) 246)) (-4265 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 234 (|has| |#1| (-463)))) (-3011 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 169) (((-3 (-418 (-575)) "failed") $) 166 (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) 164 (|has| |#1| (-1055 (-575)))) (((-3 (-1099) "failed") $) 141)) (-4399 ((|#1| $) 168) (((-418 (-575)) $) 167 (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) 165 (|has| |#1| (-1055 (-575)))) (((-1099) $) 142)) (-4232 (($ $ $ (-1099)) 111 (|has| |#1| (-174))) ((|#1| $ $) 242 (|has| |#1| (-174)))) (-2802 (($ $ $) 228 (|has| |#1| (-373)))) (-4406 (($ $) 159)) (-1749 (((-700 (-575)) (-1285 $)) 139 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 138 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 137 (|has| |#1| (-650 (-575)))) (((-2 (|:| -2412 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 136) (((-700 |#1|) (-700 $)) 135) (((-700 |#1|) (-1285 $)) 134)) (-1747 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 227 (|has| |#1| (-373)))) (-3551 (($ $ $) 245)) (-2062 (($ $ $) 236 (|has| |#1| (-567)))) (-3965 (((-2 (|:| -1754 |#1|) (|:| -2829 $) (|:| -1635 $)) $ $) 235 (|has| |#1| (-567)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 222 (|has| |#1| (-373)))) (-1824 (($ $) 181 (|has| |#1| (-463))) (($ $ (-1099)) 108 (|has| |#1| (-463)))) (-4394 (((-655 $) $) 112)) (-1336 (((-112) $) 99 (|has| |#1| (-924)))) (-3703 (($ $ |#1| (-782) $) 177)) (-1704 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 87 (-12 (|has| (-1099) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 86 (-12 (|has| (-1099) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-2673 (((-782) $ $) 240 (|has| |#1| (-567)))) (-1542 (((-112) $) 35)) (-2218 (((-782) $) 174)) (-2607 (((-3 $ "failed") $) 220 (|has| |#1| (-1169)))) (-2433 (($ (-1190 |#1|) (-1099)) 120) (($ (-1190 $) (-1099)) 119)) (-3461 (($ $ (-782)) 251)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 231 (|has| |#1| (-373)))) (-3010 (((-655 $) $) 129)) (-2376 (((-112) $) 157)) (-2417 (($ |#1| (-782)) 158) (($ $ (-1099) (-782)) 122) (($ $ (-655 (-1099)) (-655 (-782))) 121)) (-2402 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $ (-1099)) 123) (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 249)) (-4337 (((-782) $) 175) (((-782) $ (-1099)) 125) (((-655 (-782)) $ (-655 (-1099))) 124)) (-2520 (($ (-1 (-782) (-782)) $) 176)) (-2550 (($ (-1 |#1| |#1|) $) 156)) (-3049 (((-1190 |#1|) $) 253)) (-3976 (((-3 (-1099) "failed") $) 126)) (-4371 (($ $) 154)) (-4383 ((|#1| $) 153)) (-3887 (($ (-655 $)) 97 (|has| |#1| (-463))) (($ $ $) 96 (|has| |#1| (-463)))) (-2288 (((-1176) $) 10)) (-3742 (((-2 (|:| -2829 $) (|:| -1635 $)) $ (-782)) 248)) (-3658 (((-3 (-655 $) "failed") $) 117)) (-1734 (((-3 (-655 $) "failed") $) 118)) (-2455 (((-3 (-2 (|:| |var| (-1099)) (|:| -2398 (-782))) "failed") $) 116)) (-4413 (($ $) 232 (|has| |#1| (-38 (-418 (-575)))))) (-3474 (($) 219 (|has| |#1| (-1169)) CONST)) (-3912 (((-1137) $) 11)) (-4345 (((-112) $) 171)) (-4353 ((|#1| $) 172)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 98 (|has| |#1| (-463)))) (-3926 (($ (-655 $)) 95 (|has| |#1| (-463))) (($ $ $) 94 (|has| |#1| (-463)))) (-1641 (((-429 (-1190 $)) (-1190 $)) 105 (|has| |#1| (-924)))) (-1665 (((-429 (-1190 $)) (-1190 $)) 104 (|has| |#1| (-924)))) (-2353 (((-429 $) $) 102 (|has| |#1| (-924)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 230 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 229 (|has| |#1| (-373)))) (-2851 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 223 (|has| |#1| (-373)))) (-3048 (($ $ (-655 (-303 $))) 150) (($ $ (-303 $)) 149) (($ $ $ $) 148) (($ $ (-655 $) (-655 $)) 147) (($ $ (-1099) |#1|) 146) (($ $ (-655 (-1099)) (-655 |#1|)) 145) (($ $ (-1099) $) 144) (($ $ (-655 (-1099)) (-655 $)) 143)) (-3708 (((-782) $) 225 (|has| |#1| (-373)))) (-2070 ((|#1| $ |#1|) 264) (($ $ $) 263) (((-418 $) (-418 $) (-418 $)) 241 (|has| |#1| (-567))) ((|#1| (-418 $) |#1|) 233 (|has| |#1| (-373))) (((-418 $) $ (-418 $)) 221 (|has| |#1| (-567)))) (-1947 (((-3 $ "failed") $ (-782)) 250)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 226 (|has| |#1| (-373)))) (-4060 (($ $ (-1099)) 110 (|has| |#1| (-174))) ((|#1| $) 243 (|has| |#1| (-174)))) (-2389 (($ $ (-655 (-1099)) (-655 (-782))) 44) (($ $ (-1099) (-782)) 43) (($ $ (-655 (-1099))) 42) (($ $ (-1099)) 40) (($ $) 262) (($ $ (-782)) 260) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-782)) 257) (($ $ (-1 |#1| |#1|) $) 244) (($ $ (-1194)) 218 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 216 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 215 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 214 (|has| |#1| (-915 (-1194))))) (-2645 (((-782) $) 155) (((-782) $ (-1099)) 133) (((-655 (-782)) $ (-655 (-1099))) 132)) (-2615 (((-904 (-389)) $) 85 (-12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) 84 (-12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) 83 (-12 (|has| (-1099) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-2178 ((|#1| $) 180 (|has| |#1| (-463))) (($ $ (-1099)) 109 (|has| |#1| (-463)))) (-3352 (((-3 (-1285 $) "failed") (-700 $)) 107 (-3226 (|has| $ (-146)) (|has| |#1| (-924))))) (-3875 (((-3 $ "failed") $ $) 238 (|has| |#1| (-567))) (((-3 (-418 $) "failed") (-418 $) $) 237 (|has| |#1| (-567)))) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 170) (($ (-1099)) 140) (($ (-418 (-575))) 81 (-3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575)))))) (($ $) 88 (|has| |#1| (-567)))) (-2501 (((-655 |#1|) $) 173)) (-2012 ((|#1| $ (-782)) 160) (($ $ (-1099) (-782)) 131) (($ $ (-655 (-1099)) (-655 (-782))) 130)) (-1518 (((-3 $ "failed") $) 82 (-3765 (-3226 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-3759 (((-782)) 32 T CONST)) (-1835 (($ $ $ (-782)) 178 (|has| |#1| (-174)))) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 92 (|has| |#1| (-567)))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-655 (-1099)) (-655 (-782))) 47) (($ $ (-1099) (-782)) 46) (($ $ (-655 (-1099))) 45) (($ $ (-1099)) 41) (($ $) 261) (($ $ (-782)) 259) (($ $ (-1 |#1| |#1|)) 256) (($ $ (-1 |#1| |#1|) (-782)) 255) (($ $ (-1194)) 217 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 213 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 212 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 211 (|has| |#1| (-915 (-1194))))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 161 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 163 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 162 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 152) (($ $ |#1|) 151))) +(((-1261 |#1|) (-141) (-1066)) (T -1261)) +((-2836 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-1261 *4)) (-4 *4 (-1066)) (-5 *2 (-1285 *4)))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-5 *2 (-1190 *3)))) (-4437 (*1 *1 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-1066)) (-4 *1 (-1261 *3)))) (-3461 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) (-1947 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) (-2402 (*1 *2 *1 *1) (-12 (-4 *3 (-1066)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-1261 *3)))) (-3742 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *4 (-1066)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-1261 *4)))) (-1965 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) (-3441 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) (-3551 (*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)))) (-2389 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) (-4060 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-174)))) (-4232 (*1 *2 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-174)))) (-2070 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-4 *3 (-567)))) (-2673 (*1 *2 *1 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-4 *3 (-567)) (-5 *2 (-782)))) (-2583 (*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))) (-3875 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))) (-3875 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-418 *1)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-4 *3 (-567)))) (-2062 (*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))) (-3965 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -1754 *3) (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-1261 *3)))) (-4265 (*1 *2 *1 *1) (-12 (-4 *3 (-463)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1261 *3)))) (-2070 (*1 *2 *3 *2) (-12 (-5 *3 (-418 *1)) (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-4413 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575))))))) +(-13 (-964 |t#1| (-782) (-1099)) (-295 |t#1| |t#1|) (-295 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -2836 ((-1285 |t#1|) $ (-782))) (-15 -3049 ((-1190 |t#1|) $)) (-15 -4437 ($ (-1190 |t#1|))) (-15 -3461 ($ $ (-782))) (-15 -1947 ((-3 $ "failed") $ (-782))) (-15 -2402 ((-2 (|:| -2829 $) (|:| -1635 $)) $ $)) (-15 -3742 ((-2 (|:| -2829 $) (|:| -1635 $)) $ (-782))) (-15 -1965 ($ $ (-782))) (-15 -3441 ($ $ (-782))) (-15 -3551 ($ $ $)) (-15 -2389 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1169)) (-6 (-1169)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -4060 (|t#1| $)) (-15 -4232 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-567)) (PROGN (-6 (-295 (-418 $) (-418 $))) (-15 -2070 ((-418 $) (-418 $) (-418 $))) (-15 -2673 ((-782) $ $)) (-15 -2583 ($ $ $)) (-15 -3875 ((-3 $ "failed") $ $)) (-15 -3875 ((-3 (-418 $) "failed") (-418 $) $)) (-15 -2062 ($ $ $)) (-15 -3965 ((-2 (|:| -1754 |t#1|) (|:| -2829 $) (|:| -1635 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-463)) (-15 -4265 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-373)) (PROGN (-6 (-316)) (-6 -4456) (-15 -2070 (|t#1| (-418 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-418 (-575)))) (-15 -4413 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-782)) . T) ((-25) . T) ((-38 #1=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) -3765 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 #2=(-1099)) . T) ((-627 |#1|) . T) ((-627 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-625 (-547)) -12 (|has| (-1099) (-625 (-547))) (|has| |#1| (-625 (-547)))) ((-625 (-904 (-389))) -12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389))))) ((-625 (-904 (-575))) -12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-271 |#1|) . T) ((-295 (-418 $) (-418 $)) |has| |#1| (-567)) ((-295 |#1| |#1|) . T) ((-295 $ $) . T) ((-299) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-316) |has| |#1| (-373)) ((-318 $) . T) ((-335 |#1| #0#) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-463) -3765 (|has| |#1| (-924)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-525 #2# |#1|) . T) ((-525 #2# $) . T) ((-525 $ $) . T) ((-567) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-657 #1#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) |has| |#1| (-38 (-418 (-575)))) ((-659 #3=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-650 #3#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #1#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-737) . T) ((-908 $ #2#) . T) ((-908 $ #4=(-1194)) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-913 #2#) . T) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-915 #2#) . T) ((-915 #4#) -3765 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-898 (-389)) -12 (|has| (-1099) (-898 (-389))) (|has| |#1| (-898 (-389)))) ((-898 (-575)) -12 (|has| (-1099) (-898 (-575))) (|has| |#1| (-898 (-575)))) ((-964 |#1| #0# #2#) . T) ((-924) |has| |#1| (-924)) ((-935) |has| |#1| (-373)) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 #2#) . T) ((-1055 |#1|) . T) ((-1068 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1073 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| |#1| (-1169)) ((-1235) . T) ((-1239) |has| |#1| (-924))) +((-1606 (((-655 (-1099)) $) 34)) (-4406 (($ $) 31)) (-2417 (($ |#2| |#3|) NIL) (($ $ (-1099) |#3|) 28) (($ $ (-655 (-1099)) (-655 |#3|)) 27)) (-4371 (($ $) 14)) (-4383 ((|#2| $) 12)) (-2645 ((|#3| $) 10))) +(((-1262 |#1| |#2| |#3|) (-10 -8 (-15 -1606 ((-655 (-1099)) |#1|)) (-15 -2417 (|#1| |#1| (-655 (-1099)) (-655 |#3|))) (-15 -2417 (|#1| |#1| (-1099) |#3|)) (-15 -4406 (|#1| |#1|)) (-15 -2417 (|#1| |#2| |#3|)) (-15 -2645 (|#3| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -4383 (|#2| |#1|))) (-1263 |#2| |#3|) (-1066) (-803)) (T -1262)) +NIL +(-10 -8 (-15 -1606 ((-655 (-1099)) |#1|)) (-15 -2417 (|#1| |#1| (-655 (-1099)) (-655 |#3|))) (-15 -2417 (|#1| |#1| (-1099) |#3|)) (-15 -4406 (|#1| |#1|)) (-15 -2417 (|#1| |#2| |#3|)) (-15 -2645 (|#3| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -4383 (|#2| |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-1540 (($ $) 64 (|has| |#1| (-567)))) (-3286 (((-112) $) 66 (|has| |#1| (-567)))) (-4080 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-2144 (((-1174 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-4406 (($ $) 72)) (-1747 (((-3 $ "failed") $) 37)) (-2789 (((-112) $) 85)) (-2673 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-1542 (((-112) $) 35)) (-3461 (($ $ (-936)) 116)) (-2376 (((-112) $) 74)) (-2417 (($ |#1| |#2|) 73) (($ $ (-1099) |#2|) 88) (($ $ (-655 (-1099)) (-655 |#2|)) 87)) (-2550 (($ (-1 |#1| |#1|) $) 75)) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4276 (($ $ |#2|) 110)) (-2851 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-3048 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2070 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1129)))) (-2389 (($ $ (-1194)) 108 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-655 (-1194))) 106 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1194) (-782)) 105 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-782)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2645 ((|#2| $) 76)) (-2972 (($ $) 84)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2012 ((|#1| $ |#2|) 71)) (-1518 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 65 (|has| |#1| (-567)))) (-3494 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1194)) 107 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-655 (-1194))) 103 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1194) (-782)) 102 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-782)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575))))))) +(((-1263 |#1| |#2|) (-141) (-1066) (-803)) (T -1263)) +((-2144 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-1174 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-1194)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))) (-3461 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-2673 (*1 *2 *1 *2) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-4080 (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-4080 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-3494 (*1 *2 *1 *3) (-12 (-4 *1 (-1263 *2 *3)) (-4 *3 (-803)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2883 (*2 (-1194)))) (-4 *2 (-1066)))) (-4276 (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-3048 (*1 *2 *1 *3) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1174 *3))))) +(-13 (-990 |t#1| |t#2| (-1099)) (-295 |t#2| |t#1|) (-10 -8 (-15 -2144 ((-1174 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1441 ((-1194) $)) (-15 -1751 (|t#1| $)) (-15 -3461 ($ $ (-936))) (-15 -2673 (|t#2| $)) (-15 -2673 (|t#2| $ |t#2|)) (-15 -4080 ($ $ |t#2|)) (-15 -4080 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2883 (|t#1| (-1194)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3494 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4276 ($ $ |t#2|)) (IF (|has| |t#2| (-1129)) (-6 (-295 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-913 (-1194))) (-6 (-913 (-1194))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3048 ((-1174 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) |has| |#1| (-38 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-295 |#2| |#1|) . T) ((-295 $ $) |has| |#2| (-1129)) ((-299) |has| |#1| (-567)) ((-567) |has| |#1| (-567)) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-908 $ #1=(-1194)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-913 (-1194)))) ((-913 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-913 (-1194)))) ((-915 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-913 (-1194)))) ((-990 |#1| |#2| (-1099)) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T)) +((-2058 ((|#2| |#2|) 12)) (-2330 (((-429 |#2|) |#2|) 14)) (-3651 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575)))) 30))) +(((-1264 |#1| |#2|) (-10 -7 (-15 -2330 ((-429 |#2|) |#2|)) (-15 -2058 (|#2| |#2|)) (-15 -3651 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575)))))) (-567) (-13 (-1261 |#1|) (-567) (-10 -8 (-15 -3926 ($ $ $))))) (T -1264)) +((-3651 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-575)))) (-4 *4 (-13 (-1261 *3) (-567) (-10 -8 (-15 -3926 ($ $ $))))) (-4 *3 (-567)) (-5 *1 (-1264 *3 *4)))) (-2058 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-1264 *3 *2)) (-4 *2 (-13 (-1261 *3) (-567) (-10 -8 (-15 -3926 ($ $ $))))))) (-2330 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-429 *3)) (-5 *1 (-1264 *4 *3)) (-4 *3 (-13 (-1261 *4) (-567) (-10 -8 (-15 -3926 ($ $ $)))))))) +(-10 -7 (-15 -2330 ((-429 |#2|) |#2|)) (-15 -2058 (|#2| |#2|)) (-15 -3651 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575)))))) +((-2550 (((-1270 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1270 |#1| |#3| |#5|)) 24))) +(((-1265 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2550 ((-1270 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1270 |#1| |#3| |#5|)))) (-1066) (-1066) (-1194) (-1194) |#1| |#2|) (T -1265)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1270 *5 *7 *9)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-14 *7 (-1194)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1270 *6 *8 *10)) (-5 *1 (-1265 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1194))))) +(-10 -7 (-15 -2550 ((-1270 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1270 |#1| |#3| |#5|)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-1540 (($ $) 64 (|has| |#1| (-567)))) (-3286 (((-112) $) 66 (|has| |#1| (-567)))) (-4080 (($ $ (-418 (-575))) 113) (($ $ (-418 (-575)) (-418 (-575))) 112)) (-2144 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) 119)) (-3923 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) 133 (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 177 (|has| |#1| (-373)))) (-2330 (((-429 $) $) 178 (|has| |#1| (-373)))) (-2473 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-2279 (((-112) $ $) 168 (|has| |#1| (-373)))) (-3897 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) 186)) (-1521 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) 18 T CONST)) (-2802 (($ $ $) 172 (|has| |#1| (-373)))) (-4406 (($ $) 72)) (-1747 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 171 (|has| |#1| (-373)))) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 166 (|has| |#1| (-373)))) (-1336 (((-112) $) 179 (|has| |#1| (-373)))) (-2789 (((-112) $) 85)) (-1631 (($) 160 (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-418 (-575)) $) 115) (((-418 (-575)) $ (-418 (-575))) 114)) (-1542 (((-112) $) 35)) (-2931 (($ $ (-575)) 131 (|has| |#1| (-38 (-418 (-575)))))) (-3461 (($ $ (-936)) 116) (($ $ (-418 (-575))) 185)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 175 (|has| |#1| (-373)))) (-2376 (((-112) $) 74)) (-2417 (($ |#1| (-418 (-575))) 73) (($ $ (-1099) (-418 (-575))) 88) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) 87)) (-2550 (($ (-1 |#1| |#1|) $) 75)) (-3463 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3887 (($ (-655 $)) 164 (|has| |#1| (-373))) (($ $ $) 163 (|has| |#1| (-373)))) (-2288 (((-1176) $) 10)) (-4332 (($ $) 180 (|has| |#1| (-373)))) (-4413 (($ $) 184 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 183 (-3765 (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-974)) (|has| |#1| (-1220)) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-38 (-418 (-575)))))))) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 165 (|has| |#1| (-373)))) (-3926 (($ (-655 $)) 162 (|has| |#1| (-373))) (($ $ $) 161 (|has| |#1| (-373)))) (-2353 (((-429 $) $) 176 (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 173 (|has| |#1| (-373)))) (-4276 (($ $ (-418 (-575))) 110)) (-2851 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 167 (|has| |#1| (-373)))) (-2665 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-3708 (((-782) $) 169 (|has| |#1| (-373)))) (-2070 ((|#1| $ (-418 (-575))) 120) (($ $ $) 96 (|has| (-418 (-575)) (-1129)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 170 (|has| |#1| (-373)))) (-2389 (($ $ (-1194)) 108 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194))) 106 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-1194) (-782)) 105 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) 98 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-2645 (((-418 (-575)) $) 76)) (-1530 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) 84)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567)))) (-2012 ((|#1| $ (-418 (-575))) 71)) (-1518 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-4400 (((-112) $ $) 9)) (-1568 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1544 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) 143 (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-418 (-575))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) 141 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) 139 (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1194)) 107 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194))) 103 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-1194) (-782)) 102 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) 97 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373))) (($ $ $) 182 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 181 (|has| |#1| (-373))) (($ $ $) 159 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 130 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575))))))) +(((-1266 |#1|) (-141) (-1066)) (T -1266)) +((-1873 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *3 (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| *4)))) (-4 *4 (-1066)) (-4 *1 (-1266 *4)))) (-3461 (*1 *1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-4 *1 (-1266 *3)) (-4 *3 (-1066)))) (-4413 (*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575)))))) (-4413 (*1 *1 *1 *2) (-3765 (-12 (-5 *2 (-1194)) (-4 *1 (-1266 *3)) (-4 *3 (-1066)) (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220)) (-4 *3 (-38 (-418 (-575)))))) (-12 (-5 *2 (-1194)) (-4 *1 (-1266 *3)) (-4 *3 (-1066)) (-12 (|has| *3 (-15 -1606 ((-655 *2) *3))) (|has| *3 (-15 -4413 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575))))))))) +(-13 (-1263 |t#1| (-418 (-575))) (-10 -8 (-15 -1873 ($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |t#1|))))) (-15 -3461 ($ $ (-418 (-575)))) (IF (|has| |t#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ($ $)) (IF (|has| |t#1| (-15 -4413 (|t#1| |t#1| (-1194)))) (IF (|has| |t#1| (-15 -1606 ((-655 (-1194)) |t#1|))) (-15 -4413 ($ $ (-1194))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1220)) (IF (|has| |t#1| (-974)) (IF (|has| |t#1| (-29 (-575))) (-15 -4413 ($ $ (-1194))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1019)) (-6 (-1220))) |%noBranch|) (IF (|has| |t#1| (-373)) (-6 (-373)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-418 (-575))) . T) ((-25) . T) ((-38 #1=(-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-248) |has| |#1| (-373)) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-295 #0# |#1|) . T) ((-295 $ $) |has| (-418 (-575)) (-1129)) ((-299) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-316) |has| |#1| (-373)) ((-373) |has| |#1| (-373)) ((-463) |has| |#1| (-373)) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-567) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-657 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-728 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-737) . T) ((-908 $ #2=(-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-913 #2#) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-990 |#1| #0# (-1099)) . T) ((-935) |has| |#1| (-373)) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1068 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1073 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T) ((-1239) |has| |#1| (-373)) ((-1263 |#1| #0#) . T)) +((-3799 (((-112) $) 12)) (-2449 (((-3 |#3| "failed") $) 17)) (-4399 ((|#3| $) 14))) +(((-1267 |#1| |#2| |#3|) (-10 -8 (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4399 (|#3| |#1|)) (-15 -3799 ((-112) |#1|))) (-1268 |#2| |#3|) (-1066) (-1245 |#2|)) (T -1267)) +NIL +(-10 -8 (-15 -2449 ((-3 |#3| "failed") |#1|)) (-15 -4399 (|#3| |#1|)) (-15 -3799 ((-112) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-1540 (($ $) 64 (|has| |#1| (-567)))) (-3286 (((-112) $) 66 (|has| |#1| (-567)))) (-4080 (($ $ (-418 (-575))) 113) (($ $ (-418 (-575)) (-418 (-575))) 112)) (-2144 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) 119)) (-3923 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) 133 (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 177 (|has| |#1| (-373)))) (-2330 (((-429 $) $) 178 (|has| |#1| (-373)))) (-2473 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-2279 (((-112) $ $) 168 (|has| |#1| (-373)))) (-3897 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) 186)) (-1521 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) 18 T CONST)) (-2449 (((-3 |#2| "failed") $) 197)) (-4399 ((|#2| $) 198)) (-2802 (($ $ $) 172 (|has| |#1| (-373)))) (-4406 (($ $) 72)) (-1747 (((-3 $ "failed") $) 37)) (-2555 (((-418 (-575)) $) 194)) (-2813 (($ $ $) 171 (|has| |#1| (-373)))) (-4311 (($ (-418 (-575)) |#2|) 195)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 166 (|has| |#1| (-373)))) (-1336 (((-112) $) 179 (|has| |#1| (-373)))) (-2789 (((-112) $) 85)) (-1631 (($) 160 (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-418 (-575)) $) 115) (((-418 (-575)) $ (-418 (-575))) 114)) (-1542 (((-112) $) 35)) (-2931 (($ $ (-575)) 131 (|has| |#1| (-38 (-418 (-575)))))) (-3461 (($ $ (-936)) 116) (($ $ (-418 (-575))) 185)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 175 (|has| |#1| (-373)))) (-2376 (((-112) $) 74)) (-2417 (($ |#1| (-418 (-575))) 73) (($ $ (-1099) (-418 (-575))) 88) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) 87)) (-2550 (($ (-1 |#1| |#1|) $) 75)) (-3463 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3887 (($ (-655 $)) 164 (|has| |#1| (-373))) (($ $ $) 163 (|has| |#1| (-373)))) (-3878 ((|#2| $) 193)) (-1991 (((-3 |#2| "failed") $) 191)) (-4301 ((|#2| $) 192)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 180 (|has| |#1| (-373)))) (-4413 (($ $) 184 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 183 (-3765 (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-974)) (|has| |#1| (-1220)) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-38 (-418 (-575)))))))) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 165 (|has| |#1| (-373)))) (-3926 (($ (-655 $)) 162 (|has| |#1| (-373))) (($ $ $) 161 (|has| |#1| (-373)))) (-2353 (((-429 $) $) 176 (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 173 (|has| |#1| (-373)))) (-4276 (($ $ (-418 (-575))) 110)) (-2851 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 167 (|has| |#1| (-373)))) (-2665 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-3708 (((-782) $) 169 (|has| |#1| (-373)))) (-2070 ((|#1| $ (-418 (-575))) 120) (($ $ $) 96 (|has| (-418 (-575)) (-1129)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 170 (|has| |#1| (-373)))) (-2389 (($ $ (-1194)) 108 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194))) 106 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-1194) (-782)) 105 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) 98 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-2645 (((-418 (-575)) $) 76)) (-1530 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) 84)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567)))) (-2012 ((|#1| $ (-418 (-575))) 71)) (-1518 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-4400 (((-112) $ $) 9)) (-1568 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1544 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) 143 (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-418 (-575))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) 141 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) 139 (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1194)) 107 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194))) 103 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-1194) (-782)) 102 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) 97 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373))) (($ $ $) 182 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 181 (|has| |#1| (-373))) (($ $ $) 159 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 130 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575))))))) +(((-1268 |#1| |#2|) (-141) (-1066) (-1245 |t#1|)) (T -1268)) +((-2645 (*1 *2 *1) (-12 (-4 *1 (-1268 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1245 *3)) (-5 *2 (-418 (-575))))) (-4311 (*1 *1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-4 *4 (-1066)) (-4 *1 (-1268 *4 *3)) (-4 *3 (-1245 *4)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-1268 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1245 *3)) (-5 *2 (-418 (-575))))) (-3878 (*1 *2 *1) (-12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1245 *3)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1245 *3)))) (-1991 (*1 *2 *1) (|partial| -12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1245 *3))))) +(-13 (-1266 |t#1|) (-1055 |t#2|) (-627 |t#2|) (-10 -8 (-15 -4311 ($ (-418 (-575)) |t#2|)) (-15 -2555 ((-418 (-575)) $)) (-15 -3878 (|t#2| $)) (-15 -2645 ((-418 (-575)) $)) (-15 -4301 (|t#2| $)) (-15 -1991 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-418 (-575))) . T) ((-25) . T) ((-38 #1=(-418 (-575))) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 |#2|) . T) ((-627 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-248) |has| |#1| (-373)) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-295 #0# |#1|) . T) ((-295 $ $) |has| (-418 (-575)) (-1129)) ((-299) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-316) |has| |#1| (-373)) ((-373) |has| |#1| (-373)) ((-463) |has| |#1| (-373)) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-567) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-657 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-728 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-737) . T) ((-908 $ #2=(-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-913 #2#) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-990 |#1| #0# (-1099)) . T) ((-935) |has| |#1| (-373)) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1055 |#2|) . T) ((-1068 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1073 #1#) -3765 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T) ((-1239) |has| |#1| (-373)) ((-1263 |#1| #0#) . T) ((-1266 |#1|) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 104)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-4080 (($ $ (-418 (-575))) 116) (($ $ (-418 (-575)) (-418 (-575))) 118)) (-2144 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) 54)) (-3923 (($ $) 192 (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) 168 (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL (|has| |#1| (-373)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3897 (($ $) 188 (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) 164 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) 65)) (-1521 (($ $) 196 (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) 172 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL)) (-4399 ((|#2| $) NIL)) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) 85)) (-2555 (((-418 (-575)) $) 13)) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-4311 (($ (-418 (-575)) |#2|) 11)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1336 (((-112) $) NIL (|has| |#1| (-373)))) (-2789 (((-112) $) 74)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-418 (-575)) $) 113) (((-418 (-575)) $ (-418 (-575))) 114)) (-1542 (((-112) $) NIL)) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3461 (($ $ (-936)) 130) (($ $ (-418 (-575))) 128)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-418 (-575))) 33) (($ $ (-1099) (-418 (-575))) NIL) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) NIL)) (-2550 (($ (-1 |#1| |#1|) $) 125)) (-3463 (($ $) 162 (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-3878 ((|#2| $) 12)) (-1991 (((-3 |#2| "failed") $) 44)) (-4301 ((|#2| $) 45)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) 101 (|has| |#1| (-373)))) (-4413 (($ $) 146 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 151 (-3765 (-12 (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220)))))) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-4276 (($ $ (-418 (-575))) 122)) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2665 (($ $) 160 (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2070 ((|#1| $ (-418 (-575))) 108) (($ $ $) 94 (|has| (-418 (-575)) (-1129)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-2389 (($ $ (-1194)) 138 (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-2645 (((-418 (-575)) $) 16)) (-1530 (($ $) 198 (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) 174 (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) 194 (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) 170 (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) 190 (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) 166 (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) 120)) (-2883 (((-873) $) NIL) (($ (-575)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-418 (-575))) 139 (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-2012 ((|#1| $ (-418 (-575))) 107)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) 127 T CONST)) (-1751 ((|#1| $) 106)) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) 204 (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) 180 (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) 200 (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) 176 (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) 208 (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) 184 (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-418 (-575))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) 210 (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) 186 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 206 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 182 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 202 (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) 178 (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) 21 T CONST)) (-2009 (($) 17 T CONST)) (-3430 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-3914 (((-112) $ $) 72)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) 100 (|has| |#1| (-373)))) (-4028 (($ $) 142) (($ $ $) 78)) (-4016 (($ $ $) 76)) (** (($ $ (-936)) NIL) (($ $ (-782)) 82) (($ $ (-575)) 157 (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 158 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-1269 |#1| |#2|) (-1268 |#1| |#2|) (-1066) (-1245 |#1|)) (T -1269)) +NIL +(-1268 |#1| |#2|) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 11)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) NIL (|has| |#1| (-567)))) (-4080 (($ $ (-418 (-575))) NIL) (($ $ (-418 (-575)) (-418 (-575))) NIL)) (-2144 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2058 (($ $) NIL (|has| |#1| (-373)))) (-2330 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2279 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3897 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-1249 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1277 |#1| |#2| |#3|) "failed") $) 22)) (-4399 (((-1249 |#1| |#2| |#3|) $) NIL) (((-1277 |#1| |#2| |#3|) $) NIL)) (-2802 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2555 (((-418 (-575)) $) 69)) (-2813 (($ $ $) NIL (|has| |#1| (-373)))) (-4311 (($ (-418 (-575)) (-1249 |#1| |#2| |#3|)) NIL)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1336 (((-112) $) NIL (|has| |#1| (-373)))) (-2789 (((-112) $) NIL)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-418 (-575)) $) NIL) (((-418 (-575)) $ (-418 (-575))) NIL)) (-1542 (((-112) $) NIL)) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3461 (($ $ (-936)) NIL) (($ $ (-418 (-575))) NIL)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-418 (-575))) 30) (($ $ (-1099) (-418 (-575))) NIL) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-3463 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3887 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-3878 (((-1249 |#1| |#2| |#3|) $) 72)) (-1991 (((-3 (-1249 |#1| |#2| |#3|) "failed") $) NIL)) (-4301 (((-1249 |#1| |#2| |#3|) $) NIL)) (-2288 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4413 (($ $) 39 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3765 (-12 (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 40 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3926 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2353 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2061 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) NIL (|has| |#1| (-373)))) (-4276 (($ $ (-418 (-575))) NIL)) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3442 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2665 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-3708 (((-782) $) NIL (|has| |#1| (-373)))) (-2070 ((|#1| $ (-418 (-575))) NIL) (($ $ $) NIL (|has| (-418 (-575)) (-1129)))) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) NIL (|has| |#1| (-373)))) (-2389 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-1281 |#2|)) 38)) (-2645 (((-418 (-575)) $) NIL)) (-1530 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) NIL)) (-2883 (((-873) $) 107) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1249 |#1| |#2| |#3|)) 16) (($ (-1277 |#1| |#2| |#3|)) 17) (($ (-1281 |#2|)) 36) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-2012 ((|#1| $ (-418 (-575))) NIL)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 12)) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-418 (-575))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) 32 T CONST)) (-2009 (($) 26 T CONST)) (-3430 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 34)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-1270 |#1| |#2| |#3|) (-13 (-1268 |#1| (-1249 |#1| |#2| |#3|)) (-1055 (-1277 |#1| |#2| |#3|)) (-627 (-1281 |#2|)) (-10 -8 (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1270)) +((-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1270 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-4413 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1270 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))) +(-13 (-1268 |#1| (-1249 |#1| |#2| |#3|)) (-1055 (-1277 |#1| |#2| |#3|)) (-627 (-1281 |#2|)) (-10 -8 (-15 -2389 ($ $ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 37)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-1540 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 (-575) "failed") $) NIL (|has| (-1270 |#2| |#3| |#4|) (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-1270 |#2| |#3| |#4|) (-1055 (-418 (-575))))) (((-3 (-1270 |#2| |#3| |#4|) "failed") $) 22)) (-4399 (((-575) $) NIL (|has| (-1270 |#2| |#3| |#4|) (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| (-1270 |#2| |#3| |#4|) (-1055 (-418 (-575))))) (((-1270 |#2| |#3| |#4|) $) NIL)) (-4406 (($ $) 41)) (-1747 (((-3 $ "failed") $) 27)) (-1824 (($ $) NIL (|has| (-1270 |#2| |#3| |#4|) (-463)))) (-3703 (($ $ (-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|) $) NIL)) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) 11)) (-2376 (((-112) $) NIL)) (-2417 (($ (-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) 25)) (-4337 (((-328 |#2| |#3| |#4|) $) NIL)) (-2520 (($ (-1 (-328 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) $) NIL)) (-2550 (($ (-1 (-1270 |#2| |#3| |#4|) (-1270 |#2| |#3| |#4|)) $) NIL)) (-3412 (((-3 (-854 |#2|) "failed") $) 90)) (-4371 (($ $) NIL)) (-4383 (((-1270 |#2| |#3| |#4|) $) 20)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4345 (((-112) $) NIL)) (-4353 (((-1270 |#2| |#3| |#4|) $) NIL)) (-2851 (((-3 $ "failed") $ (-1270 |#2| |#3| |#4|)) NIL (|has| (-1270 |#2| |#3| |#4|) (-567))) (((-3 $ "failed") $ $) NIL)) (-2904 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1270 |#2| |#3| |#4|)) (|:| |%expon| (-328 |#2| |#3| |#4|)) (|:| |%expTerms| (-655 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#2|)))))) (|:| |%type| (-1176))) "failed") $) 74)) (-2645 (((-328 |#2| |#3| |#4|) $) 17)) (-2178 (((-1270 |#2| |#3| |#4|) $) NIL (|has| (-1270 |#2| |#3| |#4|) (-463)))) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ (-1270 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL (-3765 (|has| (-1270 |#2| |#3| |#4|) (-38 (-418 (-575)))) (|has| (-1270 |#2| |#3| |#4|) (-1055 (-418 (-575))))))) (-2501 (((-655 (-1270 |#2| |#3| |#4|)) $) NIL)) (-2012 (((-1270 |#2| |#3| |#4|) $ (-328 |#2| |#3| |#4|)) NIL)) (-1518 (((-3 $ "failed") $) NIL (|has| (-1270 |#2| |#3| |#4|) (-146)))) (-3759 (((-782)) NIL T CONST)) (-1835 (($ $ $ (-782)) NIL (|has| (-1270 |#2| |#3| |#4|) (-174)))) (-4400 (((-112) $ $) NIL)) (-1780 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-2009 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ (-1270 |#2| |#3| |#4|)) NIL (|has| (-1270 |#2| |#3| |#4|) (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-1270 |#2| |#3| |#4|)) NIL) (($ (-1270 |#2| |#3| |#4|) $) NIL) (($ (-418 (-575)) $) NIL (|has| (-1270 |#2| |#3| |#4|) (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| (-1270 |#2| |#3| |#4|) (-38 (-418 (-575))))))) +(((-1271 |#1| |#2| |#3| |#4|) (-13 (-335 (-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) (-567) (-10 -8 (-15 -3412 ((-3 (-854 |#2|) "failed") $)) (-15 -2904 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1270 |#2| |#3| |#4|)) (|:| |%expon| (-328 |#2| |#3| |#4|)) (|:| |%expTerms| (-655 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#2|)))))) (|:| |%type| (-1176))) "failed") $)))) (-13 (-1055 (-575)) (-650 (-575)) (-463)) (-13 (-27) (-1220) (-441 |#1|)) (-1194) |#2|) (T -1271)) +((-3412 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) (-5 *2 (-854 *4)) (-5 *1 (-1271 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194)) (-14 *6 *4))) (-2904 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1270 *4 *5 *6)) (|:| |%expon| (-328 *4 *5 *6)) (|:| |%expTerms| (-655 (-2 (|:| |k| (-418 (-575))) (|:| |c| *4)))))) (|:| |%type| (-1176)))) (-5 *1 (-1271 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194)) (-14 *6 *4)))) +(-13 (-335 (-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) (-567) (-10 -8 (-15 -3412 ((-3 (-854 |#2|) "failed") $)) (-15 -2904 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1270 |#2| |#3| |#4|)) (|:| |%expon| (-328 |#2| |#3| |#4|)) (|:| |%expTerms| (-655 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#2|)))))) (|:| |%type| (-1176))) "failed") $)))) +((-4182 ((|#2| $) 34)) (-2989 ((|#2| $) 18)) (-3462 (($ $) 53)) (-1893 (($ $ (-575)) 85)) (-1845 (((-112) $ (-782)) 46)) (-1915 ((|#2| $ |#2|) 82)) (-3602 ((|#2| $ |#2|) 78)) (-3054 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1488 (($ $ (-655 $)) 81)) (-2977 ((|#2| $) 17)) (-1975 (($ $) NIL) (($ $ (-782)) 59)) (-3698 (((-655 $) $) 31)) (-3117 (((-112) $ $) 69)) (-3896 (((-112) $ (-782)) 45)) (-4026 (((-112) $ (-782)) 43)) (-1526 (((-112) $) 33)) (-3653 ((|#2| $) 25) (($ $ (-782)) 64)) (-2070 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1648 (((-112) $) 23)) (-1397 (($ $) 56)) (-1877 (($ $) 86)) (-3269 (((-782) $) 58)) (-1863 (($ $) 57)) (-1514 (($ $ $) 77) (($ |#2| $) NIL)) (-2348 (((-655 $) $) 32)) (-3914 (((-112) $ $) 67)) (-2871 (((-782) $) 52))) +(((-1272 |#1| |#2|) (-10 -8 (-15 -1893 (|#1| |#1| (-575))) (-15 -3054 (|#2| |#1| "last" |#2|)) (-15 -3602 (|#2| |#1| |#2|)) (-15 -3054 (|#1| |#1| "rest" |#1|)) (-15 -3054 (|#2| |#1| "first" |#2|)) (-15 -1877 (|#1| |#1|)) (-15 -1397 (|#1| |#1|)) (-15 -3269 ((-782) |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -2989 (|#2| |#1|)) (-15 -2977 (|#2| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3653 (|#1| |#1| (-782))) (-15 -2070 (|#2| |#1| "last")) (-15 -3653 (|#2| |#1|)) (-15 -1975 (|#1| |#1| (-782))) (-15 -2070 (|#1| |#1| "rest")) (-15 -1975 (|#1| |#1|)) (-15 -2070 (|#2| |#1| "first")) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1915 (|#2| |#1| |#2|)) (-15 -3054 (|#2| |#1| "value" |#2|)) (-15 -1488 (|#1| |#1| (-655 |#1|))) (-15 -3117 ((-112) |#1| |#1|)) (-15 -1648 ((-112) |#1|)) (-15 -2070 (|#2| |#1| "value")) (-15 -4182 (|#2| |#1|)) (-15 -1526 ((-112) |#1|)) (-15 -3698 ((-655 |#1|) |#1|)) (-15 -2348 ((-655 |#1|) |#1|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -2871 ((-782) |#1|)) (-15 -1845 ((-112) |#1| (-782))) (-15 -3896 ((-112) |#1| (-782))) (-15 -4026 ((-112) |#1| (-782)))) (-1273 |#2|) (-1235)) (T -1272)) +NIL +(-10 -8 (-15 -1893 (|#1| |#1| (-575))) (-15 -3054 (|#2| |#1| "last" |#2|)) (-15 -3602 (|#2| |#1| |#2|)) (-15 -3054 (|#1| |#1| "rest" |#1|)) (-15 -3054 (|#2| |#1| "first" |#2|)) (-15 -1877 (|#1| |#1|)) (-15 -1397 (|#1| |#1|)) (-15 -3269 ((-782) |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -2989 (|#2| |#1|)) (-15 -2977 (|#2| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3653 (|#1| |#1| (-782))) (-15 -2070 (|#2| |#1| "last")) (-15 -3653 (|#2| |#1|)) (-15 -1975 (|#1| |#1| (-782))) (-15 -2070 (|#1| |#1| "rest")) (-15 -1975 (|#1| |#1|)) (-15 -2070 (|#2| |#1| "first")) (-15 -1514 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -1915 (|#2| |#1| |#2|)) (-15 -3054 (|#2| |#1| "value" |#2|)) (-15 -1488 (|#1| |#1| (-655 |#1|))) (-15 -3117 ((-112) |#1| |#1|)) (-15 -1648 ((-112) |#1|)) (-15 -2070 (|#2| |#1| "value")) (-15 -4182 (|#2| |#1|)) (-15 -1526 ((-112) |#1|)) (-15 -3698 ((-655 |#1|) |#1|)) (-15 -2348 ((-655 |#1|) |#1|)) (-15 -3914 ((-112) |#1| |#1|)) (-15 -2871 ((-782) |#1|)) (-15 -1845 ((-112) |#1| (-782))) (-15 -3896 ((-112) |#1| (-782))) (-15 -4026 ((-112) |#1| (-782)))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4182 ((|#1| $) 49)) (-2989 ((|#1| $) 66)) (-3462 (($ $) 68)) (-1893 (($ $ (-575)) 53 (|has| $ (-6 -4461)))) (-1845 (((-112) $ (-782)) 8)) (-1915 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-3391 (($ $ $) 57 (|has| $ (-6 -4461)))) (-3602 ((|#1| $ |#1|) 55 (|has| $ (-6 -4461)))) (-1876 ((|#1| $ |#1|) 59 (|has| $ (-6 -4461)))) (-3054 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4461))) (($ $ "rest" $) 56 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4461)))) (-1488 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-2977 ((|#1| $) 67)) (-3011 (($) 7 T CONST)) (-1975 (($ $) 74) (($ $ (-782)) 72)) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3698 (((-655 $) $) 51)) (-3117 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-3896 (((-112) $ (-782)) 9)) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36)) (-4026 (((-112) $ (-782)) 10)) (-2482 (((-655 |#1|) $) 46)) (-1526 (((-112) $) 50)) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3653 ((|#1| $) 71) (($ $ (-782)) 69)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1961 ((|#1| $) 77) (($ $ (-782)) 75)) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2220 (((-575) $ $) 45)) (-1648 (((-112) $) 47)) (-1397 (($ $) 63)) (-1877 (($ $) 60 (|has| $ (-6 -4461)))) (-3269 (((-782) $) 64)) (-1863 (($ $) 65)) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3078 (($ $) 13)) (-2774 (($ $ $) 62 (|has| $ (-6 -4461))) (($ $ |#1|) 61 (|has| $ (-6 -4461)))) (-1514 (($ $ $) 79) (($ |#1| $) 78)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-2348 (((-655 $) $) 52)) (-2781 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-1273 |#1|) (-141) (-1235)) (T -1273)) +((-1514 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1514 (*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1961 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) (-1975 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) (-1975 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3653 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) (-3462 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1863 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))) (-1397 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2774 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2774 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1877 (*1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1876 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3054 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3391 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3054 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) (-3602 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3054 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1893 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (|has| *1 (-6 -4461)) (-4 *1 (-1273 *3)) (-4 *3 (-1235))))) +(-13 (-1027 |t#1|) (-10 -8 (-15 -1514 ($ $ $)) (-15 -1514 ($ |t#1| $)) (-15 -1961 (|t#1| $)) (-15 -2070 (|t#1| $ "first")) (-15 -1961 ($ $ (-782))) (-15 -1975 ($ $)) (-15 -2070 ($ $ "rest")) (-15 -1975 ($ $ (-782))) (-15 -3653 (|t#1| $)) (-15 -2070 (|t#1| $ "last")) (-15 -3653 ($ $ (-782))) (-15 -3462 ($ $)) (-15 -2977 (|t#1| $)) (-15 -2989 (|t#1| $)) (-15 -1863 ($ $)) (-15 -3269 ((-782) $)) (-15 -1397 ($ $)) (IF (|has| $ (-6 -4461)) (PROGN (-15 -2774 ($ $ $)) (-15 -2774 ($ $ |t#1|)) (-15 -1877 ($ $)) (-15 -1876 (|t#1| $ |t#1|)) (-15 -3054 (|t#1| $ "first" |t#1|)) (-15 -3391 ($ $ $)) (-15 -3054 ($ $ "rest" $)) (-15 -3602 (|t#1| $ |t#1|)) (-15 -3054 (|t#1| $ "last" |t#1|)) (-15 -1893 ($ $ (-575)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T)) +((-2550 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1274 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 (|#4| (-1 |#2| |#1|) |#3|))) (-1066) (-1066) (-1276 |#1|) (-1276 |#2|)) (T -1274)) +((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1276 *6)) (-5 *1 (-1274 *5 *6 *4 *2)) (-4 *4 (-1276 *5))))) +(-10 -7 (-15 -2550 (|#4| (-1 |#2| |#1|) |#3|))) +((-3799 (((-112) $) 17)) (-3923 (($ $) 105)) (-3786 (($ $) 81)) (-3897 (($ $) 101)) (-3761 (($ $) 77)) (-1521 (($ $) 109)) (-3807 (($ $) 85)) (-3463 (($ $) 75)) (-2665 (($ $) 73)) (-1530 (($ $) 111)) (-3817 (($ $) 87)) (-3937 (($ $) 107)) (-3797 (($ $) 83)) (-3909 (($ $) 103)) (-3774 (($ $) 79)) (-2883 (((-873) $) 61) (($ (-575)) NIL) (($ (-418 (-575))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1568 (($ $) 117)) (-3852 (($ $) 93)) (-1544 (($ $) 113)) (-3828 (($ $) 89)) (-1592 (($ $) 121)) (-3873 (($ $) 97)) (-2914 (($ $) 123)) (-3885 (($ $) 99)) (-1583 (($ $) 119)) (-3863 (($ $) 95)) (-1554 (($ $) 115)) (-3839 (($ $) 91)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-418 (-575))) 71))) +(((-1275 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -3786 (|#1| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3817 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3873 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -1530 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2883 (|#1| |#2|)) (-15 -2883 (|#1| |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936))) (-15 -3799 ((-112) |#1|)) (-15 -2883 ((-873) |#1|))) (-1276 |#2|) (-1066)) (T -1275)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -3786 (|#1| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3817 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3873 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -1530 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2883 (|#1| |#2|)) (-15 -2883 (|#1| |#1|)) (-15 -2883 (|#1| (-418 (-575)))) (-15 -2883 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936))) (-15 -3799 ((-112) |#1|)) (-15 -2883 ((-873) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-1540 (($ $) 64 (|has| |#1| (-567)))) (-3286 (((-112) $) 66 (|has| |#1| (-567)))) (-4080 (($ $ (-782)) 113) (($ $ (-782) (-782)) 112)) (-2144 (((-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|))) $) 119)) (-3923 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) 133 (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) 20)) (-2473 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-3897 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|)))) 170) (($ (-1174 |#1|)) 168)) (-1521 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) 18 T CONST)) (-4406 (($ $) 72)) (-1747 (((-3 $ "failed") $) 37)) (-4102 (($ $) 167)) (-2485 (((-967 |#1|) $ (-782)) 165) (((-967 |#1|) $ (-782) (-782)) 164)) (-2789 (((-112) $) 85)) (-1631 (($) 160 (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-782) $) 115) (((-782) $ (-782)) 114)) (-1542 (((-112) $) 35)) (-2931 (($ $ (-575)) 131 (|has| |#1| (-38 (-418 (-575)))))) (-3461 (($ $ (-936)) 116)) (-3247 (($ (-1 |#1| (-575)) $) 166)) (-2376 (((-112) $) 74)) (-2417 (($ |#1| (-782)) 73) (($ $ (-1099) (-782)) 88) (($ $ (-655 (-1099)) (-655 (-782))) 87)) (-2550 (($ (-1 |#1| |#1|) $) 75)) (-3463 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) 77)) (-4383 ((|#1| $) 78)) (-2288 (((-1176) $) 10)) (-4413 (($ $) 162 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 161 (-3765 (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-974)) (|has| |#1| (-1220)) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-38 (-418 (-575)))))))) (-3912 (((-1137) $) 11)) (-4276 (($ $ (-782)) 110)) (-2851 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-2665 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3048 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-782)))))) (-2070 ((|#1| $ (-782)) 120) (($ $ $) 96 (|has| (-782) (-1129)))) (-2389 (($ $ (-1194)) 108 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-655 (-1194))) 106 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-1194) (-782)) 105 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) 98 (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (-2645 (((-782) $) 76)) (-1530 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) 84)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2501 (((-1174 |#1|) $) 169)) (-2012 ((|#1| $ (-782)) 71)) (-1518 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3759 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-4400 (((-112) $ $) 9)) (-1568 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1544 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) 143 (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-782)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-782)))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) 141 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) 139 (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3430 (($ $ (-1194)) 107 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-655 (-1194))) 103 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-1194) (-782)) 102 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) 97 (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373)))) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ |#1|) 163 (|has| |#1| (-373))) (($ $ $) 159 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 130 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575))))))) +(((-1276 |#1|) (-141) (-1066)) (T -1276)) +((-1873 (*1 *1 *2) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-782)) (|:| |c| *3)))) (-4 *3 (-1066)) (-4 *1 (-1276 *3)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1066)) (-5 *2 (-1174 *3)))) (-1873 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-4 *1 (-1276 *3)))) (-4102 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066)))) (-3247 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-575))) (-4 *1 (-1276 *3)) (-4 *3 (-1066)))) (-2485 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-1276 *4)) (-4 *4 (-1066)) (-5 *2 (-967 *4)))) (-2485 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-4 *1 (-1276 *4)) (-4 *4 (-1066)) (-5 *2 (-967 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-4413 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575)))))) (-4413 (*1 *1 *1 *2) (-3765 (-12 (-5 *2 (-1194)) (-4 *1 (-1276 *3)) (-4 *3 (-1066)) (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220)) (-4 *3 (-38 (-418 (-575)))))) (-12 (-5 *2 (-1194)) (-4 *1 (-1276 *3)) (-4 *3 (-1066)) (-12 (|has| *3 (-15 -1606 ((-655 *2) *3))) (|has| *3 (-15 -4413 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575))))))))) +(-13 (-1263 |t#1| (-782)) (-10 -8 (-15 -1873 ($ (-1174 (-2 (|:| |k| (-782)) (|:| |c| |t#1|))))) (-15 -2501 ((-1174 |t#1|) $)) (-15 -1873 ($ (-1174 |t#1|))) (-15 -4102 ($ $)) (-15 -3247 ($ (-1 |t#1| (-575)) $)) (-15 -2485 ((-967 |t#1|) $ (-782))) (-15 -2485 ((-967 |t#1|) $ (-782) (-782))) (IF (|has| |t#1| (-373)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-418 (-575)))) (PROGN (-15 -4413 ($ $)) (IF (|has| |t#1| (-15 -4413 (|t#1| |t#1| (-1194)))) (IF (|has| |t#1| (-15 -1606 ((-655 (-1194)) |t#1|))) (-15 -4413 ($ $ (-1194))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1220)) (IF (|has| |t#1| (-974)) (IF (|has| |t#1| (-29 (-575))) (-15 -4413 ($ $ (-1194))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1019)) (-6 (-1220))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-782)) . T) ((-25) . T) ((-38 #1=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) |has| |#1| (-38 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-782) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-782) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-782) |#1|))) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-295 #0# |#1|) . T) ((-295 $ $) |has| (-782) (-1129)) ((-299) |has| |#1| (-567)) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-567) |has| |#1| (-567)) ((-657 #1#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #1#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-908 $ #2=(-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))) ((-913 #2#) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))) ((-990 |#1| #0# (-1099)) . T) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1068 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3765 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T) ((-1263 |#1| #0#) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 90)) (-2350 (((-1258 |#2| |#1|) $ (-782)) 73)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-1540 (($ $) NIL (|has| |#1| (-567)))) (-3286 (((-112) $) 142 (|has| |#1| (-567)))) (-4080 (($ $ (-782)) 127) (($ $ (-782) (-782)) 130)) (-2144 (((-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|))) $) 43)) (-3923 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3786 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2597 (((-3 $ "failed") $ $) NIL)) (-2473 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3897 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3761 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|)))) 52) (($ (-1174 |#1|)) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3807 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($) NIL T CONST)) (-3871 (($ $) 134)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-4102 (($ $) 140)) (-2485 (((-967 |#1|) $ (-782)) 63) (((-967 |#1|) $ (-782) (-782)) 65)) (-2789 (((-112) $) NIL)) (-1631 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2673 (((-782) $) NIL) (((-782) $ (-782)) NIL)) (-1542 (((-112) $) NIL)) (-3237 (($ $) 117)) (-2931 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2166 (($ (-575) (-575) $) 136)) (-3461 (($ $ (-936)) 139)) (-3247 (($ (-1 |#1| (-575)) $) 111)) (-2376 (((-112) $) NIL)) (-2417 (($ |#1| (-782)) 16) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-2550 (($ (-1 |#1| |#1|) $) 98)) (-3463 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4371 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-1531 (($ $) 115)) (-3511 (($ $) 113)) (-3552 (($ (-575) (-575) $) 138)) (-4413 (($ $) 150 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 156 (-3765 (-12 (|has| |#1| (-15 -4413 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-2562 (($ $ (-575) (-575)) 121)) (-4276 (($ $ (-782)) 123)) (-2851 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2665 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4426 (($ $) 119)) (-3048 (((-1174 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-782)))))) (-2070 ((|#1| $ (-782)) 95) (($ $ $) 132 (|has| (-782) (-1129)))) (-2389 (($ $ (-1194)) 108 (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-1281 |#2|)) 103)) (-2645 (((-782) $) NIL)) (-1530 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3817 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3937 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3774 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2972 (($ $) 125)) (-2883 (((-873) $) NIL) (($ (-575)) 26) (($ (-418 (-575))) 148 (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1258 |#2| |#1|)) 81) (($ (-1281 |#2|)) 22)) (-2501 (((-1174 |#1|) $) NIL)) (-2012 ((|#1| $ (-782)) 94)) (-1518 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3759 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 91)) (-4400 (((-112) $ $) NIL)) (-1568 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1780 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3873 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3494 ((|#1| $ (-782)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-782)))) (|has| |#1| (-15 -2883 (|#1| (-1194))))))) (-2914 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1996 (($) 18 T CONST)) (-2009 (($) 13 T CONST)) (-3430 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (-3914 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) 107)) (-4016 (($ $ $) 20)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ |#1|) 145 (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))))) +(((-1277 |#1| |#2| |#3|) (-13 (-1276 |#1|) (-10 -8 (-15 -2883 ($ (-1258 |#2| |#1|))) (-15 -2350 ((-1258 |#2| |#1|) $ (-782))) (-15 -2883 ($ (-1281 |#2|))) (-15 -2389 ($ $ (-1281 |#2|))) (-15 -3511 ($ $)) (-15 -1531 ($ $)) (-15 -3237 ($ $)) (-15 -4426 ($ $)) (-15 -2562 ($ $ (-575) (-575))) (-15 -3871 ($ $)) (-15 -2166 ($ (-575) (-575) $)) (-15 -3552 ($ (-575) (-575) $)) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1277)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-1258 *4 *3)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3) (-5 *1 (-1277 *3 *4 *5)))) (-2350 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1258 *5 *4)) (-5 *1 (-1277 *4 *5 *6)) (-4 *4 (-1066)) (-14 *5 (-1194)) (-14 *6 *4))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-3511 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) (-14 *4 *2))) (-1531 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) (-14 *4 *2))) (-3237 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) (-14 *4 *2))) (-4426 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) (-14 *4 *2))) (-2562 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3))) (-3871 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) (-14 *4 *2))) (-2166 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3))) (-3552 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3))) (-4413 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))) +(-13 (-1276 |#1|) (-10 -8 (-15 -2883 ($ (-1258 |#2| |#1|))) (-15 -2350 ((-1258 |#2| |#1|) $ (-782))) (-15 -2883 ($ (-1281 |#2|))) (-15 -2389 ($ $ (-1281 |#2|))) (-15 -3511 ($ $)) (-15 -1531 ($ $)) (-15 -3237 ($ $)) (-15 -4426 ($ $)) (-15 -2562 ($ $ (-575) (-575))) (-15 -3871 ($ $)) (-15 -2166 ($ (-575) (-575) $)) (-15 -3552 ($ (-575) (-575) $)) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4413 ($ $ (-1281 |#2|))) |%noBranch|))) +((-3266 (((-1 (-1174 |#1|) (-655 (-1174 |#1|))) (-1 |#2| (-655 |#2|))) 24)) (-4036 (((-1 (-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2269 (((-1 (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2|)) 13)) (-4357 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2702 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4133 ((|#2| (-1 |#2| (-655 |#2|)) (-655 |#1|)) 60)) (-2730 (((-655 |#2|) (-655 |#1|) (-655 (-1 |#2| (-655 |#2|)))) 66)) (-2187 ((|#2| |#2| |#2|) 43))) +(((-1278 |#1| |#2|) (-10 -7 (-15 -2269 ((-1 (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2|))) (-15 -4036 ((-1 (-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3266 ((-1 (-1174 |#1|) (-655 (-1174 |#1|))) (-1 |#2| (-655 |#2|)))) (-15 -2187 (|#2| |#2| |#2|)) (-15 -2702 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4357 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4133 (|#2| (-1 |#2| (-655 |#2|)) (-655 |#1|))) (-15 -2730 ((-655 |#2|) (-655 |#1|) (-655 (-1 |#2| (-655 |#2|)))))) (-38 (-418 (-575))) (-1276 |#1|)) (T -1278)) +((-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 (-1 *6 (-655 *6)))) (-4 *5 (-38 (-418 (-575)))) (-4 *6 (-1276 *5)) (-5 *2 (-655 *6)) (-5 *1 (-1278 *5 *6)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-655 *2))) (-5 *4 (-655 *5)) (-4 *5 (-38 (-418 (-575)))) (-4 *2 (-1276 *5)) (-5 *1 (-1278 *5 *2)))) (-4357 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1276 *4)) (-5 *1 (-1278 *4 *2)) (-4 *4 (-38 (-418 (-575)))))) (-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1276 *4)) (-5 *1 (-1278 *4 *2)) (-4 *4 (-38 (-418 (-575)))))) (-2187 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1278 *3 *2)) (-4 *2 (-1276 *3)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-655 *5))) (-4 *5 (-1276 *4)) (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-1 (-1174 *4) (-655 (-1174 *4)))) (-5 *1 (-1278 *4 *5)))) (-4036 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1276 *4)) (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-1 (-1174 *4) (-1174 *4) (-1174 *4))) (-5 *1 (-1278 *4 *5)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1276 *4)) (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-1 (-1174 *4) (-1174 *4))) (-5 *1 (-1278 *4 *5))))) +(-10 -7 (-15 -2269 ((-1 (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2|))) (-15 -4036 ((-1 (-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3266 ((-1 (-1174 |#1|) (-655 (-1174 |#1|))) (-1 |#2| (-655 |#2|)))) (-15 -2187 (|#2| |#2| |#2|)) (-15 -2702 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4357 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4133 (|#2| (-1 |#2| (-655 |#2|)) (-655 |#1|))) (-15 -2730 ((-655 |#2|) (-655 |#1|) (-655 (-1 |#2| (-655 |#2|)))))) +((-2296 ((|#2| |#4| (-782)) 31)) (-4326 ((|#4| |#2|) 26)) (-3980 ((|#4| (-418 |#2|)) 49 (|has| |#1| (-567)))) (-2161 (((-1 |#4| (-655 |#4|)) |#3|) 43))) +(((-1279 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4326 (|#4| |#2|)) (-15 -2296 (|#2| |#4| (-782))) (-15 -2161 ((-1 |#4| (-655 |#4|)) |#3|)) (IF (|has| |#1| (-567)) (-15 -3980 (|#4| (-418 |#2|))) |%noBranch|)) (-1066) (-1261 |#1|) (-667 |#2|) (-1276 |#1|)) (T -1279)) +((-3980 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-567)) (-4 *4 (-1066)) (-4 *2 (-1276 *4)) (-5 *1 (-1279 *4 *5 *6 *2)) (-4 *6 (-667 *5)))) (-2161 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-1261 *4)) (-5 *2 (-1 *6 (-655 *6))) (-5 *1 (-1279 *4 *5 *3 *6)) (-4 *3 (-667 *5)) (-4 *6 (-1276 *4)))) (-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-1066)) (-4 *2 (-1261 *5)) (-5 *1 (-1279 *5 *2 *6 *3)) (-4 *6 (-667 *2)) (-4 *3 (-1276 *5)))) (-4326 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *3 (-1261 *4)) (-4 *2 (-1276 *4)) (-5 *1 (-1279 *4 *3 *5 *2)) (-4 *5 (-667 *3))))) +(-10 -7 (-15 -4326 (|#4| |#2|)) (-15 -2296 (|#2| |#4| (-782))) (-15 -2161 ((-1 |#4| (-655 |#4|)) |#3|)) (IF (|has| |#1| (-567)) (-15 -3980 (|#4| (-418 |#2|))) |%noBranch|)) +NIL +(((-1280) (-141)) (T -1280)) NIL (-13 (-10 -7 (-6 -3460))) -((-2862 (((-112) $ $) NIL)) (-1441 (((-1195)) 12)) (-3733 (((-1177) $) 18)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 11) (((-1195) $) 8)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 15))) -(((-1282 |#1|) (-13 (-1118) (-625 (-1195)) (-10 -8 (-15 -2884 ((-1195) $)) (-15 -1441 ((-1195))))) (-1195)) (T -1282)) -((-2884 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2))) (-1441 (*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2)))) -(-13 (-1118) (-625 (-1195)) (-10 -8 (-15 -2884 ((-1195) $)) (-15 -1441 ((-1195))))) -((-2881 (($ (-783)) 19)) (-4057 (((-701 |#2|) $ $) 41)) (-2142 ((|#2| $) 51)) (-1840 ((|#2| $) 50)) (-2165 ((|#2| $ $) 36)) (-2153 (($ $ $) 47)) (-4029 (($ $) 23) (($ $ $) 29)) (-4017 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1283 |#1| |#2|) (-10 -8 (-15 -2142 (|#2| |#1|)) (-15 -1840 (|#2| |#1|)) (-15 -2153 (|#1| |#1| |#1|)) (-15 -4057 ((-701 |#2|) |#1| |#1|)) (-15 -2165 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -2881 (|#1| (-783))) (-15 -4017 (|#1| |#1| |#1|))) (-1284 |#2|) (-1236)) (T -1283)) -NIL -(-10 -8 (-15 -2142 (|#2| |#1|)) (-15 -1840 (|#2| |#1|)) (-15 -2153 (|#1| |#1| |#1|)) (-15 -4057 ((-701 |#2|) |#1| |#1|)) (-15 -2165 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -2881 (|#1| (-783))) (-15 -4017 (|#1| |#1| |#1|))) -((-2862 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2881 (($ (-783)) 115 (|has| |#1| (-23)))) (-3336 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) 8)) (-3055 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-2473 (($) 7 T CONST)) (-2745 (($ $) 93 (|has| $ (-6 -4462)))) (-4379 (($ $) 103)) (-1919 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3634 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) 52)) (-2634 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1118)))) (-4001 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-4057 (((-701 |#1|) $ $) 108 (|has| |#1| (-1067)))) (-2310 (($ (-783) |#1|) 70)) (-2408 (((-112) $ (-783)) 9)) (-3356 (((-576) $) 44 (|has| (-576) (-862)))) (-1921 (($ $ $) 90 (|has| |#1| (-862)))) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3365 (((-576) $) 45 (|has| (-576) (-862)))) (-4137 (($ $ $) 89 (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2142 ((|#1| $) 105 (-12 (|has| |#1| (-1067)) (|has| |#1| (-1020))))) (-2374 (((-112) $ (-783)) 10)) (-1840 ((|#1| $) 106 (-12 (|has| |#1| (-1067)) (|has| |#1| (-1020))))) (-3733 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2134 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3385 (((-656 (-576)) $) 47)) (-3394 (((-112) (-576) $) 48)) (-3914 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1962 ((|#1| $) 43 (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3346 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) 14)) (-3375 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) 49)) (-2809 (((-112) $) 11)) (-1458 (($) 12)) (-2071 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-2165 ((|#1| $ $) 109 (|has| |#1| (-1067)))) (-3240 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-2153 (($ $ $) 107 (|has| |#1| (-1067)))) (-3926 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1902 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3079 (($ $) 13)) (-2616 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 72)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2884 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3957 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3915 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-3970 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-862)))) (-4029 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4017 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-2872 (((-783) $) 6 (|has| $ (-6 -4461))))) -(((-1284 |#1|) (-141) (-1236)) (T -1284)) -((-4017 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-25)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1284 *3)) (-4 *3 (-23)) (-4 *3 (-1236)))) (-4029 (*1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))) (-4029 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738)))) (-2165 (*1 *2 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1067)))) (-4057 (*1 *2 *1 *1) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-1067)) (-5 *2 (-701 *3)))) (-2153 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1067)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1020)) (-4 *2 (-1067)))) (-2142 (*1 *2 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1020)) (-4 *2 (-1067))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4017 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2881 ($ (-783))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4029 ($ $)) (-15 -4029 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-738)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1067)) (PROGN (-15 -2165 (|t#1| $ $)) (-15 -4057 ((-701 |t#1|) $ $)) (-15 -2153 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1020)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -1840 (|t#1| $)) (-15 -2142 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-625 (-874)) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1118) -3766 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-1236) . T)) -((-2176 (((-1286 |#2|) (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|) 13)) (-2309 ((|#2| (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|) 15)) (-2551 (((-3 (-1286 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1286 |#1|)) 30) (((-1286 |#2|) (-1 |#2| |#1|) (-1286 |#1|)) 18))) -(((-1285 |#1| |#2|) (-10 -7 (-15 -2176 ((-1286 |#2|) (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -2309 (|#2| (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -2551 ((-1286 |#2|) (-1 |#2| |#1|) (-1286 |#1|))) (-15 -2551 ((-3 (-1286 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1286 |#1|)))) (-1236) (-1236)) (T -1285)) -((-2551 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1285 *5 *6)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1285 *5 *6)))) (-2309 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-1285 *5 *2)))) (-2176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1286 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-1286 *5)) (-5 *1 (-1285 *6 *5))))) -(-10 -7 (-15 -2176 ((-1286 |#2|) (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -2309 (|#2| (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -2551 ((-1286 |#2|) (-1 |#2| |#1|) (-1286 |#1|))) (-15 -2551 ((-3 (-1286 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1286 |#1|)))) -((-2862 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2881 (($ (-783)) NIL (|has| |#1| (-23)))) (-2378 (($ (-656 |#1|)) 11)) (-3336 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1913 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1891 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2032 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2970 (((-112) $ (-783)) NIL)) (-3055 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2473 (($) NIL T CONST)) (-2745 (($ $) NIL (|has| $ (-6 -4462)))) (-4379 (($ $) NIL)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3634 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2309 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2859 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2789 ((|#1| $ (-576)) NIL)) (-2634 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-4001 (((-656 |#1|) $) 16 (|has| $ (-6 -4461)))) (-4057 (((-701 |#1|) $ $) NIL (|has| |#1| (-1067)))) (-2310 (($ (-783) |#1|) NIL)) (-2408 (((-112) $ (-783)) NIL)) (-3356 (((-576) $) NIL (|has| (-576) (-862)))) (-1921 (($ $ $) NIL (|has| |#1| (-862)))) (-4214 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1496 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3743 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3365 (((-576) $) 12 (|has| (-576) (-862)))) (-4137 (($ $ $) NIL (|has| |#1| (-862)))) (-2848 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2142 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-2374 (((-112) $ (-783)) NIL)) (-1840 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-3733 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2134 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3385 (((-656 (-576)) $) NIL)) (-3394 (((-112) (-576) $) NIL)) (-3914 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1962 ((|#1| $) NIL (|has| (-576) (-862)))) (-1932 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3346 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-2476 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2983 (((-112) $ $) NIL)) (-3375 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3403 (((-656 |#1|) $) NIL)) (-2809 (((-112) $) NIL)) (-1458 (($) NIL)) (-2071 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2165 ((|#1| $ $) NIL (|has| |#1| (-1067)))) (-3240 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2153 (($ $ $) NIL (|has| |#1| (-1067)))) (-3926 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1902 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-2895 (($ (-656 |#1|)) 10)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2884 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3722 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2492 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3957 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3915 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4029 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4017 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1286 |#1|) (-13 (-1284 |#1|) (-10 -8 (-15 -2378 ($ (-656 |#1|))))) (-1236)) (T -1286)) -((-2378 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1286 *3))))) -(-13 (-1284 |#1|) (-10 -8 (-15 -2378 ($ (-656 |#1|))))) -((-2862 (((-112) $ $) NIL)) (-3044 (((-1177) $ (-1177)) 107) (((-1177) $ (-1177) (-1177)) 105) (((-1177) $ (-1177) (-656 (-1177))) 104)) (-2313 (($) 69)) (-2571 (((-1291) $ (-480) (-937)) 54)) (-2497 (((-1291) $ (-937) (-1177)) 89) (((-1291) $ (-937) (-886)) 90)) (-3534 (((-1291) $ (-937) (-390) (-390)) 57)) (-2489 (((-1291) $ (-1177)) 84)) (-1428 (((-1291) $ (-937) (-1177)) 94)) (-2205 (((-1291) $ (-937) (-390) (-390)) 58)) (-4406 (((-1291) $ (-937) (-937)) 55)) (-3018 (((-1291) $) 85)) (-2226 (((-1291) $ (-937) (-1177)) 93)) (-2259 (((-1291) $ (-480) (-937)) 41)) (-2237 (((-1291) $ (-937) (-1177)) 92)) (-1618 (((-656 (-270)) $) 29) (($ $ (-656 (-270))) 30)) (-4417 (((-1291) $ (-783) (-783)) 52)) (-2301 (($ $) 70) (($ (-480) (-656 (-270))) 71)) (-3733 (((-1177) $) NIL)) (-4169 (((-576) $) 48)) (-3914 (((-1138) $) NIL)) (-2270 (((-1286 (-3 (-480) "undefined")) $) 47)) (-2278 (((-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2237 (-576)) (|:| -2216 (-576)) (|:| |spline| (-576)) (|:| -4360 (-576)) (|:| |axesColor| (-886)) (|:| -2497 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $) 46)) (-2288 (((-1291) $ (-937) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576)) 83)) (-2322 (((-656 (-959 (-227))) $) NIL)) (-2248 (((-480) $ (-937)) 43)) (-4395 (((-1291) $ (-783) (-783) (-937) (-937)) 50)) (-4372 (((-1291) $ (-1177)) 95)) (-2216 (((-1291) $ (-937) (-1177)) 91)) (-2884 (((-874) $) 102)) (-2459 (((-1291) $) 96)) (-3722 (((-112) $ $) NIL)) (-4360 (((-1291) $ (-937) (-1177)) 87) (((-1291) $ (-937) (-886)) 88)) (-3915 (((-112) $ $) NIL))) -(((-1287) (-13 (-1118) (-10 -8 (-15 -2322 ((-656 (-959 (-227))) $)) (-15 -2313 ($)) (-15 -2301 ($ $)) (-15 -1618 ((-656 (-270)) $)) (-15 -1618 ($ $ (-656 (-270)))) (-15 -2301 ($ (-480) (-656 (-270)))) (-15 -2288 ((-1291) $ (-937) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576))) (-15 -2278 ((-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2237 (-576)) (|:| -2216 (-576)) (|:| |spline| (-576)) (|:| -4360 (-576)) (|:| |axesColor| (-886)) (|:| -2497 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $)) (-15 -2270 ((-1286 (-3 (-480) "undefined")) $)) (-15 -2489 ((-1291) $ (-1177))) (-15 -2259 ((-1291) $ (-480) (-937))) (-15 -2248 ((-480) $ (-937))) (-15 -4360 ((-1291) $ (-937) (-1177))) (-15 -4360 ((-1291) $ (-937) (-886))) (-15 -2497 ((-1291) $ (-937) (-1177))) (-15 -2497 ((-1291) $ (-937) (-886))) (-15 -2237 ((-1291) $ (-937) (-1177))) (-15 -2226 ((-1291) $ (-937) (-1177))) (-15 -2216 ((-1291) $ (-937) (-1177))) (-15 -4372 ((-1291) $ (-1177))) (-15 -2459 ((-1291) $)) (-15 -4395 ((-1291) $ (-783) (-783) (-937) (-937))) (-15 -2205 ((-1291) $ (-937) (-390) (-390))) (-15 -3534 ((-1291) $ (-937) (-390) (-390))) (-15 -1428 ((-1291) $ (-937) (-1177))) (-15 -4417 ((-1291) $ (-783) (-783))) (-15 -2571 ((-1291) $ (-480) (-937))) (-15 -4406 ((-1291) $ (-937) (-937))) (-15 -3044 ((-1177) $ (-1177))) (-15 -3044 ((-1177) $ (-1177) (-1177))) (-15 -3044 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -3018 ((-1291) $)) (-15 -4169 ((-576) $)) (-15 -2884 ((-874) $))))) (T -1287)) -((-2884 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1287)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-656 (-959 (-227)))) (-5 *1 (-1287)))) (-2313 (*1 *1) (-5 *1 (-1287))) (-2301 (*1 *1 *1) (-5 *1 (-1287))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287)))) (-1618 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287)))) (-2301 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1287)))) (-2288 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-937)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2237 (-576)) (|:| -2216 (-576)) (|:| |spline| (-576)) (|:| -4360 (-576)) (|:| |axesColor| (-886)) (|:| -2497 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576))))) (-5 *1 (-1287)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-1286 (-3 (-480) "undefined"))) (-5 *1 (-1287)))) (-2489 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2259 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2248 (*1 *2 *1 *3) (-12 (-5 *3 (-937)) (-5 *2 (-480)) (-5 *1 (-1287)))) (-4360 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4360 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2497 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2497 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2237 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2226 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2216 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4372 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2459 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4395 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2205 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-937)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3534 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-937)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-1428 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4417 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2571 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4406 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3044 (*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287)))) (-3044 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287)))) (-3044 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1287)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1287))))) -(-13 (-1118) (-10 -8 (-15 -2322 ((-656 (-959 (-227))) $)) (-15 -2313 ($)) (-15 -2301 ($ $)) (-15 -1618 ((-656 (-270)) $)) (-15 -1618 ($ $ (-656 (-270)))) (-15 -2301 ($ (-480) (-656 (-270)))) (-15 -2288 ((-1291) $ (-937) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576))) (-15 -2278 ((-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2237 (-576)) (|:| -2216 (-576)) (|:| |spline| (-576)) (|:| -4360 (-576)) (|:| |axesColor| (-886)) (|:| -2497 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $)) (-15 -2270 ((-1286 (-3 (-480) "undefined")) $)) (-15 -2489 ((-1291) $ (-1177))) (-15 -2259 ((-1291) $ (-480) (-937))) (-15 -2248 ((-480) $ (-937))) (-15 -4360 ((-1291) $ (-937) (-1177))) (-15 -4360 ((-1291) $ (-937) (-886))) (-15 -2497 ((-1291) $ (-937) (-1177))) (-15 -2497 ((-1291) $ (-937) (-886))) (-15 -2237 ((-1291) $ (-937) (-1177))) (-15 -2226 ((-1291) $ (-937) (-1177))) (-15 -2216 ((-1291) $ (-937) (-1177))) (-15 -4372 ((-1291) $ (-1177))) (-15 -2459 ((-1291) $)) (-15 -4395 ((-1291) $ (-783) (-783) (-937) (-937))) (-15 -2205 ((-1291) $ (-937) (-390) (-390))) (-15 -3534 ((-1291) $ (-937) (-390) (-390))) (-15 -1428 ((-1291) $ (-937) (-1177))) (-15 -4417 ((-1291) $ (-783) (-783))) (-15 -2571 ((-1291) $ (-480) (-937))) (-15 -4406 ((-1291) $ (-937) (-937))) (-15 -3044 ((-1177) $ (-1177))) (-15 -3044 ((-1177) $ (-1177) (-1177))) (-15 -3044 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -3018 ((-1291) $)) (-15 -4169 ((-576) $)) (-15 -2884 ((-874) $)))) -((-2862 (((-112) $ $) NIL)) (-4302 (((-1291) $ (-390)) 169) (((-1291) $ (-390) (-390) (-390)) 170)) (-3044 (((-1177) $ (-1177)) 179) (((-1177) $ (-1177) (-1177)) 177) (((-1177) $ (-1177) (-656 (-1177))) 176)) (-1334 (($) 67)) (-4384 (((-1291) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1291) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1291) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1291) $ (-390) (-390)) 145) (((-1291) $ (-390) (-390) (-390)) 152)) (-1361 (((-390)) 122) (((-390) (-390)) 123)) (-1380 (((-390)) 117) (((-390) (-390)) 119)) (-1371 (((-390)) 120) (((-390) (-390)) 121)) (-1343 (((-390)) 126) (((-390) (-390)) 127)) (-1352 (((-390)) 124) (((-390) (-390)) 125)) (-3534 (((-1291) $ (-390) (-390)) 171)) (-2489 (((-1291) $ (-1177)) 153)) (-4437 (((-1151 (-227)) $) 68) (($ $ (-1151 (-227))) 69)) (-4261 (((-1291) $ (-1177)) 187)) (-4250 (((-1291) $ (-1177)) 188)) (-4312 (((-1291) $ (-390) (-390)) 151) (((-1291) $ (-576) (-576)) 168)) (-4406 (((-1291) $ (-937) (-937)) 160)) (-3018 (((-1291) $) 137)) (-4291 (((-1291) $ (-1177)) 186)) (-4334 (((-1291) $ (-1177)) 134)) (-1618 (((-656 (-270)) $) 70) (($ $ (-656 (-270))) 71)) (-4417 (((-1291) $ (-783) (-783)) 159)) (-4428 (((-1291) $ (-783) (-959 (-227))) 193)) (-1324 (($ $) 73) (($ (-1151 (-227)) (-1177)) 74) (($ (-1151 (-227)) (-656 (-270))) 75)) (-4230 (((-1291) $ (-390) (-390) (-390)) 131)) (-3733 (((-1177) $) NIL)) (-4169 (((-576) $) 128)) (-2344 (((-1291) $ (-390)) 174)) (-4272 (((-1291) $ (-390)) 191)) (-3914 (((-1138) $) NIL)) (-4281 (((-1291) $ (-390)) 190)) (-4323 (((-1291) $ (-1177)) 136)) (-4395 (((-1291) $ (-783) (-783) (-937) (-937)) 158)) (-4347 (((-1291) $ (-1177)) 133)) (-4372 (((-1291) $ (-1177)) 135)) (-2334 (((-1291) $ (-158) (-158)) 157)) (-2884 (((-874) $) 166)) (-2459 (((-1291) $) 138)) (-4239 (((-1291) $ (-1177)) 189)) (-3722 (((-112) $ $) NIL)) (-4360 (((-1291) $ (-1177)) 132)) (-3915 (((-112) $ $) NIL))) -(((-1288) (-13 (-1118) (-10 -8 (-15 -1380 ((-390))) (-15 -1380 ((-390) (-390))) (-15 -1371 ((-390))) (-15 -1371 ((-390) (-390))) (-15 -1361 ((-390))) (-15 -1361 ((-390) (-390))) (-15 -1352 ((-390))) (-15 -1352 ((-390) (-390))) (-15 -1343 ((-390))) (-15 -1343 ((-390) (-390))) (-15 -1334 ($)) (-15 -1324 ($ $)) (-15 -1324 ($ (-1151 (-227)) (-1177))) (-15 -1324 ($ (-1151 (-227)) (-656 (-270)))) (-15 -4437 ((-1151 (-227)) $)) (-15 -4437 ($ $ (-1151 (-227)))) (-15 -4428 ((-1291) $ (-783) (-959 (-227)))) (-15 -1618 ((-656 (-270)) $)) (-15 -1618 ($ $ (-656 (-270)))) (-15 -4417 ((-1291) $ (-783) (-783))) (-15 -4406 ((-1291) $ (-937) (-937))) (-15 -2489 ((-1291) $ (-1177))) (-15 -4395 ((-1291) $ (-783) (-783) (-937) (-937))) (-15 -4384 ((-1291) $ (-390) (-390) (-390) (-390) (-390))) (-15 -4384 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -4384 ((-1291) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -4384 ((-1291) $ (-576) (-576) (-390) (-390) (-390))) (-15 -4384 ((-1291) $ (-390) (-390))) (-15 -4384 ((-1291) $ (-390) (-390) (-390))) (-15 -4372 ((-1291) $ (-1177))) (-15 -4360 ((-1291) $ (-1177))) (-15 -4347 ((-1291) $ (-1177))) (-15 -4334 ((-1291) $ (-1177))) (-15 -4323 ((-1291) $ (-1177))) (-15 -4312 ((-1291) $ (-390) (-390))) (-15 -4312 ((-1291) $ (-576) (-576))) (-15 -4302 ((-1291) $ (-390))) (-15 -4302 ((-1291) $ (-390) (-390) (-390))) (-15 -3534 ((-1291) $ (-390) (-390))) (-15 -4291 ((-1291) $ (-1177))) (-15 -4281 ((-1291) $ (-390))) (-15 -4272 ((-1291) $ (-390))) (-15 -4261 ((-1291) $ (-1177))) (-15 -4250 ((-1291) $ (-1177))) (-15 -4239 ((-1291) $ (-1177))) (-15 -4230 ((-1291) $ (-390) (-390) (-390))) (-15 -2344 ((-1291) $ (-390))) (-15 -3018 ((-1291) $)) (-15 -2334 ((-1291) $ (-158) (-158))) (-15 -3044 ((-1177) $ (-1177))) (-15 -3044 ((-1177) $ (-1177) (-1177))) (-15 -3044 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -2459 ((-1291) $)) (-15 -4169 ((-576) $))))) (T -1288)) -((-1380 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1380 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1371 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1371 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1361 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1361 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1352 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1343 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1343 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1334 (*1 *1) (-5 *1 (-1288))) (-1324 (*1 *1 *1) (-5 *1 (-1288))) (-1324 (*1 *1 *2 *3) (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-1177)) (-5 *1 (-1288)))) (-1324 (*1 *1 *2 *3) (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1288)))) (-4437 (*1 *2 *1) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1288)))) (-4437 (*1 *1 *1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1288)))) (-4428 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-959 (-227))) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-1618 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-4417 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4406 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2489 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4395 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4384 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1288)))) (-4384 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4384 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4384 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4384 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4372 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4360 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4347 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4334 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4312 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4312 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4302 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3534 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4281 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4272 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4261 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4250 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4239 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4230 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2344 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2334 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3044 (*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288)))) (-3044 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288)))) (-3044 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1288)))) (-2459 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288))))) -(-13 (-1118) (-10 -8 (-15 -1380 ((-390))) (-15 -1380 ((-390) (-390))) (-15 -1371 ((-390))) (-15 -1371 ((-390) (-390))) (-15 -1361 ((-390))) (-15 -1361 ((-390) (-390))) (-15 -1352 ((-390))) (-15 -1352 ((-390) (-390))) (-15 -1343 ((-390))) (-15 -1343 ((-390) (-390))) (-15 -1334 ($)) (-15 -1324 ($ $)) (-15 -1324 ($ (-1151 (-227)) (-1177))) (-15 -1324 ($ (-1151 (-227)) (-656 (-270)))) (-15 -4437 ((-1151 (-227)) $)) (-15 -4437 ($ $ (-1151 (-227)))) (-15 -4428 ((-1291) $ (-783) (-959 (-227)))) (-15 -1618 ((-656 (-270)) $)) (-15 -1618 ($ $ (-656 (-270)))) (-15 -4417 ((-1291) $ (-783) (-783))) (-15 -4406 ((-1291) $ (-937) (-937))) (-15 -2489 ((-1291) $ (-1177))) (-15 -4395 ((-1291) $ (-783) (-783) (-937) (-937))) (-15 -4384 ((-1291) $ (-390) (-390) (-390) (-390) (-390))) (-15 -4384 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -4384 ((-1291) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -4384 ((-1291) $ (-576) (-576) (-390) (-390) (-390))) (-15 -4384 ((-1291) $ (-390) (-390))) (-15 -4384 ((-1291) $ (-390) (-390) (-390))) (-15 -4372 ((-1291) $ (-1177))) (-15 -4360 ((-1291) $ (-1177))) (-15 -4347 ((-1291) $ (-1177))) (-15 -4334 ((-1291) $ (-1177))) (-15 -4323 ((-1291) $ (-1177))) (-15 -4312 ((-1291) $ (-390) (-390))) (-15 -4312 ((-1291) $ (-576) (-576))) (-15 -4302 ((-1291) $ (-390))) (-15 -4302 ((-1291) $ (-390) (-390) (-390))) (-15 -3534 ((-1291) $ (-390) (-390))) (-15 -4291 ((-1291) $ (-1177))) (-15 -4281 ((-1291) $ (-390))) (-15 -4272 ((-1291) $ (-390))) (-15 -4261 ((-1291) $ (-1177))) (-15 -4250 ((-1291) $ (-1177))) (-15 -4239 ((-1291) $ (-1177))) (-15 -4230 ((-1291) $ (-390) (-390) (-390))) (-15 -2344 ((-1291) $ (-390))) (-15 -3018 ((-1291) $)) (-15 -2334 ((-1291) $ (-158) (-158))) (-15 -3044 ((-1177) $ (-1177))) (-15 -3044 ((-1177) $ (-1177) (-1177))) (-15 -3044 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -2459 ((-1291) $)) (-15 -4169 ((-576) $)))) -((-1480 (((-656 (-1177)) (-656 (-1177))) 104) (((-656 (-1177))) 96)) (-1490 (((-656 (-1177))) 94)) (-1453 (((-656 (-937)) (-656 (-937))) 69) (((-656 (-937))) 64)) (-1442 (((-656 (-783)) (-656 (-783))) 61) (((-656 (-783))) 55)) (-1465 (((-1291)) 71)) (-1510 (((-937) (-937)) 87) (((-937)) 86)) (-1499 (((-937) (-937)) 85) (((-937)) 84)) (-1422 (((-886) (-886)) 81) (((-886)) 80)) (-1530 (((-227)) 91) (((-227) (-390)) 93)) (-1520 (((-937)) 88) (((-937) (-937)) 89)) (-1432 (((-937) (-937)) 83) (((-937)) 82)) (-1390 (((-886) (-886)) 75) (((-886)) 73)) (-1402 (((-886) (-886)) 77) (((-886)) 76)) (-1412 (((-886) (-886)) 79) (((-886)) 78))) -(((-1289) (-10 -7 (-15 -1390 ((-886))) (-15 -1390 ((-886) (-886))) (-15 -1402 ((-886))) (-15 -1402 ((-886) (-886))) (-15 -1412 ((-886))) (-15 -1412 ((-886) (-886))) (-15 -1422 ((-886))) (-15 -1422 ((-886) (-886))) (-15 -1432 ((-937))) (-15 -1432 ((-937) (-937))) (-15 -1442 ((-656 (-783)))) (-15 -1442 ((-656 (-783)) (-656 (-783)))) (-15 -1453 ((-656 (-937)))) (-15 -1453 ((-656 (-937)) (-656 (-937)))) (-15 -1465 ((-1291))) (-15 -1480 ((-656 (-1177)))) (-15 -1480 ((-656 (-1177)) (-656 (-1177)))) (-15 -1490 ((-656 (-1177)))) (-15 -1499 ((-937))) (-15 -1510 ((-937))) (-15 -1499 ((-937) (-937))) (-15 -1510 ((-937) (-937))) (-15 -1520 ((-937) (-937))) (-15 -1520 ((-937))) (-15 -1530 ((-227) (-390))) (-15 -1530 ((-227))))) (T -1289)) -((-1530 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1289)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1289)))) (-1520 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-1520 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-1510 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-1510 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-1499 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-1490 (*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))) (-1480 (*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))) (-1480 (*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))) (-1465 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1289)))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1289)))) (-1453 (*1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1289)))) (-1442 (*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289)))) (-1442 (*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289)))) (-1432 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-1432 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-1422 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-1422 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-1412 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-1412 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-1402 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-1390 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-1390 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))) -(-10 -7 (-15 -1390 ((-886))) (-15 -1390 ((-886) (-886))) (-15 -1402 ((-886))) (-15 -1402 ((-886) (-886))) (-15 -1412 ((-886))) (-15 -1412 ((-886) (-886))) (-15 -1422 ((-886))) (-15 -1422 ((-886) (-886))) (-15 -1432 ((-937))) (-15 -1432 ((-937) (-937))) (-15 -1442 ((-656 (-783)))) (-15 -1442 ((-656 (-783)) (-656 (-783)))) (-15 -1453 ((-656 (-937)))) (-15 -1453 ((-656 (-937)) (-656 (-937)))) (-15 -1465 ((-1291))) (-15 -1480 ((-656 (-1177)))) (-15 -1480 ((-656 (-1177)) (-656 (-1177)))) (-15 -1490 ((-656 (-1177)))) (-15 -1499 ((-937))) (-15 -1510 ((-937))) (-15 -1499 ((-937) (-937))) (-15 -1510 ((-937) (-937))) (-15 -1520 ((-937) (-937))) (-15 -1520 ((-937))) (-15 -1530 ((-227) (-390))) (-15 -1530 ((-227)))) -((-2187 (((-480) (-656 (-656 (-959 (-227)))) (-656 (-270))) 22) (((-480) (-656 (-656 (-959 (-227))))) 21) (((-480) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270))) 20)) (-2197 (((-1287) (-656 (-656 (-959 (-227)))) (-656 (-270))) 30) (((-1287) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270))) 29)) (-2884 (((-1287) (-480)) 46))) -(((-1290) (-10 -7 (-15 -2187 ((-480) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270)))) (-15 -2187 ((-480) (-656 (-656 (-959 (-227)))))) (-15 -2187 ((-480) (-656 (-656 (-959 (-227)))) (-656 (-270)))) (-15 -2197 ((-1287) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270)))) (-15 -2197 ((-1287) (-656 (-656 (-959 (-227)))) (-656 (-270)))) (-15 -2884 ((-1287) (-480))))) (T -1290)) -((-2884 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1287)) (-5 *1 (-1290)))) (-2197 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-1290)))) (-2197 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-886)) (-5 *5 (-937)) (-5 *6 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-1290)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1290)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *2 (-480)) (-5 *1 (-1290)))) (-2187 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-886)) (-5 *5 (-937)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1290))))) -(-10 -7 (-15 -2187 ((-480) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270)))) (-15 -2187 ((-480) (-656 (-656 (-959 (-227)))))) (-15 -2187 ((-480) (-656 (-656 (-959 (-227)))) (-656 (-270)))) (-15 -2197 ((-1287) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270)))) (-15 -2197 ((-1287) (-656 (-656 (-959 (-227)))) (-656 (-270)))) (-15 -2884 ((-1287) (-480)))) -((-2008 (($) 6)) (-2884 (((-874) $) 9))) -(((-1291) (-13 (-625 (-874)) (-10 -8 (-15 -2008 ($))))) (T -1291)) -((-2008 (*1 *1) (-5 *1 (-1291)))) -(-13 (-625 (-874)) (-10 -8 (-15 -2008 ($)))) -((-4039 (($ $ |#2|) 10))) -(((-1292 |#1| |#2|) (-10 -8 (-15 -4039 (|#1| |#1| |#2|))) (-1293 |#2|) (-374)) (T -1292)) -NIL -(-10 -8 (-15 -4039 (|#1| |#1| |#2|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-1543 (((-135)) 33)) (-2884 (((-874) $) 12)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3915 (((-112) $ $) 6)) (-4039 (($ $ |#1|) 34)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1293 |#1|) (-141) (-374)) (T -1293)) -((-4039 (*1 *1 *1 *2) (-12 (-4 *1 (-1293 *2)) (-4 *2 (-374)))) (-1543 (*1 *2) (-12 (-4 *1 (-1293 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(-13 (-729 |t#1|) (-10 -8 (-15 -4039 ($ $ |t#1|)) (-15 -1543 ((-135))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T)) -((-1603 (((-656 (-1230 |#1|)) (-1195) (-1230 |#1|)) 83)) (-1582 (((-1175 (-1175 (-968 |#1|))) (-1195) (-1175 (-968 |#1|))) 63)) (-1617 (((-1 (-1175 (-1230 |#1|)) (-1175 (-1230 |#1|))) (-783) (-1230 |#1|) (-1175 (-1230 |#1|))) 74)) (-1553 (((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783)) 65)) (-1592 (((-1 (-1191 (-968 |#1|)) (-968 |#1|)) (-1195)) 32)) (-1568 (((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783)) 64))) -(((-1294 |#1|) (-10 -7 (-15 -1553 ((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783))) (-15 -1568 ((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783))) (-15 -1582 ((-1175 (-1175 (-968 |#1|))) (-1195) (-1175 (-968 |#1|)))) (-15 -1592 ((-1 (-1191 (-968 |#1|)) (-968 |#1|)) (-1195))) (-15 -1603 ((-656 (-1230 |#1|)) (-1195) (-1230 |#1|))) (-15 -1617 ((-1 (-1175 (-1230 |#1|)) (-1175 (-1230 |#1|))) (-783) (-1230 |#1|) (-1175 (-1230 |#1|))))) (-374)) (T -1294)) -((-1617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1230 *6)) (-5 *2 (-1 (-1175 *4) (-1175 *4))) (-5 *1 (-1294 *6)) (-5 *5 (-1175 *4)))) (-1603 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-656 (-1230 *5))) (-5 *1 (-1294 *5)) (-5 *4 (-1230 *5)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1 (-1191 (-968 *4)) (-968 *4))) (-5 *1 (-1294 *4)) (-4 *4 (-374)))) (-1582 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-1175 (-1175 (-968 *5)))) (-5 *1 (-1294 *5)) (-5 *4 (-1175 (-968 *5))))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1175 (-968 *4)) (-1175 (-968 *4)))) (-5 *1 (-1294 *4)) (-4 *4 (-374)))) (-1553 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1175 (-968 *4)) (-1175 (-968 *4)))) (-5 *1 (-1294 *4)) (-4 *4 (-374))))) -(-10 -7 (-15 -1553 ((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783))) (-15 -1568 ((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783))) (-15 -1582 ((-1175 (-1175 (-968 |#1|))) (-1195) (-1175 (-968 |#1|)))) (-15 -1592 ((-1 (-1191 (-968 |#1|)) (-968 |#1|)) (-1195))) (-15 -1603 ((-656 (-1230 |#1|)) (-1195) (-1230 |#1|))) (-15 -1617 ((-1 (-1175 (-1230 |#1|)) (-1175 (-1230 |#1|))) (-783) (-1230 |#1|) (-1175 (-1230 |#1|))))) -((-1637 (((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 80)) (-1627 (((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 79))) -(((-1295 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1627 ((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1637 ((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) (-360) (-1262 |#1|) (-1262 |#2|) (-421 |#2| |#3|)) (T -1295)) -((-1637 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) (-5 *2 (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1295 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-1627 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -1898 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1295 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) -(-10 -7 (-15 -1627 ((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1637 ((-2 (|:| -1898 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) -((-2862 (((-112) $ $) NIL)) (-1649 (((-1153) $) 11)) (-1659 (((-1153) $) 9)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1296) (-13 (-1101) (-10 -8 (-15 -1659 ((-1153) $)) (-15 -1649 ((-1153) $))))) (T -1296)) -((-1659 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1296)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1296))))) -(-13 (-1101) (-10 -8 (-15 -1659 ((-1153) $)) (-15 -1649 ((-1153) $)))) -((-2862 (((-112) $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3690 (((-1153) $) 9)) (-2884 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) NIL))) -(((-1297) (-13 (-1101) (-10 -8 (-15 -3690 ((-1153) $))))) (T -1297)) -((-3690 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1297))))) -(-13 (-1101) (-10 -8 (-15 -3690 ((-1153) $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 58)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) NIL)) (-1439 (((-112) $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-1871 (((-783)) NIL T CONST)) (-1669 (((-1291) (-783)) 16)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 37 T CONST)) (-2011 (($) 84 T CONST)) (-3915 (((-112) $ $) 87)) (-4039 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4029 (($ $) 89) (($ $ $) NIL)) (-4017 (($ $ $) 63)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-1298 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1067) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4039 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1669 ((-1291) (-783))))) (-1067) (-862) (-805) (-965 |#1| |#3| |#2|) (-656 |#2|) (-656 (-783)) (-783)) (T -1298)) -((-4039 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1067)) (-4 *3 (-862)) (-4 *4 (-805)) (-14 *6 (-656 *3)) (-5 *1 (-1298 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-965 *2 *4 *3)) (-14 *7 (-656 (-783))) (-14 *8 (-783)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1067)) (-4 *5 (-862)) (-4 *6 (-805)) (-14 *8 (-656 *5)) (-5 *2 (-1291)) (-5 *1 (-1298 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-965 *4 *6 *5)) (-14 *9 (-656 *3)) (-14 *10 *3)))) -(-13 (-1067) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4039 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1669 ((-1291) (-783))))) -((-2862 (((-112) $ $) NIL)) (-3289 (((-656 (-2 (|:| -2459 $) (|:| -2980 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3299 (((-656 $) (-656 |#4|)) 96)) (-1607 (((-656 |#3|) $) NIL)) (-1470 (((-112) $) NIL)) (-1374 (((-112) $) NIL (|has| |#1| (-568)))) (-3405 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3358 ((|#4| |#4| $) NIL)) (-2032 (((-2 (|:| |under| $) (|:| -1916 $) (|:| |upper| $)) $ |#3|) NIL)) (-2970 (((-112) $ (-783)) NIL)) (-3985 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2473 (($) NIL T CONST)) (-1425 (((-112) $) NIL (|has| |#1| (-568)))) (-1445 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1435 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1457 (((-112) $) NIL (|has| |#1| (-568)))) (-3367 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-1384 (((-656 |#4|) (-656 |#4|) $) 28 (|has| |#1| (-568)))) (-1394 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2449 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4401 (($ (-656 |#4|)) NIL)) (-1976 (((-3 $ "failed") $) 78)) (-3328 ((|#4| |#4| $) 83)) (-1919 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3634 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1406 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3414 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3308 ((|#4| |#4| $) NIL)) (-2309 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3435 (((-2 (|:| -2459 (-656 |#4|)) (|:| -2980 (-656 |#4|))) $) NIL)) (-4001 (((-656 |#4|) $) NIL (|has| $ (-6 -4461)))) (-3425 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1323 ((|#3| $) 84)) (-2408 (((-112) $ (-783)) NIL)) (-1496 (((-656 |#4|) $) 32 (|has| $ (-6 -4461)))) (-3743 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-1704 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-656 |#4|)) 38)) (-2848 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4462)))) (-2551 (($ (-1 |#4| |#4|) $) NIL)) (-1524 (((-656 |#3|) $) NIL)) (-1513 (((-112) |#3| $) NIL)) (-2374 (((-112) $ (-783)) NIL)) (-3733 (((-1177) $) NIL)) (-3654 (((-3 |#4| "failed") $) NIL)) (-3443 (((-656 |#4|) $) 54)) (-3387 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#4| |#4| $) 82)) (-3461 (((-112) $ $) 93)) (-1415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3396 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3348 ((|#4| |#4| $) NIL)) (-3914 (((-1138) $) NIL)) (-1962 (((-3 |#4| "failed") $) 77)) (-1932 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3266 (((-3 $ "failed") $ |#4|) NIL)) (-2904 (($ $ |#4|) NIL)) (-2476 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3049 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2983 (((-112) $ $) NIL)) (-2809 (((-112) $) 75)) (-1458 (($) 46)) (-3813 (((-783) $) NIL)) (-3926 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3079 (($ $) NIL)) (-2616 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2895 (($ (-656 |#4|)) NIL)) (-1483 (($ $ |#3|) NIL)) (-1504 (($ $ |#3|) NIL)) (-3318 (($ $) NIL)) (-1493 (($ $ |#3|) NIL)) (-2884 (((-874) $) NIL) (((-656 |#4|) $) 63)) (-3255 (((-783) $) NIL (|has| |#3| (-379)))) (-1692 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-656 |#4|)) 45)) (-1679 (((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-656 $) (-656 |#4|)) 74)) (-3722 (((-112) $ $) NIL)) (-3453 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3377 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2492 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3278 (((-656 |#3|) $) NIL)) (-3704 (((-112) |#3| $) NIL)) (-3915 (((-112) $ $) NIL)) (-2872 (((-783) $) NIL (|has| $ (-6 -4461))))) -(((-1299 |#1| |#2| |#3| |#4|) (-13 (-1229 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1704 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1704 ((-3 $ "failed") (-656 |#4|))) (-15 -1692 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1692 ((-3 $ "failed") (-656 |#4|))) (-15 -1679 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1679 ((-656 $) (-656 |#4|))))) (-568) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -1299)) -((-1704 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1299 *3 *4 *5 *6)))) (-1692 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8)))) (-1692 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1299 *3 *4 *5 *6)))) (-1679 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-656 (-1299 *6 *7 *8 *9))) (-5 *1 (-1299 *6 *7 *8 *9)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-1299 *4 *5 *6 *7))) (-5 *1 (-1299 *4 *5 *6 *7))))) -(-13 (-1229 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1704 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1704 ((-3 $ "failed") (-656 |#4|))) (-15 -1692 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1692 ((-3 $ "failed") (-656 |#4|))) (-15 -1679 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1679 ((-656 $) (-656 |#4|))))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-1459 (((-3 $ "failed") $ $) 20)) (-2473 (($) 18 T CONST)) (-1999 (((-3 $ "failed") $) 37)) (-1439 (((-112) $) 35)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1300 |#1|) (-141) (-1067)) (T -1300)) -NIL -(-13 (-1067) (-111 |t#1| |t#1|) (-628 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T)) -((-2862 (((-112) $ $) 67)) (-1389 (((-112) $) NIL)) (-3489 (((-656 |#1|) $) 52)) (-3803 (($ $ (-783)) 46)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3713 (($ $ (-783)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-2473 (($) NIL T CONST)) (-3745 (($ $ $) 70) (($ $ (-831 |#1|)) 56) (($ $ |#1|) 60)) (-2449 (((-3 (-831 |#1|) "failed") $) NIL)) (-4401 (((-831 |#1|) $) NIL)) (-4407 (($ $) 39)) (-1999 (((-3 $ "failed") $) NIL)) (-3835 (((-112) $) NIL)) (-3824 (($ $) NIL)) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-3694 (($ (-831 |#1|) |#2|) 38)) (-3725 (($ $) 40)) (-3770 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 12)) (-3858 (((-831 |#1|) $) NIL)) (-3869 (((-831 |#1|) $) 41)) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-3757 (($ $ $) 69) (($ $ (-831 |#1|)) 58) (($ $ |#1|) 62)) (-2107 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4371 (((-831 |#1|) $) 35)) (-4383 ((|#2| $) 37)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3813 (((-783) $) 43)) (-3847 (((-112) $) 47)) (-3739 ((|#2| $) NIL)) (-2884 (((-874) $) NIL) (($ (-831 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-1993 (((-656 |#2|) $) NIL)) (-3245 ((|#2| $ (-831 |#1|)) NIL)) (-1755 ((|#2| $ $) 76) ((|#2| $ (-831 |#1|)) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 13 T CONST)) (-2011 (($) 19 T CONST)) (-3993 (((-656 (-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3915 (((-112) $ $) 44)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 28)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-831 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1301 |#1| |#2|) (-13 (-393 |#2| (-831 |#1|)) (-1307 |#1| |#2|)) (-862) (-1067)) (T -1301)) -NIL -(-13 (-393 |#2| (-831 |#1|)) (-1307 |#1| |#2|)) -((-3464 ((|#3| |#3| (-783)) 28)) (-2666 ((|#3| |#3| (-783)) 34)) (-3639 ((|#3| |#3| |#3| (-783)) 35))) -(((-1302 |#1| |#2| |#3|) (-10 -7 (-15 -2666 (|#3| |#3| (-783))) (-15 -3464 (|#3| |#3| (-783))) (-15 -3639 (|#3| |#3| |#3| (-783)))) (-13 (-1067) (-729 (-419 (-576)))) (-862) (-1307 |#2| |#1|)) (T -1302)) -((-3639 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))) (-3464 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))) (-2666 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4))))) -(-10 -7 (-15 -2666 (|#3| |#3| (-783))) (-15 -3464 (|#3| |#3| (-783))) (-15 -3639 (|#3| |#3| |#3| (-783)))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-3489 (((-656 |#1|) $) 47)) (-1459 (((-3 $ "failed") $ $) 20)) (-3713 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-2473 (($) 18 T CONST)) (-3745 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-2449 (((-3 (-831 |#1|) "failed") $) 71)) (-4401 (((-831 |#1|) $) 72)) (-1999 (((-3 $ "failed") $) 37)) (-3835 (((-112) $) 52)) (-3824 (($ $) 51)) (-1439 (((-112) $) 35)) (-3734 (((-112) $) 57)) (-3694 (($ (-831 |#1|) |#2|) 58)) (-3725 (($ $) 56)) (-3770 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-3858 (((-831 |#1|) $) 68)) (-2551 (($ (-1 |#2| |#2|) $) 48)) (-3757 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3847 (((-112) $) 54)) (-3739 ((|#2| $) 53)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1755 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1303 |#1| |#2|) (-141) (-862) (-1067)) (T -1303)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-3858 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-831 *3)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))) (-1755 (*1 *2 *1 *3) (-12 (-5 *3 (-831 *4)) (-4 *1 (-1303 *4 *2)) (-4 *4 (-862)) (-4 *2 (-1067)))) (-1755 (*1 *2 *1 *1) (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067)))) (-3757 (*1 *1 *1 *2) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)))) (-3757 (*1 *1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-3745 (*1 *1 *1 *2) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-3745 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)))) (-3745 (*1 *1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-3694 (*1 *1 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-862)) (-4 *1 (-1303 *4 *3)) (-4 *3 (-1067)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-3725 (*1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-2884 (*1 *1 *2) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-3739 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-3824 (*1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-3713 (*1 *1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)) (-4 *3 (-174)))) (-3713 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-4 *4 (-174)))) (-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-656 *3))))) -(-13 (-1067) (-1300 |t#2|) (-1056 (-831 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3858 ((-831 |t#1|) $)) (-15 -3770 ((-2 (|:| |k| (-831 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1755 (|t#2| $ (-831 |t#1|))) (-15 -1755 (|t#2| $ $)) (-15 -3757 ($ $ |t#1|)) (-15 -3757 ($ $ (-831 |t#1|))) (-15 -3757 ($ $ $)) (-15 -3745 ($ $ |t#1|)) (-15 -3745 ($ $ (-831 |t#1|))) (-15 -3745 ($ $ $)) (-15 -3694 ($ (-831 |t#1|) |t#2|)) (-15 -3734 ((-112) $)) (-15 -3725 ($ $)) (-15 -2884 ($ |t#1|)) (-15 -3847 ((-112) $)) (-15 -3739 (|t#2| $)) (-15 -3835 ((-112) $)) (-15 -3824 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -3713 ($ $ $)) (-15 -3713 ($ $ (-783)))) |%noBranch|) (-15 -2551 ($ (-1 |t#2| |t#2|) $)) (-15 -3489 ((-656 |t#1|) $)) (IF (|has| |t#2| (-6 -4454)) (-6 -4454) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1056 #0#) . T) ((-1069 |#2|) . T) ((-1074 |#2|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1300 |#2|) . T)) -((-3695 (((-112) $) 15)) (-3704 (((-112) $) 14)) (-3649 (($ $) 19) (($ $ (-783)) 21))) -(((-1304 |#1| |#2|) (-10 -8 (-15 -3649 (|#1| |#1| (-783))) (-15 -3649 (|#1| |#1|)) (-15 -3695 ((-112) |#1|)) (-15 -3704 ((-112) |#1|))) (-1305 |#2|) (-374)) (T -1304)) -NIL -(-10 -8 (-15 -3649 (|#1| |#1| (-783))) (-15 -3649 (|#1| |#1|)) (-15 -3695 ((-112) |#1|)) (-15 -3704 ((-112) |#1|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-4253 (((-2 (|:| -4246 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4241 (($ $) 46)) (-4221 (((-112) $) 44)) (-3695 (((-112) $) 104)) (-3661 (((-783)) 100)) (-1459 (((-3 $ "failed") $ $) 20)) (-2944 (($ $) 81)) (-3986 (((-430 $) $) 80)) (-2922 (((-112) $ $) 65)) (-2473 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 111)) (-4401 ((|#1| $) 112)) (-2803 (($ $ $) 61)) (-1999 (((-3 $ "failed") $) 37)) (-2814 (($ $ $) 62)) (-2304 (((-2 (|:| -1755 (-656 $)) (|:| -3660 $)) (-656 $)) 57)) (-4188 (($ $ (-783)) 97 (-3766 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2463 (((-112) $) 79)) (-2927 (((-845 (-937)) $) 94 (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1439 (((-112) $) 35)) (-2892 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3888 (($ $ $) 52) (($ (-656 $)) 51)) (-3733 (((-1177) $) 10)) (-4333 (($ $) 78)) (-3683 (((-112) $) 103)) (-3914 (((-1138) $) 11)) (-3214 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3928 (($ $ $) 54) (($ (-656 $)) 53)) (-2354 (((-430 $) $) 82)) (-3673 (((-845 (-937))) 101)) (-2900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3660 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2852 (((-3 $ "failed") $ $) 48)) (-2291 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2910 (((-783) $) 64)) (-4350 (((-2 (|:| -2770 $) (|:| -1406 $)) $ $) 63)) (-4197 (((-3 (-783) "failed") $ $) 95 (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1543 (((-135)) 109)) (-3813 (((-845 (-937)) $) 102)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3148 (((-3 $ "failed") $) 93 (-3766 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-4232 (((-112) $ $) 45)) (-3704 (((-112) $) 105)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3649 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-3915 (((-112) $ $) 6)) (-4039 (($ $ $) 73) (($ $ |#1|) 108)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1305 |#1|) (-141) (-374)) (T -1305)) -((-3704 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-937))))) (-3673 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-937))))) (-3661 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-783)))) (-3649 (*1 *1 *1) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-3649 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-4 *3 (-379))))) -(-13 (-374) (-1056 |t#1|) (-1293 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -3704 ((-112) $)) (-15 -3695 ((-112) $)) (-15 -3683 ((-112) $)) (-15 -3813 ((-845 (-937)) $)) (-15 -3673 ((-845 (-937)))) (-15 -3661 ((-783))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -3649 ($ $)) (-15 -3649 ($ $ (-783)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3766 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -3766 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1056 |#1|) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 |#1|) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T) ((-1293 |#1|) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-3489 (((-656 |#1|) $) 98)) (-3803 (($ $ (-783)) 102)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3713 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-783)) NIL (|has| |#2| (-174)))) (-2473 (($) NIL T CONST)) (-3745 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-2449 (((-3 (-831 |#1|) "failed") $) NIL) (((-3 (-906 |#1|) "failed") $) NIL)) (-4401 (((-831 |#1|) $) NIL) (((-906 |#1|) $) NIL)) (-4407 (($ $) 101)) (-1999 (((-3 $ "failed") $) NIL)) (-3835 (((-112) $) 90)) (-3824 (($ $) 93)) (-3782 (($ $ $ (-783)) 103)) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-3694 (($ (-831 |#1|) |#2|) NIL) (($ (-906 |#1|) |#2|) 29)) (-3725 (($ $) 119)) (-3770 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3858 (((-831 |#1|) $) NIL)) (-3869 (((-831 |#1|) $) NIL)) (-2551 (($ (-1 |#2| |#2|) $) NIL)) (-3757 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-3464 (($ $ (-783)) 112 (|has| |#2| (-729 (-419 (-576)))))) (-2107 (((-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4371 (((-906 |#1|) $) 83)) (-4383 ((|#2| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2666 (($ $ (-783)) 109 (|has| |#2| (-729 (-419 (-576)))))) (-3813 (((-783) $) 99)) (-3847 (((-112) $) 84)) (-3739 ((|#2| $) 88)) (-2884 (((-874) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-831 |#1|)) NIL) (($ |#1|) 71) (($ (-906 |#1|)) NIL) (($ (-676 |#1| |#2|)) 48) (((-1301 |#1| |#2|) $) 76) (((-1310 |#1| |#2|) $) 81)) (-1993 (((-656 |#2|) $) NIL)) (-3245 ((|#2| $ (-906 |#1|)) NIL)) (-1755 ((|#2| $ (-831 |#1|)) NIL) ((|#2| $ $) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 21 T CONST)) (-2011 (($) 28 T CONST)) (-3993 (((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3793 (((-3 (-676 |#1| |#2|) "failed") $) 118)) (-3915 (((-112) $ $) 77)) (-4029 (($ $) 111) (($ $ $) 110)) (-4017 (($ $ $) 20)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-906 |#1|)) NIL))) -(((-1306 |#1| |#2|) (-13 (-1307 |#1| |#2|) (-393 |#2| (-906 |#1|)) (-10 -8 (-15 -2884 ($ (-676 |#1| |#2|))) (-15 -2884 ((-1301 |#1| |#2|) $)) (-15 -2884 ((-1310 |#1| |#2|) $)) (-15 -3793 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -3782 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -2666 ($ $ (-783))) (-15 -3464 ($ $ (-783)))) |%noBranch|))) (-862) (-174)) (T -1306)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-1306 *3 *4)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1310 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3793 (*1 *2 *1) (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3782 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2666 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))) (-3464 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) -(-13 (-1307 |#1| |#2|) (-393 |#2| (-906 |#1|)) (-10 -8 (-15 -2884 ($ (-676 |#1| |#2|))) (-15 -2884 ((-1301 |#1| |#2|) $)) (-15 -2884 ((-1310 |#1| |#2|) $)) (-15 -3793 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -3782 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -2666 ($ $ (-783))) (-15 -3464 ($ $ (-783)))) |%noBranch|))) -((-2862 (((-112) $ $) 7)) (-1389 (((-112) $) 17)) (-3489 (((-656 |#1|) $) 47)) (-3803 (($ $ (-783)) 80)) (-1459 (((-3 $ "failed") $ $) 20)) (-3713 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-2473 (($) 18 T CONST)) (-3745 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-2449 (((-3 (-831 |#1|) "failed") $) 71)) (-4401 (((-831 |#1|) $) 72)) (-1999 (((-3 $ "failed") $) 37)) (-3835 (((-112) $) 52)) (-3824 (($ $) 51)) (-1439 (((-112) $) 35)) (-3734 (((-112) $) 57)) (-3694 (($ (-831 |#1|) |#2|) 58)) (-3725 (($ $) 56)) (-3770 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-3858 (((-831 |#1|) $) 68)) (-3869 (((-831 |#1|) $) 82)) (-2551 (($ (-1 |#2| |#2|) $) 48)) (-3757 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-3733 (((-1177) $) 10)) (-3914 (((-1138) $) 11)) (-3813 (((-783) $) 81)) (-3847 (((-112) $) 54)) (-3739 ((|#2| $) 53)) (-2884 (((-874) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1755 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-1871 (((-783)) 32 T CONST)) (-3722 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3915 (((-112) $ $) 6)) (-4029 (($ $) 23) (($ $ $) 22)) (-4017 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1307 |#1| |#2|) (-141) (-862) (-1067)) (T -1307)) -((-3869 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-831 *3)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-783)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))))) -(-13 (-1303 |t#1| |t#2|) (-10 -8 (-15 -3869 ((-831 |t#1|) $)) (-15 -3813 ((-783) $)) (-15 -3803 ($ $ (-783))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1056 #0#) . T) ((-1069 |#2|) . T) ((-1074 |#2|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1300 |#2|) . T) ((-1303 |#1| |#2|) . T)) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-3489 (((-656 (-1195)) $) NIL)) (-3893 (($ (-1301 (-1195) |#1|)) NIL)) (-3803 (($ $ (-783)) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3713 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-783)) NIL (|has| |#1| (-174)))) (-2473 (($) NIL T CONST)) (-3745 (($ $ (-1195)) NIL) (($ $ (-831 (-1195))) NIL) (($ $ $) NIL)) (-2449 (((-3 (-831 (-1195)) "failed") $) NIL)) (-4401 (((-831 (-1195)) $) NIL)) (-1999 (((-3 $ "failed") $) NIL)) (-3835 (((-112) $) NIL)) (-3824 (($ $) NIL)) (-1439 (((-112) $) NIL)) (-3734 (((-112) $) NIL)) (-3694 (($ (-831 (-1195)) |#1|) NIL)) (-3725 (($ $) NIL)) (-3770 (((-2 (|:| |k| (-831 (-1195))) (|:| |c| |#1|)) $) NIL)) (-3858 (((-831 (-1195)) $) NIL)) (-3869 (((-831 (-1195)) $) NIL)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-3757 (($ $ (-1195)) NIL) (($ $ (-831 (-1195))) NIL) (($ $ $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3945 (((-1301 (-1195) |#1|) $) NIL)) (-3813 (((-783) $) NIL)) (-3847 (((-112) $) NIL)) (-3739 ((|#1| $) NIL)) (-2884 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1195))) NIL) (($ (-1195)) NIL)) (-1755 ((|#1| $ (-831 (-1195))) NIL) ((|#1| $ $) NIL)) (-1871 (((-783)) NIL T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-3881 (((-656 (-2 (|:| |k| (-1195)) (|:| |c| $))) $) NIL)) (-2011 (($) NIL T CONST)) (-3915 (((-112) $ $) NIL)) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1195) $) NIL))) -(((-1308 |#1|) (-13 (-1307 (-1195) |#1|) (-10 -8 (-15 -3945 ((-1301 (-1195) |#1|) $)) (-15 -3893 ($ (-1301 (-1195) |#1|))) (-15 -3881 ((-656 (-2 (|:| |k| (-1195)) (|:| |c| $))) $)))) (-1067)) (T -1308)) -((-3945 (*1 *2 *1) (-12 (-5 *2 (-1301 (-1195) *3)) (-5 *1 (-1308 *3)) (-4 *3 (-1067)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-1301 (-1195) *3)) (-4 *3 (-1067)) (-5 *1 (-1308 *3)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-1195)) (|:| |c| (-1308 *3))))) (-5 *1 (-1308 *3)) (-4 *3 (-1067))))) -(-13 (-1307 (-1195) |#1|) (-10 -8 (-15 -3945 ((-1301 (-1195) |#1|) $)) (-15 -3893 ($ (-1301 (-1195) |#1|))) (-15 -3881 ((-656 (-2 (|:| |k| (-1195)) (|:| |c| $))) $)))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) NIL)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2473 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL)) (-4401 ((|#2| $) NIL)) (-4407 (($ $) NIL)) (-1999 (((-3 $ "failed") $) 42)) (-3835 (((-112) $) 35)) (-3824 (($ $) 37)) (-1439 (((-112) $) NIL)) (-1518 (((-783) $) NIL)) (-1876 (((-656 $) $) NIL)) (-3734 (((-112) $) NIL)) (-3694 (($ |#2| |#1|) NIL)) (-3858 ((|#2| $) 24)) (-3869 ((|#2| $) 22)) (-2551 (($ (-1 |#1| |#1|) $) NIL)) (-2107 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4371 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3847 (((-112) $) 32)) (-3739 ((|#1| $) 33)) (-2884 (((-874) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-1993 (((-656 |#1|) $) NIL)) (-3245 ((|#1| $ |#2|) NIL)) (-1755 ((|#1| $ |#2|) 28)) (-1871 (((-783)) 14 T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 29 T CONST)) (-2011 (($) 11 T CONST)) (-3993 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3915 (((-112) $ $) 30)) (-4039 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-4029 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 50)) (** (($ $ (-937)) NIL) (($ $ (-783)) 52)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2872 (((-783) $) 16))) -(((-1309 |#1| |#2|) (-13 (-1067) (-1300 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2872 ((-783) $)) (-15 -3869 (|#2| $)) (-15 -3858 (|#2| $)) (-15 -4407 ($ $)) (-15 -1755 (|#1| $ |#2|)) (-15 -3847 ((-112) $)) (-15 -3739 (|#1| $)) (-15 -3835 ((-112) $)) (-15 -3824 ($ $)) (-15 -2551 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -4039 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) (-1067) (-858)) (T -1309)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858)))) (-4407 (*1 *1 *1) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858)))) (-2551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-858)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-858)))) (-3869 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1067)))) (-3858 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1067)))) (-1755 (*1 *2 *1 *3) (-12 (-4 *2 (-1067)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-858)))) (-3739 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-858)))) (-3824 (*1 *1 *1) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858)))) (-4039 (*1 *1 *1 *2) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1067)) (-4 *3 (-858))))) -(-13 (-1067) (-1300 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2872 ((-783) $)) (-15 -3869 (|#2| $)) (-15 -3858 (|#2| $)) (-15 -4407 ($ $)) (-15 -1755 (|#1| $ |#2|)) (-15 -3847 ((-112) $)) (-15 -3739 (|#1| $)) (-15 -3835 ((-112) $)) (-15 -3824 ($ $)) (-15 -2551 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -4039 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) -((-2862 (((-112) $ $) 27)) (-1389 (((-112) $) NIL)) (-3489 (((-656 |#1|) $) 132)) (-3893 (($ (-1301 |#1| |#2|)) 50)) (-3803 (($ $ (-783)) 38)) (-1459 (((-3 $ "failed") $ $) NIL)) (-3713 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-783)) 52 (|has| |#2| (-174)))) (-2473 (($) NIL T CONST)) (-3745 (($ $ |#1|) 114) (($ $ (-831 |#1|)) 115) (($ $ $) 26)) (-2449 (((-3 (-831 |#1|) "failed") $) NIL)) (-4401 (((-831 |#1|) $) NIL)) (-1999 (((-3 $ "failed") $) 122)) (-3835 (((-112) $) 117)) (-3824 (($ $) 118)) (-1439 (((-112) $) NIL)) (-3734 (((-112) $) NIL)) (-3694 (($ (-831 |#1|) |#2|) 20)) (-3725 (($ $) NIL)) (-3770 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3858 (((-831 |#1|) $) 123)) (-3869 (((-831 |#1|) $) 126)) (-2551 (($ (-1 |#2| |#2|) $) 131)) (-3757 (($ $ |#1|) 112) (($ $ (-831 |#1|)) 113) (($ $ $) 62)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-3945 (((-1301 |#1| |#2|) $) 94)) (-3813 (((-783) $) 129)) (-3847 (((-112) $) 81)) (-3739 ((|#2| $) 32)) (-2884 (((-874) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-831 |#1|)) 18) (($ |#1|) 84)) (-1755 ((|#2| $ (-831 |#1|)) 116) ((|#2| $ $) 28)) (-1871 (((-783)) 120 T CONST)) (-3722 (((-112) $ $) NIL)) (-1996 (($) 15 T CONST)) (-3881 (((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2011 (($) 33 T CONST)) (-3915 (((-112) $ $) 14)) (-4029 (($ $) 98) (($ $ $) 101)) (-4017 (($ $ $) 61)) (** (($ $ (-937)) NIL) (($ $ (-783)) 55)) (* (($ (-937) $) NIL) (($ (-783) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1310 |#1| |#2|) (-13 (-1307 |#1| |#2|) (-10 -8 (-15 -3945 ((-1301 |#1| |#2|) $)) (-15 -3893 ($ (-1301 |#1| |#2|))) (-15 -3881 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-862) (-1067)) (T -1310)) -((-3945 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *1 (-1310 *3 *4)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1310 *3 *4))))) (-5 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))))) -(-13 (-1307 |#1| |#2|) (-10 -8 (-15 -3945 ((-1301 |#1| |#2|) $)) (-15 -3893 ($ (-1301 |#1| |#2|))) (-15 -3881 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-2862 (((-112) $ $) NIL)) (-3918 (($ (-656 (-937))) 10)) (-3904 (((-989) $) 12)) (-3733 (((-1177) $) NIL)) (-3914 (((-1138) $) NIL)) (-2884 (((-874) $) 25) (($ (-989)) 14) (((-989) $) 13)) (-3722 (((-112) $ $) NIL)) (-3915 (((-112) $ $) 17))) -(((-1311) (-13 (-1118) (-502 (-989)) (-10 -8 (-15 -3918 ($ (-656 (-937)))) (-15 -3904 ((-989) $))))) (T -1311)) -((-3918 (*1 *1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1311)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-989)) (-5 *1 (-1311))))) -(-13 (-1118) (-502 (-989)) (-10 -8 (-15 -3918 ($ (-656 (-937)))) (-15 -3904 ((-989) $)))) -((-2260 (((-656 (-1175 |#1|)) (-1 (-656 (-1175 |#1|)) (-656 (-1175 |#1|))) (-576)) 16) (((-1175 |#1|) (-1 (-1175 |#1|) (-1175 |#1|))) 13))) -(((-1312 |#1|) (-10 -7 (-15 -2260 ((-1175 |#1|) (-1 (-1175 |#1|) (-1175 |#1|)))) (-15 -2260 ((-656 (-1175 |#1|)) (-1 (-656 (-1175 |#1|)) (-656 (-1175 |#1|))) (-576)))) (-1236)) (T -1312)) -((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 (-1175 *5)) (-656 (-1175 *5)))) (-5 *4 (-576)) (-5 *2 (-656 (-1175 *5))) (-5 *1 (-1312 *5)) (-4 *5 (-1236)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-1 (-1175 *4) (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1312 *4)) (-4 *4 (-1236))))) -(-10 -7 (-15 -2260 ((-1175 |#1|) (-1 (-1175 |#1|) (-1175 |#1|)))) (-15 -2260 ((-656 (-1175 |#1|)) (-1 (-656 (-1175 |#1|)) (-656 (-1175 |#1|))) (-576)))) -((-3946 (((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|))) 174) (((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112)) 173) (((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112)) 172) (((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112) (-112)) 171) (((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-1064 |#1| |#2|)) 156)) (-3932 (((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|))) 85) (((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112)) 84) (((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112) (-112)) 83)) (-3986 (((-656 (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1064 |#1| |#2|)) 73)) (-3960 (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|))) 140) (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112)) 139) (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112)) 138) (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112) (-112)) 137) (((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|)) 132)) (-3973 (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|))) 145) (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112)) 144) (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112)) 143) (((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|)) 142)) (-2616 (((-656 (-792 |#1| (-876 |#3|))) (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) 111) (((-1191 (-1042 (-419 |#1|))) (-1191 |#1|)) 102) (((-968 (-1042 (-419 |#1|))) (-792 |#1| (-876 |#3|))) 109) (((-968 (-1042 (-419 |#1|))) (-968 |#1|)) 107) (((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|))) 33))) -(((-1313 |#1| |#2| |#3|) (-10 -7 (-15 -3932 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112) (-112))) (-15 -3932 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112))) (-15 -3932 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)))) (-15 -3946 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-1064 |#1| |#2|))) (-15 -3946 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112) (-112))) (-15 -3946 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -3946 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112))) (-15 -3946 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -3960 ((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|))) (-15 -3960 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112) (-112))) (-15 -3960 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -3960 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112))) (-15 -3960 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)))) (-15 -3973 ((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|))) (-15 -3973 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -3973 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112))) (-15 -3973 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)))) (-15 -3986 ((-656 (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1064 |#1| |#2|))) (-15 -2616 ((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|)))) (-15 -2616 ((-968 (-1042 (-419 |#1|))) (-968 |#1|))) (-15 -2616 ((-968 (-1042 (-419 |#1|))) (-792 |#1| (-876 |#3|)))) (-15 -2616 ((-1191 (-1042 (-419 |#1|))) (-1191 |#1|))) (-15 -2616 ((-656 (-792 |#1| (-876 |#3|))) (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))))) (-13 (-860) (-317) (-148) (-1040)) (-656 (-1195)) (-656 (-1195))) (T -1313)) -((-2616 (*1 *2 *3) (-12 (-5 *3 (-1164 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6)))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-792 *4 (-876 *6)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-1191 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-876 *6))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *6 (-656 (-1195))) (-5 *2 (-968 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-968 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-968 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-876 *5))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195))) (-5 *2 (-792 *4 (-876 *6))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-1164 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3973 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3960 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3960 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-3946 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-2 (|:| -2087 (-1191 *4)) (|:| -3629 (-656 (-968 *4)))))) (-5 *1 (-1313 *4 *5 *6)) (-5 *3 (-656 (-968 *4))) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-3946 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-2 (|:| -2087 (-1191 *5)) (|:| -3629 (-656 (-968 *5)))))) (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5))) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3946 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-2 (|:| -2087 (-1191 *5)) (|:| -3629 (-656 (-968 *5)))))) (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5))) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3946 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-2 (|:| -2087 (-1191 *5)) (|:| -3629 (-656 (-968 *5)))))) (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5))) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-2 (|:| -2087 (-1191 *4)) (|:| -3629 (-656 (-968 *4)))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-1064 *4 *5))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3932 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))) -(-10 -7 (-15 -3932 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112) (-112))) (-15 -3932 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112))) (-15 -3932 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)))) (-15 -3946 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-1064 |#1| |#2|))) (-15 -3946 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112) (-112))) (-15 -3946 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -3946 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112))) (-15 -3946 ((-656 (-2 (|:| -2087 (-1191 |#1|)) (|:| -3629 (-656 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -3960 ((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|))) (-15 -3960 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112) (-112))) (-15 -3960 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -3960 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112))) (-15 -3960 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)))) (-15 -3973 ((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|))) (-15 -3973 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -3973 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112))) (-15 -3973 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)))) (-15 -3986 ((-656 (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1064 |#1| |#2|))) (-15 -2616 ((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|)))) (-15 -2616 ((-968 (-1042 (-419 |#1|))) (-968 |#1|))) (-15 -2616 ((-968 (-1042 (-419 |#1|))) (-792 |#1| (-876 |#3|)))) (-15 -2616 ((-1191 (-1042 (-419 |#1|))) (-1191 |#1|))) (-15 -2616 ((-656 (-792 |#1| (-876 |#3|))) (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))))) -((-4018 (((-3 (-1286 (-419 (-576))) "failed") (-1286 |#1|) |#1|) 21)) (-3996 (((-112) (-1286 |#1|)) 12)) (-4008 (((-3 (-1286 (-576)) "failed") (-1286 |#1|)) 16))) -(((-1314 |#1|) (-10 -7 (-15 -3996 ((-112) (-1286 |#1|))) (-15 -4008 ((-3 (-1286 (-576)) "failed") (-1286 |#1|))) (-15 -4018 ((-3 (-1286 (-419 (-576))) "failed") (-1286 |#1|) |#1|))) (-13 (-1067) (-651 (-576)))) (T -1314)) -((-4018 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576)))) (-5 *2 (-1286 (-419 (-576)))) (-5 *1 (-1314 *4)))) (-4008 (*1 *2 *3) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576)))) (-5 *2 (-1286 (-576))) (-5 *1 (-1314 *4)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1314 *4))))) -(-10 -7 (-15 -3996 ((-112) (-1286 |#1|))) (-15 -4008 ((-3 (-1286 (-576)) "failed") (-1286 |#1|))) (-15 -4018 ((-3 (-1286 (-419 (-576))) "failed") (-1286 |#1|) |#1|))) -((-2862 (((-112) $ $) NIL)) (-1389 (((-112) $) 11)) (-1459 (((-3 $ "failed") $ $) NIL)) (-2416 (((-783)) 8)) (-2473 (($) NIL T CONST)) (-1999 (((-3 $ "failed") $) 58)) (-2080 (($) 49)) (-1439 (((-112) $) 57)) (-1831 (((-3 $ "failed") $) 40)) (-1875 (((-937) $) 15)) (-3733 (((-1177) $) NIL)) (-3475 (($) 32 T CONST)) (-4318 (($ (-937)) 50)) (-3914 (((-1138) $) NIL)) (-2616 (((-576) $) 13)) (-2884 (((-874) $) 27) (($ (-576)) 24)) (-1871 (((-783)) 9 T CONST)) (-3722 (((-112) $ $) 60)) (-1996 (($) 29 T CONST)) (-2011 (($) 31 T CONST)) (-3915 (((-112) $ $) 38)) (-4029 (($ $) 52) (($ $ $) 47)) (-4017 (($ $ $) 35)) (** (($ $ (-937)) NIL) (($ $ (-783)) 54)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 43))) -(((-1315 |#1|) (-13 (-174) (-379) (-626 (-576)) (-1170)) (-937)) (T -1315)) -NIL -(-13 (-174) (-379) (-626 (-576)) (-1170)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3242088 3242093 3242098 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3242073 3242078 3242083 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3242058 3242063 3242068 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3242043 3242048 3242053 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1315 3241186 3241918 3241995 "ZMOD" 3242000 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1314 3240240 3240404 3240627 "ZLINDEP" 3241018 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1313 3229540 3231308 3233280 "ZDSOLVE" 3238370 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1312 3228786 3228927 3229116 "YSTREAM" 3229386 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1311 3228214 3228460 3228573 "YDIAGRAM" 3228695 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1310 3225988 3227515 3227719 "XRPOLY" 3228057 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1309 3222541 3223859 3224434 "XPR" 3225460 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1308 3220262 3221872 3222076 "XPOLY" 3222372 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1307 3217915 3219283 3219338 "XPOLYC" 3219626 NIL XPOLYC (NIL T T) -9 NIL 3219739 NIL) (-1306 3214291 3216432 3216820 "XPBWPOLY" 3217573 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1305 3209986 3212281 3212323 "XF" 3212944 NIL XF (NIL T) -9 NIL 3213344 NIL) (-1304 3209607 3209695 3209864 "XF-" 3209869 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1303 3204803 3206092 3206147 "XFALG" 3208319 NIL XFALG (NIL T T) -9 NIL 3209108 NIL) (-1302 3203936 3204040 3204245 "XEXPPKG" 3204695 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1301 3202045 3203786 3203882 "XDPOLY" 3203887 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1300 3200852 3201452 3201495 "XALG" 3201500 NIL XALG (NIL T) -9 NIL 3201611 NIL) (-1299 3194294 3198829 3199323 "WUTSET" 3200444 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1298 3192550 3193346 3193669 "WP" 3194105 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1297 3192152 3192372 3192442 "WHILEAST" 3192502 T WHILEAST (NIL) -8 NIL NIL NIL) (-1296 3191624 3191869 3191963 "WHEREAST" 3192080 T WHEREAST (NIL) -8 NIL NIL NIL) (-1295 3190510 3190708 3191003 "WFFINTBS" 3191421 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1294 3188414 3188841 3189303 "WEIER" 3190082 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1293 3187460 3187910 3187952 "VSPACE" 3188088 NIL VSPACE (NIL T) -9 NIL 3188162 NIL) (-1292 3187298 3187325 3187416 "VSPACE-" 3187421 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1291 3187107 3187149 3187217 "VOID" 3187252 T VOID (NIL) -8 NIL NIL NIL) (-1290 3185243 3185602 3186008 "VIEW" 3186723 T VIEW (NIL) -7 NIL NIL NIL) (-1289 3181667 3182306 3183043 "VIEWDEF" 3184528 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1288 3170971 3173215 3175388 "VIEW3D" 3179516 T VIEW3D (NIL) -8 NIL NIL NIL) (-1287 3163222 3164882 3166461 "VIEW2D" 3169414 T VIEW2D (NIL) -8 NIL NIL NIL) (-1286 3158575 3162992 3163084 "VECTOR" 3163165 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1285 3157152 3157411 3157729 "VECTOR2" 3158305 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1284 3150594 3154903 3154946 "VECTCAT" 3155941 NIL VECTCAT (NIL T) -9 NIL 3156528 NIL) (-1283 3149608 3149862 3150252 "VECTCAT-" 3150257 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1282 3149062 3149259 3149379 "VARIABLE" 3149523 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1281 3148995 3149000 3149030 "UTYPE" 3149035 T UTYPE (NIL) -9 NIL NIL NIL) (-1280 3147825 3147979 3148241 "UTSODETL" 3148821 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1279 3145265 3145725 3146249 "UTSODE" 3147366 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1278 3137103 3142891 3143380 "UTS" 3144834 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1277 3127667 3133037 3133080 "UTSCAT" 3134192 NIL UTSCAT (NIL T) -9 NIL 3134950 NIL) (-1276 3125015 3125737 3126726 "UTSCAT-" 3126731 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1275 3124642 3124685 3124818 "UTS2" 3124966 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1274 3118868 3121480 3121523 "URAGG" 3123593 NIL URAGG (NIL T) -9 NIL 3124316 NIL) (-1273 3115807 3116670 3117793 "URAGG-" 3117798 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1272 3111516 3114442 3114907 "UPXSSING" 3115471 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1271 3103582 3110763 3111036 "UPXS" 3111301 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1270 3096655 3103486 3103558 "UPXSCONS" 3103563 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1269 3086062 3092858 3092920 "UPXSCCA" 3093494 NIL UPXSCCA (NIL T T) -9 NIL 3093727 NIL) (-1268 3085700 3085785 3085959 "UPXSCCA-" 3085964 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1267 3074959 3081528 3081571 "UPXSCAT" 3082219 NIL UPXSCAT (NIL T) -9 NIL 3082828 NIL) (-1266 3074389 3074468 3074647 "UPXS2" 3074874 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1265 3073043 3073296 3073647 "UPSQFREE" 3074132 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1264 3066251 3069311 3069366 "UPSCAT" 3070446 NIL UPSCAT (NIL T T) -9 NIL 3071211 NIL) (-1263 3065455 3065662 3065989 "UPSCAT-" 3065994 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1262 3050818 3058676 3058719 "UPOLYC" 3060820 NIL UPOLYC (NIL T) -9 NIL 3062041 NIL) (-1261 3042146 3044572 3047719 "UPOLYC-" 3047724 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1260 3041773 3041816 3041949 "UPOLYC2" 3042097 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1259 3033495 3041456 3041585 "UP" 3041692 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1258 3032834 3032941 3033105 "UPMP" 3033384 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1257 3032387 3032468 3032607 "UPDIVP" 3032747 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1256 3030955 3031204 3031520 "UPDECOMP" 3032136 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1255 3030186 3030298 3030484 "UPCDEN" 3030839 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1254 3029705 3029774 3029923 "UP2" 3030111 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1253 3028172 3028909 3029186 "UNISEG" 3029463 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1252 3027387 3027514 3027719 "UNISEG2" 3028015 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1251 3026447 3026627 3026853 "UNIFACT" 3027203 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1250 3010208 3025624 3025875 "ULS" 3026254 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1249 2998071 3010112 3010184 "ULSCONS" 3010189 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1248 2979370 2991495 2991557 "ULSCCAT" 2992195 NIL ULSCCAT (NIL T T) -9 NIL 2992484 NIL) (-1247 2978420 2978665 2979053 "ULSCCAT-" 2979058 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1246 2967484 2973967 2974010 "ULSCAT" 2974873 NIL ULSCAT (NIL T) -9 NIL 2975604 NIL) (-1245 2966914 2966993 2967172 "ULS2" 2967399 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1244 2966033 2966543 2966650 "UINT8" 2966761 T UINT8 (NIL) -8 NIL NIL 2966846) (-1243 2965151 2965661 2965768 "UINT64" 2965879 T UINT64 (NIL) -8 NIL NIL 2965964) (-1242 2964269 2964779 2964886 "UINT32" 2964997 T UINT32 (NIL) -8 NIL NIL 2965082) (-1241 2963387 2963897 2964004 "UINT16" 2964115 T UINT16 (NIL) -8 NIL NIL 2964200) (-1240 2961690 2962647 2962677 "UFD" 2962889 T UFD (NIL) -9 NIL 2963003 NIL) (-1239 2961484 2961530 2961625 "UFD-" 2961630 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1238 2960566 2960749 2960965 "UDVO" 2961290 T UDVO (NIL) -7 NIL NIL NIL) (-1237 2958382 2958791 2959262 "UDPO" 2960130 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1236 2958315 2958320 2958350 "TYPE" 2958355 T TYPE (NIL) -9 NIL NIL NIL) (-1235 2958075 2958270 2958301 "TYPEAST" 2958306 T TYPEAST (NIL) -8 NIL NIL NIL) (-1234 2957046 2957248 2957488 "TWOFACT" 2957869 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1233 2956069 2956455 2956690 "TUPLE" 2956846 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1232 2953760 2954279 2954818 "TUBETOOL" 2955552 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1231 2952609 2952814 2953055 "TUBE" 2953553 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1230 2947338 2951581 2951864 "TS" 2952361 NIL TS (NIL T) -8 NIL NIL NIL) (-1229 2935978 2940097 2940194 "TSETCAT" 2945463 NIL TSETCAT (NIL T T T T) -9 NIL 2946994 NIL) (-1228 2930710 2932310 2934201 "TSETCAT-" 2934206 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1227 2925349 2926196 2927125 "TRMANIP" 2929846 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1226 2924790 2924853 2925016 "TRIMAT" 2925281 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1225 2922656 2922893 2923250 "TRIGMNIP" 2924539 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1224 2922176 2922289 2922319 "TRIGCAT" 2922532 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1223 2921845 2921924 2922065 "TRIGCAT-" 2922070 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1222 2918690 2920703 2920984 "TREE" 2921599 NIL TREE (NIL T) -8 NIL NIL NIL) (-1221 2917964 2918492 2918522 "TRANFUN" 2918557 T TRANFUN (NIL) -9 NIL 2918623 NIL) (-1220 2917243 2917434 2917714 "TRANFUN-" 2917719 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1219 2917047 2917079 2917140 "TOPSP" 2917204 T TOPSP (NIL) -7 NIL NIL NIL) (-1218 2916395 2916510 2916664 "TOOLSIGN" 2916928 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1217 2915029 2915572 2915811 "TEXTFILE" 2916178 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1216 2912941 2913482 2913911 "TEX" 2914622 T TEX (NIL) -8 NIL NIL NIL) (-1215 2912722 2912753 2912825 "TEX1" 2912904 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1214 2912370 2912433 2912523 "TEMUTL" 2912654 T TEMUTL (NIL) -7 NIL NIL NIL) (-1213 2910524 2910804 2911129 "TBCMPPK" 2912093 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1212 2902301 2908684 2908740 "TBAGG" 2909140 NIL TBAGG (NIL T T) -9 NIL 2909351 NIL) (-1211 2897371 2898859 2900613 "TBAGG-" 2900618 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1210 2896755 2896862 2897007 "TANEXP" 2897260 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1209 2896266 2896530 2896620 "TALGOP" 2896700 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1208 2889656 2896123 2896216 "TABLE" 2896221 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1207 2889068 2889167 2889305 "TABLEAU" 2889553 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1206 2883676 2884896 2886144 "TABLBUMP" 2887854 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1205 2882898 2883045 2883226 "SYSTEM" 2883517 T SYSTEM (NIL) -8 NIL NIL NIL) (-1204 2879357 2880056 2880839 "SYSSOLP" 2882149 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1203 2879155 2879312 2879343 "SYSPTR" 2879348 T SYSPTR (NIL) -8 NIL NIL NIL) (-1202 2878191 2878696 2878815 "SYSNNI" 2879001 NIL SYSNNI (NIL NIL) -8 NIL NIL 2879086) (-1201 2877490 2877949 2878028 "SYSINT" 2878088 NIL SYSINT (NIL NIL) -8 NIL NIL 2878133) (-1200 2873822 2874768 2875478 "SYNTAX" 2876802 T SYNTAX (NIL) -8 NIL NIL NIL) (-1199 2870980 2871582 2872214 "SYMTAB" 2873212 T SYMTAB (NIL) -8 NIL NIL NIL) (-1198 2866229 2867131 2868114 "SYMS" 2870019 T SYMS (NIL) -8 NIL NIL NIL) (-1197 2863464 2865687 2865917 "SYMPOLY" 2866034 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1196 2862981 2863056 2863179 "SYMFUNC" 2863376 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1195 2859001 2860293 2861106 "SYMBOL" 2862190 T SYMBOL (NIL) -8 NIL NIL NIL) (-1194 2852540 2854229 2855949 "SWITCH" 2857303 T SWITCH (NIL) -8 NIL NIL NIL) (-1193 2845774 2851361 2851664 "SUTS" 2852295 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1192 2837840 2845021 2845294 "SUPXS" 2845559 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1191 2829510 2837458 2837584 "SUP" 2837749 NIL SUP (NIL T) -8 NIL NIL NIL) (-1190 2828669 2828796 2829013 "SUPFRACF" 2829378 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1189 2828290 2828349 2828462 "SUP2" 2828604 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1188 2826738 2827012 2827368 "SUMRF" 2827989 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1187 2826073 2826139 2826331 "SUMFS" 2826659 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1186 2809869 2825250 2825501 "SULS" 2825880 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1185 2809471 2809691 2809761 "SUCHTAST" 2809821 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1184 2808766 2808996 2809136 "SUCH" 2809379 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1183 2802633 2803672 2804631 "SUBSPACE" 2807854 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1182 2802063 2802153 2802317 "SUBRESP" 2802521 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1181 2795431 2796728 2798039 "STTF" 2800799 NIL STTF (NIL T) -7 NIL NIL NIL) (-1180 2789604 2790724 2791871 "STTFNC" 2794331 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1179 2780917 2782786 2784580 "STTAYLOR" 2787845 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1178 2774047 2780781 2780864 "STRTBL" 2780869 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1177 2769411 2774002 2774033 "STRING" 2774038 T STRING (NIL) -8 NIL NIL NIL) (-1176 2764240 2768754 2768784 "STRICAT" 2768843 T STRICAT (NIL) -9 NIL 2768905 NIL) (-1175 2756993 2761859 2762470 "STREAM" 2763664 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1174 2756503 2756580 2756724 "STREAM3" 2756910 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1173 2755485 2755668 2755903 "STREAM2" 2756316 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1172 2755173 2755225 2755318 "STREAM1" 2755427 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1171 2754189 2754370 2754601 "STINPROD" 2754989 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1170 2753741 2753951 2753981 "STEP" 2754061 T STEP (NIL) -9 NIL 2754139 NIL) (-1169 2752928 2753230 2753378 "STEPAST" 2753615 T STEPAST (NIL) -8 NIL NIL NIL) (-1168 2746360 2752827 2752904 "STBL" 2752909 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1167 2741455 2745551 2745594 "STAGG" 2745747 NIL STAGG (NIL T) -9 NIL 2745836 NIL) (-1166 2739157 2739759 2740631 "STAGG-" 2740636 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1165 2737304 2738927 2739019 "STACK" 2739100 NIL STACK (NIL T) -8 NIL NIL NIL) (-1164 2729999 2735445 2735901 "SREGSET" 2736934 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1163 2722424 2723793 2725306 "SRDCMPK" 2728605 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1162 2715309 2719834 2719864 "SRAGG" 2721167 T SRAGG (NIL) -9 NIL 2721775 NIL) (-1161 2714326 2714581 2714960 "SRAGG-" 2714965 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1160 2708697 2713273 2713694 "SQMATRIX" 2713952 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1159 2702382 2705415 2706142 "SPLTREE" 2708042 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1158 2698345 2699038 2699684 "SPLNODE" 2701808 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1157 2697392 2697625 2697655 "SPFCAT" 2698099 T SPFCAT (NIL) -9 NIL NIL NIL) (-1156 2696129 2696339 2696603 "SPECOUT" 2697150 T SPECOUT (NIL) -7 NIL NIL NIL) (-1155 2687239 2689111 2689141 "SPADXPT" 2693817 T SPADXPT (NIL) -9 NIL 2695981 NIL) (-1154 2687000 2687040 2687109 "SPADPRSR" 2687192 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1153 2685049 2686955 2686986 "SPADAST" 2686991 T SPADAST (NIL) -8 NIL NIL NIL) (-1152 2676994 2678767 2678810 "SPACEC" 2683183 NIL SPACEC (NIL T) -9 NIL 2684999 NIL) (-1151 2675124 2676926 2676975 "SPACE3" 2676980 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1150 2673876 2674047 2674338 "SORTPAK" 2674929 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1149 2671968 2672271 2672683 "SOLVETRA" 2673540 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1148 2671018 2671240 2671501 "SOLVESER" 2671741 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1147 2666322 2667210 2668205 "SOLVERAD" 2670070 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1146 2662137 2662746 2663475 "SOLVEFOR" 2665689 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1145 2656407 2661486 2661583 "SNTSCAT" 2661588 NIL SNTSCAT (NIL T T T T) -9 NIL 2661658 NIL) (-1144 2650513 2654730 2655121 "SMTS" 2656097 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1143 2645109 2650401 2650478 "SMP" 2650483 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1142 2643268 2643569 2643967 "SMITH" 2644806 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1141 2635710 2639997 2640100 "SMATCAT" 2641451 NIL SMATCAT (NIL NIL T T T) -9 NIL 2642001 NIL) (-1140 2632428 2633313 2634571 "SMATCAT-" 2634576 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1139 2630094 2631664 2631707 "SKAGG" 2631968 NIL SKAGG (NIL T) -9 NIL 2632103 NIL) (-1138 2626370 2629567 2629751 "SINT" 2629903 T SINT (NIL) -8 NIL NIL 2630065) (-1137 2626142 2626180 2626246 "SIMPAN" 2626326 T SIMPAN (NIL) -7 NIL NIL NIL) (-1136 2625421 2625677 2625817 "SIG" 2626024 T SIG (NIL) -8 NIL NIL NIL) (-1135 2624259 2624480 2624755 "SIGNRF" 2625180 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1134 2623092 2623243 2623527 "SIGNEF" 2624088 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1133 2622398 2622675 2622799 "SIGAST" 2622990 T SIGAST (NIL) -8 NIL NIL NIL) (-1132 2620088 2620542 2621048 "SHP" 2621939 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1131 2614093 2619989 2620065 "SHDP" 2620070 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1130 2613666 2613858 2613888 "SGROUP" 2613981 T SGROUP (NIL) -9 NIL 2614043 NIL) (-1129 2613524 2613550 2613623 "SGROUP-" 2613628 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1128 2610315 2611013 2611736 "SGCF" 2612823 T SGCF (NIL) -7 NIL NIL NIL) (-1127 2604683 2609762 2609859 "SFRTCAT" 2609864 NIL SFRTCAT (NIL T T T T) -9 NIL 2609903 NIL) (-1126 2598104 2599122 2600258 "SFRGCD" 2603666 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1125 2591230 2592303 2593489 "SFQCMPK" 2597037 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1124 2590850 2590939 2591050 "SFORT" 2591171 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1123 2589968 2590690 2590811 "SEXOF" 2590816 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1122 2589075 2589849 2589917 "SEX" 2589922 T SEX (NIL) -8 NIL NIL NIL) (-1121 2584856 2585571 2585666 "SEXCAT" 2588288 NIL SEXCAT (NIL T T T T T) -9 NIL 2588848 NIL) (-1120 2582009 2584790 2584838 "SET" 2584843 NIL SET (NIL T) -8 NIL NIL NIL) (-1119 2580233 2580722 2581027 "SETMN" 2581750 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1118 2579729 2579881 2579911 "SETCAT" 2580087 T SETCAT (NIL) -9 NIL 2580197 NIL) (-1117 2579421 2579499 2579629 "SETCAT-" 2579634 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1116 2575782 2577882 2577925 "SETAGG" 2578795 NIL SETAGG (NIL T) -9 NIL 2579135 NIL) (-1115 2575240 2575356 2575593 "SETAGG-" 2575598 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1114 2574683 2574936 2575037 "SEQAST" 2575161 T SEQAST (NIL) -8 NIL NIL NIL) (-1113 2573882 2574176 2574237 "SEGXCAT" 2574523 NIL SEGXCAT (NIL T T) -9 NIL 2574643 NIL) (-1112 2572888 2573548 2573730 "SEG" 2573735 NIL SEG (NIL T) -8 NIL NIL NIL) (-1111 2571867 2572081 2572124 "SEGCAT" 2572646 NIL SEGCAT (NIL T) -9 NIL 2572867 NIL) (-1110 2570799 2571230 2571438 "SEGBIND" 2571694 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1109 2570420 2570479 2570592 "SEGBIND2" 2570734 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1108 2569993 2570221 2570298 "SEGAST" 2570365 T SEGAST (NIL) -8 NIL NIL NIL) (-1107 2569212 2569338 2569542 "SEG2" 2569837 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1106 2568583 2569147 2569194 "SDVAR" 2569199 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1105 2561021 2568353 2568483 "SDPOL" 2568488 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1104 2559614 2559880 2560199 "SCPKG" 2560736 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1103 2558778 2558950 2559142 "SCOPE" 2559444 T SCOPE (NIL) -8 NIL NIL NIL) (-1102 2557998 2558132 2558311 "SCACHE" 2558633 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1101 2557644 2557830 2557860 "SASTCAT" 2557865 T SASTCAT (NIL) -9 NIL 2557878 NIL) (-1100 2557131 2557479 2557555 "SAOS" 2557590 T SAOS (NIL) -8 NIL NIL NIL) (-1099 2556696 2556731 2556904 "SAERFFC" 2557090 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1098 2550546 2556593 2556673 "SAE" 2556678 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1097 2550139 2550174 2550333 "SAEFACT" 2550505 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1096 2548460 2548774 2549175 "RURPK" 2549805 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1095 2547097 2547403 2547708 "RULESET" 2548294 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1094 2544320 2544850 2545308 "RULE" 2546778 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1093 2543932 2544114 2544197 "RULECOLD" 2544272 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1092 2543722 2543750 2543821 "RTVALUE" 2543883 T RTVALUE (NIL) -8 NIL NIL NIL) (-1091 2543193 2543439 2543533 "RSTRCAST" 2543650 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1090 2538041 2538836 2539756 "RSETGCD" 2542392 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1089 2527271 2532350 2532447 "RSETCAT" 2536566 NIL RSETCAT (NIL T T T T) -9 NIL 2537663 NIL) (-1088 2525198 2525737 2526561 "RSETCAT-" 2526566 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1087 2517584 2518960 2520480 "RSDCMPK" 2523797 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1086 2515563 2516030 2516104 "RRCC" 2517190 NIL RRCC (NIL T T) -9 NIL 2517534 NIL) (-1085 2514914 2515088 2515367 "RRCC-" 2515372 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1084 2514357 2514610 2514711 "RPTAST" 2514835 T RPTAST (NIL) -8 NIL NIL NIL) (-1083 2488020 2497469 2497536 "RPOLCAT" 2508202 NIL RPOLCAT (NIL T T T) -9 NIL 2511362 NIL) (-1082 2479518 2481858 2484980 "RPOLCAT-" 2484985 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1081 2470449 2477729 2478211 "ROUTINE" 2479058 T ROUTINE (NIL) -8 NIL NIL NIL) (-1080 2467196 2470075 2470215 "ROMAN" 2470331 T ROMAN (NIL) -8 NIL NIL NIL) (-1079 2465440 2466056 2466316 "ROIRC" 2467001 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1078 2461672 2463956 2463986 "RNS" 2464290 T RNS (NIL) -9 NIL 2464564 NIL) (-1077 2460181 2460564 2461098 "RNS-" 2461173 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1076 2459584 2459992 2460022 "RNG" 2460027 T RNG (NIL) -9 NIL 2460048 NIL) (-1075 2458587 2458949 2459151 "RNGBIND" 2459435 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1074 2457986 2458374 2458417 "RMODULE" 2458422 NIL RMODULE (NIL T) -9 NIL 2458449 NIL) (-1073 2456822 2456916 2457252 "RMCAT2" 2457887 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1072 2453672 2456168 2456465 "RMATRIX" 2456584 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1071 2446499 2448759 2448874 "RMATCAT" 2452233 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2453215 NIL) (-1070 2445874 2446021 2446328 "RMATCAT-" 2446333 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1069 2445275 2445496 2445539 "RLINSET" 2445733 NIL RLINSET (NIL T) -9 NIL 2445824 NIL) (-1068 2444842 2444917 2445045 "RINTERP" 2445194 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1067 2443900 2444454 2444484 "RING" 2444540 T RING (NIL) -9 NIL 2444632 NIL) (-1066 2443692 2443736 2443833 "RING-" 2443838 NIL RING- (NIL T) -8 NIL NIL NIL) (-1065 2442533 2442770 2443028 "RIDIST" 2443456 T RIDIST (NIL) -7 NIL NIL NIL) (-1064 2433822 2442001 2442207 "RGCHAIN" 2442381 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1063 2433172 2433578 2433619 "RGBCSPC" 2433677 NIL RGBCSPC (NIL T) -9 NIL 2433729 NIL) (-1062 2432330 2432711 2432752 "RGBCMDL" 2432984 NIL RGBCMDL (NIL T) -9 NIL 2433098 NIL) (-1061 2429324 2429938 2430608 "RF" 2431694 NIL RF (NIL T) -7 NIL NIL NIL) (-1060 2428970 2429033 2429136 "RFFACTOR" 2429255 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1059 2428695 2428730 2428827 "RFFACT" 2428929 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1058 2426812 2427176 2427558 "RFDIST" 2428335 T RFDIST (NIL) -7 NIL NIL NIL) (-1057 2426265 2426357 2426520 "RETSOL" 2426714 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1056 2425901 2425981 2426024 "RETRACT" 2426157 NIL RETRACT (NIL T) -9 NIL 2426244 NIL) (-1055 2425750 2425775 2425862 "RETRACT-" 2425867 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1054 2425352 2425572 2425642 "RETAST" 2425702 T RETAST (NIL) -8 NIL NIL NIL) (-1053 2418090 2425005 2425132 "RESULT" 2425247 T RESULT (NIL) -8 NIL NIL NIL) (-1052 2416681 2417359 2417558 "RESRING" 2417993 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1051 2416317 2416366 2416464 "RESLATC" 2416618 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1050 2416022 2416057 2416164 "REPSQ" 2416276 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1049 2413444 2414024 2414626 "REP" 2415442 T REP (NIL) -7 NIL NIL NIL) (-1048 2413141 2413176 2413287 "REPDB" 2413403 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1047 2407041 2408430 2409653 "REP2" 2411953 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1046 2403418 2404099 2404907 "REP1" 2406268 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1045 2396114 2401559 2402015 "REGSET" 2403048 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1044 2394879 2395262 2395512 "REF" 2395899 NIL REF (NIL T) -8 NIL NIL NIL) (-1043 2394256 2394359 2394526 "REDORDER" 2394763 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1042 2390224 2393469 2393696 "RECLOS" 2394084 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1041 2389276 2389457 2389672 "REALSOLV" 2390031 T REALSOLV (NIL) -7 NIL NIL NIL) (-1040 2389122 2389163 2389193 "REAL" 2389198 T REAL (NIL) -9 NIL 2389233 NIL) (-1039 2385605 2386407 2387291 "REAL0Q" 2388287 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1038 2381206 2382194 2383255 "REAL0" 2384586 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1037 2380677 2380923 2381017 "RDUCEAST" 2381134 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1036 2380082 2380154 2380361 "RDIV" 2380599 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1035 2379150 2379324 2379537 "RDIST" 2379904 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1034 2377747 2378034 2378406 "RDETRS" 2378858 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1033 2375559 2376013 2376551 "RDETR" 2377289 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1032 2374184 2374462 2374859 "RDEEFS" 2375275 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1031 2372693 2372999 2373424 "RDEEF" 2373872 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1030 2366754 2369674 2369704 "RCFIELD" 2370999 T RCFIELD (NIL) -9 NIL 2371730 NIL) (-1029 2364818 2365322 2366018 "RCFIELD-" 2366093 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1028 2361087 2362919 2362962 "RCAGG" 2364046 NIL RCAGG (NIL T) -9 NIL 2364511 NIL) (-1027 2360715 2360809 2360972 "RCAGG-" 2360977 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1026 2360050 2360162 2360327 "RATRET" 2360599 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1025 2359603 2359670 2359791 "RATFACT" 2359978 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1024 2358911 2359031 2359183 "RANDSRC" 2359473 T RANDSRC (NIL) -7 NIL NIL NIL) (-1023 2358645 2358689 2358762 "RADUTIL" 2358860 T RADUTIL (NIL) -7 NIL NIL NIL) (-1022 2351666 2357476 2357787 "RADIX" 2358368 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1021 2343182 2351508 2351638 "RADFF" 2351643 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1020 2342829 2342904 2342934 "RADCAT" 2343094 T RADCAT (NIL) -9 NIL NIL NIL) (-1019 2342611 2342659 2342759 "RADCAT-" 2342764 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1018 2340709 2342381 2342473 "QUEUE" 2342554 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1017 2337157 2340642 2340690 "QUAT" 2340695 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1016 2336788 2336831 2336962 "QUATCT2" 2337108 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1015 2329872 2333308 2333350 "QUATCAT" 2334141 NIL QUATCAT (NIL T) -9 NIL 2334907 NIL) (-1014 2326011 2327048 2328438 "QUATCAT-" 2328534 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1013 2323476 2325087 2325130 "QUAGG" 2325511 NIL QUAGG (NIL T) -9 NIL 2325686 NIL) (-1012 2323078 2323298 2323368 "QQUTAST" 2323428 T QQUTAST (NIL) -8 NIL NIL NIL) (-1011 2322091 2322591 2322756 "QFORM" 2322959 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1010 2312815 2318143 2318185 "QFCAT" 2318853 NIL QFCAT (NIL T) -9 NIL 2319854 NIL) (-1009 2308160 2309423 2311097 "QFCAT-" 2311193 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1008 2307791 2307834 2307965 "QFCAT2" 2308111 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1007 2307246 2307356 2307488 "QEQUAT" 2307681 T QEQUAT (NIL) -8 NIL NIL NIL) (-1006 2300372 2301445 2302631 "QCMPACK" 2306179 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1005 2297910 2298358 2298788 "QALGSET" 2300027 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1004 2297145 2297321 2297557 "QALGSET2" 2297728 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1003 2295830 2296054 2296373 "PWFFINTB" 2296918 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1002 2294005 2294173 2294529 "PUSHVAR" 2295644 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1001 2289894 2290948 2290991 "PTRANFN" 2292902 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1000 2288285 2288576 2288900 "PTPACK" 2289605 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-999 2287917 2287974 2288083 "PTFUNC2" 2288222 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-998 2282362 2286759 2286800 "PTCAT" 2287096 NIL PTCAT (NIL T) -9 NIL 2287249 NIL) (-997 2282020 2282055 2282179 "PSQFR" 2282321 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-996 2280615 2280913 2281247 "PSEUDLIN" 2281718 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-995 2267378 2269749 2272073 "PSETPK" 2278375 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-994 2260396 2263136 2263232 "PSETCAT" 2266253 NIL PSETCAT (NIL T T T T) -9 NIL 2267067 NIL) (-993 2258232 2258866 2259687 "PSETCAT-" 2259692 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-992 2257581 2257746 2257774 "PSCURVE" 2258042 T PSCURVE (NIL) -9 NIL 2258209 NIL) (-991 2253579 2255095 2255160 "PSCAT" 2256004 NIL PSCAT (NIL T T T) -9 NIL 2256244 NIL) (-990 2252642 2252858 2253258 "PSCAT-" 2253263 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-989 2251001 2251711 2251974 "PRTITION" 2252399 T PRTITION (NIL) -8 NIL NIL NIL) (-988 2250476 2250722 2250814 "PRTDAST" 2250929 T PRTDAST (NIL) -8 NIL NIL NIL) (-987 2239566 2241780 2243968 "PRS" 2248338 NIL PRS (NIL T T) -7 NIL NIL NIL) (-986 2237377 2238916 2238956 "PRQAGG" 2239139 NIL PRQAGG (NIL T) -9 NIL 2239241 NIL) (-985 2236713 2237018 2237046 "PROPLOG" 2237185 T PROPLOG (NIL) -9 NIL 2237300 NIL) (-984 2236317 2236374 2236497 "PROPFUN2" 2236636 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-983 2235632 2235753 2235925 "PROPFUN1" 2236178 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-982 2233813 2234379 2234676 "PROPFRML" 2235368 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-981 2233282 2233389 2233517 "PROPERTY" 2233705 T PROPERTY (NIL) -8 NIL NIL NIL) (-980 2227340 2231448 2232268 "PRODUCT" 2232508 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-979 2224618 2226798 2227032 "PR" 2227151 NIL PR (NIL T T) -8 NIL NIL NIL) (-978 2224414 2224446 2224505 "PRINT" 2224579 T PRINT (NIL) -7 NIL NIL NIL) (-977 2223754 2223871 2224023 "PRIMES" 2224294 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-976 2221819 2222220 2222686 "PRIMELT" 2223333 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-975 2221548 2221597 2221625 "PRIMCAT" 2221749 T PRIMCAT (NIL) -9 NIL NIL NIL) (-974 2217663 2221486 2221531 "PRIMARR" 2221536 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-973 2216670 2216848 2217076 "PRIMARR2" 2217481 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-972 2216313 2216369 2216480 "PREASSOC" 2216608 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-971 2215788 2215921 2215949 "PPCURVE" 2216154 T PPCURVE (NIL) -9 NIL 2216290 NIL) (-970 2215383 2215583 2215666 "PORTNUM" 2215725 T PORTNUM (NIL) -8 NIL NIL NIL) (-969 2212742 2213141 2213733 "POLYROOT" 2214964 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-968 2206835 2212346 2212506 "POLY" 2212615 NIL POLY (NIL T) -8 NIL NIL NIL) (-967 2206218 2206276 2206510 "POLYLIFT" 2206771 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-966 2202493 2202942 2203571 "POLYCATQ" 2205763 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-965 2189022 2194240 2194305 "POLYCAT" 2197819 NIL POLYCAT (NIL T T T) -9 NIL 2199697 NIL) (-964 2182249 2184173 2186637 "POLYCAT-" 2186642 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-963 2181836 2181904 2182024 "POLY2UP" 2182175 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-962 2181468 2181525 2181634 "POLY2" 2181773 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-961 2180153 2180392 2180668 "POLUTIL" 2181242 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-960 2178508 2178785 2179116 "POLTOPOL" 2179875 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-959 2173973 2178444 2178490 "POINT" 2178495 NIL POINT (NIL T) -8 NIL NIL NIL) (-958 2172160 2172517 2172892 "PNTHEORY" 2173618 T PNTHEORY (NIL) -7 NIL NIL NIL) (-957 2170618 2170915 2171314 "PMTOOLS" 2171858 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-956 2170211 2170289 2170406 "PMSYM" 2170534 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-955 2169719 2169788 2169963 "PMQFCAT" 2170136 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-954 2169074 2169184 2169340 "PMPRED" 2169596 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-953 2168467 2168553 2168715 "PMPREDFS" 2168975 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-952 2167131 2167339 2167717 "PMPLCAT" 2168229 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-951 2166663 2166742 2166894 "PMLSAGG" 2167046 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-950 2166136 2166212 2166394 "PMKERNEL" 2166581 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-949 2165753 2165828 2165941 "PMINS" 2166055 NIL PMINS (NIL T) -7 NIL NIL NIL) (-948 2165195 2165264 2165473 "PMFS" 2165678 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-947 2164423 2164541 2164746 "PMDOWN" 2165072 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-946 2163590 2163748 2163929 "PMASS" 2164262 T PMASS (NIL) -7 NIL NIL NIL) (-945 2162863 2162973 2163136 "PMASSFS" 2163477 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-944 2162518 2162586 2162680 "PLOTTOOL" 2162789 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-943 2157125 2158329 2159477 "PLOT" 2161390 T PLOT (NIL) -8 NIL NIL NIL) (-942 2152929 2153973 2154894 "PLOT3D" 2156224 T PLOT3D (NIL) -8 NIL NIL NIL) (-941 2151841 2152018 2152253 "PLOT1" 2152733 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-940 2127232 2131907 2136758 "PLEQN" 2147107 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-939 2126550 2126672 2126852 "PINTERP" 2127097 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-938 2126243 2126290 2126393 "PINTERPA" 2126497 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-937 2125459 2126007 2126094 "PI" 2126134 T PI (NIL) -8 NIL NIL 2126201) (-936 2123756 2124731 2124759 "PID" 2124941 T PID (NIL) -9 NIL 2125075 NIL) (-935 2123507 2123544 2123619 "PICOERCE" 2123713 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-934 2122827 2122966 2123142 "PGROEB" 2123363 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-933 2118414 2119228 2120133 "PGE" 2121942 T PGE (NIL) -7 NIL NIL NIL) (-932 2116537 2116784 2117150 "PGCD" 2118131 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-931 2115875 2115978 2116139 "PFRPAC" 2116421 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-930 2112515 2114423 2114776 "PFR" 2115554 NIL PFR (NIL T) -8 NIL NIL NIL) (-929 2110904 2111148 2111473 "PFOTOOLS" 2112262 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-928 2109437 2109676 2110027 "PFOQ" 2110661 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-927 2107938 2108150 2108506 "PFO" 2109221 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-926 2104491 2107827 2107896 "PF" 2107901 NIL PF (NIL NIL) -8 NIL NIL NIL) (-925 2101825 2103096 2103124 "PFECAT" 2103709 T PFECAT (NIL) -9 NIL 2104093 NIL) (-924 2101270 2101424 2101638 "PFECAT-" 2101643 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-923 2099873 2100125 2100426 "PFBRU" 2101019 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-922 2097739 2098091 2098523 "PFBR" 2099524 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-921 2093785 2095251 2095898 "PERM" 2097125 NIL PERM (NIL T) -8 NIL NIL NIL) (-920 2089019 2089992 2090862 "PERMGRP" 2092948 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-919 2087138 2088098 2088139 "PERMCAT" 2088539 NIL PERMCAT (NIL T) -9 NIL 2088837 NIL) (-918 2086791 2086832 2086956 "PERMAN" 2087091 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-917 2084279 2086456 2086578 "PENDTREE" 2086702 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-916 2083208 2083423 2083464 "PDSPC" 2083997 NIL PDSPC (NIL T) -9 NIL 2084242 NIL) (-915 2082311 2082529 2082891 "PDSPC-" 2082896 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-914 2081193 2081961 2082002 "PDRING" 2082007 NIL PDRING (NIL T) -9 NIL 2082035 NIL) (-913 2078408 2079186 2079854 "PDEPROB" 2080545 T PDEPROB (NIL) -8 NIL NIL NIL) (-912 2075953 2076457 2077012 "PDEPACK" 2077873 T PDEPACK (NIL) -7 NIL NIL NIL) (-911 2074865 2075055 2075306 "PDECOMP" 2075752 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-910 2072444 2073287 2073315 "PDECAT" 2074102 T PDECAT (NIL) -9 NIL 2074815 NIL) (-909 2072073 2072128 2072182 "PDDOM" 2072347 NIL PDDOM (NIL T T) -9 NIL 2072427 NIL) (-908 2071892 2071922 2072029 "PDDOM-" 2072034 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-907 2071643 2071676 2071766 "PCOMP" 2071853 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-906 2069821 2070444 2070741 "PBWLB" 2071372 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-905 2062294 2063894 2065232 "PATTERN" 2068504 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-904 2061926 2061983 2062092 "PATTERN2" 2062231 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-903 2059683 2060071 2060528 "PATTERN1" 2061515 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-902 2057051 2057632 2058113 "PATRES" 2059248 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-901 2056615 2056682 2056814 "PATRES2" 2056978 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-900 2054498 2054903 2055310 "PATMATCH" 2056282 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-899 2054008 2054217 2054258 "PATMAB" 2054365 NIL PATMAB (NIL T) -9 NIL 2054448 NIL) (-898 2052526 2052862 2053120 "PATLRES" 2053813 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-897 2052072 2052195 2052236 "PATAB" 2052241 NIL PATAB (NIL T) -9 NIL 2052413 NIL) (-896 2050254 2050649 2051072 "PARTPERM" 2051669 T PARTPERM (NIL) -7 NIL NIL NIL) (-895 2049875 2049938 2050040 "PARSURF" 2050185 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-894 2049507 2049564 2049673 "PARSU2" 2049812 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-893 2049271 2049311 2049378 "PARSER" 2049460 T PARSER (NIL) -7 NIL NIL NIL) (-892 2048892 2048955 2049057 "PARSCURV" 2049202 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-891 2048524 2048581 2048690 "PARSC2" 2048829 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-890 2048163 2048221 2048318 "PARPCURV" 2048460 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-889 2047795 2047852 2047961 "PARPC2" 2048100 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-888 2046856 2047168 2047350 "PARAMAST" 2047633 T PARAMAST (NIL) -8 NIL NIL NIL) (-887 2046376 2046462 2046581 "PAN2EXPR" 2046757 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-886 2045153 2045497 2045725 "PALETTE" 2046168 T PALETTE (NIL) -8 NIL NIL NIL) (-885 2043546 2044158 2044518 "PAIR" 2044839 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-884 2037325 2042803 2042998 "PADICRC" 2043400 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-883 2030449 2036669 2036854 "PADICRAT" 2037172 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-882 2028764 2030386 2030431 "PADIC" 2030436 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-881 2025874 2027438 2027478 "PADICCT" 2028059 NIL PADICCT (NIL NIL) -9 NIL 2028341 NIL) (-880 2024831 2025031 2025299 "PADEPAC" 2025661 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-879 2024043 2024176 2024382 "PADE" 2024693 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-878 2022430 2023251 2023531 "OWP" 2023847 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-877 2021923 2022136 2022233 "OVERSET" 2022353 T OVERSET (NIL) -8 NIL NIL NIL) (-876 2020969 2021528 2021700 "OVAR" 2021791 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-875 2020233 2020354 2020515 "OUT" 2020828 T OUT (NIL) -7 NIL NIL NIL) (-874 2009105 2011342 2013542 "OUTFORM" 2018053 T OUTFORM (NIL) -8 NIL NIL NIL) (-873 2008441 2008702 2008829 "OUTBFILE" 2008998 T OUTBFILE (NIL) -8 NIL NIL NIL) (-872 2007748 2007913 2007941 "OUTBCON" 2008259 T OUTBCON (NIL) -9 NIL 2008425 NIL) (-871 2007349 2007461 2007618 "OUTBCON-" 2007623 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-870 2006729 2007078 2007167 "OSI" 2007280 T OSI (NIL) -8 NIL NIL NIL) (-869 2006259 2006597 2006625 "OSGROUP" 2006630 T OSGROUP (NIL) -9 NIL 2006652 NIL) (-868 2005004 2005231 2005516 "ORTHPOL" 2006006 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-867 2002555 2004839 2004960 "OREUP" 2004965 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-866 1999958 2002246 2002373 "ORESUP" 2002497 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-865 1997486 1997986 1998547 "OREPCTO" 1999447 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-864 1991172 1993373 1993414 "OREPCAT" 1995762 NIL OREPCAT (NIL T) -9 NIL 1996866 NIL) (-863 1988319 1989101 1990159 "OREPCAT-" 1990164 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-862 1987470 1987768 1987796 "ORDSET" 1988105 T ORDSET (NIL) -9 NIL 1988269 NIL) (-861 1986901 1987049 1987273 "ORDSET-" 1987278 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-860 1985466 1986257 1986285 "ORDRING" 1986487 T ORDRING (NIL) -9 NIL 1986612 NIL) (-859 1985111 1985205 1985349 "ORDRING-" 1985354 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-858 1984491 1984954 1984982 "ORDMON" 1984987 T ORDMON (NIL) -9 NIL 1985008 NIL) (-857 1983653 1983800 1983995 "ORDFUNS" 1984340 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-856 1982991 1983410 1983438 "ORDFIN" 1983503 T ORDFIN (NIL) -9 NIL 1983577 NIL) (-855 1979550 1981577 1981986 "ORDCOMP" 1982615 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-854 1978816 1978943 1979129 "ORDCOMP2" 1979410 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-853 1975397 1976307 1977121 "OPTPROB" 1978022 T OPTPROB (NIL) -8 NIL NIL NIL) (-852 1972199 1972838 1973542 "OPTPACK" 1974713 T OPTPACK (NIL) -7 NIL NIL NIL) (-851 1969886 1970652 1970680 "OPTCAT" 1971499 T OPTCAT (NIL) -9 NIL 1972149 NIL) (-850 1969270 1969563 1969668 "OPSIG" 1969801 T OPSIG (NIL) -8 NIL NIL NIL) (-849 1969038 1969077 1969143 "OPQUERY" 1969224 T OPQUERY (NIL) -7 NIL NIL NIL) (-848 1966169 1967349 1967853 "OP" 1968567 NIL OP (NIL T) -8 NIL NIL NIL) (-847 1965543 1965769 1965810 "OPERCAT" 1966022 NIL OPERCAT (NIL T) -9 NIL 1966119 NIL) (-846 1965298 1965354 1965471 "OPERCAT-" 1965476 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-845 1962111 1964095 1964464 "ONECOMP" 1964962 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-844 1961416 1961531 1961705 "ONECOMP2" 1961983 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-843 1960835 1960941 1961071 "OMSERVER" 1961306 T OMSERVER (NIL) -7 NIL NIL NIL) (-842 1957697 1960275 1960315 "OMSAGG" 1960376 NIL OMSAGG (NIL T) -9 NIL 1960440 NIL) (-841 1956320 1956583 1956865 "OMPKG" 1957435 T OMPKG (NIL) -7 NIL NIL NIL) (-840 1955750 1955853 1955881 "OM" 1956180 T OM (NIL) -9 NIL NIL NIL) (-839 1954297 1955299 1955468 "OMLO" 1955631 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-838 1953257 1953404 1953624 "OMEXPR" 1954123 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-837 1952548 1952803 1952939 "OMERR" 1953141 T OMERR (NIL) -8 NIL NIL NIL) (-836 1951699 1951969 1952129 "OMERRK" 1952408 T OMERRK (NIL) -8 NIL NIL NIL) (-835 1951150 1951376 1951484 "OMENC" 1951611 T OMENC (NIL) -8 NIL NIL NIL) (-834 1945045 1946230 1947401 "OMDEV" 1949999 T OMDEV (NIL) -8 NIL NIL NIL) (-833 1944114 1944285 1944479 "OMCONN" 1944871 T OMCONN (NIL) -8 NIL NIL NIL) (-832 1942635 1943611 1943639 "OINTDOM" 1943644 T OINTDOM (NIL) -9 NIL 1943665 NIL) (-831 1939973 1941323 1941660 "OFMONOID" 1942330 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-830 1939345 1939910 1939955 "ODVAR" 1939960 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-829 1936768 1939090 1939245 "ODR" 1939250 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-828 1929260 1936544 1936670 "ODPOL" 1936675 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-827 1923235 1929132 1929237 "ODP" 1929242 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-826 1922001 1922216 1922491 "ODETOOLS" 1923009 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-825 1918968 1919626 1920342 "ODESYS" 1921334 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-824 1913850 1914758 1915783 "ODERTRIC" 1918043 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-823 1913276 1913358 1913552 "ODERED" 1913762 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-822 1910164 1910712 1911389 "ODERAT" 1912699 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-821 1907123 1907588 1908185 "ODEPRRIC" 1909693 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-820 1905066 1905662 1906148 "ODEPROB" 1906657 T ODEPROB (NIL) -8 NIL NIL NIL) (-819 1901586 1902071 1902718 "ODEPRIM" 1904545 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-818 1900835 1900937 1901197 "ODEPAL" 1901478 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-817 1896997 1897788 1898652 "ODEPACK" 1899991 T ODEPACK (NIL) -7 NIL NIL NIL) (-816 1896058 1896165 1896387 "ODEINT" 1896886 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-815 1890159 1891584 1893031 "ODEIFTBL" 1894631 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-814 1885557 1886343 1887295 "ODEEF" 1889318 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-813 1884906 1884995 1885218 "ODECONST" 1885462 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-812 1883031 1883692 1883720 "ODECAT" 1884325 T ODECAT (NIL) -9 NIL 1884856 NIL) (-811 1879886 1882736 1882858 "OCT" 1882941 NIL OCT (NIL T) -8 NIL NIL NIL) (-810 1879524 1879567 1879694 "OCTCT2" 1879837 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-809 1874135 1876570 1876610 "OC" 1877707 NIL OC (NIL T) -9 NIL 1878565 NIL) (-808 1871362 1872110 1873100 "OC-" 1873194 NIL OC- (NIL T T) -8 NIL NIL NIL) (-807 1870714 1871182 1871210 "OCAMON" 1871215 T OCAMON (NIL) -9 NIL 1871236 NIL) (-806 1870245 1870586 1870614 "OASGP" 1870619 T OASGP (NIL) -9 NIL 1870639 NIL) (-805 1869506 1869995 1870023 "OAMONS" 1870063 T OAMONS (NIL) -9 NIL 1870106 NIL) (-804 1868920 1869353 1869381 "OAMON" 1869386 T OAMON (NIL) -9 NIL 1869406 NIL) (-803 1868178 1868696 1868724 "OAGROUP" 1868729 T OAGROUP (NIL) -9 NIL 1868749 NIL) (-802 1867868 1867918 1868006 "NUMTUBE" 1868122 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-801 1861441 1862959 1864495 "NUMQUAD" 1866352 T NUMQUAD (NIL) -7 NIL NIL NIL) (-800 1857197 1858185 1859210 "NUMODE" 1860436 T NUMODE (NIL) -7 NIL NIL NIL) (-799 1854552 1855432 1855460 "NUMINT" 1856383 T NUMINT (NIL) -9 NIL 1857147 NIL) (-798 1853500 1853697 1853915 "NUMFMT" 1854354 T NUMFMT (NIL) -7 NIL NIL NIL) (-797 1839859 1842804 1845336 "NUMERIC" 1851007 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-796 1834229 1839308 1839403 "NTSCAT" 1839408 NIL NTSCAT (NIL T T T T) -9 NIL 1839447 NIL) (-795 1833423 1833588 1833781 "NTPOLFN" 1834068 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-794 1821411 1830248 1831060 "NSUP" 1832644 NIL NSUP (NIL T) -8 NIL NIL NIL) (-793 1821043 1821100 1821209 "NSUP2" 1821348 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-792 1811180 1820817 1820950 "NSMP" 1820955 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-791 1809612 1809913 1810270 "NREP" 1810868 NIL NREP (NIL T) -7 NIL NIL NIL) (-790 1808203 1808455 1808813 "NPCOEF" 1809355 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-789 1807269 1807384 1807600 "NORMRETR" 1808084 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-788 1805310 1805600 1806009 "NORMPK" 1806977 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-787 1804995 1805023 1805147 "NORMMA" 1805276 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-786 1804795 1804952 1804981 "NONE" 1804986 T NONE (NIL) -8 NIL NIL NIL) (-785 1804584 1804613 1804682 "NONE1" 1804759 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-784 1804081 1804143 1804322 "NODE1" 1804516 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-783 1802362 1803213 1803468 "NNI" 1803815 T NNI (NIL) -8 NIL NIL 1804050) (-782 1800782 1801095 1801459 "NLINSOL" 1802030 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-781 1797023 1798018 1798917 "NIPROB" 1799903 T NIPROB (NIL) -8 NIL NIL NIL) (-780 1795780 1796014 1796316 "NFINTBAS" 1796785 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-779 1794954 1795430 1795471 "NETCLT" 1795643 NIL NETCLT (NIL T) -9 NIL 1795725 NIL) (-778 1793662 1793893 1794174 "NCODIV" 1794722 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-777 1793424 1793461 1793536 "NCNTFRAC" 1793619 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-776 1791604 1791968 1792388 "NCEP" 1793049 NIL NCEP (NIL T) -7 NIL NIL NIL) (-775 1790455 1791228 1791256 "NASRING" 1791366 T NASRING (NIL) -9 NIL 1791446 NIL) (-774 1790250 1790294 1790388 "NASRING-" 1790393 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-773 1789357 1789882 1789910 "NARNG" 1790027 T NARNG (NIL) -9 NIL 1790118 NIL) (-772 1789049 1789116 1789250 "NARNG-" 1789255 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-771 1787928 1788135 1788370 "NAGSP" 1788834 T NAGSP (NIL) -7 NIL NIL NIL) (-770 1779200 1780884 1782557 "NAGS" 1786275 T NAGS (NIL) -7 NIL NIL NIL) (-769 1777748 1778056 1778387 "NAGF07" 1778889 T NAGF07 (NIL) -7 NIL NIL NIL) (-768 1772286 1773577 1774884 "NAGF04" 1776461 T NAGF04 (NIL) -7 NIL NIL NIL) (-767 1765254 1766868 1768501 "NAGF02" 1770673 T NAGF02 (NIL) -7 NIL NIL NIL) (-766 1760478 1761578 1762695 "NAGF01" 1764157 T NAGF01 (NIL) -7 NIL NIL NIL) (-765 1754106 1755672 1757257 "NAGE04" 1758913 T NAGE04 (NIL) -7 NIL NIL NIL) (-764 1745275 1747396 1749526 "NAGE02" 1751996 T NAGE02 (NIL) -7 NIL NIL NIL) (-763 1741228 1742175 1743139 "NAGE01" 1744331 T NAGE01 (NIL) -7 NIL NIL NIL) (-762 1739023 1739557 1740115 "NAGD03" 1740690 T NAGD03 (NIL) -7 NIL NIL NIL) (-761 1730773 1732701 1734655 "NAGD02" 1737089 T NAGD02 (NIL) -7 NIL NIL NIL) (-760 1724584 1726009 1727449 "NAGD01" 1729353 T NAGD01 (NIL) -7 NIL NIL NIL) (-759 1720793 1721615 1722452 "NAGC06" 1723767 T NAGC06 (NIL) -7 NIL NIL NIL) (-758 1719258 1719590 1719946 "NAGC05" 1720457 T NAGC05 (NIL) -7 NIL NIL NIL) (-757 1718634 1718753 1718897 "NAGC02" 1719134 T NAGC02 (NIL) -7 NIL NIL NIL) (-756 1717593 1718176 1718216 "NAALG" 1718295 NIL NAALG (NIL T) -9 NIL 1718356 NIL) (-755 1717428 1717457 1717547 "NAALG-" 1717552 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-754 1711378 1712486 1713673 "MULTSQFR" 1716324 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-753 1710697 1710772 1710956 "MULTFACT" 1711290 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-752 1703368 1707282 1707335 "MTSCAT" 1708405 NIL MTSCAT (NIL T T) -9 NIL 1708920 NIL) (-751 1703080 1703134 1703226 "MTHING" 1703308 NIL MTHING (NIL T) -7 NIL NIL NIL) (-750 1702872 1702905 1702965 "MSYSCMD" 1703040 T MSYSCMD (NIL) -7 NIL NIL NIL) (-749 1698954 1701627 1701947 "MSET" 1702585 NIL MSET (NIL T) -8 NIL NIL NIL) (-748 1696023 1698515 1698556 "MSETAGG" 1698561 NIL MSETAGG (NIL T) -9 NIL 1698595 NIL) (-747 1691865 1693402 1694147 "MRING" 1695323 NIL MRING (NIL T T) -8 NIL NIL NIL) (-746 1691431 1691498 1691629 "MRF2" 1691792 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-745 1691049 1691084 1691228 "MRATFAC" 1691390 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-744 1688661 1688956 1689387 "MPRFF" 1690754 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-743 1682869 1688515 1688612 "MPOLY" 1688617 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-742 1682359 1682394 1682602 "MPCPF" 1682828 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-741 1681873 1681916 1682100 "MPC3" 1682310 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1681068 1681149 1681370 "MPC2" 1681788 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1679369 1679706 1680096 "MONOTOOL" 1680728 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-738 1678594 1678911 1678939 "MONOID" 1679158 T MONOID (NIL) -9 NIL 1679305 NIL) (-737 1678140 1678259 1678440 "MONOID-" 1678445 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-736 1668048 1674090 1674149 "MONOGEN" 1674823 NIL MONOGEN (NIL T T) -9 NIL 1675279 NIL) (-735 1665266 1666001 1667001 "MONOGEN-" 1667120 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-734 1664099 1664545 1664573 "MONADWU" 1664965 T MONADWU (NIL) -9 NIL 1665203 NIL) (-733 1663471 1663630 1663878 "MONADWU-" 1663883 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-732 1662830 1663074 1663102 "MONAD" 1663309 T MONAD (NIL) -9 NIL 1663421 NIL) (-731 1662515 1662593 1662725 "MONAD-" 1662730 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-730 1660804 1661428 1661707 "MOEBIUS" 1662268 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-729 1660082 1660486 1660526 "MODULE" 1660531 NIL MODULE (NIL T) -9 NIL 1660570 NIL) (-728 1659650 1659746 1659936 "MODULE-" 1659941 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-727 1657330 1658014 1658341 "MODRING" 1659474 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1654274 1655435 1655956 "MODOP" 1656859 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-725 1652862 1653341 1653618 "MODMONOM" 1654137 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-724 1642817 1651153 1651567 "MODMON" 1652499 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-723 1639973 1641661 1641937 "MODFIELD" 1642692 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1638950 1639254 1639444 "MMLFORM" 1639803 T MMLFORM (NIL) -8 NIL NIL NIL) (-721 1638476 1638519 1638698 "MMAP" 1638901 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-720 1636555 1637322 1637363 "MLO" 1637786 NIL MLO (NIL T) -9 NIL 1638028 NIL) (-719 1633921 1634437 1635039 "MLIFT" 1636036 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-718 1633312 1633396 1633550 "MKUCFUNC" 1633832 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-717 1632911 1632981 1633104 "MKRECORD" 1633235 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-716 1631958 1632120 1632348 "MKFUNC" 1632722 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-715 1631346 1631450 1631606 "MKFLCFN" 1631841 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-714 1630623 1630725 1630910 "MKBCFUNC" 1631239 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-713 1627298 1630177 1630313 "MINT" 1630507 T MINT (NIL) -8 NIL NIL NIL) (-712 1626110 1626353 1626630 "MHROWRED" 1627053 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-711 1621490 1624645 1625050 "MFLOAT" 1625725 T MFLOAT (NIL) -8 NIL NIL NIL) (-710 1620847 1620923 1621094 "MFINFACT" 1621402 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-709 1617162 1618010 1618894 "MESH" 1619983 T MESH (NIL) -7 NIL NIL NIL) (-708 1615552 1615864 1616217 "MDDFACT" 1616849 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-707 1612347 1614711 1614752 "MDAGG" 1615007 NIL MDAGG (NIL T) -9 NIL 1615150 NIL) (-706 1601994 1611640 1611847 "MCMPLX" 1612160 T MCMPLX (NIL) -8 NIL NIL NIL) (-705 1601131 1601277 1601478 "MCDEN" 1601843 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-704 1599021 1599291 1599671 "MCALCFN" 1600861 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-703 1597946 1598186 1598419 "MAYBE" 1598827 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-702 1595558 1596081 1596643 "MATSTOR" 1597417 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-701 1591515 1594930 1595178 "MATRIX" 1595343 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-700 1587281 1587988 1588724 "MATLIN" 1590872 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-699 1577387 1580573 1580650 "MATCAT" 1585530 NIL MATCAT (NIL T T T) -9 NIL 1586947 NIL) (-698 1573743 1574764 1576120 "MATCAT-" 1576125 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-697 1572337 1572490 1572823 "MATCAT2" 1573578 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-696 1570449 1570773 1571157 "MAPPKG3" 1572012 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-695 1569430 1569603 1569825 "MAPPKG2" 1570273 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-694 1567929 1568213 1568540 "MAPPKG1" 1569136 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-693 1567008 1567335 1567512 "MAPPAST" 1567772 T MAPPAST (NIL) -8 NIL NIL NIL) (-692 1566619 1566677 1566800 "MAPHACK3" 1566944 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-691 1566211 1566272 1566386 "MAPHACK2" 1566551 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-690 1565649 1565752 1565894 "MAPHACK1" 1566102 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-689 1563728 1564349 1564653 "MAGMA" 1565377 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-688 1563207 1563452 1563543 "MACROAST" 1563657 T MACROAST (NIL) -8 NIL NIL NIL) (-687 1559625 1561446 1561907 "M3D" 1562779 NIL M3D (NIL T) -8 NIL NIL NIL) (-686 1553700 1557964 1558005 "LZSTAGG" 1558787 NIL LZSTAGG (NIL T) -9 NIL 1559082 NIL) (-685 1549658 1550831 1552288 "LZSTAGG-" 1552293 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-684 1546745 1547549 1548036 "LWORD" 1549203 NIL LWORD (NIL T) -8 NIL NIL NIL) (-683 1546321 1546549 1546624 "LSTAST" 1546690 T LSTAST (NIL) -8 NIL NIL NIL) (-682 1539398 1546092 1546226 "LSQM" 1546231 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-681 1538622 1538761 1538989 "LSPP" 1539253 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-680 1536434 1536735 1537191 "LSMP" 1538311 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-679 1533213 1533887 1534617 "LSMP1" 1535736 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-678 1527059 1532350 1532391 "LSAGG" 1532453 NIL LSAGG (NIL T) -9 NIL 1532531 NIL) (-677 1523754 1524678 1525891 "LSAGG-" 1525896 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-676 1521353 1522898 1523147 "LPOLY" 1523549 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-675 1520935 1521020 1521143 "LPEFRAC" 1521262 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-674 1519256 1520029 1520282 "LO" 1520767 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1518908 1519020 1519048 "LOGIC" 1519159 T LOGIC (NIL) -9 NIL 1519240 NIL) (-672 1518770 1518793 1518864 "LOGIC-" 1518869 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-671 1517963 1518103 1518296 "LODOOPS" 1518626 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-670 1515386 1517879 1517945 "LODO" 1517950 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-669 1513924 1514159 1514512 "LODOF" 1515133 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-668 1510128 1512559 1512600 "LODOCAT" 1513038 NIL LODOCAT (NIL T) -9 NIL 1513249 NIL) (-667 1509861 1509919 1510046 "LODOCAT-" 1510051 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-666 1507181 1509702 1509820 "LODO2" 1509825 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-665 1504616 1507118 1507163 "LODO1" 1507168 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-664 1503497 1503662 1503967 "LODEEF" 1504439 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-663 1498800 1501691 1501732 "LNAGG" 1502594 NIL LNAGG (NIL T) -9 NIL 1503029 NIL) (-662 1497947 1498161 1498503 "LNAGG-" 1498508 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-661 1494083 1494872 1495511 "LMOPS" 1497362 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-660 1493486 1493874 1493915 "LMODULE" 1493920 NIL LMODULE (NIL T) -9 NIL 1493946 NIL) (-659 1490684 1493131 1493254 "LMDICT" 1493396 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-658 1490090 1490311 1490352 "LLINSET" 1490543 NIL LLINSET (NIL T) -9 NIL 1490634 NIL) (-657 1489789 1489998 1490058 "LITERAL" 1490063 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-656 1482952 1488723 1489027 "LIST" 1489518 NIL LIST (NIL T) -8 NIL NIL NIL) (-655 1482477 1482551 1482690 "LIST3" 1482872 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-654 1481484 1481662 1481890 "LIST2" 1482295 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-653 1479618 1479930 1480329 "LIST2MAP" 1481131 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-652 1479214 1479451 1479492 "LINSET" 1479497 NIL LINSET (NIL T) -9 NIL 1479531 NIL) (-651 1477943 1478476 1478517 "LINEXP" 1478868 NIL LINEXP (NIL T) -9 NIL 1479059 NIL) (-650 1476520 1476780 1477091 "LINDEP" 1477695 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1473287 1474006 1474783 "LIMITRF" 1475775 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1471590 1471886 1472295 "LIMITPS" 1472982 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1466018 1471101 1471329 "LIE" 1471411 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1464966 1465435 1465475 "LIECAT" 1465615 NIL LIECAT (NIL T) -9 NIL 1465766 NIL) (-645 1464807 1464834 1464922 "LIECAT-" 1464927 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1457394 1464347 1464503 "LIB" 1464671 T LIB (NIL) -8 NIL NIL NIL) (-643 1453029 1453912 1454847 "LGROBP" 1456511 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1451027 1451301 1451651 "LF" 1452750 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1449867 1450559 1450587 "LFCAT" 1450794 T LFCAT (NIL) -9 NIL 1450933 NIL) (-640 1446769 1447399 1448087 "LEXTRIPK" 1449231 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1443513 1444339 1444842 "LEXP" 1446349 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1442989 1443234 1443326 "LETAST" 1443441 T LETAST (NIL) -8 NIL NIL NIL) (-637 1441387 1441700 1442101 "LEADCDET" 1442671 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1440577 1440651 1440880 "LAZM3PK" 1441308 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1435494 1438654 1439192 "LAUPOL" 1440089 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1435073 1435117 1435278 "LAPLACE" 1435444 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1433012 1434174 1434425 "LA" 1434906 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1432006 1432590 1432631 "LALG" 1432693 NIL LALG (NIL T) -9 NIL 1432752 NIL) (-631 1431720 1431779 1431915 "LALG-" 1431920 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1431555 1431579 1431620 "KVTFROM" 1431682 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1430478 1430922 1431107 "KTVLOGIC" 1431390 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1430313 1430337 1430378 "KRCFROM" 1430440 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1429217 1429404 1429703 "KOVACIC" 1430113 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1429052 1429076 1429117 "KONVERT" 1429179 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1428887 1428911 1428952 "KOERCE" 1429014 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1426718 1427480 1427857 "KERNEL" 1428543 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1426214 1426295 1426427 "KERNEL2" 1426632 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1419984 1424753 1424807 "KDAGG" 1425184 NIL KDAGG (NIL T T) -9 NIL 1425390 NIL) (-621 1419513 1419637 1419842 "KDAGG-" 1419847 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1412661 1419174 1419329 "KAFILE" 1419391 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1407089 1412172 1412400 "JORDAN" 1412482 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1406468 1406738 1406859 "JOINAST" 1406988 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1406314 1406373 1406428 "JAVACODE" 1406433 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1402566 1404519 1404573 "IXAGG" 1405502 NIL IXAGG (NIL T T) -9 NIL 1405961 NIL) (-615 1401485 1401791 1402210 "IXAGG-" 1402215 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1397015 1401407 1401466 "IVECTOR" 1401471 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1395781 1396018 1396284 "ITUPLE" 1396782 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1394283 1394460 1394755 "ITRIGMNP" 1395603 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1393028 1393232 1393515 "ITFUN3" 1394059 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1392660 1392717 1392826 "ITFUN2" 1392965 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1391819 1392140 1392314 "ITFORM" 1392506 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1389780 1390839 1391117 "ITAYLOR" 1391574 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1378725 1383917 1385080 "ISUPS" 1388650 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1377829 1377969 1378205 "ISUMP" 1378572 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1373204 1377774 1377815 "ISTRING" 1377820 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1372680 1372925 1373017 "ISAST" 1373132 T ISAST (NIL) -8 NIL NIL NIL) (-603 1371889 1371971 1372187 "IRURPK" 1372594 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1370825 1371026 1371266 "IRSN" 1371669 T IRSN (NIL) -7 NIL NIL NIL) (-601 1368896 1369251 1369680 "IRRF2F" 1370463 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1368643 1368681 1368757 "IRREDFFX" 1368852 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1367258 1367517 1367816 "IROOT" 1368376 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1363862 1364942 1365634 "IR" 1366598 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1363067 1363355 1363506 "IRFORM" 1363731 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1360680 1361175 1361741 "IR2" 1362545 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1359780 1359893 1360107 "IR2F" 1360563 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1359571 1359605 1359665 "IPRNTPK" 1359740 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1356152 1359460 1359529 "IPF" 1359534 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1354479 1356077 1356134 "IPADIC" 1356139 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1353791 1354039 1354169 "IP4ADDR" 1354369 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1353165 1353420 1353552 "IOMODE" 1353679 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1352238 1352762 1352889 "IOBFILE" 1353058 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1351726 1352142 1352170 "IOBCON" 1352175 T IOBCON (NIL) -9 NIL 1352196 NIL) (-587 1351237 1351295 1351478 "INVLAPLA" 1351662 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1340885 1343239 1345625 "INTTR" 1348901 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1337220 1337962 1338827 "INTTOOLS" 1340070 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1336806 1336897 1337014 "INTSLPE" 1337123 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1334759 1336729 1336788 "INTRVL" 1336793 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1332361 1332873 1333448 "INTRF" 1334244 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1331772 1331869 1332011 "INTRET" 1332259 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1329769 1330158 1330628 "INTRAT" 1331380 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1327032 1327615 1328234 "INTPM" 1329254 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1323777 1324376 1325114 "INTPAF" 1326418 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1318956 1319918 1320969 "INTPACK" 1322746 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1315854 1318753 1318862 "INT" 1318867 T INT (NIL) -8 NIL NIL NIL) (-575 1315106 1315258 1315466 "INTHERTR" 1315696 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1314545 1314625 1314813 "INTHERAL" 1315020 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1312391 1312834 1313291 "INTHEORY" 1314108 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1303797 1305418 1307190 "INTG0" 1310743 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1284370 1289160 1293970 "INTFTBL" 1299007 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1283619 1283757 1283930 "INTFACT" 1284229 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1281046 1281492 1282049 "INTEF" 1283173 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1279413 1280152 1280180 "INTDOM" 1280481 T INTDOM (NIL) -9 NIL 1280688 NIL) (-567 1278782 1278956 1279198 "INTDOM-" 1279203 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1275170 1277098 1277152 "INTCAT" 1277951 NIL INTCAT (NIL T) -9 NIL 1278272 NIL) (-565 1274642 1274745 1274873 "INTBIT" 1275062 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1273341 1273495 1273802 "INTALG" 1274487 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1272824 1272914 1273071 "INTAF" 1273245 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1266167 1272634 1272774 "INTABL" 1272779 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1265500 1265966 1266031 "INT8" 1266065 T INT8 (NIL) -8 NIL NIL 1266110) (-560 1264832 1265298 1265363 "INT64" 1265397 T INT64 (NIL) -8 NIL NIL 1265442) (-559 1264164 1264630 1264695 "INT32" 1264729 T INT32 (NIL) -8 NIL NIL 1264774) (-558 1263496 1263962 1264027 "INT16" 1264061 T INT16 (NIL) -8 NIL NIL 1264106) (-557 1258291 1261057 1261085 "INS" 1262019 T INS (NIL) -9 NIL 1262684 NIL) (-556 1255531 1256302 1257276 "INS-" 1257349 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1254306 1254533 1254831 "INPSIGN" 1255284 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1253424 1253541 1253738 "INPRODPF" 1254186 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1252318 1252435 1252672 "INPRODFF" 1253304 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1251318 1251470 1251730 "INNMFACT" 1252154 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1250515 1250612 1250800 "INMODGCD" 1251217 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1249023 1249268 1249592 "INFSP" 1250260 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1248207 1248324 1248507 "INFPROD0" 1248903 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1245062 1246272 1246787 "INFORM" 1247700 T INFORM (NIL) -8 NIL NIL NIL) (-547 1244672 1244732 1244830 "INFORM1" 1244997 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1244195 1244284 1244398 "INFINITY" 1244578 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1243371 1243915 1244016 "INETCLTS" 1244114 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1241987 1242237 1242558 "INEP" 1243119 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1241236 1241884 1241949 "INDE" 1241954 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1240800 1240868 1240985 "INCRMAPS" 1241163 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1239618 1240069 1240275 "INBFILE" 1240614 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1234917 1235854 1236798 "INBFF" 1238706 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1233825 1234094 1234122 "INBCON" 1234635 T INBCON (NIL) -9 NIL 1234901 NIL) (-538 1233077 1233300 1233576 "INBCON-" 1233581 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1232556 1232801 1232892 "INAST" 1233006 T INAST (NIL) -8 NIL NIL NIL) (-536 1231983 1232235 1232341 "IMPTAST" 1232470 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1228429 1231827 1231931 "IMATRIX" 1231936 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1227137 1227260 1227576 "IMATQF" 1228285 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1225357 1225584 1225921 "IMATLIN" 1226893 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1219935 1225281 1225339 "ILIST" 1225344 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1217840 1219795 1219908 "IIARRAY2" 1219913 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1213238 1217751 1217815 "IFF" 1217820 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1212585 1212855 1212971 "IFAST" 1213142 T IFAST (NIL) -8 NIL NIL NIL) (-528 1207580 1211877 1212065 "IFARRAY" 1212442 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1206760 1207484 1207557 "IFAMON" 1207562 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1206344 1206409 1206463 "IEVALAB" 1206670 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1206019 1206087 1206247 "IEVALAB-" 1206252 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1205650 1205933 1205996 "IDPO" 1206001 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1204900 1205539 1205614 "IDPOAMS" 1205619 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1204207 1204789 1204864 "IDPOAM" 1204869 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1203266 1203542 1203595 "IDPC" 1204008 NIL IDPC (NIL T T) -9 NIL 1204157 NIL) (-520 1202735 1203158 1203231 "IDPAM" 1203236 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1202111 1202627 1202700 "IDPAG" 1202705 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1201756 1201947 1202022 "IDENT" 1202056 T IDENT (NIL) -8 NIL NIL NIL) (-517 1198011 1198859 1199754 "IDECOMP" 1200913 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1190848 1191934 1192981 "IDEAL" 1197047 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1190008 1190120 1190320 "ICDEN" 1190732 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1189079 1189488 1189635 "ICARD" 1189881 T ICARD (NIL) -8 NIL NIL NIL) (-513 1187139 1187452 1187857 "IBPTOOLS" 1188756 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1182746 1186759 1186872 "IBITS" 1187058 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1179469 1180045 1180740 "IBATOOL" 1182163 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1177248 1177710 1178243 "IBACHIN" 1179004 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1175077 1177094 1177197 "IARRAY2" 1177202 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1171183 1175003 1175060 "IARRAY1" 1175065 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1165221 1169595 1170076 "IAN" 1170722 T IAN (NIL) -8 NIL NIL NIL) (-506 1164732 1164789 1164962 "IALGFACT" 1165158 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1164260 1164373 1164401 "HYPCAT" 1164608 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1163798 1163915 1164101 "HYPCAT-" 1164106 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1163393 1163593 1163676 "HOSTNAME" 1163735 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1163238 1163275 1163316 "HOMOTOP" 1163321 NIL HOMOTOP (NIL T) -9 NIL 1163354 NIL) (-501 1159870 1161248 1161289 "HOAGG" 1162270 NIL HOAGG (NIL T) -9 NIL 1162949 NIL) (-500 1158464 1158863 1159389 "HOAGG-" 1159394 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1152373 1158057 1158207 "HEXADEC" 1158334 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1151121 1151343 1151606 "HEUGCD" 1152150 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1150197 1150958 1151088 "HELLFDIV" 1151093 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1148376 1149974 1150062 "HEAP" 1150141 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1147639 1147928 1148062 "HEADAST" 1148262 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1141658 1147554 1147616 "HDP" 1147621 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1135557 1141293 1141445 "HDMP" 1141559 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1134881 1135021 1135185 "HB" 1135413 T HB (NIL) -7 NIL NIL NIL) (-491 1128267 1134727 1134831 "HASHTBL" 1134836 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1127743 1127988 1128080 "HASAST" 1128195 T HASAST (NIL) -8 NIL NIL NIL) (-489 1125521 1127365 1127547 "HACKPI" 1127581 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1121189 1125374 1125487 "GTSET" 1125492 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1114604 1121067 1121165 "GSTBL" 1121170 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1106882 1113635 1113900 "GSERIES" 1114395 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1106023 1106440 1106468 "GROUP" 1106671 T GROUP (NIL) -9 NIL 1106805 NIL) (-484 1105389 1105548 1105799 "GROUP-" 1105804 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1103756 1104077 1104464 "GROEBSOL" 1105066 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1102670 1102958 1103009 "GRMOD" 1103538 NIL GRMOD (NIL T T) -9 NIL 1103706 NIL) (-481 1102438 1102474 1102602 "GRMOD-" 1102607 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1097728 1098792 1099792 "GRIMAGE" 1101458 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1096194 1096455 1096779 "GRDEF" 1097424 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1095638 1095754 1095895 "GRAY" 1096073 T GRAY (NIL) -7 NIL NIL NIL) (-477 1094825 1095231 1095282 "GRALG" 1095435 NIL GRALG (NIL T T) -9 NIL 1095528 NIL) (-476 1094486 1094559 1094722 "GRALG-" 1094727 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1091263 1094071 1094249 "GPOLSET" 1094393 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1090617 1090674 1090932 "GOSPER" 1091200 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1086349 1087055 1087581 "GMODPOL" 1090316 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1085354 1085538 1085776 "GHENSEL" 1086161 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1079510 1080353 1081373 "GENUPS" 1084438 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1079207 1079258 1079347 "GENUFACT" 1079453 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1078619 1078696 1078861 "GENPGCD" 1079125 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1078093 1078128 1078341 "GENMFACT" 1078578 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1076659 1076916 1077223 "GENEEZ" 1077836 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1070718 1076270 1076432 "GDMP" 1076582 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1060061 1064489 1065595 "GCNAALG" 1069701 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1058388 1059250 1059278 "GCDDOM" 1059533 T GCDDOM (NIL) -9 NIL 1059690 NIL) (-463 1057858 1057985 1058200 "GCDDOM-" 1058205 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1056530 1056715 1057019 "GB" 1057637 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1045146 1047476 1049868 "GBINTERN" 1054221 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1042983 1043275 1043696 "GBF" 1044821 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1041764 1041929 1042196 "GBEUCLID" 1042799 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1041113 1041238 1041387 "GAUSSFAC" 1041635 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1039480 1039782 1040096 "GALUTIL" 1040832 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1037788 1038062 1038386 "GALPOLYU" 1039207 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1035153 1035443 1035850 "GALFACTU" 1037485 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1026959 1028458 1030066 "GALFACT" 1033585 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1024347 1025005 1025033 "FVFUN" 1026189 T FVFUN (NIL) -9 NIL 1026909 NIL) (-452 1023613 1023795 1023823 "FVC" 1024114 T FVC (NIL) -9 NIL 1024297 NIL) (-451 1023256 1023438 1023506 "FUNDESC" 1023565 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1022871 1023053 1023134 "FUNCTION" 1023208 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1020615 1021193 1021659 "FT" 1022425 T FT (NIL) -8 NIL NIL NIL) (-448 1019406 1019916 1020119 "FTEM" 1020432 T FTEM (NIL) -8 NIL NIL NIL) (-447 1017697 1017986 1018383 "FSUPFACT" 1019097 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1016094 1016383 1016715 "FST" 1017385 T FST (NIL) -8 NIL NIL NIL) (-445 1015293 1015399 1015587 "FSRED" 1015976 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1013992 1014248 1014595 "FSPRMELT" 1015008 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1011298 1011736 1012222 "FSPECF" 1013555 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 992600 1001072 1001113 "FS" 1004997 NIL FS (NIL T) -9 NIL 1007286 NIL) (-441 981243 984236 988293 "FS-" 988593 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 980771 980825 980995 "FSINT" 981184 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 979063 979764 980067 "FSERIES" 980550 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 978105 978221 978445 "FSCINT" 978943 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 974313 977049 977090 "FSAGG" 977460 NIL FSAGG (NIL T) -9 NIL 977719 NIL) (-436 972075 972676 973472 "FSAGG-" 973567 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 971117 971260 971487 "FSAGG2" 971928 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 968795 969075 969623 "FS2UPS" 970835 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 968429 968472 968601 "FS2" 968746 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 967307 967478 967780 "FS2EXPXP" 968254 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 966733 966848 967000 "FRUTIL" 967187 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 958146 962228 963586 "FR" 965407 NIL FR (NIL T) -8 NIL NIL NIL) (-429 953160 955835 955875 "FRNAALG" 957195 NIL FRNAALG (NIL T) -9 NIL 957793 NIL) (-428 948833 949909 951184 "FRNAALG-" 951934 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 948471 948514 948641 "FRNAAF2" 948784 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 946846 947320 947616 "FRMOD" 948283 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 944589 945221 945539 "FRIDEAL" 946637 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 943780 943867 944158 "FRIDEAL2" 944496 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 942913 943327 943368 "FRETRCT" 943373 NIL FRETRCT (NIL T) -9 NIL 943549 NIL) (-422 942025 942256 942607 "FRETRCT-" 942612 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 939113 940323 940382 "FRAMALG" 941264 NIL FRAMALG (NIL T T) -9 NIL 941556 NIL) (-420 937247 937702 938332 "FRAMALG-" 938555 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 931077 936720 936997 "FRAC" 937002 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 930713 930770 930877 "FRAC2" 931014 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 930349 930406 930513 "FR2" 930650 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 924862 927755 927783 "FPS" 928902 T FPS (NIL) -9 NIL 929459 NIL) (-415 924311 924420 924584 "FPS-" 924730 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 921613 923282 923310 "FPC" 923535 T FPC (NIL) -9 NIL 923677 NIL) (-413 921406 921446 921543 "FPC-" 921548 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 920196 920894 920935 "FPATMAB" 920940 NIL FPATMAB (NIL T) -9 NIL 921092 NIL) (-411 917869 918372 918798 "FPARFRAC" 919833 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 913263 913761 914443 "FORTRAN" 917301 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 910979 911479 912018 "FORT" 912744 T FORT (NIL) -7 NIL NIL NIL) (-408 908655 909217 909245 "FORTFN" 910305 T FORTFN (NIL) -9 NIL 910929 NIL) (-407 908419 908469 908497 "FORTCAT" 908556 T FORTCAT (NIL) -9 NIL 908618 NIL) (-406 906525 907035 907425 "FORMULA" 908049 T FORMULA (NIL) -8 NIL NIL NIL) (-405 906313 906343 906412 "FORMULA1" 906489 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 905836 905888 906061 "FORDER" 906255 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 904932 905096 905289 "FOP" 905663 T FOP (NIL) -7 NIL NIL NIL) (-402 903513 904212 904386 "FNLA" 904814 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 902242 902657 902685 "FNCAT" 903145 T FNCAT (NIL) -9 NIL 903405 NIL) (-400 901781 902201 902229 "FNAME" 902234 T FNAME (NIL) -8 NIL NIL NIL) (-399 900344 901307 901335 "FMTC" 901340 T FMTC (NIL) -9 NIL 901376 NIL) (-398 899090 900280 900326 "FMONOID" 900331 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 895918 897086 897127 "FMONCAT" 898344 NIL FMONCAT (NIL T) -9 NIL 898949 NIL) (-396 895110 895660 895809 "FM" 895814 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 892534 893180 893208 "FMFUN" 894352 T FMFUN (NIL) -9 NIL 895060 NIL) (-394 891803 891984 892012 "FMC" 892302 T FMC (NIL) -9 NIL 892484 NIL) (-393 888882 889742 889796 "FMCAT" 890991 NIL FMCAT (NIL T T) -9 NIL 891486 NIL) (-392 887748 888648 888748 "FM1" 888827 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 885522 885938 886432 "FLOATRP" 887299 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 879100 883251 883872 "FLOAT" 884921 T FLOAT (NIL) -8 NIL NIL NIL) (-389 876538 877038 877616 "FLOATCP" 878567 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 875385 876144 876185 "FLINEXP" 876190 NIL FLINEXP (NIL T) -9 NIL 876283 NIL) (-387 874317 874614 875022 "FLINEXP-" 875027 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 873393 873537 873761 "FLASORT" 874169 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 870509 871377 871429 "FLALG" 872656 NIL FLALG (NIL T T) -9 NIL 873123 NIL) (-384 864213 867965 868006 "FLAGG" 869268 NIL FLAGG (NIL T) -9 NIL 869920 NIL) (-383 862939 863278 863768 "FLAGG-" 863773 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 861981 862124 862351 "FLAGG2" 862792 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 858832 859840 859899 "FINRALG" 861027 NIL FINRALG (NIL T T) -9 NIL 861535 NIL) (-380 857992 858221 858560 "FINRALG-" 858565 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 857372 857611 857639 "FINITE" 857835 T FINITE (NIL) -9 NIL 857942 NIL) (-378 849729 851916 851956 "FINAALG" 855623 NIL FINAALG (NIL T) -9 NIL 857076 NIL) (-377 845061 846111 847255 "FINAALG-" 848634 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 844429 844816 844919 "FILE" 844991 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 843087 843425 843479 "FILECAT" 844163 NIL FILECAT (NIL T T) -9 NIL 844379 NIL) (-374 840803 842331 842359 "FIELD" 842399 T FIELD (NIL) -9 NIL 842479 NIL) (-373 839423 839808 840319 "FIELD-" 840324 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 837273 838058 838405 "FGROUP" 839109 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 836363 836527 836747 "FGLMICPK" 837105 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 832195 836288 836345 "FFX" 836350 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 831796 831857 831992 "FFSLPE" 832128 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 827786 828568 829364 "FFPOLY" 831032 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 827290 827326 827535 "FFPOLY2" 827744 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 823136 827209 827272 "FFP" 827277 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 818534 823047 823111 "FF" 823116 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 813660 817877 818067 "FFNBX" 818388 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 808588 812795 813053 "FFNBP" 813514 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 803221 807872 808083 "FFNB" 808421 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 802053 802251 802566 "FFINTBAS" 803018 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 798079 800300 800328 "FFIELDC" 800948 T FFIELDC (NIL) -9 NIL 801324 NIL) (-359 796741 797112 797609 "FFIELDC-" 797614 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 796310 796356 796480 "FFHOM" 796683 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 794005 794492 795009 "FFF" 795825 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 789623 793747 793848 "FFCGX" 793948 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 785245 789355 789462 "FFCGP" 789566 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 780428 784972 785080 "FFCG" 785181 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 761131 770317 770403 "FFCAT" 775568 NIL FFCAT (NIL T T T) -9 NIL 777019 NIL) (-352 756328 757376 758690 "FFCAT-" 759920 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 755739 755782 756017 "FFCAT2" 756279 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 745062 748711 749931 "FEXPR" 754591 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 744024 744459 744500 "FEVALAB" 744584 NIL FEVALAB (NIL T) -9 NIL 744845 NIL) (-348 743183 743393 743731 "FEVALAB-" 743736 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 741749 742566 742769 "FDIV" 743082 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 738769 739510 739625 "FDIVCAT" 741193 NIL FDIVCAT (NIL T T T T) -9 NIL 741630 NIL) (-345 738531 738558 738728 "FDIVCAT-" 738733 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 737751 737838 738115 "FDIV2" 738438 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 736725 737046 737248 "FCTRDATA" 737569 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 735411 735670 735959 "FCPAK1" 736456 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 734510 734911 735052 "FCOMP" 735302 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 718215 721660 725198 "FC" 730992 T FC (NIL) -8 NIL NIL NIL) (-339 710494 714522 714562 "FAXF" 716364 NIL FAXF (NIL T) -9 NIL 717056 NIL) (-338 707771 708428 709253 "FAXF-" 709718 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 702823 707147 707323 "FARRAY" 707628 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 697717 699784 699837 "FAMR" 700860 NIL FAMR (NIL T T) -9 NIL 701320 NIL) (-335 696607 696909 697344 "FAMR-" 697349 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 695776 696529 696582 "FAMONOID" 696587 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 693562 694272 694325 "FAMONC" 695266 NIL FAMONC (NIL T T) -9 NIL 695652 NIL) (-332 692226 693316 693453 "FAGROUP" 693458 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 690021 690340 690743 "FACUTIL" 691907 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 689120 689305 689527 "FACTFUNC" 689831 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 681542 688423 688622 "EXPUPXS" 688976 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 679025 679565 680151 "EXPRTUBE" 680976 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 675296 675888 676618 "EXPRODE" 678364 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 661015 673945 674374 "EXPR" 674900 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 655569 656156 656962 "EXPR2UPS" 660313 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 655201 655258 655367 "EXPR2" 655506 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 646454 654352 654643 "EXPEXPAN" 655037 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 646254 646411 646440 "EXIT" 646445 T EXIT (NIL) -8 NIL NIL NIL) (-321 645734 645978 646069 "EXITAST" 646183 T EXITAST (NIL) -8 NIL NIL NIL) (-320 645361 645423 645536 "EVALCYC" 645666 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 644902 645020 645061 "EVALAB" 645231 NIL EVALAB (NIL T) -9 NIL 645335 NIL) (-318 644383 644505 644726 "EVALAB-" 644731 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 641751 643053 643081 "EUCDOM" 643636 T EUCDOM (NIL) -9 NIL 643986 NIL) (-316 640156 640598 641188 "EUCDOM-" 641193 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 627695 630454 633204 "ESTOOLS" 637426 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 627327 627384 627493 "ESTOOLS2" 627632 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 627078 627120 627200 "ESTOOLS1" 627279 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 621115 622723 622751 "ES" 625519 T ES (NIL) -9 NIL 626929 NIL) (-311 616062 617349 619166 "ES-" 619330 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 612436 613197 613977 "ESCONT" 615302 T ESCONT (NIL) -7 NIL NIL NIL) (-309 612181 612213 612295 "ESCONT1" 612398 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 611856 611906 612006 "ES2" 612125 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 611486 611544 611653 "ES1" 611792 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 610702 610831 611007 "ERROR" 611330 T ERROR (NIL) -7 NIL NIL NIL) (-305 604094 610561 610652 "EQTBL" 610657 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 596597 599408 600857 "EQ" 602678 NIL -3094 (NIL T) -8 NIL NIL NIL) (-303 596229 596286 596395 "EQ2" 596534 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 591520 592567 593660 "EP" 595168 NIL EP (NIL T) -7 NIL NIL NIL) (-301 590120 590411 590717 "ENV" 591234 T ENV (NIL) -8 NIL NIL NIL) (-300 589214 589768 589796 "ENTIRER" 589801 T ENTIRER (NIL) -9 NIL 589847 NIL) (-299 585908 587396 587757 "EMR" 589022 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 585038 585223 585277 "ELTAGG" 585657 NIL ELTAGG (NIL T T) -9 NIL 585868 NIL) (-297 584757 584819 584960 "ELTAGG-" 584965 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 584521 584550 584604 "ELTAB" 584688 NIL ELTAB (NIL T T) -9 NIL 584740 NIL) (-295 583647 583793 583992 "ELFUTS" 584372 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 583389 583445 583473 "ELEMFUN" 583578 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 583259 583280 583348 "ELEMFUN-" 583353 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 578073 581329 581370 "ELAGG" 582310 NIL ELAGG (NIL T) -9 NIL 582773 NIL) (-291 576358 576792 577455 "ELAGG-" 577460 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 575670 575807 575963 "ELABOR" 576222 T ELABOR (NIL) -8 NIL NIL NIL) (-289 574331 574610 574904 "ELABEXPR" 575396 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 567165 568968 569797 "EFUPXS" 573606 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 560613 562414 563225 "EFULS" 566440 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 558098 558456 558928 "EFSTRUC" 560245 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 547889 549455 551003 "EF" 556613 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 546963 547374 547523 "EAB" 547760 T EAB (NIL) -8 NIL NIL NIL) (-283 546145 546922 546950 "E04UCFA" 546955 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 545327 546104 546132 "E04NAFA" 546137 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 544509 545286 545314 "E04MBFA" 545319 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 543691 544468 544496 "E04JAFA" 544501 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 542875 543650 543678 "E04GCFA" 543683 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 542059 542834 542862 "E04FDFA" 542867 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 541241 542018 542046 "E04DGFA" 542051 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 535414 536766 538130 "E04AGNT" 539897 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 534185 534728 534768 "DVARCAT" 535109 NIL DVARCAT (NIL T) -9 NIL 535272 NIL) (-274 533389 533601 533915 "DVARCAT-" 533920 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 526437 533188 533317 "DSMP" 533322 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 524860 525579 525620 "DSEXT" 525983 NIL DSEXT (NIL T) -9 NIL 526277 NIL) (-271 523145 523573 524239 "DSEXT-" 524244 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 517926 519090 520158 "DROPT" 522097 T DROPT (NIL) -8 NIL NIL NIL) (-269 517591 517650 517748 "DROPT1" 517861 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 512706 513832 514969 "DROPT0" 516474 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 511051 511376 511762 "DRAWPT" 512340 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 505638 506561 507640 "DRAW" 510025 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 505271 505324 505442 "DRAWHACK" 505579 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 504002 504271 504562 "DRAWCX" 505000 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 503517 503586 503737 "DRAWCURV" 503928 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 493985 495947 498062 "DRAWCFUN" 501422 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 490749 492678 492719 "DQAGG" 493348 NIL DQAGG (NIL T) -9 NIL 493622 NIL) (-260 478551 485110 485193 "DPOLCAT" 487045 NIL DPOLCAT (NIL T T T T) -9 NIL 487590 NIL) (-259 473388 474736 476694 "DPOLCAT-" 476699 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 467694 473249 473347 "DPMO" 473352 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 461903 467474 467641 "DPMM" 467646 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 461473 461687 461776 "DOMTMPLT" 461834 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 460906 461275 461355 "DOMCTOR" 461413 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 460118 460386 460537 "DOMAIN" 460775 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 454017 459753 459905 "DMP" 460019 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 453617 453673 453817 "DLP" 453955 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 447439 452944 453134 "DLIST" 453459 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 444236 446292 446333 "DLAGG" 446883 NIL DLAGG (NIL T) -9 NIL 447113 NIL) (-249 442912 443576 443604 "DIVRING" 443696 T DIVRING (NIL) -9 NIL 443779 NIL) (-248 442149 442339 442639 "DIVRING-" 442644 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 440251 440608 441014 "DISPLAY" 441763 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 434290 440165 440228 "DIRPROD" 440233 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 433138 433341 433606 "DIRPROD2" 434083 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 422340 428197 428250 "DIRPCAT" 428508 NIL DIRPCAT (NIL NIL T) -9 NIL 429383 NIL) (-243 419444 420148 421109 "DIRPCAT-" 421446 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 418731 418891 419077 "DIOSP" 419278 T DIOSP (NIL) -7 NIL NIL NIL) (-241 415386 417643 417684 "DIOPS" 418118 NIL DIOPS (NIL T) -9 NIL 418347 NIL) (-240 414935 415049 415240 "DIOPS-" 415245 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 413986 414614 414642 "DIFRING" 414647 T DIFRING (NIL) -9 NIL 414669 NIL) (-238 413658 413732 413760 "DIFFSPC" 413879 T DIFFSPC (NIL) -9 NIL 413954 NIL) (-237 413303 413381 413533 "DIFFSPC-" 413538 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-236 412459 412937 412977 "DIFFMOD" 412982 NIL DIFFMOD (NIL T) -9 NIL 413009 NIL) (-235 412167 412212 412253 "DIFFDOM" 412374 NIL DIFFDOM (NIL T) -9 NIL 412442 NIL) (-234 412020 412044 412128 "DIFFDOM-" 412133 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 409553 410825 410866 "DIFEXT" 411229 NIL DIFEXT (NIL T) -9 NIL 411523 NIL) (-232 407838 408266 408932 "DIFEXT-" 408937 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 405113 407370 407411 "DIAGG" 407416 NIL DIAGG (NIL T) -9 NIL 407436 NIL) (-230 404497 404654 404906 "DIAGG-" 404911 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 399914 403456 403733 "DHMATRIX" 404266 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 395526 396435 397445 "DFSFUN" 398924 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 390606 394457 394769 "DFLOAT" 395234 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 388869 389150 389539 "DFINTTLS" 390314 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 385898 386890 387290 "DERHAM" 388535 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 383699 385673 385762 "DEQUEUE" 385842 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 382953 383086 383269 "DEGRED" 383561 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 379383 380128 380974 "DEFINTRF" 382181 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 376938 377407 377999 "DEFINTEF" 378902 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 376288 376558 376673 "DEFAST" 376843 T DEFAST (NIL) -8 NIL NIL NIL) (-219 370197 375881 376031 "DECIMAL" 376158 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 367709 368167 368673 "DDFACT" 369741 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 367305 367348 367499 "DBLRESP" 367660 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 365173 365535 365896 "DBASE" 367071 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 364415 364653 364799 "DATAARY" 365072 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 363521 364374 364402 "D03FAFA" 364407 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 362628 363480 363508 "D03EEFA" 363513 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 360578 361044 361533 "D03AGNT" 362159 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 359867 360537 360565 "D02EJFA" 360570 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 359156 359826 359854 "D02CJFA" 359859 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 358445 359115 359143 "D02BHFA" 359148 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 357734 358404 358432 "D02BBFA" 358437 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 350931 352520 354126 "D02AGNT" 356148 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 348699 349222 349768 "D01WGTS" 350405 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 347766 348658 348686 "D01TRNS" 348691 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 346834 347725 347753 "D01GBFA" 347758 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 345902 346793 346821 "D01FCFA" 346826 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 344970 345861 345889 "D01ASFA" 345894 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 344038 344929 344957 "D01AQFA" 344962 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 343106 343997 344025 "D01APFA" 344030 T D01APFA (NIL) -8 NIL NIL NIL) (-199 342174 343065 343093 "D01ANFA" 343098 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 341242 342133 342161 "D01AMFA" 342166 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 340310 341201 341229 "D01ALFA" 341234 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 339378 340269 340297 "D01AKFA" 340302 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 338446 339337 339365 "D01AJFA" 339370 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 331741 333294 334855 "D01AGNT" 336905 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 331078 331206 331358 "CYCLOTOM" 331609 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 327811 328526 329253 "CYCLES" 330371 T CYCLES (NIL) -7 NIL NIL NIL) (-191 327123 327257 327428 "CVMP" 327672 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 324964 325222 325591 "CTRIGMNP" 326851 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 324400 324758 324831 "CTOR" 324911 T CTOR (NIL) -8 NIL NIL NIL) (-188 323909 324131 324232 "CTORKIND" 324319 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 323200 323516 323544 "CTORCAT" 323726 T CTORCAT (NIL) -9 NIL 323839 NIL) (-186 322798 322909 323068 "CTORCAT-" 323073 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 322260 322472 322580 "CTORCALL" 322722 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 321634 321733 321886 "CSTTOOLS" 322157 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 317433 318090 318848 "CRFP" 320946 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 316908 317154 317246 "CRCEAST" 317361 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 315955 316140 316368 "CRAPACK" 316712 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 315339 315440 315644 "CPMATCH" 315831 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 315064 315092 315198 "CPIMA" 315305 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 311412 312084 312803 "COORDSYS" 314399 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 310824 310945 311087 "CONTOUR" 311290 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 306715 308827 309319 "CONTFRAC" 310364 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 306595 306616 306644 "CONDUIT" 306681 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 305683 306237 306265 "COMRING" 306270 T COMRING (NIL) -9 NIL 306322 NIL) (-173 304737 305041 305225 "COMPPROP" 305519 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 304398 304433 304561 "COMPLPAT" 304696 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 294600 304207 304316 "COMPLEX" 304321 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 294236 294293 294400 "COMPLEX2" 294537 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 293575 293696 293856 "COMPILER" 294096 T COMPILER (NIL) -8 NIL NIL NIL) (-168 293293 293328 293426 "COMPFACT" 293534 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 277046 287131 287171 "COMPCAT" 288175 NIL COMPCAT (NIL T) -9 NIL 289523 NIL) (-166 266336 269325 273032 "COMPCAT-" 273388 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 266065 266093 266196 "COMMUPC" 266302 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265859 265893 265952 "COMMONOP" 266026 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 265415 265610 265697 "COMM" 265792 T COMM (NIL) -8 NIL NIL NIL) (-162 264991 265219 265294 "COMMAAST" 265360 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 264240 264434 264462 "COMBOPC" 264800 T COMBOPC (NIL) -9 NIL 264975 NIL) (-160 263136 263346 263588 "COMBINAT" 264030 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 259593 260167 260794 "COMBF" 262558 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 258351 258709 258944 "COLOR" 259378 T COLOR (NIL) -8 NIL NIL NIL) (-157 257827 258072 258164 "COLONAST" 258279 T COLONAST (NIL) -8 NIL NIL NIL) (-156 257467 257514 257639 "CMPLXRT" 257774 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256915 257167 257266 "CLLCTAST" 257388 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 252417 253445 254525 "CLIP" 255855 T CLIP (NIL) -7 NIL NIL NIL) (-153 250758 251518 251758 "CLIF" 252244 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246933 248904 248945 "CLAGG" 249874 NIL CLAGG (NIL T) -9 NIL 250410 NIL) (-151 245355 245812 246395 "CLAGG-" 246400 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244899 244984 245124 "CINTSLPE" 245264 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 242400 242871 243419 "CHVAR" 244427 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 241574 242128 242156 "CHARZ" 242161 T CHARZ (NIL) -9 NIL 242176 NIL) (-147 241328 241368 241446 "CHARPOL" 241528 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 240386 240973 241001 "CHARNZ" 241048 T CHARNZ (NIL) -9 NIL 241104 NIL) (-145 238292 239040 239393 "CHAR" 240053 T CHAR (NIL) -8 NIL NIL NIL) (-144 238018 238079 238107 "CFCAT" 238218 T CFCAT (NIL) -9 NIL NIL NIL) (-143 237259 237370 237553 "CDEN" 237902 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 233224 236412 236692 "CCLASS" 236999 T CCLASS (NIL) -8 NIL NIL NIL) (-141 232475 232632 232809 "CATEGORY" 233067 T -10 (NIL) -8 NIL NIL NIL) (-140 232048 232394 232442 "CATCTOR" 232447 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 231499 231751 231849 "CATAST" 231970 T CATAST (NIL) -8 NIL NIL NIL) (-138 230975 231220 231312 "CASEAST" 231427 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226113 227132 227876 "CARTEN" 230287 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225221 225369 225590 "CARTEN2" 225960 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223537 224371 224628 "CARD" 224984 T CARD (NIL) -8 NIL NIL NIL) (-134 223113 223341 223416 "CAPSLAST" 223482 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 222617 222825 222853 "CACHSET" 222985 T CACHSET (NIL) -9 NIL 223063 NIL) (-132 222087 222409 222437 "CABMON" 222487 T CABMON (NIL) -9 NIL 222543 NIL) (-131 221560 221791 221901 "BYTEORD" 221997 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 220537 221089 221231 "BYTE" 221394 T BYTE (NIL) -8 NIL NIL 221516) (-129 215887 220042 220214 "BYTEBUF" 220385 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 213396 215579 215686 "BTREE" 215813 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210845 213044 213166 "BTOURN" 213306 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 208215 210315 210356 "BTCAT" 210424 NIL BTCAT (NIL T) -9 NIL 210501 NIL) (-125 207882 207962 208111 "BTCAT-" 208116 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 203261 207141 207169 "BTAGG" 207283 T BTAGG (NIL) -9 NIL 207393 NIL) (-123 202751 202876 203082 "BTAGG-" 203087 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 199746 202029 202244 "BSTREE" 202568 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198884 199010 199194 "BRILL" 199602 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 195536 197610 197651 "BRAGG" 198300 NIL BRAGG (NIL T) -9 NIL 198558 NIL) (-119 194065 194471 195026 "BRAGG-" 195031 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 187189 193409 193594 "BPADICRT" 193912 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 185504 187126 187171 "BPADIC" 187176 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 185202 185232 185346 "BOUNDZRO" 185468 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 180430 181628 182540 "BOP" 184310 T BOP (NIL) -8 NIL NIL NIL) (-114 178211 178615 179090 "BOP1" 179988 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177912 177973 178001 "BOOLE" 178112 T BOOLE (NIL) -9 NIL 178194 NIL) (-112 176737 177486 177635 "BOOLEAN" 177783 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 176016 176420 176474 "BMODULE" 176479 NIL BMODULE (NIL T T) -9 NIL 176544 NIL) (-110 171817 175814 175887 "BITS" 175963 T BITS (NIL) -8 NIL NIL NIL) (-109 171238 171357 171497 "BINDING" 171697 T BINDING (NIL) -8 NIL NIL NIL) (-108 165150 170833 170982 "BINARY" 171109 T BINARY (NIL) -8 NIL NIL NIL) (-107 162930 164405 164446 "BGAGG" 164706 NIL BGAGG (NIL T) -9 NIL 164843 NIL) (-106 162761 162793 162884 "BGAGG-" 162889 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161832 162145 162350 "BFUNCT" 162576 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160522 160700 160988 "BEZOUT" 161656 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156991 159374 159704 "BBTREE" 160225 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156725 156778 156806 "BASTYPE" 156925 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156577 156606 156679 "BASTYPE-" 156684 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 156011 156087 156239 "BALFACT" 156488 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154867 155426 155612 "AUTOMOR" 155856 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154593 154598 154624 "ATTREG" 154629 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152845 153290 153642 "ATTRBUT" 154259 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152453 152673 152739 "ATTRAST" 152797 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151989 152102 152128 "ATRIG" 152329 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151798 151839 151926 "ATRIG-" 151931 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151443 151629 151655 "ASTCAT" 151660 T ASTCAT (NIL) -9 NIL 151690 NIL) (-92 151170 151229 151348 "ASTCAT-" 151353 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149319 150946 151034 "ASTACK" 151113 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147824 148121 148486 "ASSOCEQ" 149001 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146856 147483 147607 "ASP9" 147731 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146619 146804 146843 "ASP8" 146848 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145487 146224 146366 "ASP80" 146508 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144385 145122 145254 "ASP7" 145386 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143339 144062 144180 "ASP78" 144298 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142308 143019 143136 "ASP77" 143253 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141220 141946 142077 "ASP74" 142208 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140120 140855 140987 "ASP73" 141119 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139224 139946 140046 "ASP6" 140051 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138171 138901 139019 "ASP55" 139137 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137120 137845 137964 "ASP50" 138083 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136208 136821 136931 "ASP4" 137041 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135296 135909 136019 "ASP49" 136129 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134080 134835 135003 "ASP42" 135185 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132857 133613 133783 "ASP41" 133967 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131807 132534 132652 "ASP35" 132770 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131572 131755 131794 "ASP34" 131799 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131309 131376 131452 "ASP33" 131527 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130203 130944 131076 "ASP31" 131208 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129968 130151 130190 "ASP30" 130195 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129703 129772 129848 "ASP29" 129923 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129468 129651 129690 "ASP28" 129695 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129233 129416 129455 "ASP27" 129460 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128317 128931 129042 "ASP24" 129153 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127394 128119 128231 "ASP20" 128236 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126482 127095 127205 "ASP1" 127315 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125425 126156 126275 "ASP19" 126394 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125162 125229 125305 "ASP12" 125380 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 124014 124761 124905 "ASP10" 125049 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121865 123858 123949 "ARRAY2" 123954 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117630 121513 121627 "ARRAY1" 121782 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116662 116835 117056 "ARRAY12" 117453 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110974 112892 112967 "ARR2CAT" 115597 NIL ARR2CAT (NIL T T T) -9 NIL 116355 NIL) (-56 108408 109152 110106 "ARR2CAT-" 110111 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107725 108035 108160 "ARITY" 108301 T ARITY (NIL) -8 NIL NIL NIL) (-54 106501 106653 106952 "APPRULE" 107561 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106152 106200 106319 "APPLYORE" 106447 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 105506 105745 105865 "ANY" 106050 T ANY (NIL) -8 NIL NIL NIL) (-51 104784 104907 105064 "ANY1" 105380 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 102314 103221 103548 "ANTISYM" 104508 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101806 102021 102117 "ANON" 102236 T ANON (NIL) -8 NIL NIL NIL) (-48 95984 100345 100799 "AN" 101370 T AN (NIL) -8 NIL NIL NIL) (-47 91882 93270 93321 "AMR" 94069 NIL AMR (NIL T T) -9 NIL 94669 NIL) (-46 90994 91215 91578 "AMR-" 91583 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 75433 90911 90972 "ALIST" 90977 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 72238 75027 75196 "ALGSC" 75351 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68794 69348 69955 "ALGPKG" 71678 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68071 68172 68356 "ALGMFACT" 68680 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64106 64685 65279 "ALGMANIP" 67655 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55373 63732 63882 "ALGFF" 64039 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54569 54700 54879 "ALGFACT" 55231 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53510 54110 54148 "ALGEBRA" 54153 NIL ALGEBRA (NIL T) -9 NIL 54194 NIL) (-37 53228 53287 53419 "ALGEBRA-" 53424 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35291 51200 51252 "ALAGG" 51388 NIL ALAGG (NIL T T) -9 NIL 51549 NIL) (-35 34827 34940 34966 "AHYP" 35167 T AHYP (NIL) -9 NIL NIL NIL) (-34 33758 34006 34032 "AGG" 34531 T AGG (NIL) -9 NIL 34810 NIL) (-33 33192 33354 33568 "AGG-" 33573 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30998 31421 31826 "AF" 32834 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30478 30723 30813 "ADDAST" 30926 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29746 30005 30161 "ACPLOT" 30340 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-2861 (((-112) $ $) NIL)) (-1441 (((-1194)) 12)) (-2288 (((-1176) $) 18)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 11) (((-1194) $) 8)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 15))) +(((-1281 |#1|) (-13 (-1117) (-624 (-1194)) (-10 -8 (-15 -2883 ((-1194) $)) (-15 -1441 ((-1194))))) (-1194)) (T -1281)) +((-2883 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1281 *3)) (-14 *3 *2))) (-1441 (*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1281 *3)) (-14 *3 *2)))) +(-13 (-1117) (-624 (-1194)) (-10 -8 (-15 -2883 ((-1194) $)) (-15 -1441 ((-1194))))) +((-2880 (($ (-782)) 19)) (-4056 (((-700 |#2|) $ $) 41)) (-2706 ((|#2| $) 51)) (-1839 ((|#2| $) 50)) (-1886 ((|#2| $ $) 36)) (-4304 (($ $ $) 47)) (-4028 (($ $) 23) (($ $ $) 29)) (-4016 (($ $ $) 15)) (* (($ (-575) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1282 |#1| |#2|) (-10 -8 (-15 -2706 (|#2| |#1|)) (-15 -1839 (|#2| |#1|)) (-15 -4304 (|#1| |#1| |#1|)) (-15 -4056 ((-700 |#2|) |#1| |#1|)) (-15 -1886 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 -2880 (|#1| (-782))) (-15 -4016 (|#1| |#1| |#1|))) (-1283 |#2|) (-1235)) (T -1282)) +NIL +(-10 -8 (-15 -2706 (|#2| |#1|)) (-15 -1839 (|#2| |#1|)) (-15 -4304 (|#1| |#1| |#1|)) (-15 -4056 ((-700 |#2|) |#1| |#1|)) (-15 -1886 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1|)) (-15 -2880 (|#1| (-782))) (-15 -4016 (|#1| |#1| |#1|))) +((-2861 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-2880 (($ (-782)) 115 (|has| |#1| (-23)))) (-4161 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4461))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) 8)) (-3054 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3011 (($) 7 T CONST)) (-1789 (($ $) 93 (|has| $ (-6 -4461)))) (-4381 (($ $) 103)) (-1748 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3633 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) 52)) (-2632 (((-575) (-1 (-112) |#1|) $) 100) (((-575) |#1| $) 99 (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) 98 (|has| |#1| (-1117)))) (-4001 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-4056 (((-700 |#1|) $ $) 108 (|has| |#1| (-1066)))) (-2309 (($ (-782) |#1|) 70)) (-3896 (((-112) $ (-782)) 9)) (-2541 (((-575) $) 44 (|has| (-575) (-861)))) (-1920 (($ $ $) 90 (|has| |#1| (-861)))) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3197 (((-575) $) 45 (|has| (-575) (-861)))) (-1425 (($ $ $) 89 (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2706 ((|#1| $) 105 (-12 (|has| |#1| (-1066)) (|has| |#1| (-1019))))) (-4026 (((-112) $ (-782)) 10)) (-1839 ((|#1| $) 106 (-12 (|has| |#1| (-1066)) (|has| |#1| (-1019))))) (-2288 (((-1176) $) 22 (|has| |#1| (-1117)))) (-2135 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-4310 (((-655 (-575)) $) 47)) (-2969 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1961 ((|#1| $) 43 (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3954 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) 14)) (-2767 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) 49)) (-4076 (((-112) $) 11)) (-1938 (($) 12)) (-2070 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-1886 ((|#1| $ $) 109 (|has| |#1| (-1066)))) (-3239 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-4304 (($ $ $) 107 (|has| |#1| (-1066)))) (-3925 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-4005 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3078 (($ $) 13)) (-2615 (((-547) $) 81 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 72)) (-1514 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2883 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3956 (((-112) $ $) 86 (|has| |#1| (-861)))) (-3914 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-3970 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-861)))) (-4028 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4016 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-575) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-737))) (($ $ |#1|) 110 (|has| |#1| (-737)))) (-2871 (((-782) $) 6 (|has| $ (-6 -4460))))) +(((-1283 |#1|) (-141) (-1235)) (T -1283)) +((-4016 (*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-25)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1283 *3)) (-4 *3 (-23)) (-4 *3 (-1235)))) (-4028 (*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-21)))) (-4028 (*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-4 *1 (-1283 *3)) (-4 *3 (-1235)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-737)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-737)))) (-1886 (*1 *2 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1066)))) (-4056 (*1 *2 *1 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-1235)) (-4 *3 (-1066)) (-5 *2 (-700 *3)))) (-4304 (*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1066)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1019)) (-4 *2 (-1066)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1019)) (-4 *2 (-1066))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4016 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2880 ($ (-782))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4028 ($ $)) (-15 -4028 ($ $ $)) (-15 * ($ (-575) $))) |%noBranch|) (IF (|has| |t#1| (-737)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1066)) (PROGN (-15 -1886 (|t#1| $ $)) (-15 -4056 ((-700 |t#1|) $ $)) (-15 -4304 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1019)) (IF (|has| |t#1| (-1066)) (PROGN (-15 -1839 (|t#1| $)) (-15 -2706 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-624 (-873)) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-383 |#1|) . T) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-1117) -3765 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-1235) . T)) +((-3715 (((-1285 |#2|) (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|) 13)) (-2308 ((|#2| (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|) 15)) (-2550 (((-3 (-1285 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1285 |#1|)) 30) (((-1285 |#2|) (-1 |#2| |#1|) (-1285 |#1|)) 18))) +(((-1284 |#1| |#2|) (-10 -7 (-15 -3715 ((-1285 |#2|) (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|)) (-15 -2308 (|#2| (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|)) (-15 -2550 ((-1285 |#2|) (-1 |#2| |#1|) (-1285 |#1|))) (-15 -2550 ((-3 (-1285 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1285 |#1|)))) (-1235) (-1235)) (T -1284)) +((-2550 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1285 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1285 *6)) (-5 *1 (-1284 *5 *6)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1285 *6)) (-5 *1 (-1284 *5 *6)))) (-2308 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1285 *5)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-1284 *5 *2)))) (-3715 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1285 *6)) (-4 *6 (-1235)) (-4 *5 (-1235)) (-5 *2 (-1285 *5)) (-5 *1 (-1284 *6 *5))))) +(-10 -7 (-15 -3715 ((-1285 |#2|) (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|)) (-15 -2308 (|#2| (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|)) (-15 -2550 ((-1285 |#2|) (-1 |#2| |#1|) (-1285 |#1|))) (-15 -2550 ((-3 (-1285 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1285 |#1|)))) +((-2861 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2880 (($ (-782)) NIL (|has| |#1| (-23)))) (-2378 (($ (-655 |#1|)) 11)) (-4161 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-2762 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-2119 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2031 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-1845 (((-112) $ (-782)) NIL)) (-3054 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3985 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3011 (($) NIL T CONST)) (-1789 (($ $) NIL (|has| $ (-6 -4461)))) (-4381 (($ $) NIL)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3633 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2308 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2859 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2788 ((|#1| $ (-575)) NIL)) (-2632 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-4001 (((-655 |#1|) $) 16 (|has| $ (-6 -4460)))) (-4056 (((-700 |#1|) $ $) NIL (|has| |#1| (-1066)))) (-2309 (($ (-782) |#1|) NIL)) (-3896 (((-112) $ (-782)) NIL)) (-2541 (((-575) $) NIL (|has| (-575) (-861)))) (-1920 (($ $ $) NIL (|has| |#1| (-861)))) (-3794 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-3955 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2625 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3197 (((-575) $) 12 (|has| (-575) (-861)))) (-1425 (($ $ $) NIL (|has| |#1| (-861)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2706 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-4026 (((-112) $ (-782)) NIL)) (-1839 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-2288 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2135 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-4310 (((-655 (-575)) $) NIL)) (-2969 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1961 ((|#1| $) NIL (|has| (-575) (-861)))) (-3704 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3954 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-3207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-3753 (((-112) $ $) NIL)) (-2767 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-1691 (((-655 |#1|) $) NIL)) (-4076 (((-112) $) NIL)) (-1938 (($) NIL)) (-2070 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-1886 ((|#1| $ $) NIL (|has| |#1| (-1066)))) (-3239 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-4304 (($ $ $) NIL (|has| |#1| (-1066)))) (-3925 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-4005 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) 20 (|has| |#1| (-625 (-547))))) (-2894 (($ (-655 |#1|)) 10)) (-1514 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2883 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4400 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3771 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3981 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3914 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3970 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4028 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4016 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-575) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-737))) (($ $ |#1|) NIL (|has| |#1| (-737)))) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1285 |#1|) (-13 (-1283 |#1|) (-10 -8 (-15 -2378 ($ (-655 |#1|))))) (-1235)) (T -1285)) +((-2378 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1285 *3))))) +(-13 (-1283 |#1|) (-10 -8 (-15 -2378 ($ (-655 |#1|))))) +((-2861 (((-112) $ $) NIL)) (-3043 (((-1176) $ (-1176)) 107) (((-1176) $ (-1176) (-1176)) 105) (((-1176) $ (-1176) (-655 (-1176))) 104)) (-1421 (($) 69)) (-2570 (((-1290) $ (-479) (-936)) 54)) (-2496 (((-1290) $ (-936) (-1176)) 89) (((-1290) $ (-936) (-885)) 90)) (-3533 (((-1290) $ (-936) (-389) (-389)) 57)) (-2488 (((-1290) $ (-1176)) 84)) (-1427 (((-1290) $ (-936) (-1176)) 94)) (-3957 (((-1290) $ (-936) (-389) (-389)) 58)) (-1881 (((-1290) $ (-936) (-936)) 55)) (-3017 (((-1290) $) 85)) (-2021 (((-1290) $ (-936) (-1176)) 93)) (-2171 (((-1290) $ (-479) (-936)) 41)) (-3793 (((-1290) $ (-936) (-1176)) 92)) (-1617 (((-655 (-269)) $) 29) (($ $ (-655 (-269))) 30)) (-3593 (((-1290) $ (-782) (-782)) 52)) (-2895 (($ $) 70) (($ (-479) (-655 (-269))) 71)) (-2288 (((-1176) $) NIL)) (-4169 (((-575) $) 48)) (-3912 (((-1137) $) NIL)) (-3968 (((-1285 (-3 (-479) "undefined")) $) 47)) (-2400 (((-1285 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3793 (-575)) (|:| -2633 (-575)) (|:| |spline| (-575)) (|:| -3744 (-575)) (|:| |axesColor| (-885)) (|:| -2496 (-575)) (|:| |unitsColor| (-885)) (|:| |showing| (-575)))) $) 46)) (-3209 (((-1290) $ (-936) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-885) (-575) (-885) (-575)) 83)) (-3089 (((-655 (-958 (-227))) $) NIL)) (-3449 (((-479) $ (-936)) 43)) (-1593 (((-1290) $ (-782) (-782) (-936) (-936)) 50)) (-3174 (((-1290) $ (-1176)) 95)) (-2633 (((-1290) $ (-936) (-1176)) 91)) (-2883 (((-873) $) 102)) (-2458 (((-1290) $) 96)) (-4400 (((-112) $ $) NIL)) (-3744 (((-1290) $ (-936) (-1176)) 87) (((-1290) $ (-936) (-885)) 88)) (-3914 (((-112) $ $) NIL))) +(((-1286) (-13 (-1117) (-10 -8 (-15 -3089 ((-655 (-958 (-227))) $)) (-15 -1421 ($)) (-15 -2895 ($ $)) (-15 -1617 ((-655 (-269)) $)) (-15 -1617 ($ $ (-655 (-269)))) (-15 -2895 ($ (-479) (-655 (-269)))) (-15 -3209 ((-1290) $ (-936) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-885) (-575) (-885) (-575))) (-15 -2400 ((-1285 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3793 (-575)) (|:| -2633 (-575)) (|:| |spline| (-575)) (|:| -3744 (-575)) (|:| |axesColor| (-885)) (|:| -2496 (-575)) (|:| |unitsColor| (-885)) (|:| |showing| (-575)))) $)) (-15 -3968 ((-1285 (-3 (-479) "undefined")) $)) (-15 -2488 ((-1290) $ (-1176))) (-15 -2171 ((-1290) $ (-479) (-936))) (-15 -3449 ((-479) $ (-936))) (-15 -3744 ((-1290) $ (-936) (-1176))) (-15 -3744 ((-1290) $ (-936) (-885))) (-15 -2496 ((-1290) $ (-936) (-1176))) (-15 -2496 ((-1290) $ (-936) (-885))) (-15 -3793 ((-1290) $ (-936) (-1176))) (-15 -2021 ((-1290) $ (-936) (-1176))) (-15 -2633 ((-1290) $ (-936) (-1176))) (-15 -3174 ((-1290) $ (-1176))) (-15 -2458 ((-1290) $)) (-15 -1593 ((-1290) $ (-782) (-782) (-936) (-936))) (-15 -3957 ((-1290) $ (-936) (-389) (-389))) (-15 -3533 ((-1290) $ (-936) (-389) (-389))) (-15 -1427 ((-1290) $ (-936) (-1176))) (-15 -3593 ((-1290) $ (-782) (-782))) (-15 -2570 ((-1290) $ (-479) (-936))) (-15 -1881 ((-1290) $ (-936) (-936))) (-15 -3043 ((-1176) $ (-1176))) (-15 -3043 ((-1176) $ (-1176) (-1176))) (-15 -3043 ((-1176) $ (-1176) (-655 (-1176)))) (-15 -3017 ((-1290) $)) (-15 -4169 ((-575) $)) (-15 -2883 ((-873) $))))) (T -1286)) +((-2883 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-1286)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-655 (-958 (-227)))) (-5 *1 (-1286)))) (-1421 (*1 *1) (-5 *1 (-1286))) (-2895 (*1 *1 *1) (-5 *1 (-1286))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1286)))) (-1617 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1286)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *2 (-479)) (-5 *3 (-655 (-269))) (-5 *1 (-1286)))) (-3209 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-936)) (-5 *4 (-227)) (-5 *5 (-575)) (-5 *6 (-885)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-1285 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3793 (-575)) (|:| -2633 (-575)) (|:| |spline| (-575)) (|:| -3744 (-575)) (|:| |axesColor| (-885)) (|:| -2496 (-575)) (|:| |unitsColor| (-885)) (|:| |showing| (-575))))) (-5 *1 (-1286)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-1285 (-3 (-479) "undefined"))) (-5 *1 (-1286)))) (-2488 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2171 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-479)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3449 (*1 *2 *1 *3) (-12 (-5 *3 (-936)) (-5 *2 (-479)) (-5 *1 (-1286)))) (-3744 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3744 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-885)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2496 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2496 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-885)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3793 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2021 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2633 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3174 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1286)))) (-1593 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-782)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3957 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-936)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3533 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-936)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-1427 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3593 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2570 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-479)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-1881 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3043 (*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1286)))) (-3043 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1286)))) (-3043 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-1286)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1286)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1286))))) +(-13 (-1117) (-10 -8 (-15 -3089 ((-655 (-958 (-227))) $)) (-15 -1421 ($)) (-15 -2895 ($ $)) (-15 -1617 ((-655 (-269)) $)) (-15 -1617 ($ $ (-655 (-269)))) (-15 -2895 ($ (-479) (-655 (-269)))) (-15 -3209 ((-1290) $ (-936) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-885) (-575) (-885) (-575))) (-15 -2400 ((-1285 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3793 (-575)) (|:| -2633 (-575)) (|:| |spline| (-575)) (|:| -3744 (-575)) (|:| |axesColor| (-885)) (|:| -2496 (-575)) (|:| |unitsColor| (-885)) (|:| |showing| (-575)))) $)) (-15 -3968 ((-1285 (-3 (-479) "undefined")) $)) (-15 -2488 ((-1290) $ (-1176))) (-15 -2171 ((-1290) $ (-479) (-936))) (-15 -3449 ((-479) $ (-936))) (-15 -3744 ((-1290) $ (-936) (-1176))) (-15 -3744 ((-1290) $ (-936) (-885))) (-15 -2496 ((-1290) $ (-936) (-1176))) (-15 -2496 ((-1290) $ (-936) (-885))) (-15 -3793 ((-1290) $ (-936) (-1176))) (-15 -2021 ((-1290) $ (-936) (-1176))) (-15 -2633 ((-1290) $ (-936) (-1176))) (-15 -3174 ((-1290) $ (-1176))) (-15 -2458 ((-1290) $)) (-15 -1593 ((-1290) $ (-782) (-782) (-936) (-936))) (-15 -3957 ((-1290) $ (-936) (-389) (-389))) (-15 -3533 ((-1290) $ (-936) (-389) (-389))) (-15 -1427 ((-1290) $ (-936) (-1176))) (-15 -3593 ((-1290) $ (-782) (-782))) (-15 -2570 ((-1290) $ (-479) (-936))) (-15 -1881 ((-1290) $ (-936) (-936))) (-15 -3043 ((-1176) $ (-1176))) (-15 -3043 ((-1176) $ (-1176) (-1176))) (-15 -3043 ((-1176) $ (-1176) (-655 (-1176)))) (-15 -3017 ((-1290) $)) (-15 -4169 ((-575) $)) (-15 -2883 ((-873) $)))) +((-2861 (((-112) $ $) NIL)) (-4226 (((-1290) $ (-389)) 169) (((-1290) $ (-389) (-389) (-389)) 170)) (-3043 (((-1176) $ (-1176)) 179) (((-1176) $ (-1176) (-1176)) 177) (((-1176) $ (-1176) (-655 (-1176))) 176)) (-2117 (($) 67)) (-3102 (((-1290) $ (-389) (-389) (-389) (-389) (-389)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1290) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1290) $ (-575) (-575) (-389) (-389) (-389)) 144) (((-1290) $ (-389) (-389)) 145) (((-1290) $ (-389) (-389) (-389)) 152)) (-2522 (((-389)) 122) (((-389) (-389)) 123)) (-2247 (((-389)) 117) (((-389) (-389)) 119)) (-2968 (((-389)) 120) (((-389) (-389)) 121)) (-3809 (((-389)) 126) (((-389) (-389)) 127)) (-2366 (((-389)) 124) (((-389) (-389)) 125)) (-3533 (((-1290) $ (-389) (-389)) 171)) (-2488 (((-1290) $ (-1176)) 153)) (-1765 (((-1150 (-227)) $) 68) (($ $ (-1150 (-227))) 69)) (-2898 (((-1290) $ (-1176)) 187)) (-3045 (((-1290) $ (-1176)) 188)) (-4044 (((-1290) $ (-389) (-389)) 151) (((-1290) $ (-575) (-575)) 168)) (-1881 (((-1290) $ (-936) (-936)) 160)) (-3017 (((-1290) $) 137)) (-2509 (((-1290) $ (-1176)) 186)) (-4263 (((-1290) $ (-1176)) 134)) (-1617 (((-655 (-269)) $) 70) (($ $ (-655 (-269))) 71)) (-3593 (((-1290) $ (-782) (-782)) 159)) (-3380 (((-1290) $ (-782) (-958 (-227))) 193)) (-4416 (($ $) 73) (($ (-1150 (-227)) (-1176)) 74) (($ (-1150 (-227)) (-655 (-269))) 75)) (-2850 (((-1290) $ (-389) (-389) (-389)) 131)) (-2288 (((-1176) $) NIL)) (-4169 (((-575) $) 128)) (-2344 (((-1290) $ (-389)) 174)) (-2469 (((-1290) $ (-389)) 191)) (-3912 (((-1137) $) NIL)) (-3986 (((-1290) $ (-389)) 190)) (-2630 (((-1290) $ (-1176)) 136)) (-1593 (((-1290) $ (-782) (-782) (-936) (-936)) 158)) (-1882 (((-1290) $ (-1176)) 133)) (-3174 (((-1290) $ (-1176)) 135)) (-4346 (((-1290) $ (-158) (-158)) 157)) (-2883 (((-873) $) 166)) (-2458 (((-1290) $) 138)) (-1332 (((-1290) $ (-1176)) 189)) (-4400 (((-112) $ $) NIL)) (-3744 (((-1290) $ (-1176)) 132)) (-3914 (((-112) $ $) NIL))) +(((-1287) (-13 (-1117) (-10 -8 (-15 -2247 ((-389))) (-15 -2247 ((-389) (-389))) (-15 -2968 ((-389))) (-15 -2968 ((-389) (-389))) (-15 -2522 ((-389))) (-15 -2522 ((-389) (-389))) (-15 -2366 ((-389))) (-15 -2366 ((-389) (-389))) (-15 -3809 ((-389))) (-15 -3809 ((-389) (-389))) (-15 -2117 ($)) (-15 -4416 ($ $)) (-15 -4416 ($ (-1150 (-227)) (-1176))) (-15 -4416 ($ (-1150 (-227)) (-655 (-269)))) (-15 -1765 ((-1150 (-227)) $)) (-15 -1765 ($ $ (-1150 (-227)))) (-15 -3380 ((-1290) $ (-782) (-958 (-227)))) (-15 -1617 ((-655 (-269)) $)) (-15 -1617 ($ $ (-655 (-269)))) (-15 -3593 ((-1290) $ (-782) (-782))) (-15 -1881 ((-1290) $ (-936) (-936))) (-15 -2488 ((-1290) $ (-1176))) (-15 -1593 ((-1290) $ (-782) (-782) (-936) (-936))) (-15 -3102 ((-1290) $ (-389) (-389) (-389) (-389) (-389))) (-15 -3102 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3102 ((-1290) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3102 ((-1290) $ (-575) (-575) (-389) (-389) (-389))) (-15 -3102 ((-1290) $ (-389) (-389))) (-15 -3102 ((-1290) $ (-389) (-389) (-389))) (-15 -3174 ((-1290) $ (-1176))) (-15 -3744 ((-1290) $ (-1176))) (-15 -1882 ((-1290) $ (-1176))) (-15 -4263 ((-1290) $ (-1176))) (-15 -2630 ((-1290) $ (-1176))) (-15 -4044 ((-1290) $ (-389) (-389))) (-15 -4044 ((-1290) $ (-575) (-575))) (-15 -4226 ((-1290) $ (-389))) (-15 -4226 ((-1290) $ (-389) (-389) (-389))) (-15 -3533 ((-1290) $ (-389) (-389))) (-15 -2509 ((-1290) $ (-1176))) (-15 -3986 ((-1290) $ (-389))) (-15 -2469 ((-1290) $ (-389))) (-15 -2898 ((-1290) $ (-1176))) (-15 -3045 ((-1290) $ (-1176))) (-15 -1332 ((-1290) $ (-1176))) (-15 -2850 ((-1290) $ (-389) (-389) (-389))) (-15 -2344 ((-1290) $ (-389))) (-15 -3017 ((-1290) $)) (-15 -4346 ((-1290) $ (-158) (-158))) (-15 -3043 ((-1176) $ (-1176))) (-15 -3043 ((-1176) $ (-1176) (-1176))) (-15 -3043 ((-1176) $ (-1176) (-655 (-1176)))) (-15 -2458 ((-1290) $)) (-15 -4169 ((-575) $))))) (T -1287)) +((-2247 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-2968 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-2968 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-2522 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-2522 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-2366 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-3809 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-2117 (*1 *1) (-5 *1 (-1287))) (-4416 (*1 *1 *1) (-5 *1 (-1287))) (-4416 (*1 *1 *2 *3) (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-1176)) (-5 *1 (-1287)))) (-4416 (*1 *1 *2 *3) (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-655 (-269))) (-5 *1 (-1287)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1287)))) (-1765 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1287)))) (-3380 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-958 (-227))) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1287)))) (-1617 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1287)))) (-3593 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-1881 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2488 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-1593 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-782)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3102 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1287)))) (-3102 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3102 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-575)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3102 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3102 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3174 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3744 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4263 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2630 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4044 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4044 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4226 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3533 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2509 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3986 (*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2469 (*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2898 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3045 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-1332 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2850 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2344 (*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4346 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3043 (*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1287)))) (-3043 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1287)))) (-3043 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-1287)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1287))))) +(-13 (-1117) (-10 -8 (-15 -2247 ((-389))) (-15 -2247 ((-389) (-389))) (-15 -2968 ((-389))) (-15 -2968 ((-389) (-389))) (-15 -2522 ((-389))) (-15 -2522 ((-389) (-389))) (-15 -2366 ((-389))) (-15 -2366 ((-389) (-389))) (-15 -3809 ((-389))) (-15 -3809 ((-389) (-389))) (-15 -2117 ($)) (-15 -4416 ($ $)) (-15 -4416 ($ (-1150 (-227)) (-1176))) (-15 -4416 ($ (-1150 (-227)) (-655 (-269)))) (-15 -1765 ((-1150 (-227)) $)) (-15 -1765 ($ $ (-1150 (-227)))) (-15 -3380 ((-1290) $ (-782) (-958 (-227)))) (-15 -1617 ((-655 (-269)) $)) (-15 -1617 ($ $ (-655 (-269)))) (-15 -3593 ((-1290) $ (-782) (-782))) (-15 -1881 ((-1290) $ (-936) (-936))) (-15 -2488 ((-1290) $ (-1176))) (-15 -1593 ((-1290) $ (-782) (-782) (-936) (-936))) (-15 -3102 ((-1290) $ (-389) (-389) (-389) (-389) (-389))) (-15 -3102 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3102 ((-1290) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3102 ((-1290) $ (-575) (-575) (-389) (-389) (-389))) (-15 -3102 ((-1290) $ (-389) (-389))) (-15 -3102 ((-1290) $ (-389) (-389) (-389))) (-15 -3174 ((-1290) $ (-1176))) (-15 -3744 ((-1290) $ (-1176))) (-15 -1882 ((-1290) $ (-1176))) (-15 -4263 ((-1290) $ (-1176))) (-15 -2630 ((-1290) $ (-1176))) (-15 -4044 ((-1290) $ (-389) (-389))) (-15 -4044 ((-1290) $ (-575) (-575))) (-15 -4226 ((-1290) $ (-389))) (-15 -4226 ((-1290) $ (-389) (-389) (-389))) (-15 -3533 ((-1290) $ (-389) (-389))) (-15 -2509 ((-1290) $ (-1176))) (-15 -3986 ((-1290) $ (-389))) (-15 -2469 ((-1290) $ (-389))) (-15 -2898 ((-1290) $ (-1176))) (-15 -3045 ((-1290) $ (-1176))) (-15 -1332 ((-1290) $ (-1176))) (-15 -2850 ((-1290) $ (-389) (-389) (-389))) (-15 -2344 ((-1290) $ (-389))) (-15 -3017 ((-1290) $)) (-15 -4346 ((-1290) $ (-158) (-158))) (-15 -3043 ((-1176) $ (-1176))) (-15 -3043 ((-1176) $ (-1176) (-1176))) (-15 -3043 ((-1176) $ (-1176) (-655 (-1176)))) (-15 -2458 ((-1290) $)) (-15 -4169 ((-575) $)))) +((-2837 (((-655 (-1176)) (-655 (-1176))) 104) (((-655 (-1176))) 96)) (-1339 (((-655 (-1176))) 94)) (-2589 (((-655 (-936)) (-655 (-936))) 69) (((-655 (-936))) 64)) (-1412 (((-655 (-782)) (-655 (-782))) 61) (((-655 (-782))) 55)) (-1820 (((-1290)) 71)) (-2888 (((-936) (-936)) 87) (((-936)) 86)) (-3115 (((-936) (-936)) 85) (((-936)) 84)) (-2828 (((-885) (-885)) 81) (((-885)) 80)) (-2843 (((-227)) 91) (((-227) (-389)) 93)) (-4283 (((-936)) 88) (((-936) (-936)) 89)) (-2616 (((-936) (-936)) 83) (((-936)) 82)) (-4045 (((-885) (-885)) 75) (((-885)) 73)) (-2563 (((-885) (-885)) 77) (((-885)) 76)) (-2527 (((-885) (-885)) 79) (((-885)) 78))) +(((-1288) (-10 -7 (-15 -4045 ((-885))) (-15 -4045 ((-885) (-885))) (-15 -2563 ((-885))) (-15 -2563 ((-885) (-885))) (-15 -2527 ((-885))) (-15 -2527 ((-885) (-885))) (-15 -2828 ((-885))) (-15 -2828 ((-885) (-885))) (-15 -2616 ((-936))) (-15 -2616 ((-936) (-936))) (-15 -1412 ((-655 (-782)))) (-15 -1412 ((-655 (-782)) (-655 (-782)))) (-15 -2589 ((-655 (-936)))) (-15 -2589 ((-655 (-936)) (-655 (-936)))) (-15 -1820 ((-1290))) (-15 -2837 ((-655 (-1176)))) (-15 -2837 ((-655 (-1176)) (-655 (-1176)))) (-15 -1339 ((-655 (-1176)))) (-15 -3115 ((-936))) (-15 -2888 ((-936))) (-15 -3115 ((-936) (-936))) (-15 -2888 ((-936) (-936))) (-15 -4283 ((-936) (-936))) (-15 -4283 ((-936))) (-15 -2843 ((-227) (-389))) (-15 -2843 ((-227))))) (T -1288)) +((-2843 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1288)))) (-2843 (*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-227)) (-5 *1 (-1288)))) (-4283 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-4283 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-2888 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-3115 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-2888 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-3115 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-1339 (*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288)))) (-2837 (*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288)))) (-2837 (*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288)))) (-1820 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1288)))) (-2589 (*1 *2 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1288)))) (-2589 (*1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1288)))) (-1412 (*1 *2 *2) (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1288)))) (-1412 (*1 *2) (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1288)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-2616 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-2828 (*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-2828 (*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-2527 (*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-2527 (*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-2563 (*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-2563 (*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-4045 (*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-4045 (*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288))))) +(-10 -7 (-15 -4045 ((-885))) (-15 -4045 ((-885) (-885))) (-15 -2563 ((-885))) (-15 -2563 ((-885) (-885))) (-15 -2527 ((-885))) (-15 -2527 ((-885) (-885))) (-15 -2828 ((-885))) (-15 -2828 ((-885) (-885))) (-15 -2616 ((-936))) (-15 -2616 ((-936) (-936))) (-15 -1412 ((-655 (-782)))) (-15 -1412 ((-655 (-782)) (-655 (-782)))) (-15 -2589 ((-655 (-936)))) (-15 -2589 ((-655 (-936)) (-655 (-936)))) (-15 -1820 ((-1290))) (-15 -2837 ((-655 (-1176)))) (-15 -2837 ((-655 (-1176)) (-655 (-1176)))) (-15 -1339 ((-655 (-1176)))) (-15 -3115 ((-936))) (-15 -2888 ((-936))) (-15 -3115 ((-936) (-936))) (-15 -2888 ((-936) (-936))) (-15 -4283 ((-936) (-936))) (-15 -4283 ((-936))) (-15 -2843 ((-227) (-389))) (-15 -2843 ((-227)))) +((-2511 (((-479) (-655 (-655 (-958 (-227)))) (-655 (-269))) 22) (((-479) (-655 (-655 (-958 (-227))))) 21) (((-479) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269))) 20)) (-4269 (((-1286) (-655 (-655 (-958 (-227)))) (-655 (-269))) 30) (((-1286) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269))) 29)) (-2883 (((-1286) (-479)) 46))) +(((-1289) (-10 -7 (-15 -2511 ((-479) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269)))) (-15 -2511 ((-479) (-655 (-655 (-958 (-227)))))) (-15 -2511 ((-479) (-655 (-655 (-958 (-227)))) (-655 (-269)))) (-15 -4269 ((-1286) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269)))) (-15 -4269 ((-1286) (-655 (-655 (-958 (-227)))) (-655 (-269)))) (-15 -2883 ((-1286) (-479))))) (T -1289)) +((-2883 (*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-1286)) (-5 *1 (-1289)))) (-4269 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-1289)))) (-4269 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-885)) (-5 *5 (-936)) (-5 *6 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-1289)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-655 (-269))) (-5 *2 (-479)) (-5 *1 (-1289)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *2 (-479)) (-5 *1 (-1289)))) (-2511 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-885)) (-5 *5 (-936)) (-5 *6 (-655 (-269))) (-5 *2 (-479)) (-5 *1 (-1289))))) +(-10 -7 (-15 -2511 ((-479) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269)))) (-15 -2511 ((-479) (-655 (-655 (-958 (-227)))))) (-15 -2511 ((-479) (-655 (-655 (-958 (-227)))) (-655 (-269)))) (-15 -4269 ((-1286) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269)))) (-15 -4269 ((-1286) (-655 (-655 (-958 (-227)))) (-655 (-269)))) (-15 -2883 ((-1286) (-479)))) +((-2007 (($) 6)) (-2883 (((-873) $) 9))) +(((-1290) (-13 (-624 (-873)) (-10 -8 (-15 -2007 ($))))) (T -1290)) +((-2007 (*1 *1) (-5 *1 (-1290)))) +(-13 (-624 (-873)) (-10 -8 (-15 -2007 ($)))) +((-4038 (($ $ |#2|) 10))) +(((-1291 |#1| |#2|) (-10 -8 (-15 -4038 (|#1| |#1| |#2|))) (-1292 |#2|) (-373)) (T -1291)) +NIL +(-10 -8 (-15 -4038 (|#1| |#1| |#2|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4386 (((-135)) 33)) (-2883 (((-873) $) 12)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-3914 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 34)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1292 |#1|) (-141) (-373)) (T -1292)) +((-4038 (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-373)))) (-4386 (*1 *2) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-373)) (-5 *2 (-135))))) +(-13 (-728 |t#1|) (-10 -8 (-15 -4038 ($ $ |t#1|)) (-15 -4386 ((-135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T)) +((-2790 (((-655 (-1229 |#1|)) (-1194) (-1229 |#1|)) 83)) (-3702 (((-1174 (-1174 (-967 |#1|))) (-1194) (-1174 (-967 |#1|))) 63)) (-4384 (((-1 (-1174 (-1229 |#1|)) (-1174 (-1229 |#1|))) (-782) (-1229 |#1|) (-1174 (-1229 |#1|))) 74)) (-4041 (((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782)) 65)) (-3381 (((-1 (-1190 (-967 |#1|)) (-967 |#1|)) (-1194)) 32)) (-1804 (((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782)) 64))) +(((-1293 |#1|) (-10 -7 (-15 -4041 ((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782))) (-15 -1804 ((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782))) (-15 -3702 ((-1174 (-1174 (-967 |#1|))) (-1194) (-1174 (-967 |#1|)))) (-15 -3381 ((-1 (-1190 (-967 |#1|)) (-967 |#1|)) (-1194))) (-15 -2790 ((-655 (-1229 |#1|)) (-1194) (-1229 |#1|))) (-15 -4384 ((-1 (-1174 (-1229 |#1|)) (-1174 (-1229 |#1|))) (-782) (-1229 |#1|) (-1174 (-1229 |#1|))))) (-373)) (T -1293)) +((-4384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782)) (-4 *6 (-373)) (-5 *4 (-1229 *6)) (-5 *2 (-1 (-1174 *4) (-1174 *4))) (-5 *1 (-1293 *6)) (-5 *5 (-1174 *4)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-4 *5 (-373)) (-5 *2 (-655 (-1229 *5))) (-5 *1 (-1293 *5)) (-5 *4 (-1229 *5)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1 (-1190 (-967 *4)) (-967 *4))) (-5 *1 (-1293 *4)) (-4 *4 (-373)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-4 *5 (-373)) (-5 *2 (-1174 (-1174 (-967 *5)))) (-5 *1 (-1293 *5)) (-5 *4 (-1174 (-967 *5))))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-1174 (-967 *4)) (-1174 (-967 *4)))) (-5 *1 (-1293 *4)) (-4 *4 (-373)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-1174 (-967 *4)) (-1174 (-967 *4)))) (-5 *1 (-1293 *4)) (-4 *4 (-373))))) +(-10 -7 (-15 -4041 ((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782))) (-15 -1804 ((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782))) (-15 -3702 ((-1174 (-1174 (-967 |#1|))) (-1194) (-1174 (-967 |#1|)))) (-15 -3381 ((-1 (-1190 (-967 |#1|)) (-967 |#1|)) (-1194))) (-15 -2790 ((-655 (-1229 |#1|)) (-1194) (-1229 |#1|))) (-15 -4384 ((-1 (-1174 (-1229 |#1|)) (-1174 (-1229 |#1|))) (-782) (-1229 |#1|) (-1174 (-1229 |#1|))))) +((-2393 (((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|) 80)) (-2899 (((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) 79))) +(((-1294 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2899 ((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))))) (-15 -2393 ((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|))) (-359) (-1261 |#1|) (-1261 |#2|) (-420 |#2| |#3|)) (T -1294)) +((-2393 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 *3)) (-5 *2 (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-5 *1 (-1294 *4 *3 *5 *6)) (-4 *6 (-420 *3 *5)))) (-2899 (*1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| -1624 (-700 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-700 *4)))) (-5 *1 (-1294 *3 *4 *5 *6)) (-4 *6 (-420 *4 *5))))) +(-10 -7 (-15 -2899 ((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))))) (-15 -2393 ((-2 (|:| -1624 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|))) +((-2861 (((-112) $ $) NIL)) (-4156 (((-1152) $) 11)) (-3941 (((-1152) $) 9)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1295) (-13 (-1100) (-10 -8 (-15 -3941 ((-1152) $)) (-15 -4156 ((-1152) $))))) (T -1295)) +((-3941 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1295)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1295))))) +(-13 (-1100) (-10 -8 (-15 -3941 ((-1152) $)) (-15 -4156 ((-1152) $)))) +((-2861 (((-112) $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3690 (((-1152) $) 9)) (-2883 (((-873) $) 15) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) NIL))) +(((-1296) (-13 (-1100) (-10 -8 (-15 -3690 ((-1152) $))))) (T -1296)) +((-3690 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1296))))) +(-13 (-1100) (-10 -8 (-15 -3690 ((-1152) $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 58)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) NIL)) (-1542 (((-112) $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 81) (($ (-575)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-3759 (((-782)) NIL T CONST)) (-3615 (((-1290) (-782)) 16)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 37 T CONST)) (-2009 (($) 84 T CONST)) (-3914 (((-112) $ $) 87)) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-4028 (($ $) 89) (($ $ $) NIL)) (-4016 (($ $ $) 63)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-1297 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1066) (-501 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -4038 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3615 ((-1290) (-782))))) (-1066) (-861) (-804) (-964 |#1| |#3| |#2|) (-655 |#2|) (-655 (-782)) (-782)) (T -1297)) +((-4038 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-373)) (-4 *2 (-1066)) (-4 *3 (-861)) (-4 *4 (-804)) (-14 *6 (-655 *3)) (-5 *1 (-1297 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-964 *2 *4 *3)) (-14 *7 (-655 (-782))) (-14 *8 (-782)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-1066)) (-4 *5 (-861)) (-4 *6 (-804)) (-14 *8 (-655 *5)) (-5 *2 (-1290)) (-5 *1 (-1297 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-964 *4 *6 *5)) (-14 *9 (-655 *3)) (-14 *10 *3)))) +(-13 (-1066) (-501 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -4038 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3615 ((-1290) (-782))))) +((-2861 (((-112) $ $) NIL)) (-3303 (((-655 (-2 (|:| -2458 $) (|:| -2978 (-655 |#4|)))) (-655 |#4|)) NIL)) (-1740 (((-655 $) (-655 |#4|)) 96)) (-1606 (((-655 |#3|) $) NIL)) (-2210 (((-112) $) NIL)) (-3036 (((-112) $) NIL (|has| |#1| (-567)))) (-3309 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2749 ((|#4| |#4| $) NIL)) (-2031 (((-2 (|:| |under| $) (|:| -2736 $) (|:| |upper| $)) $ |#3|) NIL)) (-1845 (((-112) $ (-782)) NIL)) (-3985 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3011 (($) NIL T CONST)) (-1437 (((-112) $) NIL (|has| |#1| (-567)))) (-2365 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4289 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1812 (((-112) $) NIL (|has| |#1| (-567)))) (-3376 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3629 (((-655 |#4|) (-655 |#4|) $) 28 (|has| |#1| (-567)))) (-3563 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2449 (((-3 $ "failed") (-655 |#4|)) NIL)) (-4399 (($ (-655 |#4|)) NIL)) (-1975 (((-3 $ "failed") $) 78)) (-2690 ((|#4| |#4| $) 83)) (-1748 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3633 (($ |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-1635 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-2249 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4183 ((|#4| |#4| $) NIL)) (-2308 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2029 (((-2 (|:| -2458 (-655 |#4|)) (|:| -2978 (-655 |#4|))) $) NIL)) (-4001 (((-655 |#4|) $) NIL (|has| $ (-6 -4460)))) (-2548 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3838 ((|#3| $) 84)) (-3896 (((-112) $ (-782)) NIL)) (-3955 (((-655 |#4|) $) 32 (|has| $ (-6 -4460)))) (-2625 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-1401 (((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-655 |#4|)) 38)) (-2847 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4461)))) (-2550 (($ (-1 |#4| |#4|) $) NIL)) (-1444 (((-655 |#3|) $) NIL)) (-1808 (((-112) |#3| $) NIL)) (-4026 (((-112) $ (-782)) NIL)) (-2288 (((-1176) $) NIL)) (-3653 (((-3 |#4| "failed") $) NIL)) (-1590 (((-655 |#4|) $) 54)) (-1411 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4367 ((|#4| |#4| $) 82)) (-2687 (((-112) $ $) 93)) (-4395 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-3188 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2973 ((|#4| |#4| $) NIL)) (-3912 (((-1137) $) NIL)) (-1961 (((-3 |#4| "failed") $) 77)) (-3704 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2500 (((-3 $ "failed") $ |#4|) NIL)) (-4276 (($ $ |#4|) NIL)) (-3207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3048 (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-3753 (((-112) $ $) NIL)) (-4076 (((-112) $) 75)) (-1938 (($) 46)) (-2645 (((-782) $) NIL)) (-3925 (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3078 (($ $) NIL)) (-2615 (((-547) $) NIL (|has| |#4| (-625 (-547))))) (-2894 (($ (-655 |#4|)) NIL)) (-1879 (($ $ |#3|) NIL)) (-3427 (($ $ |#3|) NIL)) (-2921 (($ $) NIL)) (-3608 (($ $ |#3|) NIL)) (-2883 (((-873) $) NIL) (((-655 |#4|) $) 63)) (-3706 (((-782) $) NIL (|has| |#3| (-378)))) (-2884 (((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-655 |#4|)) 45)) (-3101 (((-655 $) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-655 $) (-655 |#4|)) 74)) (-4400 (((-112) $ $) NIL)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2994 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) NIL)) (-3771 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-1359 (((-655 |#3|) $) NIL)) (-1591 (((-112) |#3| $) NIL)) (-3914 (((-112) $ $) NIL)) (-2871 (((-782) $) NIL (|has| $ (-6 -4460))))) +(((-1298 |#1| |#2| |#3| |#4|) (-13 (-1228 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1401 ((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1401 ((-3 $ "failed") (-655 |#4|))) (-15 -2884 ((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2884 ((-3 $ "failed") (-655 |#4|))) (-15 -3101 ((-655 $) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3101 ((-655 $) (-655 |#4|))))) (-567) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -1298)) +((-1401 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1298 *5 *6 *7 *8)))) (-1401 (*1 *1 *2) (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1298 *3 *4 *5 *6)))) (-2884 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1298 *5 *6 *7 *8)))) (-2884 (*1 *1 *2) (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1298 *3 *4 *5 *6)))) (-3101 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567)) (-4 *7 (-804)) (-4 *8 (-861)) (-5 *2 (-655 (-1298 *6 *7 *8 *9))) (-5 *1 (-1298 *6 *7 *8 *9)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-1298 *4 *5 *6 *7))) (-5 *1 (-1298 *4 *5 *6 *7))))) +(-13 (-1228 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1401 ((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1401 ((-3 $ "failed") (-655 |#4|))) (-15 -2884 ((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2884 ((-3 $ "failed") (-655 |#4|))) (-15 -3101 ((-655 $) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3101 ((-655 $) (-655 |#4|))))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-2597 (((-3 $ "failed") $ $) 20)) (-3011 (($) 18 T CONST)) (-1747 (((-3 $ "failed") $) 37)) (-1542 (((-112) $) 35)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 45)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1299 |#1|) (-141) (-1066)) (T -1299)) +NIL +(-13 (-1066) (-111 |t#1| |t#1|) (-627 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) |has| |#1| (-174)) ((-728 |#1|) |has| |#1| (-174)) ((-737) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T)) +((-2861 (((-112) $ $) 67)) (-3799 (((-112) $) NIL)) (-3489 (((-655 |#1|) $) 52)) (-1573 (($ $ (-782)) 46)) (-2597 (((-3 $ "failed") $ $) NIL)) (-1567 (($ $ (-782)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3011 (($) NIL T CONST)) (-2724 (($ $ $) 70) (($ $ (-830 |#1|)) 56) (($ $ |#1|) 60)) (-2449 (((-3 (-830 |#1|) "failed") $) NIL)) (-4399 (((-830 |#1|) $) NIL)) (-4406 (($ $) 39)) (-1747 (((-3 $ "failed") $) NIL)) (-2918 (((-112) $) NIL)) (-4277 (($ $) NIL)) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-3693 (($ (-830 |#1|) |#2|) 38)) (-3061 (($ $) 40)) (-3867 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) 12)) (-4325 (((-830 |#1|) $) NIL)) (-4068 (((-830 |#1|) $) 41)) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-4190 (($ $ $) 69) (($ $ (-830 |#1|)) 58) (($ $ |#1|) 62)) (-2024 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4371 (((-830 |#1|) $) 35)) (-4383 ((|#2| $) 37)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2645 (((-782) $) 43)) (-2728 (((-112) $) 47)) (-3738 ((|#2| $) NIL)) (-2883 (((-873) $) NIL) (($ (-830 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-575)) NIL)) (-2501 (((-655 |#2|) $) NIL)) (-2012 ((|#2| $ (-830 |#1|)) NIL)) (-1754 ((|#2| $ $) 76) ((|#2| $ (-830 |#1|)) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 13 T CONST)) (-2009 (($) 19 T CONST)) (-1913 (((-655 (-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3914 (((-112) $ $) 44)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 28)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-830 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1300 |#1| |#2|) (-13 (-392 |#2| (-830 |#1|)) (-1306 |#1| |#2|)) (-861) (-1066)) (T -1300)) +NIL +(-13 (-392 |#2| (-830 |#1|)) (-1306 |#1| |#2|)) +((-3463 ((|#3| |#3| (-782)) 28)) (-2665 ((|#3| |#3| (-782)) 34)) (-2498 ((|#3| |#3| |#3| (-782)) 35))) +(((-1301 |#1| |#2| |#3|) (-10 -7 (-15 -2665 (|#3| |#3| (-782))) (-15 -3463 (|#3| |#3| (-782))) (-15 -2498 (|#3| |#3| |#3| (-782)))) (-13 (-1066) (-728 (-418 (-575)))) (-861) (-1306 |#2| |#1|)) (T -1301)) +((-2498 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575))))) (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4)))) (-3463 (*1 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575))))) (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4)))) (-2665 (*1 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575))))) (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4))))) +(-10 -7 (-15 -2665 (|#3| |#3| (-782))) (-15 -3463 (|#3| |#3| (-782))) (-15 -2498 (|#3| |#3| |#3| (-782)))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3489 (((-655 |#1|) $) 47)) (-2597 (((-3 $ "failed") $ $) 20)) (-1567 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-782)) 49 (|has| |#2| (-174)))) (-3011 (($) 18 T CONST)) (-2724 (($ $ |#1|) 61) (($ $ (-830 |#1|)) 60) (($ $ $) 59)) (-2449 (((-3 (-830 |#1|) "failed") $) 71)) (-4399 (((-830 |#1|) $) 72)) (-1747 (((-3 $ "failed") $) 37)) (-2918 (((-112) $) 52)) (-4277 (($ $) 51)) (-1542 (((-112) $) 35)) (-2376 (((-112) $) 57)) (-3693 (($ (-830 |#1|) |#2|) 58)) (-3061 (($ $) 56)) (-3867 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) 67)) (-4325 (((-830 |#1|) $) 68)) (-2550 (($ (-1 |#2| |#2|) $) 48)) (-4190 (($ $ |#1|) 64) (($ $ (-830 |#1|)) 63) (($ $ $) 62)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2728 (((-112) $) 54)) (-3738 ((|#2| $) 53)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#2|) 75) (($ (-830 |#1|)) 70) (($ |#1|) 55)) (-1754 ((|#2| $ (-830 |#1|)) 66) ((|#2| $ $) 65)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1302 |#1| |#2|) (-141) (-861) (-1066)) (T -1302)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-830 *3)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-2 (|:| |k| (-830 *3)) (|:| |c| *4))))) (-1754 (*1 *2 *1 *3) (-12 (-5 *3 (-830 *4)) (-4 *1 (-1302 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1066)))) (-1754 (*1 *2 *1 *1) (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066)))) (-4190 (*1 *1 *1 *2) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)))) (-4190 (*1 *1 *1 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-2724 (*1 *1 *1 *2) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-2724 (*1 *1 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)))) (-2724 (*1 *1 *1 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-3693 (*1 *1 *2 *3) (-12 (-5 *2 (-830 *4)) (-4 *4 (-861)) (-4 *1 (-1302 *4 *3)) (-4 *3 (-1066)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-112)))) (-3061 (*1 *1 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-2883 (*1 *1 *2) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-112)))) (-3738 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066)))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-112)))) (-4277 (*1 *1 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-1567 (*1 *1 *1 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)) (-4 *3 (-174)))) (-1567 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-4 *4 (-174)))) (-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-655 *3))))) +(-13 (-1066) (-1299 |t#2|) (-1055 (-830 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4325 ((-830 |t#1|) $)) (-15 -3867 ((-2 (|:| |k| (-830 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1754 (|t#2| $ (-830 |t#1|))) (-15 -1754 (|t#2| $ $)) (-15 -4190 ($ $ |t#1|)) (-15 -4190 ($ $ (-830 |t#1|))) (-15 -4190 ($ $ $)) (-15 -2724 ($ $ |t#1|)) (-15 -2724 ($ $ (-830 |t#1|))) (-15 -2724 ($ $ $)) (-15 -3693 ($ (-830 |t#1|) |t#2|)) (-15 -2376 ((-112) $)) (-15 -3061 ($ $)) (-15 -2883 ($ |t#1|)) (-15 -2728 ((-112) $)) (-15 -3738 (|t#2| $)) (-15 -2918 ((-112) $)) (-15 -4277 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -1567 ($ $ $)) (-15 -1567 ($ $ (-782)))) |%noBranch|) (-15 -2550 ($ (-1 |t#2| |t#2|) $)) (-15 -3489 ((-655 |t#1|) $)) (IF (|has| |t#2| (-6 -4453)) (-6 -4453) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 #0=(-830 |#1|)) . T) ((-627 |#2|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#2|) . T) ((-657 $) . T) ((-659 |#2|) . T) ((-659 $) . T) ((-651 |#2|) |has| |#2| (-174)) ((-728 |#2|) |has| |#2| (-174)) ((-737) . T) ((-1055 #0#) . T) ((-1068 |#2|) . T) ((-1073 |#2|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1299 |#2|) . T)) +((-1871 (((-112) $) 15)) (-1591 (((-112) $) 14)) (-4216 (($ $) 19) (($ $ (-782)) 21))) +(((-1303 |#1| |#2|) (-10 -8 (-15 -4216 (|#1| |#1| (-782))) (-15 -4216 (|#1| |#1|)) (-15 -1871 ((-112) |#1|)) (-15 -1591 ((-112) |#1|))) (-1304 |#2|) (-373)) (T -1303)) +NIL +(-10 -8 (-15 -4216 (|#1| |#1| (-782))) (-15 -4216 (|#1| |#1|)) (-15 -1871 ((-112) |#1|)) (-15 -1591 ((-112) |#1|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3370 (((-2 (|:| -3800 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-1540 (($ $) 46)) (-3286 (((-112) $) 44)) (-1871 (((-112) $) 104)) (-2936 (((-782)) 100)) (-2597 (((-3 $ "failed") $ $) 20)) (-2058 (($ $) 81)) (-2330 (((-429 $) $) 80)) (-2279 (((-112) $ $) 65)) (-3011 (($) 18 T CONST)) (-2449 (((-3 |#1| "failed") $) 111)) (-4399 ((|#1| $) 112)) (-2802 (($ $ $) 61)) (-1747 (((-3 $ "failed") $) 37)) (-2813 (($ $ $) 62)) (-1916 (((-2 (|:| -1754 (-655 $)) (|:| -3659 $)) (-655 $)) 57)) (-4374 (($ $ (-782)) 97 (-3765 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) 96 (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1336 (((-112) $) 79)) (-2673 (((-844 (-936)) $) 94 (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1542 (((-112) $) 35)) (-2444 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3887 (($ $ $) 52) (($ (-655 $)) 51)) (-2288 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3497 (((-112) $) 103)) (-3912 (((-1137) $) 11)) (-2290 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3926 (($ $ $) 54) (($ (-655 $)) 53)) (-2353 (((-429 $) $) 82)) (-2819 (((-844 (-936))) 101)) (-2061 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3659 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2851 (((-3 $ "failed") $ $) 48)) (-3442 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3708 (((-782) $) 64)) (-2196 (((-2 (|:| -2829 $) (|:| -1635 $)) $ $) 63)) (-3905 (((-3 (-782) "failed") $ $) 95 (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4386 (((-135)) 109)) (-2645 (((-844 (-936)) $) 102)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ |#1|) 110)) (-1518 (((-3 $ "failed") $) 93 (-3765 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1780 (((-112) $ $) 45)) (-1591 (((-112) $) 105)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-4216 (($ $) 99 (|has| |#1| (-378))) (($ $ (-782)) 98 (|has| |#1| (-378)))) (-3914 (((-112) $ $) 6)) (-4038 (($ $ $) 73) (($ $ |#1|) 108)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1304 |#1|) (-141) (-373)) (T -1304)) +((-1591 (*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112)))) (-3497 (*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-844 (-936))))) (-2819 (*1 *2) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-844 (-936))))) (-2936 (*1 *2) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-782)))) (-4216 (*1 *1 *1) (-12 (-4 *1 (-1304 *2)) (-4 *2 (-373)) (-4 *2 (-378)))) (-4216 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-4 *3 (-378))))) +(-13 (-373) (-1055 |t#1|) (-1292 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-413)) |%noBranch|) (-15 -1591 ((-112) $)) (-15 -1871 ((-112) $)) (-15 -3497 ((-112) $)) (-15 -2645 ((-844 (-936)) $)) (-15 -2819 ((-844 (-936)))) (-15 -2936 ((-782))) (IF (|has| |t#1| (-378)) (PROGN (-6 (-413)) (-15 -4216 ($ $)) (-15 -4216 ($ $ (-782)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3765 (|has| |#1| (-378)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-413) -3765 (|has| |#1| (-378)) (|has| |#1| (-146))) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 |#1|) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1055 |#1|) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T) ((-1292 |#1|) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3489 (((-655 |#1|) $) 98)) (-1573 (($ $ (-782)) 102)) (-2597 (((-3 $ "failed") $ $) NIL)) (-1567 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-782)) NIL (|has| |#2| (-174)))) (-3011 (($) NIL T CONST)) (-2724 (($ $ |#1|) NIL) (($ $ (-830 |#1|)) NIL) (($ $ $) NIL)) (-2449 (((-3 (-830 |#1|) "failed") $) NIL) (((-3 (-905 |#1|) "failed") $) NIL)) (-4399 (((-830 |#1|) $) NIL) (((-905 |#1|) $) NIL)) (-4406 (($ $) 101)) (-1747 (((-3 $ "failed") $) NIL)) (-2918 (((-112) $) 90)) (-4277 (($ $) 93)) (-3557 (($ $ $ (-782)) 103)) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-3693 (($ (-830 |#1|) |#2|) NIL) (($ (-905 |#1|) |#2|) 29)) (-3061 (($ $) 119)) (-3867 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4325 (((-830 |#1|) $) NIL)) (-4068 (((-830 |#1|) $) NIL)) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-4190 (($ $ |#1|) NIL) (($ $ (-830 |#1|)) NIL) (($ $ $) NIL)) (-3463 (($ $ (-782)) 112 (|has| |#2| (-728 (-418 (-575)))))) (-2024 (((-2 (|:| |k| (-905 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4371 (((-905 |#1|) $) 83)) (-4383 ((|#2| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2665 (($ $ (-782)) 109 (|has| |#2| (-728 (-418 (-575)))))) (-2645 (((-782) $) 99)) (-2728 (((-112) $) 84)) (-3738 ((|#2| $) 88)) (-2883 (((-873) $) 69) (($ (-575)) NIL) (($ |#2|) 60) (($ (-830 |#1|)) NIL) (($ |#1|) 71) (($ (-905 |#1|)) NIL) (($ (-675 |#1| |#2|)) 48) (((-1300 |#1| |#2|) $) 76) (((-1309 |#1| |#2|) $) 81)) (-2501 (((-655 |#2|) $) NIL)) (-2012 ((|#2| $ (-905 |#1|)) NIL)) (-1754 ((|#2| $ (-830 |#1|)) NIL) ((|#2| $ $) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 21 T CONST)) (-2009 (($) 28 T CONST)) (-1913 (((-655 (-2 (|:| |k| (-905 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1974 (((-3 (-675 |#1| |#2|) "failed") $) 118)) (-3914 (((-112) $ $) 77)) (-4028 (($ $) 111) (($ $ $) 110)) (-4016 (($ $ $) 20)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-905 |#1|)) NIL))) +(((-1305 |#1| |#2|) (-13 (-1306 |#1| |#2|) (-392 |#2| (-905 |#1|)) (-10 -8 (-15 -2883 ($ (-675 |#1| |#2|))) (-15 -2883 ((-1300 |#1| |#2|) $)) (-15 -2883 ((-1309 |#1| |#2|) $)) (-15 -1974 ((-3 (-675 |#1| |#2|) "failed") $)) (-15 -3557 ($ $ $ (-782))) (IF (|has| |#2| (-728 (-418 (-575)))) (PROGN (-15 -2665 ($ $ (-782))) (-15 -3463 ($ $ (-782)))) |%noBranch|))) (-861) (-174)) (T -1305)) +((-2883 (*1 *1 *2) (-12 (-5 *2 (-675 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-1305 *3 *4)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-1309 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-1974 (*1 *2 *1) (|partial| -12 (-5 *2 (-675 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3557 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4)) (-4 *4 (-728 (-418 (-575)))) (-4 *3 (-861)) (-4 *4 (-174)))) (-3463 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4)) (-4 *4 (-728 (-418 (-575)))) (-4 *3 (-861)) (-4 *4 (-174))))) +(-13 (-1306 |#1| |#2|) (-392 |#2| (-905 |#1|)) (-10 -8 (-15 -2883 ($ (-675 |#1| |#2|))) (-15 -2883 ((-1300 |#1| |#2|) $)) (-15 -2883 ((-1309 |#1| |#2|) $)) (-15 -1974 ((-3 (-675 |#1| |#2|) "failed") $)) (-15 -3557 ($ $ $ (-782))) (IF (|has| |#2| (-728 (-418 (-575)))) (PROGN (-15 -2665 ($ $ (-782))) (-15 -3463 ($ $ (-782)))) |%noBranch|))) +((-2861 (((-112) $ $) 7)) (-3799 (((-112) $) 17)) (-3489 (((-655 |#1|) $) 47)) (-1573 (($ $ (-782)) 80)) (-2597 (((-3 $ "failed") $ $) 20)) (-1567 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-782)) 49 (|has| |#2| (-174)))) (-3011 (($) 18 T CONST)) (-2724 (($ $ |#1|) 61) (($ $ (-830 |#1|)) 60) (($ $ $) 59)) (-2449 (((-3 (-830 |#1|) "failed") $) 71)) (-4399 (((-830 |#1|) $) 72)) (-1747 (((-3 $ "failed") $) 37)) (-2918 (((-112) $) 52)) (-4277 (($ $) 51)) (-1542 (((-112) $) 35)) (-2376 (((-112) $) 57)) (-3693 (($ (-830 |#1|) |#2|) 58)) (-3061 (($ $) 56)) (-3867 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) 67)) (-4325 (((-830 |#1|) $) 68)) (-4068 (((-830 |#1|) $) 82)) (-2550 (($ (-1 |#2| |#2|) $) 48)) (-4190 (($ $ |#1|) 64) (($ $ (-830 |#1|)) 63) (($ $ $) 62)) (-2288 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2645 (((-782) $) 81)) (-2728 (((-112) $) 54)) (-3738 ((|#2| $) 53)) (-2883 (((-873) $) 12) (($ (-575)) 33) (($ |#2|) 75) (($ (-830 |#1|)) 70) (($ |#1|) 55)) (-1754 ((|#2| $ (-830 |#1|)) 66) ((|#2| $ $) 65)) (-3759 (((-782)) 32 T CONST)) (-4400 (((-112) $ $) 9)) (-1996 (($) 19 T CONST)) (-2009 (($) 34 T CONST)) (-3914 (((-112) $ $) 6)) (-4028 (($ $) 23) (($ $ $) 22)) (-4016 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1306 |#1| |#2|) (-141) (-861) (-1066)) (T -1306)) +((-4068 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-830 *3)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-782)))) (-1573 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))))) +(-13 (-1302 |t#1| |t#2|) (-10 -8 (-15 -4068 ((-830 |t#1|) $)) (-15 -2645 ((-782) $)) (-15 -1573 ($ $ (-782))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 #0=(-830 |#1|)) . T) ((-627 |#2|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#2|) . T) ((-657 $) . T) ((-659 |#2|) . T) ((-659 $) . T) ((-651 |#2|) |has| |#2| (-174)) ((-728 |#2|) |has| |#2| (-174)) ((-737) . T) ((-1055 #0#) . T) ((-1068 |#2|) . T) ((-1073 |#2|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1299 |#2|) . T) ((-1302 |#1| |#2|) . T)) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-3489 (((-655 (-1194)) $) NIL)) (-3110 (($ (-1300 (-1194) |#1|)) NIL)) (-1573 (($ $ (-782)) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-1567 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-782)) NIL (|has| |#1| (-174)))) (-3011 (($) NIL T CONST)) (-2724 (($ $ (-1194)) NIL) (($ $ (-830 (-1194))) NIL) (($ $ $) NIL)) (-2449 (((-3 (-830 (-1194)) "failed") $) NIL)) (-4399 (((-830 (-1194)) $) NIL)) (-1747 (((-3 $ "failed") $) NIL)) (-2918 (((-112) $) NIL)) (-4277 (($ $) NIL)) (-1542 (((-112) $) NIL)) (-2376 (((-112) $) NIL)) (-3693 (($ (-830 (-1194)) |#1|) NIL)) (-3061 (($ $) NIL)) (-3867 (((-2 (|:| |k| (-830 (-1194))) (|:| |c| |#1|)) $) NIL)) (-4325 (((-830 (-1194)) $) NIL)) (-4068 (((-830 (-1194)) $) NIL)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-4190 (($ $ (-1194)) NIL) (($ $ (-830 (-1194))) NIL) (($ $ $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3945 (((-1300 (-1194) |#1|) $) NIL)) (-2645 (((-782) $) NIL)) (-2728 (((-112) $) NIL)) (-3738 ((|#1| $) NIL)) (-2883 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-830 (-1194))) NIL) (($ (-1194)) NIL)) (-1754 ((|#1| $ (-830 (-1194))) NIL) ((|#1| $ $) NIL)) (-3759 (((-782)) NIL T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) NIL T CONST)) (-1383 (((-655 (-2 (|:| |k| (-1194)) (|:| |c| $))) $) NIL)) (-2009 (($) NIL T CONST)) (-3914 (((-112) $ $) NIL)) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1194) $) NIL))) +(((-1307 |#1|) (-13 (-1306 (-1194) |#1|) (-10 -8 (-15 -3945 ((-1300 (-1194) |#1|) $)) (-15 -3110 ($ (-1300 (-1194) |#1|))) (-15 -1383 ((-655 (-2 (|:| |k| (-1194)) (|:| |c| $))) $)))) (-1066)) (T -1307)) +((-3945 (*1 *2 *1) (-12 (-5 *2 (-1300 (-1194) *3)) (-5 *1 (-1307 *3)) (-4 *3 (-1066)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1300 (-1194) *3)) (-4 *3 (-1066)) (-5 *1 (-1307 *3)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |k| (-1194)) (|:| |c| (-1307 *3))))) (-5 *1 (-1307 *3)) (-4 *3 (-1066))))) +(-13 (-1306 (-1194) |#1|) (-10 -8 (-15 -3945 ((-1300 (-1194) |#1|) $)) (-15 -3110 ($ (-1300 (-1194) |#1|))) (-15 -1383 ((-655 (-2 (|:| |k| (-1194)) (|:| |c| $))) $)))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) NIL)) (-2597 (((-3 $ "failed") $ $) NIL)) (-3011 (($) NIL T CONST)) (-2449 (((-3 |#2| "failed") $) NIL)) (-4399 ((|#2| $) NIL)) (-4406 (($ $) NIL)) (-1747 (((-3 $ "failed") $) 42)) (-2918 (((-112) $) 35)) (-4277 (($ $) 37)) (-1542 (((-112) $) NIL)) (-2218 (((-782) $) NIL)) (-3010 (((-655 $) $) NIL)) (-2376 (((-112) $) NIL)) (-3693 (($ |#2| |#1|) NIL)) (-4325 ((|#2| $) 24)) (-4068 ((|#2| $) 22)) (-2550 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4371 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2728 (((-112) $) 32)) (-3738 ((|#1| $) 33)) (-2883 (((-873) $) 65) (($ (-575)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2501 (((-655 |#1|) $) NIL)) (-2012 ((|#1| $ |#2|) NIL)) (-1754 ((|#1| $ |#2|) 28)) (-3759 (((-782)) 14 T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 29 T CONST)) (-2009 (($) 11 T CONST)) (-1913 (((-655 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3914 (((-112) $ $) 30)) (-4038 (($ $ |#1|) 67 (|has| |#1| (-373)))) (-4028 (($ $) NIL) (($ $ $) NIL)) (-4016 (($ $ $) 50)) (** (($ $ (-936)) NIL) (($ $ (-782)) 52)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2871 (((-782) $) 16))) +(((-1308 |#1| |#2|) (-13 (-1066) (-1299 |#1|) (-392 |#1| |#2|) (-627 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2871 ((-782) $)) (-15 -4068 (|#2| $)) (-15 -4325 (|#2| $)) (-15 -4406 ($ $)) (-15 -1754 (|#1| $ |#2|)) (-15 -2728 ((-112) $)) (-15 -3738 (|#1| $)) (-15 -2918 ((-112) $)) (-15 -4277 ($ $)) (-15 -2550 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-373)) (-15 -4038 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|))) (-1066) (-857)) (T -1308)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857)))) (-4406 (*1 *1 *1) (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857)))) (-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-857)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-857)))) (-4068 (*1 *2 *1) (-12 (-4 *2 (-857)) (-5 *1 (-1308 *3 *2)) (-4 *3 (-1066)))) (-4325 (*1 *2 *1) (-12 (-4 *2 (-857)) (-5 *1 (-1308 *3 *2)) (-4 *3 (-1066)))) (-1754 (*1 *2 *1 *3) (-12 (-4 *2 (-1066)) (-5 *1 (-1308 *2 *3)) (-4 *3 (-857)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-857)))) (-3738 (*1 *2 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-1308 *2 *3)) (-4 *3 (-857)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-857)))) (-4277 (*1 *1 *1) (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857)))) (-4038 (*1 *1 *1 *2) (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-373)) (-4 *2 (-1066)) (-4 *3 (-857))))) +(-13 (-1066) (-1299 |#1|) (-392 |#1| |#2|) (-627 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2871 ((-782) $)) (-15 -4068 (|#2| $)) (-15 -4325 (|#2| $)) (-15 -4406 ($ $)) (-15 -1754 (|#1| $ |#2|)) (-15 -2728 ((-112) $)) (-15 -3738 (|#1| $)) (-15 -2918 ((-112) $)) (-15 -4277 ($ $)) (-15 -2550 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-373)) (-15 -4038 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|))) +((-2861 (((-112) $ $) 27)) (-3799 (((-112) $) NIL)) (-3489 (((-655 |#1|) $) 132)) (-3110 (($ (-1300 |#1| |#2|)) 50)) (-1573 (($ $ (-782)) 38)) (-2597 (((-3 $ "failed") $ $) NIL)) (-1567 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-782)) 52 (|has| |#2| (-174)))) (-3011 (($) NIL T CONST)) (-2724 (($ $ |#1|) 114) (($ $ (-830 |#1|)) 115) (($ $ $) 26)) (-2449 (((-3 (-830 |#1|) "failed") $) NIL)) (-4399 (((-830 |#1|) $) NIL)) (-1747 (((-3 $ "failed") $) 122)) (-2918 (((-112) $) 117)) (-4277 (($ $) 118)) (-1542 (((-112) $) NIL)) (-2376 (((-112) $) NIL)) (-3693 (($ (-830 |#1|) |#2|) 20)) (-3061 (($ $) NIL)) (-3867 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4325 (((-830 |#1|) $) 123)) (-4068 (((-830 |#1|) $) 126)) (-2550 (($ (-1 |#2| |#2|) $) 131)) (-4190 (($ $ |#1|) 112) (($ $ (-830 |#1|)) 113) (($ $ $) 62)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3945 (((-1300 |#1| |#2|) $) 94)) (-2645 (((-782) $) 129)) (-2728 (((-112) $) 81)) (-3738 ((|#2| $) 32)) (-2883 (((-873) $) 73) (($ (-575)) 87) (($ |#2|) 85) (($ (-830 |#1|)) 18) (($ |#1|) 84)) (-1754 ((|#2| $ (-830 |#1|)) 116) ((|#2| $ $) 28)) (-3759 (((-782)) 120 T CONST)) (-4400 (((-112) $ $) NIL)) (-1996 (($) 15 T CONST)) (-1383 (((-655 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2009 (($) 33 T CONST)) (-3914 (((-112) $ $) 14)) (-4028 (($ $) 98) (($ $ $) 101)) (-4016 (($ $ $) 61)) (** (($ $ (-936)) NIL) (($ $ (-782)) 55)) (* (($ (-936) $) NIL) (($ (-782) $) 53) (($ (-575) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1309 |#1| |#2|) (-13 (-1306 |#1| |#2|) (-10 -8 (-15 -3945 ((-1300 |#1| |#2|) $)) (-15 -3110 ($ (-1300 |#1| |#2|))) (-15 -1383 ((-655 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-861) (-1066)) (T -1309)) +((-3945 (*1 *2 *1) (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1300 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *1 (-1309 *3 *4)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |k| *3) (|:| |c| (-1309 *3 *4))))) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))))) +(-13 (-1306 |#1| |#2|) (-10 -8 (-15 -3945 ((-1300 |#1| |#2|) $)) (-15 -3110 ($ (-1300 |#1| |#2|))) (-15 -1383 ((-655 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-2861 (((-112) $ $) NIL)) (-1378 (($ (-655 (-936))) 10)) (-2902 (((-988) $) 12)) (-2288 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2883 (((-873) $) 25) (($ (-988)) 14) (((-988) $) 13)) (-4400 (((-112) $ $) NIL)) (-3914 (((-112) $ $) 17))) +(((-1310) (-13 (-1117) (-501 (-988)) (-10 -8 (-15 -1378 ($ (-655 (-936)))) (-15 -2902 ((-988) $))))) (T -1310)) +((-1378 (*1 *1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1310)))) (-2902 (*1 *2 *1) (-12 (-5 *2 (-988)) (-5 *1 (-1310))))) +(-13 (-1117) (-501 (-988)) (-10 -8 (-15 -1378 ($ (-655 (-936)))) (-15 -2902 ((-988) $)))) +((-2259 (((-655 (-1174 |#1|)) (-1 (-655 (-1174 |#1|)) (-655 (-1174 |#1|))) (-575)) 16) (((-1174 |#1|) (-1 (-1174 |#1|) (-1174 |#1|))) 13))) +(((-1311 |#1|) (-10 -7 (-15 -2259 ((-1174 |#1|) (-1 (-1174 |#1|) (-1174 |#1|)))) (-15 -2259 ((-655 (-1174 |#1|)) (-1 (-655 (-1174 |#1|)) (-655 (-1174 |#1|))) (-575)))) (-1235)) (T -1311)) +((-2259 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-655 (-1174 *5)) (-655 (-1174 *5)))) (-5 *4 (-575)) (-5 *2 (-655 (-1174 *5))) (-5 *1 (-1311 *5)) (-4 *5 (-1235)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-1 (-1174 *4) (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1311 *4)) (-4 *4 (-1235))))) +(-10 -7 (-15 -2259 ((-1174 |#1|) (-1 (-1174 |#1|) (-1174 |#1|)))) (-15 -2259 ((-655 (-1174 |#1|)) (-1 (-655 (-1174 |#1|)) (-655 (-1174 |#1|))) (-575)))) +((-2867 (((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|))) 174) (((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112)) 173) (((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112)) 172) (((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112) (-112)) 171) (((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-1063 |#1| |#2|)) 156)) (-3106 (((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|))) 85) (((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112)) 84) (((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112) (-112)) 83)) (-2330 (((-655 (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|)))) (-1063 |#1| |#2|)) 73)) (-2318 (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|))) 140) (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112)) 139) (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112)) 138) (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112) (-112)) 137) (((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|)) 132)) (-3803 (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|))) 145) (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112)) 144) (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112)) 143) (((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|)) 142)) (-2615 (((-655 (-791 |#1| (-875 |#3|))) (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|)))) 111) (((-1190 (-1041 (-418 |#1|))) (-1190 |#1|)) 102) (((-967 (-1041 (-418 |#1|))) (-791 |#1| (-875 |#3|))) 109) (((-967 (-1041 (-418 |#1|))) (-967 |#1|)) 107) (((-791 |#1| (-875 |#3|)) (-791 |#1| (-875 |#2|))) 33))) +(((-1312 |#1| |#2| |#3|) (-10 -7 (-15 -3106 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112) (-112))) (-15 -3106 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112))) (-15 -3106 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)))) (-15 -2867 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-1063 |#1| |#2|))) (-15 -2867 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112) (-112))) (-15 -2867 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -2867 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112))) (-15 -2867 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -2318 ((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|))) (-15 -2318 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112) (-112))) (-15 -2318 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -2318 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112))) (-15 -2318 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)))) (-15 -3803 ((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|))) (-15 -3803 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -3803 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112))) (-15 -3803 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)))) (-15 -2330 ((-655 (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|)))) (-1063 |#1| |#2|))) (-15 -2615 ((-791 |#1| (-875 |#3|)) (-791 |#1| (-875 |#2|)))) (-15 -2615 ((-967 (-1041 (-418 |#1|))) (-967 |#1|))) (-15 -2615 ((-967 (-1041 (-418 |#1|))) (-791 |#1| (-875 |#3|)))) (-15 -2615 ((-1190 (-1041 (-418 |#1|))) (-1190 |#1|))) (-15 -2615 ((-655 (-791 |#1| (-875 |#3|))) (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|)))))) (-13 (-859) (-316) (-148) (-1039)) (-655 (-1194)) (-655 (-1194))) (T -1312)) +((-2615 (*1 *2 *3) (-12 (-5 *3 (-1163 *4 (-542 (-875 *6)) (-875 *6) (-791 *4 (-875 *6)))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-791 *4 (-875 *6)))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-1190 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-791 *4 (-875 *6))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *6 (-655 (-1194))) (-5 *2 (-967 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-967 *4)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-967 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-791 *4 (-875 *5))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194))) (-5 *2 (-791 *4 (-875 *6))) (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) (-2330 (*1 *2 *3) (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-1163 *4 (-542 (-875 *6)) (-875 *6) (-791 *4 (-875 *6))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-3803 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-3803 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-2318 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-2318 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) (-2867 (*1 *2 *3) (-12 (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-2 (|:| -3527 (-1190 *4)) (|:| -3962 (-655 (-967 *4)))))) (-5 *1 (-1312 *4 *5 *6)) (-5 *3 (-655 (-967 *4))) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-2867 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-2 (|:| -3527 (-1190 *5)) (|:| -3962 (-655 (-967 *5)))))) (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5))) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-2867 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-2 (|:| -3527 (-1190 *5)) (|:| -3962 (-655 (-967 *5)))))) (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5))) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-2867 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-2 (|:| -3527 (-1190 *5)) (|:| -3962 (-655 (-967 *5)))))) (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5))) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-2 (|:| -3527 (-1190 *4)) (|:| -3962 (-655 (-967 *4)))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-1063 *4 *5))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-3106 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194)))))) +(-10 -7 (-15 -3106 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112) (-112))) (-15 -3106 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112))) (-15 -3106 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)))) (-15 -2867 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-1063 |#1| |#2|))) (-15 -2867 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112) (-112))) (-15 -2867 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -2867 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112))) (-15 -2867 ((-655 (-2 (|:| -3527 (-1190 |#1|)) (|:| -3962 (-655 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -2318 ((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|))) (-15 -2318 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112) (-112))) (-15 -2318 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -2318 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112))) (-15 -2318 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)))) (-15 -3803 ((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|))) (-15 -3803 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -3803 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112))) (-15 -3803 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)))) (-15 -2330 ((-655 (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|)))) (-1063 |#1| |#2|))) (-15 -2615 ((-791 |#1| (-875 |#3|)) (-791 |#1| (-875 |#2|)))) (-15 -2615 ((-967 (-1041 (-418 |#1|))) (-967 |#1|))) (-15 -2615 ((-967 (-1041 (-418 |#1|))) (-791 |#1| (-875 |#3|)))) (-15 -2615 ((-1190 (-1041 (-418 |#1|))) (-1190 |#1|))) (-15 -2615 ((-655 (-791 |#1| (-875 |#3|))) (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|)))))) +((-2685 (((-3 (-1285 (-418 (-575))) "failed") (-1285 |#1|) |#1|) 21)) (-4180 (((-112) (-1285 |#1|)) 12)) (-4089 (((-3 (-1285 (-575)) "failed") (-1285 |#1|)) 16))) +(((-1313 |#1|) (-10 -7 (-15 -4180 ((-112) (-1285 |#1|))) (-15 -4089 ((-3 (-1285 (-575)) "failed") (-1285 |#1|))) (-15 -2685 ((-3 (-1285 (-418 (-575))) "failed") (-1285 |#1|) |#1|))) (-13 (-1066) (-650 (-575)))) (T -1313)) +((-2685 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575)))) (-5 *2 (-1285 (-418 (-575)))) (-5 *1 (-1313 *4)))) (-4089 (*1 *2 *3) (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575)))) (-5 *2 (-1285 (-575))) (-5 *1 (-1313 *4)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575)))) (-5 *2 (-112)) (-5 *1 (-1313 *4))))) +(-10 -7 (-15 -4180 ((-112) (-1285 |#1|))) (-15 -4089 ((-3 (-1285 (-575)) "failed") (-1285 |#1|))) (-15 -2685 ((-3 (-1285 (-418 (-575))) "failed") (-1285 |#1|) |#1|))) +((-2861 (((-112) $ $) NIL)) (-3799 (((-112) $) 11)) (-2597 (((-3 $ "failed") $ $) NIL)) (-2415 (((-782)) 8)) (-3011 (($) NIL T CONST)) (-1747 (((-3 $ "failed") $) 58)) (-2079 (($) 49)) (-1542 (((-112) $) 57)) (-2607 (((-3 $ "failed") $) 40)) (-4084 (((-936) $) 15)) (-2288 (((-1176) $) NIL)) (-3474 (($) 32 T CONST)) (-4317 (($ (-936)) 50)) (-3912 (((-1137) $) NIL)) (-2615 (((-575) $) 13)) (-2883 (((-873) $) 27) (($ (-575)) 24)) (-3759 (((-782)) 9 T CONST)) (-4400 (((-112) $ $) 60)) (-1996 (($) 29 T CONST)) (-2009 (($) 31 T CONST)) (-3914 (((-112) $ $) 38)) (-4028 (($ $) 52) (($ $ $) 47)) (-4016 (($ $ $) 35)) (** (($ $ (-936)) NIL) (($ $ (-782)) 54)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 44) (($ $ $) 43))) +(((-1314 |#1|) (-13 (-174) (-378) (-625 (-575)) (-1169)) (-936)) (T -1314)) +NIL +(-13 (-174) (-378) (-625 (-575)) (-1169)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3249851 3249856 3249861 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3249836 3249841 3249846 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3249821 3249826 3249831 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3249806 3249811 3249816 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1314 3248949 3249681 3249758 "ZMOD" 3249763 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1313 3248003 3248167 3248390 "ZLINDEP" 3248781 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1312 3237303 3239071 3241043 "ZDSOLVE" 3246133 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1311 3236549 3236690 3236879 "YSTREAM" 3237149 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1310 3235977 3236223 3236336 "YDIAGRAM" 3236458 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1309 3233751 3235278 3235482 "XRPOLY" 3235820 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1308 3230304 3231622 3232197 "XPR" 3233223 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1307 3228025 3229635 3229839 "XPOLY" 3230135 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1306 3225678 3227046 3227101 "XPOLYC" 3227389 NIL XPOLYC (NIL T T) -9 NIL 3227502 NIL) (-1305 3222054 3224195 3224583 "XPBWPOLY" 3225336 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1304 3217749 3220044 3220086 "XF" 3220707 NIL XF (NIL T) -9 NIL 3221107 NIL) (-1303 3217370 3217458 3217627 "XF-" 3217632 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1302 3212566 3213855 3213910 "XFALG" 3216082 NIL XFALG (NIL T T) -9 NIL 3216871 NIL) (-1301 3211699 3211803 3212008 "XEXPPKG" 3212458 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1300 3209808 3211549 3211645 "XDPOLY" 3211650 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1299 3208615 3209215 3209258 "XALG" 3209263 NIL XALG (NIL T) -9 NIL 3209374 NIL) (-1298 3202057 3206592 3207086 "WUTSET" 3208207 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1297 3200313 3201109 3201432 "WP" 3201868 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1296 3199915 3200135 3200205 "WHILEAST" 3200265 T WHILEAST (NIL) -8 NIL NIL NIL) (-1295 3199387 3199632 3199726 "WHEREAST" 3199843 T WHEREAST (NIL) -8 NIL NIL NIL) (-1294 3198273 3198471 3198766 "WFFINTBS" 3199184 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1293 3196177 3196604 3197066 "WEIER" 3197845 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1292 3195223 3195673 3195715 "VSPACE" 3195851 NIL VSPACE (NIL T) -9 NIL 3195925 NIL) (-1291 3195061 3195088 3195179 "VSPACE-" 3195184 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1290 3194870 3194912 3194980 "VOID" 3195015 T VOID (NIL) -8 NIL NIL NIL) (-1289 3193006 3193365 3193771 "VIEW" 3194486 T VIEW (NIL) -7 NIL NIL NIL) (-1288 3189430 3190069 3190806 "VIEWDEF" 3192291 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1287 3178734 3180978 3183151 "VIEW3D" 3187279 T VIEW3D (NIL) -8 NIL NIL NIL) (-1286 3170985 3172645 3174224 "VIEW2D" 3177177 T VIEW2D (NIL) -8 NIL NIL NIL) (-1285 3166338 3170755 3170847 "VECTOR" 3170928 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1284 3164915 3165174 3165492 "VECTOR2" 3166068 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1283 3158357 3162666 3162709 "VECTCAT" 3163704 NIL VECTCAT (NIL T) -9 NIL 3164291 NIL) (-1282 3157371 3157625 3158015 "VECTCAT-" 3158020 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1281 3156825 3157022 3157142 "VARIABLE" 3157286 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1280 3156758 3156763 3156793 "UTYPE" 3156798 T UTYPE (NIL) -9 NIL NIL NIL) (-1279 3155588 3155742 3156004 "UTSODETL" 3156584 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1278 3153028 3153488 3154012 "UTSODE" 3155129 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1277 3144866 3150654 3151143 "UTS" 3152597 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1276 3135430 3140800 3140843 "UTSCAT" 3141955 NIL UTSCAT (NIL T) -9 NIL 3142713 NIL) (-1275 3132778 3133500 3134489 "UTSCAT-" 3134494 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1274 3132405 3132448 3132581 "UTS2" 3132729 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1273 3126631 3129243 3129286 "URAGG" 3131356 NIL URAGG (NIL T) -9 NIL 3132079 NIL) (-1272 3123570 3124433 3125556 "URAGG-" 3125561 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1271 3119279 3122205 3122670 "UPXSSING" 3123234 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1270 3111345 3118526 3118799 "UPXS" 3119064 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1269 3104418 3111249 3111321 "UPXSCONS" 3111326 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1268 3093825 3100621 3100683 "UPXSCCA" 3101257 NIL UPXSCCA (NIL T T) -9 NIL 3101490 NIL) (-1267 3093463 3093548 3093722 "UPXSCCA-" 3093727 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1266 3082722 3089291 3089334 "UPXSCAT" 3089982 NIL UPXSCAT (NIL T) -9 NIL 3090591 NIL) (-1265 3082152 3082231 3082410 "UPXS2" 3082637 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1264 3080806 3081059 3081410 "UPSQFREE" 3081895 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1263 3074014 3077074 3077129 "UPSCAT" 3078209 NIL UPSCAT (NIL T T) -9 NIL 3078974 NIL) (-1262 3073218 3073425 3073752 "UPSCAT-" 3073757 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1261 3058487 3066345 3066388 "UPOLYC" 3068489 NIL UPOLYC (NIL T) -9 NIL 3069710 NIL) (-1260 3049815 3052241 3055388 "UPOLYC-" 3055393 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1259 3049442 3049485 3049618 "UPOLYC2" 3049766 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1258 3041164 3049125 3049254 "UP" 3049361 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1257 3040503 3040610 3040774 "UPMP" 3041053 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1256 3040056 3040137 3040276 "UPDIVP" 3040416 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1255 3038624 3038873 3039189 "UPDECOMP" 3039805 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1254 3037855 3037967 3038153 "UPCDEN" 3038508 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1253 3037374 3037443 3037592 "UP2" 3037780 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1252 3035841 3036578 3036855 "UNISEG" 3037132 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1251 3035056 3035183 3035388 "UNISEG2" 3035684 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1250 3034116 3034296 3034522 "UNIFACT" 3034872 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1249 3017045 3033293 3033544 "ULS" 3033923 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1248 3004908 3016949 3017021 "ULSCONS" 3017026 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1247 2985971 2998096 2998158 "ULSCCAT" 2998796 NIL ULSCCAT (NIL T T) -9 NIL 2999085 NIL) (-1246 2985021 2985266 2985654 "ULSCCAT-" 2985659 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1245 2974085 2980568 2980611 "ULSCAT" 2981474 NIL ULSCAT (NIL T) -9 NIL 2982205 NIL) (-1244 2973515 2973594 2973773 "ULS2" 2974000 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1243 2972634 2973144 2973251 "UINT8" 2973362 T UINT8 (NIL) -8 NIL NIL 2973447) (-1242 2971752 2972262 2972369 "UINT64" 2972480 T UINT64 (NIL) -8 NIL NIL 2972565) (-1241 2970870 2971380 2971487 "UINT32" 2971598 T UINT32 (NIL) -8 NIL NIL 2971683) (-1240 2969988 2970498 2970605 "UINT16" 2970716 T UINT16 (NIL) -8 NIL NIL 2970801) (-1239 2968291 2969248 2969278 "UFD" 2969490 T UFD (NIL) -9 NIL 2969604 NIL) (-1238 2968085 2968131 2968226 "UFD-" 2968231 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1237 2967167 2967350 2967566 "UDVO" 2967891 T UDVO (NIL) -7 NIL NIL NIL) (-1236 2964983 2965392 2965863 "UDPO" 2966731 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1235 2964916 2964921 2964951 "TYPE" 2964956 T TYPE (NIL) -9 NIL NIL NIL) (-1234 2964676 2964871 2964902 "TYPEAST" 2964907 T TYPEAST (NIL) -8 NIL NIL NIL) (-1233 2963647 2963849 2964089 "TWOFACT" 2964470 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1232 2962670 2963056 2963291 "TUPLE" 2963447 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1231 2960361 2960880 2961419 "TUBETOOL" 2962153 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1230 2959210 2959415 2959656 "TUBE" 2960154 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1229 2953939 2958182 2958465 "TS" 2958962 NIL TS (NIL T) -8 NIL NIL NIL) (-1228 2942579 2946698 2946795 "TSETCAT" 2952064 NIL TSETCAT (NIL T T T T) -9 NIL 2953595 NIL) (-1227 2937311 2938911 2940802 "TSETCAT-" 2940807 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1226 2931950 2932797 2933726 "TRMANIP" 2936447 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1225 2931391 2931454 2931617 "TRIMAT" 2931882 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1224 2929257 2929494 2929851 "TRIGMNIP" 2931140 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1223 2928777 2928890 2928920 "TRIGCAT" 2929133 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1222 2928446 2928525 2928666 "TRIGCAT-" 2928671 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1221 2925291 2927304 2927585 "TREE" 2928200 NIL TREE (NIL T) -8 NIL NIL NIL) (-1220 2924565 2925093 2925123 "TRANFUN" 2925158 T TRANFUN (NIL) -9 NIL 2925224 NIL) (-1219 2923844 2924035 2924315 "TRANFUN-" 2924320 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1218 2923648 2923680 2923741 "TOPSP" 2923805 T TOPSP (NIL) -7 NIL NIL NIL) (-1217 2922996 2923111 2923265 "TOOLSIGN" 2923529 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1216 2921630 2922173 2922412 "TEXTFILE" 2922779 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1215 2919542 2920083 2920512 "TEX" 2921223 T TEX (NIL) -8 NIL NIL NIL) (-1214 2919323 2919354 2919426 "TEX1" 2919505 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1213 2918971 2919034 2919124 "TEMUTL" 2919255 T TEMUTL (NIL) -7 NIL NIL NIL) (-1212 2917125 2917405 2917730 "TBCMPPK" 2918694 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1211 2908902 2915285 2915341 "TBAGG" 2915741 NIL TBAGG (NIL T T) -9 NIL 2915952 NIL) (-1210 2903972 2905460 2907214 "TBAGG-" 2907219 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1209 2903356 2903463 2903608 "TANEXP" 2903861 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1208 2902867 2903131 2903221 "TALGOP" 2903301 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1207 2896257 2902724 2902817 "TABLE" 2902822 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1206 2895669 2895768 2895906 "TABLEAU" 2896154 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1205 2890277 2891497 2892745 "TABLBUMP" 2894455 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1204 2889499 2889646 2889827 "SYSTEM" 2890118 T SYSTEM (NIL) -8 NIL NIL NIL) (-1203 2885958 2886657 2887440 "SYSSOLP" 2888750 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1202 2885756 2885913 2885944 "SYSPTR" 2885949 T SYSPTR (NIL) -8 NIL NIL NIL) (-1201 2884792 2885297 2885416 "SYSNNI" 2885602 NIL SYSNNI (NIL NIL) -8 NIL NIL 2885687) (-1200 2884091 2884550 2884629 "SYSINT" 2884689 NIL SYSINT (NIL NIL) -8 NIL NIL 2884734) (-1199 2880423 2881369 2882079 "SYNTAX" 2883403 T SYNTAX (NIL) -8 NIL NIL NIL) (-1198 2877581 2878183 2878815 "SYMTAB" 2879813 T SYMTAB (NIL) -8 NIL NIL NIL) (-1197 2872830 2873732 2874715 "SYMS" 2876620 T SYMS (NIL) -8 NIL NIL NIL) (-1196 2870065 2872288 2872518 "SYMPOLY" 2872635 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1195 2869582 2869657 2869780 "SYMFUNC" 2869977 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1194 2865602 2866894 2867707 "SYMBOL" 2868791 T SYMBOL (NIL) -8 NIL NIL NIL) (-1193 2859141 2860830 2862550 "SWITCH" 2863904 T SWITCH (NIL) -8 NIL NIL NIL) (-1192 2852375 2857962 2858265 "SUTS" 2858896 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1191 2844441 2851622 2851895 "SUPXS" 2852160 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1190 2836111 2844059 2844185 "SUP" 2844350 NIL SUP (NIL T) -8 NIL NIL NIL) (-1189 2835270 2835397 2835614 "SUPFRACF" 2835979 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1188 2834891 2834950 2835063 "SUP2" 2835205 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1187 2833339 2833613 2833969 "SUMRF" 2834590 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1186 2832674 2832740 2832932 "SUMFS" 2833260 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1185 2815638 2831851 2832102 "SULS" 2832481 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1184 2815240 2815460 2815530 "SUCHTAST" 2815590 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1183 2814535 2814765 2814905 "SUCH" 2815148 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1182 2808402 2809441 2810400 "SUBSPACE" 2813623 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1181 2807832 2807922 2808086 "SUBRESP" 2808290 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1180 2801200 2802497 2803808 "STTF" 2806568 NIL STTF (NIL T) -7 NIL NIL NIL) (-1179 2795373 2796493 2797640 "STTFNC" 2800100 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1178 2786686 2788555 2790349 "STTAYLOR" 2793614 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1177 2779816 2786550 2786633 "STRTBL" 2786638 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1176 2775180 2779771 2779802 "STRING" 2779807 T STRING (NIL) -8 NIL NIL NIL) (-1175 2770009 2774523 2774553 "STRICAT" 2774612 T STRICAT (NIL) -9 NIL 2774674 NIL) (-1174 2762762 2767628 2768239 "STREAM" 2769433 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1173 2762272 2762349 2762493 "STREAM3" 2762679 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1172 2761254 2761437 2761672 "STREAM2" 2762085 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1171 2760942 2760994 2761087 "STREAM1" 2761196 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1170 2759958 2760139 2760370 "STINPROD" 2760758 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1169 2759510 2759720 2759750 "STEP" 2759830 T STEP (NIL) -9 NIL 2759908 NIL) (-1168 2758697 2758999 2759147 "STEPAST" 2759384 T STEPAST (NIL) -8 NIL NIL NIL) (-1167 2752129 2758596 2758673 "STBL" 2758678 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1166 2747224 2751320 2751363 "STAGG" 2751516 NIL STAGG (NIL T) -9 NIL 2751605 NIL) (-1165 2744926 2745528 2746400 "STAGG-" 2746405 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1164 2743073 2744696 2744788 "STACK" 2744869 NIL STACK (NIL T) -8 NIL NIL NIL) (-1163 2735768 2741214 2741670 "SREGSET" 2742703 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1162 2728193 2729562 2731075 "SRDCMPK" 2734374 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1161 2721078 2725603 2725633 "SRAGG" 2726936 T SRAGG (NIL) -9 NIL 2727544 NIL) (-1160 2720095 2720350 2720729 "SRAGG-" 2720734 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1159 2714466 2719042 2719463 "SQMATRIX" 2719721 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1158 2708151 2711184 2711911 "SPLTREE" 2713811 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1157 2704114 2704807 2705453 "SPLNODE" 2707577 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1156 2703161 2703394 2703424 "SPFCAT" 2703868 T SPFCAT (NIL) -9 NIL NIL NIL) (-1155 2701898 2702108 2702372 "SPECOUT" 2702919 T SPECOUT (NIL) -7 NIL NIL NIL) (-1154 2693008 2694880 2694910 "SPADXPT" 2699586 T SPADXPT (NIL) -9 NIL 2701750 NIL) (-1153 2692769 2692809 2692878 "SPADPRSR" 2692961 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1152 2690818 2692724 2692755 "SPADAST" 2692760 T SPADAST (NIL) -8 NIL NIL NIL) (-1151 2682763 2684536 2684579 "SPACEC" 2688952 NIL SPACEC (NIL T) -9 NIL 2690768 NIL) (-1150 2680893 2682695 2682744 "SPACE3" 2682749 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1149 2679645 2679816 2680107 "SORTPAK" 2680698 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1148 2677737 2678040 2678452 "SOLVETRA" 2679309 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1147 2676787 2677009 2677270 "SOLVESER" 2677510 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1146 2672091 2672979 2673974 "SOLVERAD" 2675839 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1145 2667906 2668515 2669244 "SOLVEFOR" 2671458 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1144 2662176 2667255 2667352 "SNTSCAT" 2667357 NIL SNTSCAT (NIL T T T T) -9 NIL 2667427 NIL) (-1143 2656282 2660499 2660890 "SMTS" 2661866 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1142 2650878 2656170 2656247 "SMP" 2656252 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1141 2649037 2649338 2649736 "SMITH" 2650575 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1140 2641328 2645616 2645719 "SMATCAT" 2647070 NIL SMATCAT (NIL NIL T T T) -9 NIL 2647620 NIL) (-1139 2638046 2638931 2640189 "SMATCAT-" 2640194 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1138 2635712 2637282 2637325 "SKAGG" 2637586 NIL SKAGG (NIL T) -9 NIL 2637721 NIL) (-1137 2631988 2635185 2635369 "SINT" 2635521 T SINT (NIL) -8 NIL NIL 2635683) (-1136 2631760 2631798 2631864 "SIMPAN" 2631944 T SIMPAN (NIL) -7 NIL NIL NIL) (-1135 2631039 2631295 2631435 "SIG" 2631642 T SIG (NIL) -8 NIL NIL NIL) (-1134 2629877 2630098 2630373 "SIGNRF" 2630798 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1133 2628710 2628861 2629145 "SIGNEF" 2629706 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1132 2628016 2628293 2628417 "SIGAST" 2628608 T SIGAST (NIL) -8 NIL NIL NIL) (-1131 2625706 2626160 2626666 "SHP" 2627557 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1130 2619711 2625607 2625683 "SHDP" 2625688 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1129 2619284 2619476 2619506 "SGROUP" 2619599 T SGROUP (NIL) -9 NIL 2619661 NIL) (-1128 2619142 2619168 2619241 "SGROUP-" 2619246 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1127 2615933 2616631 2617354 "SGCF" 2618441 T SGCF (NIL) -7 NIL NIL NIL) (-1126 2610301 2615380 2615477 "SFRTCAT" 2615482 NIL SFRTCAT (NIL T T T T) -9 NIL 2615521 NIL) (-1125 2603722 2604740 2605876 "SFRGCD" 2609284 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1124 2596848 2597921 2599107 "SFQCMPK" 2602655 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1123 2596468 2596557 2596668 "SFORT" 2596789 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1122 2595586 2596308 2596429 "SEXOF" 2596434 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1121 2594693 2595467 2595535 "SEX" 2595540 T SEX (NIL) -8 NIL NIL NIL) (-1120 2590474 2591189 2591284 "SEXCAT" 2593906 NIL SEXCAT (NIL T T T T T) -9 NIL 2594466 NIL) (-1119 2587627 2590408 2590456 "SET" 2590461 NIL SET (NIL T) -8 NIL NIL NIL) (-1118 2585851 2586340 2586645 "SETMN" 2587368 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1117 2585347 2585499 2585529 "SETCAT" 2585705 T SETCAT (NIL) -9 NIL 2585815 NIL) (-1116 2585039 2585117 2585247 "SETCAT-" 2585252 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1115 2581400 2583500 2583543 "SETAGG" 2584413 NIL SETAGG (NIL T) -9 NIL 2584753 NIL) (-1114 2580858 2580974 2581211 "SETAGG-" 2581216 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1113 2580301 2580554 2580655 "SEQAST" 2580779 T SEQAST (NIL) -8 NIL NIL NIL) (-1112 2579500 2579794 2579855 "SEGXCAT" 2580141 NIL SEGXCAT (NIL T T) -9 NIL 2580261 NIL) (-1111 2578506 2579166 2579348 "SEG" 2579353 NIL SEG (NIL T) -8 NIL NIL NIL) (-1110 2577485 2577699 2577742 "SEGCAT" 2578264 NIL SEGCAT (NIL T) -9 NIL 2578485 NIL) (-1109 2576417 2576848 2577056 "SEGBIND" 2577312 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1108 2576038 2576097 2576210 "SEGBIND2" 2576352 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1107 2575611 2575839 2575916 "SEGAST" 2575983 T SEGAST (NIL) -8 NIL NIL NIL) (-1106 2574830 2574956 2575160 "SEG2" 2575455 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1105 2574201 2574765 2574812 "SDVAR" 2574817 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1104 2566639 2573971 2574101 "SDPOL" 2574106 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1103 2565232 2565498 2565817 "SCPKG" 2566354 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1102 2564396 2564568 2564760 "SCOPE" 2565062 T SCOPE (NIL) -8 NIL NIL NIL) (-1101 2563616 2563750 2563929 "SCACHE" 2564251 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1100 2563262 2563448 2563478 "SASTCAT" 2563483 T SASTCAT (NIL) -9 NIL 2563496 NIL) (-1099 2562749 2563097 2563173 "SAOS" 2563208 T SAOS (NIL) -8 NIL NIL NIL) (-1098 2562314 2562349 2562522 "SAERFFC" 2562708 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1097 2556164 2562211 2562291 "SAE" 2562296 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1096 2555757 2555792 2555951 "SAEFACT" 2556123 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1095 2554078 2554392 2554793 "RURPK" 2555423 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1094 2552715 2553021 2553326 "RULESET" 2553912 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1093 2549938 2550468 2550926 "RULE" 2552396 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1092 2549550 2549732 2549815 "RULECOLD" 2549890 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1091 2549340 2549368 2549439 "RTVALUE" 2549501 T RTVALUE (NIL) -8 NIL NIL NIL) (-1090 2548811 2549057 2549151 "RSTRCAST" 2549268 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1089 2543659 2544454 2545374 "RSETGCD" 2548010 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1088 2532889 2537968 2538065 "RSETCAT" 2542184 NIL RSETCAT (NIL T T T T) -9 NIL 2543281 NIL) (-1087 2530816 2531355 2532179 "RSETCAT-" 2532184 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1086 2523202 2524578 2526098 "RSDCMPK" 2529415 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1085 2521181 2521648 2521722 "RRCC" 2522808 NIL RRCC (NIL T T) -9 NIL 2523152 NIL) (-1084 2520532 2520706 2520985 "RRCC-" 2520990 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1083 2519975 2520228 2520329 "RPTAST" 2520453 T RPTAST (NIL) -8 NIL NIL NIL) (-1082 2493638 2503087 2503154 "RPOLCAT" 2513820 NIL RPOLCAT (NIL T T T) -9 NIL 2516980 NIL) (-1081 2485136 2487476 2490598 "RPOLCAT-" 2490603 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1080 2476067 2483347 2483829 "ROUTINE" 2484676 T ROUTINE (NIL) -8 NIL NIL NIL) (-1079 2472814 2475693 2475833 "ROMAN" 2475949 T ROMAN (NIL) -8 NIL NIL NIL) (-1078 2471058 2471674 2471934 "ROIRC" 2472619 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1077 2467290 2469574 2469604 "RNS" 2469908 T RNS (NIL) -9 NIL 2470182 NIL) (-1076 2465799 2466182 2466716 "RNS-" 2466791 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1075 2465202 2465610 2465640 "RNG" 2465645 T RNG (NIL) -9 NIL 2465666 NIL) (-1074 2464205 2464567 2464769 "RNGBIND" 2465053 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1073 2463604 2463992 2464035 "RMODULE" 2464040 NIL RMODULE (NIL T) -9 NIL 2464067 NIL) (-1072 2462440 2462534 2462870 "RMCAT2" 2463505 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1071 2459290 2461786 2462083 "RMATRIX" 2462202 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1070 2452117 2454377 2454492 "RMATCAT" 2457851 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2458833 NIL) (-1069 2451492 2451639 2451946 "RMATCAT-" 2451951 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1068 2450893 2451114 2451157 "RLINSET" 2451351 NIL RLINSET (NIL T) -9 NIL 2451442 NIL) (-1067 2450460 2450535 2450663 "RINTERP" 2450812 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1066 2449518 2450072 2450102 "RING" 2450158 T RING (NIL) -9 NIL 2450250 NIL) (-1065 2449310 2449354 2449451 "RING-" 2449456 NIL RING- (NIL T) -8 NIL NIL NIL) (-1064 2448151 2448388 2448646 "RIDIST" 2449074 T RIDIST (NIL) -7 NIL NIL NIL) (-1063 2439440 2447619 2447825 "RGCHAIN" 2447999 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1062 2438790 2439196 2439237 "RGBCSPC" 2439295 NIL RGBCSPC (NIL T) -9 NIL 2439347 NIL) (-1061 2437948 2438329 2438370 "RGBCMDL" 2438602 NIL RGBCMDL (NIL T) -9 NIL 2438716 NIL) (-1060 2434942 2435556 2436226 "RF" 2437312 NIL RF (NIL T) -7 NIL NIL NIL) (-1059 2434588 2434651 2434754 "RFFACTOR" 2434873 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1058 2434313 2434348 2434445 "RFFACT" 2434547 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1057 2432430 2432794 2433176 "RFDIST" 2433953 T RFDIST (NIL) -7 NIL NIL NIL) (-1056 2431883 2431975 2432138 "RETSOL" 2432332 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1055 2431519 2431599 2431642 "RETRACT" 2431775 NIL RETRACT (NIL T) -9 NIL 2431862 NIL) (-1054 2431368 2431393 2431480 "RETRACT-" 2431485 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1053 2430970 2431190 2431260 "RETAST" 2431320 T RETAST (NIL) -8 NIL NIL NIL) (-1052 2423708 2430623 2430750 "RESULT" 2430865 T RESULT (NIL) -8 NIL NIL NIL) (-1051 2422299 2422977 2423176 "RESRING" 2423611 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1050 2421935 2421984 2422082 "RESLATC" 2422236 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1049 2421640 2421675 2421782 "REPSQ" 2421894 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1048 2419062 2419642 2420244 "REP" 2421060 T REP (NIL) -7 NIL NIL NIL) (-1047 2418759 2418794 2418905 "REPDB" 2419021 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1046 2412659 2414048 2415271 "REP2" 2417571 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1045 2409036 2409717 2410525 "REP1" 2411886 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1044 2401732 2407177 2407633 "REGSET" 2408666 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1043 2400497 2400880 2401130 "REF" 2401517 NIL REF (NIL T) -8 NIL NIL NIL) (-1042 2399874 2399977 2400144 "REDORDER" 2400381 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1041 2395842 2399087 2399314 "RECLOS" 2399702 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1040 2394894 2395075 2395290 "REALSOLV" 2395649 T REALSOLV (NIL) -7 NIL NIL NIL) (-1039 2394740 2394781 2394811 "REAL" 2394816 T REAL (NIL) -9 NIL 2394851 NIL) (-1038 2391223 2392025 2392909 "REAL0Q" 2393905 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1037 2386824 2387812 2388873 "REAL0" 2390204 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1036 2386295 2386541 2386635 "RDUCEAST" 2386752 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1035 2385700 2385772 2385979 "RDIV" 2386217 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1034 2384768 2384942 2385155 "RDIST" 2385522 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1033 2383365 2383652 2384024 "RDETRS" 2384476 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1032 2381177 2381631 2382169 "RDETR" 2382907 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1031 2379802 2380080 2380477 "RDEEFS" 2380893 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1030 2378311 2378617 2379042 "RDEEF" 2379490 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1029 2372372 2375292 2375322 "RCFIELD" 2376617 T RCFIELD (NIL) -9 NIL 2377348 NIL) (-1028 2370436 2370940 2371636 "RCFIELD-" 2371711 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1027 2366705 2368537 2368580 "RCAGG" 2369664 NIL RCAGG (NIL T) -9 NIL 2370129 NIL) (-1026 2366333 2366427 2366590 "RCAGG-" 2366595 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1025 2365668 2365780 2365945 "RATRET" 2366217 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1024 2365221 2365288 2365409 "RATFACT" 2365596 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1023 2364529 2364649 2364801 "RANDSRC" 2365091 T RANDSRC (NIL) -7 NIL NIL NIL) (-1022 2364263 2364307 2364380 "RADUTIL" 2364478 T RADUTIL (NIL) -7 NIL NIL NIL) (-1021 2357284 2363094 2363405 "RADIX" 2363986 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1020 2347952 2357126 2357256 "RADFF" 2357261 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1019 2347599 2347674 2347704 "RADCAT" 2347864 T RADCAT (NIL) -9 NIL NIL NIL) (-1018 2347381 2347429 2347529 "RADCAT-" 2347534 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1017 2345479 2347151 2347243 "QUEUE" 2347324 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1016 2341927 2345412 2345460 "QUAT" 2345465 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1015 2341558 2341601 2341732 "QUATCT2" 2341878 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1014 2334571 2338008 2338050 "QUATCAT" 2338841 NIL QUATCAT (NIL T) -9 NIL 2339607 NIL) (-1013 2330710 2331747 2333137 "QUATCAT-" 2333233 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1012 2328175 2329786 2329829 "QUAGG" 2330210 NIL QUAGG (NIL T) -9 NIL 2330385 NIL) (-1011 2327777 2327997 2328067 "QQUTAST" 2328127 T QQUTAST (NIL) -8 NIL NIL NIL) (-1010 2326790 2327290 2327455 "QFORM" 2327658 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1009 2317364 2322692 2322734 "QFCAT" 2323402 NIL QFCAT (NIL T) -9 NIL 2324403 NIL) (-1008 2312709 2313972 2315646 "QFCAT-" 2315742 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1007 2312340 2312383 2312514 "QFCAT2" 2312660 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1006 2311795 2311905 2312037 "QEQUAT" 2312230 T QEQUAT (NIL) -8 NIL NIL NIL) (-1005 2304921 2305994 2307180 "QCMPACK" 2310728 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1004 2302459 2302907 2303337 "QALGSET" 2304576 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1003 2301694 2301870 2302106 "QALGSET2" 2302277 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1002 2300379 2300603 2300922 "PWFFINTB" 2301467 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1001 2298554 2298722 2299078 "PUSHVAR" 2300193 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1000 2294443 2295497 2295540 "PTRANFN" 2297451 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-999 2292845 2293136 2293458 "PTPACK" 2294154 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-998 2292477 2292534 2292643 "PTFUNC2" 2292782 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-997 2286922 2291319 2291360 "PTCAT" 2291656 NIL PTCAT (NIL T) -9 NIL 2291809 NIL) (-996 2286580 2286615 2286739 "PSQFR" 2286881 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-995 2285175 2285473 2285807 "PSEUDLIN" 2286278 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-994 2271938 2274309 2276633 "PSETPK" 2282935 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-993 2264956 2267696 2267792 "PSETCAT" 2270813 NIL PSETCAT (NIL T T T T) -9 NIL 2271627 NIL) (-992 2262792 2263426 2264247 "PSETCAT-" 2264252 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-991 2262141 2262306 2262334 "PSCURVE" 2262602 T PSCURVE (NIL) -9 NIL 2262769 NIL) (-990 2258139 2259655 2259720 "PSCAT" 2260564 NIL PSCAT (NIL T T T) -9 NIL 2260804 NIL) (-989 2257202 2257418 2257818 "PSCAT-" 2257823 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-988 2255561 2256271 2256534 "PRTITION" 2256959 T PRTITION (NIL) -8 NIL NIL NIL) (-987 2255036 2255282 2255374 "PRTDAST" 2255489 T PRTDAST (NIL) -8 NIL NIL NIL) (-986 2244126 2246340 2248528 "PRS" 2252898 NIL PRS (NIL T T) -7 NIL NIL NIL) (-985 2241937 2243476 2243516 "PRQAGG" 2243699 NIL PRQAGG (NIL T) -9 NIL 2243801 NIL) (-984 2241273 2241578 2241606 "PROPLOG" 2241745 T PROPLOG (NIL) -9 NIL 2241860 NIL) (-983 2240877 2240934 2241057 "PROPFUN2" 2241196 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-982 2240192 2240313 2240485 "PROPFUN1" 2240738 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-981 2238373 2238939 2239236 "PROPFRML" 2239928 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-980 2237842 2237949 2238077 "PROPERTY" 2238265 T PROPERTY (NIL) -8 NIL NIL NIL) (-979 2231900 2236008 2236828 "PRODUCT" 2237068 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-978 2229178 2231358 2231592 "PR" 2231711 NIL PR (NIL T T) -8 NIL NIL NIL) (-977 2228974 2229006 2229065 "PRINT" 2229139 T PRINT (NIL) -7 NIL NIL NIL) (-976 2228314 2228431 2228583 "PRIMES" 2228854 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-975 2226379 2226780 2227246 "PRIMELT" 2227893 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-974 2226108 2226157 2226185 "PRIMCAT" 2226309 T PRIMCAT (NIL) -9 NIL NIL NIL) (-973 2222223 2226046 2226091 "PRIMARR" 2226096 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-972 2221230 2221408 2221636 "PRIMARR2" 2222041 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-971 2220873 2220929 2221040 "PREASSOC" 2221168 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-970 2220348 2220481 2220509 "PPCURVE" 2220714 T PPCURVE (NIL) -9 NIL 2220850 NIL) (-969 2219943 2220143 2220226 "PORTNUM" 2220285 T PORTNUM (NIL) -8 NIL NIL NIL) (-968 2217302 2217701 2218293 "POLYROOT" 2219524 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-967 2211395 2216906 2217066 "POLY" 2217175 NIL POLY (NIL T) -8 NIL NIL NIL) (-966 2210778 2210836 2211070 "POLYLIFT" 2211331 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-965 2207053 2207502 2208131 "POLYCATQ" 2210323 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-964 2193582 2198800 2198865 "POLYCAT" 2202379 NIL POLYCAT (NIL T T T) -9 NIL 2204257 NIL) (-963 2186809 2188733 2191197 "POLYCAT-" 2191202 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-962 2186396 2186464 2186584 "POLY2UP" 2186735 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-961 2186028 2186085 2186194 "POLY2" 2186333 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-960 2184713 2184952 2185228 "POLUTIL" 2185802 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-959 2183068 2183345 2183676 "POLTOPOL" 2184435 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-958 2178533 2183004 2183050 "POINT" 2183055 NIL POINT (NIL T) -8 NIL NIL NIL) (-957 2176720 2177077 2177452 "PNTHEORY" 2178178 T PNTHEORY (NIL) -7 NIL NIL NIL) (-956 2175178 2175475 2175874 "PMTOOLS" 2176418 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-955 2174771 2174849 2174966 "PMSYM" 2175094 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-954 2174279 2174348 2174523 "PMQFCAT" 2174696 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-953 2173634 2173744 2173900 "PMPRED" 2174156 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-952 2173027 2173113 2173275 "PMPREDFS" 2173535 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-951 2171691 2171899 2172277 "PMPLCAT" 2172789 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-950 2171223 2171302 2171454 "PMLSAGG" 2171606 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-949 2170696 2170772 2170954 "PMKERNEL" 2171141 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-948 2170313 2170388 2170501 "PMINS" 2170615 NIL PMINS (NIL T) -7 NIL NIL NIL) (-947 2169755 2169824 2170033 "PMFS" 2170238 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-946 2168983 2169101 2169306 "PMDOWN" 2169632 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-945 2168150 2168308 2168489 "PMASS" 2168822 T PMASS (NIL) -7 NIL NIL NIL) (-944 2167423 2167533 2167696 "PMASSFS" 2168037 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-943 2167078 2167146 2167240 "PLOTTOOL" 2167349 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-942 2161685 2162889 2164037 "PLOT" 2165950 T PLOT (NIL) -8 NIL NIL NIL) (-941 2157489 2158533 2159454 "PLOT3D" 2160784 T PLOT3D (NIL) -8 NIL NIL NIL) (-940 2156401 2156578 2156813 "PLOT1" 2157293 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-939 2131792 2136467 2141318 "PLEQN" 2151667 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-938 2131110 2131232 2131412 "PINTERP" 2131657 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-937 2130803 2130850 2130953 "PINTERPA" 2131057 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-936 2130019 2130567 2130654 "PI" 2130694 T PI (NIL) -8 NIL NIL 2130761) (-935 2128316 2129291 2129319 "PID" 2129501 T PID (NIL) -9 NIL 2129635 NIL) (-934 2128067 2128104 2128179 "PICOERCE" 2128273 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-933 2127387 2127526 2127702 "PGROEB" 2127923 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-932 2122974 2123788 2124693 "PGE" 2126502 T PGE (NIL) -7 NIL NIL NIL) (-931 2121097 2121344 2121710 "PGCD" 2122691 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-930 2120435 2120538 2120699 "PFRPAC" 2120981 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-929 2117075 2118983 2119336 "PFR" 2120114 NIL PFR (NIL T) -8 NIL NIL NIL) (-928 2115464 2115708 2116033 "PFOTOOLS" 2116822 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-927 2113997 2114236 2114587 "PFOQ" 2115221 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-926 2112498 2112710 2113066 "PFO" 2113781 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-925 2109051 2112387 2112456 "PF" 2112461 NIL PF (NIL NIL) -8 NIL NIL NIL) (-924 2106385 2107656 2107684 "PFECAT" 2108269 T PFECAT (NIL) -9 NIL 2108653 NIL) (-923 2105830 2105984 2106198 "PFECAT-" 2106203 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-922 2104433 2104685 2104986 "PFBRU" 2105579 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-921 2102299 2102651 2103083 "PFBR" 2104084 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-920 2098345 2099811 2100458 "PERM" 2101685 NIL PERM (NIL T) -8 NIL NIL NIL) (-919 2093579 2094552 2095422 "PERMGRP" 2097508 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-918 2091698 2092658 2092699 "PERMCAT" 2093099 NIL PERMCAT (NIL T) -9 NIL 2093397 NIL) (-917 2091351 2091392 2091516 "PERMAN" 2091651 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-916 2088839 2091016 2091138 "PENDTREE" 2091262 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-915 2087768 2087983 2088024 "PDSPC" 2088557 NIL PDSPC (NIL T) -9 NIL 2088802 NIL) (-914 2086871 2087089 2087451 "PDSPC-" 2087456 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-913 2085753 2086521 2086562 "PDRING" 2086567 NIL PDRING (NIL T) -9 NIL 2086595 NIL) (-912 2082968 2083746 2084414 "PDEPROB" 2085105 T PDEPROB (NIL) -8 NIL NIL NIL) (-911 2080513 2081017 2081572 "PDEPACK" 2082433 T PDEPACK (NIL) -7 NIL NIL NIL) (-910 2079425 2079615 2079866 "PDECOMP" 2080312 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-909 2077004 2077847 2077875 "PDECAT" 2078662 T PDECAT (NIL) -9 NIL 2079375 NIL) (-908 2076633 2076688 2076742 "PDDOM" 2076907 NIL PDDOM (NIL T T) -9 NIL 2076987 NIL) (-907 2076452 2076482 2076589 "PDDOM-" 2076594 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-906 2076203 2076236 2076326 "PCOMP" 2076413 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-905 2074381 2075004 2075301 "PBWLB" 2075932 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-904 2066854 2068454 2069792 "PATTERN" 2073064 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-903 2066486 2066543 2066652 "PATTERN2" 2066791 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-902 2064243 2064631 2065088 "PATTERN1" 2066075 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-901 2061611 2062192 2062673 "PATRES" 2063808 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-900 2061175 2061242 2061374 "PATRES2" 2061538 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-899 2059058 2059463 2059870 "PATMATCH" 2060842 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-898 2058568 2058777 2058818 "PATMAB" 2058925 NIL PATMAB (NIL T) -9 NIL 2059008 NIL) (-897 2057086 2057422 2057680 "PATLRES" 2058373 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-896 2056632 2056755 2056796 "PATAB" 2056801 NIL PATAB (NIL T) -9 NIL 2056973 NIL) (-895 2054814 2055209 2055632 "PARTPERM" 2056229 T PARTPERM (NIL) -7 NIL NIL NIL) (-894 2054435 2054498 2054600 "PARSURF" 2054745 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-893 2054067 2054124 2054233 "PARSU2" 2054372 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-892 2053831 2053871 2053938 "PARSER" 2054020 T PARSER (NIL) -7 NIL NIL NIL) (-891 2053452 2053515 2053617 "PARSCURV" 2053762 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-890 2053084 2053141 2053250 "PARSC2" 2053389 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-889 2052723 2052781 2052878 "PARPCURV" 2053020 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-888 2052355 2052412 2052521 "PARPC2" 2052660 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-887 2051416 2051728 2051910 "PARAMAST" 2052193 T PARAMAST (NIL) -8 NIL NIL NIL) (-886 2050936 2051022 2051141 "PAN2EXPR" 2051317 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-885 2049713 2050057 2050285 "PALETTE" 2050728 T PALETTE (NIL) -8 NIL NIL NIL) (-884 2048106 2048718 2049078 "PAIR" 2049399 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-883 2041885 2047363 2047558 "PADICRC" 2047960 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-882 2035009 2041229 2041414 "PADICRAT" 2041732 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-881 2033324 2034946 2034991 "PADIC" 2034996 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-880 2030434 2031998 2032038 "PADICCT" 2032619 NIL PADICCT (NIL NIL) -9 NIL 2032901 NIL) (-879 2029391 2029591 2029859 "PADEPAC" 2030221 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-878 2028603 2028736 2028942 "PADE" 2029253 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-877 2026990 2027811 2028091 "OWP" 2028407 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-876 2026483 2026696 2026793 "OVERSET" 2026913 T OVERSET (NIL) -8 NIL NIL NIL) (-875 2025529 2026088 2026260 "OVAR" 2026351 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-874 2024793 2024914 2025075 "OUT" 2025388 T OUT (NIL) -7 NIL NIL NIL) (-873 2013665 2015902 2018102 "OUTFORM" 2022613 T OUTFORM (NIL) -8 NIL NIL NIL) (-872 2013001 2013262 2013389 "OUTBFILE" 2013558 T OUTBFILE (NIL) -8 NIL NIL NIL) (-871 2012308 2012473 2012501 "OUTBCON" 2012819 T OUTBCON (NIL) -9 NIL 2012985 NIL) (-870 2011909 2012021 2012178 "OUTBCON-" 2012183 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-869 2011289 2011638 2011727 "OSI" 2011840 T OSI (NIL) -8 NIL NIL NIL) (-868 2010819 2011157 2011185 "OSGROUP" 2011190 T OSGROUP (NIL) -9 NIL 2011212 NIL) (-867 2009564 2009791 2010076 "ORTHPOL" 2010566 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-866 2007115 2009399 2009520 "OREUP" 2009525 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-865 2004518 2006806 2006933 "ORESUP" 2007057 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-864 2002046 2002546 2003107 "OREPCTO" 2004007 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-863 1995732 1997933 1997974 "OREPCAT" 2000322 NIL OREPCAT (NIL T) -9 NIL 2001426 NIL) (-862 1992879 1993661 1994719 "OREPCAT-" 1994724 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-861 1992030 1992328 1992356 "ORDSET" 1992665 T ORDSET (NIL) -9 NIL 1992829 NIL) (-860 1991461 1991609 1991833 "ORDSET-" 1991838 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-859 1990026 1990817 1990845 "ORDRING" 1991047 T ORDRING (NIL) -9 NIL 1991172 NIL) (-858 1989671 1989765 1989909 "ORDRING-" 1989914 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-857 1989051 1989514 1989542 "ORDMON" 1989547 T ORDMON (NIL) -9 NIL 1989568 NIL) (-856 1988213 1988360 1988555 "ORDFUNS" 1988900 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-855 1987551 1987970 1987998 "ORDFIN" 1988063 T ORDFIN (NIL) -9 NIL 1988137 NIL) (-854 1984110 1986137 1986546 "ORDCOMP" 1987175 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-853 1983376 1983503 1983689 "ORDCOMP2" 1983970 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-852 1979957 1980867 1981681 "OPTPROB" 1982582 T OPTPROB (NIL) -8 NIL NIL NIL) (-851 1976759 1977398 1978102 "OPTPACK" 1979273 T OPTPACK (NIL) -7 NIL NIL NIL) (-850 1974446 1975212 1975240 "OPTCAT" 1976059 T OPTCAT (NIL) -9 NIL 1976709 NIL) (-849 1973830 1974123 1974228 "OPSIG" 1974361 T OPSIG (NIL) -8 NIL NIL NIL) (-848 1973598 1973637 1973703 "OPQUERY" 1973784 T OPQUERY (NIL) -7 NIL NIL NIL) (-847 1970729 1971909 1972413 "OP" 1973127 NIL OP (NIL T) -8 NIL NIL NIL) (-846 1970103 1970329 1970370 "OPERCAT" 1970582 NIL OPERCAT (NIL T) -9 NIL 1970679 NIL) (-845 1969858 1969914 1970031 "OPERCAT-" 1970036 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-844 1966671 1968655 1969024 "ONECOMP" 1969522 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-843 1965976 1966091 1966265 "ONECOMP2" 1966543 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-842 1965395 1965501 1965631 "OMSERVER" 1965866 T OMSERVER (NIL) -7 NIL NIL NIL) (-841 1962257 1964835 1964875 "OMSAGG" 1964936 NIL OMSAGG (NIL T) -9 NIL 1965000 NIL) (-840 1960880 1961143 1961425 "OMPKG" 1961995 T OMPKG (NIL) -7 NIL NIL NIL) (-839 1960310 1960413 1960441 "OM" 1960740 T OM (NIL) -9 NIL NIL NIL) (-838 1958857 1959859 1960028 "OMLO" 1960191 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-837 1957817 1957964 1958184 "OMEXPR" 1958683 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-836 1957108 1957363 1957499 "OMERR" 1957701 T OMERR (NIL) -8 NIL NIL NIL) (-835 1956259 1956529 1956689 "OMERRK" 1956968 T OMERRK (NIL) -8 NIL NIL NIL) (-834 1955710 1955936 1956044 "OMENC" 1956171 T OMENC (NIL) -8 NIL NIL NIL) (-833 1949605 1950790 1951961 "OMDEV" 1954559 T OMDEV (NIL) -8 NIL NIL NIL) (-832 1948674 1948845 1949039 "OMCONN" 1949431 T OMCONN (NIL) -8 NIL NIL NIL) (-831 1947195 1948171 1948199 "OINTDOM" 1948204 T OINTDOM (NIL) -9 NIL 1948225 NIL) (-830 1944533 1945883 1946220 "OFMONOID" 1946890 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-829 1943905 1944470 1944515 "ODVAR" 1944520 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-828 1941328 1943650 1943805 "ODR" 1943810 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-827 1933820 1941104 1941230 "ODPOL" 1941235 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-826 1927795 1933692 1933797 "ODP" 1933802 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-825 1926561 1926776 1927051 "ODETOOLS" 1927569 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-824 1923528 1924186 1924902 "ODESYS" 1925894 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-823 1918410 1919318 1920343 "ODERTRIC" 1922603 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-822 1917836 1917918 1918112 "ODERED" 1918322 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-821 1914724 1915272 1915949 "ODERAT" 1917259 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-820 1911683 1912148 1912745 "ODEPRRIC" 1914253 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-819 1909626 1910222 1910708 "ODEPROB" 1911217 T ODEPROB (NIL) -8 NIL NIL NIL) (-818 1906146 1906631 1907278 "ODEPRIM" 1909105 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-817 1905395 1905497 1905757 "ODEPAL" 1906038 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-816 1901557 1902348 1903212 "ODEPACK" 1904551 T ODEPACK (NIL) -7 NIL NIL NIL) (-815 1900618 1900725 1900947 "ODEINT" 1901446 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-814 1894719 1896144 1897591 "ODEIFTBL" 1899191 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-813 1890117 1890903 1891855 "ODEEF" 1893878 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-812 1889466 1889555 1889778 "ODECONST" 1890022 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-811 1887591 1888252 1888280 "ODECAT" 1888885 T ODECAT (NIL) -9 NIL 1889416 NIL) (-810 1884446 1887296 1887418 "OCT" 1887501 NIL OCT (NIL T) -8 NIL NIL NIL) (-809 1884084 1884127 1884254 "OCTCT2" 1884397 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-808 1878695 1881130 1881170 "OC" 1882267 NIL OC (NIL T) -9 NIL 1883125 NIL) (-807 1875922 1876670 1877660 "OC-" 1877754 NIL OC- (NIL T T) -8 NIL NIL NIL) (-806 1875274 1875742 1875770 "OCAMON" 1875775 T OCAMON (NIL) -9 NIL 1875796 NIL) (-805 1874805 1875146 1875174 "OASGP" 1875179 T OASGP (NIL) -9 NIL 1875199 NIL) (-804 1874066 1874555 1874583 "OAMONS" 1874623 T OAMONS (NIL) -9 NIL 1874666 NIL) (-803 1873480 1873913 1873941 "OAMON" 1873946 T OAMON (NIL) -9 NIL 1873966 NIL) (-802 1872738 1873256 1873284 "OAGROUP" 1873289 T OAGROUP (NIL) -9 NIL 1873309 NIL) (-801 1872428 1872478 1872566 "NUMTUBE" 1872682 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-800 1866001 1867519 1869055 "NUMQUAD" 1870912 T NUMQUAD (NIL) -7 NIL NIL NIL) (-799 1861757 1862745 1863770 "NUMODE" 1864996 T NUMODE (NIL) -7 NIL NIL NIL) (-798 1859112 1859992 1860020 "NUMINT" 1860943 T NUMINT (NIL) -9 NIL 1861707 NIL) (-797 1858060 1858257 1858475 "NUMFMT" 1858914 T NUMFMT (NIL) -7 NIL NIL NIL) (-796 1844419 1847364 1849896 "NUMERIC" 1855567 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-795 1838789 1843868 1843963 "NTSCAT" 1843968 NIL NTSCAT (NIL T T T T) -9 NIL 1844007 NIL) (-794 1837983 1838148 1838341 "NTPOLFN" 1838628 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-793 1825971 1834808 1835620 "NSUP" 1837204 NIL NSUP (NIL T) -8 NIL NIL NIL) (-792 1825603 1825660 1825769 "NSUP2" 1825908 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-791 1815740 1825377 1825510 "NSMP" 1825515 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-790 1814172 1814473 1814830 "NREP" 1815428 NIL NREP (NIL T) -7 NIL NIL NIL) (-789 1812763 1813015 1813373 "NPCOEF" 1813915 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-788 1811829 1811944 1812160 "NORMRETR" 1812644 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-787 1809870 1810160 1810569 "NORMPK" 1811537 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-786 1809555 1809583 1809707 "NORMMA" 1809836 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-785 1809355 1809512 1809541 "NONE" 1809546 T NONE (NIL) -8 NIL NIL NIL) (-784 1809144 1809173 1809242 "NONE1" 1809319 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-783 1808641 1808703 1808882 "NODE1" 1809076 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-782 1806922 1807773 1808028 "NNI" 1808375 T NNI (NIL) -8 NIL NIL 1808610) (-781 1805342 1805655 1806019 "NLINSOL" 1806590 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-780 1801583 1802578 1803477 "NIPROB" 1804463 T NIPROB (NIL) -8 NIL NIL NIL) (-779 1800340 1800574 1800876 "NFINTBAS" 1801345 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-778 1799514 1799990 1800031 "NETCLT" 1800203 NIL NETCLT (NIL T) -9 NIL 1800285 NIL) (-777 1798222 1798453 1798734 "NCODIV" 1799282 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-776 1797984 1798021 1798096 "NCNTFRAC" 1798179 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-775 1796164 1796528 1796948 "NCEP" 1797609 NIL NCEP (NIL T) -7 NIL NIL NIL) (-774 1795015 1795788 1795816 "NASRING" 1795926 T NASRING (NIL) -9 NIL 1796006 NIL) (-773 1794810 1794854 1794948 "NASRING-" 1794953 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-772 1793917 1794442 1794470 "NARNG" 1794587 T NARNG (NIL) -9 NIL 1794678 NIL) (-771 1793609 1793676 1793810 "NARNG-" 1793815 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-770 1792488 1792695 1792930 "NAGSP" 1793394 T NAGSP (NIL) -7 NIL NIL NIL) (-769 1783760 1785444 1787117 "NAGS" 1790835 T NAGS (NIL) -7 NIL NIL NIL) (-768 1782308 1782616 1782947 "NAGF07" 1783449 T NAGF07 (NIL) -7 NIL NIL NIL) (-767 1776846 1778137 1779444 "NAGF04" 1781021 T NAGF04 (NIL) -7 NIL NIL NIL) (-766 1769814 1771428 1773061 "NAGF02" 1775233 T NAGF02 (NIL) -7 NIL NIL NIL) (-765 1765038 1766138 1767255 "NAGF01" 1768717 T NAGF01 (NIL) -7 NIL NIL NIL) (-764 1758666 1760232 1761817 "NAGE04" 1763473 T NAGE04 (NIL) -7 NIL NIL NIL) (-763 1749835 1751956 1754086 "NAGE02" 1756556 T NAGE02 (NIL) -7 NIL NIL NIL) (-762 1745788 1746735 1747699 "NAGE01" 1748891 T NAGE01 (NIL) -7 NIL NIL NIL) (-761 1743583 1744117 1744675 "NAGD03" 1745250 T NAGD03 (NIL) -7 NIL NIL NIL) (-760 1735333 1737261 1739215 "NAGD02" 1741649 T NAGD02 (NIL) -7 NIL NIL NIL) (-759 1729144 1730569 1732009 "NAGD01" 1733913 T NAGD01 (NIL) -7 NIL NIL NIL) (-758 1725353 1726175 1727012 "NAGC06" 1728327 T NAGC06 (NIL) -7 NIL NIL NIL) (-757 1723818 1724150 1724506 "NAGC05" 1725017 T NAGC05 (NIL) -7 NIL NIL NIL) (-756 1723194 1723313 1723457 "NAGC02" 1723694 T NAGC02 (NIL) -7 NIL NIL NIL) (-755 1722153 1722736 1722776 "NAALG" 1722855 NIL NAALG (NIL T) -9 NIL 1722916 NIL) (-754 1721988 1722017 1722107 "NAALG-" 1722112 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-753 1715938 1717046 1718233 "MULTSQFR" 1720884 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-752 1715257 1715332 1715516 "MULTFACT" 1715850 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-751 1707928 1711842 1711895 "MTSCAT" 1712965 NIL MTSCAT (NIL T T) -9 NIL 1713480 NIL) (-750 1707640 1707694 1707786 "MTHING" 1707868 NIL MTHING (NIL T) -7 NIL NIL NIL) (-749 1707432 1707465 1707525 "MSYSCMD" 1707600 T MSYSCMD (NIL) -7 NIL NIL NIL) (-748 1703514 1706187 1706507 "MSET" 1707145 NIL MSET (NIL T) -8 NIL NIL NIL) (-747 1700583 1703075 1703116 "MSETAGG" 1703121 NIL MSETAGG (NIL T) -9 NIL 1703155 NIL) (-746 1696425 1697962 1698707 "MRING" 1699883 NIL MRING (NIL T T) -8 NIL NIL NIL) (-745 1695991 1696058 1696189 "MRF2" 1696352 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-744 1695609 1695644 1695788 "MRATFAC" 1695950 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-743 1693221 1693516 1693947 "MPRFF" 1695314 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-742 1687429 1693075 1693172 "MPOLY" 1693177 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-741 1686919 1686954 1687162 "MPCPF" 1687388 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-740 1686433 1686476 1686660 "MPC3" 1686870 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1685628 1685709 1685930 "MPC2" 1686348 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-738 1683929 1684266 1684656 "MONOTOOL" 1685288 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-737 1683154 1683471 1683499 "MONOID" 1683718 T MONOID (NIL) -9 NIL 1683865 NIL) (-736 1682700 1682819 1683000 "MONOID-" 1683005 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-735 1672435 1678478 1678537 "MONOGEN" 1679211 NIL MONOGEN (NIL T T) -9 NIL 1679667 NIL) (-734 1669653 1670388 1671388 "MONOGEN-" 1671507 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-733 1668486 1668932 1668960 "MONADWU" 1669352 T MONADWU (NIL) -9 NIL 1669590 NIL) (-732 1667858 1668017 1668265 "MONADWU-" 1668270 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-731 1667217 1667461 1667489 "MONAD" 1667696 T MONAD (NIL) -9 NIL 1667808 NIL) (-730 1666902 1666980 1667112 "MONAD-" 1667117 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-729 1665191 1665815 1666094 "MOEBIUS" 1666655 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-728 1664469 1664873 1664913 "MODULE" 1664918 NIL MODULE (NIL T) -9 NIL 1664957 NIL) (-727 1664037 1664133 1664323 "MODULE-" 1664328 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-726 1661717 1662401 1662728 "MODRING" 1663861 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-725 1658661 1659822 1660343 "MODOP" 1661246 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-724 1657249 1657728 1658005 "MODMONOM" 1658524 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-723 1647204 1655540 1655954 "MODMON" 1656886 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-722 1644360 1646048 1646324 "MODFIELD" 1647079 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-721 1643337 1643641 1643831 "MMLFORM" 1644190 T MMLFORM (NIL) -8 NIL NIL NIL) (-720 1642863 1642906 1643085 "MMAP" 1643288 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-719 1640942 1641709 1641750 "MLO" 1642173 NIL MLO (NIL T) -9 NIL 1642415 NIL) (-718 1638308 1638824 1639426 "MLIFT" 1640423 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-717 1637699 1637783 1637937 "MKUCFUNC" 1638219 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-716 1637298 1637368 1637491 "MKRECORD" 1637622 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-715 1636345 1636507 1636735 "MKFUNC" 1637109 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-714 1635733 1635837 1635993 "MKFLCFN" 1636228 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-713 1635010 1635112 1635297 "MKBCFUNC" 1635626 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-712 1631685 1634564 1634700 "MINT" 1634894 T MINT (NIL) -8 NIL NIL NIL) (-711 1630497 1630740 1631017 "MHROWRED" 1631440 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-710 1625877 1629032 1629437 "MFLOAT" 1630112 T MFLOAT (NIL) -8 NIL NIL NIL) (-709 1625234 1625310 1625481 "MFINFACT" 1625789 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-708 1621549 1622397 1623281 "MESH" 1624370 T MESH (NIL) -7 NIL NIL NIL) (-707 1619939 1620251 1620604 "MDDFACT" 1621236 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-706 1616734 1619098 1619139 "MDAGG" 1619394 NIL MDAGG (NIL T) -9 NIL 1619537 NIL) (-705 1605621 1616027 1616234 "MCMPLX" 1616547 T MCMPLX (NIL) -8 NIL NIL NIL) (-704 1604758 1604904 1605105 "MCDEN" 1605470 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-703 1602648 1602918 1603298 "MCALCFN" 1604488 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-702 1601573 1601813 1602046 "MAYBE" 1602454 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-701 1599185 1599708 1600270 "MATSTOR" 1601044 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-700 1595142 1598557 1598805 "MATRIX" 1598970 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-699 1590908 1591615 1592351 "MATLIN" 1594499 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-698 1581014 1584200 1584277 "MATCAT" 1589157 NIL MATCAT (NIL T T T) -9 NIL 1590574 NIL) (-697 1577370 1578391 1579747 "MATCAT-" 1579752 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-696 1575964 1576117 1576450 "MATCAT2" 1577205 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-695 1574076 1574400 1574784 "MAPPKG3" 1575639 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-694 1573057 1573230 1573452 "MAPPKG2" 1573900 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-693 1571556 1571840 1572167 "MAPPKG1" 1572763 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-692 1570635 1570962 1571139 "MAPPAST" 1571399 T MAPPAST (NIL) -8 NIL NIL NIL) (-691 1570246 1570304 1570427 "MAPHACK3" 1570571 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-690 1569838 1569899 1570013 "MAPHACK2" 1570178 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-689 1569276 1569379 1569521 "MAPHACK1" 1569729 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-688 1567355 1567976 1568280 "MAGMA" 1569004 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-687 1566834 1567079 1567170 "MACROAST" 1567284 T MACROAST (NIL) -8 NIL NIL NIL) (-686 1563252 1565073 1565534 "M3D" 1566406 NIL M3D (NIL T) -8 NIL NIL NIL) (-685 1557327 1561591 1561632 "LZSTAGG" 1562414 NIL LZSTAGG (NIL T) -9 NIL 1562709 NIL) (-684 1553285 1554458 1555915 "LZSTAGG-" 1555920 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-683 1550372 1551176 1551663 "LWORD" 1552830 NIL LWORD (NIL T) -8 NIL NIL NIL) (-682 1549948 1550176 1550251 "LSTAST" 1550317 T LSTAST (NIL) -8 NIL NIL NIL) (-681 1543025 1549719 1549853 "LSQM" 1549858 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-680 1542249 1542388 1542616 "LSPP" 1542880 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-679 1540061 1540362 1540818 "LSMP" 1541938 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-678 1536840 1537514 1538244 "LSMP1" 1539363 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-677 1530686 1535977 1536018 "LSAGG" 1536080 NIL LSAGG (NIL T) -9 NIL 1536158 NIL) (-676 1527381 1528305 1529518 "LSAGG-" 1529523 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-675 1524980 1526525 1526774 "LPOLY" 1527176 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-674 1524562 1524647 1524770 "LPEFRAC" 1524889 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-673 1522883 1523656 1523909 "LO" 1524394 NIL LO (NIL T T T) -8 NIL NIL NIL) (-672 1522535 1522647 1522675 "LOGIC" 1522786 T LOGIC (NIL) -9 NIL 1522867 NIL) (-671 1522397 1522420 1522491 "LOGIC-" 1522496 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-670 1521590 1521730 1521923 "LODOOPS" 1522253 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-669 1519013 1521506 1521572 "LODO" 1521577 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-668 1517551 1517786 1518139 "LODOF" 1518760 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-667 1513755 1516186 1516227 "LODOCAT" 1516665 NIL LODOCAT (NIL T) -9 NIL 1516876 NIL) (-666 1513488 1513546 1513673 "LODOCAT-" 1513678 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-665 1510808 1513329 1513447 "LODO2" 1513452 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-664 1508243 1510745 1510790 "LODO1" 1510795 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-663 1507124 1507289 1507594 "LODEEF" 1508066 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-662 1502427 1505318 1505359 "LNAGG" 1506221 NIL LNAGG (NIL T) -9 NIL 1506656 NIL) (-661 1501574 1501788 1502130 "LNAGG-" 1502135 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-660 1497710 1498499 1499138 "LMOPS" 1500989 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-659 1497113 1497501 1497542 "LMODULE" 1497547 NIL LMODULE (NIL T) -9 NIL 1497573 NIL) (-658 1494311 1496758 1496881 "LMDICT" 1497023 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-657 1493717 1493938 1493979 "LLINSET" 1494170 NIL LLINSET (NIL T) -9 NIL 1494261 NIL) (-656 1493416 1493625 1493685 "LITERAL" 1493690 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-655 1486579 1492350 1492654 "LIST" 1493145 NIL LIST (NIL T) -8 NIL NIL NIL) (-654 1486104 1486178 1486317 "LIST3" 1486499 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-653 1485111 1485289 1485517 "LIST2" 1485922 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-652 1483245 1483557 1483956 "LIST2MAP" 1484758 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-651 1482841 1483078 1483119 "LINSET" 1483124 NIL LINSET (NIL T) -9 NIL 1483158 NIL) (-650 1481570 1482103 1482144 "LINEXP" 1482495 NIL LINEXP (NIL T) -9 NIL 1482686 NIL) (-649 1480147 1480407 1480718 "LINDEP" 1481322 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-648 1476914 1477633 1478410 "LIMITRF" 1479402 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-647 1475217 1475513 1475922 "LIMITPS" 1476609 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-646 1469645 1474728 1474956 "LIE" 1475038 NIL LIE (NIL T T) -8 NIL NIL NIL) (-645 1468593 1469062 1469102 "LIECAT" 1469242 NIL LIECAT (NIL T) -9 NIL 1469393 NIL) (-644 1468434 1468461 1468549 "LIECAT-" 1468554 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-643 1461021 1467974 1468130 "LIB" 1468298 T LIB (NIL) -8 NIL NIL NIL) (-642 1456656 1457539 1458474 "LGROBP" 1460138 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-641 1454654 1454928 1455278 "LF" 1456377 NIL LF (NIL T T) -7 NIL NIL NIL) (-640 1453494 1454186 1454214 "LFCAT" 1454421 T LFCAT (NIL) -9 NIL 1454560 NIL) (-639 1450396 1451026 1451714 "LEXTRIPK" 1452858 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-638 1447140 1447966 1448469 "LEXP" 1449976 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-637 1446616 1446861 1446953 "LETAST" 1447068 T LETAST (NIL) -8 NIL NIL NIL) (-636 1445014 1445327 1445728 "LEADCDET" 1446298 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-635 1444204 1444278 1444507 "LAZM3PK" 1444935 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-634 1439121 1442281 1442819 "LAUPOL" 1443716 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-633 1438700 1438744 1438905 "LAPLACE" 1439071 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-632 1436639 1437801 1438052 "LA" 1438533 NIL LA (NIL T T T) -8 NIL NIL NIL) (-631 1435633 1436217 1436258 "LALG" 1436320 NIL LALG (NIL T) -9 NIL 1436379 NIL) (-630 1435347 1435406 1435542 "LALG-" 1435547 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-629 1435182 1435206 1435247 "KVTFROM" 1435309 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-628 1434105 1434549 1434734 "KTVLOGIC" 1435017 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-627 1433940 1433964 1434005 "KRCFROM" 1434067 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-626 1432844 1433031 1433330 "KOVACIC" 1433740 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-625 1432679 1432703 1432744 "KONVERT" 1432806 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-624 1432514 1432538 1432579 "KOERCE" 1432641 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-623 1430345 1431107 1431484 "KERNEL" 1432170 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-622 1429841 1429922 1430054 "KERNEL2" 1430259 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-621 1423611 1428380 1428434 "KDAGG" 1428811 NIL KDAGG (NIL T T) -9 NIL 1429017 NIL) (-620 1423140 1423264 1423469 "KDAGG-" 1423474 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-619 1416288 1422801 1422956 "KAFILE" 1423018 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-618 1410716 1415799 1416027 "JORDAN" 1416109 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-617 1410095 1410365 1410486 "JOINAST" 1410615 T JOINAST (NIL) -8 NIL NIL NIL) (-616 1409941 1410000 1410055 "JAVACODE" 1410060 T JAVACODE (NIL) -8 NIL NIL NIL) (-615 1406193 1408146 1408200 "IXAGG" 1409129 NIL IXAGG (NIL T T) -9 NIL 1409588 NIL) (-614 1405112 1405418 1405837 "IXAGG-" 1405842 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-613 1400642 1405034 1405093 "IVECTOR" 1405098 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-612 1399408 1399645 1399911 "ITUPLE" 1400409 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-611 1397910 1398087 1398382 "ITRIGMNP" 1399230 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-610 1396655 1396859 1397142 "ITFUN3" 1397686 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-609 1396287 1396344 1396453 "ITFUN2" 1396592 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-608 1395446 1395767 1395941 "ITFORM" 1396133 T ITFORM (NIL) -8 NIL NIL NIL) (-607 1393407 1394466 1394744 "ITAYLOR" 1395201 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-606 1382352 1387544 1388707 "ISUPS" 1392277 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-605 1381456 1381596 1381832 "ISUMP" 1382199 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-604 1376831 1381401 1381442 "ISTRING" 1381447 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-603 1376307 1376552 1376644 "ISAST" 1376759 T ISAST (NIL) -8 NIL NIL NIL) (-602 1375516 1375598 1375814 "IRURPK" 1376221 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-601 1374452 1374653 1374893 "IRSN" 1375296 T IRSN (NIL) -7 NIL NIL NIL) (-600 1372523 1372878 1373307 "IRRF2F" 1374090 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-599 1372270 1372308 1372384 "IRREDFFX" 1372479 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-598 1370885 1371144 1371443 "IROOT" 1372003 NIL IROOT (NIL T) -7 NIL NIL NIL) (-597 1367489 1368569 1369261 "IR" 1370225 NIL IR (NIL T) -8 NIL NIL NIL) (-596 1366694 1366982 1367133 "IRFORM" 1367358 T IRFORM (NIL) -8 NIL NIL NIL) (-595 1364307 1364802 1365368 "IR2" 1366172 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-594 1363407 1363520 1363734 "IR2F" 1364190 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-593 1363198 1363232 1363292 "IPRNTPK" 1363367 T IPRNTPK (NIL) -7 NIL NIL NIL) (-592 1359779 1363087 1363156 "IPF" 1363161 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-591 1358106 1359704 1359761 "IPADIC" 1359766 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-590 1357418 1357666 1357796 "IP4ADDR" 1357996 T IP4ADDR (NIL) -8 NIL NIL NIL) (-589 1356792 1357047 1357179 "IOMODE" 1357306 T IOMODE (NIL) -8 NIL NIL NIL) (-588 1355865 1356389 1356516 "IOBFILE" 1356685 T IOBFILE (NIL) -8 NIL NIL NIL) (-587 1355353 1355769 1355797 "IOBCON" 1355802 T IOBCON (NIL) -9 NIL 1355823 NIL) (-586 1354864 1354922 1355105 "INVLAPLA" 1355289 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-585 1344512 1346866 1349252 "INTTR" 1352528 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-584 1340847 1341589 1342454 "INTTOOLS" 1343697 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-583 1340433 1340524 1340641 "INTSLPE" 1340750 T INTSLPE (NIL) -7 NIL NIL NIL) (-582 1338386 1340356 1340415 "INTRVL" 1340420 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-581 1335988 1336500 1337075 "INTRF" 1337871 NIL INTRF (NIL T) -7 NIL NIL NIL) (-580 1335399 1335496 1335638 "INTRET" 1335886 NIL INTRET (NIL T) -7 NIL NIL NIL) (-579 1333396 1333785 1334255 "INTRAT" 1335007 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-578 1330659 1331242 1331861 "INTPM" 1332881 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-577 1327404 1328003 1328741 "INTPAF" 1330045 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-576 1322583 1323545 1324596 "INTPACK" 1326373 T INTPACK (NIL) -7 NIL NIL NIL) (-575 1319481 1322380 1322489 "INT" 1322494 T INT (NIL) -8 NIL NIL NIL) (-574 1318733 1318885 1319093 "INTHERTR" 1319323 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-573 1318172 1318252 1318440 "INTHERAL" 1318647 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-572 1316018 1316461 1316918 "INTHEORY" 1317735 T INTHEORY (NIL) -7 NIL NIL NIL) (-571 1307424 1309045 1310817 "INTG0" 1314370 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-570 1287997 1292787 1297597 "INTFTBL" 1302634 T INTFTBL (NIL) -8 NIL NIL NIL) (-569 1287246 1287384 1287557 "INTFACT" 1287856 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-568 1284673 1285119 1285676 "INTEF" 1286800 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-567 1283040 1283779 1283807 "INTDOM" 1284108 T INTDOM (NIL) -9 NIL 1284315 NIL) (-566 1282409 1282583 1282825 "INTDOM-" 1282830 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-565 1278797 1280725 1280779 "INTCAT" 1281578 NIL INTCAT (NIL T) -9 NIL 1281899 NIL) (-564 1278269 1278372 1278500 "INTBIT" 1278689 T INTBIT (NIL) -7 NIL NIL NIL) (-563 1276968 1277122 1277429 "INTALG" 1278114 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-562 1276451 1276541 1276698 "INTAF" 1276872 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-561 1269794 1276261 1276401 "INTABL" 1276406 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-560 1269127 1269593 1269658 "INT8" 1269692 T INT8 (NIL) -8 NIL NIL 1269737) (-559 1268459 1268925 1268990 "INT64" 1269024 T INT64 (NIL) -8 NIL NIL 1269069) (-558 1267791 1268257 1268322 "INT32" 1268356 T INT32 (NIL) -8 NIL NIL 1268401) (-557 1267123 1267589 1267654 "INT16" 1267688 T INT16 (NIL) -8 NIL NIL 1267733) (-556 1261918 1264684 1264712 "INS" 1265646 T INS (NIL) -9 NIL 1266311 NIL) (-555 1259158 1259929 1260903 "INS-" 1260976 NIL INS- (NIL T) -8 NIL NIL NIL) (-554 1257933 1258160 1258458 "INPSIGN" 1258911 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-553 1257051 1257168 1257365 "INPRODPF" 1257813 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-552 1255945 1256062 1256299 "INPRODFF" 1256931 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-551 1254945 1255097 1255357 "INNMFACT" 1255781 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-550 1254142 1254239 1254427 "INMODGCD" 1254844 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-549 1252650 1252895 1253219 "INFSP" 1253887 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-548 1251834 1251951 1252134 "INFPROD0" 1252530 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-547 1248689 1249899 1250414 "INFORM" 1251327 T INFORM (NIL) -8 NIL NIL NIL) (-546 1248299 1248359 1248457 "INFORM1" 1248624 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-545 1247822 1247911 1248025 "INFINITY" 1248205 T INFINITY (NIL) -7 NIL NIL NIL) (-544 1246998 1247542 1247643 "INETCLTS" 1247741 T INETCLTS (NIL) -8 NIL NIL NIL) (-543 1245614 1245864 1246185 "INEP" 1246746 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-542 1244863 1245511 1245576 "INDE" 1245581 NIL INDE (NIL T) -8 NIL NIL NIL) (-541 1244427 1244495 1244612 "INCRMAPS" 1244790 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-540 1243245 1243696 1243902 "INBFILE" 1244241 T INBFILE (NIL) -8 NIL NIL NIL) (-539 1238544 1239481 1240425 "INBFF" 1242333 NIL INBFF (NIL T) -7 NIL NIL NIL) (-538 1237452 1237721 1237749 "INBCON" 1238262 T INBCON (NIL) -9 NIL 1238528 NIL) (-537 1236704 1236927 1237203 "INBCON-" 1237208 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-536 1236183 1236428 1236519 "INAST" 1236633 T INAST (NIL) -8 NIL NIL NIL) (-535 1235610 1235862 1235968 "IMPTAST" 1236097 T IMPTAST (NIL) -8 NIL NIL NIL) (-534 1232056 1235454 1235558 "IMATRIX" 1235563 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-533 1230764 1230887 1231203 "IMATQF" 1231912 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-532 1228984 1229211 1229548 "IMATLIN" 1230520 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-531 1223562 1228908 1228966 "ILIST" 1228971 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-530 1221467 1223422 1223535 "IIARRAY2" 1223540 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-529 1216865 1221378 1221442 "IFF" 1221447 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-528 1216212 1216482 1216598 "IFAST" 1216769 T IFAST (NIL) -8 NIL NIL NIL) (-527 1211207 1215504 1215692 "IFARRAY" 1216069 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-526 1210387 1211111 1211184 "IFAMON" 1211189 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-525 1209971 1210036 1210090 "IEVALAB" 1210297 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-524 1209646 1209714 1209874 "IEVALAB-" 1209879 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-523 1209277 1209560 1209623 "IDPO" 1209628 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-522 1208527 1209166 1209241 "IDPOAMS" 1209246 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-521 1207834 1208416 1208491 "IDPOAM" 1208496 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-520 1206893 1207169 1207222 "IDPC" 1207635 NIL IDPC (NIL T T) -9 NIL 1207784 NIL) (-519 1206362 1206785 1206858 "IDPAM" 1206863 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-518 1205738 1206254 1206327 "IDPAG" 1206332 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-517 1205383 1205574 1205649 "IDENT" 1205683 T IDENT (NIL) -8 NIL NIL NIL) (-516 1201638 1202486 1203381 "IDECOMP" 1204540 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-515 1194475 1195561 1196608 "IDEAL" 1200674 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-514 1193635 1193747 1193947 "ICDEN" 1194359 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-513 1192706 1193115 1193262 "ICARD" 1193508 T ICARD (NIL) -8 NIL NIL NIL) (-512 1190766 1191079 1191484 "IBPTOOLS" 1192383 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-511 1186373 1190386 1190499 "IBITS" 1190685 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-510 1183096 1183672 1184367 "IBATOOL" 1185790 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-509 1180875 1181337 1181870 "IBACHIN" 1182631 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-508 1178704 1180721 1180824 "IARRAY2" 1180829 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-507 1174810 1178630 1178687 "IARRAY1" 1178692 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-506 1168848 1173222 1173703 "IAN" 1174349 T IAN (NIL) -8 NIL NIL NIL) (-505 1168359 1168416 1168589 "IALGFACT" 1168785 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-504 1167887 1168000 1168028 "HYPCAT" 1168235 T HYPCAT (NIL) -9 NIL NIL NIL) (-503 1167425 1167542 1167728 "HYPCAT-" 1167733 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-502 1167020 1167220 1167303 "HOSTNAME" 1167362 T HOSTNAME (NIL) -8 NIL NIL NIL) (-501 1166865 1166902 1166943 "HOMOTOP" 1166948 NIL HOMOTOP (NIL T) -9 NIL 1166981 NIL) (-500 1163497 1164875 1164916 "HOAGG" 1165897 NIL HOAGG (NIL T) -9 NIL 1166576 NIL) (-499 1162091 1162490 1163016 "HOAGG-" 1163021 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-498 1156000 1161684 1161834 "HEXADEC" 1161961 T HEXADEC (NIL) -8 NIL NIL NIL) (-497 1154748 1154970 1155233 "HEUGCD" 1155777 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-496 1153824 1154585 1154715 "HELLFDIV" 1154720 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-495 1152003 1153601 1153689 "HEAP" 1153768 NIL HEAP (NIL T) -8 NIL NIL NIL) (-494 1151266 1151555 1151689 "HEADAST" 1151889 T HEADAST (NIL) -8 NIL NIL NIL) (-493 1145285 1151181 1151243 "HDP" 1151248 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-492 1139184 1144920 1145072 "HDMP" 1145186 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-491 1138508 1138648 1138812 "HB" 1139040 T HB (NIL) -7 NIL NIL NIL) (-490 1131894 1138354 1138458 "HASHTBL" 1138463 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-489 1131370 1131615 1131707 "HASAST" 1131822 T HASAST (NIL) -8 NIL NIL NIL) (-488 1129148 1130992 1131174 "HACKPI" 1131208 T HACKPI (NIL) -8 NIL NIL NIL) (-487 1124816 1129001 1129114 "GTSET" 1129119 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-486 1118231 1124694 1124792 "GSTBL" 1124797 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-485 1110509 1117262 1117527 "GSERIES" 1118022 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-484 1109650 1110067 1110095 "GROUP" 1110298 T GROUP (NIL) -9 NIL 1110432 NIL) (-483 1109016 1109175 1109426 "GROUP-" 1109431 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-482 1107383 1107704 1108091 "GROEBSOL" 1108693 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-481 1106297 1106585 1106636 "GRMOD" 1107165 NIL GRMOD (NIL T T) -9 NIL 1107333 NIL) (-480 1106065 1106101 1106229 "GRMOD-" 1106234 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-479 1101355 1102419 1103419 "GRIMAGE" 1105085 T GRIMAGE (NIL) -8 NIL NIL NIL) (-478 1099821 1100082 1100406 "GRDEF" 1101051 T GRDEF (NIL) -7 NIL NIL NIL) (-477 1099265 1099381 1099522 "GRAY" 1099700 T GRAY (NIL) -7 NIL NIL NIL) (-476 1098452 1098858 1098909 "GRALG" 1099062 NIL GRALG (NIL T T) -9 NIL 1099155 NIL) (-475 1098113 1098186 1098349 "GRALG-" 1098354 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-474 1094890 1097698 1097876 "GPOLSET" 1098020 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-473 1094244 1094301 1094559 "GOSPER" 1094827 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-472 1089976 1090682 1091208 "GMODPOL" 1093943 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-471 1088981 1089165 1089403 "GHENSEL" 1089788 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-470 1083137 1083980 1085000 "GENUPS" 1088065 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-469 1082834 1082885 1082974 "GENUFACT" 1083080 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-468 1082246 1082323 1082488 "GENPGCD" 1082752 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-467 1081720 1081755 1081968 "GENMFACT" 1082205 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-466 1080286 1080543 1080850 "GENEEZ" 1081463 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-465 1074345 1079897 1080059 "GDMP" 1080209 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-464 1063688 1068116 1069222 "GCNAALG" 1073328 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-463 1062015 1062877 1062905 "GCDDOM" 1063160 T GCDDOM (NIL) -9 NIL 1063317 NIL) (-462 1061485 1061612 1061827 "GCDDOM-" 1061832 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-461 1060157 1060342 1060646 "GB" 1061264 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-460 1048773 1051103 1053495 "GBINTERN" 1057848 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-459 1046610 1046902 1047323 "GBF" 1048448 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-458 1045391 1045556 1045823 "GBEUCLID" 1046426 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-457 1044740 1044865 1045014 "GAUSSFAC" 1045262 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-456 1043107 1043409 1043723 "GALUTIL" 1044459 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-455 1041415 1041689 1042013 "GALPOLYU" 1042834 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-454 1038780 1039070 1039477 "GALFACTU" 1041112 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-453 1030586 1032085 1033693 "GALFACT" 1037212 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-452 1027974 1028632 1028660 "FVFUN" 1029816 T FVFUN (NIL) -9 NIL 1030536 NIL) (-451 1027240 1027422 1027450 "FVC" 1027741 T FVC (NIL) -9 NIL 1027924 NIL) (-450 1026883 1027065 1027133 "FUNDESC" 1027192 T FUNDESC (NIL) -8 NIL NIL NIL) (-449 1026498 1026680 1026761 "FUNCTION" 1026835 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-448 1024242 1024820 1025286 "FT" 1026052 T FT (NIL) -8 NIL NIL NIL) (-447 1023033 1023543 1023746 "FTEM" 1024059 T FTEM (NIL) -8 NIL NIL NIL) (-446 1021324 1021613 1022010 "FSUPFACT" 1022724 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-445 1019721 1020010 1020342 "FST" 1021012 T FST (NIL) -8 NIL NIL NIL) (-444 1018920 1019026 1019214 "FSRED" 1019603 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-443 1017619 1017875 1018222 "FSPRMELT" 1018635 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-442 1014925 1015363 1015849 "FSPECF" 1017182 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-441 996227 1004699 1004740 "FS" 1008624 NIL FS (NIL T) -9 NIL 1010913 NIL) (-440 984870 987863 991920 "FS-" 992220 NIL FS- (NIL T T) -8 NIL NIL NIL) (-439 984398 984452 984622 "FSINT" 984811 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-438 982690 983391 983694 "FSERIES" 984177 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-437 981732 981848 982072 "FSCINT" 982570 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-436 977940 980676 980717 "FSAGG" 981087 NIL FSAGG (NIL T) -9 NIL 981346 NIL) (-435 975702 976303 977099 "FSAGG-" 977194 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-434 974744 974887 975114 "FSAGG2" 975555 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-433 972422 972702 973250 "FS2UPS" 974462 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-432 972056 972099 972228 "FS2" 972373 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-431 970934 971105 971407 "FS2EXPXP" 971881 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-430 970360 970475 970627 "FRUTIL" 970814 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-429 961773 965855 967213 "FR" 969034 NIL FR (NIL T) -8 NIL NIL NIL) (-428 956787 959462 959502 "FRNAALG" 960822 NIL FRNAALG (NIL T) -9 NIL 961420 NIL) (-427 952460 953536 954811 "FRNAALG-" 955561 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-426 952098 952141 952268 "FRNAAF2" 952411 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-425 950473 950947 951243 "FRMOD" 951910 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-424 948216 948848 949166 "FRIDEAL" 950264 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-423 947407 947494 947785 "FRIDEAL2" 948123 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-422 946540 946954 946995 "FRETRCT" 947000 NIL FRETRCT (NIL T) -9 NIL 947176 NIL) (-421 945652 945883 946234 "FRETRCT-" 946239 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-420 942740 943950 944009 "FRAMALG" 944891 NIL FRAMALG (NIL T T) -9 NIL 945183 NIL) (-419 940874 941329 941959 "FRAMALG-" 942182 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-418 934704 940347 940624 "FRAC" 940629 NIL FRAC (NIL T) -8 NIL NIL NIL) (-417 934340 934397 934504 "FRAC2" 934641 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-416 933976 934033 934140 "FR2" 934277 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-415 928489 931382 931410 "FPS" 932529 T FPS (NIL) -9 NIL 933086 NIL) (-414 927938 928047 928211 "FPS-" 928357 NIL FPS- (NIL T) -8 NIL NIL NIL) (-413 925240 926909 926937 "FPC" 927162 T FPC (NIL) -9 NIL 927304 NIL) (-412 925033 925073 925170 "FPC-" 925175 NIL FPC- (NIL T) -8 NIL NIL NIL) (-411 923823 924521 924562 "FPATMAB" 924567 NIL FPATMAB (NIL T) -9 NIL 924719 NIL) (-410 921496 921999 922425 "FPARFRAC" 923460 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-409 916890 917388 918070 "FORTRAN" 920928 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-408 914606 915106 915645 "FORT" 916371 T FORT (NIL) -7 NIL NIL NIL) (-407 912282 912844 912872 "FORTFN" 913932 T FORTFN (NIL) -9 NIL 914556 NIL) (-406 912046 912096 912124 "FORTCAT" 912183 T FORTCAT (NIL) -9 NIL 912245 NIL) (-405 910152 910662 911052 "FORMULA" 911676 T FORMULA (NIL) -8 NIL NIL NIL) (-404 909940 909970 910039 "FORMULA1" 910116 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-403 909463 909515 909688 "FORDER" 909882 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-402 908559 908723 908916 "FOP" 909290 T FOP (NIL) -7 NIL NIL NIL) (-401 907140 907839 908013 "FNLA" 908441 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-400 905869 906284 906312 "FNCAT" 906772 T FNCAT (NIL) -9 NIL 907032 NIL) (-399 905408 905828 905856 "FNAME" 905861 T FNAME (NIL) -8 NIL NIL NIL) (-398 903971 904934 904962 "FMTC" 904967 T FMTC (NIL) -9 NIL 905003 NIL) (-397 902717 903907 903953 "FMONOID" 903958 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-396 899545 900713 900754 "FMONCAT" 901971 NIL FMONCAT (NIL T) -9 NIL 902576 NIL) (-395 898737 899287 899436 "FM" 899441 NIL FM (NIL T T) -8 NIL NIL NIL) (-394 896161 896807 896835 "FMFUN" 897979 T FMFUN (NIL) -9 NIL 898687 NIL) (-393 895430 895611 895639 "FMC" 895929 T FMC (NIL) -9 NIL 896111 NIL) (-392 892509 893369 893423 "FMCAT" 894618 NIL FMCAT (NIL T T) -9 NIL 895113 NIL) (-391 891375 892275 892375 "FM1" 892454 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-390 889149 889565 890059 "FLOATRP" 890926 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-389 882727 886878 887499 "FLOAT" 888548 T FLOAT (NIL) -8 NIL NIL NIL) (-388 880165 880665 881243 "FLOATCP" 882194 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-387 879012 879771 879812 "FLINEXP" 879817 NIL FLINEXP (NIL T) -9 NIL 879910 NIL) (-386 877944 878241 878649 "FLINEXP-" 878654 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-385 877020 877164 877388 "FLASORT" 877796 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-384 874136 875004 875056 "FLALG" 876283 NIL FLALG (NIL T T) -9 NIL 876750 NIL) (-383 867840 871592 871633 "FLAGG" 872895 NIL FLAGG (NIL T) -9 NIL 873547 NIL) (-382 866566 866905 867395 "FLAGG-" 867400 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-381 865608 865751 865978 "FLAGG2" 866419 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-380 862459 863467 863526 "FINRALG" 864654 NIL FINRALG (NIL T T) -9 NIL 865162 NIL) (-379 861619 861848 862187 "FINRALG-" 862192 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-378 860999 861238 861266 "FINITE" 861462 T FINITE (NIL) -9 NIL 861569 NIL) (-377 853356 855543 855583 "FINAALG" 859250 NIL FINAALG (NIL T) -9 NIL 860703 NIL) (-376 848688 849738 850882 "FINAALG-" 852261 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-375 848056 848443 848546 "FILE" 848618 NIL FILE (NIL T) -8 NIL NIL NIL) (-374 846714 847052 847106 "FILECAT" 847790 NIL FILECAT (NIL T T) -9 NIL 848006 NIL) (-373 844430 845958 845986 "FIELD" 846026 T FIELD (NIL) -9 NIL 846106 NIL) (-372 843050 843435 843946 "FIELD-" 843951 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-371 840900 841685 842032 "FGROUP" 842736 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-370 839990 840154 840374 "FGLMICPK" 840732 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-369 835822 839915 839972 "FFX" 839977 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-368 835423 835484 835619 "FFSLPE" 835755 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-367 831413 832195 832991 "FFPOLY" 834659 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-366 830917 830953 831162 "FFPOLY2" 831371 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-365 826763 830836 830899 "FFP" 830904 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-364 822161 826674 826738 "FF" 826743 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-363 817287 821504 821694 "FFNBX" 822015 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-362 812215 816422 816680 "FFNBP" 817141 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-361 806848 811499 811710 "FFNB" 812048 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-360 805680 805878 806193 "FFINTBAS" 806645 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-359 801706 803927 803955 "FFIELDC" 804575 T FFIELDC (NIL) -9 NIL 804951 NIL) (-358 800368 800739 801236 "FFIELDC-" 801241 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-357 799937 799983 800107 "FFHOM" 800310 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-356 797632 798119 798636 "FFF" 799452 NIL FFF (NIL T) -7 NIL NIL NIL) (-355 793250 797374 797475 "FFCGX" 797575 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-354 788872 792982 793089 "FFCGP" 793193 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-353 784055 788599 788707 "FFCG" 788808 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-352 763736 773731 773817 "FFCAT" 778982 NIL FFCAT (NIL T T T) -9 NIL 780433 NIL) (-351 758933 759981 761295 "FFCAT-" 762525 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-350 758344 758387 758622 "FFCAT2" 758884 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-349 747667 751316 752536 "FEXPR" 757196 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-348 746629 747064 747105 "FEVALAB" 747189 NIL FEVALAB (NIL T) -9 NIL 747450 NIL) (-347 745788 745998 746336 "FEVALAB-" 746341 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-346 744354 745171 745374 "FDIV" 745687 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-345 741374 742115 742230 "FDIVCAT" 743798 NIL FDIVCAT (NIL T T T T) -9 NIL 744235 NIL) (-344 741136 741163 741333 "FDIVCAT-" 741338 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-343 740356 740443 740720 "FDIV2" 741043 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-342 739330 739651 739853 "FCTRDATA" 740174 T FCTRDATA (NIL) -8 NIL NIL NIL) (-341 738016 738275 738564 "FCPAK1" 739061 T FCPAK1 (NIL) -7 NIL NIL NIL) (-340 737115 737516 737657 "FCOMP" 737907 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-339 720820 724265 727803 "FC" 733597 T FC (NIL) -8 NIL NIL NIL) (-338 713099 717127 717167 "FAXF" 718969 NIL FAXF (NIL T) -9 NIL 719661 NIL) (-337 710376 711033 711858 "FAXF-" 712323 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-336 705428 709752 709928 "FARRAY" 710233 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-335 700322 702389 702442 "FAMR" 703465 NIL FAMR (NIL T T) -9 NIL 703925 NIL) (-334 699212 699514 699949 "FAMR-" 699954 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-333 698381 699134 699187 "FAMONOID" 699192 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-332 696167 696877 696930 "FAMONC" 697871 NIL FAMONC (NIL T T) -9 NIL 698257 NIL) (-331 694831 695921 696058 "FAGROUP" 696063 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-330 692626 692945 693348 "FACUTIL" 694512 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-329 691725 691910 692132 "FACTFUNC" 692436 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-328 684147 691028 691227 "EXPUPXS" 691581 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-327 681630 682170 682756 "EXPRTUBE" 683581 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-326 677901 678493 679223 "EXPRODE" 680969 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-325 663620 676550 676979 "EXPR" 677505 NIL EXPR (NIL T) -8 NIL NIL NIL) (-324 658174 658761 659567 "EXPR2UPS" 662918 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-323 657806 657863 657972 "EXPR2" 658111 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-322 649059 656957 657248 "EXPEXPAN" 657642 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-321 648859 649016 649045 "EXIT" 649050 T EXIT (NIL) -8 NIL NIL NIL) (-320 648339 648583 648674 "EXITAST" 648788 T EXITAST (NIL) -8 NIL NIL NIL) (-319 647966 648028 648141 "EVALCYC" 648271 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-318 647507 647625 647666 "EVALAB" 647836 NIL EVALAB (NIL T) -9 NIL 647940 NIL) (-317 646988 647110 647331 "EVALAB-" 647336 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-316 644356 645658 645686 "EUCDOM" 646241 T EUCDOM (NIL) -9 NIL 646591 NIL) (-315 642761 643203 643793 "EUCDOM-" 643798 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-314 630300 633059 635809 "ESTOOLS" 640031 T ESTOOLS (NIL) -7 NIL NIL NIL) (-313 629932 629989 630098 "ESTOOLS2" 630237 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-312 629683 629725 629805 "ESTOOLS1" 629884 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-311 623720 625328 625356 "ES" 628124 T ES (NIL) -9 NIL 629534 NIL) (-310 618667 619954 621771 "ES-" 621935 NIL ES- (NIL T) -8 NIL NIL NIL) (-309 615041 615802 616582 "ESCONT" 617907 T ESCONT (NIL) -7 NIL NIL NIL) (-308 614786 614818 614900 "ESCONT1" 615003 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-307 614461 614511 614611 "ES2" 614730 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-306 614091 614149 614258 "ES1" 614397 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-305 613307 613436 613612 "ERROR" 613935 T ERROR (NIL) -7 NIL NIL NIL) (-304 606699 613166 613257 "EQTBL" 613262 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-303 599202 602013 603462 "EQ" 605283 NIL -3092 (NIL T) -8 NIL NIL NIL) (-302 598834 598891 599000 "EQ2" 599139 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-301 594125 595172 596265 "EP" 597773 NIL EP (NIL T) -7 NIL NIL NIL) (-300 592725 593016 593322 "ENV" 593839 T ENV (NIL) -8 NIL NIL NIL) (-299 591819 592373 592401 "ENTIRER" 592406 T ENTIRER (NIL) -9 NIL 592452 NIL) (-298 588513 590001 590362 "EMR" 591627 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-297 587643 587828 587882 "ELTAGG" 588262 NIL ELTAGG (NIL T T) -9 NIL 588473 NIL) (-296 587362 587424 587565 "ELTAGG-" 587570 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-295 587126 587155 587209 "ELTAB" 587293 NIL ELTAB (NIL T T) -9 NIL 587345 NIL) (-294 586252 586398 586597 "ELFUTS" 586977 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-293 585994 586050 586078 "ELEMFUN" 586183 T ELEMFUN (NIL) -9 NIL NIL NIL) (-292 585864 585885 585953 "ELEMFUN-" 585958 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-291 580678 583934 583975 "ELAGG" 584915 NIL ELAGG (NIL T) -9 NIL 585378 NIL) (-290 578963 579397 580060 "ELAGG-" 580065 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-289 578275 578412 578568 "ELABOR" 578827 T ELABOR (NIL) -8 NIL NIL NIL) (-288 576936 577215 577509 "ELABEXPR" 578001 T ELABEXPR (NIL) -8 NIL NIL NIL) (-287 569770 571573 572402 "EFUPXS" 576211 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-286 563218 565019 565830 "EFULS" 569045 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-285 560703 561061 561533 "EFSTRUC" 562850 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-284 550494 552060 553608 "EF" 559218 NIL EF (NIL T T) -7 NIL NIL NIL) (-283 549568 549979 550128 "EAB" 550365 T EAB (NIL) -8 NIL NIL NIL) (-282 548750 549527 549555 "E04UCFA" 549560 T E04UCFA (NIL) -8 NIL NIL NIL) (-281 547932 548709 548737 "E04NAFA" 548742 T E04NAFA (NIL) -8 NIL NIL NIL) (-280 547114 547891 547919 "E04MBFA" 547924 T E04MBFA (NIL) -8 NIL NIL NIL) (-279 546296 547073 547101 "E04JAFA" 547106 T E04JAFA (NIL) -8 NIL NIL NIL) (-278 545480 546255 546283 "E04GCFA" 546288 T E04GCFA (NIL) -8 NIL NIL NIL) (-277 544664 545439 545467 "E04FDFA" 545472 T E04FDFA (NIL) -8 NIL NIL NIL) (-276 543846 544623 544651 "E04DGFA" 544656 T E04DGFA (NIL) -8 NIL NIL NIL) (-275 538019 539371 540735 "E04AGNT" 542502 T E04AGNT (NIL) -7 NIL NIL NIL) (-274 536790 537333 537373 "DVARCAT" 537714 NIL DVARCAT (NIL T) -9 NIL 537877 NIL) (-273 535994 536206 536520 "DVARCAT-" 536525 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-272 529042 535793 535922 "DSMP" 535927 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-271 527465 528184 528225 "DSEXT" 528588 NIL DSEXT (NIL T) -9 NIL 528882 NIL) (-270 525750 526178 526844 "DSEXT-" 526849 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-269 520531 521695 522763 "DROPT" 524702 T DROPT (NIL) -8 NIL NIL NIL) (-268 520196 520255 520353 "DROPT1" 520466 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-267 515311 516437 517574 "DROPT0" 519079 T DROPT0 (NIL) -7 NIL NIL NIL) (-266 513656 513981 514367 "DRAWPT" 514945 T DRAWPT (NIL) -7 NIL NIL NIL) (-265 508243 509166 510245 "DRAW" 512630 NIL DRAW (NIL T) -7 NIL NIL NIL) (-264 507876 507929 508047 "DRAWHACK" 508184 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-263 506607 506876 507167 "DRAWCX" 507605 T DRAWCX (NIL) -7 NIL NIL NIL) (-262 506122 506191 506342 "DRAWCURV" 506533 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-261 496590 498552 500667 "DRAWCFUN" 504027 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-260 493354 495283 495324 "DQAGG" 495953 NIL DQAGG (NIL T) -9 NIL 496227 NIL) (-259 481006 487565 487648 "DPOLCAT" 489500 NIL DPOLCAT (NIL T T T T) -9 NIL 490045 NIL) (-258 475843 477191 479149 "DPOLCAT-" 479154 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-257 469425 475704 475802 "DPMO" 475807 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-256 462910 469205 469372 "DPMM" 469377 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-255 462480 462694 462783 "DOMTMPLT" 462841 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-254 461913 462282 462362 "DOMCTOR" 462420 T DOMCTOR (NIL) -8 NIL NIL NIL) (-253 461125 461393 461544 "DOMAIN" 461782 T DOMAIN (NIL) -8 NIL NIL NIL) (-252 455024 460760 460912 "DMP" 461026 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-251 454624 454680 454824 "DLP" 454962 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 448446 453951 454141 "DLIST" 454466 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 445243 447299 447340 "DLAGG" 447890 NIL DLAGG (NIL T) -9 NIL 448120 NIL) (-248 443919 444583 444611 "DIVRING" 444703 T DIVRING (NIL) -9 NIL 444786 NIL) (-247 443156 443346 443646 "DIVRING-" 443651 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 441258 441615 442021 "DISPLAY" 442770 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 435297 441172 441235 "DIRPROD" 441240 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 434145 434348 434613 "DIRPROD2" 435090 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 423073 428931 428984 "DIRPCAT" 429242 NIL DIRPCAT (NIL NIL T) -9 NIL 430117 NIL) (-242 420177 420881 421842 "DIRPCAT-" 422179 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 419464 419624 419810 "DIOSP" 420011 T DIOSP (NIL) -7 NIL NIL NIL) (-240 416119 418376 418417 "DIOPS" 418851 NIL DIOPS (NIL T) -9 NIL 419080 NIL) (-239 415668 415782 415973 "DIOPS-" 415978 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 414719 415347 415375 "DIFRING" 415380 T DIFRING (NIL) -9 NIL 415402 NIL) (-237 414391 414465 414493 "DIFFSPC" 414612 T DIFFSPC (NIL) -9 NIL 414687 NIL) (-236 414036 414114 414266 "DIFFSPC-" 414271 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 413192 413670 413710 "DIFFMOD" 413715 NIL DIFFMOD (NIL T) -9 NIL 413742 NIL) (-234 412900 412945 412986 "DIFFDOM" 413107 NIL DIFFDOM (NIL T) -9 NIL 413175 NIL) (-233 412753 412777 412861 "DIFFDOM-" 412866 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 410685 411957 411998 "DIFEXT" 412003 NIL DIFEXT (NIL T) -9 NIL 412156 NIL) (-231 407960 410217 410258 "DIAGG" 410263 NIL DIAGG (NIL T) -9 NIL 410283 NIL) (-230 407344 407501 407753 "DIAGG-" 407758 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 402761 406303 406580 "DHMATRIX" 407113 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 398373 399282 400292 "DFSFUN" 401771 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 393453 397304 397616 "DFLOAT" 398081 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 391716 391997 392386 "DFINTTLS" 393161 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 388745 389737 390137 "DERHAM" 391382 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 386546 388520 388609 "DEQUEUE" 388689 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 385800 385933 386116 "DEGRED" 386408 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 382230 382975 383821 "DEFINTRF" 385028 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 379785 380254 380846 "DEFINTEF" 381749 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 379135 379405 379520 "DEFAST" 379690 T DEFAST (NIL) -8 NIL NIL NIL) (-219 373044 378728 378878 "DECIMAL" 379005 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 370556 371014 371520 "DDFACT" 372588 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 370152 370195 370346 "DBLRESP" 370507 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 368020 368382 368743 "DBASE" 369918 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 367262 367500 367646 "DATAARY" 367919 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 366368 367221 367249 "D03FAFA" 367254 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 365475 366327 366355 "D03EEFA" 366360 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 363425 363891 364380 "D03AGNT" 365006 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 362714 363384 363412 "D02EJFA" 363417 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 362003 362673 362701 "D02CJFA" 362706 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 361292 361962 361990 "D02BHFA" 361995 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 360581 361251 361279 "D02BBFA" 361284 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 353778 355367 356973 "D02AGNT" 358995 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 351546 352069 352615 "D01WGTS" 353252 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 350613 351505 351533 "D01TRNS" 351538 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 349681 350572 350600 "D01GBFA" 350605 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 348749 349640 349668 "D01FCFA" 349673 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 347817 348708 348736 "D01ASFA" 348741 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 346885 347776 347804 "D01AQFA" 347809 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 345953 346844 346872 "D01APFA" 346877 T D01APFA (NIL) -8 NIL NIL NIL) (-199 345021 345912 345940 "D01ANFA" 345945 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 344089 344980 345008 "D01AMFA" 345013 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 343157 344048 344076 "D01ALFA" 344081 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 342225 343116 343144 "D01AKFA" 343149 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 341293 342184 342212 "D01AJFA" 342217 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 334588 336141 337702 "D01AGNT" 339752 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 333925 334053 334205 "CYCLOTOM" 334456 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 330658 331373 332100 "CYCLES" 333218 T CYCLES (NIL) -7 NIL NIL NIL) (-191 329970 330104 330275 "CVMP" 330519 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 327811 328069 328438 "CTRIGMNP" 329698 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 327247 327605 327678 "CTOR" 327758 T CTOR (NIL) -8 NIL NIL NIL) (-188 326756 326978 327079 "CTORKIND" 327166 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 326047 326363 326391 "CTORCAT" 326573 T CTORCAT (NIL) -9 NIL 326686 NIL) (-186 325645 325756 325915 "CTORCAT-" 325920 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 325107 325319 325427 "CTORCALL" 325569 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 324481 324580 324733 "CSTTOOLS" 325004 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 320280 320937 321695 "CRFP" 323793 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 319755 320001 320093 "CRCEAST" 320208 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 318802 318987 319215 "CRAPACK" 319559 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 318186 318287 318491 "CPMATCH" 318678 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 317911 317939 318045 "CPIMA" 318152 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 314259 314931 315650 "COORDSYS" 317246 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 313671 313792 313934 "CONTOUR" 314137 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 309562 311674 312166 "CONTFRAC" 313211 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 309442 309463 309491 "CONDUIT" 309528 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 308530 309084 309112 "COMRING" 309117 T COMRING (NIL) -9 NIL 309169 NIL) (-173 307584 307888 308072 "COMPPROP" 308366 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 307245 307280 307408 "COMPLPAT" 307543 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 296735 307054 307163 "COMPLEX" 307168 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 296371 296428 296535 "COMPLEX2" 296672 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 295710 295831 295991 "COMPILER" 296231 T COMPILER (NIL) -8 NIL NIL NIL) (-168 295428 295463 295561 "COMPFACT" 295669 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 277894 289132 289172 "COMPCAT" 290176 NIL COMPCAT (NIL T) -9 NIL 291524 NIL) (-166 267184 270173 273880 "COMPCAT-" 274236 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 266913 266941 267044 "COMMUPC" 267150 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 266707 266741 266800 "COMMONOP" 266874 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 266263 266458 266545 "COMM" 266640 T COMM (NIL) -8 NIL NIL NIL) (-162 265839 266067 266142 "COMMAAST" 266208 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 265088 265282 265310 "COMBOPC" 265648 T COMBOPC (NIL) -9 NIL 265823 NIL) (-160 263984 264194 264436 "COMBINAT" 264878 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 260441 261015 261642 "COMBF" 263406 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 259199 259557 259792 "COLOR" 260226 T COLOR (NIL) -8 NIL NIL NIL) (-157 258675 258920 259012 "COLONAST" 259127 T COLONAST (NIL) -8 NIL NIL NIL) (-156 258315 258362 258487 "CMPLXRT" 258622 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 257763 258015 258114 "CLLCTAST" 258236 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 253265 254293 255373 "CLIP" 256703 T CLIP (NIL) -7 NIL NIL NIL) (-153 251606 252366 252606 "CLIF" 253092 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 247781 249752 249793 "CLAGG" 250722 NIL CLAGG (NIL T) -9 NIL 251258 NIL) (-151 246203 246660 247243 "CLAGG-" 247248 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 245747 245832 245972 "CINTSLPE" 246112 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 243248 243719 244267 "CHVAR" 245275 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 242422 242976 243004 "CHARZ" 243009 T CHARZ (NIL) -9 NIL 243024 NIL) (-147 242176 242216 242294 "CHARPOL" 242376 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 241234 241821 241849 "CHARNZ" 241896 T CHARNZ (NIL) -9 NIL 241952 NIL) (-145 239140 239888 240241 "CHAR" 240901 T CHAR (NIL) -8 NIL NIL NIL) (-144 238866 238927 238955 "CFCAT" 239066 T CFCAT (NIL) -9 NIL NIL NIL) (-143 238107 238218 238401 "CDEN" 238750 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 234072 237260 237540 "CCLASS" 237847 T CCLASS (NIL) -8 NIL NIL NIL) (-141 233323 233480 233657 "CATEGORY" 233915 T -10 (NIL) -8 NIL NIL NIL) (-140 232896 233242 233290 "CATCTOR" 233295 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 232347 232599 232697 "CATAST" 232818 T CATAST (NIL) -8 NIL NIL NIL) (-138 231823 232068 232160 "CASEAST" 232275 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226961 227980 228724 "CARTEN" 231135 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 226069 226217 226438 "CARTEN2" 226808 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 224385 225219 225476 "CARD" 225832 T CARD (NIL) -8 NIL NIL NIL) (-134 223961 224189 224264 "CAPSLAST" 224330 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 223465 223673 223701 "CACHSET" 223833 T CACHSET (NIL) -9 NIL 223911 NIL) (-132 222935 223257 223285 "CABMON" 223335 T CABMON (NIL) -9 NIL 223391 NIL) (-131 222408 222639 222749 "BYTEORD" 222845 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 221385 221937 222079 "BYTE" 222242 T BYTE (NIL) -8 NIL NIL 222364) (-129 216735 220890 221062 "BYTEBUF" 221233 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 214244 216427 216534 "BTREE" 216661 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 211693 213892 214014 "BTOURN" 214154 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 209063 211163 211204 "BTCAT" 211272 NIL BTCAT (NIL T) -9 NIL 211349 NIL) (-125 208730 208810 208959 "BTCAT-" 208964 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 204109 207989 208017 "BTAGG" 208131 T BTAGG (NIL) -9 NIL 208241 NIL) (-123 203599 203724 203930 "BTAGG-" 203935 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 200594 202877 203092 "BSTREE" 203416 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 199732 199858 200042 "BRILL" 200450 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 196384 198458 198499 "BRAGG" 199148 NIL BRAGG (NIL T) -9 NIL 199406 NIL) (-119 194913 195319 195874 "BRAGG-" 195879 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 188037 194257 194442 "BPADICRT" 194760 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 186352 187974 188019 "BPADIC" 188024 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 186050 186080 186194 "BOUNDZRO" 186316 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 181278 182476 183388 "BOP" 185158 T BOP (NIL) -8 NIL NIL NIL) (-114 179059 179463 179938 "BOP1" 180836 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 178760 178821 178849 "BOOLE" 178960 T BOOLE (NIL) -9 NIL 179042 NIL) (-112 177585 178334 178483 "BOOLEAN" 178631 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 176864 177268 177322 "BMODULE" 177327 NIL BMODULE (NIL T T) -9 NIL 177392 NIL) (-110 172665 176662 176735 "BITS" 176811 T BITS (NIL) -8 NIL NIL NIL) (-109 172086 172205 172345 "BINDING" 172545 T BINDING (NIL) -8 NIL NIL NIL) (-108 165998 171681 171830 "BINARY" 171957 T BINARY (NIL) -8 NIL NIL NIL) (-107 163778 165253 165294 "BGAGG" 165554 NIL BGAGG (NIL T) -9 NIL 165691 NIL) (-106 163609 163641 163732 "BGAGG-" 163737 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 162680 162993 163198 "BFUNCT" 163424 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 161370 161548 161836 "BEZOUT" 162504 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 157839 160222 160552 "BBTREE" 161073 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 157573 157626 157654 "BASTYPE" 157773 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 157425 157454 157527 "BASTYPE-" 157532 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 156859 156935 157087 "BALFACT" 157336 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 155715 156274 156460 "AUTOMOR" 156704 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 155441 155446 155472 "ATTREG" 155477 T ATTREG (NIL) -9 NIL NIL NIL) (-97 153693 154138 154490 "ATTRBUT" 155107 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 153301 153521 153587 "ATTRAST" 153645 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 152837 152950 152976 "ATRIG" 153177 T ATRIG (NIL) -9 NIL NIL NIL) (-94 152646 152687 152774 "ATRIG-" 152779 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 152291 152477 152503 "ASTCAT" 152508 T ASTCAT (NIL) -9 NIL 152538 NIL) (-92 152018 152077 152196 "ASTCAT-" 152201 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 150167 151794 151882 "ASTACK" 151961 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 148672 148969 149334 "ASSOCEQ" 149849 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 147704 148331 148455 "ASP9" 148579 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 147467 147652 147691 "ASP8" 147696 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 146335 147072 147214 "ASP80" 147356 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 145233 145970 146102 "ASP7" 146234 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 144187 144910 145028 "ASP78" 145146 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 143156 143867 143984 "ASP77" 144101 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 142068 142794 142925 "ASP74" 143056 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140968 141703 141835 "ASP73" 141967 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 140072 140794 140894 "ASP6" 140899 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139019 139749 139867 "ASP55" 139985 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137968 138693 138812 "ASP50" 138931 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 137056 137669 137779 "ASP4" 137889 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 136144 136757 136867 "ASP49" 136977 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134928 135683 135851 "ASP42" 136033 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 133705 134461 134631 "ASP41" 134815 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 132655 133382 133500 "ASP35" 133618 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 132420 132603 132642 "ASP34" 132647 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 132157 132224 132300 "ASP33" 132375 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 131051 131792 131924 "ASP31" 132056 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 130816 130999 131038 "ASP30" 131043 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 130551 130620 130696 "ASP29" 130771 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 130316 130499 130538 "ASP28" 130543 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 130081 130264 130303 "ASP27" 130308 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 129165 129779 129890 "ASP24" 130001 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 128242 128967 129079 "ASP20" 129084 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 127330 127943 128053 "ASP1" 128163 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 126273 127004 127123 "ASP19" 127242 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126010 126077 126153 "ASP12" 126228 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 124862 125609 125753 "ASP10" 125897 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 122713 124706 124797 "ARRAY2" 124802 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 118478 122361 122475 "ARRAY1" 122630 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 117510 117683 117904 "ARRAY12" 118301 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 111822 113740 113815 "ARR2CAT" 116445 NIL ARR2CAT (NIL T T T) -9 NIL 117203 NIL) (-56 109256 110000 110954 "ARR2CAT-" 110959 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 108573 108883 109008 "ARITY" 109149 T ARITY (NIL) -8 NIL NIL NIL) (-54 107349 107501 107800 "APPRULE" 108409 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107000 107048 107167 "APPLYORE" 107295 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 106354 106593 106713 "ANY" 106898 T ANY (NIL) -8 NIL NIL NIL) (-51 105632 105755 105912 "ANY1" 106228 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 103162 104069 104396 "ANTISYM" 105356 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 102654 102869 102965 "ANON" 103084 T ANON (NIL) -8 NIL NIL NIL) (-48 96832 101193 101647 "AN" 102218 T AN (NIL) -8 NIL NIL NIL) (-47 92730 94118 94169 "AMR" 94917 NIL AMR (NIL T T) -9 NIL 95517 NIL) (-46 91842 92063 92426 "AMR-" 92431 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 76281 91759 91820 "ALIST" 91825 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73086 75875 76044 "ALGSC" 76199 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 69642 70196 70803 "ALGPKG" 72526 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68919 69020 69204 "ALGMFACT" 69528 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64954 65533 66127 "ALGMANIP" 68503 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55373 64580 64730 "ALGFF" 64887 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54569 54700 54879 "ALGFACT" 55231 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53510 54110 54148 "ALGEBRA" 54153 NIL ALGEBRA (NIL T) -9 NIL 54194 NIL) (-37 53228 53287 53419 "ALGEBRA-" 53424 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35291 51200 51252 "ALAGG" 51388 NIL ALAGG (NIL T T) -9 NIL 51549 NIL) (-35 34827 34940 34966 "AHYP" 35167 T AHYP (NIL) -9 NIL NIL NIL) (-34 33758 34006 34032 "AGG" 34531 T AGG (NIL) -9 NIL 34810 NIL) (-33 33192 33354 33568 "AGG-" 33573 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30998 31421 31826 "AF" 32834 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30478 30723 30813 "ADDAST" 30926 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29746 30005 30161 "ACPLOT" 30340 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 7646f654..613879a1 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,3568 +1,3331 @@ -(732907 . 3485817775) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-5 *2 (-1291)) (-5 *1 (-1198)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1195)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-5 *2 (-1291)) - (-5 *1 (-1198)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1195)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-5 *2 (-1291)) - (-5 *1 (-1198))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-937) (-937)))) (-5 *1 (-989))))) -(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(732526 . 3485824335) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-112)) (-5 *1 (-904 *4)) + (-4 *4 (-1117))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-840))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-252 *5 *6))) (-4 *6 (-463)) + (-5 *2 (-252 *5 *6)) (-14 *5 (-655 (-1194))) (-5 *1 (-642 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1190 *3)) (-4 *3 (-1066)) (-4 *1 (-1261 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1023))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-567)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) + (-5 *1 (-1225 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-303 *2)) (-4 *2 (-737)) (-4 *2 (-1235))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) - (-4 *3 (-13 (-442 *4) (-1020)))))) + (-12 (-5 *3 (-700 (-418 (-967 (-575))))) + (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-1183 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1288)))) - ((*1 *2 *1) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1288))))) + (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) + (-5 *2 (-424 *4 (-418 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1285 *6)) (-4 *6 (-13 (-420 *4 *5) (-1055 *4))) + (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-4 *3 (-316)) + (-5 *1 (-424 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1161)))) (((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-783))))) -(((*1 *2) - (-12 (-4 *3 (-1067)) (-5 *2 (-974 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1262 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198)))) - ((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198))))) -(((*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-989))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) - (-5 *1 (-181 *4)))) + (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) + (-5 *2 (-112)) (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-575)))) + ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) + (-4 *3 (-1261 *4)) (-5 *2 (-575)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-567) (-1055 *2) (-650 *2) (-463))) + (-5 *2 (-575)) (-5 *1 (-1133 *4 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *8)) - (-5 *4 - (-656 - (-2 (|:| -1898 (-701 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-701 *7))))) - (-5 *5 (-783)) (-4 *8 (-1262 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-360)) - (-5 *2 - (-2 (|:| -1898 (-701 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-701 *7)))) - (-5 *1 (-510 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-442 *4) (-1020))) (-4 *4 (-568)) - (-5 *1 (-285 *4 *2))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-959 *4)) (-4 *1 (-1152 *4)) - (-4 *4 (-1067)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-959 (-227))) (-5 *2 (-1291)) - (-5 *1 (-1288))))) -(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) - ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) + (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-854 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-567) (-1055 *2) (-650 *2) (-463))) (-5 *2 (-575)) + (-5 *1 (-1133 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-1176)) + (-4 *6 (-13 (-567) (-1055 *2) (-650 *2) (-463))) (-5 *2 (-575)) + (-5 *1 (-1133 *6 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-463)) (-5 *2 (-575)) + (-5 *1 (-1134 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-854 (-418 (-967 *6)))) + (-5 *3 (-418 (-967 *6))) (-4 *6 (-463)) (-5 *2 (-575)) + (-5 *1 (-1134 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-418 (-967 *6))) (-5 *4 (-1194)) + (-5 *5 (-1176)) (-4 *6 (-463)) (-5 *2 (-575)) (-5 *1 (-1134 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-575)) (-5 *1 (-1217 *3)) (-4 *3 (-1066))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1258 *4 *5)) (-5 *3 (-655 *5)) (-14 *4 (-1194)) + (-4 *5 (-373)) (-5 *1 (-938 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-655 *5)) (-4 *5 (-373)) (-5 *2 (-1190 *5)) + (-5 *1 (-938 *4 *5)) (-14 *4 (-1194)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-655 *6)) (-5 *4 (-782)) (-4 *6 (-373)) + (-5 *2 (-418 (-967 *6))) (-5 *1 (-1067 *5 *6)) (-14 *5 (-1194))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2) - (-12 (-4 *3 (-1067)) (-5 *2 (-974 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1262 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) + (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-575)) (-5 *2 (-112)) (-5 *1 (-491))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-782)) (-5 *5 (-655 *3)) (-4 *3 (-316)) (-4 *6 (-861)) + (-4 *7 (-804)) (-5 *2 (-112)) (-5 *1 (-636 *6 *7 *3 *8)) + (-4 *8 (-964 *3 *7 *6))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -1630 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-655 (-418 *8))) (-4 *7 (-373)) (-4 *8 (-1261 *7)) + (-5 *3 (-418 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-585 *7 *8))))) (((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (-12 (-5 *2 (-782)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 *2) (-4 *5 (-174)))) ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-937)) (-5 *1 (-166 *3 *4)) + (-12 (-4 *4 (-174)) (-5 *2 (-936)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-937)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-936)))) ((*1 *2) - (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) - (-5 *2 (-937)))) + (-12 (-4 *1 (-380 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) + (-5 *2 (-936)))) ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + (-12 (-4 *4 (-373)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) + (-5 *2 (-782)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374)) - (-5 *2 (-783)) (-5 *1 (-679 *5)))) + (-12 (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-373)) + (-5 *2 (-782)) (-5 *1 (-678 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-783)) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) + (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) + (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-782)) + (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) + (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-782)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) + (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) + (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-699 *4 *5 *6 *3)) + (-4 *3 (-698 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-783))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1195)) - (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) (-5 *1 (-1198))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2778 *4))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1191 *4)) - (-4 *4 (-13 (-442 *7) (-27) (-1221))) - (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567)) + (-5 *2 (-782))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-897 *3 *4 *5)) + (-4 *3 (-1117)) (-4 *5 (-677 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-901 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1117))))) +(((*1 *2 *1) + (-12 (-4 *3 (-238)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) + (-4 *6 (-804)) (-5 *2 (-1 *1 (-782))) (-4 *1 (-259 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804)) + (-5 *2 (-1 *1 (-782))) (-4 *1 (-259 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-274 *2)) (-4 *2 (-861))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-710)) (-5 *1 (-314))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-655 (-269))) (-5 *1 (-1287)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-1176)) (-5 *1 (-1287)))) + ((*1 *1 *1) (-5 *1 (-1287)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) + (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 (-418 *2))) + (-4 *2 (-1261 *4)) (-5 *1 (-351 *3 *4 *2 *5)) + (-4 *3 (-352 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-352 *3 *2 *4)) (-4 *3 (-1239)) + (-4 *4 (-1261 (-418 *2))) (-4 *2 (-1261 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1109 (-854 *3))) (-4 *3 (-13 (-1220) (-974) (-29 *5))) + (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1191 *4))) - (-4 *4 (-13 (-442 *7) (-27) (-1221))) - (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) + (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1109 (-854 *3))) (-5 *5 (-1176)) + (-4 *3 (-13 (-1220) (-974) (-29 *6))) + (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1287)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *1 *1) - (-12 (-4 *2 (-360)) (-4 *2 (-1067)) (-5 *1 (-724 *2 *3)) - (-4 *3 (-1262 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1198)) (-5 *3 (-1195))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-783))))) + (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1109 (-854 (-325 *5)))) + (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *2 + (-3 (|:| |f1| (-854 (-325 *5))) (|:| |f2| (-655 (-854 (-325 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-418 (-967 *6))) (-5 *4 (-1109 (-854 (-325 *6)))) + (-5 *5 (-1176)) + (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *2 + (-3 (|:| |f1| (-854 (-325 *6))) (|:| |f2| (-655 (-854 (-325 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1109 (-854 (-418 (-967 *5))))) (-5 *3 (-418 (-967 *5))) + (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *2 + (-3 (|:| |f1| (-854 (-325 *5))) (|:| |f2| (-655 (-854 (-325 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1109 (-854 (-418 (-967 *6))))) (-5 *5 (-1176)) + (-5 *3 (-418 (-967 *6))) + (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *2 + (-3 (|:| |f1| (-854 (-325 *6))) (|:| |f2| (-655 (-854 (-325 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-3 *3 (-655 *3))) (-5 *1 (-439 *5 *3)) + (-4 *3 (-13 (-1220) (-974) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-485 *3 *4 *5)) + (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) + (-5 *5 (-389)) (-5 *6 (-1080)) (-5 *2 (-1052)) (-5 *1 (-576)))) + ((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1052)) (-5 *1 (-576)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) + (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) + (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) + (-5 *2 (-1052)) (-5 *1 (-576)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) + (-5 *2 (-1052)) (-5 *1 (-576)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) + (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) + (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) + (-5 *5 (-389)) (-5 *6 (-1080)) (-5 *2 (-1052)) (-5 *1 (-576)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-325 (-389))) (-5 *4 (-1109 (-854 (-389)))) + (-5 *5 (-1176)) (-5 *2 (-1052)) (-5 *1 (-576)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-325 (-389))) (-5 *4 (-1109 (-854 (-389)))) + (-5 *5 (-1194)) (-5 *2 (-1052)) (-5 *1 (-576)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4)) + (-5 *2 (-597 (-418 *5))) (-5 *1 (-579 *4 *5)) (-5 *3 (-418 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-148)) + (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-3 (-325 *5) (-655 (-325 *5)))) (-5 *1 (-600 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-751 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-861)) + (-4 *3 (-38 (-418 (-575)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1194)) (-5 *1 (-967 *3)) (-4 *3 (-38 (-418 (-575)))) + (-4 *3 (-1066)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-4 *2 (-861)) + (-5 *1 (-1143 *3 *2 *4)) (-4 *4 (-964 *3 (-542 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) + (-5 *1 (-1178 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1185 *3 *4 *5)) + (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1191 *3 *4 *5)) + (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1192 *3 *4 *5)) + (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *1 (-1229 *3)) (-4 *3 (-38 (-418 (-575)))) + (-4 *3 (-1066)))) + ((*1 *1 *1 *2) + (-3765 + (-12 (-5 *2 (-1194)) (-4 *1 (-1245 *3)) (-4 *3 (-1066)) + (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220)) + (-4 *3 (-38 (-418 (-575)))))) + (-12 (-5 *2 (-1194)) (-4 *1 (-1245 *3)) (-4 *3 (-1066)) + (-12 (|has| *3 (-15 -1606 ((-655 *2) *3))) + (|has| *3 (-15 -4413 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1249 *3 *4 *5)) + (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575)))))) + ((*1 *1 *1 *2) + (-3765 + (-12 (-5 *2 (-1194)) (-4 *1 (-1266 *3)) (-4 *3 (-1066)) + (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220)) + (-4 *3 (-38 (-418 (-575)))))) + (-12 (-5 *2 (-1194)) (-4 *1 (-1266 *3)) (-4 *3 (-1066)) + (-12 (|has| *3 (-15 -1606 ((-655 *2) *3))) + (|has| *3 (-15 -4413 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1270 *3 *4 *5)) + (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3765 + (-12 (-5 *2 (-1194)) (-4 *1 (-1276 *3)) (-4 *3 (-1066)) + (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220)) + (-4 *3 (-38 (-418 (-575)))))) + (-12 (-5 *2 (-1194)) (-4 *1 (-1276 *3)) (-4 *3 (-1066)) + (-12 (|has| *3 (-15 -1606 ((-655 *2) *3))) + (|has| *3 (-15 -4413 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1277 *3 *4 *5)) + (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-428 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2778 *4))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-5 *5 (-1191 *2)) - (-4 *2 (-13 (-442 *6) (-27) (-1221))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1118)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) - (-5 *5 (-419 (-1191 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1221))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1118))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))) + (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-463)) (-4 *4 (-831)) + (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-373) (-1220) (-1019)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))) ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1067)) (-14 *3 (-656 (-1195))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1066)) (-14 *3 (-655 (-1194))))) ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862))) - (-14 *3 (-656 (-1195))))) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861))) + (-14 *3 (-655 (-1194))))) ((*1 *1 *1) - (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1118)))) + (-12 (-4 *1 (-392 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1117)))) ((*1 *1 *1) - (-12 (-14 *2 (-656 (-1195))) (-4 *3 (-174)) - (-4 *5 (-244 (-2872 *2) (-783))) + (-12 (-14 *2 (-655 (-1194))) (-4 *3 (-174)) + (-4 *5 (-243 (-2871 *2) (-782))) (-14 *6 - (-1 (-112) (-2 (|:| -4318 *4) (|:| -1359 *5)) - (-2 (|:| -4318 *4) (|:| -1359 *5)))) - (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) - (-4 *7 (-965 *3 *5 (-876 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-862)))) + (-1 (-112) (-2 (|:| -4317 *4) (|:| -2398 *5)) + (-2 (|:| -4317 *4) (|:| -2398 *5)))) + (-5 *1 (-472 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) + (-4 *7 (-964 *3 *5 (-875 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-861)))) ((*1 *1 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1067)))) + (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-1066)))) ((*1 *1 *1) - (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1067)) - (-4 *3 (-738)))) - ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)))) + (-12 (-5 *1 (-746 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1066)) + (-4 *3 (-737)))) + ((*1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)))) + (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)))) ((*1 *1 *1) - (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1083 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236)))) + (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1198))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-240 *3)) + (-4 *3 (-1117)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-240 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-1117)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-621 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-575)) (-4 *4 (-1117)) + (-5 *1 (-748 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-5 *1 (-748 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) + (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-702 (-289)))) (-5 *1 (-169))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1235)))) ((*1 *1 *2) - (-12 (-5 *2 (-968 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (-12 (-5 *2 (-967 (-389))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-968 (-390)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (-12 (-5 *2 (-418 (-967 (-389)))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (-12 (-5 *2 (-325 (-389))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (-12 (-5 *2 (-968 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (-12 (-5 *2 (-967 (-575))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-968 (-576)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (-12 (-5 *2 (-418 (-967 (-575)))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (-12 (-5 *2 (-325 (-575))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (-12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) - (-14 *4 (-656 *2)) (-4 *5 (-399)))) + (-12 (-5 *2 (-1194)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 *2)) + (-14 *4 (-655 *2)) (-4 *5 (-398)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-968 (-576))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-968 (-390))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-968 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-968 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-576)))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-390)))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-968 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-968 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-968 (-576))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-968 (-390))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-968 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-968 (-390)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453)))) + (-12 (-5 *2 (-325 *5)) (-4 *5 (-398)) (-5 *1 (-349 *3 *4 *5)) + (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))))) + ((*1 *1 *2) (-12 (-5 *2 (-700 (-418 (-967 (-575))))) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-700 (-418 (-967 (-389))))) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-700 (-967 (-575)))) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-700 (-967 (-389)))) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-700 (-325 (-575)))) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-700 (-325 (-389)))) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-575)))) (-4 *1 (-407)))) + ((*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-389)))) (-4 *1 (-407)))) + ((*1 *1 *2) (-12 (-5 *2 (-967 (-575))) (-4 *1 (-407)))) + ((*1 *1 *2) (-12 (-5 *2 (-967 (-389))) (-4 *1 (-407)))) + ((*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-4 *1 (-407)))) + ((*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-4 *1 (-407)))) + ((*1 *1 *2) (-12 (-5 *2 (-1285 (-418 (-967 (-575))))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-1285 (-418 (-967 (-389))))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-1285 (-967 (-575)))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-1285 (-967 (-389)))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-1285 (-325 (-575)))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-1285 (-325 (-389)))) (-4 *1 (-452)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| - (-2 (|:| |fn| (-326 (-227))) - (|:| -1908 (-656 (-1112 (-855 (-227))))) + (-2 (|:| |fn| (-325 (-227))) + (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-781)))) + (-5 *1 (-780)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-820)))) + (-5 *1 (-819)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) + (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) + (|:| |lb| (-655 (-854 (-227)))) + (|:| |cf| (-655 (-325 (-227)))) + (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3475 (-656 (-227))))))) - (-5 *1 (-853)))) + (-2 (|:| |lfn| (-655 (-325 (-227)))) + (|:| -3474 (-655 (-227))))))) + (-5 *1 (-852)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-656 (-326 (-227)))) + (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| - (-656 + (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) + (|:| |grid| (-782)) (|:| |boundaryType| (-575)) + (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) + (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) - (-5 *1 (-913)))) + (-5 *1 (-912)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-994 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-1236)))) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *1 (-993 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-1235)))) ((*1 *1 *2) - (-3766 - (-12 (-5 *2 (-968 *3)) - (-12 (-3216 (-4 *3 (-38 (-419 (-576))))) - (-3216 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))) - (-12 (-5 *2 (-968 *3)) - (-12 (-3216 (-4 *3 (-557))) (-3216 (-4 *3 (-38 (-419 (-576))))) - (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))) - (-12 (-5 *2 (-968 *3)) - (-12 (-3216 (-4 *3 (-1010 (-576)))) (-4 *3 (-38 (-419 (-576)))) - (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))))) + (-3765 + (-12 (-5 *2 (-967 *3)) + (-12 (-3215 (-4 *3 (-38 (-418 (-575))))) + (-3215 (-4 *3 (-38 (-575)))) (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) + (-4 *5 (-861))) + (-12 (-5 *2 (-967 *3)) + (-12 (-3215 (-4 *3 (-556))) (-3215 (-4 *3 (-38 (-418 (-575))))) + (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) + (-4 *5 (-861))) + (-12 (-5 *2 (-967 *3)) + (-12 (-3215 (-4 *3 (-1009 (-575)))) (-4 *3 (-38 (-418 (-575)))) + (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) + (-4 *5 (-861))))) ((*1 *1 *2) - (-3766 - (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) - (-12 (-3216 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))) - (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))))) + (-3765 + (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) + (-12 (-3215 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) + (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))) + (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))))) ((*1 *1 *2) - (-12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1067)) - (-4 *4 (-805)) (-4 *5 (-862))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1199)) (-5 *1 (-1198))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1191 *3)) - (-4 *3 (-13 (-442 *7) (-27) (-1221))) - (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1118)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) - (-5 *6 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1221))) - (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1118))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1288))))) + (-12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5)) + (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))) (-4 *3 (-1066)) + (-4 *4 (-804)) (-4 *5 (-861))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-283))))) +(((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-129))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-993 *4 *5 *6 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) + (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-965 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) - ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *1 *2) - (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1056 *4)) (-4 *3 (-317)) - (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *6 (-421 *4 *5)) - (-14 *7 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1010 *3)) - (-4 *5 (-1262 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-142))))) + (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) + (-4 *1 (-964 *3 *4 *5))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3)) + (-4 *3 (-1117))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) + (-5 *2 (-700 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1067)) (-5 *2 (-1286 *4)) - (-5 *1 (-1196 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-937)) (-5 *2 (-1286 *3)) (-5 *1 (-1196 *3)) - (-4 *3 (-1067))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1221))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -3849 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1221))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -3849 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-270)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *2 (-1291)) (-5 *1 (-1288)))) + (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-29 *4) (-1220))) + (-5 *1 (-594 *4 *2)) + (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-597 (-418 (-967 *4)))) + (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-325 *4)) + (-5 *1 (-600 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-359)) + (-5 *2 (-655 (-2 (|:| |deg| (-782)) (|:| -1489 *3)))) + (-5 *1 (-218 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) + ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932))))) +(((*1 *2) + (-12 (-14 *4 (-782)) (-4 *5 (-1235)) (-5 *2 (-135)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-373)) (-5 *2 (-135)) (-5 *1 (-337 *3 *4)) + (-4 *3 (-338 *4)))) + ((*1 *2) + (-12 (-5 *2 (-782)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2205 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))) + (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-575)) + (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) + (-5 *2 (-575)) (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1066)) (-5 *2 (-936)))) + ((*1 *2) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-373)) (-5 *2 (-135))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-782)) (-4 *6 (-373)) (-5 *4 (-1229 *6)) + (-5 *2 (-1 (-1174 *4) (-1174 *4))) (-5 *1 (-1293 *6)) + (-5 *5 (-1174 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))) ((*1 *2 *1) - (-12 (-4 *2 (-1067)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195))))) + (-12 (-4 *2 (-1066)) (-5 *1 (-50 *2 *3)) (-14 *3 (-655 (-1194))))) ((*1 *2 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) + (-12 (-5 *2 (-325 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1067)))) + (-12 (-4 *1 (-392 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1066)))) ((*1 *2 *1) - (-12 (-14 *3 (-656 (-1195))) (-4 *5 (-244 (-2872 *3) (-783))) + (-12 (-14 *3 (-655 (-1194))) (-4 *5 (-243 (-2871 *3) (-782))) (-14 *6 - (-1 (-112) (-2 (|:| -4318 *4) (|:| -1359 *5)) - (-2 (|:| -4318 *4) (|:| -1359 *5)))) - (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) - (-4 *7 (-965 *2 *5 (-876 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1118)))) + (-1 (-112) (-2 (|:| -4317 *4) (|:| -2398 *5)) + (-2 (|:| -4317 *4) (|:| -2398 *5)))) + (-4 *2 (-174)) (-5 *1 (-472 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) + (-4 *7 (-964 *2 *5 (-875 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-520 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1117)))) ((*1 *2 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1067)))) + (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-1066)))) ((*1 *2 *1) - (-12 (-4 *2 (-1067)) (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) - (-4 *3 (-738)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)))) + (-12 (-4 *2 (-1066)) (-5 *1 (-746 *2 *3)) (-4 *3 (-861)) + (-4 *3 (-737)))) + ((*1 *2 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)))) ((*1 *2 *1) - (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-862)) - (-4 *2 (-1067)))) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *3 (-803)) (-4 *4 (-861)) + (-4 *2 (-1066)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) - (-4 *3 (-1262 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722))))) -(((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)))) + (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-700 *6)) (-5 *5 (-1 (-429 (-1190 *6)) (-1190 *6))) + (-4 *6 (-373)) + (-5 *2 + (-655 + (-2 (|:| |outval| *7) (|:| |outmult| (-575)) + (|:| |outvect| (-655 (-700 *7)))))) + (-5 *1 (-543 *6 *7 *4)) (-4 *7 (-373)) (-4 *4 (-13 (-373) (-859)))))) +(((*1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235)))) ((*1 *2 *2) - (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) + (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) - (-12 (-4 *2 (-317)) (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1056 *3)))))) +(((*1 *1) (-5 *1 (-589)))) +(((*1 *2 *3) + (-12 (-5 *3 (-325 (-227))) (-5 *2 (-325 (-418 (-575)))) + (-5 *1 (-314))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1261 (-171 *2)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-567))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1112 *3)) (-4 *3 (-965 *7 *6 *4)) (-4 *6 (-805)) - (-4 *4 (-862)) (-4 *7 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) - (-5 *1 (-606 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) - (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-965 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1) (-5 *1 (-874))) + (-12 (-5 *5 (-1111 *3)) (-4 *3 (-964 *7 *6 *4)) (-4 *6 (-804)) + (-4 *4 (-861)) (-4 *7 (-567)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-575)))) + (-5 *1 (-605 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-567)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-575)))) + (-5 *1 (-605 *5 *4 *6 *3)) (-4 *3 (-964 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *1) (-5 *1 (-873))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-1187 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221))))) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-1186 *4 *2)) (-4 *2 (-13 (-441 *4) (-161) (-27) (-1220))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1110 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221))) - (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-1187 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)))) - (-5 *2 (-419 (-968 *5))) (-5 *1 (-1188 *5)) (-5 *3 (-968 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)))) - (-5 *2 (-3 (-419 (-968 *5)) (-326 *5))) (-5 *1 (-1188 *5)) - (-5 *3 (-419 (-968 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1110 (-968 *5))) (-5 *3 (-968 *5)) - (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-419 *3)) - (-5 *1 (-1188 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1110 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5))) - (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-3 *3 (-326 *5))) - (-5 *1 (-1188 *5))))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1195))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) - (-4 *2 (-1262 *3))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1221))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1221))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118))))) + (-12 (-5 *3 (-1109 *2)) (-4 *2 (-13 (-441 *4) (-161) (-27) (-1220))) + (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-1186 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)))) + (-5 *2 (-418 (-967 *5))) (-5 *1 (-1187 *5)) (-5 *3 (-967 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)))) + (-5 *2 (-3 (-418 (-967 *5)) (-325 *5))) (-5 *1 (-1187 *5)) + (-5 *3 (-418 (-967 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1109 (-967 *5))) (-5 *3 (-967 *5)) + (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-418 *3)) + (-5 *1 (-1187 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1109 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5))) + (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-3 *3 (-325 *5))) + (-5 *1 (-1187 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-495 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-782)))) + ((*1 *1 *1) (-4 *1 (-413)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) + (-4 *1 (-1082 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1118)))) + (-12 (-4 *1 (-392 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1117)))) ((*1 *2 *1) - (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) - (-4 *6 (-244 (-2872 *3) (-783))) + (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) + (-4 *6 (-243 (-2871 *3) (-782))) (-14 *7 - (-1 (-112) (-2 (|:| -4318 *5) (|:| -1359 *6)) - (-2 (|:| -4318 *5) (|:| -1359 *6)))) - (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-862)) (-4 *8 (-965 *4 *6 (-876 *3))))) + (-1 (-112) (-2 (|:| -4317 *5) (|:| -2398 *6)) + (-2 (|:| -4317 *5) (|:| -2398 *6)))) + (-5 *2 (-724 *5 *6 *7)) (-5 *1 (-472 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-861)) (-4 *8 (-964 *4 *6 (-875 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-738)) (-4 *2 (-862)) (-5 *1 (-747 *3 *2)) - (-4 *3 (-1067)))) + (-12 (-4 *2 (-737)) (-4 *2 (-861)) (-5 *1 (-746 *3 *2)) + (-4 *3 (-1066)))) ((*1 *1 *1) - (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-804)) - (-4 *4 (-862))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-656 (-1191 *13))) (-5 *3 (-1191 *13)) - (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) - (-5 *7 (-656 (-656 (-2 (|:| -2746 (-783)) (|:| |pcoef| *13))))) - (-5 *8 (-656 (-783))) (-5 *9 (-1286 (-656 (-1191 *10)))) - (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-965 *10 *11 *12)) - (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-1286 *2)) (-4 *5 (-317)) - (-4 *6 (-1010 *5)) (-4 *2 (-13 (-421 *6 *7) (-1056 *6))) - (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1262 *6))))) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-803)) + (-4 *4 (-861))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-575)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-782)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-804)) (-4 *4 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *7 (-861)) + (-5 *1 (-460 *5 *6 *7 *4))))) +(((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-359)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1261 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2) + (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-428 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-373)) (-5 *1 (-1042 *3 *2)) (-4 *2 (-667 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-373)) (-5 *2 (-2 (|:| -2571 *3) (|:| -1576 (-655 *5)))) + (-5 *1 (-1042 *5 *3)) (-5 *4 (-655 *5)) (-4 *3 (-667 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1055 (-48))) + (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) + (-5 *2 (-429 (-1190 (-48)))) (-5 *1 (-446 *4 *5 *3)) + (-4 *3 (-1261 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1056 *4)) (-4 *3 (-568))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195))))) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-987 *2 *4)) - (-4 *4 (-1262 *2))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-656 - (-2 - (|:| -4169 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -3180 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1175 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1908 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))) - ((*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1191 *9))) - (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) - (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-965 *9 *10 *11)) - (-4 *10 (-805)) (-5 *2 (-656 (-1191 *12))) - (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1191 *12))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)) - (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) - (-5 *2 (-701 *3))))) -(((*1 *1) (-5 *1 (-142)))) + (-12 (-5 *3 (-782)) (-4 *2 (-567)) (-5 *1 (-986 *2 *4)) + (-4 *4 (-1261 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) - (-5 *2 (-874)) (-5 *1 (-32 *4 *5))))) + (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7))) + (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) + (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8))) + (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1276 *4)) (-5 *1 (-1278 *4 *2)) + (-4 *4 (-38 (-418 (-575))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) + (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) + ((*1 *2 *3) (-12 (-5 *3 (-988)) (-5 *2 (-919 (-575))) (-5 *1 (-932))))) +(((*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))) + ((*1 *2 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-373)) (-4 *6 (-1261 (-418 *2))) + (-4 *2 (-1261 *5)) (-5 *1 (-217 *5 *2 *6 *3)) + (-4 *3 (-352 *5 *2 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195))))) + (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1235)) (-4 *3 (-1235))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-176 (-418 (-575)))) (-5 *1 (-118 *3)) (-14 *3 (-575)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1174 *2)) (-4 *2 (-316)) (-5 *1 (-176 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-316)) (-5 *1 (-176 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-176 (-575))) (-5 *1 (-776 *3)) (-4 *3 (-415)))) + ((*1 *2 *1) + (-12 (-5 *2 (-176 (-418 (-575)))) (-5 *1 (-882 *3)) (-14 *3 (-575)))) + ((*1 *2 *1) + (-12 (-14 *3 (-575)) (-5 *2 (-176 (-418 (-575)))) + (-5 *1 (-883 *3 *4)) (-4 *4 (-880 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-973 (-1137))) + (-5 *1 (-356 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-623 *5)) (-4 *5 (-441 *4)) (-4 *4 (-1055 (-575))) + (-4 *4 (-567)) (-5 *2 (-1190 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-623 *1)) (-4 *1 (-1066)) (-4 *1 (-311)) + (-5 *2 (-1190 *1))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-158)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-317)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1118)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) + (-12 + (-5 *2 + (-2 (|:| -1754 *3) (|:| |gap| (-782)) (|:| -2829 (-793 *3)) + (|:| -1635 (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-1066)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) + (-5 *2 + (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -2829 *1) + (|:| -1635 *1))) + (-4 *1 (-1082 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2770 (-783)) (|:| -1406 (-783)))) - (-5 *1 (-783)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-571))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) + (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 + (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -2829 *1) + (|:| -1635 *1))) + (-4 *1 (-1082 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-656 (-1191 *11))) (-5 *3 (-1191 *11)) - (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) - (-5 *7 (-1286 (-656 (-1191 *8)))) (-4 *10 (-862)) - (-4 *8 (-317)) (-4 *11 (-965 *8 *9 *10)) (-4 *9 (-805)) - (-5 *1 (-719 *9 *10 *8 *11))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) - (-5 *2 (-701 *3))))) + (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) + (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528))))) (((*1 *1) (-5 *1 (-142)))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1067)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) - (-4 *4 (-699 *2 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195))))) + (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) + (-5 *2 (-492 *4 *5)) (-5 *1 (-959 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861))) + (-14 *3 (-655 (-1194)))))) +(((*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) + ((*1 *2 *1) (-12 (-4 *1 (-719 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-782))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) + (-4 *3 (-861)) (-5 *2 (-782))))) +(((*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-842))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-547))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -4315 *4))) (-5 *1 (-987 *4 *3)) - (-4 *3 (-1262 *4))))) -(((*1 *1) (-5 *1 (-571)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-548))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *1 *1) (-4 *1 (-249))) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-655 *3)) (-4 *3 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) + (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1005 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-655 *3)) (-4 *3 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) + (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1124 *5 *6 *7 *8 *3))))) +(((*1 *1 *1) (-4 *1 (-248))) ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-3766 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236))) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236))))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) + (-3765 (-12 (-5 *1 (-303 *2)) (-4 *2 (-373)) (-4 *2 (-1235))) + (-12 (-5 *1 (-303 *2)) (-4 *2 (-484)) (-4 *2 (-1235))))) + ((*1 *1 *1) (-4 *1 (-484))) + ((*1 *2 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1083 *3 *4 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) - (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-4 *7 (-1236)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) - (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1) (-4 *1 (-312))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1067)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) - (-4 *4 (-699 *2 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4315 *4))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557))))) + ((*1 *1 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)) (-4 *2 (-373))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-655 (-655 *8))) (-5 *3 (-655 *8)) + (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) + (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-112)) + (-5 *1 (-939 *5 *6 *7 *8))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1083 *3 *4 *5))))) + (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) - (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) + (-12 (-4 *4 (-1066)) (-4 *3 (-1261 *4)) (-4 *2 (-1276 *4)) + (-5 *1 (-1279 *4 *3 *5 *2)) (-4 *5 (-667 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2666 (-576))))) - (-5 *1 (-372 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1) - (-12 (-4 *1 (-397 *3)) (-4 *3 (-1118)) - (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2666 (-783))))))) + (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) + (-5 *2 (-830 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -2354 *3) (|:| -1359 (-576))))) - (-5 *1 (-430 *3)) (-4 *3 (-568))))) -(((*1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-379)))) + (-12 (-4 *2 (-857)) (-5 *1 (-1308 *3 *2)) (-4 *3 (-1066))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-700 (-171 (-418 (-575))))) + (-5 *2 + (-655 + (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-575)) + (|:| |outvect| (-655 (-700 (-171 *4))))))) + (-5 *1 (-775 *4)) (-4 *4 (-13 (-373) (-859)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1190 *6)) (-4 *6 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 (-1190 *7)) (-5 *1 (-330 *4 *5 *6 *7)) + (-4 *7 (-964 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-463)) (-5 *2 (-112)) + (-5 *1 (-370 *4 *5)) (-14 *5 (-655 (-1194))))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-791 *4 (-875 *5)))) (-4 *4 (-463)) + (-14 *5 (-655 (-1194))) (-5 *2 (-112)) (-5 *1 (-639 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-373) (-1055 (-418 *2)))) (-5 *2 (-575)) + (-5 *1 (-116 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-988))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1285 *5)) (-4 *5 (-13 (-1066) (-650 *4))) + (-4 *4 (-567)) (-5 *2 (-1285 *4)) (-5 *1 (-649 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-378)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360)))) + (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4)) + (-4 *4 (-359)))) ((*1 *2 *1) - (-12 (-4 *2 (-862)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1118)) + (-12 (-4 *2 (-861)) (-5 *1 (-724 *2 *3 *4)) (-4 *3 (-1117)) (-14 *4 - (-1 (-112) (-2 (|:| -4318 *2) (|:| -1359 *3)) - (-2 (|:| -4318 *2) (|:| -1359 *3))))))) + (-1 (-112) (-2 (|:| -4317 *2) (|:| -2398 *3)) + (-2 (|:| -4317 *2) (|:| -2398 *3))))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-874)))) + (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-873)))) (-5 *1 (-873)))) ((*1 *2 *1) - (-12 (-5 *2 (-1160 *3 *4)) (-5 *1 (-1011 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-374)))) + (-12 (-5 *2 (-1159 *3 *4)) (-5 *1 (-1010 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-373)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1067)) - (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) - (-4 *7 (-244 *3 *5))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-874) (-874) (-874))) (-5 *4 (-576)) (-5 *2 (-874)) - (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1118)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-874)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1067)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-874)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))) - ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-874)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-874)) (-5 *1 (-1191 *3)) (-4 *3 (-1067))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-987 *2 *3)) - (-4 *3 (-1262 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) + (-12 (-5 *2 (-655 (-655 *5))) (-4 *5 (-1066)) + (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) + (-4 *7 (-243 *3 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1159 *4 *2)) (-14 *4 (-936)) + (-4 *2 (-13 (-1066) (-10 -7 (-6 (-4462 "*"))))) + (-5 *1 (-917 *4 *2))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-854 *4)) (-5 *3 (-623 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1220) (-29 *6))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-226 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) + (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-316)) + (-5 *2 (-418 (-429 (-967 *4)))) (-5 *1 (-1059 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) + (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) + (-12 (-5 *4 (-418 (-575))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) + (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) - (-4 *3 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) + (-12 (-5 *4 (-303 *3)) (-5 *5 (-418 (-575))) + (-4 *3 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) - (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576))) - (-4 *8 (-13 (-27) (-1221) (-442 *7))) - (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-418 (-575)))) (-5 *4 (-303 *8)) + (-5 *5 (-1252 (-418 (-575)))) (-5 *6 (-418 (-575))) + (-4 *8 (-13 (-27) (-1220) (-441 *7))) + (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576)))) - (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8))) - (-4 *8 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *8 *3)))) + (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-418 (-575)))) + (-5 *7 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *8))) + (-4 *8 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1067)) (-4 *1 (-1269 *4 *3)) - (-4 *3 (-1246 *4))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227) (-227))) - (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-194)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) + (-12 (-5 *2 (-418 (-575))) (-4 *4 (-1066)) (-4 *1 (-1268 *4 *3)) + (-4 *3 (-1245 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235)) + (-5 *2 (-655 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-219)))) + ((*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-498)))) + ((*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-316)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-987 *4 *3)) - (-4 *3 (-1262 *4))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1195)) (-5 *6 (-656 (-624 *3))) - (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *7))) - (-4 *7 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-2 (|:| -3849 *3) (|:| |coeff| *3))) - (-5 *1 (-569 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) + (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) + ((*1 *1 *1) (-4 *1 (-1077)))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-936))) (-5 *2 (-1196 (-418 (-575)))) + (-5 *1 (-192))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *4))))))) + (-5 *3 (-655 *7)) (-4 *4 (-13 (-316) (-148))) + (-4 *7 (-964 *4 *6 *5)) (-4 *5 (-13 (-861) (-625 (-1194)))) + (-4 *6 (-804)) (-5 *1 (-939 *4 *5 *6 *7))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-311))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))) + (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1066)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1066))))) (((*1 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) + (-12 (-5 *3 (-967 (-227))) (-5 *2 (-325 (-389))) (-5 *1 (-314))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) + (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1056 *4) (-651 *4))) - (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *5))))) + (-12 (-5 *4 (-575)) (-4 *5 (-13 (-463) (-1055 *4) (-650 *4))) + (-5 *2 (-52)) (-5 *1 (-324 *5 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) + (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-464) (-1056 *5) (-651 *5))) (-5 *5 (-576)) - (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) + (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-463) (-1055 *5) (-650 *5))) (-5 *5 (-575)) + (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576))) - (-4 *7 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-575))) + (-4 *7 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576))) - (-4 *3 (-13 (-27) (-1221) (-442 *7))) - (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) + (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-575))) + (-4 *3 (-13 (-27) (-1220) (-441 *7))) + (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *4 (-1067)) (-4 *1 (-1248 *4 *3)) - (-4 *3 (-1277 *4)))) + (-12 (-5 *2 (-575)) (-4 *4 (-1066)) (-4 *1 (-1247 *4 *3)) + (-4 *3 (-1276 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1246 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) - (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-4 *7 (-1236))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))) + (-12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1245 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-987 *4 *3)) - (-4 *3 (-1262 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) - (-4 *5 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *5))))) + (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) + (-5 *2 + (-2 (|:| -2059 (-424 *4 (-418 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -1500 (-418 *6)) + (|:| |special| (-418 *6)))) + (-5 *1 (-738 *5 *6)) (-5 *3 (-418 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-910 *3 *4)) + (-4 *3 (-1261 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-782)) (-4 *5 (-373)) + (-5 *2 (-2 (|:| -2418 *3) (|:| -2435 *3))) (-5 *1 (-910 *3 *5)) + (-4 *3 (-1261 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) + (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) + (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) + (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) + (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) + (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) + (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) + (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) + (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1162 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) + (-5 *2 (-1052)) (-5 *1 (-763))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-517)) (-5 *2 (-702 (-1121))) (-5 *1 (-300))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-700 (-575))) (-5 *5 (-112)) (-5 *7 (-700 (-227))) + (-5 *3 (-575)) (-5 *6 (-227)) (-5 *2 (-1052)) (-5 *1 (-765))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-608))) (-5 *1 (-608))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1194)) + (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-4 *4 (-13 (-29 *6) (-1220) (-974))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -1624 (-655 *4)))) + (-5 *1 (-812 *6 *4 *3)) (-4 *3 (-667 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-339)))) + ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-339))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-782)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-52)) (-5 *1 (-324 *5 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) - (-4 *3 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) - (-4 *6 (-13 (-27) (-1221) (-442 *5))) - (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *5 *6)))) + (-12 (-5 *4 (-303 *3)) (-5 *5 (-782)) + (-4 *3 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-575))) (-5 *4 (-303 *6)) + (-4 *6 (-13 (-27) (-1220) (-441 *5))) + (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *3)))) + (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-783))) - (-4 *7 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-782))) + (-4 *7 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-783))) - (-4 *3 (-13 (-27) (-1221) (-442 *7))) - (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) + (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-782))) + (-4 *3 (-13 (-27) (-1220) (-441 *7))) + (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1277 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-713)))) - ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-713))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *4)) (-4 *4 (-568))))) + (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1276 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) + (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1197)) (-5 *3 (-1194))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-227)))) (-5 *1 (-941))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-693 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8))))) +(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) + ((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-849))) (-5 *1 (-141))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-782)) (-4 *4 (-13 (-567) (-148))) + (-5 *1 (-1255 *4 *2)) (-4 *2 (-1261 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1066)) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1261 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2790 *4))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1195)) - (-4 *4 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) - (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-712 *3)) - (-4 *3 (-317))))) -(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-873)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-873))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) + (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) + (-4 *3 (-1117))))) (((*1 *1 *1) - (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067))))) + (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-685 *3)) (-4 *3 (-1235)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-751 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-861)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-655 *3)) (-4 *1 (-997 *3)) (-4 *3 (-1066)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7)) + (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) + (-4 *1 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) + (-4 *1 (-1088 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2790 *4))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *6 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3928 *3))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1195)) - (-4 *5 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-2 (|:| -3849 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) + (-12 (-5 *2 (-429 (-1190 (-575)))) (-5 *1 (-193)) (-5 *3 (-575))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) + (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-782)) (-4 *5 (-567)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5))))) +(((*1 *1) (-5 *1 (-1099)))) +(((*1 *2) + (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) + ((*1 *2 *2) + (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-623 *1))) (-4 *1 (-311))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-885)) + (-5 *5 (-936)) (-5 *6 (-655 (-269))) (-5 *2 (-1286)) + (-5 *1 (-1289)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-655 (-269))) + (-5 *2 (-1286)) (-5 *1 (-1289))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1111 (-854 (-389)))) (-5 *2 (-1111 (-854 (-227)))) + (-5 *1 (-314))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) + (|:| |explanations| (-655 (-1176))))) + (-5 *2 (-1052)) (-5 *1 (-314)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) + (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052)))) + (-5 *2 (-1052)) (-5 *1 (-314))))) +(((*1 *2 *3) + (-12 (-4 *4 (-373)) (-4 *4 (-567)) (-4 *5 (-1261 *4)) + (-5 *2 (-2 (|:| -3397 (-634 *4 *5)) (|:| -3688 (-418 *5)))) + (-5 *1 (-634 *4 *5)) (-5 *3 (-418 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4)) + (-14 *3 (-936)) (-4 *4 (-1066)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-463)) (-4 *3 (-1066)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1261 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1118)) - (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-872)) (-5 *2 (-703 (-130))) (-5 *3 (-130))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *2)) (-4 *2 (-568))))) + (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-1224 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1176)) (-5 *4 (-1137)) (-5 *2 (-112)) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-885)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-389)) (-5 *1 (-1080))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *1 *1 *1) (-4 *1 (-484))) + ((*1 *1 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-895)))) + ((*1 *1 *1) (-5 *1 (-988))) + ((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-783))))) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-316)) (-5 *1 (-466 *3 *2)) (-4 *2 (-1261 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-316)) (-5 *1 (-471 *3 *2)) (-4 *2 (-1261 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-316)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-782))) + (-5 *1 (-550 *3 *2 *4 *5)) (-4 *2 (-1261 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1028 *3)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-782)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) - (-14 *3 (-937)) (-4 *4 (-1067))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3928 *3))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -4246 *1) (|:| -4448 *1) (|:| |associate| *1))) - (-4 *1 (-568))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-1094 *4 *5 *2))) (-4 *4 (-1118)) - (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) - (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-656 (-1094 *5 *6 *2))) (-5 *4 (-937)) (-4 *5 (-1118)) - (-4 *6 (-13 (-1067) (-899 *5) (-626 (-905 *5)))) - (-4 *2 (-13 (-442 *6) (-899 *5) (-626 (-905 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) - (-5 *2 (-2 (|:| -1755 *1) (|:| |gap| (-783)) (|:| -1406 *1))) - (-4 *1 (-1083 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -1755 *1) (|:| |gap| (-783)) (|:| -1406 *1))) - (-4 *1 (-1083 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-782))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1117)) (-5 *1 (-1212 *3 *2)) (-4 *3 (-1117))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-655 (-655 (-227)))) (-5 *4 (-227)) + (-5 *2 (-655 (-958 *4))) (-5 *1 (-1231)) (-5 *3 (-958 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-655 (-875 *5))) (-14 *5 (-655 (-1194))) (-4 *6 (-463)) + (-5 *2 (-655 (-655 (-252 *5 *6)))) (-5 *1 (-482 *5 *6 *7)) + (-5 *3 (-655 (-252 *5 *6))) (-4 *7 (-463))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-441 *5) (-27) (-1220))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 (-597 *3)) (-5 *1 (-577 *5 *3 *6)) (-4 *6 (-1117))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) + (-5 *2 (-429 (-1190 (-418 (-575))))) (-5 *1 (-446 *4 *5 *3)) + (-4 *3 (-1261 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1176)) (-4 *1 (-374 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1117))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-428 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-872)) (-5 *2 (-703 (-561))) (-5 *3 (-561))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) + (-12 (-5 *3 (-958 (-227))) (-5 *2 (-1290)) (-5 *1 (-479))))) +(((*1 *2) + (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-428 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) - (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1118) (-34))) - (-4 *4 (-13 (-1118) (-34)))))) + (-12 (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) + (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1117) (-34))) + (-4 *4 (-13 (-1117) (-34)))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-783)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-782)))) ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-783))))) -(((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3928 *3))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1755 *3) (|:| |gap| (-783)) (|:| -2770 (-794 *3)) - (|:| -1406 (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) - (-5 *2 - (-2 (|:| -1755 *1) (|:| |gap| (-783)) (|:| -2770 *1) - (|:| -1406 *1))) - (-4 *1 (-1083 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 - (-2 (|:| -1755 *1) (|:| |gap| (-783)) (|:| -2770 *1) - (|:| -1406 *1))) - (-4 *1 (-1083 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-872)) (-5 *2 (-703 (-1244))) (-5 *3 (-1244))))) -(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-782))))) +(((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *1) (-12 (-5 *2 (-702 (-1152))) (-5 *1 (-1168))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1235)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1235)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) + (-5 *2 (-1285 (-700 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1285 (-700 *4))) (-5 *1 (-427 *3 *4)) + (-4 *3 (-428 *4)))) + ((*1 *2) + (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 (-700 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-1194))) (-4 *5 (-373)) + (-5 *2 (-1285 (-700 (-418 (-967 *5))))) (-5 *1 (-1103 *5)) + (-5 *4 (-700 (-418 (-967 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-1194))) (-4 *5 (-373)) + (-5 *2 (-1285 (-700 (-967 *5)))) (-5 *1 (-1103 *5)) + (-5 *4 (-700 (-967 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-700 *4))) (-4 *4 (-373)) + (-5 *2 (-1285 (-700 *4))) (-5 *1 (-1103 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 *5)) (-4 *5 (-441 *4)) (-4 *4 (-567)) + (-5 *2 (-873)) (-5 *1 (-32 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) + ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710))))) (((*1 *1 *1) - (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067)))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1190 *2)) (-4 *2 (-964 (-418 (-967 *6)) *5 *4)) + (-5 *1 (-743 *5 *4 *6 *2)) (-4 *5 (-804)) + (-4 *4 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))) + (-4 *6 (-567))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235))))) +(((*1 *1 *1) (-5 *1 (-1080)))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)) (-4 *3 (-174)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *3 (-129)) (-5 *2 (-783))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067))))) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-567)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-174))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-4 *1 (-918 *3))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-700 *2)) (-5 *4 (-782)) + (-4 *2 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) + (-4 *5 (-1261 *2)) (-5 *1 (-510 *2 *5 *6)) (-4 *6 (-420 *2 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-288))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -4024 (-655 *3)) (|:| -4131 (-655 *3)))) + (-5 *1 (-1236 *3)) (-4 *3 (-1117))))) +(((*1 *1) (-5 *1 (-1102)))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572))))) +(((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1066))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) + (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) (((*1 *2 *3) - (-12 (-4 *4 (-862)) + (-12 (-4 *4 (-861)) (-5 *2 - (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) - (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) - (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 (-656 *4))))))) + (-2 (|:| |f1| (-655 *4)) (|:| |f2| (-655 (-655 (-655 *4)))) + (|:| |f3| (-655 (-655 *4))) (|:| |f4| (-655 (-655 (-655 *4)))))) + (-5 *1 (-1205 *4)) (-5 *3 (-655 (-655 (-655 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) + (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1285 *4)) (-5 *3 (-575)) (-4 *4 (-359)) + (-5 *1 (-539 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-1119 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1119 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) + (-5 *2 (-1052)) (-5 *1 (-766))))) +(((*1 *2 *2) + (-12 (-4 *3 (-359)) (-4 *4 (-338 *3)) (-4 *5 (-1261 *4)) + (-5 *1 (-788 *3 *4 *5 *2 *6)) (-4 *2 (-1261 *5)) (-14 *6 (-936)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-4 *3 (-378)))) + ((*1 *1 *1) (-12 (-4 *1 (-1304 *2)) (-4 *2 (-373)) (-4 *2 (-378))))) +(((*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-408))))) +(((*1 *1) (-5 *1 (-339)))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-763))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))) +(((*1 *1 *1) (-5 *1 (-1080)))) +(((*1 *1 *2) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-4 *1 (-384 *3 *4)) + (-4 *4 (-174))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1261 *9)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-316)) + (-4 *10 (-964 *9 *7 *8)) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) + (-2 (|:| |deter| (-655 (-1190 *10))) + (|:| |dterm| + (-655 (-655 (-2 (|:| -1925 (-782)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-655 *6)) (|:| |nlead| (-655 *10)))) + (-5 *1 (-789 *6 *7 *8 *9 *10)) (-5 *3 (-1190 *10)) (-5 *4 (-655 *6)) + (-5 *5 (-655 *10))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-695 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -2147 (-783)))) - (-5 *1 (-794 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2147 (-783)))) - (-4 *1 (-1083 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-1 (-227) (-227) (-227) (-227))) - (-5 *2 (-1 (-959 (-227)) (-227) (-227))) (-5 *1 (-709))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1261 (-575))) (-5 *1 (-497 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416)) - (-5 *2 (-937))))) -(((*1 *1) (-5 *1 (-340)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) - (-14 *3 (-937)) (-4 *4 (-1067)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5))))) + (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-1199))) (-5 *1 (-1153))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1236 *2)) + (-4 *2 (-1117)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-861)) + (-5 *1 (-1236 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-463)) (-4 *3 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-460 *4 *3 *5 *6)) (-4 *6 (-964 *4 *3 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-339))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-655 (-1190 *4))) (-5 *3 (-1190 *4)) + (-4 *4 (-924)) (-5 *1 (-674 *4))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-506))))) (((*1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) - (-4 *3 (-13 (-416) (-1221))))) - ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227))) - (-5 *1 (-709))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416)) - (-5 *2 (-937))))) + (-12 (-5 *2 (-655 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-575)) (-14 *4 (-782))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-859) (-373))) (-5 *2 (-112)) (-5 *1 (-1078 *4 *3)) + (-4 *3 (-1261 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-1154))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-959 *5)) (-4 *5 (-1067)) (-5 *2 (-783)) - (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5)) - (-14 *4 (-937)) (-4 *5 (-1067)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-959 *5)) (-4 *5 (-1067)) - (-5 *1 (-1183 *4 *5)) (-14 *4 (-937))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227))) - (-5 *1 (-709))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-959 *4)) (-4 *4 (-1067)) (-5 *1 (-1183 *3 *4)) - (-14 *3 (-937))))) + (-12 (-5 *3 (-325 *4)) (-4 *4 (-13 (-839) (-1066))) (-5 *2 (-1176)) + (-5 *1 (-837 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-325 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-1066))) + (-5 *2 (-1176)) (-5 *1 (-837 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-833)) (-5 *4 (-325 *5)) (-4 *5 (-13 (-839) (-1066))) + (-5 *2 (-1290)) (-5 *1 (-837 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-833)) (-5 *4 (-325 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-839) (-1066))) (-5 *2 (-1290)) (-5 *1 (-837 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-1176)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-839)) (-5 *3 (-112)) (-5 *2 (-1176)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-839)) (-5 *3 (-833)) (-5 *2 (-1290)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-839)) (-5 *3 (-833)) (-5 *4 (-112)) (-5 *2 (-1290))))) +(((*1 *2 *1) (-12 (-5 *1 (-1230 *2)) (-4 *2 (-991))))) (((*1 *2 *2) - (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3)))) + (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-987 *4 *2)) - (-4 *2 (-1262 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568)))) + (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-418 (-575)))) + (-5 *2 (-2 (|:| -3897 (-1174 *4)) (|:| -3909 (-1174 *4)))) + (-5 *1 (-1180 *4)) (-5 *3 (-1174 *4))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) + (-4 *3 (-1082 *6 *7 *8)) + (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) + (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) + (-5 *5 (-112)) (-4 *8 (-1082 *6 *7 *4)) (-4 *9 (-1088 *6 *7 *4 *8)) + (-4 *6 (-463)) (-4 *7 (-804)) (-4 *4 (-861)) + (-5 *2 (-655 (-2 (|:| |val| *8) (|:| -4270 *9)))) + (-5 *1 (-1089 *6 *7 *4 *8 *9))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-598 *2)) (-4 *2 (-556))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1309 *3 *4)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227))) - (-5 *1 (-709)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-227))) - (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-709)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-1 (-959 (-227)) (-227) (-227))) - (-5 *4 (-1112 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1067)) - (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-864 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1067)) - (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783)))) - ((*1 *1 *1) (-4 *1 (-414)))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5))))) + (-12 (-5 *2 (-830 *3)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1066)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-575)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1235)) + (-4 *5 (-383 *4)) (-4 *3 (-383 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-1190 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-373) (-311) + (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $)) + (-15 -1608 ((-1142 *4 (-623 $)) $)) + (-15 -2883 ($ (-1142 *4 (-623 $)))))))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-400))))) +(((*1 *2 *3) + (-12 (-5 *3 (-575)) (-4 *4 (-1261 (-418 *3))) (-5 *2 (-936)) + (-5 *1 (-928 *4 *5)) (-4 *5 (-1261 (-418 *4)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-981)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1007)))) - ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1236)))) + (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-869)))) + ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-980)))) + ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1006)))) + ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1235)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1118) (-34))) (-5 *1 (-1158 *2 *3)) - (-4 *3 (-13 (-1118) (-34)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) - (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1067)) - (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-864 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1067)) - (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1262 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3))))) + (-12 (-4 *2 (-13 (-1117) (-34))) (-5 *1 (-1157 *2 *3)) + (-4 *3 (-13 (-1117) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-1285 *5)) (-4 *5 (-316)) + (-4 *5 (-1066)) (-5 *2 (-700 *5)) (-5 *1 (-1046 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575)))) + (-5 *2 (-112)) (-5 *1 (-1313 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *2 (-1117)) (-4 *3 (-1117)) + (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941))))) +(((*1 *1 *2) + (-12 (-5 *2 (-936)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1066)) + (-4 *4 (-1235)))) + ((*1 *1 *2) + (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) + (-4 *5 (-243 (-2871 *3) (-782))) + (-14 *6 + (-1 (-112) (-2 (|:| -4317 *2) (|:| -2398 *5)) + (-2 (|:| -4317 *2) (|:| -2398 *5)))) + (-5 *1 (-472 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) + (-4 *7 (-964 *4 *5 (-875 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-750 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-861)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-463))))) +(((*1 *1 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-567)))) + ((*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23))))) (((*1 *1 *2) - (-12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148))) - (-5 *1 (-411 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3928 (-794 *3)) (|:| |coef1| (-794 *3)) - (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -3928 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1083 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -4356 *5)))) - (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) - (-5 *1 (-218 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| -2354 *5) (|:| -3813 (-576))))) - (-5 *4 (-576)) (-4 *5 (-1262 *4)) (-5 *2 (-656 *5)) - (-5 *1 (-708 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1067)) - (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-864 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1067)) - (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) + (-2 (|:| |mval| (-700 *3)) (|:| |invmval| (-700 *3)) + (|:| |genIdeal| (-515 *3 *4 *5 *6)))) + (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-479)))) + ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1286)))) + ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1287))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1176)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-269))))) (((*1 *2 *1) - (-12 (-4 *2 (-1262 *3)) (-5 *1 (-411 *3 *2)) - (-4 *3 (-13 (-374) (-148)))))) + (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) + (-4 *1 (-1082 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1287)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-987 *4 *2)) - (-4 *2 (-1262 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) + (-12 (-5 *2 (-655 (-492 *3 *4))) (-14 *3 (-655 (-1194))) + (-4 *4 (-463)) (-5 *1 (-642 *3 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-5 *5 (-655 (-655 *8))) + (-4 *7 (-861)) (-4 *8 (-316)) (-4 *9 (-964 *8 *6 *7)) (-4 *6 (-804)) + (-5 *2 + (-2 (|:| |upol| (-1190 *8)) (|:| |Lval| (-655 *8)) + (|:| |Lfact| + (-655 (-2 (|:| -2353 (-1190 *8)) (|:| -2398 (-575))))) + (|:| |ctpol| *8))) + (-5 *1 (-753 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3928 (-794 *3)) (|:| |coef1| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -3928 *1) (|:| |coef1| *1))) - (-4 *1 (-1083 *3 *4 *5))))) + (-12 (-4 *3 (-567)) (-4 *3 (-174)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) + (-4 *2 (-698 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-608)))) +(((*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1235)) (-5 *2 (-1290))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -2354 *3) (|:| -3813 *4)))) - (-5 *1 (-708 *3)) (-4 *3 (-1262 *4))))) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) + (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8)))) + (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1067)) - (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-864 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1067)) - (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-374) (-148))) - (-5 *2 (-656 (-2 (|:| -1359 (-783)) (|:| -1752 *4) (|:| |num| *4)))) - (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3))))) + (-12 (-5 *2 (-655 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-567)) + (-4 *3 (-1066))))) +(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1295))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2778 *4))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-409))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) + (-12 + (-5 *2 + (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) + (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) + (|:| |ub| (-655 (-854 (-227)))))) + (-5 *1 (-275))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2778 *4))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1056 (-576)))) - (-4 *7 (-1262 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) - (-4 *2 (-353 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) - (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) - (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195))))) - (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1122)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195))))) - (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1122)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-656 (-1195))) (-5 *5 (-1198)) (-5 *3 (-1195)) - (-5 *2 (-1122)) (-5 *1 (-409))))) + (-12 (-4 *4 (-567)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4232 *4))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194))) + (-4 *6 (-13 (-567) (-1055 *5))) (-4 *5 (-567)) + (-5 *2 (-655 (-655 (-303 (-418 (-967 *6)))))) (-5 *1 (-1056 *5 *6))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) + (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) + (-5 *2 (-1052)) (-5 *1 (-757))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2778 *4))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-994 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-556)))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-873))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-655 (-112)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)))) - (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) + (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-418 *6)) (-4 *6 (-1261 *5)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) + (-5 *1 (-821 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-664 (-418 *6))) (-4 *6 (-1261 *5)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-5 *2 (-2 (|:| -1624 (-655 (-418 *6))) (|:| -2412 (-700 *5)))) + (-5 *1 (-821 *5 *6)) (-5 *4 (-655 (-418 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-418 *6)) (-4 *6 (-1261 *5)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) + (-5 *1 (-821 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *6 (-418 *6))) (-4 *6 (-1261 *5)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-5 *2 (-2 (|:| -1624 (-655 (-418 *6))) (|:| -2412 (-700 *5)))) + (-5 *1 (-821 *5 *6)) (-5 *4 (-655 (-418 *6)))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) + (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) + (-5 *1 (-759))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-463)) (-4 *3 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-460 *4 *3 *5 *6)) (-4 *6 (-964 *4 *3 *5))))) (((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1083 *6 *7 *8)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) - (-5 *1 (-1126 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4271 *9)))) - (-5 *5 (-112)) (-4 *8 (-1083 *6 *7 *4)) (-4 *9 (-1089 *6 *7 *4 *8)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) - (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4271 *9)))) - (-5 *1 (-1126 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1053)) (-5 *1 (-764))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-1117)) + (-4 *3 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-340 *3)) (-4 *3 (-861))))) +(((*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-219))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *1 *1) (-4 *1 (-1156))) ((*1 *1 *1 *1) (-4 *1 (-1156)))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-766))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1067)) (-4 *2 (-699 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) -(((*1 *1) - (-12 (-4 *1 (-416)) (-3216 (|has| *1 (-6 -4452))) - (-3216 (|has| *1 (-6 -4444))))) - ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-862)))) - ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-862))) - ((*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862))))) + (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194)) + (-5 *2 (-575)) (-5 *1 (-1131 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-263))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-763))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)))) - (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))) - (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-764))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-403))))) + (-12 (-5 *3 (-1 *2 (-655 *2))) (-5 *4 (-655 *5)) + (-4 *5 (-38 (-418 (-575)))) (-4 *2 (-1276 *5)) + (-5 *1 (-1278 *5 *2))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1067)) (-4 *2 (-699 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) + (-12 (-4 *3 (-13 (-567) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) + (-5 *2 + (-2 (|:| |ir| (-597 (-418 *6))) (|:| |specpart| (-418 *6)) + (|:| |polypart| *6))) + (-5 *1 (-585 *5 *6)) (-5 *3 (-418 *6))))) (((*1 *2 *1) - (-12 (-4 *2 (-1111 *3)) (-5 *1 (-1075 *2 *3)) (-4 *3 (-1236)))) + (-12 (-4 *2 (-1110 *3)) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1235)))) ((*1 *2 *1) - (-12 (-5 *2 (-1112 *3)) (-5 *1 (-1110 *3)) (-4 *3 (-1236)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) - (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) - (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1053)) (-5 *1 (-763))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1067)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3660 *1))) - (-4 *1 (-864 *3))))) -(((*1 *2) (-12 (-5 *2 (-1165 (-1177))) (-5 *1 (-403))))) -(((*1 *2 *2) (-12 (-5 *2 (-982 *3)) (-4 *3 (-1118)) (-5 *1 (-983 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) - (-4 *4 (-805)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1137)))) - ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) + (-12 (-5 *2 (-1111 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-1235)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) + ((*1 *1 *2) (-12 (-5 *1 (-1252 *2)) (-4 *2 (-1235))))) (((*1 *2 *3) (-12 (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3475 (-656 (-227))))))) - (-5 *2 (-656 (-1177))) (-5 *1 (-276))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) - (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) - (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1053)) (-5 *1 (-763))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1191 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *2) (-12 (-5 *2 (-1165 (-1177))) (-5 *1 (-403))))) + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-389)) (-5 *1 (-207))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) + (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -1635 *1))) + (-4 *1 (-1082 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -1635 *1))) + (-4 *1 (-1082 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-428 *3))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2))))) +(((*1 *2) + (-12 (-4 *1 (-359)) + (-5 *2 (-655 (-2 (|:| -2353 (-575)) (|:| -2398 (-575)))))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) + (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) + (-5 *2 (-1052)) (-5 *1 (-759))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-1 (-227) (-227) (-227) (-227))) + (-5 *2 (-1 (-958 (-227)) (-227) (-227))) (-5 *1 (-708))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-967 *6)) (-5 *4 (-1194)) + (-5 *5 (-854 *7)) + (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-4 *7 (-13 (-1220) (-29 *6))) (-5 *1 (-226 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1190 *6)) (-5 *4 (-854 *6)) + (-4 *6 (-13 (-1220) (-29 *5))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-226 *5 *6))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) + (-12 (-4 *3 (-567)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) + (-5 *1 (-1225 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-920 (-575))) (-5 *4 (-575)) (-5 *2 (-700 *4)) + (-5 *1 (-1045 *5)) (-4 *5 (-1066)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-1045 *4)) + (-4 *4 (-1066)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-920 (-575)))) (-5 *4 (-575)) + (-5 *2 (-655 (-700 *4))) (-5 *1 (-1045 *5)) (-4 *5 (-1066)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-655 (-575)))) (-5 *2 (-655 (-700 (-575)))) + (-5 *1 (-1045 *4)) (-4 *4 (-1066))))) +(((*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-804)) + (-4 *3 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))) (-4 *5 (-567)) + (-5 *1 (-743 *4 *3 *5 *2)) (-4 *2 (-964 (-418 (-967 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1066)) (-4 *5 (-804)) + (-4 *3 + (-13 (-861) + (-10 -8 (-15 -2615 ((-1194) $)) + (-15 -1441 ((-3 $ "failed") (-1194)))))) + (-5 *1 (-1001 *4 *5 *3 *2)) (-4 *2 (-964 (-967 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-655 *6)) + (-4 *6 + (-13 (-861) + (-10 -8 (-15 -2615 ((-1194) $)) + (-15 -1441 ((-3 $ "failed") (-1194)))))) + (-4 *4 (-1066)) (-4 *5 (-804)) (-5 *1 (-1001 *4 *5 *6 *2)) + (-4 *2 (-964 (-967 *4) *5 *6))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-194))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-1195)) (-5 *1 (-276))))) + (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) + (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227))) + (-5 *1 (-708))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-623 *3)) (-5 *5 (-1 (-1190 *3) (-1190 *3))) + (-4 *3 (-13 (-27) (-441 *6))) (-4 *6 (-567)) (-5 *2 (-597 *3)) + (-5 *1 (-562 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1168))))) (((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) - (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) + (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) + ((*1 *2 *2) + (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-373) (-1220) (-1019))))) ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) - (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1169))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-763))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-968 (-576))) (-5 *3 (-1195)) - (-5 *4 (-1112 (-419 (-576)))) (-5 *1 (-30))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *2 *1) - (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) - (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) - (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-763))))) + (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 (-418 *2))) + (-4 *2 (-1261 *4)) (-5 *1 (-351 *3 *4 *2 *5)) + (-4 *3 (-352 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-352 *3 *2 *4)) (-4 *3 (-1239)) + (-4 *4 (-1261 (-418 *2))) (-4 *2 (-1261 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-171 (-326 *4))) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-171 *3)) (-5 *1 (-1225 *4 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *4)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) + (-12 (-5 *3 (-700 (-325 (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389)))) + (-5 *1 (-207))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-1190 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-246))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-112)) (-5 *1 (-840))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-1196 (-418 (-575)))) + (-5 *1 (-192))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *1) (-12 (-4 *1 (-778 *3)) (-4 *3 (-1117)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) + (-5 *2 (-1052)) (-5 *1 (-767))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) + (-5 *2 (-700 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) - (-5 *2 (-656 (-1094 *3 *4 *5))) (-5 *1 (-1095 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) - (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2572 (-656 *9)) (|:| -4271 *4) (|:| |ineq| (-656 *9)))) - (-5 *1 (-1006 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) - (-4 *4 (-1089 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) - (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2572 (-656 *9)) (|:| -4271 *4) (|:| |ineq| (-656 *9)))) - (-5 *1 (-1125 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) - (-4 *4 (-1089 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-989)) (-5 *1 (-921 *3)) (-4 *3 (-1118))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) + (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) + (-5 *2 (-655 (-1093 *3 *4 *5))) (-5 *1 (-1094 *3 *4 *5)) + (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3))))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-655 *11)) + (|:| |todo| (-655 (-2 (|:| |val| *3) (|:| -4270 *11)))))) + (-5 *6 (-782)) + (-5 *2 (-655 (-2 (|:| |val| (-655 *10)) (|:| -4270 *11)))) + (-5 *3 (-655 *10)) (-5 *4 (-655 *11)) (-4 *10 (-1082 *7 *8 *9)) + (-4 *11 (-1088 *7 *8 *9 *10)) (-4 *7 (-463)) (-4 *8 (-804)) + (-4 *9 (-861)) (-5 *1 (-1086 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-655 *11)) + (|:| |todo| (-655 (-2 (|:| |val| *3) (|:| -4270 *11)))))) + (-5 *6 (-782)) + (-5 *2 (-655 (-2 (|:| |val| (-655 *10)) (|:| -4270 *11)))) + (-5 *3 (-655 *10)) (-5 *4 (-655 *11)) (-4 *10 (-1082 *7 *8 *9)) + (-4 *11 (-1126 *7 *8 *9 *10)) (-4 *7 (-463)) (-4 *8 (-804)) + (-4 *9 (-861)) (-5 *1 (-1162 *7 *8 *9 *10 *11))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-655 *3)) (-4 *3 (-964 *5 *6 *7)) (-4 *5 (-463)) + (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-460 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-112)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-112)) - (-5 *1 (-1225 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1118))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1089 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *9 (-1083 *6 *7 *8)) + (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575)))) + (-5 *2 (-1285 (-575))) (-5 *1 (-1313 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) (-5 *2 - (-656 - (-2 (|:| -2572 (-656 *9)) (|:| -4271 *10) (|:| |ineq| (-656 *9))))) - (-5 *1 (-1006 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1089 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *9 (-1083 *6 *7 *8)) + (-2 (|:| |mval| (-700 *4)) (|:| |invmval| (-700 *4)) + (|:| |genIdeal| (-515 *4 *5 *6 *7)))) + (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) + (-4 *3 (-1261 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-936))) (-5 *4 (-655 (-575))) + (-5 *2 (-700 (-575))) (-5 *1 (-1127))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) + (-4 *3 (-1082 *6 *7 *8)) (-5 *2 - (-656 - (-2 (|:| -2572 (-656 *9)) (|:| -4271 *10) (|:| |ineq| (-656 *9))))) - (-5 *1 (-1125 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1053)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) + (-4 *3 (-1082 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1162 *6 *7 *8 *3 *4)) (-4 *4 (-1126 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-936)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-936)) + (-5 *1 (-539 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-575)) + (|:| -3378 (-655 (-2 (|:| |irr| *3) (|:| -2856 (-575))))))) + (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-103 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-575)) + (|:| -3378 (-655 (-2 (|:| |irr| *3) (|:| -2856 (-575))))))) + (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1194)) + (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-5 *1 (-1197))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942))))) +(((*1 *1 *1) (-4 *1 (-1077))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) - (-5 *2 (-701 (-227))) (-5 *1 (-276))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4271 *7)))) - (-4 *6 (-1083 *3 *4 *5)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1006 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4271 *7)))) - (-4 *6 (-1083 *3 *4 *5)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1125 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-763))))) + (-12 (-5 *3 (-1190 (-967 *6))) (-4 *6 (-567)) + (-4 *2 (-964 (-418 (-967 *6)) *5 *4)) (-5 *1 (-743 *5 *4 *6 *2)) + (-4 *5 (-804)) + (-4 *4 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1261 *6)) + (-4 *6 (-13 (-27) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)))) + (-4 *8 (-1261 (-418 *7))) (-5 *2 (-597 *3)) + (-5 *1 (-563 *5 *6 *7 *8 *3)) (-4 *3 (-352 *6 *7 *8))))) +(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-389)))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *2 (-112)) + (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) + (-4 *4 (-13 (-1117) (-34)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1056 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) + (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) + (-4 *3 (-1261 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *3 (-655 (-575))) + (-5 *1 (-895))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1066)) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1261 *3))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) + (-5 *2 (-1052)) (-5 *1 (-760))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-325 (-227))) (-5 *1 (-275))))) +(((*1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) + (-5 *2 (-830 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-857)) (-5 *1 (-1308 *3 *2)) (-4 *3 (-1066))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) + (-5 *1 (-759))))) (((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) + (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *4 (-1195)) - (-5 *1 (-1198)))) + (-12 (-5 *2 (-448)) (-5 *3 (-655 (-1194))) (-5 *4 (-1194)) + (-5 *1 (-1197)))) ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) + (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1199)))) + (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1198)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *1 (-1199))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4271 *8))) - (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1006 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4271 *8))) - (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1125 *4 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-763))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1056 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1118))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-317)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-459 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) - (-5 *1 (-1006 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) - (-5 *1 (-1125 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-448)) (-5 *3 (-655 (-1194))) (-5 *1 (-1198))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235))))) +(((*1 *1) (-5 *1 (-589)))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-1067)) - (-5 *2 (-701 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1120 *3)) (-5 *1 (-921 *3)) (-4 *3 (-379)) - (-4 *3 (-1118))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-763))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-317)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1118))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) + (-12 (-5 *2 (-2 (|:| -3926 (-793 *3)) (|:| |coef1| (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -3926 *1) (|:| |coef1| *1))) + (-4 *1 (-1082 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1285 (-700 *4))) (-4 *4 (-174)) + (-5 *2 (-1285 (-700 (-967 *4)))) (-5 *1 (-191 *4))))) +(((*1 *2) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4)))))) +(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *2 *4)) (-4 *4 (-1261 *2)) + (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-1261 *2)) (-4 *2 (-174)) (-5 *1 (-419 *3 *2 *4)) + (-4 *3 (-420 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-420 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *3 (-1261 *2)) (-5 *2 (-575)) (-5 *1 (-779 *3 *4)) + (-4 *4 (-420 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)) (-4 *3 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-702 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-567)) + (-4 *7 (-964 *3 *5 *6)) + (-5 *2 (-2 (|:| -2398 (-782)) (|:| -1754 *8) (|:| |radicand| *8))) + (-5 *1 (-968 *5 *6 *3 *7 *8)) (-5 *4 (-782)) + (-4 *8 + (-13 (-373) + (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-389)) (-5 *1 (-1080))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1283 *3)) (-4 *3 (-1235)) (-4 *3 (-1066)) + (-5 *2 (-700 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-572)) (-5 *3 (-575))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-782)) + (-4 *3 (-13 (-737) (-378) (-10 -7 (-15 ** (*3 *3 (-575)))))) + (-5 *1 (-251 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-373) (-859))) + (-5 *2 (-2 (|:| |start| *3) (|:| -3378 (-429 *3)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-833))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1261 (-418 (-575)))) + (-5 *2 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575)))) + (-5 *1 (-928 *3 *4)) (-4 *4 (-1261 (-418 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *3)) + (-4 *3 (-1261 (-418 *4)))))) +(((*1 *1 *2) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873)))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) + (-5 *2 (-1052)) (-5 *1 (-763))))) (((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-717 *3 *4)) (-4 *3 (-1236)) (-4 *4 (-1236))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1006 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1125 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-763))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-921 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576))))) -(((*1 *1 *1) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1118))))) + (-5 *1 (-716 *3 *4)) (-4 *3 (-1235)) (-4 *4 (-1235))))) +(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204))))) +(((*1 *1 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-1066)))) + ((*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567))))) +(((*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) + ((*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1118)) - (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-1094 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) + (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-1117)) + (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) + (-5 *1 (-1093 *4 *5 *2)) + (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) - (-5 *1 (-1094 *3 *4 *2)) - (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) + (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) + (-5 *1 (-1093 *3 *4 *2)) + (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-1 (-1174 (-967 *4)) (-1174 (-967 *4)))) + (-5 *1 (-1293 *4)) (-4 *4 (-373))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1127 *5 *6 *7 *8)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-603 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-968 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) + (-12 (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-373)) + (-5 *2 (-112)) (-5 *1 (-678 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) + (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-112)) + (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4))))) +(((*1 *1) (-5 *1 (-608)))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)) - (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)) + (-4 *2 (-373)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-227)))) ((*1 *1 *1 *1) - (-3766 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236))) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236))))) - ((*1 *1 *1 *1) (-4 *1 (-374))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) + (-3765 (-12 (-5 *1 (-303 *2)) (-4 *2 (-373)) (-4 *2 (-1235))) + (-12 (-5 *1 (-303 *2)) (-4 *2 (-484)) (-4 *2 (-1235))))) + ((*1 *1 *1 *1) (-4 *1 (-373))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-389)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1143 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1118)) - (-4 *1 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-485))) + (-12 (-5 *2 (-1142 *3 (-623 *1))) (-4 *3 (-567)) (-4 *3 (-1117)) + (-4 *1 (-441 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-484))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-548))) + (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-547))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-738) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-632 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-737) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-738) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374)))) + (-12 (-4 *4 (-174)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-737) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-645 *2)) (-4 *2 (-174)) (-4 *2 (-373)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) - (-4 *3 (|SubsetCategory| (-738) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-673 *2 *4 *3)) (-4 *2 (-728 *4)) + (-4 *3 (|SubsetCategory| (-737) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) - (-4 *2 (|SubsetCategory| (-738) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-673 *3 *4 *2)) (-4 *3 (-728 *4)) + (-4 *2 (|SubsetCategory| (-737) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2)) (-4 *2 (-373)))) + ((*1 *1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-878 *2 *3 *4 *5)) (-4 *2 (-374)) - (-4 *2 (-1067)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-783))) - (-14 *5 (-783)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) + (|partial| -12 (-5 *1 (-877 *2 *3 *4 *5)) (-4 *2 (-373)) + (-4 *2 (-1066)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-782))) + (-14 *5 (-782)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *2 (-1067)) - (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-374)))) + (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *2 (-1066)) + (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-373)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1293 *2)) (-4 *2 (-374)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-373)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1067)) (-4 *3 (-862)) - (-4 *4 (-805)) (-14 *6 (-656 *3)) - (-5 *1 (-1298 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-965 *2 *4 *3)) - (-14 *7 (-656 (-783))) (-14 *8 (-783)))) + (|partial| -12 (-4 *2 (-373)) (-4 *2 (-1066)) (-4 *3 (-861)) + (-4 *4 (-804)) (-14 *6 (-655 *3)) + (-5 *1 (-1297 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-964 *2 *4 *3)) + (-14 *7 (-655 (-782))) (-14 *8 (-782)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1067)) - (-4 *3 (-858))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7))))) + (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-373)) (-4 *2 (-1066)) + (-4 *3 (-857))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) (((*1 *2 *3) - (-12 (-5 *3 (-781)) - (-5 *2 - (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) - (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053)))) - (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-1081)) - (-5 *2 - (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) - (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053)))) - (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-799)) (-5 *3 (-1081)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) - (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) - (|:| |extra| (-1053)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-799)) (-5 *3 (-1081)) - (-5 *4 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)) - (|:| |extra| (-1053)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-812)) (-5 *3 (-1081)) - (-5 *4 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-820)) - (-5 *2 - (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) - (|:| |explanations| (-656 (-1177))))) - (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-820)) (-5 *4 (-1081)) - (-5 *2 - (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) - (|:| |explanations| (-656 (-1177))))) - (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-851)) (-5 *3 (-1081)) - (-5 *4 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) - (-5 *2 (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-851)) (-5 *3 (-1081)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *2 (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-853)) - (-5 *2 - (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) - (|:| |explanations| (-656 (-1177))))) - (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-853)) (-5 *4 (-1081)) - (-5 *2 - (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) - (|:| |explanations| (-656 (-1177))))) - (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-910)) (-5 *3 (-1081)) - (-5 *4 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) - (|:| |tol| (-227)))) - (-5 *2 (-2 (|:| -4037 (-390)) (|:| |explanations| (-1177)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-913)) - (-5 *2 - (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) - (|:| |explanations| (-656 (-1177))))) - (-5 *1 (-912)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-913)) (-5 *4 (-1081)) - (-5 *2 - (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) - (|:| |explanations| (-656 (-1177))))) - (-5 *1 (-912))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) - (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-762))))) -(((*1 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27)) - (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1118))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-937))) (-5 *4 (-921 (-576))) - (-5 *2 (-701 (-576))) (-5 *1 (-602)))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1276 *4)) + (-4 *4 (-38 (-418 (-575)))) + (-5 *2 (-1 (-1174 *4) (-1174 *4) (-1174 *4))) (-5 *1 (-1278 *4 *5))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -4131 (-655 (-1194))) (|:| -4024 (-655 (-1194))))) + (-5 *1 (-1237))))) +(((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-937))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-602)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-937))) (-5 *4 (-656 (-921 (-576)))) - (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602))))) -(((*1 *2 *3) - (-12 (-5 *3 (-968 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) + (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155))))) +(((*1 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-325 *3)) (-4 *3 (-13 (-1066) (-861))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-655 (-1194)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-38 (-418 (-575)))) + (-4 *2 (-174))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174))))) +(((*1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-556))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-862) - (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 ((-1291) $)) - (-15 -2673 ((-1291) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) + (-13 (-861) + (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 ((-1290) $)) + (-15 -2514 ((-1290) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2)))) + ((*1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1 *1) (-5 *1 (-873))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-21))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1276 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-911 *2 *4)) - (-4 *2 (-1262 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1177)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1053)) - (-5 *1 (-762))))) -(((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-968 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1118))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-783)) (-5 *1 (-602))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))) - (-5 *2 (-1053)) (-5 *1 (-315))))) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1117)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1117)) (-5 *2 (-112)) + (-5 *1 (-1236 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *5)))) + (-5 *1 (-1146 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-13 (-316) (-148))) + (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1146 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-303 (-418 (-967 *5)))) (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *5)))) + (-5 *1 (-1146 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-303 (-418 (-967 *4)))) (-4 *4 (-13 (-316) (-148))) + (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1146 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) + (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *5))))) + (-5 *1 (-1146 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-418 (-967 *4)))) (-4 *4 (-13 (-316) (-148))) + (-5 *2 (-655 (-655 (-303 (-325 *4))))) (-5 *1 (-1146 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-303 (-418 (-967 *5))))) (-5 *4 (-655 (-1194))) + (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *5))))) + (-5 *1 (-1146 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-303 (-418 (-967 *4))))) + (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *4))))) + (-5 *1 (-1146 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) + (-4 *3 (-1261 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576)))) - (-5 *2 (-1286 (-419 (-576)))) (-5 *1 (-1314 *4))))) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575))))) +(((*1 *2 *2) + (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) + (-5 *1 (-1005 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) + (-5 *1 (-1124 *3 *4 *5 *6 *7))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-862) - (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 ((-1291) $)) - (-15 -2673 ((-1291) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) + (-13 (-861) + (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 ((-1290) $)) + (-15 -2514 ((-1290) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-25)) (-4 *2 (-1235)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-25)) (-4 *2 (-1235)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-132)))) + (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-132)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) - (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *2)) + (-4 *2 (-1261 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-548))) + (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) + (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-547))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-25))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-911 *2 *3)) - (-4 *2 (-1262 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1053)) (-5 *1 (-762))))) -(((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1118))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1221) (-29 *4))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-25))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1102))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-371 (-115))) (-4 *2 (-1066)) (-5 *1 (-725 *2 *4)) + (-4 *4 (-659 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-371 (-115))) (-5 *1 (-847 *2)) (-4 *2 (-1066))))) +(((*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-1190 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3)) + (-4 *2 + (-13 (-373) (-311) + (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) + (-15 -1608 ((-1142 *3 (-623 $)) $)) + (-15 -2883 ($ (-1142 *3 (-623 $)))))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *3 (-655 (-269))) + (-5 *1 (-267)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *1 (-269)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) - (-5 *1 (-601 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1175 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1908 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1053)) (-5 *1 (-315))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576)))) - (-5 *2 (-1286 (-576))) (-5 *1 (-1314 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-761))))) + (-12 (-5 *4 (-655 (-492 *5 *6))) (-5 *3 (-492 *5 *6)) + (-14 *5 (-655 (-1194))) (-4 *6 (-463)) (-5 *2 (-1285 *6)) + (-5 *1 (-642 *5 *6))))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *1) (-5 *1 (-814)))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-655 (-967 *3))) (-4 *3 (-463)) + (-5 *1 (-370 *3 *4)) (-14 *4 (-655 (-1194))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-655 (-791 *3 (-875 *4)))) (-4 *3 (-463)) + (-14 *4 (-655 (-1194))) (-5 *1 (-639 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-910)) - (-5 *3 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) - (|:| |tol| (-227)))) - (-5 *2 (-1053))))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-457 *3)) (-4 *3 (-1067))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1219))))) + (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) + (-5 *2 (-967 *5)) (-5 *1 (-959 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-575)) (|has| *1 (-6 -4461)) (-4 *1 (-383 *3)) + (-4 *3 (-1235))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-655 *3)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-989))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1221))) - (-5 *1 (-595 *4 *2)) - (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-419 (-968 *4)))) - (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-601 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) - (|:| |explanations| (-656 (-1177))))) - (-5 *2 (-1053)) (-5 *1 (-315)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4037 (-390)) (|:| -1778 (-1177)) - (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053)))) - (-5 *2 (-1053)) (-5 *1 (-315))))) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) + (-5 *2 (-655 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-988))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-918 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) + (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1101 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-575) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1101 *2))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-937)) (-5 *1 (-1048 *2)) - (-4 *2 (-13 (-1118) (-10 -8 (-15 -4017 ($ $ $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576)))) - (-5 *2 (-112)) (-5 *1 (-1314 *4))))) + (-12 (-5 *3 (-936)) (-5 *1 (-1047 *2)) + (-4 *2 (-13 (-1117) (-10 -8 (-15 -4016 ($ $ $)))))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-373)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3))) + (-4 *1 (-345 *4 *3 *5 *2)) (-4 *2 (-352 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-575)) (-4 *2 (-373)) (-4 *4 (-1261 *2)) + (-4 *5 (-1261 (-418 *4))) (-4 *1 (-345 *2 *4 *5 *6)) + (-4 *6 (-352 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-373)) (-4 *3 (-1261 *2)) (-4 *4 (-1261 (-418 *3))) + (-4 *1 (-345 *2 *3 *4 *5)) (-4 *5 (-352 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) + (-4 *1 (-345 *3 *4 *5 *2)) (-4 *2 (-352 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-424 *4 (-418 *4) *5 *6)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-4 *3 (-373)) + (-4 *1 (-345 *3 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-441 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1109 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) + (-4 *4 (-174))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1053)) (-5 *1 (-761)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-400)) (-5 *2 (-1053)) (-5 *1 (-761))))) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-547))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1066)) (-14 *3 (-655 (-1194))))) + ((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861))) + (-14 *3 (-655 (-1194)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2)) + (-4 *3 (-567))))) (((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) - (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-906 *3)) (|:| |c| *4)))) - (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-906 *3)) (-4 *3 (-862))))) -(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-1218 *4)) - (-4 *4 (-1067))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-600 *4)) - (-4 *4 (-360))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-965 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) - (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 *7))) - (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-430 *1)) (-4 *1 (-965 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) - (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-965 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) - (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7)))) - (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1265 *4 *3)) - (-4 *3 (-13 (-1262 *4) (-568) (-10 -8 (-15 -3928 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) - (-14 *5 (-656 (-1195))) - (-5 *2 - (-656 (-1164 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6))))) - (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195)))))) + (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-263))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3)) - (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *3)) + (-4 *3 (-1235)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-685 *3)) (-4 *3 (-1235)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1229 *4 *5 *3 *2)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *3 (-862)) (-4 *2 (-1083 *4 *5 *3)))) + (|partial| -12 (-4 *1 (-1228 *4 *5 *3 *2)) (-4 *4 (-567)) + (-4 *5 (-804)) (-4 *3 (-861)) (-4 *2 (-1082 *4 *5 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *1 (-1233 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) + (-12 (-5 *3 (-782)) (-5 *1 (-1232 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) + (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) + (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1162 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-655 (-700 *6))) (-5 *4 (-112)) (-5 *5 (-575)) + (-5 *2 (-700 *6)) (-5 *1 (-1046 *6)) (-4 *6 (-373)) (-4 *6 (-1066)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) + (-12 (-5 *3 (-655 (-700 *4))) (-5 *2 (-700 *4)) (-5 *1 (-1046 *4)) + (-4 *4 (-373)) (-4 *4 (-1066)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-575)) (-5 *2 (-700 *5)) + (-5 *1 (-1046 *5)) (-4 *5 (-373)) (-4 *5 (-1066))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) - (-14 *4 (-656 (-1195))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1236)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) - (-14 *4 (-656 (-1195))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-862))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) - (-5 *2 (-1053)) (-5 *1 (-761))))) -(((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + (|partial| -12 + (-5 *2 (-2 (|:| -1576 (-115)) (|:| |arg| (-655 (-904 *3))))) + (-5 *1 (-904 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-655 (-904 *4))) + (-5 *1 (-904 *4)) (-4 *4 (-1117))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *3) + (-12 (-5 *3 (-418 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-567)) + (-4 *4 (-1066)) (-4 *2 (-1276 *4)) (-5 *1 (-1279 *4 *5 *6 *2)) + (-4 *6 (-667 *5))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)))) ((*1 *2 *3) - (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + (|partial| -12 (-4 *4 (-804)) (-4 *5 (-1066)) (-4 *6 (-964 *5 *4 *2)) + (-4 *2 (-861)) (-5 *1 (-965 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-373) + (-10 -8 (-15 -2883 ($ *6)) (-15 -1595 (*6 $)) + (-15 -1608 (*6 $))))))) ((*1 *2 *3) - (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) + (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) + (-5 *2 (-1194)) (-5 *1 (-1060 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1252 *3)) (-4 *3 (-1235))))) (((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) - (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1042 (-419 *4))))) - (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) - (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) - (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-968 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) - (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-655 + (-2 + (|:| -4169 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -3179 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1174 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3437 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-570))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-873))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1117))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) - (-5 *1 (-1006 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) - (-5 *1 (-1125 *3 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-656 *5)) - (-5 *1 (-903 *4 *5)) (-4 *5 (-1236))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1053)) - (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1262 *4)) (-5 *2 (-576)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1056 *2) (-651 *2) (-464))) - (-5 *2 (-576)) (-5 *1 (-1134 *4 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-568) (-1056 *2) (-651 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1134 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-1177)) - (-4 *6 (-13 (-568) (-1056 *2) (-651 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1134 *6 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-464)) (-5 *2 (-576)) - (-5 *1 (-1135 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 (-419 (-968 *6)))) - (-5 *3 (-419 (-968 *6))) (-4 *6 (-464)) (-5 *2 (-576)) - (-5 *1 (-1135 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-419 (-968 *6))) (-5 *4 (-1195)) - (-5 *5 (-1177)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1135 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1067))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) + (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) + (-4 *2 (-698 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1285 (-3 (-479) "undefined"))) (-5 *1 (-1286))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1043 (-854 (-575)))) (-5 *1 (-606 *3)) (-4 *3 (-1066))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) + (-252 *4 (-418 (-575))))) + (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112)) + (-5 *1 (-516 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) + (-5 *2 (-2 (|:| -1754 *4) (|:| -2829 *3) (|:| -1635 *3))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-1082 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-567)) (-4 *3 (-1066)) + (-5 *2 (-2 (|:| -1754 *3) (|:| -2829 *1) (|:| -1635 *1))) + (-4 *1 (-1261 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1204))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-373)) (-4 *3 (-1066)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3659 *1))) + (-4 *1 (-863 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *1 (-269)))) ((*1 *2 *3) - (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-338 *4)) (-4 *4 (-373)) + (-5 *2 (-700 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1285 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) + (-5 *2 (-700 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) + (-5 *2 (-1285 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1261 *4)) (-5 *2 (-1285 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-656 (-1195))) - (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1041)) (-5 *5 (-390)))) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-420 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) + (-5 *2 (-1285 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) - (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1042 (-419 *4))))) - (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) - (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) - (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) - (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-968 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) - (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195)))))) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-428 *4)) (-4 *4 (-174)) + (-5 *2 (-700 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-655 (-700 *5))) (-5 *3 (-700 *5)) (-4 *5 (-373)) + (-5 *2 (-1285 *5)) (-5 *1 (-1103 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2) + (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1117))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-903 *4 *3)) - (-4 *3 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761))))) -(((*1 *1 *1) (-5 *1 (-548)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-430 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-1067)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1217))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1118)))) - ((*1 *1 *2) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1118))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) + ((*1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-936)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1286))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) + (-5 *2 (-655 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-748 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-450))) (-5 *1 (-876))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-615 *3 *2)) (-4 *3 (-1117)) + (-4 *2 (-1235))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *6)))) + (-5 *4 (-1043 (-854 (-575)))) (-5 *5 (-1194)) (-5 *7 (-418 (-575))) + (-4 *6 (-1066)) (-5 *2 (-873)) (-5 *1 (-606 *6))))) +(((*1 *1 *1) (-5 *1 (-547)))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1117))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-556)))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-1119 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1117)) (-5 *2 (-1119 (-655 *4))) (-5 *1 (-919 *4)) + (-5 *3 (-655 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1117)) (-5 *2 (-1119 (-1119 *4))) (-5 *1 (-919 *4)) + (-5 *3 (-1119 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1119 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117))))) +(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339))))) (((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) - (-14 *5 (-656 (-1195))) - (-5 *2 - (-656 (-2 (|:| -2087 (-1191 *4)) (|:| -3629 (-656 (-968 *4)))))) - (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 - (-656 (-2 (|:| -2087 (-1191 *5)) (|:| -3629 (-656 (-968 *5)))))) - (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5))) - (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 - (-656 (-2 (|:| -2087 (-1191 *5)) (|:| -3629 (-656 (-968 *5)))))) - (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5))) - (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 - (-656 (-2 (|:| -2087 (-1191 *5)) (|:| -3629 (-656 (-968 *5)))))) - (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5))) - (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 - (-656 (-2 (|:| -2087 (-1191 *4)) (|:| -3629 (-656 (-968 *4)))))) - (-5 *1 (-1313 *4 *5 *6)) (-5 *3 (-656 (-968 *4))) - (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-937)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) - (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1067)))) - ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) + (-12 (-5 *4 (-936)) (-4 *6 (-567)) (-5 *2 (-655 (-325 *6))) + (-5 *1 (-223 *5 *6)) (-5 *3 (-325 *6)) (-4 *5 (-1066)))) + ((*1 *2 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1221))) - (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) - (-5 *1 (-595 *4 *5)))) + (-12 (-5 *3 (-597 *5)) (-4 *5 (-13 (-29 *4) (-1220))) + (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-655 *5)) + (-5 *1 (-594 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-419 (-968 *4)))) - (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) + (-12 (-5 *3 (-597 (-418 (-967 *4)))) + (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-655 (-325 *4))) (-5 *1 (-600 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1167 *3)))) + (-12 (-4 *1 (-1112 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1166 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1113 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-1167 *4)))) + (-12 (-5 *3 (-655 *1)) (-4 *1 (-1112 *4 *2)) (-4 *4 (-859)) + (-4 *2 (-1166 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221))))) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220))))) ((*1 *2 *1) - (-12 (-5 *2 (-1301 (-1195) *3)) (-5 *1 (-1308 *3)) (-4 *3 (-1067)))) + (-12 (-5 *2 (-1300 (-1194) *3)) (-5 *1 (-1307 *3)) (-4 *3 (-1066)))) ((*1 *2 *1) - (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1067))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) - (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) - (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1118))))) + (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1066))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-873))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-765))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1295))))) (((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3)))))) -(((*1 *1) (-4 *1 (-985)))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-112)) - (-5 *1 (-902 *4 *5)) (-4 *5 (-1118)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-5 *2 (-112)) - (-5 *1 (-903 *5 *3)) (-4 *3 (-1236)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) - (-4 *6 (-1236)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761))))) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3)))))) +(((*1 *1) (-4 *1 (-984)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-575)) (-5 *2 (-655 (-2 (|:| -2353 *3) (|:| -2645 *4)))) + (-5 *1 (-707 *3)) (-4 *3 (-1261 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *1 *1) (-4 *1 (-504))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-937)) (-5 *1 (-454 *2)) - (-4 *2 (-1262 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-937)) (-5 *4 (-783)) (-5 *1 (-454 *2)) - (-4 *2 (-1262 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) - (-4 *2 (-1262 (-576))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) - (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) - (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-430 *2)) (-4 *2 (-1262 *5)) - (-5 *1 (-456 *5 *2)) (-4 *5 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886)))) - ((*1 *2 *3) - (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-418 (-575))) (-5 *1 (-314))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310)))) + (-12 (-4 *3 (-1261 *2)) (-4 *2 (-1261 *4)) + (-5 *1 (-1002 *4 *2 *3 *5)) (-4 *4 (-359)) (-4 *5 (-735 *2 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-112)) (-5 *1 (-832))))) +(((*1 *2 *1) + (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-540))))) +(((*1 *1) (-5 *1 (-1080)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-737) (-25)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-655 (-655 *8))) (-5 *3 (-655 *8)) + (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) + (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *5 *6 *7 *8))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-463)))) + ((*1 *1 *1 *1) (-4 *1 (-463))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-1313 *5 *6 *7)) - (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-1313 *5 *6 *7)) - (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-968 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-656 (-1064 *4 *5))) (-5 *1 (-1313 *4 *5 *6)) - (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) - (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) - (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) - (-5 *2 (-1053)) (-5 *1 (-761))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576))))) + (-12 (-5 *3 (-655 *2)) (-5 *1 (-497 *2)) (-4 *2 (-1261 (-575))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-783))) + (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-782))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) - (-5 *1 (-932 *3 *4 *5 *2)) (-4 *2 (-965 *5 *3 *4)))) + (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316)) + (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-964 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *6 *4 *5)) - (-5 *1 (-932 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-317)))) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *6 *4 *5)) + (-5 *1 (-931 *4 *5 *6 *2)) (-4 *4 (-804)) (-4 *5 (-861)) + (-4 *6 (-316)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1191 *7))) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-317)) (-5 *2 (-1191 *7)) (-5 *1 (-932 *4 *5 *6 *7)) - (-4 *7 (-965 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-937))) + (-12 (-5 *3 (-655 (-1190 *7))) (-4 *4 (-804)) (-4 *5 (-861)) + (-4 *6 (-316)) (-5 *2 (-1190 *7)) (-5 *1 (-931 *4 *5 *6 *7)) + (-4 *7 (-964 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-936))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) - (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-463)) (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) + (-4 *2 (-1261 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -1577 (-115)) (|:| |arg| (-656 (-905 *3))))) - (-5 *1 (-905 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-905 *4))) - (-5 *1 (-905 *4)) (-4 *4 (-1118))))) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-463))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) - (-4 *3 (-1118)) (-5 *2 (-783)))) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) + (-4 *3 (-1117)) (-5 *2 (-782)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) - (-4 *4 (-1236)) (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -2354 *4) (|:| -3813 (-576))))) - (-4 *4 (-1262 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1067)) - (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4)) + (-4 *4 (-1235)) (-5 *2 (-782))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-655 (-623 *2))) (-5 *4 (-1194)) + (-4 *2 (-13 (-27) (-1220) (-441 *5))) + (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-285 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) + ((*1 *1 *1) (-4 *1 (-504))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 *2))) - (-5 *2 (-905 *3)) (-5 *1 (-1094 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-899 *3) (-626 *2)))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) + (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 *2))) + (-5 *2 (-904 *3)) (-5 *1 (-1093 *3 *4 *5)) + (-4 *5 (-13 (-441 *4) (-898 *3) (-625 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) + (-5 *2 + (-3 (|:| |overq| (-1190 (-418 (-575)))) + (|:| |overan| (-1190 (-48))) (|:| -3420 (-112)))) + (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) + (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-309)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1549 *3) (|:| -1359 (-783)))) (-5 *1 (-599 *3)) - (-4 *3 (-557))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1311))))) -(((*1 *1) (-5 *1 (-301)))) + (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-314))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-575)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1235)) + (-4 *3 (-383 *4)) (-4 *5 (-383 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112))))) + (-12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *2 (-655 *6)) + (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4))))) +(((*1 *1) (-5 *1 (-300)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) + ((*1 *1 *1 *1) (-5 *1 (-873))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1044 *3)) (-4 *3 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-1138))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1043 *3)) (-4 *3 (-1235))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-871)) (-5 *2 (-702 (-560))) (-5 *3 (-560))))) +(((*1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1137))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) - (-4 *3 (-1118))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236))))) + (|partial| -12 (-5 *2 (-1078 (-1041 *3) (-1190 (-1041 *3)))) + (-5 *1 (-1041 *3)) (-4 *3 (-13 (-859) (-373) (-1039)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) + ((*1 *1 *1) (-4 *1 (-504))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1118)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *3) - (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-194)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-310)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-989)) (-5 *1 (-1311))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) + (-4 *3 (-1082 *6 *7 *8)) + (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) + (-5 *1 (-1125 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) + (-5 *5 (-112)) (-4 *8 (-1082 *6 *7 *4)) (-4 *9 (-1088 *6 *7 *4 *8)) + (-4 *6 (-463)) (-4 *7 (-804)) (-4 *4 (-861)) + (-5 *2 (-655 (-2 (|:| |val| *8) (|:| -4270 *9)))) + (-5 *1 (-1125 *6 *7 *4 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-575)) (|has| *1 (-6 -4451)) (-4 *1 (-415)) + (-5 *2 (-936))))) +(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-782)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-413)) (-5 *2 (-782))))) +(((*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-859)) (-5 *1 (-312 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1286 (-656 (-576)))) (-5 *1 (-492)))) + (-12 (-5 *3 (-782)) (-5 *2 (-1285 (-655 (-575)))) (-5 *1 (-491)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1053)) (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3))))) + (-12 (-5 *2 (-1119 *3)) (-5 *1 (-920 *3)) (-4 *3 (-378)) + (-4 *3 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-700 (-418 (-967 (-575))))) + (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048)) + (-5 *3 (-325 (-575)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-2 (|:| -4182 *4) (|:| -2807 (-575))))) + (-4 *4 (-1117)) (-5 *2 (-1 *4)) (-5 *1 (-1034 *4))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-767))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-758))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) + ((*1 *1 *1) (-4 *1 (-504))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217))))) -(((*1 *2 *3) - (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-861)) + (-4 *3 (-1117))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-1286 (-326 (-390)))) - (-5 *1 (-315))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1301 (-1195) *3)) (-4 *3 (-1067)) (-5 *1 (-1308 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) - (-5 *1 (-1310 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-638)))) + (-12 (-4 *4 (-359)) (-5 *2 (-429 (-1190 (-1190 *4)))) + (-5 *1 (-1233 *4)) (-5 *3 (-1190 (-1190 *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-4 *3 (-13 (-27) (-1220) (-441 *6) (-10 -8 (-15 -2883 ($ *7))))) + (-4 *7 (-859)) + (-4 *8 + (-13 (-1263 *3 *7) (-373) (-1220) + (-10 -8 (-15 -2389 ($ $)) (-15 -4413 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176)))))) + (-5 *1 (-433 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1176)) (-4 *9 (-1000 *8)) + (-14 *10 (-1194))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-171 *5)) (-5 *1 (-611 *4 *5 *3)) + (-4 *5 (-13 (-441 *4) (-1019) (-1220))) + (-4 *3 (-13 (-441 (-171 *4)) (-1019) (-1220)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-489)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-603)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-637)))) ((*1 *2 *1) - (-12 (-4 *3 (-1118)) - (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) - (-5 *1 (-1094 *3 *4 *2)) - (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))))) + (-12 (-4 *3 (-1117)) + (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))) + (-5 *1 (-1093 *3 *4 *2)) + (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1118)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-1118))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) - (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464)))) + (-12 (-4 *2 (-1117)) (-5 *1 (-1183 *3 *2)) (-4 *3 (-1117))))) (((*1 *2 *3) - (-12 (-4 *4 (-1067)) - (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-316)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1141 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) + (-5 *2 (-655 (-782))) (-5 *1 (-789 *3 *4 *5 *6 *7)) + (-4 *3 (-1261 *6)) (-4 *7 (-964 *6 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-755 *3)) (-4 *3 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1235)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-463)))) + ((*1 *1 *1 *1) (-4 *1 (-463)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2)) + (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461))))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) -(((*1 *2 *3) - (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-1195)) (|:| |c| (-1308 *3))))) - (-5 *1 (-1308 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1310 *3 *4))))) - (-5 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-638)))) + (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *2 (-655 (-227))) + (-5 *1 (-479))))) +(((*1 *2 *2) + (-12 (-5 *2 (-655 (-655 *6))) (-4 *6 (-964 *3 *5 *4)) + (-4 *3 (-13 (-316) (-148))) (-4 *4 (-13 (-861) (-625 (-1194)))) + (-4 *5 (-804)) (-5 *1 (-939 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1235)) (-5 *1 (-184 *3 *2)) (-4 *2 (-685 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-489)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-603)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-637)))) ((*1 *2 *1) - (-12 (-4 *3 (-1118)) - (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) - (-5 *1 (-1094 *3 *4 *2)) - (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))))) + (-12 (-4 *3 (-1117)) + (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))) + (-5 *1 (-1093 *3 *4 *2)) + (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1118)) (-5 *1 (-1184 *2 *3)) (-4 *3 (-1118))))) + (-12 (-4 *2 (-1117)) (-5 *1 (-1183 *2 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-655 *7) *7 (-1190 *7))) (-5 *5 (-1 (-429 *7) *7)) + (-4 *7 (-1261 *6)) (-4 *6 (-13 (-373) (-148) (-1055 (-418 (-575))))) + (-5 *2 (-655 (-2 (|:| |frac| (-418 *7)) (|:| -2571 *3)))) + (-5 *1 (-820 *6 *7 *3 *8)) (-4 *3 (-667 *7)) + (-4 *8 (-667 (-418 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-5 *2 + (-655 (-2 (|:| |frac| (-418 *6)) (|:| -2571 (-665 *6 (-418 *6)))))) + (-5 *1 (-823 *5 *6)) (-5 *3 (-665 *6 (-418 *6)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1053)) (-5 *1 (-760))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-937)))) + (-12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1245 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4232 *4))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-782)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-936)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-158)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-158)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221))) + (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220))) (-5 *1 (-229 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-1130)) (-4 *2 (-1236)))) + (-12 (-5 *1 (-303 *2)) (-4 *2 (-1129)) (-4 *2 (-1235)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-1130)) (-4 *2 (-1236)))) + (-12 (-5 *1 (-303 *2)) (-4 *2 (-1129)) (-4 *2 (-1235)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1118)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1118)))) + (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1117)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-862)))) + (-12 (-5 *1 (-391 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-861)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1118)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) + (-12 (-4 *1 (-392 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1117)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) - (-4 *6 (-244 (-2872 *3) (-783))) + (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) + (-4 *6 (-243 (-2871 *3) (-782))) (-14 *7 - (-1 (-112) (-2 (|:| -4318 *5) (|:| -1359 *6)) - (-2 (|:| -4318 *5) (|:| -1359 *6)))) - (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862)) - (-4 *2 (-965 *4 *6 (-876 *3))))) + (-1 (-112) (-2 (|:| -4317 *5) (|:| -2398 *6)) + (-2 (|:| -4317 *5) (|:| -2398 *6)))) + (-5 *1 (-472 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) + (-4 *2 (-964 *4 *6 (-875 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) + (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) + (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-548))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1118)) - (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-696 *5 *6 *7)))) + (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-547))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1129)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-695 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1067)) (-4 *2 (-384 *3)) - (-4 *4 (-384 *3)))) + (-12 (-4 *1 (-698 *3 *2 *4)) (-4 *3 (-1066)) (-4 *2 (-383 *3)) + (-4 *4 (-383 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) - (-4 *2 (-384 *3)))) + (-12 (-4 *1 (-698 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) + (-4 *2 (-383 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-732))) ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-731))) ((*1 *1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) - (-5 *1 (-987 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *1) (-4 *1 (-1130))) + (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-567)) + (-5 *1 (-986 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1129)))) + ((*1 *1 *1 *1) (-4 *1 (-1129))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1141 *3 *4 *2 *5)) (-4 *4 (-1067)) (-4 *2 (-244 *3 *4)) - (-4 *5 (-244 *3 *4)))) + (-12 (-4 *1 (-1140 *3 *4 *2 *5)) (-4 *4 (-1066)) (-4 *2 (-243 *3 *4)) + (-4 *5 (-243 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1141 *3 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4)) - (-4 *2 (-244 *3 *4)))) + (-12 (-4 *1 (-1140 *3 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4)) + (-4 *2 (-243 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-862)) (-5 *1 (-1144 *3 *4 *2)) - (-4 *2 (-965 *3 (-543 *4) *4)))) + (-12 (-4 *3 (-1066)) (-4 *4 (-861)) (-5 *1 (-1143 *3 *4 *2)) + (-4 *2 (-964 *3 (-542 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-959 (-227))) (-5 *3 (-227)) (-5 *1 (-1232)))) + (-12 (-5 *2 (-958 (-227))) (-5 *3 (-227)) (-5 *1 (-1231)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738)))) + (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-737)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738)))) + (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-737)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-21)))) + (-12 (-5 *2 (-575)) (-4 *1 (-1283 *3)) (-4 *3 (-1235)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) + (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067)))) + (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1067)) - (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) -(((*1 *2 *3) - (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1286 (-711))) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) - (-5 *2 (-831 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1067))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-1067)) (-5 *2 (-576)) - (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1262 *5)) - (-4 *6 (-13 (-416) (-1056 *5) (-374) (-1221) (-294))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1262 *4)) - (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294)))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1262 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-13 (-464) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-656 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *2)) - (|:| |logand| (-1191 *2))))) - (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-374)) (-5 *1 (-598 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) - (-5 *2 (-831 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) - (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1262 *4)) - (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294)))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) - ((*1 *1 *1 *1) (-5 *1 (-390))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) + (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1067)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-99 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) - (-5 *2 (-656 (-227))) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-858))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1056 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) - (-5 *1 (-760))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 *4)))) - (-5 *1 (-902 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) - (-4 *7 (-1118)) (-5 *2 (-656 *1)) (-4 *1 (-1121 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1056 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *2 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1067)) - (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-937)) (-4 *5 (-1067)) - (-4 *2 (-13 (-416) (-1056 *5) (-374) (-1221) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5))))) + (-12 (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-418 *1)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)) + (-4 *3 (-567)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-132)) + (-4 *3 (-803))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) -(((*1 *2 *3) - (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *3)) - (|:| |logand| (-1191 *3))))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2 *2) (-12 (-5 *2 (-1112 (-855 (-227)))) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-858))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) - (-5 *1 (-760))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1262 *4)) - (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-321)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-988)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1012)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1054)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1091))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1214))))) + (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-759))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) - (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5))))) - (-5 *1 (-996 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) - (-5 *1 (-315))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *2 (-1118)) (-4 *3 (-1118)) - (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) - (-5 *1 (-760))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1120 (-783))) (-5 *6 (-783)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -4319 (-656 (-2 (|:| |irr| *3) (|:| -4435 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) + (-12 (-5 *3 (-575)) (-5 *4 (-429 *2)) (-4 *2 (-964 *7 *5 *6)) + (-5 *1 (-753 *5 *6 *7 *2)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-316))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-567) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) + ((*1 *1 *1) (-5 *1 (-389))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) + (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *2 *4 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118))))) + (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) + (-5 *2 (-2 (|:| |k| (-830 *3)) (|:| |c| *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2)) + (-4 *2 (-1276 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3)) + (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2)) + (-4 *2 (-1276 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148))) + (-5 *1 (-1170 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-760))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) + (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) + (-5 *1 (-759))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *1 *1) (-4 *1 (-1224)))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-1214))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-937)) (-5 *1 (-711)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-374)) (-5 *1 (-996 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 (-326 (-227)))) - (-5 *2 - (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) - (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) - (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) - (-14 *4 (-656 (-1195))))) - ((*1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) - (-14 *4 (-656 (-1195))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1191 *8)) (-5 *4 (-656 *6)) (-4 *6 (-862)) - (-4 *8 (-965 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1067)) - (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-937)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1262 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) - (-4 *3 (-862)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-991 *3 *2 *4)) (-4 *3 (-1067)) (-4 *4 (-862)) - (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1277 *3)) - (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1246 *3)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-937))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) - (-5 *2 (-783))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *2 (-1118)) (-4 *3 (-1118)) - (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) - (-5 *2 (-1053)) (-5 *1 (-760))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *1 *1) (-4 *1 (-1224)))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-575)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1236)))) + (-12 (-5 *3 (-575)) (-4 *1 (-291 *2)) (-4 *2 (-1235)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4169 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -3180 + (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -3575,10 +3338,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1175 (-227))) + (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1908 + (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -3586,2879 +3349,3191 @@ (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-571)))) + (-5 *1 (-570)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1118)))) + (-12 (-5 *3 (-782)) (-4 *1 (-706 *2)) (-4 *2 (-1117)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -3180 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))))) - (-5 *1 (-815)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1118))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-374)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-462 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) - (-5 *1 (-996 *6)) (-5 *3 (-701 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-594))))) + (|:| -3179 + (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) + (|:| |expense| (-389)) (|:| |accuracy| (-389)) + (|:| |intermediateResults| (-389)))))) + (-5 *1 (-814)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1117))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-112)) + (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1052)) (-5 *1 (-767))))) (((*1 *2 *3) + (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194)) + (-5 *2 (-575)) (-5 *1 (-1131 *4 *5))))) +(((*1 *2 *3 *2) (-12 - (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) - (-5 *2 (-390)) (-5 *1 (-276)))) + (-5 *2 + (-655 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-804)) (-4 *3 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861)) + (-5 *1 (-460 *4 *5 *6 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1052)) (-5 *1 (-851)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-325 (-389)))) (-5 *4 (-655 (-389))) + (-5 *2 (-1052)) (-5 *1 (-851))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-2 (|:| -2353 *4) (|:| -2645 (-575))))) + (-4 *4 (-1261 (-575))) (-5 *2 (-748 (-782))) (-5 *1 (-453 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1067))))) + (-12 (-5 *3 (-429 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-1066)) + (-5 *2 (-748 (-782))) (-5 *1 (-455 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-1080)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *5)) (-5 *4 (-936)) (-4 *5 (-861)) + (-5 *2 (-59 (-655 (-683 *5)))) (-5 *1 (-683 *5))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) + ((*1 *1 *1 *1) (-5 *1 (-389))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-1285 *5))) (-5 *4 (-575)) (-5 *2 (-1285 *5)) + (-5 *1 (-1046 *5)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066))))) +(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1241)))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941))))) +(((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-700 (-325 (-575)))) (-5 *1 (-1048))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) + (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-994 *5 *6 *7 *8))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-158))))) +(((*1 *2 *1) + (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 *4)))) + (-5 *1 (-901 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) + (-4 *7 (-1117)) (-5 *2 (-655 *1)) (-4 *1 (-1120 *3 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3926 (-793 *3)) (|:| |coef2| (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -3926 *1) (|:| |coef2| *1))) + (-4 *1 (-1082 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-575)) (-5 *1 (-580 *3)) (-4 *3 (-1055 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *2 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-5 *1 (-339))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-1082 *3 *4 *2)) (-4 *2 (-861)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1119 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) (-5 *3 (-227)) - (-5 *2 (-1053)) (-5 *1 (-760))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-112)) (-5 *1 (-905 *4)) - (-4 *4 (-1118))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-5 *2 (-958 *4)) (-4 *4 (-1066)) (-5 *1 (-1182 *3 *4)) + (-14 *3 (-936))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1066)) + (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) + (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1052)) + (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-463))))) +(((*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-418 (-575))) + (-5 *1 (-444 *4 *3)) (-4 *3 (-441 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-623 *3)) (-4 *3 (-441 *5)) + (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-1190 (-418 (-575)))) + (-5 *1 (-444 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-884 (-1199) (-782)))) (-5 *1 (-342))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-320)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-987)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1011)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1053)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1090))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *1 *1) (-4 *1 (-1224)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-115)) (-4 *4 (-1066)) (-5 *1 (-725 *4 *2)) + (-4 *2 (-659 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-847 *2)) (-4 *2 (-1066))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1118)) (-5 *1 (-1213 *3 *2)) (-4 *3 (-1118))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-995 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-591))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *1 (-676 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1306 *3 *4)) - (-4 *3 (-862)) (-4 *4 (-174))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1119 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-52)) (-5 *1 (-905 *4)) - (-4 *4 (-1118))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) - (-5 *2 (-1053)) (-5 *1 (-760))))) + (-12 (-5 *3 (-575)) (-5 *2 (-655 (-655 (-227)))) (-5 *1 (-1231))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) + (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-804)) (-4 *2 (-964 *4 *5 *6)) (-5 *1 (-460 *4 *5 *6 *2)) + (-4 *4 (-463)) (-4 *6 (-861))))) +(((*1 *1 *1) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *3)) + (-4 *3 (-1261 (-418 *4)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1052)) (-5 *3 (-1194)) (-5 *1 (-275))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) + ((*1 *1 *1 *1) (-5 *1 (-873))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064)) + (-5 *3 (-575))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-567)) (-4 *3 (-1066)) + (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-863 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-567)) (-4 *5 (-1066)) + (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-864 *5 *3)) + (-4 *3 (-863 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *2 *4 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *1 *1) (-4 *1 (-1224)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3)))) + ((*1 *1 *1) (-4 *1 (-1223)))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1118))))) + (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-353 *3 *4)) (-14 *3 (-936)) + (-14 *4 (-936)))) + ((*1 *2) + (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-354 *3 *4)) (-4 *3 (-359)) + (-14 *4 (-1190 *3)))) + ((*1 *2) + (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-355 *3 *4)) (-4 *3 (-359)) + (-14 *4 (-936))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1261 (-171 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1261 (-171 *2)))))) +(((*1 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) + ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1194)) + (-4 *5 (-13 (-567) (-1055 (-575)) (-148))) + (-5 *2 + (-2 (|:| -1630 (-418 (-967 *5))) (|:| |coeff| (-418 (-967 *5))))) + (-5 *1 (-581 *5)) (-5 *3 (-418 (-967 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) + ((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-714 *3)) + (-4 *3 (-625 (-547))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1194)) (-5 *2 (-1 (-227) (-227) (-227))) + (-5 *1 (-714 *3)) (-4 *3 (-625 (-547)))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-995 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3)))) + ((*1 *1 *1) (-4 *1 (-1223)))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) + (-5 *2 (-1052)) (-5 *1 (-763))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-782)))) + ((*1 *2 *1) + (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-782))))) +(((*1 *2 *2) + (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) + (-5 *1 (-178 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1110 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-683)))) + (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) + (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-655 (-1041 (-418 *4))))) + (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) + (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) + (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-967 *4))) + (-4 *4 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6)) + (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194)))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-762))))) +(((*1 *1 *1) (-4 *1 (-640))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019) (-1220)))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-269)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1119 *3 *4)) (-14 *3 (-937)) - (-14 *4 (-937))))) + (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1129)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1068 *3)) (-4 *3 (-1129)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) + (-4 *3 (-1261 *4)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3)))) + ((*1 *1 *1) (-4 *1 (-1223)))) +(((*1 *2 *1) + (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-1230 *3)) + (-4 *3 (-991))))) +(((*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) + ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1198))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235)) (-4 *2 (-861)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-383 *3)) (-4 *3 (-1235)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))) + ((*1 *1 *2) + (-12 (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) + ((*1 *1 *2) + (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4)) + (-14 *3 (-936)) (-4 *4 (-1066)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1285 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-373)) + (-4 *1 (-735 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1261 *5)) + (-5 *2 (-700 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-889 *2)) (-4 *2 (-1235)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-891 *2)) (-4 *2 (-1235)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-894 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-1194)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1194)) (-5 *2 (-112)) (-5 *1 (-623 *4)) + (-4 *4 (-1117)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-623 *4)) (-4 *4 (-1117)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1117)) (-5 *2 (-112)) (-5 *1 (-899 *5 *3 *4)) + (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *6)) (-4 *6 (-898 *5)) (-4 *5 (-1117)) + (-5 *2 (-112)) (-5 *1 (-899 *5 *6 *4)) (-4 *4 (-625 (-904 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575))))) +(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1243)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3)))) + ((*1 *1 *1) (-4 *1 (-1223)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) + (-5 *2 (-655 (-418 (-575)))) (-5 *1 (-1037 *4)) + (-4 *4 (-1261 (-575)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-1 (-112) *8))) (-4 *8 (-1082 *5 *6 *7)) + (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8)))) + (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34))) + (-4 *3 (-13 (-1117) (-34)))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-766))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145))))) +(((*1 *2 *3) + (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) + (-5 *2 (-492 *4 *5)) (-5 *1 (-642 *4 *5))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) - (-5 *1 (-1194))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52)))) - (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) - (-5 *2 (-1053)) (-5 *1 (-760))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) + (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) + (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) + (-5 *1 (-1193))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -2499 (-782)) (|:| |period| (-782)))) + (-5 *1 (-1174 *4)) (-4 *4 (-1235)) (-5 *3 (-782))))) +(((*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-832))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-623 *4)) (-5 *6 (-1190 *4)) + (-4 *4 (-13 (-441 *7) (-27) (-1220))) + (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) + (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-623 *4)) (-5 *6 (-418 (-1190 *4))) + (-4 *4 (-13 (-441 *7) (-27) (-1220))) + (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) + (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *1 *1) (-4 *1 (-1224)))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1118))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3)))) + ((*1 *1 *1) (-4 *1 (-1223)))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-995 *3 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-590)))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) - (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236))))) + (-12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) + (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4)) + (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) + (-4 *8 (-352 *5 *6 *7)) (-4 *4 (-13 (-567) (-1055 (-575)))) + (-5 *2 (-2 (|:| -2673 (-782)) (|:| -3763 *8))) + (-5 *1 (-926 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6)) + (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4))) + (-4 *6 (-352 (-418 (-575)) *4 *5)) + (-5 *2 (-2 (|:| -2673 (-782)) (|:| -3763 *6))) + (-5 *1 (-927 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4)) + (-4 *4 (-1235)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-833))))) +(((*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) + (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4)))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1119 *3 *4)) (-14 *3 (-937)) - (-14 *4 (-937))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-759))))) + (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1118 *3 *4)) (-14 *3 (-936)) + (-14 *4 (-936))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 *2)) + (-5 *2 (-389)) (-5 *1 (-796 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) + (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) + (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) + (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) + (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) + (-4 *5 (-861)) (-4 *5 (-625 *2)) (-5 *2 (-389)) + (-5 *1 (-796 *5))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) - (-5 *1 (-1194))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) + (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) + (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) + (-5 *1 (-1193))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4232 *3) (|:| |coef1| (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1195)) (-5 *1 (-548)))) + (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-1194)) (-5 *1 (-547)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-716 *3)) - (-4 *3 (-626 (-548)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) + (-12 (-5 *4 (-655 (-1194))) (-5 *2 (-1194)) (-5 *1 (-715 *3)) + (-4 *3 (-625 (-547)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) + (-5 *2 (-2 (|:| -1754 (-418 *5)) (|:| |poly| *3))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *1 *1) (-4 *1 (-1224)))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1118))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-995 *3 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-590)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1112 (-855 (-390)))) (-5 *2 (-1112 (-855 (-227)))) - (-5 *1 (-315))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1236)) (-5 *2 (-576))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3)))) + ((*1 *1 *1) (-4 *1 (-1223)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-373)) + (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-5 *1 (-461 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-373)) + (-5 *2 + (-2 (|:| R (-700 *6)) (|:| A (-700 *6)) (|:| |Ainv| (-700 *6)))) + (-5 *1 (-995 *6)) (-5 *3 (-700 *6))))) (((*1 *2) - (-12 (-5 *2 (-1286 (-1119 *3 *4))) (-5 *1 (-1119 *3 *4)) - (-14 *3 (-937)) (-14 *4 (-937))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-759))))) -(((*1 *1 *1) (-5 *1 (-1194))) + (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1235)) (-5 *2 (-782)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1117)) (-5 *2 (-782)) (-5 *1 (-440 *3 *4)) + (-4 *3 (-441 *4)))) + ((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-555 *3)) (-4 *3 (-556)))) + ((*1 *2) (-12 (-4 *1 (-774)) (-5 *2 (-782)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-807 *3 *4)) + (-4 *3 (-808 *4)))) + ((*1 *2) + (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-1008 *3 *4)) + (-4 *3 (-1009 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-1013 *3 *4)) + (-4 *3 (-1014 *4)))) + ((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1028 *3)) (-4 *3 (-1029)))) + ((*1 *2) (-12 (-4 *1 (-1066)) (-5 *2 (-782)))) + ((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1076 *3)) (-4 *3 (-1077))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) + (-5 *1 (-341))))) +(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1235)) (-5 *2 (-575))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-1193))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) - (-5 *1 (-1194))))) -(((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) -(((*1 *1 *1) (-4 *1 (-641))) + (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) + (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) + (-5 *1 (-1193))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1052))))) +(((*1 *2 *3) + (-12 (-4 *1 (-909)) + (-5 *3 + (-2 (|:| |pde| (-655 (-325 (-227)))) + (|:| |constraints| + (-655 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-782)) (|:| |boundaryType| (-575)) + (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) + (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) + (|:| |tol| (-227)))) + (-5 *2 (-1052))))) +(((*1 *1 *1) (-4 *1 (-640))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020) (-1221)))))) -(((*1 *2) - (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1118))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-995 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-589)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589))))) + (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019) (-1220)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1066)) (-5 *2 (-1285 *3)) (-5 *1 (-723 *3 *4)) + (-4 *4 (-1261 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556))))) (((*1 *2 *3) - (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067))))) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-316)) (-4 *3 (-174)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) + (-5 *1 (-699 *3 *4 *5 *6)) (-4 *6 (-698 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-711 *3)) + (-4 *3 (-316))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-936)) (-5 *4 (-885)) (-5 *2 (-1290)) (-5 *1 (-1286)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287))))) (((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) - ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) - (-4 *3 (-1118)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-112)) - (-5 *1 (-920 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-937)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-759))))) + ((*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-253))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-782)) (-4 *4 (-1066)) + (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-1261 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-418 (-967 (-171 (-575)))))) + (-5 *2 (-655 (-655 (-303 (-967 (-171 *4)))))) (-5 *1 (-388 *4)) + (-4 *4 (-13 (-373) (-859))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-303 (-418 (-967 (-171 (-575))))))) + (-5 *2 (-655 (-655 (-303 (-967 (-171 *4)))))) (-5 *1 (-388 *4)) + (-4 *4 (-13 (-373) (-859))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-418 (-967 (-171 (-575))))) + (-5 *2 (-655 (-303 (-967 (-171 *4))))) (-5 *1 (-388 *4)) + (-4 *4 (-13 (-373) (-859))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-303 (-418 (-967 (-171 (-575)))))) + (-5 *2 (-655 (-303 (-967 (-171 *4))))) (-5 *1 (-388 *4)) + (-4 *4 (-13 (-373) (-859)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 *1)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1066)) (-5 *1 (-700 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-655 *4)) (-4 *4 (-1066)) (-4 *1 (-1140 *3 *4 *5 *6)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) + (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1118)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-695 *4 *5)) (-4 *4 (-1118)))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1117)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-694 *4 *5)) (-4 *4 (-1117)))) ((*1 *2 *2) - (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3)))) + (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946)))) + (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945)))) ((*1 *2 *1) - (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067)))) + (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066)))) ((*1 *2 *1) - (-12 (-4 *2 (-1067)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858))))) + (-12 (-4 *2 (-1066)) (-5 *1 (-1308 *2 *3)) (-4 *3 (-857))))) +(((*1 *1) + (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-782)) (-4 *4 (-567)) (-5 *1 (-986 *4 *2)) + (-4 *2 (-1261 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) + (-5 *3 (-655 (-575))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) + (-5 *3 (-655 (-575)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-634 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -2435 *4) (|:| |sol?| (-112))) + (-575) *4)) + (-4 *4 (-373)) (-4 *5 (-1261 *4)) (-5 *1 (-585 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-1216))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1176) (-785))) (-5 *1 (-115))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-655 (-1258 *5 *4))) + (-5 *1 (-1131 *4 *5)) (-5 *3 (-1258 *5 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-308 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1111 (-854 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-314)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-303 (-854 *3))) (-4 *3 (-13 (-27) (-1220) (-441 *5))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *2 + (-3 (-854 *3) + (-2 (|:| |leftHandLimit| (-3 (-854 *3) "failed")) + (|:| |rightHandLimit| (-3 (-854 *3) "failed"))) + "failed")) + (-5 *1 (-647 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-303 *3)) (-5 *5 (-1176)) + (-4 *3 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-854 *3)) (-5 *1 (-647 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-303 (-854 (-967 *5)))) (-4 *5 (-463)) + (-5 *2 + (-3 (-854 (-418 (-967 *5))) + (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-854 (-418 (-967 *5))) "failed"))) + "failed")) + (-5 *1 (-648 *5)) (-5 *3 (-418 (-967 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-303 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5))) + (-4 *5 (-463)) + (-5 *2 + (-3 (-854 *3) + (-2 (|:| |leftHandLimit| (-3 (-854 *3) "failed")) + (|:| |rightHandLimit| (-3 (-854 *3) "failed"))) + "failed")) + (-5 *1 (-648 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-303 (-418 (-967 *6)))) (-5 *5 (-1176)) + (-5 *3 (-418 (-967 *6))) (-4 *6 (-463)) (-5 *2 (-854 *3)) + (-5 *1 (-648 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1194)) (-5 *1 (-339))))) +(((*1 *1) (-5 *1 (-589))) + ((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-874)))) + ((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-874)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1176)) (-5 *4 (-873)) (-5 *2 (-1290)) (-5 *1 (-874)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1174 *4)) + (-4 *4 (-1117)) (-4 *4 (-1235))))) (((*1 *2) - (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1118))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-995 *3 *4 *5 *6))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1195)) - (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-587 *4 *2)) - (-4 *2 (-13 (-1221) (-975) (-1157) (-29 *4)))))) + (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) + (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) + (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) + (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) + (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1117)) (-4 *3 (-913 *5)) (-5 *2 (-700 *3)) + (-5 *1 (-703 *5 *3 *6 *4)) (-4 *6 (-383 *3)) + (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460))))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315))))) + (-12 (-5 *3 (-830 *4)) (-4 *4 (-861)) (-5 *2 (-112)) + (-5 *1 (-683 *4))))) +(((*1 *1 *1) (-4 *1 (-640))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019) (-1220)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-132))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1235)) + (-4 *5 (-1235)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-782)) + (-4 *7 (-1235)) (-4 *5 (-1235)) (-5 *2 (-245 *6 *5)) + (-5 *1 (-244 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1235)) (-4 *5 (-1235)) + (-4 *2 (-383 *5)) (-5 *1 (-381 *6 *4 *5 *2)) (-4 *4 (-383 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1117)) (-4 *5 (-1117)) + (-4 *2 (-436 *5)) (-5 *1 (-434 *6 *4 *5 *2)) (-4 *4 (-436 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-655 *6)) (-4 *6 (-1235)) + (-4 *5 (-1235)) (-5 *2 (-655 *5)) (-5 *1 (-653 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-973 *6)) (-4 *6 (-1235)) + (-4 *5 (-1235)) (-5 *2 (-973 *5)) (-5 *1 (-972 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1174 *6)) (-4 *6 (-1235)) + (-4 *3 (-1235)) (-5 *2 (-1174 *3)) (-5 *1 (-1172 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1285 *6)) (-4 *6 (-1235)) + (-4 *5 (-1235)) (-5 *2 (-1285 *5)) (-5 *1 (-1284 *6 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-994 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1262 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-738)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-1177))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-759))))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1077)) (-4 *3 (-1220)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) - (-4 *3 (-1118))))) + (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3)) + (-4 *3 (-659 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066))))) (((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -4391 (-576)) (|:| -4319 (-656 *3)))) - (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) + (-12 (-5 *3 (-655 *4)) (-4 *4 (-373)) (-5 *2 (-700 *4)) + (-5 *1 (-825 *4 *5)) (-4 *5 (-667 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *5)) (-5 *4 (-782)) (-4 *5 (-373)) + (-5 *2 (-700 *5)) (-5 *1 (-825 *5 *6)) (-4 *6 (-667 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-288)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-575) (-227) (-517) (-1176) (-1199))) + (-5 *1 (-1199))))) +(((*1 *2 *1) (-12 (-4 *1 (-316)) (-5 *2 (-782))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *5 (-378)) + (-5 *2 (-782))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1137)) (-4 *4 (-359)) + (-5 *1 (-539 *4))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) + (-4 *2 (-1235))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1194)) (-4 *5 (-373)) (-5 *2 (-1174 (-1174 (-967 *5)))) + (-5 *1 (-1293 *5)) (-5 *4 (-1174 (-967 *5)))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-575)) (-5 *5 (-112)) (-5 *6 (-700 (-227))) + (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1194)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-967 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-4 *1 (-29 *3)) (-4 *3 (-567)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-567)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1190 *2)) (-5 *4 (-1194)) (-4 *2 (-441 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-567)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-4 *1 (-1029)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-5 *4 (-873)) + (-4 *1 (-1029)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-936)) (-4 *4 (-13 (-859) (-373))) + (-4 *1 (-1085 *4 *2)) (-4 *2 (-1261 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5)) - (-4 *4 (-1118)) (-4 *5 (-1118))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-995 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1083 *4 *5 *6)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-995 *4 *5 *6 *7))))) + (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-194)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1235)) (-5 *2 (-655 *1)) (-4 *1 (-1027 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3)) + (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-964 *6 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-586 *5 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) - (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-937)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067))))) + (-12 (-5 *4 (-782)) (-4 *5 (-1066)) (-5 *2 (-575)) + (-5 *1 (-454 *5 *3 *6)) (-4 *3 (-1261 *5)) + (-4 *6 (-13 (-415) (-1055 *5) (-373) (-1220) (-293))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5)) + (-4 *3 (-1261 *4)) + (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) + (-5 *1 (-1005 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) + (-5 *1 (-1124 *3 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-340))))) -(((*1 *1) (-5 *1 (-590))) - ((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-875)))) - ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-875)))) + (-12 (-4 *1 (-392 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1117)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-875)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1175 *4)) - (-4 *4 (-1118)) (-4 *4 (-1236))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-112))))) + (-12 (-5 *4 (-575)) (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) + (-4 *3 (-1066)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-830 *4)) (-4 *4 (-861)) (-4 *1 (-1302 *4 *3)) + (-4 *3 (-1066))))) (((*1 *2 *1) - (-12 (-4 *4 (-1118)) (-5 *2 (-112)) (-5 *1 (-898 *3 *4 *5)) - (-4 *3 (-1118)) (-4 *5 (-678 *4)))) + (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1118))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) - (-5 *2 (-1053)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -2354 *4) (|:| -3813 (-576))))) - (-4 *4 (-1262 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020) (-1221)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5)) - (-4 *4 (-1118)) (-4 *5 (-1118))))) + (-12 (-4 *2 (-13 (-1117) (-34))) (-5 *1 (-1157 *3 *2)) + (-4 *3 (-13 (-1117) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1296))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-700 *3)) + (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) + (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-700 *3)) + (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) + (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-373) (-148))) + (-5 *2 (-655 (-2 (|:| -2398 (-782)) (|:| -1751 *4) (|:| |num| *4)))) + (-5 *1 (-410 *3 *4)) (-4 *4 (-1261 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *2 (-656 *3)) (-5 *1 (-995 *4 *5 *6 *3)) - (-4 *3 (-1083 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) + (-12 (-5 *3 (-655 (-492 *4 *5))) (-14 *4 (-655 (-1194))) + (-4 *5 (-463)) (-5 *2 - (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) - (|:| |polypart| *6))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *4 (-1195)) - (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) + (-2 (|:| |gblist| (-655 (-252 *4 *5))) + (|:| |gvlist| (-655 (-575))))) + (-5 *1 (-642 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-782)) (-4 *5 (-567)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1067)) (-4 *4 (-174)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)) - (-4 *3 (-174))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1118)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) - (-5 *2 (-1053)) (-5 *1 (-759))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-4 *2 (-1118)) - (-5 *1 (-902 *4 *2))))) -(((*1 *2) - (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) -(((*1 *2) - (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1118))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-995 *5 *6 *7 *8))))) + (-12 (-5 *2 (-575)) (-4 *1 (-1110 *3)) (-4 *3 (-1235))))) +(((*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -2436 *4) (|:| |sol?| (-112))) - (-576) *4)) - (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *1 (-586 *4 *5))))) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-316)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-458 *4 *5 *6 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-1175 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195))) - (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195))) - (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1229 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *3 (-862)) (-4 *6 (-1083 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1089 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) - (-5 *2 (-1053)) (-5 *1 (-759))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3)) - (-4 *3 (-1118))))) -(((*1 *2) - (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1210 *2)) (-4 *2 (-374))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) - (-4 *8 (-862)) (-5 *1 (-995 *6 *7 *8 *9))))) + (-12 (-5 *3 (-655 (-492 *4 *5))) (-14 *4 (-655 (-1194))) + (-4 *5 (-463)) (-5 *2 (-655 (-252 *4 *5))) (-5 *1 (-642 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-447))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-418 (-575)))) + (-5 *2 (-2 (|:| -3761 (-1174 *4)) (|:| -3774 (-1174 *4)))) + (-5 *1 (-1180 *4)) (-5 *3 (-1174 *4))))) (((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -3849 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1262 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27)) - (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195))) - (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310))))) -(((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1118)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) - (-4 *3 (-1067)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-831 *4)) (-4 *4 (-862)) (-4 *1 (-1303 *4 *3)) - (-4 *3 (-1067))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) - (-5 *2 (-1053)) (-5 *1 (-759))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3)) - (-4 *3 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529)))) + (-12 (-5 *3 (-655 (-623 *6))) (-5 *4 (-1194)) (-5 *2 (-623 *6)) + (-4 *6 (-441 *5)) (-4 *5 (-1117)) (-5 *1 (-584 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-373)) + (-5 *1 (-532 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1118) (-34))) (-5 *1 (-1158 *3 *2)) - (-4 *3 (-13 (-1118) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1297))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-576))))) - (-4 *2 (-568)) (-5 *1 (-430 *2)))) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) + (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-576)) - (|:| -4319 (-656 (-2 (|:| |irr| *4) (|:| -4435 (-576))))))) - (-4 *4 (-1262 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) + (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-174)) + (-5 *1 (-699 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-937)) (-5 *2 (-1191 *3)) (-5 *1 (-1210 *3)) - (-4 *3 (-374))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) - (-4 *7 (-1262 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-586 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-1111 *3)) (-4 *3 (-1236))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *2 + (-3 (|:| |%expansion| (-322 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176)))))) + (-5 *1 (-431 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) + (-14 *6 (-1194)) (-14 *7 *3)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-655 *4)) (-4 *4 (-373)) (-4 *2 (-1261 *4)) + (-5 *1 (-937 *4 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-1198))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-5 *2 (-2 (|:| -4169 *3) (|:| -3179 *4)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-833))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195)) - (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195)) - (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) -(((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-759))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3)) - (-4 *3 (-1118))))) -(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-374))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -2012 (-656 *7)))) - (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -3849 (-419 *6)) (|:| |coeff| (-419 *6)))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) + (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) + (-4 *3 (-1082 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-655 (-112))) (-5 *7 (-700 (-227))) + (-5 *8 (-700 (-575))) (-5 *3 (-575)) (-5 *4 (-227)) (-5 *5 (-112)) + (-5 *2 (-1052)) (-5 *1 (-765))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *3 (-567))))) +(((*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575)))) + ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-710))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-112)) (-5 *1 (-310))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236))))) -(((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-937)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-845 (-937))) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-937)))) - ((*1 *2) - (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-937)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1118)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1118)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-656 *6))) - (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1118)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-900 *5 *3 *4)) - (-4 *3 (-1056 (-1195))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1118)) (-5 *2 (-656 (-304 (-968 *3)))) - (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1067)) - (-3216 (-4 *3 (-1056 (-1195)))) (-4 *3 (-899 *5)) - (-4 *4 (-626 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1118)) (-5 *2 (-902 *5 *3)) (-5 *1 (-900 *5 *3 *4)) - (-3216 (-4 *3 (-1056 (-1195)))) (-3216 (-4 *3 (-1067))) - (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-5 *2 (-2 (|:| -4169 *3) (|:| -3180 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-656 (-656 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1207 *3)) (-4 *3 (-1118))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -2436 *7) (|:| |sol?| (-112))) - (-576) *7)) - (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7)) - (-5 *3 (-419 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-586 *7 *8))))) -(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312)))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236))))) -(((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-783))))) + (-5 *2 (-575)) (-5 *1 (-206))))) +(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))) (((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) - (-14 *4 (-656 (-1195))))) + (-12 (-5 *2 (-782)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) + (-14 *4 (-655 (-1194))))) ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) - (-14 *4 (-656 (-1195))))) - ((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) + (-12 (-5 *2 (-782)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) + (-14 *4 (-655 (-1194))))) + ((*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) - (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) - (-4 *2 (-353 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-345 *3 *4 *5 *2)) (-4 *3 (-373)) + (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) + (-4 *2 (-352 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-782)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) - ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1262 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-759))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1195)) (-5 *2 (-112)) (-5 *1 (-624 *4)) - (-4 *4 (-1118)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1118)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1118)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3 *4)) - (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1118)) - (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-626 (-905 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1114)))) + ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-735 *2 *3)) (-4 *3 (-1261 *2))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1129)) (-4 *3 (-1117)) (-5 *2 (-655 *1)) + (-4 *1 (-441 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) + (-4 *3 (-1117)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) + (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *3)) + (-5 *1 (-965 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-373) + (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) + (-15 -1608 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) + (-4 *4 (-359))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) + (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 *4)) (-4 *4 (-859)) (-4 *4 (-373)) (-5 *2 (-782)) + (-5 *1 (-960 *4 *5)) (-4 *5 (-1261 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1285 (-1285 *4))) (-4 *4 (-1066)) (-5 *2 (-700 *4)) + (-5 *1 (-1046 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1113)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) - ((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-1207 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1083 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *2))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -3849 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7)) - (-5 *3 (-419 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-586 *7 *8))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312))))) + (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) + ((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-593))))) (((*1 *2 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1262 *4)) - (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1262 *5)) (-14 *6 (-937)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *1 *1) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-374)) (-4 *2 (-379))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1067)) - (-5 *1 (-865 *5 *2)) (-4 *2 (-864 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-759))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-678 *5)) (-5 *1 (-898 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-448))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-862)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) + (-12 (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) - (|:| |f4| (-656 *5)))) - (-5 *1 (-1206 *6)) (-5 *4 (-656 *5))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-575)))) + (-4 *4 (-13 (-1261 *3) (-567) (-10 -8 (-15 -3926 ($ $ $))))) + (-4 *3 (-567)) (-5 *1 (-1264 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567)) + (-5 *2 (-1190 *3))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1066)) + (-5 *1 (-864 *5 *2)) (-4 *2 (-863 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-538)) (-5 *3 (-129)) (-5 *2 (-782))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1083 *4 *5 *6)) - (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-995 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2436 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1262 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -3849 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576))))) - (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1108))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1053)) - (-5 *1 (-758))))) + (-12 (-4 *3 (-1066)) (-5 *1 (-906 *2 *3)) (-4 *2 (-1261 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-936)) (-5 *1 (-797))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-4 *1 (-332 *2 *4)) (-4 *4 (-132)) + (-4 *2 (-1117)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-371 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-396 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-4 *2 (-1117)) (-5 *1 (-660 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *2 *3) - (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-576))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-5 *1 (-449))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1117)) (-4 *5 (-1117)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-694 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-872)))) + ((*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-872))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1127))))) +(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) + ((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5)) + (-4 *3 (-1261 *4)) + (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293)))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)) - (-4 *2 (-1118)))) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)) + (-4 *2 (-1117)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3)) - (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *3)) + (-4 *3 (-1235)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-685 *3)) (-4 *3 (-1235)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1118)) - (-5 *1 (-749 *4)))) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-575)) (-4 *4 (-1117)) + (-5 *1 (-748 *4)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1118)))) + (-12 (-5 *3 (-575)) (-5 *1 (-748 *2)) (-4 *2 (-1117)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) - (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1010 *4)) (-4 *2 (-699 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) - (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) - (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1067)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1141 *2 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-374)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-1206 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3849 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1262 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -3849 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *1 (-270)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1286 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1286 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1262 *4)) (-5 *2 (-1286 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) - (-5 *2 (-1286 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 (-1286 *5)) (-5 *1 (-1104 *5))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1053)) - (-5 *1 (-758))))) + (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) + (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-832))))) +(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-655 (-623 *5))) (-5 *3 (-1194)) (-4 *5 (-441 *4)) + (-4 *4 (-1117)) (-5 *1 (-584 *4 *5))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-655 *6)) (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) + (-4 *3 (-567))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *6 (-227)) + (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-762))))) +(((*1 *2 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) - (-5 *3 (-656 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) - (-5 *3 (-656 (-576)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) - ((*1 *1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449))))) -(((*1 *2 *3) - (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)) - (-5 *3 (-656 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) - (-4 *7 (-1262 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) + (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112)) + (-5 *1 (-856 *4 *5)) (-14 *4 (-782))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-389)))) + ((*1 *1 *1 *1) (-4 *1 (-556))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) + ((*1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-782))))) +(((*1 *2 *1) + (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1111 (-227))) + (-5 *2 (-1287)) (-5 *1 (-263))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *1) + (-12 (-5 *2 (-655 (-958 *4))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) (((*1 *2 *3) - (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1056 (-576))) - (-4 *4 (-568)) (-5 *2 (-1191 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-624 *1)) (-4 *1 (-1067)) (-4 *1 (-312)) - (-5 *2 (-1191 *1))))) + (-12 (-5 *3 (-936)) (-5 *2 (-1285 (-1285 (-575)))) (-5 *1 (-477))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-655 *5) *6)) + (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) + (-5 *2 (-655 (-2 (|:| -3738 *5) (|:| -2571 *3)))) + (-5 *1 (-820 *5 *6 *3 *7)) (-4 *3 (-667 *6)) + (-4 *7 (-667 (-418 *6)))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-700 (-227))) (-5 *6 (-112)) (-5 *7 (-700 (-575))) + (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-575)) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-764))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1286 (-701 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 (-701 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374)) - (-5 *2 (-1286 (-701 (-419 (-968 *5))))) (-5 *1 (-1104 *5)) - (-5 *4 (-701 (-419 (-968 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374)) - (-5 *2 (-1286 (-701 (-968 *5)))) (-5 *1 (-1104 *5)) - (-5 *4 (-701 (-968 *5))))) + (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-877 *4 *5 *6 *7)) + (-4 *4 (-1066)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 *3)) + (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) - (-5 *2 (-1286 (-701 *4))) (-5 *1 (-1104 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3030)))) - (-5 *2 (-1053)) (-5 *1 (-758))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *3 (-656 (-576))) - (-5 *1 (-896))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-862)) (-5 *1 (-1206 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2436 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1262 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) + (-12 (-5 *3 (-782)) (-4 *4 (-1066)) (-4 *5 (-861)) (-4 *6 (-804)) + (-14 *8 (-655 *5)) (-5 *2 (-1290)) + (-5 *1 (-1297 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-964 *4 *6 *5)) + (-14 *9 (-655 *3)) (-14 *10 *3)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *2 *2) - (-12 (-4 *3 (-1067)) (-4 *4 (-1262 *3)) (-5 *1 (-165 *3 *4 *2)) - (-4 *2 (-1262 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236))))) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) + (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) + (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-687 *2)) (-4 *2 (-1067)) (-4 *2 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1103))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1053)) (-5 *1 (-757))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) - (-5 *3 (-656 (-576)))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3) - (-12 (-4 *4 (-862)) (-5 *2 (-1207 (-656 *4))) (-5 *1 (-1206 *4)) - (-5 *3 (-656 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) - ((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3849 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1262 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1103))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1053)) (-5 *1 (-757))))) + (-12 (-5 *1 (-686 *2)) (-4 *2 (-1066)) (-4 *2 (-1117))))) +(((*1 *2) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) + (-5 *1 (-178 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-833))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) + ((*1 *1 *1 *1) (-4 *1 (-804)))) +(((*1 *2) + (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-428 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-240 *3)))) + ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) - (-5 *1 (-1194))))) -(((*1 *2 *2) (-12 (-5 *2 (-1175 (-656 (-937)))) (-5 *1 (-896))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-598 *3) *3 (-1195))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1195))) - (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1056 *4)) (-4 *3 (-442 *7)) - (-5 *4 (-1195)) (-4 *7 (-626 (-905 (-576)))) (-4 *7 (-464)) - (-4 *7 (-899 (-576))) (-4 *7 (-1118)) (-5 *2 (-598 *3)) - (-5 *1 (-585 *7 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236))))) + (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) + (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) + (-5 *1 (-1193))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-456 *3)) (-4 *3 (-1066))))) +(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-782)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))) + ((*1 *2 *2) + (-12 (-5 *2 (-782)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575)))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-783)) (-5 *1 (-1119 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-782)) (-5 *1 (-1118 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1103))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-1286)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3926 *3))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) - (-5 *1 (-1194))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-890 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-895 *2)) (-4 *2 (-1236))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-247)))) + (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) + (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) + (-5 *1 (-1193))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1066)) (-5 *2 (-1285 *3)) (-5 *1 (-723 *3 *4)) + (-4 *4 (-1261 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-246)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1291)) (-5 *1 (-247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-5 *2 (-1291)) - (-5 *1 (-1237 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-5 *2 (-1291)) - (-5 *1 (-1237 *4))))) + (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1290)) (-5 *1 (-246))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-429 *2)) (-4 *2 (-316)) (-5 *1 (-929 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-148))) (-5 *2 (-52)) (-5 *1 (-930 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-429 (-967 *6))) (-5 *5 (-1194)) (-5 *3 (-967 *6)) + (-4 *6 (-13 (-316) (-148))) (-5 *2 (-52)) (-5 *1 (-930 *6))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-575)) (-4 *1 (-1245 *4)) (-4 *4 (-1066)) (-4 *4 (-567)) + (-5 *2 (-418 (-967 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-4 *1 (-1245 *4)) (-4 *4 (-1066)) (-4 *4 (-567)) + (-5 *2 (-418 (-967 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6))))) + (-12 (-5 *3 (-655 (-655 (-958 (-227))))) + (-5 *2 (-655 (-1111 (-227)))) (-5 *1 (-943))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) (-4 *4 (-464)) (-4 *4 (-1118)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236))))) + (-12 (-5 *2 (-115)) (-5 *3 (-655 (-1 *4 (-655 *4)))) (-4 *4 (-1117)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1117)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-655 (-1 *4 (-655 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1117))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-1056 (-419 *2)))) (-5 *2 (-576)) - (-5 *1 (-116 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *1) (-5 *1 (-1103)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1191 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5))))) + (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-5 *2 (-1290)) + (-5 *1 (-1236 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-5 *2 (-1290)) + (-5 *1 (-1236 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1156)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) - (-5 *1 (-1194))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1236))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1191 (-1191 *5)))) - (-5 *1 (-1234 *5)) (-5 *3 (-1191 (-1191 *5)))))) + (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) + (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) + (-5 *1 (-1193))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-4 *4 (-1118)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1118))))) -(((*1 *1) (-5 *1 (-1103)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-4 *7 (-862)) - (-4 *9 (-965 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) - (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783))))) -(((*1 *1 *2 *2) (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) - (-5 *1 (-1194))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-893))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4)))) - (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1083 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-1195)) (-4 *6 (-442 *5)) - (-4 *5 (-1118)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) - (-4 *3 (-1236))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4)))) - (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1083 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1195)) (-5 *2 (-624 *6)) - (-4 *6 (-442 *5)) (-4 *5 (-1118)) (-5 *1 (-585 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) - (-5 *2 - (-656 - (-2 (|:| |eigval| (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4)))) - (|:| |eigmult| (-783)) - (|:| |eigvec| (-656 (-701 (-419 (-968 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-968 *4))))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1150 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1150 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462))))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1053)) (-5 *1 (-768))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1056 (-48))) - (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1191 (-48)))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1262 *5))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) - (-5 *2 (-656 (-959 *4))) (-5 *1 (-1232)) (-5 *3 (-959 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1118)) (-5 *2 (-624 *5)) - (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4))))) + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-389)) (-5 *1 (-207))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) + (-12 (-4 *4 (-463)) (-5 *2 - (-656 - (-2 (|:| |eigval| (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4)))) - (|:| |geneigvec| (-656 (-701 (-419 (-968 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-968 *4))))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-981))) (-5 *1 (-109))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-1067)) (-4 *2 (-1262 *4)) - (-5 *1 (-456 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-419 (-1191 (-326 *5)))) (-5 *3 (-1286 (-326 *5))) - (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1148 *5))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1053)) (-5 *1 (-768))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) + (-655 + (-2 (|:| |eigval| (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4)))) + (|:| |eigmult| (-782)) + (|:| |eigvec| (-655 (-700 (-418 (-967 *4)))))))) + (-5 *1 (-301 *4)) (-5 *3 (-700 (-418 (-967 *4))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) + (-12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-655 *5)) + (-5 *1 (-902 *4 *5)) (-4 *5 (-1235))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-3 (|:| |overq| (-1191 (-419 (-576)))) - (|:| |overan| (-1191 (-48))) (|:| -3422 (-112)))) - (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5))))) + (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) + (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) + (-5 *1 (-1193))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1239)) (-4 *5 (-1261 *3)) (-4 *6 (-1261 (-418 *5))) + (-5 *2 (-112)) (-5 *1 (-351 *4 *3 *5 *6)) (-4 *4 (-352 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1232))))) + (-12 + (-5 *3 + (-655 + (-2 (|:| -4422 (-782)) + (|:| |eqns| + (-655 + (-2 (|:| |det| *7) (|:| |rows| (-655 (-575))) + (|:| |cols| (-655 (-575)))))) + (|:| |fgb| (-655 *7))))) + (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) + (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-782)) + (-5 *1 (-939 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-171 (-227)))) (-5 *2 (-1052)) + (-5 *1 (-765))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-655 *6)) (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) + (-4 *3 (-567))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-995 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1195)) (-4 *5 (-442 *4)) - (-4 *4 (-1118)) (-5 *1 (-585 *4 *5))))) + (-12 (-5 *3 (-782)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4)) + (-4 *4 (-359))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-325 (-227))) (-5 *4 (-1194)) + (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-325 (-227))) (-5 *4 (-1194)) + (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-309))))) +(((*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-840))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-419 (-968 *6)) (-1184 (-1195) (-968 *6)))) - (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *6))))) - (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-968 *6)))))) + (-12 (-5 *3 (-3 (-418 (-967 *6)) (-1183 (-1194) (-967 *6)))) + (-5 *5 (-782)) (-4 *6 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *6))))) + (-5 *1 (-301 *6)) (-5 *4 (-700 (-418 (-967 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-419 (-968 *5)) (-1184 (-1195) (-968 *5)))) - (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) - (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-968 *5))))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-107 *3))))) + (-2 (|:| |eigval| (-3 (-418 (-967 *5)) (-1183 (-1194) (-967 *5)))) + (|:| |eigmult| (-782)) (|:| |eigvec| (-655 *4)))) + (-4 *5 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *5))))) + (-5 *1 (-301 *5)) (-5 *4 (-700 (-418 (-967 *5))))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-782)) (-4 *6 (-1117)) (-4 *7 (-913 *6)) + (-5 *2 (-700 *7)) (-5 *1 (-703 *6 *7 *3 *4)) (-4 *3 (-383 *7)) + (-4 *4 (-13 (-383 *6) (-10 -7 (-6 -4460))))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) + (-4 *4 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-441 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1109 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7)) + (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) + (-4 *1 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) + (-4 *1 (-1088 *4 *5 *6 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1213))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-567)) + (-4 *8 (-964 *7 *5 *6)) + (-5 *2 (-2 (|:| -2398 (-782)) (|:| -1754 *3) (|:| |radicand| *3))) + (-5 *1 (-968 *5 *6 *7 *8 *3)) (-5 *4 (-782)) + (-4 *3 + (-13 (-373) + (-10 -8 (-15 -2883 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $)))))))) +(((*1 *1 *1) + (-12 (-4 *2 (-463)) (-4 *3 (-861)) (-4 *4 (-804)) + (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066)) + (-5 *1 (-1178 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) + (-14 *4 (-1194)) (-14 *5 *3)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-655 (-655 (-655 *4)))) (-5 *3 (-655 *4)) (-4 *4 (-861)) + (-5 *1 (-1205 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373)))) + ((*1 *2 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4)) + (-4 *4 (-359))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-763))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) + (-4 *3 (-13 (-1117) (-34)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596))))) +(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)))) + ((*1 *2 *3) + (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) + (-4 *6 (-383 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3)) + (-4 *3 (-659 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3)) + (-4 *3 (-659 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066)))) + ((*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1195)) (-5 *1 (-548))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-419 (-1191 (-326 *3)))) (-4 *3 (-568)) - (-5 *1 (-1148 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-768))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1175 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416)))) - ((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-883 *3)) (-14 *3 (-576)))) - ((*1 *2 *1) - (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) - (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3))))) + (-12 (-5 *3 (-655 (-547))) (-5 *2 (-1194)) (-5 *1 (-547))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575))))) +(((*1 *1 *1) (-4 *1 (-556)))) +(((*1 *2 *3) + (-12 (-5 *3 (-936)) + (-5 *2 + (-3 (-1190 *4) + (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137))))))) + (-5 *1 (-356 *4)) (-4 *4 (-359))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1191 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1262 *5))))) + (-12 (-5 *2 (-429 (-1190 *1))) (-5 *1 (-325 *4)) (-5 *3 (-1190 *1)) + (-4 *4 (-463)) (-4 *4 (-567)) (-4 *4 (-1117)))) + ((*1 *2 *3) + (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1))))) +(((*1 *1 *1 *1) (-4 *1 (-772)))) (((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287)))) + (-12 (-5 *3 (-936)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1286)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *1 *2) - (-12 (-5 *2 (-937)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1067)) - (-4 *4 (-1236)))) - ((*1 *1 *2) - (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) - (-4 *5 (-244 (-2872 *3) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -4318 *2) (|:| -1359 *5)) - (-2 (|:| -4318 *2) (|:| -1359 *5)))) - (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) - (-4 *7 (-965 *4 *5 (-876 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232))))) -(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) + (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3) + (-12 (-4 *4 (-861)) (-5 *2 (-655 (-655 *4))) (-5 *1 (-1205 *4)) + (-5 *3 (-655 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-502)) (-5 *2 (-702 (-590))) (-5 *1 (-590))))) +(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1216))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-419 (-968 *5)) (-1184 (-1195) (-968 *5)))) - (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-968 *5))))))) + (-12 (-5 *3 (-418 (-967 (-171 (-575))))) (-5 *2 (-655 (-171 *4))) + (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-655 (-418 (-967 (-171 (-575)))))) + (-5 *4 (-655 (-1194))) (-5 *2 (-655 (-655 (-171 *5)))) + (-5 *1 (-388 *5)) (-4 *5 (-13 (-373) (-859)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-980))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1176) (-785))) (-5 *1 (-115))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-815 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1220) (-974)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-463))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1194)) (-4 *5 (-1239)) (-4 *6 (-1261 *5)) + (-4 *7 (-1261 (-418 *6))) (-5 *2 (-655 (-967 *5))) + (-5 *1 (-351 *4 *5 *6 *7)) (-4 *4 (-352 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1194)) (-4 *1 (-352 *4 *5 *6)) (-4 *4 (-1239)) + (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-4 *4 (-373)) + (-5 *2 (-655 (-967 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-873)))) + ((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-977))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1270 *3 *4 *5)) (-4 *3 (-373)) (-14 *4 (-1194)) + (-14 *5 *3) (-5 *1 (-328 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) + (|:| |lb| (-655 (-854 (-227)))) + (|:| |cf| (-655 (-325 (-227)))) + (|:| |ub| (-655 (-854 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-655 (-325 (-227)))) + (|:| -3474 (-655 (-227))))))) + (-5 *2 (-655 (-1176))) (-5 *1 (-275))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-766))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-968 *5)))) (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) - (-5 *1 (-1147 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) - (-5 *1 (-1147 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1053)) (-5 *1 (-768))))) -(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) - ((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-1175 (-576)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-981))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115))))) + (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-625 (-904 (-575)))) + (-4 *5 (-898 (-575))) + (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-578 *5 *3)) (-4 *3 (-640)) + (-4 *3 (-13 (-27) (-1220) (-441 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1194)) (-5 *4 (-854 *2)) (-4 *2 (-1156)) + (-4 *2 (-13 (-27) (-1220) (-441 *5))) + (-4 *5 (-625 (-904 (-575)))) (-4 *5 (-898 (-575))) + (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) + (-5 *1 (-578 *5 *2))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-936)) (-4 *5 (-316)) (-4 *3 (-1261 *5)) + (-5 *2 (-2 (|:| |plist| (-655 *3)) (|:| |modulo| *5))) + (-5 *1 (-471 *5 *3)) (-5 *4 (-655 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) + ((*1 *1 *1) (|partial| -4 *1 (-733)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) + (-14 *4 *2)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1231 *3)) - (-5 *1 (-802 *3)) (-4 *3 (-992)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-112)) - (-5 *1 (-1231 *2)) (-4 *2 (-992))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1030))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-874)))) - ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-978))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-968 *4)))) (-4 *4 (-464)) - (-5 *2 (-656 (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4))))) - (-5 *1 (-302 *4))))) + (|partial| -12 (-5 *5 (-655 *4)) (-4 *4 (-373)) (-5 *2 (-1285 *4)) + (-5 *1 (-825 *4 *3)) (-4 *3 (-667 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) - (-5 *1 (-1147 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) - (-5 *1 (-1147 *5))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) - (-5 *1 (-768))))) + (|partial| -12 (-5 *4 (-418 *2)) (-4 *2 (-1261 *5)) + (-5 *1 (-818 *5 *2 *3 *6)) + (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) + (-4 *3 (-667 *2)) (-4 *6 (-667 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-655 (-418 *2))) (-4 *2 (-1261 *5)) + (-5 *1 (-818 *5 *2 *3 *6)) + (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2)) + (-4 *6 (-667 (-418 *2)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4232 *4))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4)))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1161)))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *1 *1) (-4 *1 (-175))) + ((*1 *1 *1) + (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117))))) (((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1262 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1030))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -4319 (-656 (-2 (|:| |irr| *10) (|:| -4435 (-576))))))) - (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-862)) (-4 *3 (-317)) - (-4 *10 (-965 *3 *9 *8)) (-4 *9 (-805)) - (-5 *2 - (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) - (|:| |corrfact| (-656 (-1191 *3))))) - (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1191 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1103))) (-5 *1 (-301))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) - (-5 *1 (-1147 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1147 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-968 *5)))) (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) - (-5 *1 (-1147 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-304 (-419 (-968 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1147 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) - (-5 *1 (-1147 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-419 (-968 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1147 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-968 *5))))) (-5 *4 (-656 (-1195))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) - (-5 *1 (-1147 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-304 (-419 (-968 *4))))) - (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) - (-5 *1 (-1147 *4))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-874))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-862)) - (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) - (-4 *8 (-965 *3 *7 *6))))) + (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) + (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-655 *4))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1122))) (-5 *1 (-301))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1236)) - (-4 *5 (-384 *4)) (-4 *3 (-384 *4))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-874))))) +(((*1 *2 *3) + (-12 (-4 *4 (-924)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-429 (-1190 *7))) + (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5))) + (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5))))) +(((*1 *1) (-4 *1 (-359)))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) + (-5 *2 (-1052)) (-5 *1 (-766)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-399)) + (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1190 (-967 *4))) (-5 *1 (-427 *3 *4)) + (-4 *3 (-428 *4)))) + ((*1 *2) + (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-4 *3 (-373)) + (-5 *2 (-1190 (-967 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-1224 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) - (-5 *3 (-576)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) + (-12 (-5 *2 (-418 (-575))) (-5 *1 (-118 *4)) (-14 *4 *3) + (-5 *3 (-575)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-883 *4)) (-14 *4 *3) - (-5 *3 (-576)))) + (-12 (-5 *2 (-418 (-575))) (-5 *1 (-882 *4)) (-14 *4 *3) + (-5 *3 (-575)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-884 *4 *5)) - (-5 *3 (-576)) (-4 *5 (-881 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-419 (-576))))) + (-12 (-14 *4 *3) (-5 *2 (-418 (-575))) (-5 *1 (-883 *4 *5)) + (-5 *3 (-575)) (-4 *5 (-880 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1029)) (-5 *2 (-418 (-575))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-13 (-860) (-374))) - (-4 *3 (-1262 *2)))) + (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-13 (-859) (-373))) + (-4 *3 (-1261 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2884 (*2 (-1195)))) - (-4 *2 (-1067))))) + (-12 (-4 *1 (-1263 *2 *3)) (-4 *3 (-803)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2883 (*2 (-1194)))) + (-4 *2 (-1066))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1052)) (-5 *1 (-759))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) + (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) + (-5 *1 (-799))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *2 (-1127 *3 *4 *5 *6))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-301))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2))))) + (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-373) (-311) + (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) + (-15 -1608 ((-1142 *3 (-623 $)) $)) + (-15 -2883 ($ (-1142 *3 (-623 $)))))))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-655 (-1190 *13))) (-5 *3 (-1190 *13)) + (-5 *4 (-655 *12)) (-5 *5 (-655 *10)) (-5 *6 (-655 *13)) + (-5 *7 (-655 (-655 (-2 (|:| -1925 (-782)) (|:| |pcoef| *13))))) + (-5 *8 (-655 (-782))) (-5 *9 (-1285 (-655 (-1190 *10)))) + (-4 *12 (-861)) (-4 *10 (-316)) (-4 *13 (-964 *10 *11 *12)) + (-4 *11 (-804)) (-5 *1 (-718 *11 *12 *10 *13))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1195))) (-5 *1 (-212)) - (-5 *3 (-1195)))) + (-12 (-5 *4 (-782)) (-5 *2 (-655 (-1194))) (-5 *1 (-212)) + (-5 *3 (-1194)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1195))) - (-5 *1 (-276)))) + (-12 (-5 *3 (-325 (-227))) (-5 *4 (-782)) (-5 *2 (-655 (-1194))) + (-5 *1 (-275)))) ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-656 *3)))) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *2 (-655 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) + (-12 (-5 *2 (-655 *3)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-830 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) ((*1 *2 *1) - (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) - (-5 *2 (-656 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) - ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1053)) - (-5 *1 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *2 (-656 (-227))) - (-5 *1 (-480))))) + (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) + (-5 *2 (-655 *3))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-1231 *3)) - (-4 *3 (-992))))) + (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-655 (-655 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-655 (-655 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-655 (-655 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1117))))) (((*1 *2 *1) - (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1028 *3))))) + (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-298 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1261 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-722 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1261 *3)) (-5 *1 (-723 *3 *2)) (-4 *3 (-1066)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-726 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575))))) +(((*1 *2 *3) + (-12 (-5 *3 (-303 (-967 (-575)))) + (-5 *2 + (-2 (|:| |varOrder| (-655 (-1194))) + (|:| |inhom| (-3 (-655 (-1285 (-782))) "failed")) + (|:| |hom| (-655 (-1285 (-782)))))) + (-5 *1 (-241))))) +(((*1 *2) + (-12 + (-5 *2 + (-1285 (-655 (-2 (|:| -4182 (-925 *3)) (|:| -4317 (-1137)))))) + (-5 *1 (-361 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) + ((*1 *2) + (-12 (-5 *2 (-1285 (-655 (-2 (|:| -4182 *3) (|:| -4317 (-1137)))))) + (-5 *1 (-362 *3 *4)) (-4 *3 (-359)) (-14 *4 (-3 (-1190 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1285 (-655 (-2 (|:| -4182 *3) (|:| -4317 (-1137)))))) + (-5 *1 (-363 *3 *4)) (-4 *3 (-359)) (-14 *4 (-936))))) (((*1 *2 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-301)) (-5 *1 (-169))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-656 (-981))) (-5 *1 (-301))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1053)) (-5 *1 (-767))))) + (|partial| -12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066)) + (-4 *2 (-1276 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) - ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) + (-12 (-4 *4 (-359)) (-5 *2 (-973 (-1190 *4))) (-5 *1 (-367 *4)) + (-5 *3 (-1190 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-300)) (-5 *1 (-169))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1052)) + (-5 *1 (-760))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1176)) (-5 *4 (-171 (-227))) (-5 *5 (-575)) + (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3926 *3))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-655 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-441 *4) (-1019))) (-4 *4 (-567)) + (-5 *1 (-284 *4 *2))))) +(((*1 *2) + (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) + (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-325 (-227))) (-5 *1 (-212))))) (((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)))) - ((*1 *1) (-4 *1 (-1170)))) -(((*1 *2 *1) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-992))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-576))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1221) (-975) (-29 *4)))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-981))) (-5 *1 (-301))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) - ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933))))) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)))) + ((*1 *1) (-4 *1 (-1169)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-659 *3)) (-4 *3 (-1066)) + (-5 *1 (-725 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-847 *3))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) + (-5 *2 (-1052)) (-5 *1 (-763))))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *1) (-5 *1 (-517)))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-682)))) + ((*1 *2 *1) + (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1118 *3 *4)) (-14 *3 (-936)) + (-14 *4 (-936))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1118)) - (-4 *4 (-568)) (-5 *2 (-419 (-1191 *1))))) + (-12 (-5 *3 (-623 *1)) (-4 *1 (-441 *4)) (-4 *4 (-1117)) + (-4 *4 (-567)) (-5 *2 (-418 (-1190 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-1191 (-419 (-1191 *3)))) (-5 *1 (-572 *6 *3 *7)) - (-5 *5 (-1191 *3)) (-4 *7 (-1118)))) + (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-441 *6) (-27) (-1220))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 (-1190 (-418 (-1190 *3)))) (-5 *1 (-571 *6 *3 *7)) + (-5 *5 (-1190 *3)) (-4 *7 (-1117)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1282 *5)) (-14 *5 (-1195)) (-4 *6 (-1067)) - (-5 *2 (-1259 *5 (-968 *6))) (-5 *1 (-963 *5 *6)) (-5 *3 (-968 *6)))) + (-12 (-5 *4 (-1281 *5)) (-14 *5 (-1194)) (-4 *6 (-1066)) + (-5 *2 (-1258 *5 (-967 *6))) (-5 *1 (-962 *5 *6)) (-5 *3 (-967 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-1191 *3)))) + (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-1190 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-1191 *1)) - (-4 *1 (-965 *4 *5 *3)))) + (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-1190 *1)) + (-4 *1 (-964 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1067)) - (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-419 (-1191 *3))) - (-5 *1 (-966 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-1066)) + (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-418 (-1190 *3))) + (-5 *1 (-965 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) + (-13 (-373) + (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1191 *3)) + (-12 (-5 *2 (-1190 *3)) (-4 *3 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))) - (-4 *7 (-965 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-862)) - (-4 *6 (-1067)) (-5 *1 (-966 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) (-4 *5 (-568)) - (-5 *2 (-419 (-1191 (-419 (-968 *5))))) (-5 *1 (-1061 *5)) - (-5 *3 (-419 (-968 *5)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) - (-5 *2 (-1053)) (-5 *1 (-767))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) + (-13 (-373) + (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))) + (-4 *7 (-964 *6 *5 *4)) (-4 *5 (-804)) (-4 *4 (-861)) + (-4 *6 (-1066)) (-5 *1 (-965 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) (-4 *5 (-567)) + (-5 *2 (-418 (-1190 (-418 (-967 *5))))) (-5 *1 (-1060 *5)) + (-5 *3 (-418 (-967 *5)))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-112)) + (-5 *2 (-1052)) (-5 *1 (-756))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1285 *5)) (-5 *3 (-782)) (-5 *4 (-1137)) (-4 *5 (-359)) + (-5 *1 (-539 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *1 *1) (-4 *1 (-294))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *1 *1) (-4 *1 (-293))) ((*1 *2 *3) - (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) - (-5 *2 (-656 (-2 (|:| -1755 (-783)) (|:| |logand| *4)))) - (-5 *1 (-330 *4)))) + (-12 (-5 *3 (-429 *4)) (-4 *4 (-567)) + (-5 *2 (-655 (-2 (|:| -1754 (-782)) (|:| |logand| *4)))) + (-5 *1 (-329 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) ((*1 *2 *1) - (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) + (-12 (-5 *2 (-675 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576))))) - (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))) + (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575))))) + (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) - (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) + (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4)) + (-4 *4 (-728 (-418 (-575)))) (-4 *3 (-861)) (-4 *4 (-174))))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) ((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)))) - ((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-148) (-27) (-1056 (-576)) (-1056 (-419 (-576))))) - (-4 *5 (-1262 *4)) (-5 *2 (-1191 (-419 *5))) (-5 *1 (-627 *4 *5)) - (-5 *3 (-419 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-148) (-27) (-1056 (-576)) (-1056 (-419 (-576))))) - (-5 *2 (-1191 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) - (-5 *2 (-1053)) (-5 *1 (-767)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) - (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) - ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) - (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-656 *9)))) - (-5 *3 (-656 *9)) (-4 *1 (-1229 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-656 *8)))) - (-5 *3 (-656 *8)) (-4 *1 (-1229 *5 *6 *7 *8))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) - (-5 *2 (-112))))) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)))) + ((*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-936)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-803)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-418 (-575))) (-4 *1 (-1266 *3)) (-4 *3 (-1066))))) +(((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1118)) (-4 *2 (-1118)) - (-5 *1 (-623 *2 *4))))) + (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-428 *4))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) + ((*1 *1 *1) (|partial| -4 *1 (-733)))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1221) (-1020))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2))) - (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240)) - (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-112))))) + (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) + (-4 *4 (-359))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-737) (-25)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-936))) (-5 *4 (-920 (-575))) + (-5 *2 (-700 (-575))) (-5 *1 (-601)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-936))) (-5 *2 (-655 (-700 (-575)))) + (-5 *1 (-601)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-936))) (-5 *4 (-655 (-920 (-575)))) + (-5 *2 (-655 (-700 (-575)))) (-5 *1 (-601))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3))))) + (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-840)) (-5 *3 (-1176))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) - ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) - (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767))))) + (-12 (-5 *3 (-575)) (|has| *1 (-6 -4451)) (-4 *1 (-415)) + (-5 *2 (-936))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-936)) (-5 *2 (-479)) (-5 *1 (-1286))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-762))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1286 (-1286 (-576)))) (-5 *1 (-478))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *6))))) + (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4)) + (-4 *4 (-1066))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-700 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) + (-5 *7 (-700 (-575))) + (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-764))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-378)) (-4 *2 (-1117))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-655 *1)) (-4 *1 (-935))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4462)) (-4 *1 (-1028 *3)) - (-4 *3 (-1236))))) + (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1285 *4)) (-5 *3 (-700 *4)) (-4 *4 (-373)) + (-5 *1 (-678 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-373)) + (-4 *5 (-13 (-383 *4) (-10 -7 (-6 -4461)))) + (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461)))) + (-5 *1 (-679 *4 *5 *2 *3)) (-4 *3 (-698 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-655 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-373)) + (-5 *1 (-825 *2 *3)) (-4 *3 (-667 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1118))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2))) - (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240)) - (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3))))) + (-12 (-5 *3 (-700 *2)) (-4 *4 (-1261 *2)) + (-4 *2 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) + (-5 *1 (-510 *2 *4 *5)) (-4 *5 (-420 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (-4 *2 (-1066))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) + (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1052)) (-5 *1 (-764))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-418 (-575))))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1053)) (-5 *1 (-767))))) + (-12 (-5 *2 (-429 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) + (-5 *1 (-122 *3)) (-4 *3 (-861)))) + ((*1 *2 *2) + (-12 (-5 *2 (-597 *4)) (-4 *4 (-13 (-29 *3) (-1220))) + (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-594 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-597 (-418 (-967 *3)))) + (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-600 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373)) + (-5 *2 (-2 (|:| -1500 *3) (|:| |special| *3))) (-5 *1 (-738 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1285 *5)) (-4 *5 (-373)) (-4 *5 (-1066)) + (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) + (-5 *3 (-655 (-700 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1285 (-1285 *5))) (-4 *5 (-373)) (-4 *5 (-1066)) + (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) + (-5 *3 (-655 (-700 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-655 *1)) (-4 *1 (-1161)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-655 *1)) (-4 *1 (-1161))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) - ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933))))) + (-12 (-4 *4 (-1066)) + (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) + (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-936)) (-4 *5 (-1066)) + (-4 *2 (-13 (-415) (-1055 *5) (-373) (-1220) (-293))) + (-5 *1 (-454 *5 *3 *2)) (-4 *3 (-1261 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 (-1286 (-576)))) (-5 *3 (-937)) (-5 *1 (-478))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) - (-5 *2 (-2 (|:| -2459 (-656 *6)) (|:| -2980 (-656 *6))))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1028 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1221)))) - ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1118))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1240)) - (-4 *6 (-1262 (-419 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-353 *4 *5 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-233 *4)) - (-4 *4 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-783)))) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-316)) (-5 *1 (-181 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) + (-5 *2 (-1052)) (-5 *1 (-767))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-655 (-1285 *4))) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) + (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567)) + (-5 *2 (-655 (-1285 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-782)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) - (-4 *4 (-1236)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *1 (-271 *4)) + (-4 *4 (-1235)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-271 *3)) (-4 *3 (-1235)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)) - (-4 *4 (-1262 *3)))) + (-12 (-5 *2 (-782)) (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *4)) + (-4 *4 (-1261 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-374) (-148))) (-5 *1 (-411 *2 *3)) - (-4 *3 (-1262 *2)))) - ((*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)))) + (-12 (-4 *2 (-13 (-373) (-148))) (-5 *1 (-410 *2 *3)) + (-4 *3 (-1261 *2)))) + ((*1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236)))) + (-12 (-4 *1 (-908 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1235)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-916 *4)) - (-4 *4 (-1118)))) + (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 (-782))) (-4 *1 (-915 *4)) + (-4 *4 (-1117)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-916 *2)) (-4 *2 (-1118)))) + (-12 (-5 *3 (-782)) (-4 *1 (-915 *2)) (-4 *2 (-1117)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-916 *3)) (-4 *3 (-1118))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-576)) (-5 *2 (-112))))) + (-12 (-5 *2 (-655 *3)) (-4 *1 (-915 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-575)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) + (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) + (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *2 (-575)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 - (-2 (|:| |solns| (-656 *5)) - (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1146 *3 *5)) (-4 *3 (-1262 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) - (-5 *1 (-767))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-805)) - (-4 *6 (-568)) (-4 *7 (-965 *6 *5 *3)) - (-5 *1 (-474 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1056 (-419 (-576))) (-374) - (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) - (-15 -1608 (*7 $)))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112)))) + (-12 (-5 *3 (-502)) (-5 *4 (-969)) (-5 *2 (-702 (-544))) + (-5 *1 (-544)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-969)) (-4 *3 (-1117)) (-5 *2 (-702 *1)) + (-4 *1 (-778 *3))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1117)) (-4 *2 (-913 *5)) (-5 *1 (-703 *5 *2 *3 *4)) + (-4 *3 (-383 *2)) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460))))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))) +(((*1 *1) + (-12 (-4 *3 (-1117)) (-5 *1 (-897 *2 *3 *4)) (-4 *2 (-1117)) + (-4 *4 (-677 *3)))) + ((*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942))))) +(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-885)))) + ((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) + (-5 *1 (-766))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3)))))) +(((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))) + ((*1 *1 *1 *1) (-4 *1 (-1156)))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) + (-5 *2 (-854 *4)) (-5 *1 (-322 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194)) + (-14 *6 *4))) ((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112))))) + (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) + (-5 *2 (-854 *4)) (-5 *1 (-1271 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194)) + (-14 *6 *4)))) +(((*1 *1) (-5 *1 (-608)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) (-5 *3 (-575))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) + ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1066)) (-5 *1 (-723 *3 *2)) (-4 *2 (-1261 *3))))) +(((*1 *2) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) - (-4 *3 (-568)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) + (-12 (-5 *2 (-112)) (-5 *1 (-429 *3)) (-4 *3 (-556)) (-4 *3 (-567)))) + ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (-12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) - (-4 *3 (-1118)))) + (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) - (-4 *3 (-1118)))) + (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (-12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3)) - (-4 *3 (-1056 *2))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1118))))) -(((*1 *1) - (-12 (-4 *3 (-1118)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1118)) - (-4 *4 (-678 *3)))) - ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1195)) (-4 *5 (-1240)) (-4 *6 (-1262 *5)) - (-4 *7 (-1262 (-419 *6))) (-5 *2 (-656 (-968 *5))) - (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1195)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240)) - (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *4 (-374)) - (-5 *2 (-656 (-968 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1286 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) - (-5 *1 (-679 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-374)) - (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4462)))) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))) - (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) - (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-767))))) -(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1025 *3)) (-4 *3 (-1055 (-418 (-575))))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117))))) +(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1204))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3) + (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) + (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-352 *4 *5 *6)) (-4 *4 (-1239)) + (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) + (-5 *2 (-2 (|:| |num| (-700 *5)) (|:| |den| *5)))))) (((*1 *2 *1) - (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) - (-14 *6 - (-1 (-112) (-2 (|:| -4318 *5) (|:| -1359 *2)) - (-2 (|:| -4318 *5) (|:| -1359 *2)))) - (-4 *2 (-244 (-2872 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-862)) (-4 *7 (-965 *4 *2 (-876 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1262 (-171 *3)))))) + (-12 (-5 *2 (-2 (|:| |cd| (-1176)) (|:| -1777 (-1176)))) + (-5 *1 (-833))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1261 *3)) (-5 *1 (-410 *3 *2)) + (-4 *3 (-13 (-373) (-148)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) + (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6))) + (-5 *1 (-639 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389)))) + ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-575)) (-5 *1 (-1174 *3)) (-4 *3 (-1235)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-373) (-1220) (-1019)))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1198))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1229 *5 *6 *7 *3)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112))))) + (-12 (-5 *3 (-575)) (-4 *1 (-332 *4 *2)) (-4 *4 (-1117)) + (-4 *2 (-132))))) +(((*1 *2 *3) + (-12 (-4 *4 (-359)) (-5 *2 (-429 (-1190 (-1190 *4)))) + (-5 *1 (-1233 *4)) (-5 *3 (-1190 (-1190 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936)))) + ((*1 *1 *1 *1) (-5 *1 (-1240))) ((*1 *1 *1 *1) (-5 *1 (-1241))) + ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1194)) (-5 *2 (-1 (-1190 (-967 *4)) (-967 *4))) + (-5 *1 (-1293 *4)) (-4 *4 (-373))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-782)) (-5 *3 (-958 *4)) (-4 *1 (-1151 *4)) + (-4 *4 (-1066)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-782)) (-5 *4 (-958 (-227))) (-5 *2 (-1290)) + (-5 *1 (-1287))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2665 (-575))))) + (-5 *1 (-371 *3)) (-4 *3 (-1117)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))) + (-12 (-4 *1 (-396 *3)) (-4 *3 (-1117)) + (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2665 (-782))))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1026 *3)) (-4 *3 (-1056 (-419 (-576))))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-5 *2 (-112))))) + (-12 (-5 *2 (-655 (-2 (|:| -2353 *3) (|:| -2398 (-575))))) + (-5 *1 (-429 *3)) (-4 *3 (-567))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-655 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1228 *5 *6 *7 *8)) (-4 *5 (-567)) + (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235))))) (((*1 *2) - (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) - (-4 *3 (-353 *4 *5 *6)))) + (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-924)) + (-5 *1 (-468 *3 *4 *2 *5)) (-4 *5 (-964 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1175 *7))) (-4 *6 (-862)) - (-4 *7 (-965 *5 (-543 *6) *6)) (-4 *5 (-1067)) - (-5 *2 (-1 (-1175 *7) *7)) (-5 *1 (-1144 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-767))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-937))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))) -(((*1 *2 *1) - (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) - (-4 *5 (-244 (-2872 *3) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -4318 *2) (|:| -1359 *5)) - (-2 (|:| -4318 *2) (|:| -1359 *5)))) - (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-965 *4 *5 (-876 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) + (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-924)) + (-5 *1 (-921 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-924)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1261 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) - (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) - (-4 *3 (-1118)))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) - (-4 *3 (-1118)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) + (-14 *4 (-655 (-1194))))) ((*1 *2 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3)) (-4 *3 (-1056 *2))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 - (|:| -4169 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -3180 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1175 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1908 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571)))) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1235)))) ((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236)) - (-5 *2 (-656 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) + (-14 *4 (-655 (-1194))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-861))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *1 *1) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) + ((*1 *1 *1) (-5 *1 (-389))) ((*1 *1) (-5 *1 (-389)))) +(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *1 *1) (-4 *1 (-1156)))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3800 *1) (|:| -4447 *1) (|:| |associate| *1))) + (-4 *1 (-567))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) - (-5 *1 (-1142 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-767))))) -(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) + (-12 (-4 *3 (-567)) (-4 *4 (-1009 *3)) (-5 *1 (-143 *3 *4 *2)) + (-4 *2 (-383 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-656 (-1195))) (-4 *2 (-174)) - (-4 *4 (-244 (-2872 *5) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -4318 *3) (|:| -1359 *4)) - (-2 (|:| -4318 *3) (|:| -1359 *4)))) - (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) - (-4 *7 (-965 *2 *4 (-876 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1262 (-171 *3)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236)) - (-5 *2 (-112))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-374)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) - (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1262 *2)) - (-4 *5 (-1262 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) - (-4 *6 (-353 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-374)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))) - (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) - (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) - (-4 *1 (-346 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1142 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-767))))) -(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) + (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) (-4 *2 (-383 *4)) + (-5 *1 (-514 *4 *5 *2 *3)) (-4 *3 (-383 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-656 (-1195))) (-4 *2 (-174)) - (-4 *3 (-244 (-2872 *4) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -4318 *5) (|:| -1359 *3)) - (-2 (|:| -4318 *5) (|:| -1359 *3)))) - (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) - (-4 *7 (-965 *2 *3 (-876 *4)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) - (-5 *2 (-656 (-2 (|:| -4319 (-656 *3)) (|:| -3085 *5)))) - (-5 *1 (-183 *5 *3)) (-4 *3 (-1262 (-171 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-860))) - (-5 *2 (-656 (-2 (|:| -4319 (-656 *3)) (|:| -3085 *4)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) + (-12 (-5 *3 (-700 *5)) (-4 *5 (-1009 *4)) (-4 *4 (-567)) + (-5 *2 (-700 *4)) (-5 *1 (-704 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-4 *4 (-1009 *3)) (-5 *1 (-1254 *3 *4 *2)) + (-4 *2 (-1261 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-958 (-227)) (-227) (-227))) + (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-261))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) + (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1024))))) + (-12 (-5 *3 (-958 *5)) (-4 *5 (-1066)) (-5 *2 (-782)) + (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 (-782))) (-5 *3 (-782)) (-5 *1 (-1182 *4 *5)) + (-14 *4 (-936)) (-4 *5 (-1066)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 (-782))) (-5 *3 (-958 *5)) (-4 *5 (-1066)) + (-5 *1 (-1182 *4 *5)) (-14 *4 (-936))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-967 (-575)))) (-5 *1 (-448)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1194)) (-5 *4 (-700 (-227))) (-5 *2 (-1121)) + (-5 *1 (-770)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1194)) (-5 *4 (-700 (-575))) (-5 *2 (-1121)) + (-5 *1 (-770))))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236)) - (-5 *2 (-656 *3))))) + (-12 (-4 *3 (-1066)) (-5 *2 (-655 *1)) (-4 *1 (-1151 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937)))) - ((*1 *1 *1 *1) (-5 *1 (-1241))) ((*1 *1 *1 *1) (-5 *1 (-1242))) - ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244)))) + (-12 (-5 *2 (-2 (|:| |var| (-655 (-1194))) (|:| |pred| (-52)))) + (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215))))) (((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1142 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-767))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) - (-5 *1 (-932 *3 *4 *5 *2)) (-4 *2 (-965 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *6 *4 *5)) - (-5 *1 (-932 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-317))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-656 *3)) (-5 *5 (-937)) (-4 *3 (-1262 *4)) - (-4 *4 (-317)) (-5 *1 (-472 *4 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) - (-4 *3 (-1262 (-171 (-576)))) (-4 *4 (-13 (-374) (-860))))) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1190 (-575))) (-5 *2 (-575)) (-5 *1 (-957))))) +(((*1 *2 *2) + (-12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) + (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1229 *4 *5 *6 *7)) - (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4461)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1118)) - (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) -(((*1 *1 *1) (-5 *1 (-227))) + (-12 (-4 *4 (-567)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) + (-4 *7 (-1009 *4)) (-4 *2 (-698 *7 *8 *9)) + (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-698 *4 *5 *6)) + (-4 *8 (-383 *7)) (-4 *9 (-383 *7)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) - ((*1 *1 *1) (-5 *1 (-390))) ((*1 *1) (-5 *1 (-390)))) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2)) (-4 *2 (-316)))) + ((*1 *2 *2) + (-12 (-4 *3 (-316)) (-4 *3 (-174)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) + (-4 *2 (-698 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *4 (-1066)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-316))))) +(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1285 *1)) (-4 *1 (-377 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *3 (-567))))) +(((*1 *1 *1) (-4 *1 (-556)))) (((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1142 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-767))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-930 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-931 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-430 (-968 *6))) (-5 *5 (-1195)) (-5 *3 (-968 *6)) - (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-931 *6))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-937)) (-4 *5 (-317)) (-4 *3 (-1262 *5)) - (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) - (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1229 *5 *6 *7 *8)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) - (-5 *1 (-1023))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1118)) - (-4 *2 (-862))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) + (|partial| -12 (-5 *3 (-700 *1)) (-4 *1 (-359)) (-5 *2 (-1285 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-700 *1)) (-4 *1 (-146)) (-4 *1 (-924)) + (-5 *2 (-1285 *1))))) +(((*1 *2 *2) (-12 (-5 *2 (-1174 (-655 (-936)))) (-5 *1 (-895))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-575))) (-5 *5 (-1 (-1174 *4))) (-4 *4 (-373)) + (-4 *4 (-1066)) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))) - ((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1142 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-767))))) -(((*1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *5)) (-4 *5 (-1262 *3)) (-4 *3 (-317)) - (-5 *2 (-112)) (-5 *1 (-467 *3 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5))))) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-575)) + (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1080)) (-5 *3 (-1176))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) + (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576))))) + (|partial| -12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) + (-5 *2 (-112)) (-5 *1 (-1004 *3 *4 *5 *6)) + (-4 *6 (-964 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) + (-4 *4 (-13 (-1117) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-655 (-655 (-655 *4)))) (-5 *2 (-655 (-655 *4))) + (-4 *4 (-861)) (-5 *1 (-1205 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-782)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1066)) + (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) + (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) + ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) + ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) + (-5 *2 + (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) + (|:| |success| (-112)))) + (-5 *1 (-800)) (-5 *5 (-575))))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1118)) - (-4 *2 (-862))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1067)) (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) - (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317))))) + (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1286 (-656 *3))) (-4 *4 (-317)) - (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-5 *5 (-655 *8)) + (-4 *7 (-861)) (-4 *8 (-1066)) (-4 *9 (-964 *8 *6 *7)) + (-4 *6 (-804)) (-5 *2 (-1190 *8)) (-5 *1 (-330 *6 *7 *8 *9))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1066)) + (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) + (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-171 (-227)))) + (-5 *2 (-1052)) (-5 *1 (-765))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) + (-5 *2 (-1052)) (-5 *1 (-762))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1221) (-1020)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5))))) + (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-418 *5)) + (|:| |c2| (-418 *5)) (|:| |deg| (-782)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576))))) + (-12 (-5 *2 (-655 (-1221 *3))) (-5 *1 (-1221 *3)) (-4 *3 (-1117))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3)) + (-4 *3 (-13 (-373) (-148) (-1055 (-575)))) (-5 *1 (-579 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1236)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1118)) - (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-1200) (-783)))) (-5 *1 (-343))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1067)) (-5 *1 (-701 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *4)) (-4 *4 (-1067)) (-4 *1 (-1141 *3 *4 *5 *6)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1067)) - (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *2 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-767))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1262 *4)) - (-5 *2 (-1286 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1221) (-1020)))))) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-103 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-1127))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) + (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) + (-5 *1 (-799))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-429 *4)) (-4 *4 (-567))))) +(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1235)) (-5 *2 (-782))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-667 *3)) (-4 *3 (-1066)) (-4 *3 (-373)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-782)) (-5 *4 (-1 *5 *5)) (-4 *5 (-373)) + (-5 *1 (-670 *5 *2)) (-4 *2 (-667 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288))))) +(((*1 *1 *1 *1) (-4 *1 (-484))) ((*1 *1 *1 *1) (-4 *1 (-772)))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-1 (-655 *5) *6)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-4 *6 (-1261 *5)) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-664 (-418 *7))) (-5 *4 (-1 (-655 *6) *7)) + (-5 *5 (-1 (-429 *7) *7)) + (-4 *6 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-4 *7 (-1261 *6)) (-5 *2 (-655 (-418 *7))) (-5 *1 (-823 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-1 (-655 *5) *6)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-4 *6 (-1261 *5)) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 *7 (-418 *7))) (-5 *4 (-1 (-655 *6) *7)) + (-5 *5 (-1 (-429 *7) *7)) + (-4 *6 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-4 *7 (-1261 *6)) (-5 *2 (-655 (-418 *7))) (-5 *1 (-823 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-664 (-418 *5))) (-4 *5 (-1261 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-5 *2 (-655 (-418 *5))) (-5 *1 (-823 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-1 (-429 *6) *6)) + (-4 *6 (-1261 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 *5 (-418 *5))) (-4 *5 (-1261 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-5 *2 (-655 (-418 *5))) (-5 *1 (-823 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-1 (-429 *6) *6)) + (-4 *6 (-1261 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-758))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-804)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861)) + (-5 *2 (-112)) (-5 *1 (-460 *4 *5 *6 *7))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1182 3 *3)) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) + ((*1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1236)) (-5 *2 (-1291))))) -(((*1 *2 *1) (-12 (-5 *2 (-974 (-783))) (-5 *1 (-343))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3))))) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) + (-5 *2 (-655 (-655 (-655 (-782)))))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-782)) (-5 *1 (-598 *2)) (-4 *2 (-556))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 (-782))) (-5 *3 (-173)) (-5 *1 (-1182 *4 *5)) + (-14 *4 (-936)) (-4 *5 (-1066))))) (((*1 *2 *1) - (-12 (-4 *1 (-1141 *3 *4 *2 *5)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4)) - (-4 *2 (-244 *3 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1053)) (-5 *1 (-766))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-930 *3)) (-4 *3 (-317))))) + (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) + (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-621 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-700 (-227))) (-5 *6 (-700 (-575))) (-5 *3 (-575)) + (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-782)) (-4 *5 (-567)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) + (-4 *4 (-174))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-5 *1 (-448))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) + (-5 *2 (-655 (-2 (|:| -2458 *1) (|:| -2978 (-655 *7))))) + (-5 *3 (-655 *7)) (-4 *1 (-1228 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478))))) +(((*1 *2 *1) (-12 (-5 *2 (-429 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316))))) +(((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-1190 *3)) + (-4 *3 (-13 (-441 *6) (-27) (-1220))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 (-2 (|:| -1630 *3) (|:| |coeff| *3))) + (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-418 (-1190 *3))) + (-4 *3 (-13 (-441 *6) (-27) (-1220))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 (-2 (|:| -1630 *3) (|:| |coeff| *3))) + (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-317)) - (-5 *2 (-783)) (-5 *1 (-467 *5 *3))))) + (-12 (-5 *3 (-418 (-575))) (-5 *4 (-575)) (-5 *2 (-52)) + (-5 *1 (-1022))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1221) (-1020)))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5))))) + (-12 + (-5 *3 + (-655 + (-2 (|:| -4422 (-782)) + (|:| |eqns| + (-655 + (-2 (|:| |det| *7) (|:| |rows| (-655 (-575))) + (|:| |cols| (-655 (-575)))))) + (|:| |fgb| (-655 *7))))) + (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) + (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-782)) + (-5 *1 (-939 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-378))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-832)) (-5 *4 (-52)) (-5 *2 (-1290)) (-5 *1 (-842))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1195))) - (-4 *2 (-13 (-442 (-171 *5)) (-1020) (-1221))) (-4 *5 (-568)) - (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1020) (-1221)))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1236)) (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 *2)) (-4 *4 (-1262 *2)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) - (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-575)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-325 (-227))) (-5 *1 (-314)))) ((*1 *2 *1) - (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (-4 *2 (-1067))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1053)) (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-930 *3)) (-4 *3 (-317))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1898 (-656 *1)))) - (-4 *1 (-378 *3)))) - ((*1 *2) (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -1898 (-656 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) + (-5 *2 (-2 (|:| |num| (-904 *3)) (|:| |den| (-904 *3)))) + (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1221) (-1020)))))) + (-12 (-5 *3 (-655 (-623 *5))) (-4 *4 (-1117)) (-5 *2 (-623 *5)) + (-5 *1 (-584 *4 *5)) (-4 *5 (-441 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-567)) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *5 (-1083 *2 *3 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) + (-5 *2 (-655 (-1194))) (-5 *1 (-1093 *3 *4 *5)) + (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-494)) (-5 *1 (-220)))) + ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) + ((*1 *2 *1) (-12 (-5 *2 (-494)) (-5 *1 (-687)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-873) (-873) (-873))) (-5 *4 (-575)) (-5 *2 (-873)) + (-5 *1 (-660 *5 *6 *7)) (-4 *5 (-1117)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-873)) (-5 *1 (-865 *3 *4 *5)) (-4 *3 (-1066)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-873)))) + ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873)))) + ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-873)))) + ((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-873)) (-5 *1 (-1190 *3)) (-4 *3 (-1066))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *1) (-5 *1 (-834)))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) - (-4 *5 (-13 (-442 *4) (-1020) (-1221))) - (-4 *3 (-13 (-442 (-171 *4)) (-1020) (-1221)))))) + (-12 (-5 *2 (-2 (|:| -2539 (-575)) (|:| -3378 (-655 *3)))) + (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) + (-5 *2 (-1052)) (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-535))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-373) (-859))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1261 (-171 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-1 (-112) *8))) (-4 *8 (-1082 *5 *6 *7)) + (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8)))) + (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) + (-5 *2 (-1052)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-700 *8)) (-4 *8 (-964 *5 *7 *6)) + (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) + (-4 *7 (-804)) + (-5 *2 + (-655 + (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) + (|:| |wcond| (-655 (-967 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *5)))))))))) + (-5 *1 (-939 *5 *6 *7 *8)) (-5 *4 (-655 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-700 *8)) (-5 *4 (-655 (-1194))) (-4 *8 (-964 *5 *7 *6)) + (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) + (-4 *7 (-804)) + (-5 *2 + (-655 + (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) + (|:| |wcond| (-655 (-967 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *5)))))))))) + (-5 *1 (-939 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-700 *7)) (-4 *7 (-964 *4 *6 *5)) + (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) + (-4 *6 (-804)) + (-5 *2 + (-655 + (-2 (|:| |eqzro| (-655 *7)) (|:| |neqzro| (-655 *7)) + (|:| |wcond| (-655 (-967 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *4)))))))))) + (-5 *1 (-939 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-700 *9)) (-5 *5 (-936)) (-4 *9 (-964 *6 *8 *7)) + (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194)))) + (-4 *8 (-804)) + (-5 *2 + (-655 + (-2 (|:| |eqzro| (-655 *9)) (|:| |neqzro| (-655 *9)) + (|:| |wcond| (-655 (-967 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1285 (-418 (-967 *6)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *6)))))))))) + (-5 *1 (-939 *6 *7 *8 *9)) (-5 *4 (-655 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 (-1194))) (-5 *5 (-936)) + (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) + (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) + (-5 *2 + (-655 + (-2 (|:| |eqzro| (-655 *9)) (|:| |neqzro| (-655 *9)) + (|:| |wcond| (-655 (-967 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1285 (-418 (-967 *6)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *6)))))))))) + (-5 *1 (-939 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-700 *8)) (-5 *4 (-936)) (-4 *8 (-964 *5 *7 *6)) + (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) + (-4 *7 (-804)) + (-5 *2 + (-655 + (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) + (|:| |wcond| (-655 (-967 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *5)))))))))) + (-5 *1 (-939 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 *9)) (-5 *5 (-1176)) + (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) + (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575)) + (-5 *1 (-939 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 (-1194))) (-5 *5 (-1176)) + (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) + (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575)) + (-5 *1 (-939 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-700 *8)) (-5 *4 (-1176)) (-4 *8 (-964 *5 *7 *6)) + (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) + (-4 *7 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-700 *10)) (-5 *4 (-655 *10)) (-5 *5 (-936)) + (-5 *6 (-1176)) (-4 *10 (-964 *7 *9 *8)) (-4 *7 (-13 (-316) (-148))) + (-4 *8 (-13 (-861) (-625 (-1194)))) (-4 *9 (-804)) (-5 *2 (-575)) + (-5 *1 (-939 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-700 *10)) (-5 *4 (-655 (-1194))) (-5 *5 (-936)) + (-5 *6 (-1176)) (-4 *10 (-964 *7 *9 *8)) (-4 *7 (-13 (-316) (-148))) + (-4 *8 (-13 (-861) (-625 (-1194)))) (-4 *9 (-804)) (-5 *2 (-575)) + (-5 *1 (-939 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-700 *9)) (-5 *4 (-936)) (-5 *5 (-1176)) + (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) + (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575)) + (-5 *1 (-939 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1235)) (-5 *2 (-782))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-700 *4)) (-5 *3 (-936)) (|has| *4 (-6 (-4462 "*"))) + (-4 *4 (-1066)) (-5 *1 (-1045 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-655 (-700 *4))) (-5 *3 (-936)) + (|has| *4 (-6 (-4462 "*"))) (-4 *4 (-1066)) (-5 *1 (-1045 *4))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-575)) (-4 *3 (-174)) (-4 *5 (-383 *3)) + (-4 *6 (-383 *3)) (-5 *1 (-699 *3 *5 *6 *2)) + (-4 *2 (-698 *3 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) - (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + (-12 (-5 *3 (-1 *5 (-655 *5))) (-4 *5 (-1276 *4)) + (-4 *4 (-38 (-418 (-575)))) + (-5 *2 (-1 (-1174 *4) (-655 (-1174 *4)))) (-5 *1 (-1278 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4461)) (-4 *4 (-373)) (-4 *5 (-383 *4)) + (-4 *6 (-383 *4)) (-5 *2 (-655 *6)) (-5 *1 (-532 *4 *5 *6 *3)) + (-4 *3 (-698 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4461)) (-4 *4 (-567)) (-4 *5 (-383 *4)) + (-4 *6 (-383 *4)) (-4 *7 (-1009 *4)) (-4 *8 (-383 *7)) + (-4 *9 (-383 *7)) (-5 *2 (-655 *6)) + (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-698 *4 *5 *6)) + (-4 *10 (-698 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))) + (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-655 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) + (-4 *6 (-383 *4)) (-5 *2 (-655 *6)) (-5 *1 (-699 *4 *5 *6 *3)) + (-4 *3 (-698 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1053)) - (-5 *1 (-766))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1191 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1898 (-656 *1)))) - (-4 *1 (-378 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -1898 (-656 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1221) (-1020)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1020) (-1221))) - (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1020) (-1221)))))) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567)) + (-5 *2 (-655 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-834)) (-5 *1 (-833))))) +(((*1 *2 *1) (-12 (-4 *1 (-520 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-861))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-655 (-1194))) (-4 *2 (-174)) + (-4 *4 (-243 (-2871 *5) (-782))) + (-14 *6 + (-1 (-112) (-2 (|:| -4317 *3) (|:| -2398 *4)) + (-2 (|:| -4317 *3) (|:| -2398 *4)))) + (-5 *1 (-472 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) + (-4 *7 (-964 *2 *4 (-875 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))) - ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) + (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) + (-5 *2 (-1052)) (-5 *1 (-759))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) + (-4 *4 (-13 (-1117) (-34)))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -2435 *7) (|:| |sol?| (-112))) + (-575) *7)) + (-5 *6 (-655 (-418 *8))) (-4 *7 (-373)) (-4 *8 (-1261 *7)) + (-5 *3 (-418 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-585 *7 *8))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) + (-5 *2 (-1190 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1053)) (-5 *1 (-766))))) -(((*1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1286 (-1195))) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-937)) - (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-937)) - (-14 *6 (-656 *2)) (-14 *7 (-1286 (-701 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) - (-14 *6 (-1286 (-701 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-1195))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) - (-14 *6 (-1286 (-701 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1195)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-937)) (-14 *5 (-656 *2)) (-14 *6 (-1286 (-701 *3))))) - ((*1 *1) - (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-937)) - (-14 *4 (-656 (-1195))) (-14 *5 (-1286 (-701 *2)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1221) (-1020)))))) + (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) + (-5 *2 (-1190 *3))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3)) + (-4 *3 (-1117))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *10)) - (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1089 *5 *6 *7 *8)) - (-4 *10 (-1127 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6))) - (-5 *1 (-640 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1195))) - (-5 *2 - (-656 (-1164 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) - (-5 *1 (-640 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6))) - (-5 *1 (-1064 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1089 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1229 *4 *5 *6 *7))))) + (-12 (-5 *3 (-782)) (-5 *4 (-1285 *2)) (-4 *5 (-316)) + (-4 *6 (-1009 *5)) (-4 *2 (-13 (-420 *6 *7) (-1055 *6))) + (-5 *1 (-424 *5 *6 *7 *2)) (-4 *7 (-1261 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2)) + (-4 *2 (-1276 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3)) + (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2)) + (-4 *2 (-1276 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148))) + (-5 *1 (-1170 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-929 *3)) (-4 *3 (-316))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-979 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117))))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-575))) (-4 *3 (-1066)) (-5 *1 (-606 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-575))) (-4 *1 (-1245 *3)) (-4 *3 (-1066)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-575))) (-4 *1 (-1276 *3)) (-4 *3 (-1066))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 - (-2 (|:| -1359 (-783)) (|:| -1755 *5) (|:| |radicand| (-656 *5)))) - (-5 *1 (-330 *5)) (-5 *4 (-783)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-576))))) + (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) + (|:| |success| (-112)))) + (-5 *1 (-800)) (-5 *5 (-575))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1117)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1020) (-1221))) - (-5 *1 (-612 *4 *2 *3)) - (-4 *3 (-13 (-442 (-171 *4)) (-1020) (-1221)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3)))) - (-5 *1 (-905 *3)) (-4 *3 (-1118))))) + (|partial| -12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-797))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-655 *3)) (-5 *1 (-976 *3)) (-4 *3 (-556))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *1) + (-12 (-4 *1 (-706 *3)) (-4 *3 (-1117)) + (-5 *2 (-655 (-2 (|:| -3179 *3) (|:| -3925 (-782)))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1252 (-575))) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-662 *3)) (-4 *3 (-1235))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-873)))) (((*1 *2 *2) - (-12 (-4 *3 (-1262 (-419 (-576)))) (-5 *1 (-929 *3 *2)) - (-4 *2 (-1262 (-419 *3)))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1053)) (-5 *1 (-766))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-968 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) + (-14 *4 *2)))) +(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) + (-5 *2 (-655 (-967 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-655 (-967 *4))) (-5 *1 (-427 *3 *4)) + (-4 *3 (-428 *4)))) ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1191 (-968 *3))))) + (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-655 (-967 *3))))) ((*1 *2) - (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) + (-12 (-5 *2 (-655 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1285 (-464 *4 *5 *6 *7))) (-5 *2 (-655 (-967 *4))) + (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-567)) (-4 *4 (-174)) + (-14 *5 (-936)) (-14 *6 (-655 (-1194))) (-14 *7 (-1285 (-700 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1221) (-1020)))))) + (-12 (-5 *3 (-1152)) (-5 *2 (-702 (-289))) (-5 *1 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-973 (-185 (-140)))) (-5 *1 (-342)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-617))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *6 (-227)) + (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-763))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-700 (-1190 *8))) (-4 *5 (-1066)) (-4 *8 (-1066)) + (-4 *6 (-1261 *5)) (-5 *2 (-700 *6)) (-5 *1 (-512 *5 *6 *7 *8)) + (-4 *7 (-1261 *6))))) +(((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1174 (-418 *3))) (-5 *1 (-176 *3)) (-4 *3 (-316))))) +(((*1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-572)) (-5 *3 (-575)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) + (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *1) (-5 *1 (-300)))) +(((*1 *2) + (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) + (-5 *2 (-655 (-655 *4))) (-5 *1 (-351 *3 *4 *5 *6)) + (-4 *3 (-352 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-4 *3 (-378)) (-5 *2 (-655 (-655 *3)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1190 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) +(((*1 *2 *2) (-12 (-5 *1 (-976 *2)) (-4 *2 (-556))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220)))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| -2459 *1) (|:| -2980 (-656 *7))))) - (-5 *3 (-656 *7)) (-4 *1 (-1229 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *2 (-1285 (-325 (-389)))) + (-5 *1 (-314))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) +(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567)) (-4 *7 (-804)) + (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-655 *9)))) + (-5 *3 (-655 *9)) (-4 *1 (-1228 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-655 *8)))) + (-5 *3 (-655 *8)) (-4 *1 (-1228 *5 *6 *7 *8))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-1018 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1020) (-1221))) - (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1020) (-1221))) - (-5 *1 (-612 *4 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862))))) -(((*1 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-766))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *3)) - (-4 *3 (-1262 (-419 *4)))))) + (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-5 *2 (-1176))))) +(((*1 *2 *3) + (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) + (-5 *2 (-252 *4 *5)) (-5 *1 (-959 *4 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) + (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *1 *1 *1) (-4 *1 (-485))) - ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-896)))) - ((*1 *1 *1) (-5 *1 (-989))) - ((*1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1110 (-968 (-576)))) (-5 *3 (-968 (-576))) - (-5 *1 (-340)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1110 (-968 (-576)))) (-5 *1 (-340))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-91 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-1133))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1053)) (-5 *1 (-766))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-936)) (-5 *4 (-227)) (-5 *5 (-575)) (-5 *6 (-885)) + (-5 *2 (-1290)) (-5 *1 (-1286))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) - (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *5)) - (-4 *5 (-1262 (-419 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1290)) + (-5 *1 (-460 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4)) + (-4 *4 (-1235)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176))))) (((*1 *2 *2) - (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) - (-5 *1 (-178 *3))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |minor| (-656 (-937))) (|:| -2572 *3) - (|:| |minors| (-656 (-656 (-937)))) (|:| |ops| (-656 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-668 *5))))) + (|partial| -12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) + (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-567)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) + (-4 *7 (-1009 *4)) (-4 *2 (-698 *7 *8 *9)) + (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-698 *4 *5 *6)) + (-4 *8 (-383 *7)) (-4 *9 (-383 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) + (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-373)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-373)) (-4 *3 (-174)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) + (-4 *2 (-698 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-700 *2)) (-4 *2 (-373)) (-4 *2 (-1066)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1140 *2 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-373)))) + ((*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-1205 *3))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) + (-5 *2 (-1052)) (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-1235))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-782)) (-4 *4 (-567)) (-5 *1 (-986 *4 *2)) + (-4 *2 (-1261 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) - (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) - (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1053)) - (-5 *1 (-766))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) + (|:| |expense| (-389)) (|:| |accuracy| (-389)) + (|:| |intermediateResults| (-389)))) + (-5 *1 (-814))))) (((*1 *2 *3) - (-12 (-4 *3 (-1262 (-419 (-576)))) - (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) - (-5 *1 (-929 *3 *4)) (-4 *4 (-1262 (-419 *3))))) + (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *3)) - (-4 *3 (-1262 (-419 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) + (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-309)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-314))))) (((*1 *2 *2) - (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) - (-5 *1 (-178 *3))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) (((*1 *2 *1) - (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *5 (-379)) - (-5 *2 (-783))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) - (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) - (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1053)) (-5 *1 (-766))))) + (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1117)) + (-4 *2 (-861))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1262 (-419 *3))) (-5 *2 (-937)) - (-5 *1 (-929 *4 *5)) (-4 *5 (-1262 (-419 *4)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-968 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1191 (-968 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) + (-12 (-4 *4 (-463)) + (-5 *2 + (-655 + (-2 (|:| |eigval| (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4)))) + (|:| |geneigvec| (-655 (-700 (-418 (-967 *4)))))))) + (-5 *1 (-301 *4)) (-5 *3 (-700 (-418 (-967 *4))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-373)) (-4 *5 (-567)) + (-5 *2 + (-2 (|:| |minor| (-655 (-936))) (|:| -2571 *3) + (|:| |minors| (-655 (-655 (-936)))) (|:| |ops| (-655 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-667 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) - (-5 *1 (-178 *3))))) + (-12 (-4 *3 (-13 (-316) (-148))) (-4 *4 (-13 (-861) (-625 (-1194)))) + (-4 *5 (-804)) (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-964 *3 *5 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-1017 *3))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-782)) (-5 *1 (-686 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3) + (-12 (-4 *4 (-861)) (-5 *2 (-655 (-655 (-655 *4)))) + (-5 *1 (-1205 *4)) (-5 *3 (-655 (-655 *4)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-429 *3)) (-4 *3 (-567)) (-5 *1 (-430 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1212 *4 *5)) + (-4 *4 (-1117)) (-4 *5 (-1117))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))) + (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-1067)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-937))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) - (-14 *4 (-937)) (-14 *5 (-1011 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) + (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-132)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1067)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) - (-4 *4 (-1262 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1067)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1067)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) - (-4 *4 (-1067)) (-4 *5 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1067)) - (-4 *2 (-862)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-965 *4 *5 *6)) - (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-965 *4 *5 *2)) (-4 *4 (-1067)) - (-4 *5 (-805)) (-4 *2 (-862)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-965 *4 (-543 *5) *5)) - (-5 *1 (-1144 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-862)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-968 *4)) (-5 *1 (-1230 *4)) - (-4 *4 (-1067))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) - (-5 *2 (-576)) (-5 *1 (-1132 *4 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) - (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1056 (-576)))) - (-5 *2 (-2 (|:| -2927 (-783)) (|:| -3764 *8))) - (-5 *1 (-927 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) - (-5 *2 (-2 (|:| -2927 (-783)) (|:| -3764 *6))) - (-5 *1 (-928 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) - (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) - (-5 *2 (-1053)) (-5 *1 (-766))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) + (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) + (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253))))) (((*1 *2 *2) - (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) - (-5 *1 (-178 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-974 (-185 (-140)))) (-5 *1 (-343)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1144 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) - (-4 *4 (-1067)) (-4 *3 (-862)) (-5 *1 (-1144 *4 *3 *5)) - (-4 *5 (-965 *4 (-543 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1230 *4))) (-5 *3 (-1195)) (-5 *1 (-1230 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1067))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) -(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) - (-5 *2 (-576)) (-5 *1 (-1132 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5)) - (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) - (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-112)) - (-5 *1 (-927 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-928 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1053)) (-5 *1 (-765))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) - (-5 *1 (-178 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-626 (-905 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464)) - (-5 *1 (-1227 *3 *2)) (-4 *2 (-626 (-905 *3))) (-4 *2 (-899 *3)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1044 (-855 (-576)))) - (-5 *3 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1067)) - (-5 *1 (-607 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1) (-5 *1 (-340)))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) - (-5 *2 (-656 *4)) (-5 *1 (-1132 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-464)))) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *3)) + (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *5 (-925)) (-5 *1 (-469 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-925))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-765))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) - (-5 *1 (-178 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1044 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4))) - (-5 *1 (-1132 *4 *5)) (-5 *3 (-1259 *5 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-765))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1118)))) - ((*1 *2 *3) - (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1236))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-5 *1 (-607 *3)) (-4 *3 (-1067))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-340))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4))) - (-5 *1 (-1132 *4 *5)) (-5 *3 (-1259 *5 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) - (-5 *2 (-1053)) (-5 *1 (-765))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1118)))) - ((*1 *2 *3) - (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1))))) -(((*1 *2) - (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-655 *7) (-655 *7))) (-5 *2 (-655 *7)) + (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) + (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-835)) (-5 *3 (-655 (-1194))) (-5 *1 (-836))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2)) + (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461))))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) + (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1016 *3)) (-4 *3 (-174)) (-5 *1 (-810 *3))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-340))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-115))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1053)) (-5 *1 (-765))))) -(((*1 *2 *3) - (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1))))) + (-12 (-4 *3 (-1066)) (-5 *2 (-973 (-723 *3 *4))) (-5 *1 (-723 *3 *4)) + (-4 *4 (-1261 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1029))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 @@ -6473,2977 +6548,3378 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1175 (-227))) + (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1908 + (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1175 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-340))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-786)) (-5 *1 (-115))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1053)) (-5 *1 (-765))))) + (-5 *1 (-570))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1285 (-655 *3))) (-4 *4 (-316)) + (-5 *2 (-655 *3)) (-5 *1 (-466 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-700 *3)))) + (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) + (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5)) - (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1262 *5)) - (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1191 (-576)))) (-5 *3 (-1191 (-576))) - (-5 *1 (-584)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1191 *1))) (-5 *3 (-1191 *1)) - (-4 *1 (-925))))) -(((*1 *2) - (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) + (-12 (-5 *2 (-1190 *7)) (-5 *3 (-575)) (-4 *7 (-964 *6 *4 *5)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) + (-5 *1 (-330 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1160 *3 *4)) (-14 *3 (-937)) (-4 *4 (-374)) - (-5 *1 (-1011 *3 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1067))))) -(((*1 *2 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1053)) (-5 *1 (-765))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1286 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-925)) - (-5 *2 (-1286 *1))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942)) + (-5 *1 (-940 *3)) (-4 *3 (-625 (-547))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) (-5 *2 (-942)) (-5 *1 (-940 *3)) + (-4 *3 (-625 (-547))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-942)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) + (-5 *1 (-942))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-575)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-316)) + (-4 *9 (-964 *8 *6 *7)) + (-5 *2 (-2 (|:| -1699 (-1190 *9)) (|:| |polval| (-1190 *8)))) + (-5 *1 (-753 *6 *7 *8 *9)) (-5 *3 (-1190 *9)) (-5 *4 (-1190 *8))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-567)) (-4 *2 (-463)) (-5 *1 (-986 *2 *3)) + (-4 *3 (-1261 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-656 (-968 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-656 (-968 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-968 *3))))) - ((*1 *2) - (-12 (-5 *2 (-656 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) - (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-968 *4))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) - (-14 *5 (-937)) (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) + (-12 + (-5 *3 + (-2 (|:| -2412 (-700 (-418 (-967 *4)))) + (|:| |vec| (-655 (-418 (-967 *4)))) (|:| -4422 (-782)) + (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) + (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) + (-4 *6 (-804)) + (-5 *2 + (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *4))))))) + (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-700 (-575))) (-5 *3 (-655 (-575))) (-5 *1 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-399)) (-5 *1 (-447)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-399)) (-5 *1 (-447))))) +(((*1 *1) (-5 *1 (-1197)))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941))))) +(((*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))) + ((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-1067)))) - ((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *6)))) - (-5 *4 (-1044 (-855 (-576)))) (-5 *5 (-1195)) (-5 *7 (-419 (-576))) - (-4 *6 (-1067)) (-5 *2 (-874)) (-5 *1 (-607 *6))))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1128))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-765))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-925))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) + (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-655 (-1093 *4 *5 *2))) (-4 *4 (-1117)) + (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) + (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-655 (-1093 *5 *6 *2))) (-5 *4 (-936)) (-4 *5 (-1117)) + (-4 *6 (-13 (-1066) (-898 *5) (-625 (-904 *5)))) + (-4 *2 (-13 (-441 *6) (-898 *5) (-625 (-904 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 *5))) + (-4 *5 (-373)) (-4 *5 (-567)) (-5 *2 (-1285 *5)) + (-5 *1 (-649 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 *5))) + (-3215 (-4 *5 (-373))) (-4 *5 (-567)) (-5 *2 (-1285 (-418 *5))) + (-5 *1 (-649 *5 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1117)) (-5 *2 (-55))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-936)) (-4 *5 (-567)) (-5 *2 (-700 *5)) + (-5 *1 (-971 *5 *3)) (-4 *3 (-667 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-575)) (-4 *2 (-441 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1055 *4)) (-4 *3 (-567))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1191 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) - (-4 *3 (-374))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-576)) (-5 *1 (-1128)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) - (-5 *1 (-1128))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-764))))) + (-12 (-4 *4 (-463)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) + (-5 *2 (-655 *3)) (-5 *1 (-994 *4 *5 *6 *3)) + (-4 *3 (-1082 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-38 (-418 (-575)))) + (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-567))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) + (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194))) (-4 *6 (-463)) + (-5 *2 (-655 (-655 *7))) (-5 *1 (-549 *6 *7 *5)) (-4 *7 (-373)) + (-4 *5 (-13 (-373) (-859)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-862)) (-4 *5 (-925)) (-4 *6 (-805)) - (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-430 (-1191 *8))) - (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-1191 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) - (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -1808 *4))) (-5 *5 (-783)) - (-4 *4 (-965 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *1 *1 *1) (-4 *1 (-311))) ((*1 *1 *1) (-4 *1 (-311)))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *1) + (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *6)) + (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) + (-5 *2 (-1052)) (-5 *1 (-758))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-655 (-492 *4 *5))) (-5 *3 (-875 *4)) + (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-642 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-547))) (-5 *1 (-547))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1261 *4)) (-5 *1 (-820 *4 *2 *3 *5)) + (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2)) + (-4 *5 (-667 (-418 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-700 *8)) (-5 *4 (-782)) (-4 *8 (-964 *5 *7 *6)) + (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) + (-4 *7 (-804)) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-461 *6 *7 *8 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) -(((*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) - ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-888)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1177)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-518)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-604)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-490)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1185)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-638)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1114)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1108)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1091)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-988)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1054)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-321)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-683)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1169)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-537)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1297)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1084)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-529)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1133)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-618)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1296)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-688)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-220)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200))))) + (-655 + (-2 (|:| |det| *8) (|:| |rows| (-655 (-575))) + (|:| |cols| (-655 (-575)))))) + (-5 *1 (-939 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) (((*1 *2 *2) - (-12 + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-655 (-2 (|:| -2353 (-1190 *6)) (|:| -2398 (-575))))) + (-4 *6 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066))))) +(((*1 *2 *1) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873))))) + ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-887)))) + ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-887)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-575)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1176)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-517)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-603)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-489)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1184)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-637)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1113)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1107)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1090)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-987)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1053)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-320)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-682)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1168)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-536)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1296)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1083)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-528)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-692)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1132)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-617)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1295)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-535)))) + ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1199)))) + ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1199)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1199)))) + ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1199))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-655 (-655 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-655 (-3 (|:| |array| (-655 *3)) (|:| |scalar| (-1194))))) + (-5 *6 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1121)) + (-5 *1 (-408)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-655 (-655 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-655 (-3 (|:| |array| (-655 *3)) (|:| |scalar| (-1194))))) + (-5 *6 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1121)) + (-5 *1 (-408)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-655 (-1194))) (-5 *5 (-1197)) (-5 *3 (-1194)) + (-5 *2 (-1121)) (-5 *1 (-408))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-359)) (-5 *2 - (-1005 (-419 (-576)) (-876 *3) (-246 *4 (-783)) - (-253 *3 (-419 (-576))))) - (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-1004 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1067))))) -(((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1191 *3))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-145)) (-5 *2 (-112))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-937))) (-5 *4 (-112)) - (-5 *1 (-1128))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1053)) (-5 *1 (-764))))) + (-2 (|:| |cont| *5) + (|:| -3378 (-655 (-2 (|:| |irr| *3) (|:| -2856 (-575))))))) + (-5 *1 (-218 *5 *3)) (-4 *3 (-1261 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *6)) (-5 *4 (-1194)) (-4 *6 (-441 *5)) + (-4 *5 (-1117)) (-5 *2 (-655 (-623 *6))) (-5 *1 (-584 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-436 *3)) (-4 *3 (-1117)) (-5 *2 (-782))))) (((*1 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-925)) - (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-965 *2 *3 *4)))) + (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -1624 (-655 *1)))) + (-4 *1 (-377 *3)))) ((*1 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-925)) - (-5 *1 (-922 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-925)) (-5 *1 (-923 *2 *3)) (-4 *3 (-1262 *2))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-805)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) - (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-464 *3 *4 *5 *6)) + (|:| -1624 (-655 (-464 *3 *4 *5 *6))))) + (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-145)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316)))) + ((*1 *2 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316)))) + ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-316)))) + ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-575))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) (((*1 *2 *1) - (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) + (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) + (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-1174 *7))) (-4 *6 (-861)) + (-4 *7 (-964 *5 (-542 *6) *6)) (-4 *5 (-1066)) + (-5 *2 (-1 (-1174 *7) *7)) (-5 *1 (-1143 *5 *6 *7))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1029)) (-5 *2 (-873))))) +(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-547))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-965 *4 *6 *5)) (-4 *4 (-464)) - (-4 *5 (-862)) (-4 *6 (-805)) (-5 *1 (-1005 *4 *5 *6 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1191 *3)))) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-327)) (-5 *3 (-227))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-336 *3)) (-4 *3 (-1235)))) ((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1191 *3))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1128))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-764))))) -(((*1 *2 *3) - (-12 (-4 *4 (-925)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-430 (-1191 *7))) - (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) - (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6))))) + (-12 (-5 *2 (-782)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235)) + (-14 *4 (-575))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) + (-5 *2 (-1052)) (-5 *1 (-763))))) +(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) + ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-437 *4 *2)) (-4 *2 (-13 (-1220) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-148)) + (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-325 *5)) + (-5 *1 (-600 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-558)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4)) + (-5 *2 (-2 (|:| |ans| (-418 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1032 *4 *5)) (-5 *3 (-418 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) - (-4 *5 (-805)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-804))))) + (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) + (-5 *2 (-1285 *6)) (-5 *1 (-346 *3 *4 *5 *6)) + (-4 *6 (-352 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1300 (-1194) *3)) (-4 *3 (-1066)) (-5 *1 (-1307 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1300 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) + (-5 *1 (-1309 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-937))) (-5 *4 (-656 (-576))) - (-5 *2 (-701 (-576))) (-5 *1 (-1128))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-764))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-655 (-227))) (-5 *1 (-206))))) (((*1 *2 *3) - (-12 (-4 *4 (-925)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-430 (-1191 *7))) - (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) - (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5))))) + (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4060 *4))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-1312 *5 *6 *7)) + (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-1312 *5 *6 *7)) + (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-967 *4))) + (-4 *4 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-655 (-1063 *4 *5))) (-5 *1 (-1312 *4 *5 *6)) + (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-13 (-316) (-148))) + (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) + (-5 *2 (-655 (-418 (-967 *4)))) (-5 *1 (-939 *4 *5 *6 *7)) + (-4 *7 (-964 *4 *6 *5))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-655 + (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 *3)) + (|:| |logand| (-1190 *3))))) + (-5 *1 (-597 *3)) (-4 *3 (-373))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-655 *7)) (-5 *3 (-575)) (-4 *7 (-964 *4 *5 *6)) + (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-5 *1 (-460 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *3 (-655 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-269)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-575)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *2 (-1290)) (-5 *1 (-1287)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3957 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-1287)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) - (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-1298 *4 *5 *6 *7))) + (-5 *1 (-1298 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-655 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567)) + (-4 *7 (-804)) (-4 *8 (-861)) (-5 *2 (-655 (-1298 *6 *7 *8 *9))) + (-5 *1 (-1298 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-656 *6)) - (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4))))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556)) + (-5 *2 (-418 (-575))))) + ((*1 *2 *1) + (-12 (-5 *2 (-418 (-575))) (-5 *1 (-429 *3)) (-4 *3 (-556)) + (-4 *3 (-567)))) + ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-418 (-575))))) + ((*1 *2 *1) + (-12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556)) + (-5 *2 (-418 (-575))))) + ((*1 *2 *1) + (-12 (-5 *2 (-418 (-575))) (-5 *1 (-844 *3)) (-4 *3 (-556)) + (-4 *3 (-1117)))) + ((*1 *2 *1) + (-12 (-5 *2 (-418 (-575))) (-5 *1 (-854 *3)) (-4 *3 (-556)) + (-4 *3 (-1117)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556)) + (-5 *2 (-418 (-575))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1025 *3)) (-4 *3 (-1055 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-937))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-1128))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-227)) (-5 *2 (-1053)) (-5 *1 (-764))))) + (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) + (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-517)) (-5 *3 (-655 (-980))) (-5 *1 (-109))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1157 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1117) (-34))) (-4 *6 (-13 (-1117) (-34))) + (-5 *2 (-112)) (-5 *1 (-1158 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835))))) +(((*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1197))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -3030 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) - (-5 *1 (-1194))))) + (-3 (|:| I (-325 (-575))) (|:| -3029 (-325 (-389))) + (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) + (-5 *1 (-1193))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1156)))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7)) - (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-925)) (-4 *5 (-805)) - (-4 *6 (-862)) (-5 *1 (-922 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5)) - (-4 *5 (-1262 *4)) (-4 *4 (-925)) (-5 *1 (-923 *4 *5))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-805)) (-4 *4 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) - (-5 *1 (-461 *5 *6 *7 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-783)) - (-4 *5 (-13 (-464) (-1056 (-576)))) (-4 *5 (-568)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1595 ((-1143 *5 (-624 $)) $)) - (-15 -1608 ((-1143 *5 (-624 $)) $)) - (-15 -2884 ($ (-1143 *5 (-624 $)))))))))) -(((*1 *2 *1) - (-12 (-4 *2 (-965 *3 *5 *4)) (-5 *1 (-1005 *3 *4 *5 *2)) - (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-804)) (-4 *3 (-174))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306)))) + (-12 (-5 *2 (-655 (-967 *4))) (-5 *3 (-655 (-1194))) (-4 *4 (-463)) + (-5 *1 (-933 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-958 (-227)))) (-5 *1 (-1286))))) +(((*1 *2 *3) + (-12 (-5 *3 (-700 *4)) (-4 *4 (-373)) (-5 *2 (-1190 *4)) + (-5 *1 (-543 *4 *5 *6)) (-4 *5 (-373)) (-4 *6 (-13 (-373) (-859)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-973 *3)) (-5 *1 (-1181 *4 *3)) + (-4 *3 (-1261 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-305)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306)))) + (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-321)) (-5 *1 (-305)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-305)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1177))) (-5 *3 (-1177)) (-5 *2 (-322)) - (-5 *1 (-306))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1128))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-764))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7)) - (-4 *7 (-965 *5 *6 *4)) (-4 *5 (-925)) (-4 *6 (-805)) - (-4 *4 (-862)) (-5 *1 (-922 *5 *6 *4 *7))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-576)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-805)) (-4 *4 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) - (-5 *1 (-461 *5 *6 *7 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) + (-12 (-5 *4 (-655 (-1176))) (-5 *3 (-1176)) (-5 *2 (-321)) + (-5 *1 (-305))))) +(((*1 *1 *1 *1) (-4 *1 (-984)))) +(((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-564))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-373) (-1220) (-1019)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) + (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-994 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-655 *7)) (-5 *3 (-112)) (-4 *7 (-1082 *4 *5 *6)) + (-4 *4 (-463)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) + (-5 *1 (-994 *4 *5 *6 *7))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) - ((*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))) + ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-556))) + ((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))) ((*1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) - (-4 *3 (-13 (-1118) (-34)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) - (-15 -1608 ((-1143 *3 (-624 $)) $)) - (-15 -2884 ($ (-1143 *3 (-624 $)))))))))) -(((*1 *1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) - (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1118)) - (-4 *2 (-132))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1128))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-764))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *6)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118))))) + (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) + (-4 *3 (-13 (-1117) (-34)))))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) - (-15 -1608 ((-1143 *3 (-624 $)) $)) - (-15 -2884 ($ (-1143 *3 (-624 $)))))))))) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1290)) + (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *3 (-1262 *2)) (-4 *2 (-1262 *4)) - (-5 *1 (-1003 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-132))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) - (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) - (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-764))))) + (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-463)) (-4 *4 (-831)) + (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118))))) + (-12 (-5 *2 (-873)) (-5 *1 (-1174 *3)) (-4 *3 (-1117)) + (-4 *3 (-1235))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1117))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-576)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-340)))) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-441 *4) (-1019) (-1220))) + (-4 *4 (-567)) (-4 *2 (-13 (-441 (-171 *4)) (-1019) (-1220))) + (-5 *1 (-611 *4 *5 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1153)) (-5 *2 (-703 (-290))) (-5 *1 (-169))))) + (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-193)) (-5 *3 (-575)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -3378 (-655 (-2 (|:| |irr| *10) (|:| -2856 (-575))))))) + (-5 *6 (-655 *3)) (-5 *7 (-655 *8)) (-4 *8 (-861)) (-4 *3 (-316)) + (-4 *10 (-964 *3 *9 *8)) (-4 *9 (-804)) + (-5 *2 + (-2 (|:| |polfac| (-655 *10)) (|:| |correct| *3) + (|:| |corrfact| (-655 (-1190 *3))))) + (-5 *1 (-636 *8 *9 *3 *10)) (-5 *4 (-655 (-1190 *3)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-763))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *1) (-5 *1 (-834)))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-418 (-967 *4))) (-5 *3 (-1194)) + (-4 *4 (-13 (-567) (-1055 (-575)) (-148))) (-5 *1 (-581 *4))))) +(((*1 *1) (-5 *1 (-145)))) +(((*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-861)) + (-4 *3 (-13 (-174) (-728 (-418 (-575))))) (-14 *4 (-936)))) + ((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *1) + (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556))))) +(((*1 *2 *2) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1261 (-575))) (-5 *1 (-497 *3))))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-389))) + ((*1 *1) (-5 *1 (-389)))) +(((*1 *1) (-5 *1 (-339)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235)) + (-4 *4 (-383 *2)) (-4 *5 (-383 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3)) - (-4 *3 (-1236)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4461)) (-4 *1 (-120 *3)) + (-4 *3 (-1235)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3)) - (-4 *3 (-1236)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4461)) (-4 *1 (-120 *3)) + (-4 *3 (-1235)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) - (-4 *2 (-1236)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1195)) (-5 *1 (-644)))) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) + (-4 *2 (-1235)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1194)) (-5 *1 (-643)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1253 (-576))) (|has| *1 (-6 -4462)) (-4 *1 (-663 *2)) - (-4 *2 (-1236)))) + (-12 (-5 *3 (-1252 (-575))) (|has| *1 (-6 -4461)) (-4 *1 (-662 *2)) + (-4 *2 (-1235)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-655 (-575))) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4462)) (-4 *1 (-1028 *2)) - (-4 *2 (-1236)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4461)) (-4 *1 (-1027 *2)) + (-4 *2 (-1235)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1212 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))) + (-12 (-4 *1 (-1211 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) - (-4 *2 (-1236)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) + (-4 *2 (-1235)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3)) - (-4 *3 (-1236)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *3)) + (-4 *3 (-1235)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) - (-4 *2 (-1236))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) - (-15 -1608 ((-1143 *3 (-624 $)) $)) - (-15 -2884 ($ (-1143 *3 (-624 $)))))))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *3 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))) (-4 *5 (-568)) - (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-965 (-419 (-968 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1067)) (-4 *5 (-805)) - (-4 *3 - (-13 (-862) - (-10 -8 (-15 -2616 ((-1195) $)) - (-15 -1441 ((-3 $ "failed") (-1195)))))) - (-5 *1 (-1002 *4 *5 *3 *2)) (-4 *2 (-965 (-968 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *6)) - (-4 *6 - (-13 (-862) - (-10 -8 (-15 -2616 ((-1195) $)) - (-15 -1441 ((-3 $ "failed") (-1195)))))) - (-4 *4 (-1067)) (-4 *5 (-805)) (-5 *1 (-1002 *4 *5 *6 *2)) - (-4 *2 (-965 (-968 *4) *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-132)) - (-4 *3 (-804))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) + (-4 *2 (-1235))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))) + ((*1 *2 *2) + (-12 (-4 *3 (-316)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) + (-5 *1 (-1141 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-793 *3)) (|:| |polden| *3) (|:| -1934 (-782)))) + (-5 *1 (-793 *3)) (-4 *3 (-1066)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1934 (-782)))) + (-4 *1 (-1082 *3 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-5 *2 (-1190 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-419 *5)) (-4 *4 (-1240)) (-4 *5 (-1262 *4)) - (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1262 *3)))) + (-12 (-5 *3 (-418 *5)) (-4 *4 (-1239)) (-4 *5 (-1261 *4)) + (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1261 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576))) + (-12 (-5 *3 (-1196 (-418 (-575)))) (-5 *2 (-418 (-575))) (-5 *1 (-192)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1195))) - (-5 *4 (-1286 (-326 (-227)))) (-5 *1 (-207)))) + (-12 (-5 *2 (-700 (-325 (-227)))) (-5 *3 (-655 (-1194))) + (-5 *4 (-1285 (-325 (-227)))) (-5 *1 (-207)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1118)) - (-4 *3 (-1236)) (-5 *1 (-304 *3)))) + (-12 (-5 *2 (-655 (-303 *3))) (-4 *3 (-318 *3)) (-4 *3 (-1117)) + (-4 *3 (-1235)) (-5 *1 (-303 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-319 *2)) (-4 *2 (-1118)) (-4 *2 (-1236)) - (-5 *1 (-304 *2)))) + (-12 (-4 *2 (-318 *2)) (-4 *2 (-1117)) (-4 *2 (-1235)) + (-5 *1 (-303 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-311)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-655 *1))) (-4 *1 (-311)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) - (-4 *1 (-312)))) + (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 (-1 *1 (-655 *1)))) + (-4 *1 (-311)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) + (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 (-1 *1 *1))) (-4 *1 (-311)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) + (-12 (-5 *2 (-1194)) (-5 *3 (-1 *1 *1)) (-4 *1 (-311)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) + (-12 (-5 *2 (-1194)) (-5 *3 (-1 *1 (-655 *1))) (-4 *1 (-311)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 (-656 *1)))) - (-4 *1 (-312)))) + (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-1 *1 (-655 *1)))) + (-4 *1 (-311)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) + (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-1 *1 *1))) (-4 *1 (-311)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-655 (-303 *3))) (-4 *1 (-318 *3)) (-4 *3 (-1117)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-303 *3)) (-4 *1 (-318 *3)) (-4 *3 (-1117)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1197 (-419 (-576)))) - (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-5 *3 (-1 *2 (-575))) (-5 *4 (-1196 (-418 (-575)))) + (-5 *1 (-319 *2)) (-4 *2 (-38 (-418 (-575)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) - (-4 *4 (-862)) (-4 *5 (-174)))) + (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 *1)) (-4 *1 (-384 *4 *5)) + (-4 *4 (-861)) (-4 *5 (-174)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) + (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067)))) + (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) - (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067)))) + (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *4 (-1 *1 (-655 *1))) + (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783))) - (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1118)) - (-4 *5 (-1067)))) + (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-782))) + (-5 *4 (-655 (-1 *1 (-655 *1)))) (-4 *1 (-441 *5)) (-4 *5 (-1117)) + (-4 *5 (-1066)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783))) - (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1118)) - (-4 *5 (-1067)))) + (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-782))) + (-5 *4 (-655 (-1 *1 *1))) (-4 *1 (-441 *5)) (-4 *5 (-1117)) + (-4 *5 (-1066)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1195)) - (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-626 (-548))))) + (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 *1)) (-5 *4 (-1194)) + (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-625 (-547))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1195)) (-4 *1 (-442 *4)) (-4 *4 (-1118)) - (-4 *4 (-626 (-548))))) + (-12 (-5 *2 (-115)) (-5 *3 (-1194)) (-4 *1 (-441 *4)) (-4 *4 (-1117)) + (-4 *4 (-625 (-547))))) ((*1 *1 *1) - (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-626 (-548))))) + (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-625 (-547))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-1195))) (-4 *1 (-442 *3)) (-4 *3 (-1118)) - (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-655 (-1194))) (-4 *1 (-441 *3)) (-4 *3 (-1117)) + (-4 *3 (-625 (-547))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)) - (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)) + (-4 *3 (-625 (-547))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1236)))) + (-12 (-4 *1 (-525 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1235)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) - (-4 *4 (-1118)) (-4 *5 (-1236)))) + (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 *5)) (-4 *1 (-525 *4 *5)) + (-4 *4 (-1117)) (-4 *5 (-1235)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + (-12 (-5 *2 (-844 *3)) (-4 *3 (-373)) (-5 *1 (-729 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-419 (-968 *4))) (-5 *3 (-1195)) (-4 *4 (-568)) - (-5 *1 (-1061 *4)))) + (-12 (-5 *2 (-418 (-967 *4))) (-5 *3 (-1194)) (-4 *4 (-567)) + (-5 *1 (-1060 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-1195))) (-5 *4 (-656 (-419 (-968 *5)))) - (-5 *2 (-419 (-968 *5))) (-4 *5 (-568)) (-5 *1 (-1061 *5)))) + (-12 (-5 *3 (-655 (-1194))) (-5 *4 (-655 (-418 (-967 *5)))) + (-5 *2 (-418 (-967 *5))) (-4 *5 (-567)) (-5 *1 (-1060 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-304 (-419 (-968 *4)))) (-5 *2 (-419 (-968 *4))) - (-4 *4 (-568)) (-5 *1 (-1061 *4)))) + (-12 (-5 *3 (-303 (-418 (-967 *4)))) (-5 *2 (-418 (-967 *4))) + (-4 *4 (-567)) (-5 *1 (-1060 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-304 (-419 (-968 *4))))) (-5 *2 (-419 (-968 *4))) - (-4 *4 (-568)) (-5 *1 (-1061 *4)))) + (-12 (-5 *3 (-655 (-303 (-418 (-967 *4))))) (-5 *2 (-418 (-967 *4))) + (-4 *4 (-567)) (-5 *1 (-1060 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1175 *3))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) - (-5 *2 (-2 (|:| -1755 (-419 *5)) (|:| |poly| *3))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5)))))) + (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1174 *3))))) +(((*1 *1 *1) (-4 *1 (-556)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-764))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1066)) (-4 *7 (-1066)) + (-4 *6 (-1261 *5)) (-5 *2 (-1190 (-1190 *7))) + (-5 *1 (-512 *5 *6 *4 *7)) (-4 *4 (-1261 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1287)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287)))) + (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-1286)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1286)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1286)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1288)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288))))) + (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-1287)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1287)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1287))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-693 *2)) (-4 *2 (-1117)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-655 *5) (-655 *5))) (-5 *4 (-575)) + (-5 *2 (-655 *5)) (-5 *1 (-693 *5)) (-4 *5 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *4 (-782)) + (-5 *2 (-700 (-227))) (-5 *1 (-275))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-1255 *3 *2)) + (-4 *2 (-1261 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-920 *3)) (-4 *3 (-1118))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6))))) + (-12 (-5 *2 (-655 (-2 (|:| |k| (-683 *3)) (|:| |c| *4)))) + (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-445)) + (-5 *2 + (-655 + (-3 (|:| -1777 (-1194)) + (|:| -2370 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575))))))))) + (-5 *1 (-1198))))) +(((*1 *2 *1) + (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) + (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) + (|partial| -12 (-5 *2 (-575)) (-5 *1 (-1217 *3)) (-4 *3 (-1066))))) +(((*1 *2 *2) (-12 (-5 *1 (-976 *2)) (-4 *2 (-556))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-597 *3) *3 (-1194))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1194))) + (-4 *3 (-293)) (-4 *3 (-640)) (-4 *3 (-1055 *4)) (-4 *3 (-441 *7)) + (-5 *4 (-1194)) (-4 *7 (-625 (-904 (-575)))) (-4 *7 (-463)) + (-4 *7 (-898 (-575))) (-4 *7 (-1117)) (-5 *2 (-597 *3)) + (-5 *1 (-584 *7 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-389)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-120 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) + (-5 *2 (-1052)) (-5 *1 (-767))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1191 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-374) (-312) - (-10 -8 (-15 -1595 ((-1143 *4 (-624 $)) $)) - (-15 -1608 ((-1143 *4 (-624 $)) $)) - (-15 -2884 ($ (-1143 *4 (-624 $)))))))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *3 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))) (-4 *5 (-568)) - (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-965 (-419 (-968 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1067)) (-4 *5 (-805)) - (-4 *3 - (-13 (-862) - (-10 -8 (-15 -2616 ((-1195) $)) - (-15 -1441 ((-3 $ "failed") (-1195)))))) - (-5 *1 (-1002 *4 *5 *3 *2)) (-4 *2 (-965 (-968 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *6)) - (-4 *6 - (-13 (-862) - (-10 -8 (-15 -2616 ((-1195) $)) - (-15 -1441 ((-3 $ "failed") (-1195)))))) - (-4 *4 (-1067)) (-4 *5 (-805)) (-5 *1 (-1002 *4 *5 *6 *2)) - (-4 *2 (-965 (-968 *4) *5 *6))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-4 *2 (-1117)) + (-5 *1 (-901 *4 *2))))) +(((*1 *1 *1) (-4 *1 (-1161)))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1067)) - (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-965 *2 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *4)))) - (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1053)) (-5 *1 (-764))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-921 *3))) (-4 *3 (-1118)) (-5 *1 (-920 *3))))) -(((*1 *2 *2 *2) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-567))))) +(((*1 *2 *1) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) + (-5 *2 (-2 (|:| |num| (-1285 *4)) (|:| |den| *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-655 (-876)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-246)) (-5 *3 (-1176)))) + ((*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-246)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1174 (-418 *3))) (-5 *1 (-176 *3)) (-4 *3 (-316))))) +(((*1 *2 *1) (-12 (-5 *2 - (-656 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-805)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) - (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058))))) -(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) + (-655 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-575))))) + (-5 *1 (-429 *3)) (-4 *3 (-567)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-782)) (-4 *3 (-359)) (-4 *5 (-1261 *3)) + (-5 *2 (-655 (-1190 *3))) (-5 *1 (-509 *3 *5 *6)) + (-4 *6 (-1261 *5))))) +(((*1 *2) (-12 (-5 *2 (-1164 (-1176))) (-5 *1 (-402))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1286)))) + ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-429 *4) *4)) (-4 *4 (-567)) (-5 *2 (-429 *4)) + (-5 *1 (-430 *4)))) + ((*1 *1 *1) (-5 *1 (-941))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) + ((*1 *1 *1) (-5 *1 (-942))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) + (-5 *4 (-418 (-575))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) + (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) + (-5 *4 (-418 (-575))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) + (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) + (-4 *3 (-1261 *2))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-766))))) +(((*1 *2 *2) (-12 (-5 *2 (-1111 (-854 (-227)))) (-5 *1 (-314))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *2 (-1117)) (-4 *3 (-1117)) + (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-130))) + ((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) + (-4 *4 (-174)))) + ((*1 *1) (-5 *1 (-557))) ((*1 *1) (-5 *1 (-558))) + ((*1 *1) (-5 *1 (-559))) ((*1 *1) (-5 *1 (-560))) + ((*1 *1) (-4 *1 (-737))) ((*1 *1) (-5 *1 (-1194))) + ((*1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-936)))) + ((*1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936)))) + ((*1 *1) (-5 *1 (-1240))) ((*1 *1) (-5 *1 (-1241))) + ((*1 *1) (-5 *1 (-1242))) ((*1 *1) (-5 *1 (-1243)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-655 *1)) + (-4 *1 (-392 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-655 (-746 *3 *4))) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-737)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) + (-4 *1 (-964 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-373) (-1220) (-1019)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-655 (-782))) + (-5 *1 (-919 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-623 *4)) (-4 *4 (-1117)) (-4 *2 (-1117)) + (-5 *1 (-622 *2 *4))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-575) "failed") *5)) (-4 *5 (-1066)) + (-5 *2 (-575)) (-5 *1 (-554 *5 *3)) (-4 *3 (-1261 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-575) "failed") *4)) (-4 *4 (-1066)) + (-5 *2 (-575)) (-5 *1 (-554 *4 *3)) (-4 *3 (-1261 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-575) "failed") *4)) (-4 *4 (-1066)) + (-5 *2 (-575)) (-5 *1 (-554 *4 *3)) (-4 *3 (-1261 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3)) (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) - (-15 -1608 ((-1143 *3 (-624 $)) $)) - (-15 -2884 ($ (-1143 *3 (-624 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) - (-15 -1608 ((-1143 *3 (-624 $)) $)) - (-15 -2884 ($ (-1143 *3 (-624 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1595 ((-1143 *4 (-624 $)) $)) - (-15 -1608 ((-1143 *4 (-624 $)) $)) - (-15 -2884 ($ (-1143 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-624 *2))) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1595 ((-1143 *4 (-624 $)) $)) - (-15 -1608 ((-1143 *4 (-624 $)) $)) - (-15 -2884 ($ (-1143 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1191 *7)) (-5 *3 (-576)) (-4 *7 (-965 *6 *4 *5)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) - (-5 *1 (-331 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-877)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-247)) (-5 *3 (-1177)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-247)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) -(((*1 *1) (-5 *1 (-145)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1053)) (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287)))) - ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288))))) + (-13 (-373) (-311) + (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) + (-15 -1608 ((-1142 *3 (-623 $)) $)) + (-15 -2883 ($ (-1142 *3 (-623 $)))))))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-1120 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1118)) (-5 *2 (-1120 (-656 *4))) (-5 *1 (-920 *4)) - (-5 *3 (-656 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1118)) (-5 *2 (-1120 (-1120 *4))) (-5 *1 (-920 *4)) - (-5 *3 (-1120 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1120 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118))))) + (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) + (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-655 (-782))))) + ((*1 *2 *1) + (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) + (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-655 (-782)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-885)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1285 *4)) (-4 *4 (-1066)) (-4 *2 (-1261 *4)) + (-5 *1 (-455 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-418 (-1190 (-325 *5)))) (-5 *3 (-1285 (-325 *5))) + (-5 *4 (-575)) (-4 *5 (-567)) (-5 *1 (-1147 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) + (-5 *2 (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137)))))) + (-5 *1 (-356 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-575)) (-5 *1 (-246)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-575)) (-5 *1 (-246))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1117)) (-4 *6 (-1117)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-695 *4 *5 *6)) (-4 *5 (-1117))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-252 *3 *4)) + (-14 *3 (-655 (-1194))) (-4 *4 (-1066)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-575))) (-14 *3 (-655 (-1194))) + (-5 *1 (-465 *3 *4 *5)) (-4 *4 (-1066)) + (-4 *5 (-243 (-2871 *3) (-782))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-492 *3 *4)) + (-14 *3 (-655 (-1194))) (-4 *4 (-1066))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-805)) (-4 *2 (-965 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) - (-4 *4 (-464)) (-4 *6 (-862))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1078)) (-4 *3 (-1221)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1221)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1595 ((-1143 *3 (-624 $)) $)) - (-15 -1608 ((-1143 *3 (-624 $)) $)) - (-15 -2884 ($ (-1143 *3 (-624 $)))))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1174 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3437 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1052)) (-5 *1 (-314))))) +(((*1 *2) + (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-428 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1191 *6)) (-4 *6 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-1191 *7)) (-5 *1 (-331 *4 *5 *6 *7)) - (-4 *7 (-965 *6 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *4)))) - (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-764))))) + (-12 (-4 *4 (-1066)) (-5 *2 (-112)) (-5 *1 (-455 *4 *3)) + (-4 *3 (-1261 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-655 *7))) (-4 *1 (-1228 *4 *5 *6 *7)) + (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-418 (-575))) (-5 *2 (-227)) (-5 *1 (-314))))) (((*1 *2 *1) - (-12 (-5 *2 (-1120 (-1120 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -1808 *3)))) - (-5 *4 (-783)) (-4 *3 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163))))) + (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1117)) + (-5 *2 (-2 (|:| -1754 (-575)) (|:| |var| (-623 *1)))) + (-4 *1 (-441 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1194)) + (-4 *4 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) + (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) + (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) + (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *2 (-1291)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1262 (-419 *5))) (-14 *7 *6)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-567))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-575)) (-5 *5 (-171 (-227))) (-5 *6 (-1176)) + (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *2 *3) - (-12 (-5 *3 (-1191 *7)) (-4 *7 (-965 *6 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1067)) (-5 *2 (-1191 *6)) - (-5 *1 (-331 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1053)) (-5 *1 (-764))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-656 (-783))) - (-5 *1 (-920 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) - ((*1 *1 *1) (-4 *1 (-161)))) + (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-418 *6)) (|:| |c| (-418 *6)) + (|:| -1889 *6))) + (-5 *1 (-1032 *5 *6)) (-5 *3 (-418 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) + (-4 *2 + (-13 (-413) + (-10 -7 (-15 -2883 (*2 *4)) (-15 -4084 ((-936) *2)) + (-15 -1624 ((-1285 *2) (-936))) (-15 -4216 (*2 *2))))) + (-5 *1 (-366 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1194)) + (-5 *2 + (-2 (|:| |zeros| (-1174 (-227))) (|:| |ones| (-1174 (-227))) + (|:| |singularities| (-1174 (-227))))) + (-5 *1 (-105))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1630 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-373)) (-4 *7 (-1261 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-418 *7)) (|:| |a0| *6)) + (-2 (|:| -1630 (-418 *7)) (|:| |coeff| (-418 *7))) "failed")) + (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1176)) (-4 *1 (-374 *2 *4)) (-4 *2 (-1117)) + (-4 *4 (-1117)))) + ((*1 *1 *2) + (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1235)) (-5 *1 (-884 *3 *2)) (-4 *3 (-1235)))) + ((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) (((*1 *2 *1) - (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1246 *3)) - (-5 *2 (-419 (-576)))))) + (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) + (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) - (-4 *7 (-862)) (-4 *8 (-1067)) (-4 *9 (-965 *8 *6 *7)) - (-4 *6 (-805)) (-5 *2 (-1191 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) + (-5 *2 (-700 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-700 *4)) (-5 *1 (-427 *3 *4)) + (-4 *3 (-428 *4)))) + ((*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316)))) + ((*1 *2 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) + ((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1) (-4 *1 (-880 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-803)) + (-4 *4 (-861))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *4)))) - (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1053)) (-5 *1 (-764))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-585 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-342)) (-5 *1 (-254))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-656 (-783))) - (-5 *1 (-920 *4))))) + (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235)) + (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) + ((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287))))) +(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-965 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-461 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1110 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1246 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1118)) - (-4 *4 (-1118)))) - ((*1 *1 *2) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) + (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-958 (-227))) (-5 *4 (-885)) (-5 *5 (-936)) + (-5 *2 (-1290)) (-5 *1 (-479)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-958 (-227))) (-5 *2 (-1290)) (-5 *1 (-479)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *4 (-885)) (-5 *5 (-936)) + (-5 *2 (-1290)) (-5 *1 (-479))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-655 (-1190 *11))) (-5 *3 (-1190 *11)) + (-5 *4 (-655 *10)) (-5 *5 (-655 *8)) (-5 *6 (-655 (-782))) + (-5 *7 (-1285 (-655 (-1190 *8)))) (-4 *10 (-861)) + (-4 *8 (-316)) (-4 *11 (-964 *8 *9 *10)) (-4 *9 (-804)) + (-5 *1 (-718 *9 *10 *8 *11))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-655 (-112))) (-5 *5 (-700 (-227))) + (-5 *6 (-700 (-575))) (-5 *7 (-227)) (-5 *3 (-575)) (-5 *2 (-1052)) + (-5 *1 (-765))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1285 (-710))) (-5 *1 (-314))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-936)) (-5 *1 (-797))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) + (-5 *1 (-341)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1194)) (-5 *4 (-1109 (-967 (-575)))) (-5 *2 (-339)) + (-5 *1 (-341)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-782)) (-5 *1 (-686 *3)) (-4 *3 (-1066)) + (-4 *3 (-1117))))) +(((*1 *1 *2) + (-12 (-5 *2 (-782)) (-5 *1 (-686 *3)) (-4 *3 (-1066)) + (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1102))) (-5 *1 (-300))))) +(((*1 *2 *3) + (-12 (-4 *4 (-924)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-429 (-1190 *7))) + (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5))) + (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) + (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *1 *1) (-5 *1 (-1080)))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1195)) (-14 *5 *3)))) + (-12 (-5 *2 (-655 (-303 *3))) (-5 *1 (-303 *3)) (-4 *3 (-567)) + (-4 *3 (-1235))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-700 *2)) (-5 *4 (-575)) + (-4 *2 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) + (-4 *5 (-1261 *2)) (-5 *1 (-510 *2 *5 *6)) (-4 *6 (-420 *2 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1157 *4 *5)) (-4 *4 (-13 (-1117) (-34))) + (-4 *5 (-13 (-1117) (-34))) (-5 *2 (-112)) (-5 *1 (-1158 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *2 (-1236)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1236)))) - ((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) + (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-782))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-701 *4)) (-4 *5 (-668 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) - (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1053)) (-5 *1 (-764))))) -(((*1 *2 *1) - (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-1120 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1120 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3 *2) (-12 - (-5 *2 - (-656 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-805)) (-4 *6 (-965 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) - (-5 *1 (-461 *4 *3 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) + (-5 *3 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-389)) (-5 *1 (-194))))) +(((*1 *2 *1) (-12 (-5 *2 (-596)) (-5 *1 (-289))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) + (-5 *2 (-1052)) (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220)))))) +(((*1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-692)))) + ((*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-987)))) + ((*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-1090)))) + ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-1135))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-309)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-314))))) +(((*1 *2) + (-12 (-4 *4 (-373)) (-5 *2 (-782)) (-5 *1 (-337 *3 *4)) + (-4 *3 (-338 *4)))) + ((*1 *2) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-782))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067)) - (-4 *2 (-1246 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1112 (-227))) (-5 *6 (-576)) (-5 *2 (-1231 (-942))) - (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1112 (-227))) (-5 *6 (-576)) (-5 *7 (-1177)) - (-5 *2 (-1231 (-942))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1112 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) - (-5 *2 (-1231 (-942))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1112 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1177)) - (-5 *2 (-1231 (-942))) (-5 *1 (-328))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-568)) - (-5 *2 (-2 (|:| -2869 (-701 *5)) (|:| |vec| (-1286 (-656 (-937)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-668 *5))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-920 *4)) - (-4 *4 (-1118)))) - ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-920 *3)) (-4 *3 (-1118))))) + (-12 (-4 *2 (-719 *3)) (-5 *1 (-838 *2 *3)) (-4 *3 (-1066))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-656 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-805)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) - (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-937)) (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-804)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1267 *3)) (-4 *3 (-1067))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(((*1 *1 *1) (-4 *1 (-1162)))) -(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1118)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-919 *3))))) + (-12 (-5 *2 (-655 (-2 (|:| |val| (-655 *6)) (|:| -4270 *7)))) + (-4 *6 (-1082 *3 *4 *5)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1005 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-655 (-2 (|:| |val| (-655 *6)) (|:| -4270 *7)))) + (-4 *6 (-1082 *3 *4 *5)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1124 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *2) - (-12 + (-12 (-4 *1 (-798)) (-5 *2 (-1052)) + (-5 *3 + (-2 (|:| |fn| (-325 (-227))) + (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-798)) (-5 *2 (-1052)) + (-5 *3 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-429 *5)) (-4 *5 (-567)) (-5 *2 - (-656 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-805)) (-4 *3 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) - (-5 *1 (-461 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *2 *2) + (-2 (|:| -2398 (-782)) (|:| -1754 *5) (|:| |radicand| (-655 *5)))) + (-5 *1 (-329 *5)) (-5 *4 (-782)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1019)) (-5 *2 (-575))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) + (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) + (-5 *2 (-1052)) (-5 *1 (-759))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137)))))) + (-4 *4 (-359)) (-5 *2 (-782)) (-5 *1 (-356 *4)))) + ((*1 *2) + (-12 (-5 *2 (-782)) (-5 *1 (-361 *3 *4)) (-14 *3 (-936)) + (-14 *4 (-936)))) + ((*1 *2) + (-12 (-5 *2 (-782)) (-5 *1 (-362 *3 *4)) (-4 *3 (-359)) + (-14 *4 + (-3 (-1190 *3) + (-1285 (-655 (-2 (|:| -4182 *3) (|:| -4317 (-1137))))))))) + ((*1 *2) + (-12 (-5 *2 (-782)) (-5 *1 (-363 *3 *4)) (-4 *3 (-359)) + (-14 *4 (-936))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-389)) (-5 *3 (-1176)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-389)) (-5 *3 (-1176)) (-5 *1 (-97))))) +(((*1 *2 *3 *4) (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-576)))) - (-4 *4 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3928 ($ $ $))))) - (-4 *3 (-568)) (-5 *1 (-1265 *3 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) - (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) - (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) - (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) - (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) - (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) - (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *3))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1162)))) + (-5 *3 + (-655 + (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) + (|:| |wcond| (-655 (-967 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *5)))))))))) + (-5 *4 (-1176)) (-4 *5 (-13 (-316) (-148))) (-4 *8 (-964 *5 *7 *6)) + (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-575)) + (-5 *1 (-939 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-227)) + (-5 *7 (-700 (-575))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-763))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 - (-656 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 (-171 *4))))))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-4 *1 (-919 *3))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-965 *4 *3 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-965 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1083 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *1)))) - (-4 *1 (-1089 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1240))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-1265 *3 *2)) - (-4 *2 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3928 ($ $ $)))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))) + (-2 (|:| |solns| (-655 *5)) + (|:| |maps| (-655 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1145 *3 *5)) (-4 *3 (-1261 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-672)))) +(((*1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575)))) + ((*1 *1 *1) (-5 *1 (-1137)))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-988)))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1091)))) - ((*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-1136))))) -(((*1 *1 *1) (-4 *1 (-1162)))) + (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-112)) + (-5 *1 (-367 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-112)) + (-5 *1 (-539 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1228 *2 *3 *4 *5)) (-4 *2 (-567)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *5 (-1082 *2 *3 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-984)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1160 *4 *2)) (-14 *4 (-937)) - (-4 *2 (-13 (-1067) (-10 -7 (-6 (-4463 "*"))))) - (-5 *1 (-918 *4 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-965 *4 *3 *5))))) -(((*1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) + (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-1194))) (-4 *6 (-373)) + (-5 *2 (-655 (-303 (-967 *6)))) (-5 *1 (-549 *5 *6 *7)) + (-4 *5 (-463)) (-4 *7 (-13 (-373) (-859)))))) (((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132)) - (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2666 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -1755 *3) (|:| -3694 *4)))) - (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) - (-5 *2 (-1175 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1118))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1253 (-576)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) - (-5 *1 (-921 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-805)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) - (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-937)))) - ((*1 *2 *3) - (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) - (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) - (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-937))))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1262 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1067)) - (-4 *3 (-862)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-862)) - (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) - (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1056 (-576)))) - (-5 *2 (-783)) (-5 *1 (-927 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) - (-5 *1 (-928 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) - (-4 *7 (-1262 *6)) (-4 *4 (-1262 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) - (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) - (-5 *1 (-1036 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-4 *3 (-568)) - (-5 *2 (-783)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) + (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804))))) -(((*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1) (-5 *1 (-1138)))) -(((*1 *1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) - (-5 *1 (-122 *3)) (-4 *3 (-862)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1221))) - (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-595 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 (-419 (-968 *3)))) - (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-601 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -1502 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-4 *5 (-1067)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) - (-5 *3 (-656 (-701 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1286 (-1286 *5))) (-4 *5 (-374)) (-4 *5 (-1067)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) - (-5 *3 (-656 (-701 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1162)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1162))))) -(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-965 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-461 *4 *5 *6 *7))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-857))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-804)) + (-4 *3 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))) (-4 *5 (-567)) + (-5 *1 (-743 *4 *3 *5 *2)) (-4 *2 (-964 (-418 (-967 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1066)) (-4 *5 (-804)) + (-4 *3 + (-13 (-861) + (-10 -8 (-15 -2615 ((-1194) $)) + (-15 -1441 ((-3 $ "failed") (-1194)))))) + (-5 *1 (-1001 *4 *5 *3 *2)) (-4 *2 (-964 (-967 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-655 *6)) + (-4 *6 + (-13 (-861) + (-10 -8 (-15 -2615 ((-1194) $)) + (-15 -1441 ((-3 $ "failed") (-1194)))))) + (-4 *4 (-1066)) (-4 *5 (-804)) (-5 *1 (-1001 *4 *5 *6 *2)) + (-4 *2 (-964 (-967 *4) *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *1 *1) (-4 *1 (-1078))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804))))) + (-12 (-5 *3 (-655 (-936))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1 *1) (-5 *1 (-1138)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-937)) (-4 *5 (-862)) - (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145))))) -(((*1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-700 *11)) (-5 *4 (-655 (-418 (-967 *8)))) + (-5 *5 (-782)) (-5 *6 (-1176)) (-4 *8 (-13 (-316) (-148))) + (-4 *11 (-964 *8 *10 *9)) (-4 *9 (-13 (-861) (-625 (-1194)))) + (-4 *10 (-804)) + (-5 *2 + (-2 + (|:| |rgl| + (-655 + (-2 (|:| |eqzro| (-655 *11)) (|:| |neqzro| (-655 *11)) + (|:| |wcond| (-655 (-967 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1285 (-418 (-967 *8)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *8)))))))))) + (|:| |rgsz| (-575)))) + (-5 *1 (-939 *8 *9 *10 *11)) (-5 *7 (-575))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575)))) + ((*1 *1 *1 *1) (-5 *1 (-1137)))) +(((*1 *1 *1 *1) (-4 *1 (-672)))) +(((*1 *2 *1) + (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-862)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-998 *3)) (-4 *3 (-1067)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1089 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23))))) + (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137)))))) + (-4 *4 (-359)) (-5 *2 (-700 *4)) (-5 *1 (-356 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-937)) (-4 *5 (-862)) - (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1 *1) (-5 *1 (-1138)))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-317)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3660 *1))) - (-4 *1 (-317))))) + (-12 (-5 *3 (-418 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1261 *5)) + (-5 *1 (-738 *5 *2)) (-4 *5 (-373))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316))))) +(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1067)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) - (-4 *4 (-384 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1067))))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-771))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1262 *4)) (-4 *4 (-1067)) - (-5 *2 (-1286 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-152 *3)))) + (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1270 *4 *5 *6)) + (|:| |%expon| (-328 *4 *5 *6)) + (|:| |%expTerms| + (-655 (-2 (|:| |k| (-418 (-575))) (|:| |c| *4)))))) + (|:| |%type| (-1176)))) + (-5 *1 (-1271 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3))) + (-14 *5 (-1194)) (-14 *6 *4)))) +(((*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197))))) +(((*1 *2 *1) (-12 (-5 *2 (-988)) (-5 *1 (-1310))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-836))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575)))) + ((*1 *1 *1 *1) (-5 *1 (-1137)))) +(((*1 *2) + (-12 (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) + (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) + (-4 *4 (-1261 *3)) + (-5 *2 + (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-700 *3)))) + (-5 *1 (-360 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1261 (-575))) + (-5 *2 + (-2 (|:| -1624 (-700 (-575))) (|:| |basisDen| (-575)) + (|:| |basisInv| (-700 (-575))))) + (-5 *1 (-779 *3 *4)) (-4 *4 (-420 (-575) *3)))) + ((*1 *2) + (-12 (-4 *3 (-359)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 *4)) + (-5 *2 + (-2 (|:| -1624 (-700 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-700 *4)))) + (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-735 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-359)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 *4)) + (-5 *2 + (-2 (|:| -1624 (-700 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-700 *4)))) + (-5 *1 (-1294 *3 *4 *5 *6)) (-4 *6 (-420 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) + (-5 *2 (-1052)) (-5 *1 (-762))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-567)) (-4 *2 (-1066)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-567)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *3 (-1082 *4 *5 *6)) + (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *1)))) + (-4 *1 (-1088 *4 *5 *6 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-479)) (-5 *3 (-655 (-269))) (-5 *1 (-1286)))) + ((*1 *1 *1) (-5 *1 (-1286)))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-152 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-656 (-2 (|:| -1359 (-783)) (|:| -1752 *4) (|:| |num| *4)))) - (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) + (-5 *2 (-655 (-2 (|:| -2398 (-782)) (|:| -1751 *4) (|:| |num| *4)))) + (-4 *4 (-1261 *3)) (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) + (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-112)) (-5 *1 (-448)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-5 *3 (-656 (-1195))) (-5 *4 (-112)) (-5 *1 (-449)))) + (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-5 *3 (-655 (-1194))) (-5 *4 (-112)) (-5 *1 (-448)))) ((*1 *2 *1) - (-12 (-5 *2 (-1175 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) + (-12 (-5 *2 (-1174 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1235)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-174)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1118)) - (-5 *1 (-687 *3)))) + (-12 (-5 *2 (-655 (-655 (-655 *3)))) (-4 *3 (-1117)) + (-5 *1 (-686 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1118)) + (-12 (-5 *1 (-724 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1117)) (-14 *4 - (-1 (-112) (-2 (|:| -4318 *2) (|:| -1359 *3)) - (-2 (|:| -4318 *2) (|:| -1359 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-850)))) + (-1 (-112) (-2 (|:| -4317 *2) (|:| -2398 *3)) + (-2 (|:| -4317 *2) (|:| -2398 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1135)) (-5 *1 (-849)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))) + (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1235)) (-4 *3 (-1235)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 *4)))) - (-4 *4 (-1118)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 *4)))) + (-4 *4 (-1117)) (-5 *1 (-901 *3 *4)) (-4 *3 (-1117)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1118) (-34))) - (-5 *2 (-656 (-1158 *3 *5))) (-5 *1 (-1158 *3 *5)) - (-4 *3 (-13 (-1118) (-34))))) + (-12 (-5 *4 (-655 *5)) (-4 *5 (-13 (-1117) (-34))) + (-5 *2 (-655 (-1157 *3 *5))) (-5 *1 (-1157 *3 *5)) + (-4 *3 (-13 (-1117) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4271 *5)))) - (-4 *4 (-13 (-1118) (-34))) (-4 *5 (-13 (-1118) (-34))) - (-5 *2 (-656 (-1158 *4 *5))) (-5 *1 (-1158 *4 *5)))) + (-12 (-5 *3 (-655 (-2 (|:| |val| *4) (|:| -4270 *5)))) + (-4 *4 (-13 (-1117) (-34))) (-4 *5 (-13 (-1117) (-34))) + (-5 *2 (-655 (-1157 *4 *5))) (-5 *1 (-1157 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4271 *4))) - (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))) - (-5 *1 (-1158 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4270 *4))) + (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))) + (-5 *1 (-1157 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) - (-4 *3 (-13 (-1118) (-34))))) + (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) + (-4 *3 (-13 (-1117) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) - (-4 *3 (-13 (-1118) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) + (-4 *3 (-13 (-1117) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1118) (-34))) - (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34))))) + (-12 (-5 *4 (-655 *3)) (-4 *3 (-13 (-1117) (-34))) + (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1158 *2 *3))) (-4 *2 (-13 (-1118) (-34))) - (-4 *3 (-13 (-1118) (-34))) (-5 *1 (-1159 *2 *3)))) + (-12 (-5 *4 (-655 (-1157 *2 *3))) (-4 *2 (-13 (-1117) (-34))) + (-4 *3 (-13 (-1117) (-34))) (-5 *1 (-1158 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1159 *2 *3))) (-5 *1 (-1159 *2 *3)) - (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) + (-12 (-5 *4 (-655 (-1158 *2 *3))) (-5 *1 (-1158 *2 *3)) + (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) - (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))) + (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) + (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-862)) - (-4 *8 (-965 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1286 (-419 *8)) "failed")) - (|:| -1898 (-656 (-1286 (-419 *8)))))) - (-5 *1 (-681 *5 *6 *7 *8))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1136))))) -(((*1 *1 *2) - (-12 (-5 *2 (-701 *4)) (-4 *4 (-1067)) (-5 *1 (-1160 *3 *4)) - (-14 *3 (-783))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1118) (-1056 *5))) - (-4 *5 (-899 *4)) (-4 *4 (-1118)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-947 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-968 (-576)))) (-5 *1 (-449)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-227))) (-5 *2 (-1122)) - (-5 *1 (-771)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-576))) (-5 *2 (-1122)) - (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-862))))) + (-12 (-5 *1 (-1183 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-5 *2 (-1191 *3))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-4 *5 (-1261 *4)) (-5 *2 (-655 (-664 (-418 *5)))) + (-5 *1 (-668 *4 *5)) (-5 *3 (-664 (-418 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-588)))) + ((*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-588))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-692)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1135))))) +(((*1 *2 *3) + (-12 (-5 *3 (-967 *4)) (-4 *4 (-13 (-316) (-148))) + (-4 *2 (-964 *4 *6 *5)) (-5 *1 (-939 *4 *5 *6 *2)) + (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804))))) +(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) + ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288))))) +(((*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-782)) (-5 *1 (-601))))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721))))) (((*1 *1 *2) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-14 *6 (-1286 (-701 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))))) - ((*1 *1 *2) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1236)))) + (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) + (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-1298 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) + (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1298 *5 *6 *7 *8))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1285 *3)) (-4 *3 (-373)) (-14 *6 (-1285 (-700 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))))) + ((*1 *1 *2) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1235)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-350 (-2895 'JINT 'X 'ELAM) (-2895) (-711)))) - (-5 *1 (-61 *3)) (-14 *3 (-1195)))) + (-12 (-5 *2 (-1285 (-349 (-2894 'JINT 'X 'ELAM) (-2894) (-710)))) + (-5 *1 (-61 *3)) (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-350 (-2895) (-2895 'XC) (-711)))) - (-5 *1 (-63 *3)) (-14 *3 (-1195)))) + (-12 (-5 *2 (-1285 (-349 (-2894) (-2894 'XC) (-710)))) + (-5 *1 (-63 *3)) (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-2895 'X) (-2895) (-711))) (-5 *1 (-64 *3)) - (-14 *3 (-1195)))) + (-12 (-5 *2 (-349 (-2894 'X) (-2894) (-710))) (-5 *1 (-64 *3)) + (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-2895) (-2895 'XC) (-711))) (-5 *1 (-66 *3)) - (-14 *3 (-1195)))) + (-12 (-5 *2 (-349 (-2894) (-2894 'XC) (-710))) (-5 *1 (-66 *3)) + (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-350 (-2895 'X) (-2895 '-2260) (-711)))) - (-5 *1 (-71 *3)) (-14 *3 (-1195)))) + (-12 (-5 *2 (-1285 (-349 (-2894 'X) (-2894 '-2259) (-710)))) + (-5 *1 (-71 *3)) (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-350 (-2895) (-2895 'X) (-711)))) - (-5 *1 (-74 *3)) (-14 *3 (-1195)))) + (-12 (-5 *2 (-1285 (-349 (-2894) (-2894 'X) (-710)))) + (-5 *1 (-74 *3)) (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-350 (-2895 'X 'EPS) (-2895 '-2260) (-711)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195)) - (-14 *5 (-1195)))) + (-12 (-5 *2 (-1285 (-349 (-2894 'X 'EPS) (-2894 '-2259) (-710)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1194)) (-14 *4 (-1194)) + (-14 *5 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-350 (-2895 'EPS) (-2895 'YA 'YB) (-711)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195)) - (-14 *5 (-1195)))) + (-12 (-5 *2 (-1285 (-349 (-2894 'EPS) (-2894 'YA 'YB) (-710)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1194)) (-14 *4 (-1194)) + (-14 *5 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-2895) (-2895 'X) (-711))) (-5 *1 (-77 *3)) - (-14 *3 (-1195)))) + (-12 (-5 *2 (-349 (-2894) (-2894 'X) (-710))) (-5 *1 (-77 *3)) + (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-2895) (-2895 'X) (-711))) (-5 *1 (-78 *3)) - (-14 *3 (-1195)))) + (-12 (-5 *2 (-349 (-2894) (-2894 'X) (-710))) (-5 *1 (-78 *3)) + (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-350 (-2895) (-2895 'XC) (-711)))) - (-5 *1 (-79 *3)) (-14 *3 (-1195)))) + (-12 (-5 *2 (-1285 (-349 (-2894) (-2894 'XC) (-710)))) + (-5 *1 (-79 *3)) (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-350 (-2895) (-2895 'X) (-711)))) - (-5 *1 (-80 *3)) (-14 *3 (-1195)))) + (-12 (-5 *2 (-1285 (-349 (-2894) (-2894 'X) (-710)))) + (-5 *1 (-80 *3)) (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-350 (-2895 'X '-2260) (-2895) (-711)))) - (-5 *1 (-82 *3)) (-14 *3 (-1195)))) + (-12 (-5 *2 (-1285 (-349 (-2894 'X '-2259) (-2894) (-710)))) + (-5 *1 (-82 *3)) (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-2895 'X '-2260) (-2895) (-711)))) - (-5 *1 (-83 *3)) (-14 *3 (-1195)))) + (-12 (-5 *2 (-700 (-349 (-2894 'X '-2259) (-2894) (-710)))) + (-5 *1 (-83 *3)) (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-2895 'X) (-2895) (-711)))) (-5 *1 (-84 *3)) - (-14 *3 (-1195)))) + (-12 (-5 *2 (-700 (-349 (-2894 'X) (-2894) (-710)))) (-5 *1 (-84 *3)) + (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-350 (-2895 'X) (-2895) (-711)))) - (-5 *1 (-85 *3)) (-14 *3 (-1195)))) + (-12 (-5 *2 (-1285 (-349 (-2894 'X) (-2894) (-710)))) + (-5 *1 (-85 *3)) (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-350 (-2895 'X) (-2895 '-2260) (-711)))) - (-5 *1 (-86 *3)) (-14 *3 (-1195)))) + (-12 (-5 *2 (-1285 (-349 (-2894 'X) (-2894 '-2259) (-710)))) + (-5 *1 (-86 *3)) (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-2895 'XL 'XR 'ELAM) (-2895) (-711)))) - (-5 *1 (-87 *3)) (-14 *3 (-1195)))) + (-12 (-5 *2 (-700 (-349 (-2894 'XL 'XR 'ELAM) (-2894) (-710)))) + (-5 *1 (-87 *3)) (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-2895 'X) (-2895 '-2260) (-711))) (-5 *1 (-89 *3)) - (-14 *3 (-1195)))) + (-12 (-5 *2 (-349 (-2894 'X) (-2894 '-2259) (-710))) (-5 *1 (-89 *3)) + (-14 *3 (-1194)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) + (-12 (-5 *2 (-655 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-575)) (-14 *4 (-782)) (-4 *5 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-783)))) + (-12 (-5 *2 (-655 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-575)) (-14 *4 (-782)))) ((*1 *1 *2) - (-12 (-5 *2 (-1160 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) + (-12 (-5 *2 (-1159 *4 *5)) (-14 *4 (-782)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)))) ((*1 *1 *2) - (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) + (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-782)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)))) ((*1 *2 *3) - (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174)) - (-5 *2 (-1286 (-701 (-419 (-968 *4))))) (-5 *1 (-191 *4)))) + (-12 (-5 *3 (-1285 (-700 *4))) (-4 *4 (-174)) + (-5 *2 (-1285 (-700 (-418 (-967 *4))))) (-5 *1 (-191 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1110 (-326 *4))) - (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1110 (-390))) - (-5 *1 (-265 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) + (-12 (-5 *3 (-1109 (-325 *4))) + (-4 *4 (-13 (-861) (-567) (-625 (-389)))) (-5 *2 (-1109 (-389))) + (-5 *1 (-264 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-274 *2)) (-4 *2 (-861)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-283)))) ((*1 *2 *1) - (-12 (-4 *2 (-1262 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1261 *3)) (-5 *1 (-298 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1271 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) - (-14 *5 (-1195)) (-14 *6 *4) - (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) - (-5 *1 (-323 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1270 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3))) + (-14 *5 (-1194)) (-14 *6 *4) + (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) + (-5 *1 (-322 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (-12 (-5 *2 (-325 *5)) (-5 *1 (-349 *3 *4 *5)) + (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) - (-4 *3 (-339 *4)))) + (-12 (-4 *4 (-359)) (-4 *2 (-338 *4)) (-5 *1 (-357 *3 *4 *2)) + (-4 *3 (-338 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) - (-4 *3 (-339 *4)))) + (-12 (-4 *4 (-359)) (-4 *2 (-338 *4)) (-5 *1 (-357 *2 *4 *3)) + (-4 *3 (-338 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-1310 *3 *4)))) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *2 (-1309 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-1301 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *2 (-1300 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) - (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) + (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) + (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-393)))) + ((*1 *1 *2) (-12 (-5 *2 (-700 (-710))) (-4 *1 (-393)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) - (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) - ((*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1118)))) + (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) + (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-394)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-394)))) + ((*1 *2 *3) (-12 (-5 *2 (-405)) (-5 *1 (-404 *3)) (-4 *3 (-1117)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) - (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) + (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) + (-4 *1 (-407)))) + ((*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-407)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-407)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-303 (-325 (-171 (-389))))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-303 (-325 (-389)))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-303 (-325 (-575)))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-325 (-171 (-389)))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-325 (-389))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-325 (-575))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-303 (-325 (-705)))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-303 (-325 (-710)))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-303 (-325 (-712)))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-325 (-705))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-325 (-710))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-325 (-712))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) - (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) + (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) + (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-655 (-339))) (-5 *1 (-409 *3 *4 *5 *6)) + (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2008 "void"))) - (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) + (-12 (-5 *2 (-339)) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) + (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21))) - (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) + (-12 (-5 *2 (-340 *4)) (-4 *4 (-13 (-861) (-21))) + (-5 *1 (-438 *3 *4)) (-4 *3 (-13 (-174) (-38 (-418 (-575))))))) ((*1 *1 *2) - (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) - (-4 *3 (-13 (-862) (-21))))) + (-12 (-5 *1 (-438 *2 *3)) (-4 *2 (-13 (-174) (-38 (-418 (-575))))) + (-4 *3 (-13 (-861) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-968 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1118)) - (-4 *1 (-442 *3)))) + (-12 (-5 *2 (-418 (-967 (-418 *3)))) (-4 *3 (-567)) (-4 *3 (-1117)) + (-4 *1 (-441 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-968 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1118)) - (-4 *1 (-442 *3)))) + (-12 (-5 *2 (-967 (-418 *3))) (-4 *3 (-567)) (-4 *3 (-1117)) + (-4 *1 (-441 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1118)) - (-4 *1 (-442 *3)))) + (-12 (-5 *2 (-418 *3)) (-4 *3 (-567)) (-4 *3 (-1117)) + (-4 *1 (-441 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1143 *3 (-624 *1))) (-4 *3 (-1067)) (-4 *3 (-1118)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-446)))) - ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) + (-12 (-5 *2 (-1142 *3 (-623 *1))) (-4 *3 (-1066)) (-4 *3 (-1117)) + (-4 *1 (-441 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-445)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-448)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) - (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 (-711))) (-4 *1 (-452)))) + (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) + (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-1285 (-710))) (-4 *1 (-451)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2559 (-656 (-340))))) - (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) + (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2558 (-655 (-339))))) + (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-452)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 (-419 (-968 *3)))) (-4 *3 (-174)) - (-14 *6 (-1286 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-14 *4 (-937)) (-14 *5 (-656 (-1195))))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-480)))) + (-12 (-5 *2 (-1285 (-418 (-967 *3)))) (-4 *3 (-174)) + (-14 *6 (-1285 (-700 *3))) (-5 *1 (-464 *3 *4 *5 *6)) + (-14 *4 (-936)) (-14 *5 (-655 (-1194))))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479)))) + ((*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-479)))) ((*1 *1 *2) - (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-1195)) - (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) + (-12 (-5 *2 (-1270 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-1194)) + (-14 *5 *3) (-5 *1 (-485 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-514)))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-485 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506)))) + ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-513)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618)))) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-535)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-617)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1067)))) + (-12 (-4 *3 (-174)) (-5 *1 (-618 *3 *2)) (-4 *2 (-755 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1235)))) + ((*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1235)))) + ((*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1066)))) ((*1 *2 *1) - (-12 (-5 *2 (-1306 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) + (-12 (-5 *2 (-1305 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) ((*1 *2 *1) - (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) + (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) + (-12 (-4 *3 (-174)) (-5 *1 (-646 *3 *2)) (-4 *2 (-755 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-688 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) ((*1 *2 *1) - (-12 (-5 *2 (-974 (-974 (-974 *3)))) (-5 *1 (-687 *3)) - (-4 *3 (-1118)))) + (-12 (-5 *2 (-973 (-973 (-973 *3)))) (-5 *1 (-686 *3)) + (-4 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-974 (-974 (-974 *3)))) (-4 *3 (-1118)) - (-5 *1 (-687 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) - ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-693)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-973 (-973 (-973 *3)))) (-4 *3 (-1117)) + (-5 *1 (-686 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-692)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-693 *3)) (-4 *3 (-1117)))) ((*1 *1 *2) - (-12 (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) - (-4 *2 (-384 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) - ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) - ((*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) - ((*1 *2 *3) - (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713)))) - ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) + (-12 (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *2)) (-4 *4 (-383 *3)) + (-4 *2 (-383 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-171 (-389))) (-5 *1 (-705)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-712))) (-5 *1 (-705)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-710))) (-5 *1 (-705)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-575))) (-5 *1 (-705)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-389))) (-5 *1 (-705)))) + ((*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-389)) (-5 *1 (-710)))) + ((*1 *2 *3) + (-12 (-5 *3 (-325 (-575))) (-5 *2 (-325 (-712))) (-5 *1 (-712)))) + ((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -1755 *3) (|:| -3694 *4)))) - (-4 *3 (-1067)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775)))) + (-12 (-5 *2 (-655 (-2 (|:| -1754 *3) (|:| -3693 *4)))) + (-4 *3 (-1066)) (-4 *4 (-737)) (-5 *1 (-746 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-774)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| - (-2 (|:| |fn| (-326 (-227))) - (|:| -1908 (-656 (-1112 (-855 (-227))))) + (-2 (|:| |fn| (-325 (-227))) + (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-781)))) + (-5 *1 (-780)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-227))) - (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) + (-2 (|:| |fn| (-325 (-227))) + (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-781)))) + (-5 *1 (-780)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-781)))) - ((*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1236)))) + (-5 *1 (-780)))) + ((*1 *2 *3) (-12 (-5 *2 (-785)) (-5 *1 (-784 *3)) (-4 *3 (-1235)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-820)))) - ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-836)))) + (-5 *1 (-819)))) + ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-835)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) + (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) + (|:| |lb| (-655 (-854 (-227)))) + (|:| |cf| (-655 (-325 (-227)))) + (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3475 (-656 (-227))))))) - (-5 *1 (-853)))) + (-2 (|:| |lfn| (-655 (-325 (-227)))) + (|:| -3474 (-655 (-227))))))) + (-5 *1 (-852)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) - (-5 *1 (-853)))) + (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) + (-5 *1 (-852)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *1 (-853)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-870)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) - ((*1 *2 *3) - (-12 (-5 *3 (-968 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-887)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-968 (-48)))) (-5 *2 (-326 (-576))) - (-5 *1 (-887)))) - ((*1 *1 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) + (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) + (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) + (|:| |ub| (-655 (-854 (-227)))))) + (-5 *1 (-852)))) + ((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-869)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) + ((*1 *2 *3) + (-12 (-5 *3 (-967 (-48))) (-5 *2 (-325 (-575))) (-5 *1 (-886)))) + ((*1 *2 *3) + (-12 (-5 *3 (-418 (-967 (-48)))) (-5 *2 (-325 (-575))) + (-5 *1 (-886)))) + ((*1 *1 *2) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-656 (-326 (-227)))) + (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| - (-656 + (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) + (|:| |grid| (-782)) (|:| |boundaryType| (-575)) + (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) + (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) - (-5 *1 (-913)))) + (-5 *1 (-912)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-921 *3))) (-4 *3 (-1118)) (-5 *1 (-920 *3)))) + (-12 (-5 *2 (-655 (-920 *3))) (-4 *3 (-1117)) (-5 *1 (-919 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-921 *3)))) + (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-920 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3)))) + (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-930 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317)))) + (-12 (-5 *2 (-418 (-429 *3))) (-4 *3 (-316)) (-5 *1 (-929 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316)))) ((*1 *2 *3) - (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-935 *4)) - (-4 *4 (-568)))) - ((*1 *2 *3) (-12 (-5 *2 (-1291)) (-5 *1 (-1051 *3)) (-4 *3 (-1236)))) - ((*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1051 *2)) (-4 *2 (-1236)))) + (-12 (-5 *3 (-488)) (-5 *2 (-325 *4)) (-5 *1 (-934 *4)) + (-4 *4 (-567)))) + ((*1 *2 *3) (-12 (-5 *2 (-1290)) (-5 *1 (-1050 *3)) (-4 *3 (-1235)))) + ((*1 *2 *3) (-12 (-5 *3 (-321)) (-5 *1 (-1050 *2)) (-4 *2 (-1235)))) ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-1052 *3 *4 *5 *2 *6)) (-4 *2 (-965 *3 *4 *5)) - (-14 *6 (-656 *2)))) + (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-1051 *3 *4 *5 *2 *6)) (-4 *2 (-964 *3 *4 *5)) + (-14 *6 (-655 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-1061 *3)) (-4 *3 (-568)))) + (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-1060 *3)) (-4 *3 (-567)))) ((*1 *1 *2) - (-12 (-4 *3 (-1067)) (-4 *4 (-862)) (-5 *1 (-1144 *3 *4 *2)) - (-4 *2 (-965 *3 (-543 *4) *4)))) + (-12 (-4 *3 (-1066)) (-4 *4 (-861)) (-5 *1 (-1143 *3 *4 *2)) + (-4 *2 (-964 *3 (-542 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1067)) (-4 *2 (-862)) (-5 *1 (-1144 *3 *2 *4)) - (-4 *4 (-965 *3 (-543 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-874)))) - ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1162)))) + (-12 (-4 *3 (-1066)) (-4 *2 (-861)) (-5 *1 (-1143 *3 *2 *4)) + (-4 *4 (-964 *3 (-542 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-873)))) + ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1161)))) ((*1 *2 *3) - (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1067)))) + (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-1066)))) ((*1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1185 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1192 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1067)) (-14 *4 (-1195)) - (-14 *5 *3) (-5 *1 (-1193 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1194)))) - ((*1 *2 *1) (-12 (-5 *2 (-1208 (-1195) (-449))) (-5 *1 (-1199)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1207 *3)) (-4 *3 (-1118)))) - ((*1 *2 *3) (-12 (-5 *2 (-1216)) (-5 *1 (-1215 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-1258 *4 *3)) (-4 *3 (-1066)) (-14 *4 (-1194)) + (-14 *5 *3) (-5 *1 (-1192 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1193)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207 (-1194) (-448))) (-5 *1 (-1198)))) + ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1199)))) + ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1199)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1199)))) + ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1199)))) + ((*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-1206 *3)) (-4 *3 (-1117)))) + ((*1 *2 *3) (-12 (-5 *2 (-1215)) (-5 *1 (-1214 *3)) (-4 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-968 *3)) (-4 *3 (-1067)) (-5 *1 (-1230 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-1067)))) + (-12 (-5 *2 (-967 *3)) (-4 *3 (-1066)) (-5 *1 (-1229 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1229 *3)) (-4 *3 (-1066)))) ((*1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1249 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1112 *3)) (-4 *3 (-1236)) (-5 *1 (-1253 *3)))) + (-12 (-5 *2 (-1111 *3)) (-4 *3 (-1235)) (-5 *1 (-1252 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1277 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1067)) (-14 *4 (-1195)) - (-14 *5 *3) (-5 *1 (-1278 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1287)))) - ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1287)) (-5 *1 (-1290)))) + (-12 (-5 *2 (-1258 *4 *3)) (-4 *3 (-1066)) (-14 *4 (-1194)) + (-14 *5 *3) (-5 *1 (-1277 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1281 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-1286)))) + ((*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-1286)) (-5 *1 (-1289)))) ((*1 *1 *2) - (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) + (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) ((*1 *2 *1) - (-12 (-5 *2 (-1310 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) + (-12 (-5 *2 (-1309 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) ((*1 *2 *1) - (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) + (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *1 (-1306 *3 *4))))) -(((*1 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374)) - (-5 *2 (-112)) (-5 *1 (-679 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-112)) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) + (-12 (-5 *2 (-675 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *1 (-1305 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1117)) (-5 *2 (-901 *3 *4)) (-5 *1 (-897 *3 *4 *5)) + (-4 *3 (-1117)) (-4 *5 (-677 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-981 *4)) (-4 *4 (-1117)) (-5 *2 (-1119 *4)) + (-5 *1 (-982 *4))))) +(((*1 *1 *1) (-4 *1 (-672)))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-783)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-782)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1284 *3)) (-4 *3 (-23)) (-4 *3 (-1236))))) -(((*1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34))) - (-4 *3 (-13 (-1118) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771))))) + (-12 (-5 *2 (-782)) (-4 *1 (-1283 *3)) (-4 *3 (-23)) (-4 *3 (-1235))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-959 (-227))))) - (-5 *2 (-656 (-1112 (-227)))) (-5 *1 (-944))))) -(((*1 *1) (-5 *1 (-518)))) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *5 *6)) (-4 *6 (-625 (-1194))) + (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861)) + (-5 *2 (-1183 (-655 (-967 *4)) (-655 (-303 (-967 *4))))) + (-5 *1 (-515 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-1194)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1191 *3)) (-4 *3 (-1067)) (-4 *1 (-1262 *3))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-34)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-989)))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389)))) + (-5 *1 (-207))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-782)) (-4 *5 (-567)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-804)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861)) + (-5 *2 (-112)) (-5 *1 (-460 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) + ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) + ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942))))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023)))) + ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-34)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-255)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-988)))) ((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-576)))) + (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-575)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-858))))) + (-12 (-5 *2 (-782)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-857))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1194)) (-5 *2 (-547)) (-5 *1 (-546 *4)) + (-4 *4 (-1235))))) +(((*1 *2 *1) + (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-317)) - (-5 *2 (-419 (-430 (-968 *4)))) (-5 *1 (-1060 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1191 *4))) (-5 *3 (-1191 *4)) - (-4 *4 (-925)) (-5 *1 (-675 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) - (-5 *1 (-315))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34))) - (-4 *3 (-13 (-1118) (-34)))))) -(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) - (-5 *1 (-942)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) - (-5 *1 (-942)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) - (-5 *1 (-943)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) - (-5 *1 (-943))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *2 *2 *3) (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-389)) (-5 *1 (-207))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) + (-14 *5 (-655 (-1194))) (-5 *2 - (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) - (-253 *4 (-419 (-576))))) - (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067))))) + (-655 (-2 (|:| -3527 (-1190 *4)) (|:| -3962 (-655 (-967 *4)))))) + (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 + (-655 (-2 (|:| -3527 (-1190 *5)) (|:| -3962 (-655 (-967 *5)))))) + (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5))) + (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 + (-655 (-2 (|:| -3527 (-1190 *5)) (|:| -3962 (-655 (-967 *5)))))) + (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5))) + (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 + (-655 (-2 (|:| -3527 (-1190 *5)) (|:| -3962 (-655 (-967 *5)))))) + (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5))) + (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 + (-655 (-2 (|:| -3527 (-1190 *4)) (|:| -3962 (-655 (-967 *4)))))) + (-5 *1 (-1312 *4 *5 *6)) (-5 *3 (-655 (-967 *4))) + (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1029))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *1 (-815 *4 *2)) (-4 *2 (-13 (-29 *4) (-1220) (-974)))))) +(((*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-227)) (-5 *1 (-314))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) + ((*1 *1 *1) (-5 *1 (-873)))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) - (-4 *2 (-668 *4))))) + ((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) + (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235)) + (-4 *4 (-383 *2)) (-4 *5 (-383 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) - (-4 *2 (-1236))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1158 *4 *5)) (-4 *4 (-13 (-1118) (-34))) - (-4 *5 (-13 (-1118) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943)) - (-5 *1 (-941 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943)) - (-5 *1 (-941 *3)) (-4 *3 (-626 (-548))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) - (-5 *1 (-942)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) - (-5 *1 (-942)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) - (-5 *1 (-943)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) - (-5 *1 (-943)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1112 (-227))) - (-5 *1 (-943)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1112 (-227))) - (-5 *1 (-943)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) - (-5 *1 (-943)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) - (-5 *1 (-943))))) -(((*1 *2 *3) - (-12 (-14 *4 (-656 (-1195))) (-14 *5 (-783)) - (-5 *2 - (-656 - (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) - (-253 *4 (-419 (-576)))))) - (-5 *1 (-517 *4 *5)) - (-5 *3 - (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) - (-253 *4 (-419 (-576)))))))) -(((*1 *1) (-5 *1 (-158)))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) - (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-965 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1067)) (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) - (-4 *1 (-1262 *3))))) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) + (-4 *2 (-1235))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316))))) +(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770))))) +(((*1 *2) + (-12 (-4 *3 (-1066)) (-5 *2 (-973 (-723 *3 *4))) (-5 *1 (-723 *3 *4)) + (-4 *4 (-1261 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-316)) (-5 *1 (-181 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-129))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-575)) + (-5 *6 + (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2085 (-389)))) + (-5 *7 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) + (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) + (-5 *1 (-799)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-575)) + (-5 *6 + (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2085 (-389)))) + (-5 *7 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) + (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) + (-5 *1 (-799))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3)) + (-4 *3 (-1117))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)) - (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-568))) + (|partial| -12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)) + (-4 *2 (-567)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-567))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) - (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-783))) + (|partial| -12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) + (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-567)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-782))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) + (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))) + ((*1 *1 *1 *1) (-5 *1 (-873))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) - (-5 *1 (-987 *3 *4)))) + (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-567)) + (-5 *1 (-986 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *2 (-1067)) - (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-568)))) + (|partial| -12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *2 (-1066)) + (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-567)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195)) - (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1067)) (-4 *3 (-374)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5))))) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) + (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2571 (-655 *9)) (|:| -4270 *4) (|:| |ineq| (-655 *9)))) + (-5 *1 (-1005 *6 *7 *8 *9 *4)) (-5 *3 (-655 *9)) + (-4 *4 (-1088 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) + (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2571 (-655 *9)) (|:| -4270 *4) (|:| |ineq| (-655 *9)))) + (-5 *1 (-1124 *6 *7 *8 *9 *4)) (-5 *3 (-655 *9)) + (-4 *4 (-1088 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) + (-5 *2 (-1052)) (-5 *1 (-763))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) - (-4 *3 (-1236))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-5 *2 (-1177))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1158 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1118) (-34))) (-4 *6 (-13 (-1118) (-34))) - (-5 *2 (-112)) (-5 *1 (-1159 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) - ((*1 *2 *1) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4461)) (-4 *1 (-500 *3)) + (-4 *3 (-1235))))) +(((*1 *2) + (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-158))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1067)) - (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-1262 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227)))))) + (-12 (-4 *4 (-567)) (-4 *2 (-13 (-441 *4) (-1019) (-1220))) + (-5 *1 (-611 *4 *2 *3)) + (-4 *3 (-13 (-441 (-171 *4)) (-1019) (-1220)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-227)) (-5 *1 (-1288)))) + ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1288))))) +(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-840))))) +(((*1 *2 *3) + (-12 (-5 *3 (-575)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-5 *2 (-1290)) (-5 *1 (-460 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1190 *7)) (-4 *5 (-1066)) + (-4 *7 (-1066)) (-4 *2 (-1261 *5)) (-5 *1 (-512 *5 *2 *6 *7)) + (-4 *6 (-1261 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1066)) (-4 *7 (-1066)) + (-4 *4 (-1261 *5)) (-5 *2 (-1190 *7)) (-5 *1 (-512 *5 *4 *6 *7)) + (-4 *6 (-1261 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227)))))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) - (-5 *1 (-831 *3)) (-4 *3 (-862)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1058))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) - (-4 *2 (-668 *4))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-830 *3)) (|:| |rm| (-830 *3)))) + (-5 *1 (-830 *3)) (-4 *3 (-861)))) + ((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288)))) + ((*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-782)) (-4 *1 (-1261 *4)) (-4 *4 (-1066)) + (-5 *2 (-1285 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-655 (-958 *4))) (-4 *1 (-1151 *4)) (-4 *4 (-1066)) + (-5 *2 (-782))))) +(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-569 *2)) (-4 *2 (-556))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) + (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) + ((*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1194)) (-5 *1 (-597 *2)) (-4 *2 (-1055 *3)) + (-4 *2 (-373)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-373)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-641 *4 *2)) + (-4 *2 (-13 (-441 *4) (-1019) (-1220))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1109 *2)) (-4 *2 (-13 (-441 *4) (-1019) (-1220))) + (-4 *4 (-567)) (-5 *1 (-641 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-974)) (-5 *2 (-1194)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-974))))) +(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1111 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227)))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) + ((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1176)) (-5 *2 (-575)) (-5 *1 (-1217 *4)) + (-4 *4 (-1066))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4060 *4))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-491))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873))))) +(((*1 *2) + (-12 (-4 *4 (-373)) (-5 *2 (-936)) (-5 *1 (-337 *3 *4)) + (-4 *3 (-338 *4)))) + ((*1 *2) + (-12 (-4 *4 (-373)) (-5 *2 (-844 (-936))) (-5 *1 (-337 *3 *4)) + (-4 *3 (-338 *4)))) + ((*1 *2) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-936)))) + ((*1 *2) + (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-844 (-936)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1066)) (-4 *3 (-861)) + (-4 *4 (-274 *3)) (-4 *5 (-804))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-655 (-1190 *7))) (-5 *3 (-1190 *7)) + (-4 *7 (-964 *5 *6 *4)) (-4 *5 (-924)) (-4 *6 (-804)) + (-4 *4 (-861)) (-5 *1 (-921 *5 *6 *4 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1111 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227)))))) +(((*1 *1 *1 *1) (-4 *1 (-316))) ((*1 *1 *1 *1) (-5 *1 (-782))) + ((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1197)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1290)) + (-5 *1 (-1197)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1290)) + (-5 *1 (-1197))))) (((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-241 *3)) - (-4 *3 (-1118)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4461)) (-4 *1 (-241 *2)) (-4 *2 (-1118)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1118)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1118)) - (-5 *1 (-749 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1118)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) - (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-942))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) + (-12 (-5 *2 (-958 *4)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1111 (-227))) (-5 *6 (-575)) (-5 *2 (-1230 (-941))) + (-5 *1 (-327)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1111 (-227))) (-5 *6 (-575)) (-5 *7 (-1176)) + (-5 *2 (-1230 (-941))) (-5 *1 (-327)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1111 (-227))) (-5 *6 (-227)) (-5 *7 (-575)) + (-5 *2 (-1230 (-941))) (-5 *1 (-327)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1111 (-227))) (-5 *6 (-227)) (-5 *7 (-575)) (-5 *8 (-1176)) + (-5 *2 (-1230 (-941))) (-5 *1 (-327))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) + (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782)))) + ((*1 *2 *1) + (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) + (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-274 *3)) (-4 *3 (-861)) (-5 *2 (-782))))) +(((*1 *2) + (-12 (-5 *2 (-700 (-925 *3))) (-5 *1 (-361 *3 *4)) (-14 *3 (-936)) + (-14 *4 (-936)))) + ((*1 *2) + (-12 (-5 *2 (-700 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-359)) + (-14 *4 + (-3 (-1190 *3) + (-1285 (-655 (-2 (|:| -4182 *3) (|:| -4317 (-1137))))))))) + ((*1 *2) + (-12 (-5 *2 (-700 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-359)) + (-14 *4 (-936))))) (((*1 *2 *3) (-12 (-5 *3 - (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-227)) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-959 *4)))) - (|:| |xValues| (-1112 *4)) (|:| |yValues| (-1112 *4)))) - (-5 *1 (-154)) (-5 *3 (-656 (-656 (-959 *4))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1112 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227)))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) + (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) + (-5 *2 (-655 (-227))) (-5 *1 (-314))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5)))) - (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5)))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1158 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1118) (-34))) (-4 *5 (-13 (-1118) (-34))) - (-5 *1 (-1159 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-656 (-1158 *3 *4))) (-4 *3 (-13 (-1118) (-34))) - (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6))))) + (-12 (-5 *3 (-780)) + (-5 *2 + (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) + (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052)))) + (-5 *1 (-576)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-780)) (-5 *4 (-1080)) + (-5 *2 + (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) + (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052)))) + (-5 *1 (-576)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-798)) (-5 *3 (-1080)) + (-5 *4 + (-2 (|:| |fn| (-325 (-227))) + (|:| -3437 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) + (|:| |extra| (-1052)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-798)) (-5 *3 (-1080)) + (-5 *4 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)) + (|:| |extra| (-1052)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-811)) (-5 *3 (-1080)) + (-5 *4 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-819)) + (-5 *2 + (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) + (|:| |explanations| (-655 (-1176))))) + (-5 *1 (-816)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-819)) (-5 *4 (-1080)) + (-5 *2 + (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) + (|:| |explanations| (-655 (-1176))))) + (-5 *1 (-816)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-850)) (-5 *3 (-1080)) + (-5 *4 + (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) + (-5 *2 (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-850)) (-5 *3 (-1080)) + (-5 *4 + (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) + (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) + (|:| |ub| (-655 (-854 (-227)))))) + (-5 *2 (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-852)) + (-5 *2 + (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) + (|:| |explanations| (-655 (-1176))))) + (-5 *1 (-851)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-852)) (-5 *4 (-1080)) + (-5 *2 + (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) + (|:| |explanations| (-655 (-1176))))) + (-5 *1 (-851)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-909)) (-5 *3 (-1080)) + (-5 *4 + (-2 (|:| |pde| (-655 (-325 (-227)))) + (|:| |constraints| + (-655 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-782)) (|:| |boundaryType| (-575)) + (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) + (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) + (|:| |tol| (-227)))) + (-5 *2 (-2 (|:| -2803 (-389)) (|:| |explanations| (-1176)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-912)) + (-5 *2 + (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) + (|:| |explanations| (-655 (-1176))))) + (-5 *1 (-911)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-912)) (-5 *4 (-1080)) + (-5 *2 + (-2 (|:| -2803 (-389)) (|:| -1777 (-1176)) + (|:| |explanations| (-655 (-1176))))) + (-5 *1 (-911))))) +(((*1 *1 *1 *1) (-4 *1 (-316))) ((*1 *1 *1 *1) (-5 *1 (-782))) + ((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *3) + (-12 (-5 *3 (-854 (-389))) (-5 *2 (-854 (-227))) (-5 *1 (-314))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1212 *4 *5)) + (-4 *4 (-1117)) (-4 *5 (-1117))))) (((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1067)) (-4 *3 (-862)) - (-4 *4 (-275 *3)) (-4 *5 (-805))))) + (|partial| -12 (-5 *1 (-303 *2)) (-4 *2 (-737)) (-4 *2 (-1235))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1112 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227)))))) -(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058))))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) - (-4 *2 - (-13 (-414) - (-10 -7 (-15 -2884 (*2 *4)) (-15 -1875 ((-937) *2)) - (-15 -1898 ((-1286 *2) (-937))) (-15 -3649 (*2 *2))))) - (-5 *1 (-367 *2 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) - (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) - (-4 *4 (-13 (-1118) (-34)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942))))) + (-12 (-5 *2 (-1252 (-575))) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-291 *3)) (-4 *3 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-288))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-782)) (-5 *1 (-215 *4 *2)) (-14 *4 (-936)) + (-4 *2 (-1117))))) (((*1 *2 *3) - (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) + (-12 (-4 *4 (-359)) (-5 *2 (-429 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1261 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1112 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-315)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067))))) -(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2666 *4)))) - (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-974 (-1191 *4))) (-5 *1 (-368 *4)) - (-5 *3 (-1191 *4))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-937)) - (-4 *2 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-289))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1118))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) - (-5 *2 (-112)) (-5 *1 (-1005 *3 *4 *5 *6)) - (-4 *6 (-965 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) - (-4 *4 (-13 (-1118) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-968 *6)) (-5 *4 (-1195)) - (-5 *5 (-855 *7)) - (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-4 *7 (-13 (-1221) (-29 *6))) (-5 *1 (-226 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1191 *6)) (-5 *4 (-855 *6)) - (-4 *6 (-13 (-1221) (-29 *5))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-226 *5 *6))))) -(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) + (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) + (-4 *3 (-1261 (-575))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-655 (-782))) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) + (-4 *3 (-1261 (-575))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *2 (-429 *3)) + (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) + (-4 *3 (-1261 (-575))))) ((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1262 *2)) - (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-1262 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) - (-4 *3 (-421 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *3 (-1262 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) - (-4 *4 (-421 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *3 (-174)))) + (-12 (-5 *2 (-429 *3)) (-5 *1 (-1024 *3)) + (-4 *3 (-1261 (-418 (-575)))))) ((*1 *2 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-174))))) + (-12 (-5 *2 (-429 *3)) (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-373)) (-4 *3 (-1066)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3659 *1))) + (-4 *1 (-863 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))) + (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1194)) (-4 *5 (-373)) (-5 *2 (-655 (-1229 *5))) + (-5 *1 (-1293 *5)) (-5 *4 (-1229 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) + ((*1 *2 *1) + (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-803)) + (-4 *5 (-861)) (-5 *2 (-112))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) - (-4 *5 (-384 *2)) (-4 *2 (-1236)))) + (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-383 *2)) + (-4 *5 (-383 *2)) (-4 *2 (-1235)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-1118)) (-5 *1 (-215 *4 *2)) - (-14 *4 (-937)))) + (-12 (-5 *3 (-782)) (-4 *2 (-1117)) (-5 *1 (-215 *4 *2)) + (-14 *4 (-936)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236)))) + (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1067)) (-4 *6 (-965 *5 *4 *2)) - (-4 *2 (-862)) (-5 *1 (-966 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *6)) (-15 -1595 (*6 $)) - (-15 -1608 (*6 $))))))) + (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1066))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-263))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) - (-5 *2 (-1195)) (-5 *1 (-1061 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1118)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1118)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1118))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) - (-4 *3 (-13 (-1118) (-34)))))) + (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-517)) (-5 *3 (-1121)) (-5 *1 (-300))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1261 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-861)) (-5 *2 (-1206 (-655 *4))) (-5 *1 (-1205 *4)) + (-5 *3 (-655 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) + (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942))))) + (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *2 (-655 (-171 *4))) + (-5 *1 (-775 *4)) (-4 *4 (-13 (-373) (-859)))))) +(((*1 *2 *2) (-12 (-5 *2 (-325 (-227))) (-5 *1 (-275))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1194)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-655 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-655 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1630 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1220) (-27) (-441 *8))) + (-4 *8 (-13 (-463) (-148) (-1055 *3) (-650 *3))) (-5 *3 (-575)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -2435 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1030 *8 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) (((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1221) (-29 *6))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-226 *6 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *3 (-174)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2)))) + (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195))) - (-4 *6 (-13 (-568) (-1056 *5))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-968 *6)))))) (-5 *1 (-1057 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2666 *4)))) - (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-373) (-1220) (-1019)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-517)) (-5 *3 (-655 (-887))) (-5 *1 (-494))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1158 *3 *2)) (-4 *3 (-13 (-1118) (-34))) - (-4 *2 (-13 (-1118) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4))))) + (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-575)) (-5 *2 (-112)) (-5 *1 (-564))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177)) - (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-112)) - (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1221) (-29 *4)))))) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) + (|:| |expense| (-389)) (|:| |accuracy| (-389)) + (|:| |intermediateResults| (-389)))) + (-5 *2 (-1052)) (-5 *1 (-314))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1053))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1118)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) - (-4 *4 (-1118)) (-14 *5 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) - (-4 *4 (-13 (-1118) (-34)))))) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) + (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-994 *3 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-615 *4 *3)) (-4 *4 (-1117)) + (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-112))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117))))) +(((*1 *1) (-5 *1 (-145))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-269))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1117) (-34))) (-4 *6 (-13 (-1117) (-34))) + (-5 *2 (-112)) (-5 *1 (-1157 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) + (-12 (-5 *4 (-1194)) + (-4 *5 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-597 *3)) (-5 *1 (-568 *5 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *5)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-383 *3)) (-4 *3 (-1235)) (-4 *3 (-861)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-383 *4)) (-4 *4 (-1235)) + (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1237))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-567))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) + (-5 *1 (-766))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-556)))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-782)) (-5 *1 (-793 *3)) (-4 *3 (-1066)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-978 *3 *2)) (-4 *2 (-132)) (-4 *3 (-567)) + (-4 *3 (-1066)) (-4 *2 (-803)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-782)) (-5 *1 (-1190 *3)) (-4 *3 (-1066)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-988)) (-4 *2 (-132)) (-5 *1 (-1196 *3)) (-4 *3 (-567)) + (-4 *3 (-1066)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-782)) (-5 *1 (-1258 *4 *3)) (-14 *4 (-1194)) + (-4 *3 (-1066))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *2 - (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) - (|:| |genIdeal| (-516 *4 *5 *6 *7)))) - (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1067)) (-14 *3 (-656 (-1195))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862))) - (-14 *3 (-656 (-1195)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)) - (-4 *3 (-568)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1053))))) + (-2 (|:| |additions| (-575)) (|:| |multiplications| (-575)) + (|:| |exponentiations| (-575)) (|:| |functionCalls| (-575)))) + (-5 *1 (-314))))) +(((*1 *1) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873)))))) +(((*1 *2) + (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) + (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) + (-5 *1 (-1005 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) + (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) + (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-655 (-303 *4))) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) + (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) - (-4 *2 (-1118)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1118)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1118)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-1118)) (-5 *1 (-661 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) + (-5 *2 (-700 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) - (-4 *3 (-13 (-1118) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942))))) -(((*1 *1 *2) - (-12 + (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) + (-5 *1 (-178 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 - (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) - (|:| |genIdeal| (-516 *3 *4 *5 *6)))) - (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) - (-14 *4 (-656 (-1195))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) - (-14 *4 (-656 (-1195)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568))))) + (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) + (|:| |success| (-112)))) + (-5 *1 (-800)) (-5 *5 (-575))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -2435 *6) (|:| |sol?| (-112))) (-575) + *6)) + (-4 *6 (-373)) (-4 *7 (-1261 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-418 *7)) (|:| |a0| *6)) + (-2 (|:| -1630 (-418 *7)) (|:| |coeff| (-418 *7))) "failed")) + (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1117))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942)) + (-5 *1 (-940 *3)) (-4 *3 (-625 (-547))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942)) + (-5 *1 (-940 *3)) (-4 *3 (-625 (-547))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) + (-5 *1 (-941)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) + (-5 *1 (-941)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) + (-5 *1 (-942)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) + (-5 *1 (-942)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-655 (-1 (-227) (-227)))) (-5 *3 (-1111 (-227))) + (-5 *1 (-942)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-655 (-1 (-227) (-227)))) (-5 *3 (-1111 (-227))) + (-5 *1 (-942)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) + (-5 *1 (-942)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) + (-5 *1 (-942))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-937)) (-5 *1 (-1050 *2)) - (-4 *2 (-13 (-1118) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1118) (-34))) (-4 *6 (-13 (-1118) (-34))) - (-5 *2 (-112)) (-5 *1 (-1158 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942))))) -(((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4))))) + (-12 (-5 *2 (-655 (-967 *4))) (-5 *3 (-655 (-1194))) (-4 *4 (-463)) + (-5 *1 (-933 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-556)))) + ((*1 *1 *1) (-4 *1 (-1077)))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-655 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-575))))) + (-4 *2 (-567)) (-5 *1 (-429 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-575)) + (|:| -3378 (-655 (-2 (|:| |irr| *4) (|:| -2856 (-575))))))) + (-4 *4 (-1261 (-575))) (-5 *2 (-429 *4)) (-5 *1 (-453 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-2 (|:| -2353 (-1190 *6)) (|:| -2398 (-575))))) + (-4 *6 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-575)) + (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-105))))) (((*1 *1 *2) - (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1067) (-862))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -1755 *4) (|:| -2770 *3) (|:| -1406 *3))) - (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -2770 *1) (|:| -1406 *1))) (-4 *1 (-1083 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1067)) - (-5 *2 (-2 (|:| -1755 *3) (|:| -2770 *1) (|:| -1406 *1))) - (-4 *1 (-1262 *3))))) + (-12 (-5 *2 (-655 (-920 *3))) (-4 *3 (-1117)) (-5 *1 (-919 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1286 *5))) (-5 *4 (-576)) (-5 *2 (-1286 *5)) - (-5 *1 (-1047 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067))))) -(((*1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1118) (-34))) - (-5 *2 (-112)) (-5 *1 (-1158 *4 *5)) (-4 *4 (-13 (-1118) (-34)))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) - (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) - (-5 *2 (-425 *4 (-419 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 *6)) (-4 *6 (-13 (-421 *4 *5) (-1056 *4))) - (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-317)) - (-5 *1 (-425 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862))) - (-14 *3 (-656 (-1195)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1262 *4)) - (-5 *2 (-2 (|:| -4171 (-635 *4 *5)) (|:| -4162 (-419 *5)))) - (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))) + (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 (-1 *6 (-655 *6)))) + (-4 *5 (-38 (-418 (-575)))) (-4 *6 (-1276 *5)) (-5 *2 (-655 *6)) + (-5 *1 (-1278 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) + (-5 *1 (-341))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) - (-14 *3 (-937)) (-4 *4 (-1067)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1067)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1262 *3))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) - (-4 *6 (-1067)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1047 *6)) - (-5 *3 (-656 (-701 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1067)) - (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1047 *4)) - (-5 *3 (-656 (-701 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) - (-5 *3 (-656 (-701 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-937)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) - (-5 *3 (-656 (-701 *5)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-834))))) + (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-857))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) + (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-655 (-325 (-227)))) (-5 *1 (-275))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-655 (-325 (-227)))) + (|:| |constraints| + (-655 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-782)) (|:| |boundaryType| (-575)) + (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) + (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) + (|:| |tol| (-227)))) + (-5 *2 (-112)) (-5 *1 (-212))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1309 *3 *4)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-830 *3)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1066)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) + (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4271 *9)))) - (-5 *4 (-783)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291)) - (-5 *1 (-1087 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4271 *9)))) - (-5 *4 (-783)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291)) - (-5 *1 (-1163 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1157)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) - (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6))))) + (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) + (-5 *4 (-782)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) + (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-1290)) + (-5 *1 (-1086 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) + (-5 *4 (-782)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) + (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-1290)) + (-5 *1 (-1162 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-540))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1195)) (-5 *6 (-112)) - (-4 *7 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-1221) (-975) (-29 *7))) + (-12 (-5 *4 (-1194)) (-5 *6 (-112)) + (-4 *7 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) + (-4 *3 (-13 (-1220) (-974) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) + (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1067)) (-5 *1 (-1258 *4 *2)) - (-4 *2 (-1262 *4))))) + (-5 *1 (-221 *7 *3)) (-5 *5 (-854 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1235)) (-5 *1 (-184 *3 *2)) + (-4 *2 (-685 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1176)) + (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-112)) + (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1220) (-29 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-316) (-148))) + (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) + (-5 *2 + (-655 + (-2 (|:| |eqzro| (-655 *7)) (|:| |neqzro| (-655 *7)) + (|:| |wcond| (-655 (-967 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *4)))))))))) + (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) - (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-1047 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1067)) - (-5 *2 (-112)) (-5 *1 (-1047 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *3 (-1190 *5)) (-4 *5 (-373)) (-5 *2 (-655 *6)) + (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859)))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-567)) + (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-1256 *4 *3)) + (-4 *3 (-1261 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -1321 (-656 (-874))) (|:| -2158 (-656 (-874))) - (|:| |presup| (-656 (-874))) (|:| -4434 (-656 (-874))) - (|:| |args| (-656 (-874))))) - (-5 *1 (-1195)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-1195))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1157)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) + (-2 (|:| -4242 (-655 (-873))) (|:| -3605 (-655 (-873))) + (|:| |presup| (-655 (-873))) (|:| -2750 (-655 (-873))) + (|:| |args| (-655 (-873))))) + (-5 *1 (-1194)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-655 (-873)))) (-5 *1 (-1194))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943)) - (-5 *1 (-941 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) (-5 *2 (-943)) (-5 *1 (-941 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-943)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) - (-5 *1 (-943))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1067)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) - (-5 *2 (-701 *6)) (-5 *1 (-1047 *6)) (-4 *6 (-374)) (-4 *6 (-1067)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1047 *4)) - (-4 *4 (-374)) (-4 *4 (-1067)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) - (-5 *1 (-1047 *5)) (-4 *5 (-374)) (-4 *5 (-1067))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-834))))) + (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-568 *6 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-438 *3 *2)) (-4 *3 (-13 (-174) (-38 (-418 (-575))))) + (-4 *2 (-13 (-861) (-21)))))) (((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1157)))) + (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-428 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1019)) + (-4 *2 (-1066))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1077)))) + ((*1 *1 *1) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)) (-4 *2 (-1077)))) + ((*1 *1 *1) (-4 *1 (-859))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)) (-4 *2 (-1077)))) + ((*1 *1 *1) (-4 *1 (-1077))) ((*1 *1 *1) (-4 *1 (-1156)))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-766))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-575)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-782)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-804)) (-4 *4 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *7 (-861)) + (-5 *1 (-460 *5 *6 *7 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-965 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1276 *4)) (-5 *1 (-1278 *4 *2)) + (-4 *4 (-38 (-418 (-575))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-431 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1220) (-441 *3))) + (-14 *4 (-1194)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-4 *2 (-13 (-27) (-1220) (-441 *3) (-10 -8 (-15 -2883 ($ *4))))) + (-4 *4 (-859)) + (-4 *5 + (-13 (-1263 *2 *4) (-373) (-1220) + (-10 -8 (-15 -2389 ($ $)) (-15 -4413 ($ $))))) + (-5 *1 (-433 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1000 *5)) + (-14 *7 (-1194))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1262 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1067)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1286 *5)) (-4 *5 (-317)) - (-4 *5 (-1067)) (-5 *2 (-701 *5)) (-5 *1 (-1047 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1118)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1118)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) + (-12 (-5 *3 (-782)) (-5 *2 (-1174 (-988))) (-5 *1 (-988))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3))))) +(((*1 *2) (-12 (-5 *2 (-1164 (-1176))) (-5 *1 (-402))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1117)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1043 (-854 (-575)))) + (-5 *3 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *4)))) (-4 *4 (-1066)) + (-5 *1 (-606 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-686 (-227))) + (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-761))))) (((*1 *2 *2) (-12 (-5 *2 - (-516 (-419 (-576)) (-246 *4 (-783)) (-876 *3) - (-253 *3 (-419 (-576))))) - (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1157)))) + (-515 (-418 (-575)) (-245 *4 (-782)) (-875 *3) + (-252 *3 (-418 (-575))))) + (-14 *3 (-655 (-1194))) (-14 *4 (-782)) (-5 *1 (-516 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *5 *6)) (-4 *6 (-626 (-1195))) - (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *2 (-1184 (-656 (-968 *4)) (-656 (-304 (-968 *4))))) - (-5 *1 (-516 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1262 *4))))) + (-12 (-5 *3 (-418 *6)) (-4 *5 (-1239)) (-4 *6 (-1261 *5)) + (-5 *2 (-2 (|:| -2398 (-782)) (|:| -1754 *3) (|:| |radicand| *6))) + (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-782)) (-4 *7 (-1261 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-428 *4))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -2770 *3) (|:| -1406 *3))) (-5 *1 (-1257 *4 *3)) - (-4 *3 (-1262 *4))))) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-575)) (-4 *4 (-13 (-567) (-148))) (-5 *1 (-548 *4 *2)) + (-4 *2 (-1276 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-575)) (-4 *4 (-13 (-373) (-378) (-625 *3))) + (-4 *5 (-1261 *4)) (-4 *6 (-735 *4 *5)) (-5 *1 (-552 *4 *5 *6 *2)) + (-4 *2 (-1276 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-575)) (-4 *4 (-13 (-373) (-378) (-625 *3))) + (-5 *1 (-553 *4 *2)) (-4 *2 (-1276 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-13 (-567) (-148))) + (-5 *1 (-1170 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575)))) + (-5 *2 (-1285 (-418 (-575)))) (-5 *1 (-1313 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1067)) - (-5 *2 (-1286 (-1286 *5))) (-5 *1 (-1047 *5)) (-5 *4 (-1286 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) + (-12 (-4 *6 (-567)) (-4 *2 (-964 *3 *5 *4)) + (-5 *1 (-743 *5 *4 *6 *2)) (-5 *3 (-418 (-967 *6))) (-4 *5 (-804)) + (-4 *4 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-300)) (-5 *1 (-289))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 *4)) (-4 *4 (-861)) (-5 *2 (-655 (-675 *4 *5))) + (-5 *1 (-638 *4 *5 *6)) (-4 *5 (-13 (-174) (-728 (-418 (-575))))) + (-14 *6 (-936))))) +(((*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-796 *3)) (-4 *3 (-625 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-937)) (-5 *2 (-390)) (-5 *1 (-797 *3)) - (-4 *3 (-626 *2)))) + (-12 (-5 *4 (-936)) (-5 *2 (-389)) (-5 *1 (-796 *3)) + (-4 *3 (-625 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 *2)) + (-5 *2 (-389)) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) + (-12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) + (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 *2)) + (-5 *2 (-389)) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) + (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) + (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) + (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-132)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-372 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1118)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-661 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) + (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-418 (-575))) (-4 *1 (-565 *3)) + (-4 *3 (-13 (-415) (-1220))))) + ((*1 *1 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220)))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-814))))) (((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-1007)))) + (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1117))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1176)) (-5 *1 (-1006)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-4 *4 (-1236)) (-5 *1 (-1075 *3 *4)) - (-4 *3 (-1111 *4)))) + (-12 (-5 *2 (-1194)) (-4 *4 (-1235)) (-5 *1 (-1074 *3 *4)) + (-4 *3 (-1110 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1112 *4)) (-4 *4 (-1236)) - (-5 *1 (-1110 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1157)))) + (-12 (-5 *2 (-1194)) (-5 *3 (-1111 *4)) (-4 *4 (-1235)) + (-5 *1 (-1109 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *8 (-1082 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-655 *8)) + (|:| |towers| (-655 (-1044 *5 *6 *7 *8))))) + (-5 *1 (-1044 *5 *6 *7 *8)) (-5 *3 (-655 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *8 (-1082 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-655 *8)) + (|:| |towers| (-655 (-1163 *5 *6 *7 *8))))) + (-5 *1 (-1163 *5 *6 *7 *8)) (-5 *3 (-655 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-700 (-418 (-967 (-575))))) (-5 *2 (-655 (-325 (-575)))) + (-5 *1 (-1048))))) +(((*1 *2 *1) + (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) + (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-782)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) + (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-274 *3)) (-4 *3 (-861)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-936)))) + ((*1 *2 *3) + (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-378) (-373))) + (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-4 *7 (-352 *4 *5 *6)) + (-5 *2 (-782)) (-5 *1 (-403 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-844 (-936))))) + ((*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) + ((*1 *2 *1) + (-12 (-4 *3 (-567)) (-5 *2 (-575)) (-5 *1 (-634 *3 *4)) + (-4 *4 (-1261 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-751 *4 *3)) (-4 *4 (-1066)) + (-4 *3 (-861)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-751 *4 *3)) (-4 *4 (-1066)) (-4 *3 (-861)) + (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4)) + (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) + (-4 *8 (-352 *5 *6 *7)) (-4 *4 (-13 (-567) (-1055 (-575)))) + (-5 *2 (-782)) (-5 *1 (-926 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6)) + (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4))) + (-4 *6 (-352 (-418 (-575)) *4 *5)) (-5 *2 (-782)) + (-5 *1 (-927 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-373)) + (-4 *7 (-1261 *6)) (-4 *4 (-1261 (-418 *7))) (-4 *8 (-352 *6 *7 *4)) + (-4 *9 (-13 (-378) (-373))) (-5 *2 (-782)) + (-5 *1 (-1035 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-4 *3 (-567)) + (-5 *2 (-782)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-596)) (-5 *3 (-608)) (-5 *4 (-300)) (-5 *1 (-289))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942))))) +(((*1 *2 *1) + (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) + (-5 *2 (-1285 *6)) (-5 *1 (-346 *3 *4 *5 *6)) + (-4 *6 (-352 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-418 *6)) (|:| |h| *6) + (|:| |c1| (-418 *6)) (|:| |c2| (-418 *6)) (|:| -1889 *6))) + (-5 *1 (-1033 *5 *6)) (-5 *3 (-418 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-862) - (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 (*2 $)) - (-15 -2673 (*2 $))))))) + (-12 (-4 *5 (-567)) + (-5 *2 (-2 (|:| -2412 (-700 *5)) (|:| |vec| (-1285 (-655 (-936)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-667 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-575)))) ((*1 *2 *1) - (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-862) - (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 (*2 $)) - (-15 -2673 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1262 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) - (-5 *1 (-1256 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1067)) - (-5 *1 (-1047 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-336 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-527 *3 *4)) + (-14 *4 (-575))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) - (-14 *4 (-656 (-1195))))) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) + (-14 *4 (-655 (-1194))))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *1 *1) (-4 *1 (-294))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *1 *1) (-4 *1 (-293))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) ((*1 *1 *2) - (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) - (-14 *5 (-937)))) + (-12 (-5 *2 (-675 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-5 *1 (-638 *3 *4 *5)) + (-14 *5 (-936)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576))))) - (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))) + (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575))))) + (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) - (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1157)))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1177)) - (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1067)) (-4 *7 (-1067)) - (-4 *6 (-1262 *5)) (-5 *2 (-1191 (-1191 *7))) - (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1262 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) + (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4)) + (-4 *4 (-728 (-418 (-575)))) (-4 *3 (-861)) (-4 *4 (-174))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) - (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4356 *3)))) - (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4))))) + (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *2 (-112)) (-5 *1 (-275)))) + ((*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-112)) (-5 *1 (-275)))) + ((*1 *2 *3) + (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 (-2 (|:| -2419 *3) (|:| -2436 *3))) (-5 *1 (-1256 *4 *3)) - (-4 *3 (-1262 *4))))) + (-12 (-5 *2 (-655 (-1190 (-575)))) (-5 *1 (-193)) (-5 *3 (-575))))) +(((*1 *2 *1) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1194)) + (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-586 *4 *2)) + (-4 *2 (-13 (-1220) (-974) (-1156) (-29 *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-547))) (-5 *1 (-547))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1064))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 (-1157 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1117) (-34))) (-4 *5 (-13 (-1117) (-34))) + (-5 *1 (-1158 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-655 (-1157 *3 *4))) (-4 *3 (-13 (-1117) (-34))) + (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-804)) + (-4 *6 (-567)) (-4 *7 (-964 *6 *5 *3)) + (-5 *1 (-473 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1055 (-418 (-575))) (-373) + (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) + (-15 -1608 (*7 $)))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-418 (-575))) + (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 (-1286 *4))) (-4 *4 (-1067)) (-5 *2 (-701 *4)) - (-5 *1 (-1047 *4))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1157))) ((*1 *1 *1 *1) (-4 *1 (-1157)))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-701 (-1191 *8))) (-4 *5 (-1067)) (-4 *8 (-1067)) - (-4 *6 (-1262 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) - (-4 *7 (-1262 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-360)) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) + (-5 *2 (-700 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-700 *4)) (-5 *1 (-427 *3 *4)) + (-4 *3 (-428 *4)))) + ((*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-441 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194)))) + ((*1 *1 *1) (-4 *1 (-161)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *3 (-655 (-269))) + (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-479)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-479))))) +(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-246))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-782)) (-5 *6 (-112)) (-4 *7 (-463)) (-4 *8 (-804)) + (-4 *9 (-861)) (-4 *3 (-1082 *7 *8 *9)) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -4319 (-656 (-2 (|:| |irr| *3) (|:| -4435 (-576))))))) - (-5 *1 (-218 *5 *3)) (-4 *3 (-1262 *5))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1256 *3 *2)) - (-4 *2 (-1262 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-921 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) - (-5 *1 (-1046 *5)) (-4 *5 (-1067)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1046 *4)) - (-4 *4 (-1067)))) + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1086 *7 *8 *9 *3 *4)) (-4 *4 (-1088 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) + (-4 *3 (-1082 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-921 (-576)))) (-5 *4 (-576)) - (-5 *2 (-656 (-701 *4))) (-5 *1 (-1046 *5)) (-4 *5 (-1067)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-1046 *4)) (-4 *4 (-1067))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1157)))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1191 *7)) - (-4 *5 (-1067)) (-4 *7 (-1067)) (-4 *2 (-1262 *5)) - (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2))))) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-782)) (-5 *6 (-112)) (-4 *7 (-463)) (-4 *8 (-804)) + (-4 *9 (-861)) (-4 *3 (-1082 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1162 *7 *8 *9 *3 *4)) (-4 *4 (-1126 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) + (-4 *3 (-1082 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1162 *6 *7 *8 *3 *4)) (-4 *4 (-1126 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-655 *4)) + (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) + (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1052)) (-5 *1 (-759))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) + ((*1 *2 *1) + (-12 (-5 *2 (-782)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) + (-14 *4 (-655 (-1194))))) + ((*1 *2 *1) + (-12 (-5 *2 (-575)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) + (-14 *4 (-655 (-1194))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) + (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-283)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1190 *8)) (-5 *4 (-655 *6)) (-4 *6 (-861)) + (-4 *8 (-964 *7 *5 *6)) (-4 *5 (-804)) (-4 *7 (-1066)) + (-5 *2 (-655 (-782))) (-5 *1 (-330 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-936)))) + ((*1 *2 *1) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-567)) (-5 *2 (-575)) (-5 *1 (-634 *3 *4)) + (-4 *4 (-1261 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-719 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-782))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) + (-4 *3 (-861)) (-5 *2 (-782)))) + ((*1 *2 *1) + (-12 (-4 *1 (-990 *3 *2 *4)) (-4 *3 (-1066)) (-4 *4 (-861)) + (-4 *2 (-803)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-782)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1276 *3)) + (-5 *2 (-575)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1268 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1245 *3)) + (-5 *2 (-418 (-575))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-844 (-936))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) + (-5 *2 (-782))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-782)) (-4 *4 (-1066)) (-5 *1 (-1257 *4 *2)) + (-4 *2 (-1261 *4))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-112)) + (-5 *1 (-901 *4 *5)) (-4 *5 (-1117)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-5 *2 (-112)) + (-5 *1 (-902 *5 *3)) (-4 *3 (-1235)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) + (-4 *6 (-1235)) (-5 *2 (-112)) (-5 *1 (-902 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-748 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-748 *2)) (-4 *2 (-1117)))) + ((*1 *1) (-12 (-5 *1 (-748 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) + (-5 *2 (-1052)) (-5 *1 (-763))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-782)) (-4 *4 (-13 (-567) (-148))) + (-5 *1 (-1255 *4 *2)) (-4 *2 (-1261 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) + (-4 *4 (-13 (-373) (-859))) (-4 *3 (-1261 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-97))))) +(((*1 *2 *2) (-12 (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1262 (-419 *2))) - (-4 *2 (-1262 *5)) (-5 *1 (-217 *5 *2 *6 *3)) - (-4 *3 (-353 *5 *2 *6))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1067)) (-5 *1 (-1046 *3))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286))))) +(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-782)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1236)) - (-4 *3 (-1118)))) + (-12 (-5 *2 (-575)) (-4 *1 (-383 *3)) (-4 *3 (-1235)) + (-4 *3 (-1117)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) - (-5 *2 (-576)))) + (-12 (-4 *1 (-383 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) + (-5 *2 (-575)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236)) - (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-541)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-576)) (-5 *3 (-142)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-576))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1157)))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) - (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1067)) - (-4 *7 (-1067)) (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7)) - (-4 *6 (-1262 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1067)) (-4 *7 (-1067)) - (-4 *4 (-1262 *5)) (-5 *2 (-1191 *7)) (-5 *1 (-513 *5 *4 *6 *7)) - (-4 *6 (-1262 *4))))) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-383 *4)) (-4 *4 (-1235)) + (-5 *2 (-575)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-540)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-575)) (-5 *3 (-142)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-575))))) +(((*1 *2 *2) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-994 *3 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1078 (-1041 *4) (-1190 (-1041 *4)))) (-5 *3 (-873)) + (-5 *1 (-1041 *4)) (-4 *4 (-13 (-859) (-373) (-1039)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) - (|:| |tol| (-227)))) - (-5 *2 (-112)) (-5 *1 (-212))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-695 *4 *5 *6)) (-4 *4 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-320)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-937)) (-4 *4 (-1067)) - (-5 *1 (-1046 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-937)) (-4 *4 (-1067)) - (-5 *1 (-1046 *4))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) + (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-936)) (-5 *2 (-1190 *3)) (-5 *1 (-1209 *3)) + (-4 *3 (-373))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) + (-4 *3 (-1117)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-112)) + (-5 *1 (-919 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-936)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 @@ -9458,8879 +9934,8383 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1175 (-227))) + (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1908 + (|:| -3437 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) -(((*1 *2) - (-12 - (-5 *2 - (-1286 (-656 (-2 (|:| -4183 (-926 *3)) (|:| -4318 (-1138)))))) - (-5 *1 (-362 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) - ((*1 *2) - (-12 (-5 *2 (-1286 (-656 (-2 (|:| -4183 *3) (|:| -4318 (-1138)))))) - (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1286 (-656 (-2 (|:| -4183 *3) (|:| -4318 (-1138)))))) - (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-937))))) -(((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))) - ((*1 *1 *1 *1) (-4 *1 (-1157)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) - (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) - (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-212))))) + (-5 *1 (-570))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-655 (-115)))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235))))) +(((*1 *1 *1) (-5 *1 (-1080)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-905 *4)) - (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1118)) (-4 *3 (-167 *5)))) + (-12 (-5 *3 (-700 (-418 (-967 *4)))) (-4 *4 (-463)) + (-5 *2 (-655 (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4))))) + (-5 *1 (-301 *4))))) +(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) + ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-625 *2) (-174))) (-5 *2 (-904 *4)) + (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1117)) (-4 *3 (-167 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1112 (-855 (-390))))) - (-5 *2 (-656 (-1112 (-855 (-227))))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-406)))) + (-12 (-5 *3 (-655 (-1111 (-854 (-389))))) + (-5 *2 (-655 (-1111 (-854 (-227))))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-405)))) ((*1 *1 *2) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) - (-4 *4 (-1262 *3)))) + (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-420 *3 *4)) + (-4 *4 (-1261 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) - (-5 *2 (-1286 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3)))) + (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) + (-5 *2 (-1285 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-428 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) - (-4 *3 (-1118)))) + (-12 (-5 *2 (-429 *1)) (-4 *1 (-441 *3)) (-4 *3 (-567)) + (-4 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-548)))) - ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1236)))) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-474 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-547)))) + ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1235)))) + ((*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1235)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-174)) (-4 *1 (-735 *3 *2)) (-4 *2 (-1261 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-968 *3)) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) - (-4 *5 (-626 (-1195))) (-4 *4 (-805)) (-4 *5 (-862)))) + (-12 (-5 *2 (-967 *3)) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) + (-4 *5 (-625 (-1194))) (-4 *4 (-804)) (-4 *5 (-861)))) ((*1 *1 *2) - (-3766 - (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) - (-12 (-3216 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))) - (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))))) + (-3765 + (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) + (-12 (-3215 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) + (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))) + (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))))) ((*1 *1 *2) - (-12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1067)) - (-4 *4 (-805)) (-4 *5 (-862)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4271 *8))) - (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177)) - (-5 *1 (-1087 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4271 *8))) - (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1127 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177)) - (-5 *1 (-1163 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1200)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216)))) - ((*1 *2 *3) - (-12 (-5 *3 (-792 *4 (-876 *5))) - (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195))) - (-5 *2 (-792 *4 (-876 *6))) (-5 *1 (-1313 *4 *5 *6)) - (-14 *6 (-656 (-1195))))) - ((*1 *2 *3) - (-12 (-5 *3 (-968 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-968 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) - (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) - ((*1 *2 *3) - (-12 (-5 *3 (-792 *4 (-876 *6))) - (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *6 (-656 (-1195))) - (-5 *2 (-968 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) - (-14 *5 (-656 (-1195))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1191 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) - (-5 *2 (-1191 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) - (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) + (-12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5)) + (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))) (-4 *3 (-1066)) + (-4 *4 (-804)) (-4 *5 (-861)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) + (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1176)) + (-5 *1 (-1086 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) + (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1126 *4 *5 *6 *7)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1176)) + (-5 *1 (-1162 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-1199)))) + ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-1199)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-1215)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-1215)))) + ((*1 *2 *3) + (-12 (-5 *3 (-791 *4 (-875 *5))) + (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194))) + (-5 *2 (-791 *4 (-875 *6))) (-5 *1 (-1312 *4 *5 *6)) + (-14 *6 (-655 (-1194))))) + ((*1 *2 *3) + (-12 (-5 *3 (-967 *4)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-967 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6)) + (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) + ((*1 *2 *3) + (-12 (-5 *3 (-791 *4 (-875 *6))) + (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *6 (-655 (-1194))) + (-5 *2 (-967 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6)) + (-14 *5 (-655 (-1194))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1190 *4)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-1190 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6)) + (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) ((*1 *2 *3) (-12 - (-5 *3 (-1164 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6)))) - (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *6 (-656 (-1195))) - (-5 *2 (-656 (-792 *4 (-876 *6)))) (-5 *1 (-1313 *4 *5 *6)) - (-14 *5 (-656 (-1195)))))) + (-5 *3 (-1163 *4 (-542 (-875 *6)) (-875 *6) (-791 *4 (-875 *6)))) + (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *6 (-655 (-1194))) + (-5 *2 (-655 (-791 *4 (-875 *6)))) (-5 *1 (-1312 *4 *5 *6)) + (-14 *5 (-655 (-1194)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-700 *5))) (-4 *5 (-316)) (-4 *5 (-1066)) + (-5 *2 (-1285 (-1285 *5))) (-5 *1 (-1046 *5)) (-5 *4 (-1285 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-981 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-655 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-782)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-804)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *5 (-861)) + (-5 *1 (-460 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1159 *3 *4)) (-14 *3 (-936)) (-4 *4 (-373)) + (-5 *1 (-1010 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) - (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) - (-5 *1 (-705 *4 *5)))) + (-12 (-14 *4 (-655 (-1194))) (-14 *5 (-782)) + (-5 *2 + (-655 + (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) + (-252 *4 (-418 (-575)))))) + (-5 *1 (-516 *4 *5)) + (-5 *3 + (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) + (-252 *4 (-418 (-575)))))))) +(((*1 *1 *1) (|partial| -4 *1 (-1169)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-115)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-517)) (-4 *4 (-1117)) (-5 *1 (-944 *4 *2)) + (-4 *2 (-441 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) - (-4 *6 (-1262 *5)) - (-5 *2 (-2 (|:| -2572 *7) (|:| |rh| (-656 (-419 *6))))) - (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) - (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1255 *4 *5 *3)) - (-4 *3 (-1262 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-701 (-968 *4))) (-5 *1 (-1046 *4)) - (-4 *4 (-1067))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *1)) (-5 *4 (-1286 *1)) (-4 *1 (-651 *5)) - (-4 *5 (-1067)) - (-5 *2 (-2 (|:| -2869 (-701 *5)) (|:| |vec| (-1286 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1067)) - (-5 *2 (-701 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1286 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1067)) - (-5 *2 (-701 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2) - (-12 (-5 *2 (-701 (-926 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-937)) - (-14 *4 (-937)))) - ((*1 *2) - (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) - (-14 *4 - (-3 (-1191 *3) - (-1286 (-656 (-2 (|:| -4183 *3) (|:| -4318 (-1138))))))))) - ((*1 *2) - (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-937))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1078)))) + (-12 (-5 *3 (-1194)) (-5 *4 (-517)) (-5 *2 (-325 (-575))) + (-5 *1 (-945))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-655 *10)) (-5 *5 (-112)) (-4 *10 (-1088 *6 *7 *8 *9)) + (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) + (-4 *9 (-1082 *6 *7 *8)) + (-5 *2 + (-655 + (-2 (|:| -2571 (-655 *9)) (|:| -4270 *10) (|:| |ineq| (-655 *9))))) + (-5 *1 (-1005 *6 *7 *8 *9 *10)) (-5 *3 (-655 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-655 *10)) (-5 *5 (-112)) (-4 *10 (-1088 *6 *7 *8 *9)) + (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) + (-4 *9 (-1082 *6 *7 *8)) + (-5 *2 + (-655 + (-2 (|:| -2571 (-655 *9)) (|:| -4270 *10) (|:| |ineq| (-655 *9))))) + (-5 *1 (-1124 *6 *7 *8 *9 *10)) (-5 *3 (-655 *9))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-389)) (-5 *1 (-1080))))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) + ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710))))) +(((*1 *2 *3) + (-12 (-4 *4 (-804)) + (-4 *5 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))) (-4 *6 (-567)) + (-5 *2 (-2 (|:| -3605 (-967 *6)) (|:| -3650 (-967 *6)))) + (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-964 (-418 (-967 *6)) *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269))))) +(((*1 *2 *2) (-12 (-5 *2 (-981 *3)) (-4 *3 (-1117)) (-5 *1 (-982 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + (-12 (-4 *2 (-148)) (-4 *2 (-316)) (-4 *2 (-463)) (-4 *3 (-861)) + (-4 *4 (-804)) (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-325 (-575))) (-5 *1 (-1136)))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1078)))) - ((*1 *1 *1) (-4 *1 (-860))) - ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)) (-4 *2 (-1078)))) - ((*1 *1 *1) (-4 *1 (-1078))) ((*1 *1 *1) (-4 *1 (-1157)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-518)) (-4 *4 (-1118)) (-5 *1 (-945 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1195)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) - (-5 *1 (-946))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) - (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212))))) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-4 *4 (-1235)) (-5 *2 (-112)) + (-5 *1 (-1174 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-655 (-655 (-958 (-227))))))) + ((*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-655 (-655 (-958 (-227)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))) +(((*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) + ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1197))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-143 *3 *4 *2)) - (-4 *2 (-384 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-4 *2 (-384 *4)) - (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568)) - (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-1255 *3 *4 *2)) - (-4 *2 (-1262 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-937)) (|has| *4 (-6 (-4463 "*"))) - (-4 *4 (-1067)) (-5 *1 (-1046 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-937)) - (|has| *4 (-6 (-4463 "*"))) (-4 *4 (-1067)) (-5 *1 (-1046 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 *5))) - (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1286 *5)) - (-5 *1 (-650 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 *5))) - (-3216 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1286 (-419 *5))) - (-5 *1 (-650 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138)))))) - (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-937)) - (-14 *4 (-937)))) + (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))) ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) - (-14 *4 - (-3 (-1191 *3) - (-1286 (-656 (-2 (|:| -4183 *3) (|:| -4318 (-1138))))))))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-937))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) - (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) - (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *3) + (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066))))) +(((*1 *1) (-5 *1 (-1102)))) +(((*1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) - (-4 *3 (-384 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *4)) (-4 *4 (-1010 *2)) (-4 *2 (-568)) - (-5 *1 (-705 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-1255 *2 *4 *3)) - (-4 *3 (-1262 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-968 (-576))))) - (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1067) (-651 *4))) - (-4 *4 (-568)) (-5 *2 (-1286 *4)) (-5 *1 (-650 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) + (-5 *2 + (-1004 (-418 (-575)) (-875 *3) (-245 *4 (-782)) + (-252 *3 (-418 (-575))))) + (-14 *3 (-655 (-1194))) (-14 *4 (-782)) (-5 *1 (-1003 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1288)))) + ((*1 *2 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1288))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-853)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-852)))) - ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1053)) (-5 *1 (-852)))) + (-12 (-5 *3 (-852)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-851)))) + ((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1052)) (-5 *1 (-851)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) - (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1053)) - (-5 *1 (-852)))) + (-12 (-5 *4 (-655 (-389))) (-5 *5 (-655 (-854 (-389)))) + (-5 *6 (-655 (-325 (-389)))) (-5 *3 (-325 (-389))) (-5 *2 (-1052)) + (-5 *1 (-851)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) - (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1053)) (-5 *1 (-852)))) + (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-389))) + (-5 *5 (-655 (-854 (-389)))) (-5 *2 (-1052)) (-5 *1 (-851)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1053)) - (-5 *1 (-852)))) + (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-389))) (-5 *2 (-1052)) + (-5 *1 (-851)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) - (-5 *2 (-1053)) (-5 *1 (-852))))) -(((*1 *2) - (-12 (-4 *1 (-360)) - (-5 *2 (-656 (-2 (|:| -2354 (-576)) (|:| -1359 (-576)))))))) + (-12 (-5 *3 (-655 (-325 (-389)))) (-5 *4 (-655 (-389))) + (-5 *2 (-1052)) (-5 *1 (-851))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1118)) - (-5 *1 (-690 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) - (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-940 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-112)) - (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-782)) (-4 *2 (-1117)) + (-5 *1 (-689 *2))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-871)) (-5 *2 (-702 (-130))) (-5 *3 (-130))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-783)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) - (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) + (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-567)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-979 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) - (-4 *3 (-1067)) (-4 *2 (-804)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1191 *3)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-989)) (-4 *2 (-132)) (-5 *1 (-1197 *3)) (-4 *3 (-568)) - (-4 *3 (-1067)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1259 *4 *3)) (-14 *4 (-1195)) - (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-254))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049))))) + (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) + (-5 *2 (-2 (|:| |radicand| (-418 *5)) (|:| |deg| (-782)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-655 (-875 *5))) (-14 *5 (-655 (-1194))) (-4 *6 (-463)) + (-5 *2 + (-2 (|:| |dpolys| (-655 (-252 *5 *6))) + (|:| |coords| (-655 (-575))))) + (-5 *1 (-482 *5 *6 *7)) (-5 *3 (-655 (-252 *5 *6))) (-4 *7 (-463))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1067) (-651 *4))) - (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) + (-12 (-4 *4 (-316)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1141 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1176)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) + (-4 *4 (-1082 *6 *7 *8)) (-5 *2 (-1290)) + (-5 *1 (-787 *6 *7 *8 *4 *5)) (-4 *5 (-1088 *6 *7 *8 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) + (-4 *6 (-804)) (-5 *2 (-655 (-655 (-575)))) + (-5 *1 (-939 *4 *5 *6 *7)) (-5 *3 (-575)) (-4 *7 (-964 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1195)) (-5 *3 (-446)) (-4 *5 (-1118)) - (-5 *1 (-1124 *5 *4)) (-4 *4 (-442 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1208 (-937) (-783)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115))))) + (-12 (-5 *2 (-1194)) (-5 *3 (-445)) (-4 *5 (-1117)) + (-5 *1 (-1123 *5 *4)) (-4 *4 (-441 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *7)) (-4 *7 (-861)) + (-4 *8 (-964 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1285 (-418 *8)) "failed")) + (|:| -1624 (-655 (-1285 (-418 *8)))))) + (-5 *1 (-680 *5 *6 *7 *8))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-253))))) (((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-115)))) + (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-32 *3 *4)) + (-4 *4 (-441 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-115)) (-5 *1 (-164)))) + (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-159 *3 *4)) + (-4 *4 (-441 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-115)) (-5 *1 (-164)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) - (-4 *4 (-13 (-442 *3) (-1020))))) - ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) - ((*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-284 *3 *4)) + (-4 *4 (-13 (-441 *3) (-1019))))) + ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-310 *3)) (-4 *3 (-311)))) + ((*1 *2 *2) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1118)) (-5 *1 (-441 *3 *4)) - (-4 *3 (-442 *4)))) + (-12 (-5 *2 (-115)) (-4 *4 (-1117)) (-5 *1 (-440 *3 *4)) + (-4 *3 (-441 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-442 *3 *4)) + (-4 *4 (-441 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) - (-4 *4 (-13 (-442 *3) (-1020) (-1221))))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1037)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1209 *2)) (-4 *2 (-1118))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1092)))) + (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-641 *3 *4)) + (-4 *4 (-13 (-441 *3) (-1019) (-1220))))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1036)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1208 *2)) (-4 *2 (-1117))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1091)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1183 3 *3)) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) - ((*1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195)))) - (-4 *5 (-805)) (-5 *1 (-940 *3 *4 *5 *2)) (-4 *2 (-965 *3 *5 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) - (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3)) (-4 *3 (-1236))))) -(((*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1049))))) + (-12 (-5 *3 (-479)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286))))) +(((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1) (-5 *1 (-643)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1055 (-575))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1221) (-442 *5))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (-855 *3) - (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) - (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) - "failed")) - (-5 *1 (-648 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1177)) - (-4 *3 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) + (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-655 *3)) + (-5 *1 (-602 *5 *6 *7 *8 *3)) (-4 *3 (-1126 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-855 (-968 *5)))) (-4 *5 (-464)) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-5 *2 - (-3 (-855 (-419 (-968 *5))) - (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-855 (-419 (-968 *5))) "failed"))) - "failed")) - (-5 *1 (-649 *5)) (-5 *3 (-419 (-968 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5))) - (-4 *5 (-464)) + (-655 (-2 (|:| -3527 (-1190 *5)) (|:| -3962 (-655 (-967 *5)))))) + (-5 *1 (-1095 *5 *6)) (-5 *3 (-655 (-967 *5))) + (-14 *6 (-655 (-1194))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-316) (-148))) (-5 *2 - (-3 (-855 *3) - (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) - (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) - "failed")) - (-5 *1 (-649 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 (-419 (-968 *6)))) (-5 *5 (-1177)) - (-5 *3 (-419 (-968 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) - (-5 *1 (-649 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644))))) -(((*1 *1) (-4 *1 (-360)))) + (-655 (-2 (|:| -3527 (-1190 *4)) (|:| -3962 (-655 (-967 *4)))))) + (-5 *1 (-1095 *4 *5)) (-5 *3 (-655 (-967 *4))) + (-14 *5 (-655 (-1194))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) + (-5 *2 + (-655 (-2 (|:| -3527 (-1190 *5)) (|:| -3962 (-655 (-967 *5)))))) + (-5 *1 (-1095 *5 *6)) (-5 *3 (-655 (-967 *5))) + (-14 *6 (-655 (-1194)))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-148) (-27) (-1055 (-575)) (-1055 (-418 (-575))))) + (-4 *5 (-1261 *4)) (-5 *2 (-1190 (-418 *5))) (-5 *1 (-626 *4 *5)) + (-5 *3 (-418 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) + (-4 *5 (-13 (-148) (-27) (-1055 (-575)) (-1055 (-418 (-575))))) + (-5 *2 (-1190 (-418 *6))) (-5 *1 (-626 *5 *6)) (-5 *3 (-418 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-664 (-418 *2))) (-4 *2 (-1261 *4)) (-5 *1 (-821 *4 *2)) + (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 *2 (-418 *2))) (-4 *2 (-1261 *4)) + (-5 *1 (-821 *4 *2)) + (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))))) +(((*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) + ((*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066)) + (-5 *1 (-1178 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) + (-14 *4 (-1194)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-700 *8)) (-4 *8 (-964 *5 *7 *6)) + (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) + (-4 *7 (-804)) + (-5 *2 + (-655 + (-2 (|:| -4422 (-782)) + (|:| |eqns| + (-655 + (-2 (|:| |det| *8) (|:| |rows| (-655 (-575))) + (|:| |cols| (-655 (-575)))))) + (|:| |fgb| (-655 *8))))) + (-5 *1 (-939 *5 *6 *7 *8)) (-5 *4 (-782))))) +(((*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-643))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1195)) - (|:| |arrayIndex| (-656 (-968 (-576)))) + (-2 (|:| |var| (-1194)) + (|:| |arrayIndex| (-655 (-967 (-575)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-874)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -1400 (-873)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) + (-2 (|:| |var| (-1194)) (|:| |rand| (-873)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1194)) (|:| |thenClause| (-340)) - (|:| |elseClause| (-340)))) + (-2 (|:| |switch| (-1193)) (|:| |thenClause| (-339)) + (|:| |elseClause| (-339)))) (|:| |returnBranch| - (-2 (|:| -2809 (-112)) - (|:| -4183 - (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-874)))))) - (|:| |blockBranch| (-656 (-340))) - (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) + (-2 (|:| -4076 (-112)) + (|:| -4182 + (-2 (|:| |ints2Floats?| (-112)) (|:| -1400 (-873)))))) + (|:| |blockBranch| (-655 (-339))) + (|:| |commentBranch| (-655 (-1176))) (|:| |callBranch| (-1176)) (|:| |forBranch| - (-2 (|:| -1908 (-1110 (-968 (-576)))) - (|:| |span| (-968 (-576))) (|:| -1789 (-340)))) - (|:| |labelBranch| (-1138)) - (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -1789 (-340)))) + (-2 (|:| -3437 (-1109 (-967 (-575)))) + (|:| |span| (-967 (-575))) (|:| -1788 (-339)))) + (|:| |labelBranch| (-1137)) + (|:| |loopBranch| (-2 (|:| |switch| (-1193)) (|:| -1788 (-339)))) (|:| |commonBranch| - (-2 (|:| -1778 (-1195)) (|:| |contents| (-656 (-1195))))) - (|:| |printBranch| (-656 (-874))))) - (-5 *1 (-340))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *1 *1) (-5 *1 (-874))) + (-2 (|:| -1777 (-1194)) (|:| |contents| (-655 (-1194))))) + (|:| |printBranch| (-655 (-873))))) + (-5 *1 (-339))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-623 *1))) (-4 *1 (-311))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) + ((*1 *1 *1) (-5 *1 (-873))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-1116 *3)))) - ((*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118))))) -(((*1 *2) - (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-1115 *3)))) + ((*1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1268 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1245 *3)) + (-5 *2 (-418 (-575)))))) +(((*1 *1 *1) (-5 *1 (-1080)))) +(((*1 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1055 (-575))) (-4 *3 (-567)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-441 *3)))) ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-783))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576))))) - (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-968 *9)))) - (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) - (-4 *9 (-13 (-317) (-148))) (-4 *12 (-965 *9 *11 *10)) - (-4 *10 (-13 (-862) (-626 (-1195)))) (-4 *11 (-805)) - (-5 *2 - (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) - (|:| |wcond| (-656 (-968 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-968 *9)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *9))))))))) - (-5 *1 (-940 *9 *10 *11 *12))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) - (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) + (-12 (-4 *4 (-174)) (-5 *2 (-1190 *4)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1066)) (-4 *1 (-311)))) + ((*1 *2) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1190 *3)))) + ((*1 *2) (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-13 (-859) (-373))) + (-4 *2 (-1261 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-700 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-174)) (-4 *2 (-1261 *4)) (-5 *1 (-179 *4 *2 *3)) + (-4 *3 (-735 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-700 (-418 (-967 *5)))) (-5 *4 (-1194)) + (-5 *2 (-967 *5)) (-5 *1 (-301 *5)) (-4 *5 (-463)))) + ((*1 *2 *3) + (-12 (-5 *3 (-700 (-418 (-967 *4)))) (-5 *2 (-967 *4)) + (-5 *1 (-301 *4)) (-4 *4 (-463)))) + ((*1 *2 *1) + (-12 (-4 *1 (-380 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-700 (-171 (-418 (-575))))) + (-5 *2 (-967 (-171 (-418 (-575))))) (-5 *1 (-775 *4)) + (-4 *4 (-13 (-373) (-859))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *4 (-1194)) + (-5 *2 (-967 (-171 (-418 (-575))))) (-5 *1 (-775 *5)) + (-4 *5 (-13 (-373) (-859))))) + ((*1 *2 *3) + (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *2 (-967 (-418 (-575)))) + (-5 *1 (-790 *4)) (-4 *4 (-13 (-373) (-859))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *4 (-1194)) + (-5 *2 (-967 (-418 (-575)))) (-5 *1 (-790 *5)) + (-4 *5 (-13 (-373) (-859)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-804)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-803)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-656 (-1195))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-655 (-1194))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) - (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-575)) + (-14 *6 (-782)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1067) (-862))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195))))) + (-12 (-5 *2 (-1 (-325 *3) (-325 *3))) (-4 *3 (-13 (-1066) (-861))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-655 (-1194))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-783)) - (-4 *6 (-1236)) (-4 *7 (-1236)) (-5 *2 (-246 *5 *7)) - (-5 *1 (-245 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-782)) + (-4 *6 (-1235)) (-4 *7 (-1235)) (-5 *2 (-245 *5 *7)) + (-5 *1 (-244 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-303 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-303 *6)) (-5 *1 (-302 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-304 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-303 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1177)) (-5 *5 (-624 *6)) - (-4 *6 (-312)) (-4 *2 (-1236)) (-5 *1 (-307 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1176)) (-5 *5 (-623 *6)) + (-4 *6 (-311)) (-4 *2 (-1235)) (-5 *1 (-306 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) - (-4 *2 (-312)) (-5 *1 (-308 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-623 *5)) (-4 *5 (-311)) + (-4 *2 (-311)) (-5 *1 (-307 *5 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-623 *1)) (-4 *1 (-311)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1067)) - (-4 *6 (-1067)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-700 *5)) (-4 *5 (-1066)) + (-4 *6 (-1066)) (-5 *2 (-700 *6)) (-5 *1 (-313 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1118)) - (-4 *6 (-1118)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-325 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-325 *6)) (-5 *1 (-323 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) - (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) - (-4 *9 (-374)) (-4 *10 (-1262 *9)) (-4 *11 (-1262 (-419 *10))) - (-5 *2 (-347 *9 *10 *11 *12)) - (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-353 *9 *10 *11)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-373)) + (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7)) + (-4 *9 (-373)) (-4 *10 (-1261 *9)) (-4 *11 (-1261 (-418 *10))) + (-5 *2 (-346 *9 *10 *11 *12)) + (-5 *1 (-343 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-352 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1117)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1240)) (-4 *8 (-1240)) - (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *9 (-1262 *8)) - (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1262 (-419 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1239)) (-4 *8 (-1239)) + (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *9 (-1261 *8)) + (-4 *2 (-352 *8 *9 *10)) (-5 *1 (-350 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-352 *5 *6 *7)) (-4 *10 (-1261 (-418 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) - (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) + (-4 *2 (-383 *6)) (-5 *1 (-381 *5 *4 *6 *2)) (-4 *4 (-383 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-1118)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-1117)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) - (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-429 *5)) (-4 *5 (-567)) + (-4 *6 (-567)) (-5 *2 (-429 *6)) (-5 *1 (-416 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) - (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-567)) + (-4 *6 (-567)) (-5 *2 (-418 *6)) (-5 *1 (-417 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) - (-4 *6 (-1010 *5)) (-4 *7 (-1262 *6)) - (-4 *8 (-13 (-421 *6 *7) (-1056 *6))) (-4 *9 (-317)) - (-4 *10 (-1010 *9)) (-4 *11 (-1262 *10)) - (-5 *2 (-425 *9 *10 *11 *12)) - (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-421 *10 *11) (-1056 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-424 *5 *6 *7 *8)) (-4 *5 (-316)) + (-4 *6 (-1009 *5)) (-4 *7 (-1261 *6)) + (-4 *8 (-13 (-420 *6 *7) (-1055 *6))) (-4 *9 (-316)) + (-4 *10 (-1009 *9)) (-4 *11 (-1261 *10)) + (-5 *2 (-424 *9 *10 *11 *12)) + (-5 *1 (-423 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-420 *10 *11) (-1055 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5)))) + (-4 *2 (-428 *6)) (-5 *1 (-426 *4 *5 *2 *6)) (-4 *4 (-428 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-567)) (-5 *1 (-429 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) + (-4 *2 (-441 *6)) (-5 *1 (-432 *5 *4 *6 *2)) (-4 *4 (-441 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) - (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) + (-4 *2 (-436 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-436 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3)) (-4 *3 (-1235)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-862)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-520 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-861)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) - (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-373)) + (-4 *6 (-373)) (-5 *2 (-597 *6)) (-5 *1 (-595 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -3849 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-374)) (-4 *6 (-374)) - (-5 *2 (-2 (|:| -3849 *6) (|:| |coeff| *6))) - (-5 *1 (-596 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -1630 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-373)) (-4 *6 (-373)) + (-5 *2 (-2 (|:| -1630 *6) (|:| |coeff| *6))) + (-5 *1 (-595 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) + (-4 *5 (-373)) (-4 *2 (-373)) (-5 *1 (-595 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (-655 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-374)) (-4 *6 (-374)) + (-4 *5 (-373)) (-4 *6 (-373)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-596 *5 *6)))) + (-655 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-595 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-612 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-612 *6)) (-5 *1 (-609 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-613 *8)) - (-5 *1 (-611 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-612 *7)) + (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-612 *8)) + (-5 *1 (-610 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8)) - (-5 *1 (-611 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-612 *7)) + (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8)) + (-5 *1 (-610 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1175 *7)) - (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8)) - (-5 *1 (-611 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-1174 *7)) + (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8)) + (-5 *1 (-610 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-655 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-655 *6)) (-5 *1 (-653 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) - (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-656 *8)) - (-5 *1 (-655 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-655 *6)) (-5 *5 (-655 *7)) + (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-655 *8)) + (-5 *1 (-654 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1067)) (-4 *8 (-1067)) - (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) - (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) - (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1067)) - (-4 *8 (-1067)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) - (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) - (-4 *6 (-1262 *5)) (-4 *2 (-1262 (-419 *8))) - (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1262 (-419 *6))) - (-4 *8 (-1262 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1067)) (-4 *9 (-1067)) - (-4 *5 (-862)) (-4 *6 (-805)) (-4 *2 (-965 *9 *7 *5)) - (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) - (-4 *4 (-965 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-805)) - (-4 *9 (-1067)) (-4 *2 (-965 *9 *8 *6)) - (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) - (-4 *4 (-965 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1067)) - (-4 *6 (-1067)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) - (-5 *1 (-746 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1066)) (-4 *8 (-1066)) + (-4 *6 (-383 *5)) (-4 *7 (-383 *5)) (-4 *2 (-698 *8 *9 *10)) + (-5 *1 (-696 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-698 *5 *6 *7)) + (-4 *9 (-383 *8)) (-4 *10 (-383 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1066)) + (-4 *8 (-1066)) (-4 *6 (-383 *5)) (-4 *7 (-383 *5)) + (-4 *2 (-698 *8 *9 *10)) (-5 *1 (-696 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-698 *5 *6 *7)) (-4 *9 (-383 *8)) (-4 *10 (-383 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-567)) (-4 *7 (-567)) + (-4 *6 (-1261 *5)) (-4 *2 (-1261 (-418 *8))) + (-5 *1 (-720 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1261 (-418 *6))) + (-4 *8 (-1261 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1066)) (-4 *9 (-1066)) + (-4 *5 (-861)) (-4 *6 (-804)) (-4 *2 (-964 *9 *7 *5)) + (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-804)) + (-4 *4 (-964 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-804)) + (-4 *9 (-1066)) (-4 *2 (-964 *9 *8 *6)) + (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-804)) + (-4 *4 (-964 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-746 *5 *7)) (-4 *5 (-1066)) + (-4 *6 (-1066)) (-4 *7 (-737)) (-5 *2 (-746 *6 *7)) + (-5 *1 (-745 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-747 *3 *4)) - (-4 *4 (-738)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-746 *3 *4)) + (-4 *4 (-737)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1067)) - (-4 *6 (-1067)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1066)) + (-4 *6 (-1066)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5)))) + (-4 *2 (-808 *6)) (-5 *1 (-809 *4 *5 *2 *6)) (-4 *4 (-808 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1118)) - (-4 *6 (-1118)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *1 (-844 *5 *6)))) + (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *1 (-843 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1118)) - (-4 *6 (-1118)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-854 *6)) (-5 *1 (-853 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *1 (-854 *5 *6)))) + (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *1 (-853 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-902 *5 *6)) (-4 *5 (-1118)) - (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-902 *5 *7)) - (-5 *1 (-901 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-901 *5 *6)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-901 *5 *7)) + (-5 *1 (-900 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) - (-4 *6 (-1118)) (-5 *2 (-905 *6)) (-5 *1 (-904 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-904 *6)) (-5 *1 (-903 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-968 *5)) (-4 *5 (-1067)) - (-4 *6 (-1067)) (-5 *2 (-968 *6)) (-5 *1 (-962 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-967 *5)) (-4 *5 (-1066)) + (-4 *6 (-1066)) (-5 *2 (-967 *6)) (-5 *1 (-961 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862)) - (-4 *8 (-1067)) (-4 *6 (-805)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) + (-4 *8 (-1066)) (-4 *6 (-804)) (-4 *2 - (-13 (-1118) - (-10 -8 (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) - (-5 *1 (-967 *6 *7 *8 *5 *2)) (-4 *5 (-965 *8 *6 *7)))) + (-13 (-1117) + (-10 -8 (-15 -4016 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-782)))))) + (-5 *1 (-966 *6 *7 *8 *5 *2)) (-4 *5 (-964 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-974 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-974 *6)) (-5 *1 (-973 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-973 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-973 *6)) (-5 *1 (-972 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-982 *5)) (-4 *5 (-1118)) - (-4 *6 (-1118)) (-5 *2 (-982 *6)) (-5 *1 (-984 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-981 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-981 *6)) (-5 *1 (-983 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1067)) - (-4 *6 (-1067)) (-5 *2 (-959 *6)) (-5 *1 (-999 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1066)) + (-4 *6 (-1066)) (-5 *2 (-958 *6)) (-5 *1 (-998 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-968 *4))) (-4 *4 (-1067)) - (-4 *2 (-965 (-968 *4) *5 *6)) (-4 *5 (-805)) + (-12 (-5 *3 (-1 *2 (-967 *4))) (-4 *4 (-1066)) + (-4 *2 (-964 (-967 *4) *5 *6)) (-4 *5 (-804)) (-4 *6 - (-13 (-862) - (-10 -8 (-15 -2616 ((-1195) $)) - (-15 -1441 ((-3 $ "failed") (-1195)))))) - (-5 *1 (-1002 *4 *5 *6 *2)))) + (-13 (-861) + (-10 -8 (-15 -2615 ((-1194) $)) + (-15 -1441 ((-3 $ "failed") (-1194)))))) + (-5 *1 (-1001 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) - (-4 *2 (-1010 *6)) (-5 *1 (-1008 *5 *6 *4 *2)) (-4 *4 (-1010 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-567)) (-4 *6 (-567)) + (-4 *2 (-1009 *6)) (-5 *1 (-1007 *5 *6 *4 *2)) (-4 *4 (-1009 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-1015 *6)) (-5 *1 (-1016 *4 *5 *2 *6)) (-4 *4 (-1015 *5)))) + (-4 *2 (-1014 *6)) (-5 *1 (-1015 *4 *5 *2 *6)) (-4 *4 (-1014 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) - (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) + (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) - (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) + (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1067)) (-4 *10 (-1067)) - (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-244 *6 *7)) - (-4 *9 (-244 *5 *7)) (-4 *2 (-1071 *5 *6 *10 *11 *12)) - (-5 *1 (-1073 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1071 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) - (-4 *12 (-244 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1066)) (-4 *10 (-1066)) + (-14 *5 (-782)) (-14 *6 (-782)) (-4 *8 (-243 *6 *7)) + (-4 *9 (-243 *5 *7)) (-4 *2 (-1070 *5 *6 *10 *11 *12)) + (-5 *1 (-1072 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1070 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) + (-4 *12 (-243 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-1112 *6)) (-5 *1 (-1107 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-1111 *6)) (-5 *1 (-1106 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-860)) - (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-656 *6)) - (-5 *1 (-1107 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-859)) + (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-655 *6)) + (-5 *1 (-1106 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-1110 *6)) (-5 *1 (-1109 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-1109 *6)) (-5 *1 (-1108 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1113 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-1167 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1112 *4 *2)) (-4 *4 (-859)) + (-4 *2 (-1166 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-1174 *6)) (-5 *1 (-1172 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-1175 *7)) - (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8)) - (-5 *1 (-1174 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-1174 *7)) + (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8)) + (-5 *1 (-1173 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1067)) - (-4 *6 (-1067)) (-5 *2 (-1191 *6)) (-5 *1 (-1189 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1190 *5)) (-4 *5 (-1066)) + (-4 *6 (-1066)) (-5 *2 (-1190 *6)) (-5 *1 (-1188 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1212 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1118)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1211 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1117)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1067)) - (-4 *6 (-1067)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1245 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1195)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1249 *5 *7 *9)) (-4 *5 (-1066)) + (-4 *6 (-1066)) (-14 *7 (-1194)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1249 *6 *8 *10)) (-5 *1 (-1244 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1194)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-1253 *6)) (-5 *1 (-1252 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-1252 *6)) (-5 *1 (-1251 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-860)) - (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1175 *6)) - (-5 *1 (-1252 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5)) (-4 *5 (-859)) + (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1174 *6)) + (-5 *1 (-1251 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1259 *5 *6)) (-14 *5 (-1195)) - (-4 *6 (-1067)) (-4 *8 (-1067)) (-5 *2 (-1259 *7 *8)) - (-5 *1 (-1254 *5 *6 *7 *8)) (-14 *7 (-1195)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1258 *5 *6)) (-14 *5 (-1194)) + (-4 *6 (-1066)) (-4 *8 (-1066)) (-5 *2 (-1258 *7 *8)) + (-5 *1 (-1253 *5 *6 *7 *8)) (-14 *7 (-1194)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-4 *2 (-1262 *6)) (-5 *1 (-1260 *5 *4 *6 *2)) (-4 *4 (-1262 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) + (-4 *2 (-1261 *6)) (-5 *1 (-1259 *5 *4 *6 *2)) (-4 *4 (-1261 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1271 *5 *7 *9)) (-4 *5 (-1067)) - (-4 *6 (-1067)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1271 *6 *8 *10)) (-5 *1 (-1266 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1195)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1270 *5 *7 *9)) (-4 *5 (-1066)) + (-4 *6 (-1066)) (-14 *7 (-1194)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1270 *6 *8 *10)) (-5 *1 (-1265 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1194)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) - (-4 *2 (-1277 *6)) (-5 *1 (-1275 *5 *6 *4 *2)) (-4 *4 (-1277 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) + (-4 *2 (-1276 *6)) (-5 *1 (-1274 *5 *6 *4 *2)) (-4 *4 (-1276 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) - (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1285 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-1235)) + (-4 *6 (-1235)) (-5 *2 (-1285 *6)) (-5 *1 (-1284 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1286 *5)) - (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6)) - (-5 *1 (-1285 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1285 *5)) + (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1285 *6)) + (-5 *1 (-1284 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1067)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1066)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-1309 *3 *4)) - (-4 *4 (-858))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -4319 (-656 (-2 (|:| |irr| *3) (|:| -4435 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -4319 (-656 (-2 (|:| |irr| *3) (|:| -4435 (-576))))))) - (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 (-419 (-968 (-576))))) - (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1049))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-304 (-845 *3))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-845 (-968 *5)))) (-4 *5 (-464)) - (-5 *2 (-845 (-419 (-968 *5)))) (-5 *1 (-649 *5)) - (-5 *3 (-419 (-968 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5))) - (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-1308 *3 *4)) + (-4 *4 (-857))))) +(((*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) + (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-919 *4)) + (-4 *4 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-919 *3)) (-4 *3 (-1117))))) +(((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) - ((*1 *1) (-5 *1 (-590)))) -(((*1 *2) - (-12 (-4 *1 (-360)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-783))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) - (-4 *6 (-805)) (-5 *1 (-940 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1262 *5)) - (-5 *2 - (-656 - (-2 (|:| -1898 (-701 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-701 *6))))) - (-5 *1 (-510 *5 *6 *7)) - (-5 *3 - (-2 (|:| -1898 (-701 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-701 *6)))) - (-4 *7 (-1262 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) + (|partial| -12 (-5 *2 (-1 (-547) (-655 (-547)))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-547) (-655 (-547)))) (-5 *1 (-115)))) + ((*1 *1) (-5 *1 (-589)))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1197)))) + ((*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1262 *4)))) + (|partial| -12 (-5 *3 (-967 (-171 *4))) (-4 *4 (-174)) + (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-967 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-174)) + (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) + (|partial| -12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) + (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-576))))) + (|partial| -12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) + (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) + (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-576))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) - (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-576))))) + (|partial| -12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) + (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1025 *3)) - (-4 *3 (-1262 (-419 (-576)))))) + (|partial| -12 (-5 *3 (-418 (-967 (-171 *4)))) (-4 *4 (-567)) + (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-418 (-967 (-171 *5)))) (-5 *4 (-936)) + (-4 *5 (-567)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) + (-5 *1 (-796 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-968 (-576))))) (-5 *2 (-656 (-326 (-576)))) - (-5 *1 (-1049))))) -(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1118)))) - ((*1 *1 *1) (-5 *1 (-644)))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-5 *3 (-937)) - (-5 *2 - (-3 (-1191 *4) - (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138))))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1118))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-5 *2 (-656 *1)) (-4 *1 (-1152 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-965 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (-5 *1 (-940 *5 *6 *7 *8))))) + (|partial| -12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) + (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) + (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) + (-5 *1 (-796 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-325 (-171 *4))) (-4 *4 (-567)) (-4 *4 (-861)) + (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-325 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-567)) + (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) + (-5 *1 (-796 *5))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-576))))) - (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1262 *3)) - (-5 *2 (-656 (-1191 *3))) (-5 *1 (-510 *3 *5 *6)) - (-4 *6 (-1262 *5))))) + (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1117)) + (-4 *2 (-861))))) +(((*1 *1 *2) (-12 (-5 *2 (-325 (-171 (-389)))) (-5 *1 (-339)))) + ((*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-5 *1 (-339)))) + ((*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-5 *1 (-339)))) + ((*1 *1 *2) (-12 (-5 *2 (-325 (-705))) (-5 *1 (-339)))) + ((*1 *1 *2) (-12 (-5 *2 (-325 (-712))) (-5 *1 (-339)))) + ((*1 *1 *2) (-12 (-5 *2 (-325 (-710))) (-5 *1 (-339)))) + ((*1 *1) (-5 *1 (-339)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873)))) + ((*1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4462 "*"))) (-4 *5 (-383 *2)) (-4 *6 (-383 *2)) + (-4 *2 (-1066)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1261 *2)) + (-4 *4 (-698 *2 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941))))) +(((*1 *2 *3) + (-12 (-4 *4 (-359)) (-4 *5 (-338 *4)) (-4 *6 (-1261 *5)) + (-5 *2 (-655 *3)) (-5 *1 (-788 *4 *5 *6 *3 *7)) (-4 *3 (-1261 *6)) + (-14 *7 (-936))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-575)) (-4 *4 (-174)) (-4 *5 (-383 *4)) + (-4 *6 (-383 *4)) (-5 *1 (-699 *4 *5 *6 *2)) + (-4 *2 (-698 *4 *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-655 (-1234))) (-5 *3 (-1234)) (-5 *1 (-692))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-326 (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) -(((*1 *1 *2) - (-12 (-5 *2 (-937)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-374)) (-14 *5 (-1011 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1277 *3))))) + (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-599 *4)) + (-4 *4 (-359))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1117))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-701 (-419 (-968 (-576))))) - (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049)) - (-5 *3 (-326 (-576)))))) + (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-575)) (-4 *5 (-373)) + (-4 *5 (-1066)) (-5 *2 (-112)) (-5 *1 (-1046 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-700 *4))) (-4 *4 (-373)) (-4 *4 (-1066)) + (-5 *2 (-112)) (-5 *1 (-1046 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1630 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-373)) (-4 *7 (-1261 *6)) + (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6))) + (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-782)) (-4 *5 (-373)) (-5 *2 (-176 *6)) + (-5 *1 (-878 *5 *4 *6)) (-4 *4 (-1276 *5)) (-4 *6 (-1261 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5))))) + (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192))))) +(((*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) + ((*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288))))) +(((*1 *1 *2) + (-12 (-5 *2 (-936)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-373)) (-14 *5 (-1010 *3 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-975))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *2 *3) - (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-937)) - (-5 *2 (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138)))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-5 *2 (-656 *1)) (-4 *1 (-1152 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) + (-12 (-5 *2 (-700 *4)) (-5 *3 (-936)) (-4 *4 (-1066)) + (-5 *1 (-1045 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-655 (-700 *4))) (-5 *3 (-936)) (-4 *4 (-1066)) + (-5 *1 (-1045 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) - (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) - (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-112)) - (-5 *1 (-940 *5 *6 *7 *8))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-883 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-884 *3 *4)) - (-4 *4 (-881 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-576)) (-5 *1 (-884 *2 *3)) (-4 *3 (-881 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-1277 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1248 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1277 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-888))) (-5 *1 (-495))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-968 (-576))))) + (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) + (-14 *6 (-655 (-1194))) (-5 *2 - (-656 - (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) - (|:| |radvect| (-656 (-701 (-326 (-576)))))))) - (-5 *1 (-1049))))) + (-655 (-1163 *5 (-542 (-875 *6)) (-875 *6) (-791 *5 (-875 *6))))) + (-5 *1 (-639 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) + ((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) - (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *1 (-815 *4 *2)) (-4 *2 (-13 (-29 *4) (-1220) (-974))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *1) (-5 *1 (-873))) + ((*1 *2 *3) + (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-1066))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-803))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-575)) (-5 *5 (-1176)) (-5 *6 (-700 (-227))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-590))))) +(((*1 *1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1190 (-575))) (-5 *3 (-575)) (-4 *1 (-880 *4))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-861) + (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 (*2 $)) + (-15 -2514 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1290)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-861) + (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 (*2 $)) + (-15 -2514 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-513))))) +(((*1 *2 *2) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-517))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-887))) (-5 *1 (-494))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-885)) + (-5 *5 (-936)) (-5 *6 (-655 (-269))) (-5 *2 (-479)) (-5 *1 (-1289)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *2 (-479)) + (-5 *1 (-1289)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-655 (-269))) + (-5 *2 (-479)) (-5 *1 (-1289))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287))))) (((*1 *2 *3) - (-12 (-5 *3 (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138)))))) - (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-959 *4))) (-4 *1 (-1152 *4)) (-4 *4 (-1067)) - (-5 *2 (-783))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) - (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) - (-5 *1 (-940 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-965 *4 *6 *5))))) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-550 *4 *2 *5 *6)) + (-4 *4 (-316)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-782)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-463))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) - (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-575)) + (-14 *6 (-782)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *9)) (-4 *9 (-1067)) (-4 *5 (-862)) (-4 *6 (-805)) - (-4 *8 (-1067)) (-4 *2 (-965 *9 *7 *5)) - (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) - (-4 *4 (-965 *8 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-503))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207))))) + (-12 (-5 *3 (-655 *9)) (-4 *9 (-1066)) (-4 *5 (-861)) (-4 *6 (-804)) + (-4 *8 (-1066)) (-4 *2 (-964 *9 *7 *5)) + (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-804)) + (-4 *4 (-964 *8 *6 *5))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-448)) (-5 *1 (-1198))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3926 (-793 *3)) (|:| |coef1| (-793 *3)) + (|:| |coef2| (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 (-2 (|:| -3926 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1082 *3 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-325 (-389))) (-5 *2 (-325 (-227))) (-5 *1 (-314))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067)) - (-4 *2 (-1277 *3))))) -(((*1 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-876 *4)) - (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) + (-5 *2 (-655 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) + (-5 *2 (-655 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1174 *3)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) + ((*1 *2 *1) + (-12 (-5 *2 (-655 *3)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-737)))) + ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-655 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1066)) (-5 *2 (-1174 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575))))) + (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-758))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) + (-12 (-5 *2 (-655 (-389))) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-479)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-479)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) + (-12 (-5 *3 (-936)) (-5 *4 (-885)) (-5 *2 (-1290)) (-5 *1 (-1286)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) - (-5 *2 (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138)))))) - (-5 *1 (-357 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) + (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286))))) +(((*1 *2) + (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-428 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-965 *3 *5 *4)) - (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195)))) - (-4 *5 (-805)) (-5 *1 (-940 *3 *4 *5 *6))))) + (-12 (-4 *3 (-1261 (-418 (-575)))) (-5 *1 (-928 *3 *2)) + (-4 *2 (-1261 (-418 *3)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1066))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) + (-4 *1 (-1082 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-623 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))) + (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-285 *4 *2))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) - (-4 *4 (-1236)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-576)) (-5 *1 (-206))))) + (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-655 (-782))) + (-5 *1 (-919 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 (-783)) (-4 *5 (-174))))) + (-12 (-5 *2 (-655 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) + (-14 *4 (-782)) (-4 *5 (-174))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) + (-12 (-5 *2 (-1176)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-269)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) + (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-325 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1067)) (-4 *4 (-568)) - (-5 *2 (-419 (-968 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1067)) (-4 *4 (-568)) - (-5 *2 (-419 (-968 *4)))))) + (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067)) - (-4 *5 (-862)) (-5 *2 (-968 *4)))) + (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066)) + (-4 *5 (-861)) (-5 *2 (-967 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067)) - (-4 *5 (-862)) (-5 *2 (-968 *4)))) + (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066)) + (-4 *5 (-861)) (-5 *2 (-967 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1067)) - (-5 *2 (-968 *4)))) + (-12 (-5 *3 (-782)) (-4 *1 (-1276 *4)) (-4 *4 (-1066)) + (-5 *2 (-967 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1067)) - (-5 *2 (-968 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-874))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) + (-12 (-5 *3 (-782)) (-4 *1 (-1276 *4)) (-4 *4 (-1066)) + (-5 *2 (-967 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-873) (-873))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-873) (-655 (-873)))) (-5 *1 (-115)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) + (|partial| -12 (-5 *2 (-1 (-873) (-655 (-873)))) (-5 *1 (-115)))) ((*1 *2 *1) - (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1290)) (-5 *1 (-216 *3)) (-4 *3 - (-13 (-862) - (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 (*2 $)) - (-15 -2673 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-406)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514)))) - ((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-722)))) - ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1216)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1216))))) + (-13 (-861) + (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 (*2 $)) + (-15 -2514 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-405)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-405)))) + ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-513)))) + ((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-721)))) + ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1215)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1215))))) +(((*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873))))) (((*1 *2 *1) - (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) - (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1195))) (-5 *1 (-643 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-974 (-1138))) - (-5 *1 (-357 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| -4423 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *7))))) - (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783)) - (-5 *1 (-940 *4 *5 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) - (-4 *4 (-1236)) (-5 *2 (-112))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-656 (-227))) (-5 *1 (-206))))) -(((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) - ((*1 *1 *1) (-4 *1 (-1020))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1030)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1030)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-937)))) - ((*1 *1 *1) (-4 *1 (-1030)))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-130))) - ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) - ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) - ((*1 *1) (-4 *1 (-738))) ((*1 *1) (-5 *1 (-1195))) - ((*1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-937)))) - ((*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937)))) - ((*1 *1) (-5 *1 (-1241))) ((*1 *1) (-5 *1 (-1242))) - ((*1 *1) (-5 *1 (-1243))) ((*1 *1) (-5 *1 (-1244)))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *3 (-656 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *1 (-270)))) + (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-655 *3))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-575)) (-4 *3 (-174)) (-4 *5 (-383 *3)) + (-4 *6 (-383 *3)) (-5 *1 (-699 *3 *5 *6 *2)) + (-4 *2 (-698 *3 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1285 *5)) (-4 *5 (-13 (-1066) (-650 *4))) + (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-649 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-59 *3)) (-4 *3 (-1235)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-59 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-325 *5))) + (-5 *1 (-1146 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) - (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-1286 *6)) - (-5 *1 (-643 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1138)) (-5 *2 (-112)) (-5 *1 (-833))))) -(((*1 *2) - (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-354 *3 *4)) (-14 *3 (-937)) - (-14 *4 (-937)))) - ((*1 *2) - (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-1191 *3)))) - ((*1 *2) - (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-937))))) -(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))) + (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) + (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-325 *5)))) + (-5 *1 (-1146 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-840))))) +(((*1 *1 *1) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) + ((*1 *1 *1) (-4 *1 (-1019))) + ((*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1029)))) + ((*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-4 *1 (-1029)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-936)))) + ((*1 *1 *1) (-4 *1 (-1029)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| -4423 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *7))))) - (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783)) - (-5 *1 (-940 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) + (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1194)) (-4 *1 (-27)) + (-5 *2 (-655 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *2 (-655 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-871)) (-5 *3 (-129)) (-5 *2 (-782))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-418 (-575))) (-5 *1 (-606 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1066))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1285 *6)) (-5 *4 (-1285 (-575))) (-5 *5 (-575)) + (-4 *6 (-1117)) (-5 *2 (-1 *6)) (-5 *1 (-1034 *6))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-575)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-429 *2)) (-4 *2 (-567))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1117)) (-4 *6 (-898 *5)) (-5 *2 (-897 *5 *6 (-655 *6))) + (-5 *1 (-899 *5 *6 *4)) (-5 *3 (-655 *6)) (-4 *4 (-625 (-904 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1117)) (-5 *2 (-655 (-303 *3))) (-5 *1 (-899 *5 *3 *4)) + (-4 *3 (-1055 (-1194))) (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1117)) (-5 *2 (-655 (-303 (-967 *3)))) + (-5 *1 (-899 *5 *3 *4)) (-4 *3 (-1066)) + (-3215 (-4 *3 (-1055 (-1194)))) (-4 *3 (-898 *5)) + (-4 *4 (-625 (-904 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1117)) (-5 *2 (-901 *5 *3)) (-5 *1 (-899 *5 *3 *4)) + (-3215 (-4 *3 (-1055 (-1194)))) (-3215 (-4 *3 (-1066))) + (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-655 (-492 *5 *6))) (-5 *4 (-875 *5)) + (-14 *5 (-655 (-1194))) (-5 *2 (-492 *5 *6)) (-5 *1 (-642 *5 *6)) + (-4 *6 (-463)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-492 *5 *6))) (-5 *4 (-875 *5)) + (-14 *5 (-655 (-1194))) (-5 *2 (-492 *5 *6)) (-5 *1 (-642 *5 *6)) + (-4 *6 (-463))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) + (-4 *1 (-1088 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-766))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -1577 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-557)))) - ((*1 *2 *1) (-12 (-4 *1 (-1240)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) + (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-1043 *3 *2)) (-4 *2 (-668 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -2572 *3) (|:| -1577 (-656 *5)))) - (-5 *1 (-1043 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-1138)) (-5 *2 (-112)) (-5 *1 (-833))))) + (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-567))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287)))) - ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1195))) - (-4 *4 (-464)) (-5 *1 (-643 *3 *4))))) -(((*1 *2) - (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) - (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-940 *4 *5 *6 *3)) - (-4 *3 (-965 *4 *6 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1286)))) + ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-4 *7 (-861)) + (-4 *9 (-964 *8 *6 *7)) (-4 *6 (-804)) (-4 *8 (-316)) + (-5 *2 (-655 (-782))) (-5 *1 (-753 *6 *7 *8 *9)) (-5 *5 (-782))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) - (-4 *4 (-1262 *2))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1053)) (-5 *3 (-1195)) (-5 *1 (-194))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1238))))) + (-12 (-5 *3 (-942)) + (-5 *2 + (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) + (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-942)) (-5 *4 (-418 (-575))) + (-5 *2 + (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) + (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) + (-5 *1 (-154))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1194)) (-4 *4 (-1066)) (-4 *4 (-1117)) + (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -2398 (-575)))) + (-4 *1 (-441 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1066)) (-4 *4 (-1117)) + (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -2398 (-575)))) + (-4 *1 (-441 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1129)) (-4 *3 (-1117)) + (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -2398 (-575)))) + (-4 *1 (-441 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -2398 (-782)))) + (-5 *1 (-904 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -2398 (-782)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) + (-4 *7 (-964 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -2398 (-575)))) + (-5 *1 (-965 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-373) + (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) + (-15 -1608 (*7 $)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) + (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -4232 *3) (|:| |coef1| (-793 *3)) (|:| |coef2| (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) + (-5 *2 (-1052)) (-5 *1 (-762))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-463)) (-4 *4 (-861)) + (-4 *5 (-804)) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236)))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1235)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-968 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-967 (-389))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-968 (-390)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-418 (-967 (-389)))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-325 (-389))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-968 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-967 (-575))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-968 (-576)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-418 (-967 (-575)))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-325 (-575))) (-5 *1 (-349 *3 *4 *5)) + (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-349 *3 *4 *5)) + (-14 *3 (-655 *2)) (-14 *4 (-655 *2)) (-4 *5 (-398)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) - (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) - (-14 *4 (-656 (-1195))))) + (|partial| -12 (-5 *2 (-325 *5)) (-4 *5 (-398)) + (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) + (-14 *4 (-655 (-1194))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-419 (-968 (-576))))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-700 (-418 (-967 (-575))))) (-4 *1 (-394)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-419 (-968 (-390))))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-700 (-418 (-967 (-389))))) (-4 *1 (-394)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-968 (-576)))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-700 (-967 (-575)))) (-4 *1 (-394)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-968 (-390)))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-700 (-967 (-389)))) (-4 *1 (-394)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-700 (-325 (-575)))) (-4 *1 (-394)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-700 (-325 (-389)))) (-4 *1 (-394)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-968 (-576)))) (-4 *1 (-408)))) + (|partial| -12 (-5 *2 (-418 (-967 (-575)))) (-4 *1 (-407)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-968 (-390)))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) + (|partial| -12 (-5 *2 (-418 (-967 (-389)))) (-4 *1 (-407)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-575))) (-4 *1 (-407)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-389))) (-4 *1 (-407)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-575))) (-4 *1 (-407)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-389))) (-4 *1 (-407)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1286 (-419 (-968 (-576))))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1285 (-418 (-967 (-575))))) (-4 *1 (-452)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1286 (-419 (-968 (-390))))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1285 (-418 (-967 (-389))))) (-4 *1 (-452)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1286 (-968 (-576)))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1285 (-967 (-575)))) (-4 *1 (-452)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1286 (-968 (-390)))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1285 (-967 (-389)))) (-4 *1 (-452)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1285 (-325 (-575)))) (-4 *1 (-452)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1285 (-325 (-389)))) (-4 *1 (-452)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5)) - (-5 *2 (-1191 (-1191 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) - (-4 *3 (-1262 *6)) (-14 *7 (-937)))) + (|partial| -12 (-4 *4 (-359)) (-4 *5 (-338 *4)) (-4 *6 (-1261 *5)) + (-5 *2 (-1190 (-1190 *4))) (-5 *1 (-788 *4 *5 *6 *3 *7)) + (-4 *3 (-1261 *6)) (-14 *7 (-936)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) - (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *1 (-994 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1056 *2)) (-4 *2 (-1236)))) + (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) + (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-4 *1 (-993 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1055 *2)) (-4 *2 (-1235)))) ((*1 *1 *2) - (|partial| -3766 - (-12 (-5 *2 (-968 *3)) - (-12 (-3216 (-4 *3 (-38 (-419 (-576))))) - (-3216 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))) - (-12 (-5 *2 (-968 *3)) - (-12 (-3216 (-4 *3 (-557))) (-3216 (-4 *3 (-38 (-419 (-576))))) - (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))) - (-12 (-5 *2 (-968 *3)) - (-12 (-3216 (-4 *3 (-1010 (-576)))) (-4 *3 (-38 (-419 (-576)))) - (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))))) + (|partial| -3765 + (-12 (-5 *2 (-967 *3)) + (-12 (-3215 (-4 *3 (-38 (-418 (-575))))) + (-3215 (-4 *3 (-38 (-575)))) (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) + (-4 *5 (-861))) + (-12 (-5 *2 (-967 *3)) + (-12 (-3215 (-4 *3 (-556))) (-3215 (-4 *3 (-38 (-418 (-575))))) + (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) + (-4 *5 (-861))) + (-12 (-5 *2 (-967 *3)) + (-12 (-3215 (-4 *3 (-1009 (-575)))) (-4 *3 (-38 (-418 (-575)))) + (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) + (-4 *5 (-861))))) ((*1 *1 *2) - (|partial| -3766 - (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) - (-12 (-3216 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))) - (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) - (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))))) + (|partial| -3765 + (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) + (-12 (-3215 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) + (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))) + (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) + (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) - (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1079 (-1042 *4) (-1191 (-1042 *4)))) (-5 *3 (-874)) - (-5 *1 (-1042 *4)) (-4 *4 (-13 (-860) (-374) (-1040)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) - (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) - (-4 *6 (-464)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) - (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) - (-4 *6 (-464))))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) -(((*1 *2) - (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) + (|partial| -12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5)) + (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))) + (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))))) +(((*1 *1) (-5 *1 (-834)))) +(((*1 *1 *1) (-4 *1 (-1077)))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556)) + (-5 *2 (-418 (-575))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-429 *3)) (-4 *3 (-556)) + (-4 *3 (-567)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-556)) (-5 *2 (-418 (-575))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556)) + (-5 *2 (-418 (-575))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-844 *3)) (-4 *3 (-556)) + (-4 *3 (-1117)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-854 *3)) (-4 *3 (-556)) + (-4 *3 (-1117)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556)) + (-5 *2 (-418 (-575))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-1025 *3)) + (-4 *3 (-1055 *2))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2869 (-701 (-419 (-968 *4)))) - (|:| |vec| (-656 (-419 (-968 *4)))) (|:| -4423 (-783)) - (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) - (-4 *6 (-805)) - (-5 *2 - (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *4))))))) - (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3))))) + (-12 (-5 *3 (-655 *2)) (-5 *1 (-497 *2)) (-4 *2 (-1261 (-575)))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-655 *1)) (-4 *1 (-316))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-194))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -3647 (-656 (-1195))) (|:| -3659 (-656 (-1195))))) - (-5 *1 (-1238))))) + (-12 (-5 *3 (-967 *5)) (-4 *5 (-1066)) (-5 *2 (-252 *4 *5)) + (-5 *1 (-959 *4 *5)) (-14 *4 (-655 (-1194)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-797))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1079 (-1042 *3) (-1191 (-1042 *3)))) - (-5 *1 (-1042 *3)) (-4 *3 (-13 (-860) (-374) (-1040)))))) + (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) + (-14 *6 + (-1 (-112) (-2 (|:| -4317 *5) (|:| -2398 *2)) + (-2 (|:| -4317 *5) (|:| -2398 *2)))) + (-4 *2 (-243 (-2871 *3) (-782))) (-5 *1 (-472 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-861)) (-4 *7 (-964 *4 *2 (-875 *3)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) + (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1055 (-575))) (-4 *1 (-311)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-373)) + (-5 *2 + (-2 (|:| A (-700 *5)) + (|:| |eqs| + (-655 + (-2 (|:| C (-700 *5)) (|:| |g| (-1285 *5)) (|:| -2571 *6) + (|:| |rh| *5)))))) + (-5 *1 (-824 *5 *6)) (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)) + (-4 *6 (-667 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-373)) (-4 *6 (-667 *5)) + (-5 *2 (-2 (|:| -2412 (-700 *6)) (|:| |vec| (-1285 *5)))) + (-5 *1 (-824 *5 *6)) (-5 *3 (-700 *6)) (-5 *4 (-1285 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) + (-4 *3 (-1261 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1191 (-419 (-1191 *2)))) (-5 *4 (-624 *2)) - (-4 *2 (-13 (-442 *5) (-27) (-1221))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1118)))) + (-12 (-5 *3 (-1190 (-418 (-1190 *2)))) (-5 *4 (-623 *2)) + (-4 *2 (-13 (-441 *5) (-27) (-1220))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1117)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1191 *1)) (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067)) - (-4 *5 (-805)) (-4 *3 (-862)))) + (-12 (-5 *2 (-1190 *1)) (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066)) + (-4 *5 (-804)) (-4 *3 (-861)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1191 *4)) (-4 *4 (-1067)) (-4 *1 (-965 *4 *5 *3)) - (-4 *5 (-805)) (-4 *3 (-862)))) + (-12 (-5 *2 (-1190 *4)) (-4 *4 (-1066)) (-4 *1 (-964 *4 *5 *3)) + (-4 *5 (-804)) (-4 *3 (-861)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1191 *2))) (-4 *5 (-805)) (-4 *4 (-862)) - (-4 *6 (-1067)) + (-12 (-5 *3 (-418 (-1190 *2))) (-4 *5 (-804)) (-4 *4 (-861)) + (-4 *6 (-1066)) (-4 *2 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))) - (-5 *1 (-966 *5 *4 *6 *7 *2)) (-4 *7 (-965 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1191 (-419 (-968 *5))))) (-5 *4 (-1195)) - (-5 *2 (-419 (-968 *5))) (-5 *1 (-1061 *5)) (-4 *5 (-568))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) - (-4 *3 (-1262 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195))) - (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1240)) (-4 *5 (-1262 *3)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1118))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *4))))))) - (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) - (-4 *7 (-965 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1195)))) - (-4 *6 (-805)) (-5 *1 (-940 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-194))))) + (-13 (-373) + (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))) + (-5 *1 (-965 *5 *4 *6 *7 *2)) (-4 *7 (-964 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-418 (-1190 (-418 (-967 *5))))) (-5 *4 (-1194)) + (-5 *2 (-418 (-967 *5))) (-5 *1 (-1060 *5)) (-4 *5 (-567))))) +(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-502))))) +(((*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1176)) (-5 *1 (-314))))) +(((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-130))))) +(((*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-988))))) +(((*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1052))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-373)) (-5 *1 (-910 *2 *3)) + (-4 *2 (-1261 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192))))) (((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-52))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-52))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235))))) (((*1 *2 *3) - (-12 - (-5 *2 - (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) - (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) - (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))) - (-5 *4 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) - (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-419 (-576))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2419 *5) (|:| -2436 *5)))) (-5 *1 (-1038 *3)) - (-4 *3 (-1262 (-576))) (-5 *4 (-2 (|:| -2419 *5) (|:| -2436 *5))))) + (-12 (-5 *3 (-967 *5)) (-4 *5 (-1066)) (-5 *2 (-492 *4 *5)) + (-5 *1 (-959 *4 *5)) (-14 *4 (-655 (-1194)))))) +(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) - (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) - (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576)))) - (-5 *4 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2419 *4) (|:| -2436 *4)))) (-5 *1 (-1039 *3)) - (-4 *3 (-1262 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2419 *5) (|:| -2436 *5)))) (-5 *1 (-1039 *3)) - (-4 *3 (-1262 *5)) (-5 *4 (-2 (|:| -2419 *5) (|:| -2436 *5)))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-937))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-937)) - (-4 *2 (-374)) (-14 *5 (-1011 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-862)) - (-4 *6 (-244 (-2872 *4) (-783))) - (-14 *7 - (-1 (-112) (-2 (|:| -4318 *5) (|:| -1359 *6)) - (-2 (|:| -4318 *5) (|:| -1359 *6)))) - (-14 *4 (-656 (-1195))) (-4 *2 (-174)) - (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-965 *2 *6 (-876 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-862)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) - (-4 *4 (-1262 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1067)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-738)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) - (-4 *4 (-1067)) (-4 *5 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1067)) - (-4 *2 (-862)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-965 *4 *5 *6)) - (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-965 *4 *5 *2)) (-4 *4 (-1067)) - (-4 *5 (-805)) (-4 *2 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-991 *4 *5 *6)) - (-4 *4 (-1067)) (-4 *5 (-804)) (-4 *6 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-991 *4 *3 *2)) (-4 *4 (-1067)) (-4 *3 (-804)) - (-4 *2 (-862))))) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1056 (-576))) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) + (-12 (-5 *3 (-418 (-575))) (-4 *4 (-1055 (-575))) (-4 *4 (-567)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-441 *4)))) ((*1 *1 *1 *1) (-5 *1 (-135))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) ((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-576)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-575)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) - (-4 *5 (-1277 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1248 *4 *5)))) + (-12 (-5 *3 (-418 (-575))) (-4 *4 (-373)) (-4 *4 (-38 *3)) + (-4 *5 (-1276 *4)) (-5 *1 (-286 *4 *5 *2)) (-4 *2 (-1247 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) - (-4 *5 (-1246 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1269 *4 *5)) - (-4 *6 (-1001 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-294))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1118)))) - ((*1 *1 *1 *1) (-5 *1 (-390))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1118)))) + (-12 (-5 *3 (-418 (-575))) (-4 *4 (-373)) (-4 *4 (-38 *3)) + (-4 *5 (-1245 *4)) (-5 *1 (-287 *4 *5 *2 *6)) (-4 *2 (-1268 *4 *5)) + (-4 *6 (-1000 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-293))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-371 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *1) (-5 *1 (-389))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-396 *2)) (-4 *2 (-1117)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1118)) - (-4 *3 (-1130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) + (-12 (-5 *2 (-782)) (-4 *1 (-441 *3)) (-4 *3 (-1117)) + (-4 *3 (-1129)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-484)) (-5 *2 (-575)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) + (-12 (-5 *2 (-782)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) + (-12 (-5 *2 (-1285 *4)) (-5 *3 (-575)) (-4 *4 (-359)) + (-5 *1 (-539 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-547)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-547)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1118)) - (-5 *1 (-694 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *4 (-1117)) + (-5 *1 (-693 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374)))) + (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-4 *3 (-373)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-782)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1067)) - (-5 *1 (-702 *4)))) + (-12 (-5 *2 (-700 *4)) (-5 *3 (-782)) (-4 *4 (-1066)) + (-5 *1 (-701 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *3 (-1067)) (-5 *1 (-726 *3 *4)) - (-4 *4 (-660 *3)))) + (-12 (-5 *2 (-575)) (-4 *3 (-1066)) (-5 *1 (-725 *3 *4)) + (-4 *4 (-659 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1067)) - (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1067)))) + (-12 (-5 *2 (-115)) (-5 *3 (-575)) (-4 *4 (-1066)) + (-5 *1 (-725 *4 *5)) (-4 *5 (-659 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-737)) (-5 *2 (-782)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-847 *3)) (-4 *3 (-1066)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1067)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-419 (-576))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1130)) (-5 *2 (-937)))) + (-12 (-5 *2 (-115)) (-5 *3 (-575)) (-5 *1 (-847 *4)) (-4 *4 (-1066)))) + ((*1 *1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1019)) (-5 *2 (-418 (-575))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-936)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-1067)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-374)))) + (-12 (-5 *2 (-575)) (-4 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-1066)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-373)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) + (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) - (-4 *3 (-1262 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-833))))) -(((*1 *2 *3) - (-12 (-14 *4 (-656 (-1195))) (-4 *5 (-464)) - (-5 *2 - (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) - (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5)))))) + (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) + (-4 *3 (-1261 *2))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-655 (-936))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-936)) + (-4 *2 (-373)) (-14 *5 (-1010 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-724 *5 *6 *7)) (-4 *5 (-861)) + (-4 *6 (-243 (-2871 *4) (-782))) + (-14 *7 + (-1 (-112) (-2 (|:| -4317 *5) (|:| -2398 *6)) + (-2 (|:| -4317 *5) (|:| -2398 *6)))) + (-14 *4 (-655 (-1194))) (-4 *2 (-174)) + (-5 *1 (-472 *4 *2 *5 *6 *7 *8)) (-4 *8 (-964 *2 *6 (-875 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-861)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-575)) (-4 *2 (-567)) (-5 *1 (-634 *2 *4)) + (-4 *4 (-1261 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-719 *2)) (-4 *2 (-1066)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-746 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-737)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 *5)) (-5 *3 (-655 (-782))) (-4 *1 (-751 *4 *5)) + (-4 *4 (-1066)) (-4 *5 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *2)) (-4 *4 (-1066)) + (-4 *2 (-861)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-863 *2)) (-4 *2 (-1066)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 (-782))) (-4 *1 (-964 *4 *5 *6)) + (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-782)) (-4 *1 (-964 *4 *5 *2)) (-4 *4 (-1066)) + (-4 *5 (-804)) (-4 *2 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 *5)) (-4 *1 (-990 *4 *5 *6)) + (-4 *4 (-1066)) (-4 *5 (-803)) (-4 *6 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-990 *4 *3 *2)) (-4 *4 (-1066)) (-4 *3 (-803)) + (-4 *2 (-861))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-655 (-623 *2))) (-5 *4 (-655 (-1194))) + (-4 *2 (-13 (-441 (-171 *5)) (-1019) (-1220))) (-4 *5 (-567)) + (-5 *1 (-611 *5 *6 *2)) (-4 *6 (-13 (-441 *5) (-1019) (-1220)))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1235)) (-5 *2 (-782)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132)) - (-5 *2 (-783)))) + (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132)) + (-5 *2 (-782)))) ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1118)))) - ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1118)) (-5 *2 (-783)))) + (-12 (-4 *4 (-373)) (-5 *2 (-782)) (-5 *1 (-337 *3 *4)) + (-4 *3 (-338 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-371 *3)) (-4 *3 (-1117)))) + ((*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-396 *3)) (-4 *3 (-1117)) (-5 *2 (-782)))) ((*1 *2) - (-12 (-4 *4 (-1118)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) - (-4 *3 (-437 *4)))) + (-12 (-4 *4 (-1117)) (-5 *2 (-782)) (-5 *1 (-435 *3 *4)) + (-4 *3 (-436 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)) + (-12 (-5 *2 (-782)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-783)) - (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024)))) + (-12 (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-782)) + (-5 *1 (-734 *3 *4 *5)) (-4 *3 (-735 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) - (-4 *3 (-1262 *2))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770))))) + (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) + (-4 *3 (-1261 *2))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-655 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-782)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-804)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *5 (-861)) + (-5 *1 (-460 *3 *4 *5 *6))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-4 *8 (-965 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) - (-4 *7 (-805)) + (-12 (-5 *3 (-655 (-227))) (-5 *4 (-782)) (-5 *2 (-700 (-227))) + (-5 *1 (-314))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) + (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) + (-5 *1 (-759))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-830 *3)) (-4 *3 (-861)) (-5 *1 (-683 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-655 *7)) (-5 *5 (-655 (-655 *8))) (-4 *7 (-861)) + (-4 *8 (-316)) (-4 *6 (-804)) (-4 *9 (-964 *8 *6 *7)) (-5 *2 - (-656 - (-2 (|:| -4423 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *8))))) - (-5 *1 (-940 *5 *6 *7 *8)) (-5 *4 (-783))))) + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-655 (-2 (|:| -2353 (-1190 *9)) (|:| -2398 (-575))))))) + (-5 *1 (-753 *6 *7 *8 *9)) (-5 *3 (-1190 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-655 (-418 *7))) + (-4 *7 (-1261 *6)) (-5 *3 (-418 *7)) (-4 *6 (-373)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-585 *6 *7))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1118)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1118)) (-5 *1 (-103 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-862)) - (-4 *3 (-1118))))) + (-12 (-5 *3 (-1176)) (-5 *2 (-216 (-513))) (-5 *1 (-848))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885))) + (-5 *1 (-479))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-656 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576)))))) - (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1038 *4)) - (-4 *4 (-1262 (-576)))))) + (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-309)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-314))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) + (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-964 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1066)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) + (-4 *1 (-1261 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195))) - (-4 *5 (-464)) + (-12 (-5 *3 (-325 (-227))) (-5 *2 (-418 (-575))) (-5 *1 (-314))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |gblist| (-656 (-253 *4 *5))) - (|:| |gvlist| (-656 (-576))))) - (-5 *1 (-643 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-833))))) + (-1285 + (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3793 (-575)) + (|:| -2633 (-575)) (|:| |spline| (-575)) (|:| -3744 (-575)) + (|:| |axesColor| (-885)) (|:| -2496 (-575)) + (|:| |unitsColor| (-885)) (|:| |showing| (-575))))) + (-5 *1 (-1286))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194)) + (-5 *2 (-655 *4)) (-5 *1 (-1131 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1270 *3 *4 *5)) (-5 *1 (-328 *3 *4 *5)) (-4 *3 (-373)) + (-14 *4 (-1194)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575)))) + ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-429 *3)) (-4 *3 (-567)))) + ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1117)) (-5 *1 (-724 *3 *2 *4)) (-4 *3 (-861)) + (-14 *4 + (-1 (-112) (-2 (|:| -4317 *3) (|:| -2398 *2)) + (-2 (|:| -4317 *3) (|:| -2398 *2))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-902 *4 *5)) (-4 *5 (-1235)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1184))))) +(((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1079)))) + ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1079))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) + (-5 *2 (-1190 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) - (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) + (-12 (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) + (-4 *4 (-1261 *3)) + (-5 *2 + (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-700 *3)))) + (-5 *1 (-360 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) - (-5 *2 (-656 (-656 (-959 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-959 *4)))) (-5 *3 (-112)) (-4 *4 (-1067)) - (-4 *1 (-1152 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 (-959 *3)))) (-4 *3 (-1067)) - (-4 *1 (-1152 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) - (-4 *1 (-1152 *4)) (-4 *4 (-1067)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-959 *4)))) (-5 *3 (-112)) - (-4 *1 (-1152 *4)) (-4 *4 (-1067)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) - (-5 *4 (-173)) (-4 *1 (-1152 *5)) (-4 *5 (-1067)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-656 (-959 *5)))) (-5 *3 (-656 (-173))) - (-5 *4 (-173)) (-4 *1 (-1152 *5)) (-4 *5 (-1067))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) - (-5 *1 (-770))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) - (-4 *6 (-805)) (-4 *7 (-965 *4 *6 *5)) + (-12 (-5 *3 (-575)) (-4 *4 (-1261 *3)) (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) - (-5 *1 (-940 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-903 *4 *5)) (-4 *5 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1185))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1237 *2)) - (-4 *2 (-1118)))) + (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-700 *3)))) + (-5 *1 (-779 *4 *5)) (-4 *5 (-420 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-862)) - (-5 *1 (-1237 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) - (-5 *2 (-419 (-576))) (-5 *1 (-1038 *4)) (-4 *4 (-1262 (-576)))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020) (-1221)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-862))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1053)) (-5 *1 (-769))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-233 *4)) - (-4 *4 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-783)))) + (-12 (-4 *4 (-359)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 *3)) + (-5 *2 + (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-700 *3)))) + (-5 *1 (-1002 *4 *3 *5 *6)) (-4 *6 (-735 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-359)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 *3)) + (-5 *2 + (-2 (|:| -1624 (-700 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-700 *3)))) + (-5 *1 (-1294 *4 *3 *5 *6)) (-4 *6 (-420 *3 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-854 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-936)) (-5 *1 (-453 *2)) + (-4 *2 (-1261 (-575))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-936)) (-5 *4 (-782)) (-5 *1 (-453 *2)) + (-4 *2 (-1261 (-575))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *1 (-453 *2)) + (-4 *2 (-1261 (-575))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *5 (-782)) + (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *5 (-782)) + (-5 *6 (-112)) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-936)) (-5 *4 (-429 *2)) (-4 *2 (-1261 *5)) + (-5 *1 (-455 *5 *2)) (-4 *5 (-1066))))) +(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-782)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) - (-4 *4 (-1236)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *1 (-271 *4)) + (-4 *4 (-1235)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-271 *3)) (-4 *3 (-1235)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) - (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) + (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)) - (-4 *4 (-1262 *3)))) + (-12 (-5 *2 (-782)) (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *4)) + (-4 *4 (-1261 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-374) (-148))) (-5 *1 (-411 *2 *3)) - (-4 *3 (-1262 *2)))) + (-12 (-4 *2 (-13 (-373) (-148))) (-5 *1 (-410 *2 *3)) + (-4 *3 (-1261 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-485 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-374)) (-4 *2 (-914 *3)) (-5 *1 (-598 *2)) - (-5 *3 (-1195)))) + (-12 (-4 *2 (-373)) (-4 *2 (-913 *3)) (-5 *1 (-597 *2)) + (-5 *3 (-1194)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-597 *2)) (-4 *2 (-373)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236)))) + (-12 (-4 *1 (-908 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1235)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-916 *4)) - (-4 *4 (-1118)))) + (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 (-782))) (-4 *1 (-915 *4)) + (-4 *4 (-1117)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-916 *2)) (-4 *2 (-1118)))) + (-12 (-5 *3 (-782)) (-4 *1 (-915 *2)) (-4 *2 (-1117)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-916 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-655 *3)) (-4 *1 (-915 *3)) (-4 *3 (-1117)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1185 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1192 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1191 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1192 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1249 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1271 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1270 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) - (-4 *3 (-1067)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-968 *4)) (-4 *4 (-13 (-317) (-148))) - (-4 *2 (-965 *4 *6 *5)) (-5 *1 (-940 *4 *5 *6 *2)) - (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-888))) (-5 *1 (-495))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1286 *6)) (-5 *4 (-1286 (-576))) (-5 *5 (-576)) - (-4 *6 (-1118)) (-5 *2 (-1 *6)) (-5 *1 (-1035 *6))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020) (-1221)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1286 *4)) - (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) - (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) - (-5 *2 (-656 (-656 (-656 (-783)))))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1053)) (-5 *1 (-769))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) - (-5 *2 (-656 (-419 (-968 *4)))) (-5 *1 (-940 *4 *5 *6 *7)) - (-4 *7 (-965 *4 *6 *5))))) + (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1277 *3 *4 *5)) + (-4 *3 (-1066)) (-14 *5 *3)))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1286 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) - (-14 *3 (-656 (-1195))) (-4 *4 (-1067)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1195))) - (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1067)) - (-4 *5 (-244 (-2872 *3) (-783))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) - (-14 *3 (-656 (-1195))) (-4 *4 (-1067))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1197 (-419 (-576)))) - (-5 *1 (-192))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1118)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1118)) (-5 *2 (-112)) - (-5 *1 (-1237 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -4183 *4) (|:| -2092 (-576))))) - (-4 *4 (-1118)) (-5 *2 (-1 *4)) (-5 *1 (-1035 *4))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020) (-1221)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) - (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) - (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5))))) + (-12 (-5 *2 (-424 *3 *4 *5 *6)) (-4 *6 (-1055 *4)) (-4 *3 (-316)) + (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-4 *6 (-420 *4 *5)) + (-14 *7 (-1285 *6)) (-5 *1 (-425 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1285 *6)) (-4 *6 (-420 *4 *5)) (-4 *4 (-1009 *3)) + (-4 *5 (-1261 *4)) (-4 *3 (-316)) (-5 *1 (-425 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-342))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3)) + (-4 *2 + (-13 (-373) (-311) + (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) + (-15 -1608 ((-1142 *3 (-623 $)) $)) + (-15 -2883 ($ (-1142 *3 (-623 $)))))))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227))) + (-5 *1 (-708))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-854 (-227)))) (-5 *4 (-227)) (-5 *2 (-655 *4)) + (-5 *1 (-275))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) + (-5 *2 (-1052)) (-5 *1 (-765))))) +(((*1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1285 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-311)))) + ((*1 *1 *1) (-4 *1 (-311))) ((*1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1066)))) + ((*1 *2 *1) + (-12 (-4 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-634 *3 *4)) + (-4 *4 (-1261 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-737)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445))))) (((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) + (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *2 (-1290)) + (-5 *1 (-444 *3 *4)) (-4 *4 (-441 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) - (-5 *2 (-656 (-656 (-656 (-959 *3)))))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) - (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-769))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) - (-4 *6 (-805)) (-5 *2 (-419 (-968 *4))) (-5 *1 (-940 *4 *5 *6 *3)) - (-4 *3 (-965 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *7)) (-4 *7 (-965 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) - (-4 *6 (-805)) (-5 *2 (-701 (-419 (-968 *4)))) - (-5 *1 (-940 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) - (-4 *6 (-805)) (-5 *2 (-656 (-419 (-968 *4)))) - (-5 *1 (-940 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-937))) (-5 *2 (-1197 (-419 (-576)))) - (-5 *1 (-192))))) + (-12 (-5 *2 (-655 (-1221 *3))) (-5 *1 (-1221 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-623 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1107))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-782)) (-4 *6 (-1117)) (-4 *3 (-913 *6)) + (-5 *2 (-700 *3)) (-5 *1 (-703 *6 *3 *7 *4)) (-4 *7 (-383 *3)) + (-4 *4 (-13 (-383 *6) (-10 -7 (-6 -4460))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) + ((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) + (-5 *2 (-112))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1261 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-782)) (-5 *3 (-958 *5)) (-4 *5 (-1066)) + (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 (-782))) (-5 *3 (-782)) (-5 *1 (-1182 *4 *5)) + (-14 *4 (-936)) (-4 *5 (-1066)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 (-782))) (-5 *3 (-958 *5)) (-4 *5 (-1066)) + (-5 *1 (-1182 *4 *5)) (-14 *4 (-936))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3659 (-656 *3)) (|:| -3647 (-656 *3)))) - (-5 *1 (-1237 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) - (-4 *5 (-1262 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1034 *4 *5)) - (-5 *3 (-419 *5))))) + (-12 (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) + (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-428 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-655 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-655 *4)))) + (-5 *1 (-1205 *6)) (-5 *5 (-655 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1020))))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))) - ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1118)) (-5 *2 (-112)) - (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1020) (-1221)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1898 (-656 *6))) - *7 *6)) - (-4 *6 (-374)) (-4 *7 (-668 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1286 *6) "failed")) - (|:| -1898 (-656 (-1286 *6))))) - (-5 *1 (-825 *6 *7)) (-5 *4 (-1286 *6))))) + (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) - (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-656 (-173))))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) - (-5 *1 (-769))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-968 *8)))) - (-5 *5 (-783)) (-5 *6 (-1177)) (-4 *8 (-13 (-317) (-148))) - (-4 *11 (-965 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1195)))) - (-4 *10 (-805)) - (-5 *2 - (-2 - (|:| |rgl| - (-656 - (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) - (|:| |wcond| (-656 (-968 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-968 *8)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *8)))))))))) - (|:| |rgsz| (-576)))) - (-5 *1 (-940 *8 *9 *10 *11)) (-5 *7 (-576))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) + (-12 (-5 *3 (-1194)) (-5 *2 (-1 *6 *5)) (-5 *1 (-717 *4 *5 *6)) + (-4 *4 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-2 (|:| |deg| (-782)) (|:| -1489 *5)))) + (-4 *5 (-1261 *4)) (-4 *4 (-359)) (-5 *2 (-655 *5)) + (-5 *1 (-218 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-2 (|:| -2353 *5) (|:| -2645 (-575))))) + (-5 *4 (-575)) (-4 *5 (-1261 *4)) (-5 *2 (-655 *5)) + (-5 *1 (-707 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1262 (-48))))) + (-12 (-5 *4 (-655 (-48))) (-5 *2 (-429 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1261 (-48))))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) + (-12 (-5 *2 (-429 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) - (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-965 (-48) *6 *5)))) + (-12 (-5 *4 (-655 (-48))) (-4 *5 (-861)) (-4 *6 (-804)) + (-5 *2 (-429 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-964 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) - (-4 *7 (-965 (-48) *6 *5)) (-5 *2 (-430 (-1191 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1191 *7)))) + (-12 (-5 *4 (-655 (-48))) (-4 *5 (-861)) (-4 *6 (-804)) + (-4 *7 (-964 (-48) *6 *5)) (-5 *2 (-429 (-1190 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1190 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1262 (-171 *4))))) + (-12 (-4 *4 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1261 (-171 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) + (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) + (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1262 *4)))) + (-12 (-4 *4 (-359)) (-5 *2 (-429 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1261 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) + (-12 (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-576))))) + (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) + (-4 *3 (-1261 (-575))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-576))))) + (-12 (-5 *4 (-655 (-782))) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) + (-4 *3 (-1261 (-575))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) - (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) + (-12 (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *2 (-429 *3)) + (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1262 (-576))))) + (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) + (-4 *3 (-1261 (-575))))) ((*1 *2 *3) - (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) - (-5 *3 (-171 (-576))))) + (-12 (-5 *2 (-429 (-171 (-575)))) (-5 *1 (-457)) + (-5 *3 (-171 (-575))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-862) - (-10 -8 (-15 -2616 ((-1195) $)) - (-15 -1441 ((-3 $ "failed") (-1195)))))) - (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) - (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) - (-4 *3 (-965 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1191 *4))) (-5 *1 (-470 *4)) - (-5 *3 (-1191 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) - (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) - (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1262 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7))) - (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) - (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) - (-4 *3 (-965 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7))) - (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) - (-4 *8 (-965 *7 *6 *5)) (-5 *2 (-430 (-1191 *8))) - (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1191 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-4 *6 (-1262 *5)) (-5 *2 (-656 (-665 (-419 *6)))) - (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6))))) + (-13 (-861) + (-10 -8 (-15 -2615 ((-1194) $)) + (-15 -1441 ((-3 $ "failed") (-1194)))))) + (-4 *5 (-804)) (-4 *7 (-567)) (-5 *2 (-429 *3)) + (-5 *1 (-467 *4 *5 *6 *7 *3)) (-4 *6 (-567)) + (-4 *3 (-964 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-316)) (-5 *2 (-429 (-1190 *4))) (-5 *1 (-469 *4)) + (-5 *3 (-1190 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) + (-4 *7 (-13 (-373) (-148) (-735 *5 *6))) (-5 *2 (-429 *3)) + (-5 *1 (-505 *5 *6 *7 *3)) (-4 *3 (-1261 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-429 (-1190 *7)) (-1190 *7))) + (-4 *7 (-13 (-316) (-148))) (-4 *5 (-861)) (-4 *6 (-804)) + (-5 *2 (-429 *3)) (-5 *1 (-551 *5 *6 *7 *3)) + (-4 *3 (-964 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-429 (-1190 *7)) (-1190 *7))) + (-4 *7 (-13 (-316) (-148))) (-4 *5 (-861)) (-4 *6 (-804)) + (-4 *8 (-964 *7 *6 *5)) (-5 *2 (-429 (-1190 *8))) + (-5 *1 (-551 *5 *6 *7 *8)) (-5 *3 (-1190 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-655 *5) *6)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-4 *6 (-1261 *5)) (-5 *2 (-655 (-664 (-418 *6)))) + (-5 *1 (-668 *5 *6)) (-5 *3 (-664 (-418 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5)))) - (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) + (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-4 *5 (-1261 *4)) (-5 *2 (-655 (-664 (-418 *5)))) + (-5 *1 (-668 *4 *5)) (-5 *3 (-664 (-418 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-684 *4))) - (-5 *1 (-684 *4)))) + (-12 (-5 *3 (-830 *4)) (-4 *4 (-861)) (-5 *2 (-655 (-683 *4))) + (-5 *1 (-683 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) - (-4 *3 (-1262 *4)))) + (-12 (-5 *4 (-575)) (-5 *2 (-655 *3)) (-5 *1 (-707 *3)) + (-4 *3 (-1261 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) - (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-965 *6 *5 *4)))) + (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-359)) (-5 *2 (-429 *3)) + (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-964 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) - (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-430 (-1191 *7))) - (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) + (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-359)) + (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-429 (-1190 *7))) + (-5 *1 (-709 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-805)) + (-12 (-4 *4 (-804)) (-4 *5 - (-13 (-862) - (-10 -8 (-15 -2616 ((-1195) $)) - (-15 -1441 ((-3 $ "failed") (-1195)))))) - (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) - (-4 *3 (-965 (-968 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *5 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))) (-4 *6 (-568)) - (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) - (-4 *3 (-965 (-419 (-968 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) - (-4 *3 (-965 (-419 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) - (-4 *3 (-965 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-430 (-1191 *7))) - (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) + (-13 (-861) + (-10 -8 (-15 -2615 ((-1194) $)) + (-15 -1441 ((-3 $ "failed") (-1194)))))) + (-4 *6 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-741 *4 *5 *6 *3)) + (-4 *3 (-964 (-967 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-804)) + (-4 *5 (-13 (-861) (-10 -8 (-15 -2615 ((-1194) $))))) (-4 *6 (-567)) + (-5 *2 (-429 *3)) (-5 *1 (-743 *4 *5 *6 *3)) + (-4 *3 (-964 (-418 (-967 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-13 (-316) (-148))) + (-5 *2 (-429 *3)) (-5 *1 (-744 *4 *5 *6 *3)) + (-4 *3 (-964 (-418 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-13 (-316) (-148))) + (-5 *2 (-429 *3)) (-5 *1 (-752 *4 *5 *6 *3)) + (-4 *3 (-964 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-13 (-316) (-148))) + (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-429 (-1190 *7))) + (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-429 *3)) (-5 *1 (-1024 *3)) + (-4 *3 (-1261 (-418 (-575)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-429 *3)) (-5 *1 (-1058 *3)) + (-4 *3 (-1261 (-418 (-967 (-575))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1261 (-418 (-575)))) + (-4 *5 (-13 (-373) (-148) (-735 (-418 (-575)) *4))) + (-5 *2 (-429 *3)) (-5 *1 (-1096 *4 *5 *3)) (-4 *3 (-1261 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1261 (-418 (-967 (-575))))) + (-4 *5 (-13 (-373) (-148) (-735 (-418 (-967 (-575))) *4))) + (-5 *2 (-429 *3)) (-5 *1 (-1098 *4 *5 *3)) (-4 *3 (-1261 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-463)) + (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 (-418 *7)))) + (-5 *1 (-1189 *4 *5 *6 *7)) (-5 *3 (-1190 (-418 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-429 *1)) (-4 *1 (-1239)))) + ((*1 *2 *3) + (-12 (-5 *2 (-429 *3)) (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1240)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415)))) + ((*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-1258 *5 *4)) (-5 *1 (-1192 *4 *5 *6)) + (-4 *4 (-1066)) (-14 *5 (-1194)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-1258 *5 *4)) (-5 *1 (-1277 *4 *5 *6)) + (-4 *4 (-1066)) (-14 *5 (-1194)) (-14 *6 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) + ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1235)) (-5 *2 (-655 *1)) (-4 *1 (-1027 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4)) + (-14 *3 (-936)) (-4 *4 (-1066))))) +(((*1 *1 *1) (-4 *1 (-640))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019) (-1220)))))) +(((*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-832))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-700 *3)) + (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) + (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-762))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-1199))) (-5 *1 (-892))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-517)) (-5 *2 (-702 (-109))) (-5 *1 (-177)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-517)) (-5 *2 (-702 (-109))) (-5 *1 (-1102))))) +(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-560)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) + (-5 *1 (-767))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-447))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-373) (-859))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1261 (-171 *3)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-373)) (-4 *7 (-1261 *5)) (-4 *4 (-735 *5 *7)) + (-5 *2 (-2 (|:| -2412 (-700 *6)) (|:| |vec| (-1285 *5)))) + (-5 *1 (-822 *5 *6 *7 *4 *3)) (-4 *6 (-667 *5)) (-4 *3 (-667 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1117)) (-4 *4 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-695 *5 *4 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2665 *4)))) + (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1025 *3)) - (-4 *3 (-1262 (-419 (-576)))))) + (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3)) + (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-964 *6 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1059 *3)) - (-4 *3 (-1262 (-419 (-968 (-576))))))) + (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) + (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 *7))) + (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-463)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 (-429 *1)) (-4 *1 (-964 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1262 (-419 (-576)))) - (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) - (-5 *2 (-430 *3)) (-5 *1 (-1097 *4 *5 *3)) (-4 *3 (-1262 *5)))) + (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-463)) (-5 *2 (-429 *3)) + (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-964 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-1262 (-419 (-968 (-576))))) - (-4 *5 (-13 (-374) (-148) (-736 (-419 (-968 (-576))) *4))) - (-5 *2 (-430 *3)) (-5 *1 (-1099 *4 *5 *3)) (-4 *3 (-1262 *5)))) + (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-463)) + (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 (-418 *7)))) + (-5 *1 (-1189 *4 *5 *6 *7)) (-5 *3 (-1190 (-418 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-429 *1)) (-4 *1 (-1239)))) ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) - (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7)))) - (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240)))) + (-12 (-4 *4 (-567)) (-5 *2 (-429 *3)) (-5 *1 (-1264 *4 *3)) + (-4 *3 (-13 (-1261 *4) (-567) (-10 -8 (-15 -3926 ($ $ $))))))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576)))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) - (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -1890 *6))) - (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1195))) + (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) + (-14 *5 (-655 (-1194))) (-5 *2 - (-656 (-1164 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) - (-5 *1 (-640 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) - (-5 *2 - (-2 (|:| A (-701 *5)) - (|:| |eqs| - (-656 - (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5)) (|:| -2572 *6) - (|:| |rh| *5)))))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) - (-4 *6 (-668 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) - (-5 *2 (-2 (|:| -2869 (-701 *6)) (|:| |vec| (-1286 *5)))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *5))))) + (-655 (-1163 *4 (-542 (-875 *6)) (-875 *6) (-791 *4 (-875 *6))))) + (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194)))))) +(((*1 *1 *1) (-4 *1 (-640))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019) (-1220)))))) (((*1 *2) - (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-173)))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) - (-5 *2 (-1053)) (-5 *1 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-655 *2)) (-5 *1 (-181 *2)) (-4 *2 (-316)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-655 (-655 *4))) (-5 *2 (-655 *4)) (-4 *4 (-316)) + (-5 *1 (-181 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-655 *8)) + (-5 *4 + (-655 + (-2 (|:| -1624 (-700 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-700 *7))))) + (-5 *5 (-782)) (-4 *8 (-1261 *7)) (-4 *7 (-1261 *6)) (-4 *6 (-359)) (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) - (|:| |wcond| (-656 (-968 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *4)))))))))) - (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5))))) + (-2 (|:| -1624 (-700 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-700 *7)))) + (-5 *1 (-509 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) - (-5 *2 - (-2 (|:| |dpolys| (-656 (-253 *5 *6))) - (|:| |coords| (-656 (-576))))) - (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1262 *6)) - (-4 *6 (-13 (-374) (-148) (-1056 *4))) (-5 *4 (-576)) + (-12 (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-567)) + (-4 *3 (-964 *7 *5 *6)) (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -2572 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1033 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6))) - (-5 *1 (-640 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1262 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1262 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) + (-2 (|:| -2398 (-782)) (|:| -1754 *3) (|:| |radicand| (-655 *3)))) + (-5 *1 (-968 *5 *6 *7 *3 *8)) (-5 *4 (-782)) + (-4 *8 + (-13 (-373) + (-10 -8 (-15 -2883 ($ *3)) (-15 -1595 (*3 $)) (-15 -1608 (*3 $)))))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-655 *5)) (-5 *4 (-575)) (-4 *5 (-859)) (-4 *5 (-373)) + (-5 *2 (-782)) (-5 *1 (-960 *5 *6)) (-4 *6 (-1261 *5))))) +(((*1 *2) (-12 (-5 *2 (-655 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-133))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-97))))) (((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-2 (|:| -2354 (-1191 *6)) (|:| -1359 (-576))))) - (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1053)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-968 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *5)))))))))) - (-5 *4 (-1177)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-965 *5 *7 *6)) - (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-576)) - (-5 *1 (-940 *5 *6 *7 *8))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-876 *4))) - (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) - (-4 *6 (-464))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-192))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-158)) (-5 *2 (-1291)) (-5 *1 (-1288))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4)) - (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1033 *4 *5)) (-5 *3 (-419 *5))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020) (-1221)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) - (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -2572 *3)))) - (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) - (-4 *7 (-668 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-4 *6 (-1262 *5)) - (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -2572 (-666 *6 (-419 *6)))))) - (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-968 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) - (-14 *4 (-656 (-1195))))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6)))) + (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-655 (-575))) (-5 *3 (-655 (-936))) (-5 *4 (-112)) + (-5 *1 (-1127))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-207)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) - (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) - (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1150 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1150 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462))))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) - (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1053)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-4 *8 (-965 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-968 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *5)))))))))) - (-5 *1 (-940 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1195))) (-4 *8 (-965 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-968 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *5)))))))))) - (-5 *1 (-940 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *7)) (-4 *7 (-965 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) - (-4 *6 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) - (|:| |wcond| (-656 (-968 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *4)))))))))) - (-5 *1 (-940 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *5 (-937)) (-4 *9 (-965 *6 *8 *7)) - (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) - (-4 *8 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) - (|:| |wcond| (-656 (-968 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-968 *6)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *6)))))))))) - (-5 *1 (-940 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-937)) - (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) - (|:| |wcond| (-656 (-968 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-968 *6)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *6)))))))))) - (-5 *1 (-940 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-937)) (-4 *8 (-965 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-968 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) - (|:| -1898 (-656 (-1286 (-419 (-968 *5)))))))))) - (-5 *1 (-940 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1177)) - (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-940 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-1177)) - (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-940 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-1177)) (-4 *8 (-965 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) - (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-937)) - (-5 *6 (-1177)) (-4 *10 (-965 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576)) - (-5 *1 (-940 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1195))) (-5 *5 (-937)) - (-5 *6 (-1177)) (-4 *10 (-965 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576)) - (-5 *1 (-940 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-937)) (-5 *5 (-1177)) - (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-940 *6 *7 *8 *9))))) -(((*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-133))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) - (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) - (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-959 (-227)))) (-5 *1 (-1287))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) - (|:| -1890 *6))) - (-5 *1 (-1033 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-968 *3))) (-4 *3 (-464)) - (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1195))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) - (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4))))) + (-12 (-5 *3 (-655 (-389))) (-5 *2 (-389)) (-5 *1 (-207))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-656 *7) *7 (-1191 *7))) (-5 *5 (-1 (-430 *7) *7)) - (-4 *7 (-1262 *6)) (-4 *6 (-13 (-374) (-148) (-1056 (-419 (-576))))) - (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -2572 *3)))) - (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) - (-4 *8 (-668 (-419 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-5 *2 - (-656 (-2 (|:| |frac| (-419 *6)) (|:| -2572 (-666 *6 (-419 *6)))))) - (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) - (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1262 *4)) - (-5 *1 (-938 *4 *2))))) -(((*1 *1) (-5 *1 (-480)))) -(((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) -(((*1 *1) (-5 *1 (-1287)))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1195)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-656 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3849 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1221) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1056 *3) (-651 *3))) (-5 *3 (-576)) - (-5 *2 (-656 *4)) (-5 *1 (-1032 *8 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-464)) (-5 *2 (-112)) - (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1195))))) + (-12 (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-655 (-1194))) + (-5 *2 (-655 (-655 (-389)))) (-5 *1 (-1040)) (-5 *5 (-389)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-792 *4 (-876 *5)))) (-4 *4 (-464)) - (-14 *5 (-656 (-1195))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) + (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) + (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-655 (-1041 (-418 *4))))) + (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) + (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) + (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) + (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-967 *4))) + (-4 *4 (-13 (-859) (-316) (-148) (-1039))) + (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6)) + (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-700 *4)) (-4 *4 (-1066)) (-5 *1 (-1159 *3 *4)) + (-14 *3 (-782))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-227)) + (-5 *7 (-700 (-575))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-763))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-145))) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-785)) (-5 *1 (-52))))) +(((*1 *1) (-5 *1 (-834)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-227)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-227)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-389)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-389))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-783)) (-4 *3 (-1236)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-782)) (-4 *3 (-1235)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) ((*1 *1) (-5 *1 (-173))) - ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1118)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401)))) - ((*1 *1) (-5 *1 (-406))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) + ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1117)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-400)))) + ((*1 *1) (-5 *1 (-405))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) ((*1 *1) - (-12 (-4 *3 (-1118)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1118)) - (-4 *4 (-678 *3)))) - ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) + (-12 (-4 *3 (-1117)) (-5 *1 (-897 *2 *3 *4)) (-4 *2 (-1117)) + (-4 *4 (-677 *3)))) + ((*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *1 (-1160 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1067)))) - ((*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) - ((*1 *1 *1) (-5 *1 (-1195))) ((*1 *1) (-5 *1 (-1195))) - ((*1 *1) (-5 *1 (-1216)))) + (-12 (-5 *1 (-1159 *3 *2)) (-14 *3 (-782)) (-4 *2 (-1066)))) + ((*1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) + ((*1 *1 *1) (-5 *1 (-1194))) ((*1 *1) (-5 *1 (-1194))) + ((*1 *1) (-5 *1 (-1215)))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1236)) - (-4 *2 (-1236)) (-5 *1 (-58 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1235)) + (-4 *2 (-1235)) (-5 *1 (-58 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1118)) (|has| *1 (-6 -4461)) - (-4 *1 (-152 *2)) (-4 *2 (-1236)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1117)) (|has| *1 (-6 -4460)) + (-4 *1 (-152 *2)) (-4 *2 (-1235)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) - (-4 *2 (-1236)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) + (-4 *2 (-1235)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) - (-4 *2 (-1236)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) + (-4 *2 (-1235)))) ((*1 *2 *3) - (-12 (-4 *4 (-1067)) - (-5 *2 (-2 (|:| -1808 (-1191 *4)) (|:| |deg| (-937)))) - (-5 *1 (-223 *4 *5)) (-5 *3 (-1191 *4)) (-4 *5 (-568)))) + (-12 (-4 *4 (-1066)) + (-5 *2 (-2 (|:| -1699 (-1190 *4)) (|:| |deg| (-936)))) + (-5 *1 (-223 *4 *5)) (-5 *3 (-1190 *4)) (-4 *5 (-567)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-783)) - (-4 *6 (-1236)) (-4 *2 (-1236)) (-5 *1 (-245 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-782)) + (-4 *6 (-1235)) (-4 *2 (-1235)) (-5 *1 (-244 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1262 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-12 (-4 *4 (-174)) (-5 *1 (-298 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1261 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1118)))) + ((*1 *1 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-567)) (-4 *2 (-1117)))) ((*1 *1 *1) - (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1262 *2)) - (-4 *4 (-1262 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) + (-12 (-4 *1 (-345 *2 *3 *4 *5)) (-4 *2 (-373)) (-4 *3 (-1261 *2)) + (-4 *4 (-1261 (-418 *3))) (-4 *5 (-352 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1236)) (-4 *2 (-1236)) - (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1235)) (-4 *2 (-1235)) + (-5 *1 (-381 *5 *4 *2 *6)) (-4 *4 (-383 *5)) (-4 *6 (-383 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1118)) (-4 *2 (-1118)) - (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) - ((*1 *1 *1) (-5 *1 (-507))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1117)) (-4 *2 (-1117)) + (-5 *1 (-434 *5 *4 *2 *6)) (-4 *4 (-436 *5)) (-4 *6 (-436 *2)))) + ((*1 *1 *1) (-5 *1 (-506))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1236)) - (-4 *2 (-1236)) (-5 *1 (-654 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-655 *5)) (-4 *5 (-1235)) + (-4 *2 (-1235)) (-5 *1 (-653 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1067)) (-4 *2 (-1067)) - (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) - (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1066)) (-4 *2 (-1066)) + (-4 *6 (-383 *5)) (-4 *7 (-383 *5)) (-4 *8 (-383 *2)) + (-4 *9 (-383 *2)) (-5 *1 (-696 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-698 *5 *6 *7)) (-4 *10 (-698 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1067)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-1066)) (-5 *1 (-723 *3 *2)) (-4 *2 (-1261 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-374)) - (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) + (|partial| -12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-373)) + (-4 *3 (-174)) (-4 *1 (-735 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3)))) + (-12 (-4 *3 (-174)) (-4 *1 (-735 *3 *2)) (-4 *2 (-1261 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-974 *5)) (-4 *5 (-1236)) - (-4 *2 (-1236)) (-5 *1 (-973 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-973 *5)) (-4 *5 (-1235)) + (-4 *2 (-1235)) (-5 *1 (-972 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-1052 *3 *4 *5 *2 *6)) (-4 *2 (-965 *3 *4 *5)) - (-14 *6 (-656 *2)))) + (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-1051 *3 *4 *5 *2 *6)) (-4 *2 (-964 *3 *4 *5)) + (-14 *6 (-655 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1067)) (-4 *2 (-1067)) - (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-244 *6 *7)) - (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) - (-5 *1 (-1073 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1071 *5 *6 *7 *8 *9)) (-4 *12 (-1071 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1066)) (-4 *2 (-1066)) + (-14 *5 (-782)) (-14 *6 (-782)) (-4 *8 (-243 *6 *7)) + (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) + (-5 *1 (-1072 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1070 *5 *6 *7 *8 *9)) (-4 *12 (-1070 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1175 *5)) (-4 *5 (-1236)) - (-4 *2 (-1236)) (-5 *1 (-1173 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1174 *5)) (-4 *5 (-1235)) + (-4 *2 (-1235)) (-5 *1 (-1172 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1229 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) - (-4 *7 (-862)) (-4 *2 (-1083 *5 *6 *7)))) + (-4 *1 (-1228 *5 *6 *7 *2)) (-4 *5 (-567)) (-4 *6 (-804)) + (-4 *7 (-861)) (-4 *2 (-1082 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) - (-4 *2 (-1236)) (-5 *1 (-1285 *5 *2))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *7 (-1262 *5)) (-4 *4 (-736 *5 *7)) - (-5 *2 (-2 (|:| -2869 (-701 *6)) (|:| |vec| (-1286 *5)))) - (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) - (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-959 *5)) (-5 *3 (-783)) (-4 *5 (-1067)) - (-5 *1 (-1183 *4 *5)) (-14 *4 (-937))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1285 *5)) (-4 *5 (-1235)) + (-4 *2 (-1235)) (-5 *1 (-1284 *5 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34))) + (-4 *3 (-13 (-1117) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-342))))) +(((*1 *1 *1) (-5 *1 (-1080)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) - (-5 *1 (-818 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-936)) (-5 *2 (-2 (|:| -1755 (-656 *1)) (|:| -3660 *1))) - (-5 *3 (-656 *1))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886))) - (-5 *4 (-656 (-937))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886))) - (-5 *4 (-656 (-937))) (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480)))) - ((*1 *1 *1) (-5 *1 (-480)))) -(((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1287)))) - ((*1 *1 *1) (-5 *1 (-1287)))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1195)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-656 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3849 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1221) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1056 *3) (-651 *3))) (-5 *3 (-576)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -2436 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1031 *8 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-676 *4 *5))) - (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) - (-14 *6 (-937))))) + (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *2 (-655 *4)) (-5 *1 (-790 *4)) + (-4 *4 (-13 (-373) (-859)))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) + ((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-371 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-4 *1 (-396 *4)) (-4 *4 (-1117)) (-5 *2 (-782)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-4 *2 (-23)) (-5 *1 (-660 *4 *2 *5)) + (-4 *4 (-1117)) (-14 *5 *2)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-567) (-148))) (-5 *2 (-655 *3)) + (-5 *1 (-1255 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -4169 *3) (|:| -3180 *4)))) - (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *1 (-1212 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1212 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))) + (-12 (-5 *2 (-655 (-2 (|:| -4169 *3) (|:| -3179 *4)))) + (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *1 (-1211 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1211 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-782)) (-4 *5 (-1066)) (-4 *2 (-1261 *5)) + (-5 *1 (-1279 *5 *2 *6 *3)) (-4 *6 (-667 *2)) (-4 *3 (-1276 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1221))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-1191 (-419 (-1191 *6)))) (-5 *1 (-572 *5 *6 *7)) - (-5 *3 (-1191 *6)) (-4 *7 (-1118)))) + (-12 (-5 *4 (-623 *6)) (-4 *6 (-13 (-441 *5) (-27) (-1220))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 (-1190 (-418 (-1190 *6)))) (-5 *1 (-571 *5 *6 *7)) + (-5 *3 (-1190 *6)) (-4 *7 (-1117)))) ((*1 *2 *1) - (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1067)))) + (-12 (-4 *2 (-1261 *3)) (-5 *1 (-723 *3 *2)) (-4 *3 (-1066)))) ((*1 *2 *1) - (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) + (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1191 *11)) (-5 *6 (-656 *10)) - (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-862)) - (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-965 *11 *9 *10)) - (-5 *2 (-656 (-1191 *5))) (-5 *1 (-754 *9 *10 *11 *5)) - (-5 *3 (-1191 *5)))) + (|partial| -12 (-5 *4 (-1190 *11)) (-5 *6 (-655 *10)) + (-5 *7 (-655 (-782))) (-5 *8 (-655 *11)) (-4 *10 (-861)) + (-4 *11 (-316)) (-4 *9 (-804)) (-4 *5 (-964 *11 *9 *10)) + (-5 *2 (-655 (-1190 *5))) (-5 *1 (-753 *9 *10 *11 *5)) + (-5 *3 (-1190 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-965 *3 *4 *5)) (-5 *1 (-1052 *3 *4 *5 *2 *6)) - (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-14 *6 (-656 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-822 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1262 *4)) - (-5 *1 (-822 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) - (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-959 *5)) (-4 *5 (-1067)) - (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5)) - (-14 *4 (-937)) (-4 *5 (-1067)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-959 *5)) (-4 *5 (-1067)) - (-5 *1 (-1183 *4 *5)) (-14 *4 (-937))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1221) (-975)))))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1102 *3)) (-4 *3 (-133))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-936))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480))))) -(((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-937)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-886)) - (-5 *2 (-1291)) (-5 *1 (-1287))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1030)) (-5 *2 (-874))))) + (-12 (-4 *2 (-964 *3 *4 *5)) (-5 *1 (-1051 *3 *4 *5 *2 *6)) + (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-14 *6 (-655 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-189))) (-5 *1 (-189))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-575)) (-4 *6 (-373)) (-4 *6 (-378)) + (-4 *6 (-1066)) (-5 *2 (-655 (-655 (-700 *6)))) (-5 *1 (-1046 *6)) + (-5 *3 (-655 (-700 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-373)) (-4 *4 (-378)) (-4 *4 (-1066)) + (-5 *2 (-655 (-655 (-700 *4)))) (-5 *1 (-1046 *4)) + (-5 *3 (-655 (-700 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066)) + (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) + (-5 *3 (-655 (-700 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-936)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066)) + (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) + (-5 *3 (-655 (-700 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-339))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1101 *3)) (-4 *3 (-133))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-463)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *5 (-924)) (-5 *1 (-468 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-924))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) + (-5 *2 (-1052)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1176))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-1209 *2)) (-4 *2 (-373))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) - (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) - (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-5 *2 (-2 (|:| -1898 (-656 (-419 *6))) (|:| -2869 (-701 *5)))) - (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) - (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1262 *5)) - (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) - (-5 *2 (-2 (|:| -1898 (-656 (-419 *6))) (|:| -2869 (-701 *5)))) - (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6)))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1183 *4 *5)) - (-14 *4 (-937)) (-4 *5 (-1067))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-975)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-968 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464)) - (-5 *1 (-934 *4))))) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-173)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-833))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-994 *3 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112)) + (-5 *1 (-856 *4 *5)) (-14 *4 (-782))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-316)) (-5 *2 (-112))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *3 (-656 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-480))))) + (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-655 (-700 *3))) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-655 (-700 *3))) (-4 *3 (-1066)) (-5 *1 (-1045 *3))))) +(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-712)))) + ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-712))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-782)) (-5 *2 (-1290))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-540)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-782)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1066)) (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *1) - (-12 + (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-428 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1276 *4)) + (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-1 (-1174 *4) (-1174 *4))) + (-5 *1 (-1278 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204))))) +(((*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-112)) (-5 *1 (-275))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1052)) + (-5 *1 (-757))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *2 - (-1286 - (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2237 (-576)) - (|:| -2216 (-576)) (|:| |spline| (-576)) (|:| -4360 (-576)) - (|:| |axesColor| (-886)) (|:| -2497 (-576)) - (|:| |unitsColor| (-886)) (|:| |showing| (-576))))) - (-5 *1 (-1287))))) + (-655 + (-2 (|:| |outval| *4) (|:| |outmult| (-575)) + (|:| |outvect| (-655 (-700 *4)))))) + (-5 *1 (-790 *4)) (-4 *4 (-13 (-373) (-859)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-427 *3 *2)) (-4 *3 (-428 *2)))) + ((*1 *2) (-12 (-4 *1 (-428 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-567)) (-4 *3 (-1066)) + (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-863 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-567)) (-4 *5 (-1066)) + (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-864 *5 *3)) + (-4 *3 (-863 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) - (-4 *3 (-1262 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) - (-4 *5 (-668 (-419 *3))))) + (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) + (-4 *3 (-1261 *4)) (-5 *1 (-820 *4 *3 *2 *5)) (-4 *2 (-667 *3)) + (-4 *5 (-667 (-418 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 *5)) - (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) - (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1183 *4 *5)) - (-14 *4 (-937)) (-4 *5 (-1067))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))) - (-5 *1 (-815))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-968 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464)) - (-5 *1 (-934 *4))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-959 (-227))) (-5 *4 (-886)) (-5 *5 (-937)) - (-5 *2 (-1291)) (-5 *1 (-480)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-959 (-227))) (-5 *2 (-1291)) (-5 *1 (-480)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *4 (-886)) (-5 *5 (-937)) - (-5 *2 (-1291)) (-5 *1 (-480))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174)) - (-5 *2 (-1286 (-701 (-968 *4)))) (-5 *1 (-191 *4))))) + (-12 (-5 *3 (-418 *5)) + (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) + (-5 *1 (-820 *4 *5 *2 *6)) (-4 *2 (-667 *5)) (-4 *6 (-667 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7))) + (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) + (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8))) + (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7))) + (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) + (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8))) + (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) + (-12 (-5 *3 (-1 (-1174 *4) (-1174 *4))) (-5 *2 (-1174 *4)) + (-5 *1 (-1311 *4)) (-4 *4 (-1235)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-655 (-1174 *5)) (-655 (-1174 *5)))) (-5 *4 (-575)) + (-5 *2 (-655 (-1174 *5))) (-5 *1 (-1311 *5)) (-4 *5 (-1235))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) + (-4 *5 (-1261 *4)) (-5 *2 (-655 (-418 *5))) (-5 *1 (-1033 *4 *5)) + (-5 *3 (-418 *5))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-871)) (-5 *2 (-702 (-1243))) (-5 *3 (-1243))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-623 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-655 (-623 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-623 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1261 (-171 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-936)) (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)))) + ((*1 *2 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-373)))) ((*1 *2 *1) - (-12 (-5 *2 (-1286 (-3 (-480) "undefined"))) (-5 *1 (-1287))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3928 (-794 *3)) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) + (-12 (-4 *1 (-380 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1009 *3)) (-5 *1 (-424 *3 *2 *4 *5)) + (-4 *3 (-316)) (-4 *5 (-13 (-420 *2 *4) (-1055 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1009 *3)) + (-5 *1 (-425 *3 *2 *4 *5 *6)) (-4 *3 (-316)) (-4 *5 (-420 *2 *4)) + (-14 *6 (-1285 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-936)) (-4 *5 (-1066)) + (-4 *2 (-13 (-415) (-1055 *5) (-373) (-1220) (-293))) + (-5 *1 (-454 *5 *3 *2)) (-4 *3 (-1261 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-623 (-506)))) (-5 *1 (-506)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-506))) (-5 *1 (-506)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1190 (-506))) (-5 *3 (-655 (-623 (-506)))) + (-5 *1 (-506)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1190 (-506))) (-5 *3 (-623 (-506))) (-5 *1 (-506)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1285 *4)) (-5 *3 (-936)) (-4 *4 (-359)) + (-5 *1 (-539 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-463)) (-4 *5 (-735 *4 *2)) (-4 *2 (-1261 *4)) + (-5 *1 (-786 *4 *2 *5 *3)) (-4 *3 (-1261 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) + ((*1 *1 *1) (-4 *1 (-1077)))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-171 (-227)))) (-5 *2 (-1052)) + (-5 *1 (-767))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) + (-5 *1 (-941)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) + (-5 *1 (-941)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) + (-5 *1 (-942)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) + (-5 *1 (-942))))) +(((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-339))))) +(((*1 *2 *3) + (-12 (-5 *3 (-967 (-575))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) + ((*1 *2 *3) + (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) + ((*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-1029)) (-5 *2 (-655 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1190 (-575))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1190 (-418 (-575)))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1190 *1)) (-4 *1 (-1029)) (-5 *2 (-655 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-655 *1)) + (-4 *1 (-1085 *4 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -3928 *1) (|:| |coef2| *1))) - (-4 *1 (-1083 *3 *4 *5))))) + (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1228 *5 *6 *7 *3)) + (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-62 *3)) (-14 *3 (-1194)))) + ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-69 *3)) (-14 *3 (-1194)))) + ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-72 *3)) (-14 *3 (-1194)))) + ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-1290)))) + ((*1 *2 *3) (-12 (-5 *3 (-399)) (-5 *2 (-1290)) (-5 *1 (-408)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1176)) (-5 *4 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155)))) + ((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155))))) +(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) + ((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) + ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932))))) +(((*1 *1 *1 *1) (-5 *1 (-873)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) - (-5 *2 (-656 (-2 (|:| -3739 *5) (|:| -2572 *3)))) - (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) - (-4 *7 (-668 (-419 *6)))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-656 - (-2 - (|:| -4169 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) - (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) - (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -3180 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390))))))) - (-5 *1 (-815))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) - ((*1 *2 *3) (-12 (-5 *3 (-989)) (-5 *2 (-920 (-576))) (-5 *1 (-933))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-959 (-227))) (-5 *2 (-1291)) (-5 *1 (-480))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112)))))) + (-12 (-5 *2 (-1190 *6)) (-5 *3 (-575)) (-4 *6 (-316)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1175 *4) (-1175 *4))) (-5 *2 (-1175 *4)) - (-5 *1 (-1312 *4)) (-4 *4 (-1236)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-656 (-1175 *5)) (-656 (-1175 *5)))) (-5 *4 (-576)) - (-5 *2 (-656 (-1175 *5))) (-5 *1 (-1312 *5)) (-4 *5 (-1236))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-656 *1)) (-4 *1 (-1083 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1118)))) - ((*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1118))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) - (-4 *5 (-1262 *4)) - (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -2572 *5)))) - (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) - (-4 *6 (-668 (-419 *5)))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-959 *4)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-815))))) -(((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933))))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-62 *3)) (-14 *3 (-1195)))) - ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-69 *3)) (-14 *3 (-1195)))) - ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-72 *3)) (-14 *3 (-1195)))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1291)))) - ((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-409)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156)))) - ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156))))) + (-12 (-4 *1 (-359)) (-5 *3 (-575)) (-5 *2 (-1207 (-936) (-782)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-655 *2) *2 *2 *2)) (-4 *2 (-1117)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1117)) (-5 *1 (-103 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886))) - (-5 *1 (-480))))) -(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-937)) (-5 *2 (-480)) (-5 *1 (-1287))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *1) - (-12 (-4 *1 (-707 *3)) (-4 *3 (-1118)) - (-5 *2 (-656 (-2 (|:| -3180 *3) (|:| -3926 (-783)))))))) + (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-902 *4 *3)) + (-4 *3 (-1235)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) + ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) + ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-402))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1261 *6)) + (-4 *6 (-13 (-373) (-148) (-1055 *4))) (-5 *4 (-575)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -2571 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1032 *6 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-920 *3))))) (((*1 *2 *3) - (-12 (-4 *2 (-1262 *4)) (-5 *1 (-821 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *5 (-668 (-419 *2)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *1) (-5 *1 (-815)))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-403))))) + (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) + (-5 *2 (-967 *5)) (-5 *1 (-959 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-700 (-325 (-227)))) (-5 *2 (-389)) (-5 *1 (-207))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-655 (-1044 *5 *6 *7 *3))) (-5 *1 (-1044 *5 *6 *7 *3)) + (-4 *3 (-1082 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-655 *6)) (-4 *1 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1088 *3 *4 *5 *2)) (-4 *3 (-463)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-655 (-1163 *5 *6 *7 *3))) (-5 *1 (-1163 *5 *6 *7 *3)) + (-4 *3 (-1082 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-373) (-311) + (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) + (-15 -1608 ((-1142 *3 (-623 $)) $)) + (-15 -2883 ($ (-1142 *3 (-623 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-373) (-311) + (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) + (-15 -1608 ((-1142 *3 (-623 $)) $)) + (-15 -2883 ($ (-1142 *3 (-623 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-655 *2)) + (-4 *2 + (-13 (-373) (-311) + (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $)) + (-15 -1608 ((-1142 *4 (-623 $)) $)) + (-15 -2883 ($ (-1142 *4 (-623 $))))))) + (-4 *4 (-567)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-655 (-623 *2))) + (-4 *2 + (-13 (-373) (-311) + (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $)) + (-15 -1608 ((-1142 *4 (-623 $)) $)) + (-15 -2883 ($ (-1142 *4 (-623 $))))))) + (-4 *4 (-567)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))) + (-5 *2 (-418 (-575))) (-5 *1 (-1037 *4)) (-4 *4 (-1261 (-575)))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-1118)) (-4 *7 (-914 *6)) - (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461))))))) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-782)) (-4 *4 (-373)) (-5 *1 (-910 *2 *4)) + (-4 *2 (-1261 *4))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-700 *4)) (-5 *3 (-782)) (-4 *4 (-1066)) + (-5 *1 (-701 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-399)) (-5 *2 (-1290)) (-5 *1 (-402)))) + ((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-402))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *2) + (-12 (-4 *3 (-316)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) + (-5 *1 (-1141 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-112)) (-5 *1 (-840))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *5 (-668 (-419 *2))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) + (-4 *7 (-1261 (-418 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -3104 *3))) + (-5 *1 (-573 *5 *6 *7 *3)) (-4 *3 (-352 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *5 *3)) - (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-668 *2)) - (-4 *3 (-668 (-419 *2)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1195)) - (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1221) (-975))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1898 (-656 *4)))) - (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1191 *3) (-1191 *3))) - (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) - (-5 *1 (-563 *6 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-403)))) - ((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-403))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1236)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-686 *4))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195))) - (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1118)) (-4 *6 (-914 *5)) (-5 *2 (-701 *6)) - (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) - (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -1752 *5) (|:| -2677 *5)))) - (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) - (-4 *6 (-668 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) - (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -1752 *4) (|:| -2677 *4)))) - (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) - (-4 *6 (-668 (-419 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) - (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -1752 *5) (|:| -2677 *5)))) - (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) - (-4 *3 (-668 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) - (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -1752 *4) (|:| -2677 *4)))) - (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) - (-4 *3 (-668 (-419 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3)))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) + (-5 *2 + (-2 (|:| |answer| (-418 *6)) (|:| -3104 (-418 *6)) + (|:| |specpart| (-418 *6)) (|:| |polypart| *6))) + (-5 *1 (-574 *5 *6)) (-5 *3 (-418 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-575))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-115))))) (((*1 *2 *1) - (-12 (-5 *2 (-173)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) + (-5 *2 (-782)))) + ((*1 *2 *1) + (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) + (-5 *2 (-782)))) + ((*1 *2 *1) + (-12 (-5 *2 (-782)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-737))))) +(((*1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556))))) (((*1 *2 *3) - (-12 (-4 *1 (-812)) - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-1053))))) -(((*1 *1 *1 *1) (-4 *1 (-985)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))) + (-12 (-5 *3 (-655 *4)) (-4 *4 (-1066)) (-5 *2 (-1285 *4)) + (-5 *1 (-1195 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-936)) (-5 *2 (-1285 *3)) (-5 *1 (-1195 *3)) + (-4 *3 (-1066))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2)) - (-4 *2 (-686 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-1118)) (-4 *3 (-914 *6)) - (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461))))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1262 *5)) - (-5 *1 (-819 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) - (-4 *3 (-668 *2)) (-4 *6 (-668 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1262 *5)) - (-5 *1 (-819 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *6 (-668 (-419 *2)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240)) - (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) - (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1017 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-985)))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -4169 (-1195)) (|:| -3180 (-449))))) - (-5 *1 (-1199))))) + (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) + (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4232 *4))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-655 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-782)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-804)) (-4 *6 (-964 *4 *3 *5)) (-4 *4 (-463)) (-4 *5 (-861)) + (-5 *1 (-460 *4 *3 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) - (-5 *2 (-2 (|:| |start| *3) (|:| -4319 (-430 *3)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1118)) (-4 *3 (-914 *5)) (-5 *2 (-701 *3)) - (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461))))))) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1117) (-1055 *5))) + (-4 *5 (-898 *4)) (-4 *4 (-1117)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-946 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-959 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) - (-4 *4 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *2) (-12 (-5 *2 (-982 *3)) (-4 *3 (-1118)) (-5 *1 (-983 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) + (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-960 *4 *3)) + (-4 *3 (-1261 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1262 (-171 *2)))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-886)) - (-5 *5 (-937)) (-5 *6 (-656 (-270))) (-5 *2 (-1287)) - (-5 *1 (-1290)))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-448))))) + (-5 *1 (-1198))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-655 (-700 *4))) (-5 *2 (-700 *4)) (-4 *4 (-1066)) + (-5 *1 (-1046 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-1285 (-1118 *3 *4))) (-5 *1 (-1118 *3 *4)) + (-14 *3 (-936)) (-14 *4 (-936))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) + (-252 *4 (-418 (-575))))) + (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112)) + (-5 *1 (-516 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) + (-5 *2 (-1290)) (-5 *1 (-1197)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-656 (-270))) - (-5 *2 (-1287)) (-5 *1 (-1290))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464))))) + (-12 (-5 *3 (-1194)) + (-5 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-5 *2 (-1290)) + (-5 *1 (-1197)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1194)) + (-5 *4 (-3 (|:| |fst| (-445)) (|:| -2007 "void"))) (-5 *2 (-1290)) + (-5 *1 (-1197))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1190 (-967 *4))) (-5 *1 (-427 *3 *4)) + (-4 *3 (-428 *4)))) + ((*1 *2) + (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-4 *3 (-373)) + (-5 *2 (-1190 (-967 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) +(((*1 *2) + (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) + (-5 *2 (-782)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-782))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-758))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-316)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1117)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-396 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2829 (-782)) (|:| -1635 (-782)))) + (-5 *1 (-782)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-575) (-575))) (-5 *1 (-371 *3)) (-4 *3 (-1117)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-782) (-782))) (-4 *1 (-396 *3)) (-4 *3 (-1117)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1118)) (-4 *2 (-914 *4)) (-5 *1 (-704 *4 *2 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4461))))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *2 *1) - (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *1 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)) - (-4 *2 (-464)))) - ((*1 *1 *1) - (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2)) - (-4 *4 (-1262 (-419 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *3 (-464)))) - ((*1 *1 *1) - (-12 (-4 *1 (-965 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1182 *3 *2)) - (-4 *2 (-1262 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) + (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-3 (-112) (-655 *1))) + (-4 *1 (-1088 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) + (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1) (-4 *1 (-880 *2)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-418 (-967 *5)) (-1183 (-1194) (-967 *5)))) + (-4 *5 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *5))))) + (-5 *1 (-301 *5)) (-5 *4 (-700 (-418 (-967 *5))))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1278 *3 *2)) + (-4 *2 (-1276 *3))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-655 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567)) (-4 *7 (-804)) + (-4 *8 (-861)) (-5 *1 (-994 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-4 *4 (-1118)) (-5 *2 (-902 *3 *4)) (-5 *1 (-898 *3 *4 *5)) - (-4 *3 (-1118)) (-4 *5 (-678 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-982 *4)) (-4 *4 (-1118)) (-5 *2 (-1120 *4)) - (-5 *1 (-983 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) + (-12 (-4 *1 (-1055 (-575))) (-4 *1 (-311)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1117))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) - (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1262 *2))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-886)) - (-5 *5 (-937)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1290)))) + (-12 (-4 *1 (-850)) + (-5 *3 + (-2 (|:| |fn| (-325 (-227))) (|:| -3474 (-655 (-227))) + (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) + (|:| |ub| (-655 (-854 (-227)))))) + (-5 *2 (-1052)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *2 (-480)) - (-5 *1 (-1290)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-656 (-270))) - (-5 *2 (-480)) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464))))) + (-12 (-4 *1 (-850)) + (-5 *3 + (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) + (-5 *2 (-1052))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1117)) (-4 *2 (-913 *4)) (-5 *1 (-703 *4 *2 *5 *3)) + (-4 *5 (-383 *2)) (-4 *3 (-13 (-383 *4) (-10 -7 (-6 -4460))))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) + (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) + (-5 *1 (-759))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1118)) (-4 *2 (-914 *5)) (-5 *1 (-704 *5 *2 *3 *4)) - (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461))))))) + (-12 (-5 *3 (-655 *5)) (-5 *4 (-936)) (-4 *5 (-861)) + (-5 *2 (-655 (-683 *5))) (-5 *1 (-683 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)) + (-4 *2 (-463)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 *4)) (-4 *4 (-1261 (-575))) (-5 *2 (-655 (-575))) + (-5 *1 (-497 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-463)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)) (-4 *3 (-463))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1194)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-713 *3 *5 *6 *7)) + (-4 *3 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235)) + (-4 *7 (-1235)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) (-5 *2 (-1 *6 *5)) (-5 *1 (-717 *3 *5 *6)) + (-4 *3 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-964 *4 *6 *5)) (-4 *4 (-463)) + (-4 *5 (-861)) (-4 *6 (-804)) (-5 *1 (-1004 *4 *5 *6 *3))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177))))) + (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-974 *3)) (-5 *1 (-1182 *4 *3)) - (-4 *3 (-1262 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-982 *3)) (-4 *3 (-1118))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1262 (-171 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1262 (-171 *2)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1236)) - (-4 *5 (-1236)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-783)) - (-4 *7 (-1236)) (-4 *5 (-1236)) (-5 *2 (-246 *6 *5)) - (-5 *1 (-245 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1236)) (-4 *5 (-1236)) - (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1118)) (-4 *5 (-1118)) - (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1236)) - (-4 *5 (-1236)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-974 *6)) (-4 *6 (-1236)) - (-4 *5 (-1236)) (-5 *2 (-974 *5)) (-5 *1 (-973 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1175 *6)) (-4 *6 (-1236)) - (-4 *3 (-1236)) (-5 *2 (-1175 *3)) (-5 *1 (-1173 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1286 *6)) (-4 *6 (-1236)) - (-4 *5 (-1236)) (-5 *2 (-1286 *5)) (-5 *1 (-1285 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1) (-5 *1 (-1081)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1118)) (-4 *3 (-914 *5)) (-5 *2 (-1286 *3)) - (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461))))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -3898 (-1175 *4)) (|:| -3910 (-1175 *4)))) - (-5 *1 (-1181 *4)) (-5 *3 (-1175 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) + (-12 (-5 *3 (-1196 (-418 (-575)))) (-5 *2 (-418 (-575))) + (-5 *1 (-192))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1109 (-967 (-575)))) (-5 *3 (-967 (-575))) + (-5 *1 (-339)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1109 (-967 (-575)))) (-5 *1 (-339))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-479)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286))))) (((*1 *2 *1) - (-12 (-5 *2 (-703 (-982 *3))) (-5 *1 (-982 *3)) (-4 *3 (-1118))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1236)) (-4 *2 (-1067)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) - ((*1 *1 *1) (-5 *1 (-874))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) + (-14 *4 (-655 (-1194))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) + (-14 *4 (-655 (-1194)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1080))))) +(((*1 *2 *3) + (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-960 *4 *3)) + (-4 *3 (-1261 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-590))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066)) + (-5 *1 (-1178 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) + (-14 *4 (-1194)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-1080))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) + (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) + (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) + (-14 *4 (-782)) (-4 *5 (-174))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1066)) (-4 *5 (-1261 *4)) (-5 *2 (-1 *6 (-655 *6))) + (-5 *1 (-1279 *4 *5 *3 *6)) (-4 *3 (-667 *5)) (-4 *6 (-1276 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1119 *4)) (-4 *4 (-1117)) (-5 *2 (-1 *4)) + (-5 *1 (-1034 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-959 (-227))) (-5 *2 (-227)) (-5 *1 (-1232)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1067))))) -(((*1 *1 *1) (-5 *1 (-1081)))) -(((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1067)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3660 *1))) - (-4 *1 (-864 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -3762 (-1175 *4)) (|:| -3775 (-1175 *4)))) - (-5 *1 (-1181 *4)) (-5 *3 (-1175 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) - ((*1 *1 *1 *1) (-4 *1 (-805)))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) - (-4 *3 (-1118))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1067)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1067))))) -(((*1 *1 *1) (-5 *1 (-1081)))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1067)) - (-5 *1 (-702 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1111 (-575))) (-5 *2 (-1 (-575))) (-5 *1 (-1064))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-575)) (-5 *5 (-1176)) (-5 *6 (-700 (-227))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-785)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-785)) (-5 *1 (-115))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2665 *4)))) + (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-660 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-556)) (-5 *1 (-160 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-862)) - (-4 *5 (-805)) (-4 *2 (-275 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-374)) (-4 *3 (-1067)) - (-5 *1 (-1179 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) + (-12 (-5 *2 (-1119 (-1119 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-115)) (-5 *4 (-782)) + (-4 *5 (-13 (-463) (-1055 (-575)))) (-4 *5 (-567)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-441 *5)) + (-4 *2 + (-13 (-373) (-311) + (-10 -8 (-15 -1595 ((-1142 *5 (-623 $)) $)) + (-15 -1608 ((-1142 *5 (-623 $)) $)) + (-15 -2883 ($ (-1142 *5 (-623 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-441 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) + (-5 *1 (-159 *4 *5)) (-4 *5 (-441 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) + (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-441 *4) (-1019))))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-310 *4)) (-4 *4 (-311)))) + ((*1 *2 *3) (-12 (-4 *1 (-311)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *5 (-1117)) (-5 *2 (-112)) + (-5 *1 (-440 *4 *5)) (-4 *4 (-441 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) + (-5 *1 (-442 *4 *5)) (-4 *5 (-441 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) + (-5 *1 (-641 *4 *5)) (-4 *5 (-13 (-441 *4) (-1019) (-1220)))))) +(((*1 *1 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567))))) (((*1 *2 *1) - (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) - (-4 *3 (-1118))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) + (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3)))) + (-5 *1 (-606 *3)) (-4 *3 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-973 (-782))) (-5 *1 (-342))))) (((*1 *2 *1) - (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1020)) - (-4 *2 (-1067))))) -(((*1 *1 *1) (-5 *1 (-1081)))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1175 *4))) (-4 *4 (-374)) - (-4 *4 (-1067)) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-12 (-4 *1 (-259 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-861)) + (-4 *5 (-804)) (-4 *2 (-274 *4))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-782)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-782)) (-4 *5 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 - (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) + (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) + (-252 *4 (-418 (-575))))) + (-5 *3 (-655 (-875 *4))) (-14 *4 (-655 (-1194))) (-14 *5 (-782)) + (-5 *1 (-516 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-402))))) (((*1 *2 *1) - (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) - (-4 *3 (-1118))))) + (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132)) + (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2665 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-655 (-2 (|:| -1754 *3) (|:| -3693 *4)))) + (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) + (-5 *2 (-1174 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4)) (-4 *6 (-1261 *5)) + (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7)) + (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-112)) + (-5 *1 (-926 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6)) + (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4))) + (-4 *6 (-352 (-418 (-575)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-927 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1176)) (-5 *1 (-797))))) +(((*1 *2 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-457)) (-5 *3 (-575))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-118 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-575)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-882 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-14 *2 (-575)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-575)) (-14 *3 *2) (-5 *1 (-883 *3 *4)) + (-4 *4 (-880 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-575)) (-5 *1 (-883 *2 *3)) (-4 *3 (-880 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-575)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-1276 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1247 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1276 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-557)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1194)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-713 *4 *5 *6 *7)) + (-4 *4 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235)) + (-4 *7 (-1235))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-575)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1067)) - (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1262 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1067)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1067)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) -(((*1 *2 *3) - (-12 (-5 *3 (-419 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-568)) - (-4 *4 (-1067)) (-4 *2 (-1277 *4)) (-5 *1 (-1280 *4 *5 *6 *2)) - (-4 *6 (-668 *5))))) -(((*1 *1 *1) (-5 *1 (-1081)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118))))) + (-12 (-5 *3 (-575)) (-4 *1 (-662 *2)) (-4 *2 (-1235))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-374)) (-4 *3 (-1067)) - (-5 *1 (-1179 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) - (-4 *3 (-1118))))) + (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-1176)) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1052)) + (-5 *1 (-761))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-762))))) +(((*1 *1 *1) (-4 *1 (-640))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019) (-1220)))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-958 *5)) (-5 *3 (-782)) (-4 *5 (-1066)) + (-5 *1 (-1182 *4 *5)) (-14 *4 (-936))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1235))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1262 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1262 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) - (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1262 *3))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *1 (-276))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1067)) (-4 *5 (-1262 *4)) (-5 *2 (-1 *6 (-656 *6))) - (-5 *1 (-1280 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1277 *4))))) -(((*1 *1 *1) (-5 *1 (-1081)))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3))))) + (-12 (-5 *2 (-1285 (-1285 (-575)))) (-5 *3 (-936)) (-5 *1 (-477))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-1118)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-397 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1175 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1067)) - (-5 *3 (-419 (-576))) (-5 *1 (-1179 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-982 *2)) (-4 *2 (-1118))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) - (-5 *1 (-276))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-1067)) (-4 *2 (-1262 *5)) - (-5 *1 (-1280 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1277 *5))))) -(((*1 *1 *1) (-5 *1 (-1081)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3))))) + (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4232 *4))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-623 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194))) + (-4 *2 (-13 (-441 *5) (-27) (-1220))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *1 (-577 *5 *2 *6)) (-4 *6 (-1117))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1118))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1117))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-633 *4 *2)) (-4 *2 (-13 (-1220) (-974) (-29 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1067))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-982 *2)) (-4 *2 (-1118))))) + (-12 (-5 *2 (-702 (-981 *3))) (-5 *1 (-981 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-782)) (-4 *5 (-373)) (-5 *2 (-418 *6)) + (-5 *1 (-878 *5 *4 *6)) (-4 *4 (-1276 *5)) (-4 *6 (-1261 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-782)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-373)) + (-14 *6 (-1194)) (-14 *7 *5) (-5 *2 (-418 (-1258 *6 *5))) + (-5 *1 (-879 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-782)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-373)) + (-14 *6 (-1194)) (-14 *7 *5) (-5 *2 (-418 (-1258 *6 *5))) + (-5 *1 (-879 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-239)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) - (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6)))) + (-12 (-4 *4 (-567)) (-4 *2 (-13 (-441 (-171 *4)) (-1019) (-1220))) + (-5 *1 (-611 *4 *3 *2)) (-4 *3 (-13 (-441 *4) (-1019) (-1220)))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-766))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-383 *2)) (-4 *2 (-1235)) + (-4 *2 (-861)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4461)) + (-4 *1 (-383 *3)) (-4 *3 (-1235))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1121)) (-5 *1 (-288))))) +(((*1 *1) (-5 *1 (-1287)))) +(((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155)))) ((*1 *2 *3) - (-12 (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) - (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-862))))) + (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) + (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) + (-5 *2 (-2 (|:| -1403 *3) (|:| |nconst| *3))) (-5 *1 (-578 *5 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-130)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-567)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-567))))) +(((*1 *2 *2) + (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) + (-5 *1 (-178 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1067)) (-4 *3 (-1262 *4)) (-4 *2 (-1277 *4)) - (-5 *1 (-1280 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) -(((*1 *1 *1) (-5 *1 (-1081)))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-419 (-968 (-576))))) (-5 *4 (-656 (-1195))) - (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) - (-4 *5 (-13 (-860) (-374))))) + (-12 (-4 *4 (-1235)) (-5 *2 (-782)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-685 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) + (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374)))))) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) + (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1162 *5 *6 *7 *8 *9))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-623 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194))) (-5 *5 (-1190 *2)) + (-4 *2 (-13 (-441 *6) (-27) (-1220))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *1 (-571 *6 *2 *7)) (-4 *7 (-1117)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-623 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194))) + (-5 *5 (-418 (-1190 *2))) (-4 *2 (-13 (-441 *6) (-27) (-1220))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *1 (-571 *6 *2 *7)) (-4 *7 (-1117))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1237)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1237))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-758))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-884 (-936) (-936)))) (-5 *1 (-988))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-570))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-375 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-1216))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1290)) (-5 *1 (-842))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-767))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -2435 *6) (|:| |sol?| (-112))) (-575) + *6)) + (-4 *6 (-373)) (-4 *7 (-1261 *6)) + (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6))) + (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1175 *3))) (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-12 (-5 *3 (-303 (-418 (-967 *5)))) (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-148))) + (-5 *2 (-1183 (-655 (-325 *5)) (-655 (-303 (-325 *5))))) + (-5 *1 (-1146 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-148))) + (-5 *2 (-1183 (-655 (-325 *5)) (-655 (-303 (-325 *5))))) + (-5 *1 (-1146 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-311)))) + ((*1 *1 *1) (-4 *1 (-311))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) + ((*1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-758))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-227)) (-5 *2 - (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-786)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-981))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1195))) (-4 *6 (-374)) - (-5 *2 (-656 (-304 (-968 *6)))) (-5 *1 (-550 *5 *6 *7)) - (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) - (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1277 *5)) (-5 *2 (-656 *6)) - (-5 *1 (-1279 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-1081)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-855 *3)) (-4 *3 (-1118))))) + (-2 (|:| |brans| (-655 (-655 (-958 *4)))) + (|:| |xValues| (-1111 *4)) (|:| |yValues| (-1111 *4)))) + (-5 *1 (-154)) (-5 *3 (-655 (-655 (-958 *4))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1235)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-419 (-968 (-171 (-576)))))) - (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 (-171 *5)))) - (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860)))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236))))) + (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137)))))) + (-4 *4 (-359)) (-5 *2 (-1290)) (-5 *1 (-539 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-227)) (-5 *1 (-314))))) +(((*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-5 *1 (-1209 *2)) (-4 *2 (-373))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1285 *4)) (-5 *3 (-782)) (-4 *4 (-359)) + (-5 *1 (-539 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4)) - (-4 *4 (-1067))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-980 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195))) (-4 *6 (-464)) - (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) - (-4 *5 (-13 (-374) (-860)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) + (|partial| -12 (-5 *3 (-700 (-418 (-967 (-575))))) + (-5 *2 (-700 (-325 (-575)))) (-5 *1 (-1048))))) (((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360)))) + (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) + (-4 *4 (-359)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360)))) - ((*1 *1) (-4 *1 (-379))) - ((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360)))) - ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-5 *1 (-783))) - ((*1 *2 *1) (-12 (-5 *2 (-921 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) + (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) + (-4 *4 (-359)))) + ((*1 *1) (-4 *1 (-378))) + ((*1 *2 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4)) + (-4 *4 (-359)))) + ((*1 *1 *1) (-4 *1 (-556))) ((*1 *1) (-4 *1 (-556))) + ((*1 *1 *1) (-5 *1 (-782))) + ((*1 *2 *1) (-12 (-5 *2 (-920 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-921 *4)) (-5 *1 (-920 *4)) - (-4 *4 (-1118)))) - ((*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-557)) (-4 *2 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) - (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1277 *5)) - (-5 *1 (-1279 *5 *2))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1081))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1053)) (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) - (-5 *2 (-1053)) (-5 *1 (-852))))) + (-12 (-5 *3 (-575)) (-5 *2 (-920 *4)) (-5 *1 (-919 *4)) + (-4 *4 (-1117)))) + ((*1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-556)) (-4 *2 (-567))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -1630 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-373)) (-5 *1 (-585 *4 *2)) (-4 *2 (-1261 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-575)) (-5 *1 (-389))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1052)) (-5 *1 (-760)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-399)) (-5 *2 (-1052)) (-5 *1 (-760))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-968 (-171 (-576)))))) - (-5 *2 (-656 (-656 (-304 (-968 (-171 *4)))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-968 (-171 (-576))))))) - (-5 *2 (-656 (-656 (-304 (-968 (-171 *4)))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 (-171 (-576))))) - (-5 *2 (-656 (-304 (-968 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-968 (-171 (-576)))))) - (-5 *2 (-656 (-304 (-968 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1067)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1262 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1118)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1118))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373)) + (-5 *2 (-2 (|:| -1500 (-429 *3)) (|:| |special| (-429 *3)))) + (-5 *1 (-738 *5 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575))))) +(((*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235)) + (-4 *4 (-383 *2)) (-4 *5 (-383 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) - (-4 *5 (-384 *2)) (-4 *2 (-1236)))) + (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-383 *2)) + (-4 *5 (-383 *2)) (-4 *2 (-1235)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1235)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1235)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-576)) (-14 *5 (-783)))) + (-12 (-5 *3 (-655 (-575))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 (-575)) (-14 *5 (-782)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) + (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-782)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) + (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-782)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) + (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-782)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) - (-14 *4 (-783)))) + (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-575)) + (-14 *4 (-782)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1195)) (-5 *2 (-251 (-1177))) (-5 *1 (-216 *4)) + (-12 (-5 *3 (-1194)) (-5 *2 (-250 (-1176))) (-5 *1 (-216 *4)) (-4 *4 - (-13 (-862) - (-10 -8 (-15 -2071 ((-1177) $ *3)) (-15 -2483 ((-1291) $)) - (-15 -2673 ((-1291) $))))))) + (-13 (-861) + (-10 -8 (-15 -2070 ((-1176) $ *3)) (-15 -2484 ((-1290) $)) + (-15 -2514 ((-1290) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1007)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1006)) (-5 *1 (-216 *3)) (-4 *3 - (-13 (-862) - (-10 -8 (-15 -2071 ((-1177) $ (-1195))) (-15 -2483 ((-1291) $)) - (-15 -2673 ((-1291) $))))))) + (-13 (-861) + (-10 -8 (-15 -2070 ((-1176) $ (-1194))) (-15 -2484 ((-1290) $)) + (-15 -2514 ((-1290) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-251 *4)) (-4 *4 (-862)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-862)))) + (-12 (-5 *3 "count") (-5 *2 (-782)) (-5 *1 (-250 *4)) (-4 *4 (-861)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-862)))) + (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1236)) (-4 *2 (-1236)))) + (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1235)) (-4 *2 (-1235)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 *1)) (-4 *1 (-311)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2)) - (-4 *4 (-1262 (-419 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1177)) (-5 *1 (-514)))) + (-12 (-4 *1 (-352 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-1261 *2)) + (-4 *4 (-1261 (-418 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1176)) (-5 *1 (-513)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1118)))) + (-12 (-5 *3 (-782)) (-5 *1 (-686 *2)) (-4 *2 (-1117)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) + (-12 (-5 *2 (-655 (-575))) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) + (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-656 (-905 *4))) (-5 *1 (-905 *4)) - (-4 *4 (-1118)))) + (-12 (-5 *2 (-115)) (-5 *3 (-655 (-904 *4))) (-5 *1 (-904 *4)) + (-4 *4 (-1117)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-921 *4)) (-5 *1 (-920 *4)) - (-4 *4 (-1118)))) + (-12 (-5 *3 (-782)) (-5 *2 (-920 *4)) (-5 *1 (-919 *4)) + (-4 *4 (-1117)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1028 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) + (-12 (-5 *3 "value") (-4 *1 (-1027 *2)) (-4 *2 (-1235)))) + ((*1 *2 *1) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7)) (-4 *2 (-1067)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) + (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7)) (-4 *2 (-1066)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1067)))) + (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1066)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-937)) (-4 *4 (-1118)) - (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-1094 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) + (-12 (-5 *3 (-936)) (-4 *4 (-1117)) + (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) + (-5 *1 (-1093 *4 *5 *2)) + (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-937)) (-4 *4 (-1118)) - (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-1095 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1162))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) + (-12 (-5 *3 (-936)) (-4 *4 (-1117)) + (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) + (-5 *1 (-1094 *4 *5 *2)) + (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1161))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-419 *1)) (-4 *1 (-1262 *2)) (-4 *2 (-1067)) - (-4 *2 (-374)))) + (-12 (-5 *3 (-418 *1)) (-4 *1 (-1261 *2)) (-4 *2 (-1066)) + (-4 *2 (-373)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)) - (-4 *3 (-568)))) + (-12 (-5 *2 (-418 *1)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)) + (-4 *3 (-567)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) + (-12 (-5 *3 "last") (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 "rest") (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1191 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-968 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1081))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *1 (-851)) - (-5 *3 - (-2 (|:| |fn| (-326 (-227))) (|:| -3475 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *2 (-1053)))) - ((*1 *2 *3) - (-12 (-4 *1 (-851)) - (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) - (-5 *2 (-1053))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1175 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1067)) - (-5 *1 (-1179 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -4183 *4) (|:| -3085 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) + (-12 (-5 *3 "first") (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *2) + (-12 (-4 *1 (-359)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-655 (-325 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-212))))) (((*1 *2 *1) - (-12 (-4 *2 (-1118)) (-5 *1 (-980 *3 *2)) (-4 *3 (-1118))))) -(((*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1118))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1195)) (-5 *2 (-548)) (-5 *1 (-547 *4)) - (-4 *4 (-1236))))) -(((*1 *1) (-5 *1 (-145))) + (-12 (-4 *2 (-964 *3 *5 *4)) (-5 *1 (-1004 *3 *4 *5 *2)) + (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1190 *3)) (-4 *3 (-378)) (-4 *1 (-338 *3)) + (-4 *3 (-373))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-91 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) + (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1005 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) + (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-1124 *4 *5 *6 *7 *8))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-316)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3659 *1))) + (-4 *1 (-316))))) +(((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873))))) +(((*1 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-1117))))) +(((*1 *1 *1) + (-12 (-4 *1 (-964 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-463)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *3 (-1082 *4 *5 *6)) + (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *1)))) + (-4 *1 (-1088 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1239))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-1264 *3 *2)) + (-4 *2 (-13 (-1261 *3) (-567) (-10 -8 (-15 -3926 ($ $ $)))))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) + (-5 *2 (-1052)) (-5 *1 (-764))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1066)) (-4 *3 (-1117)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2398 (-575)))) (-4 *1 (-441 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -2398 (-904 *3)))) + (-5 *1 (-904 *3)) (-4 *3 (-1117)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-270))))) + (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) + (-4 *7 (-964 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -2398 (-575)))) + (-5 *1 (-965 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-373) + (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) + (-15 -1608 (*7 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-390)) (-5 *1 (-1081))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) - (-4 *2 (-699 *3 *5 *6))))) + (-12 (-5 *3 (-936)) (-5 *4 (-429 *6)) (-4 *6 (-1261 *5)) + (-4 *5 (-1066)) (-5 *2 (-655 *6)) (-5 *1 (-455 *5 *6))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-3 *3 (-655 *1))) + (-4 *1 (-1088 *4 *5 *6 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-994 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-316)) (-4 *6 (-383 *5)) (-4 *4 (-383 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) + (-5 *1 (-1141 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1140 *3 *4 *2 *5)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4)) + (-4 *2 (-243 *3 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-655 (-418 (-967 (-575))))) (-5 *4 (-655 (-1194))) + (-5 *2 (-655 (-655 *5))) (-5 *1 (-390 *5)) + (-4 *5 (-13 (-859) (-373))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-418 (-967 (-575)))) (-5 *2 (-655 *4)) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-859) (-373)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-700 *5)) (-4 *5 (-1066)) (-5 *1 (-1071 *3 *4 *5)) + (-14 *3 (-782)) (-14 *4 (-782))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) + (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5)) + (-4 *3 (-1261 *4)) + (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-655 (-2 (|:| |totdeg| (-782)) (|:| -1699 *3)))) + (-5 *4 (-782)) (-4 *3 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) + (-4 *7 (-861)) (-5 *1 (-460 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-854 (-575))) (-5 *1 (-545)))) + ((*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1117))))) +(((*1 *1 *1) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1117))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-762))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 (-655 *1)) (-4 *1 (-1082 *3 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-1080)))) (((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) - (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) - (-5 *1 (-800))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-977 *3)) (-4 *3 (-557))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270))))) -(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1118))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1279 *3 *2)) - (-4 *2 (-1277 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1081)) (-5 *3 (-1177))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) - (-4 *2 (-699 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1118)) (-5 *2 (-55))))) -(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390))) - ((*1 *1) (-5 *1 (-390)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2086 (-390)))) - (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) - (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) - (-5 *1 (-800)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2086 (-390)))) - (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) - (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) - (-5 *1 (-800))))) -(((*1 *2 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-557))))) -(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-548))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270))))) -(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1118))))) -(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) + (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1052)) (-5 *1 (-764))))) +(((*1 *2 *3) + (-12 (-5 *2 (-575)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445))))) +(((*1 *2 *1) (-12 (-5 *2 (-988)) (-5 *1 (-920 *3)) (-4 *3 (-1117))))) +(((*1 *2) (-12 (-5 *2 (-854 (-575))) (-5 *1 (-545)))) + ((*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1117))))) +(((*1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235)) (-4 *2 (-861)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-383 *3)) (-4 *3 (-1235)))) ((*1 *2 *2) - (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) - (-4 *6 (-1083 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -1916 *1) (|:| |upper| *1))) - (-4 *1 (-994 *4 *5 *3 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1277 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1175 *4) (-656 (-1175 *4)))) (-5 *1 (-1279 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1081))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) - (-4 *2 (-699 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067)))) - ((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067))))) -(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1067)) - (-5 *3 (-576))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) - (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) - (-5 *1 (-800))))) -(((*1 *2 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-557))))) -(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-548))))) -(((*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1277 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1175 *4) (-1175 *4) (-1175 *4))) (-5 *1 (-1279 *4 *5))))) -(((*1 *1) (-5 *1 (-1081)))) -(((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *2 *2) - (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1067)) - (-5 *3 (-576))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) - (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) - (-5 *1 (-800)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) - (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) - (-5 *1 (-800))))) -(((*1 *1) (-4 *1 (-360))) + (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) + (-4 *6 (-1082 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -2736 *1) (|:| |upper| *1))) + (-4 *1 (-993 *4 *5 *3 *6))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316)) + (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-964 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1191 *5))) - (|:| |prim| (-1191 *5)))) - (-5 *1 (-444 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1191 *3)) - (|:| |pol2| (-1191 *3)) (|:| |prim| (-1191 *3)))) - (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-968 *5)) (-5 *4 (-1195)) (-4 *5 (-13 (-374) (-148))) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *6 *4 *5)) + (-5 *1 (-931 *4 *5 *6 *2)) (-4 *4 (-804)) (-4 *5 (-861)) + (-4 *6 (-316))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) + (-5 *2 (-2 (|:| -2458 (-655 *6)) (|:| -2978 (-655 *6))))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-782)) (-5 *1 (-572))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-655 (-288))) (-5 *1 (-288)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1199))))) +(((*1 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *3 (-861)) (-5 *1 (-683 *3))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-861))))) +(((*1 *2 *1) + (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-575)) (-5 *1 (-325 *3)) (-4 *3 (-567)) (-4 *3 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-664 *4)) (-4 *4 (-352 *5 *6 *7)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-5 *2 - (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) - (|:| |prim| (-1191 *5)))) - (-5 *1 (-976 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195))) - (-4 *5 (-13 (-374) (-148))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) + (-5 *1 (-817 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-700 (-418 (-967 (-575))))) (-5 *2 - (-2 (|:| -1755 (-656 (-576))) (|:| |poly| (-656 (-1191 *5))) - (|:| |prim| (-1191 *5)))) - (-5 *1 (-976 *5)))) + (-655 + (-2 (|:| |radval| (-325 (-575))) (|:| |radmult| (-575)) + (|:| |radvect| (-655 (-700 (-325 (-575)))))))) + (-5 *1 (-1048))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194))) (-4 *5 (-567)) + (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-567)) + (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-781 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195))) (-5 *5 (-1195)) - (-4 *6 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| -1755 (-656 (-576))) (|:| |poly| (-656 (-1191 *6))) - (|:| |prim| (-1191 *6)))) - (-5 *1 (-976 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236))))) -(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-734))) - ((*1 *1) (-4 *1 (-738))) - ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) - ((*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1191 *6)) (-1191 *6))) - (-4 *6 (-374)) + (-12 (-5 *3 (-700 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1624 (-655 *6))) + *7 *6)) + (-4 *6 (-373)) (-4 *7 (-667 *6)) (-5 *2 - (-656 - (-2 (|:| |outval| *7) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 *7)))))) - (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *1) (-5 *1 (-1291)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1277 *4)) - (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1175 *4) (-1175 *4))) - (-5 *1 (-1279 *4 *5))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-1081))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *1) (-4 *1 (-985)))) + (-2 (|:| |particular| (-3 (-1285 *6) "failed")) + (|:| -1624 (-655 (-1285 *6))))) + (-5 *1 (-824 *6 *7)) (-5 *4 (-1285 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-339))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-517)) (-5 *3 (-655 (-980))) (-5 *1 (-300))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1066)) (-5 *1 (-50 *2 *3)) (-14 *3 (-655 (-1194))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-655 (-936))) (-4 *2 (-373)) (-5 *1 (-153 *4 *2 *5)) + (-14 *4 (-936)) (-14 *5 (-1010 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-325 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-132)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-392 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1066)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-4 *2 (-567)) (-5 *1 (-634 *2 *4)) + (-4 *4 (-1261 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-719 *2)) (-4 *2 (-1066)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1066)) (-5 *1 (-746 *2 *3)) (-4 *3 (-737)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 *5)) (-5 *3 (-655 (-782))) (-4 *1 (-751 *4 *5)) + (-4 *4 (-1066)) (-4 *5 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *2)) (-4 *4 (-1066)) + (-4 *2 (-861)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-863 *2)) (-4 *2 (-1066)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 (-782))) (-4 *1 (-964 *4 *5 *6)) + (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-782)) (-4 *1 (-964 *4 *5 *2)) (-4 *4 (-1066)) + (-4 *5 (-804)) (-4 *2 (-861)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-782)) (-4 *2 (-964 *4 (-542 *5) *5)) + (-5 *1 (-1143 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-861)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-967 *4)) (-5 *1 (-1229 *4)) + (-4 *4 (-1066))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-373)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) + (-5 *1 (-777 *3 *4)) (-4 *3 (-719 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-373)) (-4 *3 (-1066)) + (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-863 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-373)) (-4 *5 (-1066)) + (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-864 *5 *3)) + (-4 *3 (-863 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235))))) +(((*1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-547))) ((*1 *1) (-4 *1 (-733))) + ((*1 *1) (-4 *1 (-737))) + ((*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) + ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1118)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1118)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1118)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) - (-5 *1 (-114 *4)) (-4 *4 (-1118)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1067)) - (-5 *1 (-726 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-848 *3))))) + (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) + (-5 *1 (-341))))) +(((*1 *1) (-5 *1 (-1290)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *2 (-1082 *4 *5 *6)) (-5 *1 (-787 *4 *5 *6 *2 *3)) + (-4 *3 (-1088 *4 *5 *6 *2))))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1041 *3)) + (-4 *3 (-13 (-859) (-373) (-1039))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) + (-4 *3 (-1261 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-13 (-859) (-373))) + (-4 *3 (-1261 *2))))) +(((*1 *1) (-4 *1 (-984)))) (((*1 *2 *1) (-12 (-5 *2 - (-656 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) + (-655 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) - (-5 *1 (-571)))) + (-5 *1 (-570)))) ((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-5 *2 (-656 *3)))) + (-12 (-4 *1 (-621 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-5 *2 (-655 *3)))) ((*1 *2 *1) (-12 (-5 *2 - (-656 + (-655 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) - (-5 *1 (-815))))) + (-5 *1 (-814))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1118)) - (-4 *6 (-1118)) (-4 *2 (-1118)) (-5 *1 (-692 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-937)) (-4 *3 (-374)) - (-14 *4 (-1011 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *1) (|partial| -4 *1 (-734))) - ((*1 *1 *1) (|partial| -4 *1 (-738))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-13 (-860) (-374))) - (-4 *2 (-1262 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-799)) (-5 *2 (-1053)) - (-5 *3 - (-2 (|:| |fn| (-326 (-227))) - (|:| -1908 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-799)) (-5 *2 (-1053)) - (-5 *3 - (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) - (|:| -1908 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1195)) (-5 *1 (-598 *2)) (-4 *2 (-1056 *3)) - (-4 *2 (-374)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) - (-4 *2 (-13 (-442 *4) (-1020) (-1221))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1110 *2)) (-4 *2 (-13 (-442 *4) (-1020) (-1221))) - (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-975)) (-5 *2 (-1195)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-975))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-4 *2 (-1117)) (-5 *1 (-691 *5 *6 *2))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-240 *3)) + (-4 *3 (-1117)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3926 *3))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-548))) - ((*1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1130)))) - ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) - ((*1 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1130))))) + ((*1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-547))) + ((*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1129)))) + ((*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) + ((*1 *1) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1129))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1191 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) - (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-556)))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) (((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1175 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-738)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1067)) (-5 *2 (-1175 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1080)))) - ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1080))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1067)) - (-5 *1 (-726 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-848 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798))))) + (|partial| -12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066)) + (-4 *2 (-1245 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-901 *4 *5)) (-5 *3 (-901 *4 *6)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-677 *5)) (-5 *1 (-897 *4 *5 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1261 *5)) + (-4 *5 (-13 (-27) (-441 *4))) (-4 *4 (-13 (-567) (-1055 (-575)))) + (-4 *7 (-1261 (-418 *6))) (-5 *1 (-563 *4 *5 *6 *7 *2)) + (-4 *2 (-352 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-782))))) +(((*1 *2 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-572)) (-5 *3 (-575))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-937)) (-4 *5 (-568)) (-5 *2 (-701 *5)) - (-5 *1 (-972 *5 *3)) (-4 *3 (-668 *5))))) + (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) + (-4 *5 (-567)) (-5 *2 (-655 (-655 (-967 *5)))) (-5 *1 (-1203 *5))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2004)) (-5 *2 (-112)) (-5 *1 (-629)))) + (-12 (-5 *3 (|[\|\|]| -2002)) (-5 *2 (-112)) (-5 *1 (-628)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1949)) (-5 *2 (-112)) (-5 *1 (-629)))) + (-12 (-5 *3 (|[\|\|]| -1948)) (-5 *2 (-112)) (-5 *1 (-628)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3941)) (-5 *2 (-112)) (-5 *1 (-629)))) + (-12 (-5 *3 (|[\|\|]| -3939)) (-5 *2 (-112)) (-5 *1 (-628)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2753)) (-5 *2 (-112)) (-5 *1 (-703 *4)) - (-4 *4 (-625 (-874))))) + (-12 (-5 *3 (|[\|\|]| -2752)) (-5 *2 (-112)) (-5 *1 (-702 *4)) + (-4 *4 (-624 (-873))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-874))) (-5 *2 (-112)) - (-5 *1 (-703 *4)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-624 (-873))) (-5 *2 (-112)) + (-5 *1 (-702 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-888)))) + (-12 (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)) (-5 *1 (-887)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-888)))) + (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)) (-5 *1 (-887)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-603))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-489))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1185))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1184))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-637))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1113))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-988))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-987))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1054))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1053))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-320))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1296))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1133))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1132))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1296))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1295))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-1200)))) + (-12 (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)) (-5 *1 (-1199)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1200)))) + (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)) (-5 *1 (-1199)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1200)))) + (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1199)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1200))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1191 *4)) - (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270))))) + (-12 (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)) (-5 *1 (-1199))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-1198)) (-5 *1 (-1197))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) + (-5 *2 (-1052)) (-5 *1 (-767))))) (((*1 *1 *2) - (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1236)) (-4 *1 (-244 *3 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) - (-4 *3 (-1262 *2))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1067)) (-5 *1 (-726 *4 *2)) - (-4 *2 (-660 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1067))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390))))) -(((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) + (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1235)) (-4 *1 (-243 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-112)) + (-5 *1 (-367 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2)) + (-4 *2 (-1276 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3)) + (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2)) + (-4 *2 (-1276 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148))) + (-5 *1 (-1170 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) + ((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568)) - (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1083 *2 *3 *4)))) + (|partial| -12 (-4 *1 (-1228 *2 *3 *4 *5)) (-4 *2 (-567)) + (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-1082 *2 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-4 *4 (-1236)) (-5 *2 (-112)) - (-5 *1 (-1175 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) - (-4 *3 (-965 *7 *5 *6)) - (-5 *2 - (-2 (|:| -1359 (-783)) (|:| -1755 *3) (|:| |radicand| (-656 *3)))) - (-5 *1 (-969 *5 *6 *7 *3 *8)) (-5 *4 (-783)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *3)) (-15 -1595 (*3 $)) (-15 -1608 (*3 $)))))))) + (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) + ((*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1300 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) + (-5 *1 (-675 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-675 *3 *4)) (-5 *1 (-1305 *3 *4)) + (-4 *3 (-861)) (-4 *4 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1066)) (-4 *4 (-1261 *3)) (-5 *1 (-165 *3 *4 *2)) + (-4 *2 (-1261 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) + (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-325 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))) + (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3)))))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) - ((*1 *1 *1 *1) (-5 *1 (-1138)))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1067)) (-5 *1 (-607 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1246 *3)) (-4 *3 (-1067)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1277 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) - (-5 *1 (-431 *4)))) - ((*1 *1 *1) (-5 *1 (-942))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) - ((*1 *1 *1) (-5 *1 (-943))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) - (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2419 (-419 (-576))) (|:| -2436 (-419 (-576))))) - (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) - (-4 *3 (-1262 *2))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1067)) (-5 *1 (-726 *2 *4)) - (-4 *4 (-660 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1067))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1118)) (-4 *3 (-862)) - (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1236)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) - ((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -2500 (-783)) (|:| |period| (-783)))) - (-5 *1 (-1175 *4)) (-4 *4 (-1236)) (-5 *3 (-783))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-937)) (-5 *1 (-798))))) + ((*1 *1 *1 *1) (-5 *1 (-1137)))) +(((*1 *2 *2) + (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-861)) (-5 *1 (-1205 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1111 (-227))) + (-5 *5 (-112)) (-5 *2 (-1287)) (-5 *1 (-263))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) - (-4 *8 (-965 *7 *5 *6)) - (-5 *2 (-2 (|:| -1359 (-783)) (|:| -1755 *3) (|:| |radicand| *3))) - (-5 *1 (-969 *5 *6 *7 *8 *3)) (-5 *4 (-783)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-541)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541))))) + (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1194)) (-4 *1 (-27)) + (-5 *2 (-655 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *2 (-655 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-325 (-227))) (-5 *4 (-655 (-1194))) + (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066))))) +(((*1 *2 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) + (-4 *4 (-359))))) (((*1 *2 *3) - (-12 (-5 *3 (-943)) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) - (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-943)) (-5 *4 (-419 (-576))) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) - (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) - (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) - (-5 *1 (-154)) (-5 *3 (-656 (-959 (-227)))))) - ((*1 *2 *3) + (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) + (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))))) + ((*1 *2 *3 *4) (-12 (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) - (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) - (-5 *1 (-154)) (-5 *3 (-656 (-656 (-959 (-227))))))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1110 (-855 *3))) (-4 *3 (-13 (-1221) (-975) (-29 *5))) - (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1110 (-855 *3))) (-5 *5 (-1177)) - (-4 *3 (-13 (-1221) (-975) (-29 *6))) - (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *6 *3)))) + (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) + (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))) + (-5 *4 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1110 (-855 (-326 *5)))) - (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) + (-12 (-5 *2 - (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) + (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) + (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))) (-5 *4 (-418 (-575))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-419 (-968 *6))) (-5 *4 (-1110 (-855 (-326 *6)))) - (-5 *5 (-1177)) - (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) + (-12 (-5 *5 (-418 (-575))) + (-5 *2 (-655 (-2 (|:| -2418 *5) (|:| -2435 *5)))) (-5 *1 (-1037 *3)) + (-4 *3 (-1261 (-575))) (-5 *4 (-2 (|:| -2418 *5) (|:| -2435 *5))))) + ((*1 *2 *3) + (-12 (-5 *2 - (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) + (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) + (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575)))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1110 (-855 (-419 (-968 *5))))) (-5 *3 (-419 (-968 *5))) - (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1110 (-855 (-419 (-968 *6))))) (-5 *5 (-1177)) - (-5 *3 (-419 (-968 *6))) - (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) + (-12 (-5 *2 - (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) + (-655 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575)))))) + (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575)))) + (-5 *4 (-2 (|:| -2418 (-418 (-575))) (|:| -2435 (-418 (-575))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) - (-4 *3 (-13 (-1221) (-975) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) - (-5 *5 (-390)) (-5 *6 (-1081)) (-5 *2 (-1053)) (-5 *1 (-577)))) - ((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1053)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) + (-12 (-5 *4 (-418 (-575))) + (-5 *2 (-655 (-2 (|:| -2418 *4) (|:| -2435 *4)))) (-5 *1 (-1038 *3)) + (-4 *3 (-1261 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) + (-12 (-5 *5 (-418 (-575))) + (-5 *2 (-655 (-2 (|:| -2418 *5) (|:| -2435 *5)))) (-5 *1 (-1038 *3)) + (-4 *3 (-1261 *5)) (-5 *4 (-2 (|:| -2418 *5) (|:| -2435 *5)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2)) + (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1117)) (-4 *3 (-861)) + (-4 *2 (-1235)))) + ((*1 *2 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) + ((*1 *2 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1235)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1235)))) + ((*1 *2 *1) (-12 (-5 *2 (-683 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) + (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) + ((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) + (-4 *4 (-359))))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) + (-4 *3 (-383 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-514 *4 *5 *6 *3)) (-4 *6 (-383 *4)) (-4 *3 (-383 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-700 *5)) (-4 *5 (-1009 *4)) (-4 *4 (-567)) + (-5 *2 (-2 (|:| |num| (-700 *4)) (|:| |den| *4))) + (-5 *1 (-704 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) + (-4 *6 (-1261 *5)) + (-5 *2 (-2 (|:| -2571 *7) (|:| |rh| (-655 (-418 *6))))) + (-5 *1 (-818 *5 *6 *7 *3)) (-5 *4 (-655 (-418 *6))) + (-4 *7 (-667 *6)) (-4 *3 (-667 (-418 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1254 *4 *5 *3)) + (-4 *3 (-1261 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-303 (-844 *3))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-844 *3)) (-5 *1 (-647 *5 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) - (-5 *2 (-1053)) (-5 *1 (-577)))) + (-12 (-5 *4 (-303 (-844 (-967 *5)))) (-4 *5 (-463)) + (-5 *2 (-844 (-418 (-967 *5)))) (-5 *1 (-648 *5)) + (-5 *3 (-418 (-967 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) - (-5 *2 (-1053)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) - (-5 *5 (-390)) (-5 *6 (-1081)) (-5 *2 (-1053)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1110 (-855 (-390)))) - (-5 *5 (-1177)) (-5 *2 (-1053)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1110 (-855 (-390)))) - (-5 *5 (-1195)) (-5 *2 (-1053)) (-5 *1 (-577)))) + (-12 (-5 *4 (-303 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5))) + (-4 *5 (-463)) (-5 *2 (-844 *3)) (-5 *1 (-648 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-655 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1117)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-655 *4))) (-4 *4 (-1117)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1117)) + (-5 *1 (-114 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4)) - (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-655 *4))) + (-5 *1 (-114 *4)) (-4 *4 (-1117)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-862)) - (-4 *3 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-659 *3)) (-4 *3 (-1066)) + (-5 *1 (-725 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1195)) (-5 *1 (-968 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1067)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-4 *2 (-862)) - (-5 *1 (-1144 *3 *2 *4)) (-4 *4 (-965 *3 (-543 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) - (-5 *1 (-1179 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1192 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1067)))) - ((*1 *1 *1 *2) - (-3766 - (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1067)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1067)) - (-12 (|has| *3 (-15 -1607 ((-656 *2) *3))) - (|has| *3 (-15 -1956 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-3766 - (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1067)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1067)) - (-12 (|has| *3 (-15 -1607 ((-656 *2) *3))) - (|has| *3 (-15 -1956 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1271 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3766 - (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1067)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1067)) - (-12 (|has| *3 (-15 -1607 ((-656 *2) *3))) - (|has| *3 (-15 -1956 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1079 *4 *3)) - (-4 *3 (-1262 *4))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1138)) (-5 *2 (-1291)) (-5 *1 (-843))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462))))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-847 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1285 (-575))) (-5 *3 (-575)) (-5 *1 (-1127)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1285 (-575))) (-5 *3 (-655 (-575))) (-5 *4 (-575)) + (-5 *1 (-1127))))) +(((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-158)))) + ((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4232 *3) (|:| |coef2| (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066))))) +(((*1 *2 *3) + (-12 (-5 *3 (-575)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1066)) + (-5 *1 (-330 *4 *5 *2 *6)) (-4 *6 (-964 *2 *4 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1067)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-659 *5)) (-4 *5 (-1066)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-863 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)))) + (-12 (-5 *2 (-700 *3)) (-4 *1 (-428 *3)) (-4 *3 (-174)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1067)) - (-5 *1 (-865 *2 *3)) (-4 *3 (-864 *2))))) -(((*1 *1) (-5 *1 (-629)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1236))))) -(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1177)) (-5 *1 (-798))))) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1066)) + (-5 *1 (-864 *2 *3)) (-4 *3 (-863 *2))))) +(((*1 *1) (-5 *1 (-628)))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-568)) (-4 *8 (-965 *7 *5 *6)) - (-5 *2 (-2 (|:| -1359 (-783)) (|:| -1755 *9) (|:| |radicand| *9))) - (-5 *1 (-969 *5 *6 *7 *8 *9)) (-5 *4 (-783)) - (-4 *9 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))) -(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) + (-12 (-5 *4 (-1 (-1174 *3))) (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) + (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066))))) (((*1 *2 *3) - (-12 (-5 *3 (-943)) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) - (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-943)) (-5 *4 (-419 (-576))) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) - (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) - (-5 *1 (-154))))) + (|partial| -12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-487 *4 *5 *6 *7)) (|:| -2010 (-655 *7)))) + (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-762))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1193 *4 *5 *6)) - (-4 *4 (-1067)) (-14 *5 (-1195)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1278 *4 *5 *6)) - (-4 *4 (-1067)) (-14 *5 (-1195)) (-14 *6 *4)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1262 (-171 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-937)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) + (-12 (-5 *3 (-936)) (-4 *4 (-378)) (-4 *4 (-373)) (-5 *2 (-1190 *1)) + (-4 *1 (-338 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1190 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3)) (-5 *1 (-425 *3 *2 *4 *5)) - (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1056 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3)) - (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) - (-14 *6 (-1286 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-937)) (-4 *5 (-1067)) - (-4 *2 (-13 (-416) (-1056 *5) (-374) (-1221) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-656 (-624 (-507)))) - (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-937)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1262 *4)) - (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1262 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) - ((*1 *1 *1) (-4 *1 (-1078)))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1291)) (-5 *1 (-843))))) + (-12 (-4 *1 (-380 *3 *2)) (-4 *3 (-174)) (-4 *3 (-373)) + (-4 *2 (-1261 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-1190 *4)) + (-5 *1 (-539 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1135)) (-5 *1 (-1132))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-300))) + ((*1 *1) (-5 *1 (-873))) + ((*1 *1) + (-12 (-4 *2 (-463)) (-4 *3 (-861)) (-4 *4 (-804)) + (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1102))) + ((*1 *1) + (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) + (-4 *3 (-13 (-1117) (-34))))) + ((*1 *1) (-5 *1 (-1197))) ((*1 *1) (-5 *1 (-1198)))) +(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873))))) +(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1216)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1216))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) + (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1052)) (-5 *1 (-764))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462))))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-373)) (-4 *3 (-1066)) + (-5 *1 (-1178 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-655 (-492 *4 *5))) (-5 *3 (-655 (-875 *4))) + (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-482 *4 *5 *6)) + (-4 *6 (-463))))) +(((*1 *1 *1 *1) (-5 *1 (-163))) + ((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-163))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-171 (-325 *4))) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-171 *3)) (-5 *1 (-1224 *4 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *4)))))) (((*1 *2 *1) - (-12 (-5 *2 (-874)) (-5 *1 (-1175 *3)) (-4 *3 (-1118)) - (-4 *3 (-1236))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-937)) (-5 *1 (-798))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-568)) - (-4 *7 (-965 *3 *5 *6)) - (-5 *2 (-2 (|:| -1359 (-783)) (|:| -1755 *8) (|:| |radicand| *8))) - (-5 *1 (-969 *5 *6 *3 *7 *8)) (-5 *4 (-783)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-541))))) -(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) - (-4 *2 (-1236))))) -(((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) + (-12 (-5 *2 (-873)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 (-782)) + (-14 *4 (-782)) (-4 *5 (-174))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-782)) (-4 *5 (-174)))) ((*1 *1 *1) - (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1078)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118)) - (-4 *6 (-1118)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) -(((*1 *1 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) - (-4 *4 (-174))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1175 *3)) (-4 *3 (-1118)) - (-4 *3 (-1236))))) -(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1177)) (-5 *1 (-798))))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) + (-4 *4 (-174)))) + ((*1 *1 *1) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) + (-4 *4 (-383 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1066)) (-4 *1 (-698 *3 *2 *4)) (-4 *2 (-383 *3)) + (-4 *4 (-383 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1159 *2 *3)) (-14 *2 (-782)) (-4 *3 (-1066))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-936)) (-5 *1 (-1049 *2)) + (-4 *2 (-13 (-1117) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1067)) (-4 *3 (-1118)) - (-5 *2 (-2 (|:| |val| *1) (|:| -1359 (-576)))) (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -1359 (-905 *3)))) - (-5 *1 (-905 *3)) (-4 *3 (-1118)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) - (-4 *7 (-965 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -1359 (-576)))) - (-5 *1 (-966 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) - (-15 -1608 (*7 $)))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-937)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1191 *1)) - (-4 *1 (-339 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) - (-4 *2 (-1262 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4)) - (-5 *1 (-540 *4))))) + (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) + (-4 *5 (-243 (-2871 *3) (-782))) + (-14 *6 + (-1 (-112) (-2 (|:| -4317 *2) (|:| -2398 *5)) + (-2 (|:| -4317 *2) (|:| -2398 *5)))) + (-4 *2 (-861)) (-5 *1 (-472 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-964 *4 *5 (-875 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-597 *3)) (-5 *1 (-437 *5 *3)) + (-4 *3 (-13 (-1220) (-29 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-840))))) +(((*1 *2 *1) + (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) (((*1 *1) - (-12 (-4 *1 (-416)) (-3216 (|has| *1 (-6 -4452))) - (-3216 (|has| *1 (-6 -4444))))) - ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-862)))) - ((*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-862)))) - ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-862)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)) - (-4 *2 (-1118))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576)))))) + (-12 (-4 *1 (-415)) (-3215 (|has| *1 (-6 -4451))) + (-3215 (|has| *1 (-6 -4443))))) + ((*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-861)))) + ((*1 *2 *1) (-12 (-4 *1 (-841 *2)) (-4 *2 (-861)))) + ((*1 *1) (-4 *1 (-855))) ((*1 *1 *1 *1) (-4 *1 (-861)))) (((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) + (-12 (-5 *2 (-655 (-967 *3))) (-4 *3 (-463)) (-5 *1 (-370 *3 *4)) + (-14 *4 (-655 (-1194))))) + ((*1 *2 *2) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) + (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-5 *1 (-461 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) + (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-5 *1 (-461 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1078)))) + (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) + (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-655 (-791 *3 (-875 *4)))) (-4 *3 (-463)) + (-14 *4 (-655 (-1194))) (-5 *1 (-639 *3 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *2))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1118))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-841))))) + (-12 (-4 *1 (-935)) (-5 *2 (-2 (|:| -1754 (-655 *1)) (|:| -3659 *1))) + (-5 *3 (-655 *1))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1027 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 (-418 (-967 *6)))) + (-5 *3 (-418 (-967 *6))) + (-4 *6 (-13 (-567) (-1055 (-575)) (-148))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-581 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-862)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236)) - (-5 *2 (-112))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) - (-4 *2 (-1277 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-4 *5 (-1262 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) - (-4 *2 (-1277 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-5 *1 (-554 *4 *2)) (-4 *2 (-1277 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1171 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-968 (-171 *4))) (-4 *4 (-174)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-968 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-968 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-968 (-171 *5)))) (-5 *4 (-937)) - (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-1067)) (-4 *4 (-1118)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1359 (-576)))) - (-4 *1 (-442 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1067)) (-4 *4 (-1118)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1359 (-576)))) - (-4 *1 (-442 *4)))) + (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) + (-5 *2 (-655 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1130)) (-4 *3 (-1118)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1359 (-576)))) - (-4 *1 (-442 *3)))) + (-12 (-5 *2 (-655 (-2 (|:| |k| (-905 *3)) (|:| |c| *4)))) + (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) + (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -1359 (-783)))) - (-5 *1 (-905 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -1359 (-783)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) - (-4 *7 (-965 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -1359 (-576)))) - (-5 *1 (-966 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) - (-15 -1608 (*7 $)))))))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) - ((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-419 (-576))))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) + (-12 (-5 *2 (-655 (-683 *3))) (-5 *1 (-905 *3)) (-4 *3 (-861))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1119 (-782))) (-5 *6 (-782)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) - (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1078)) (-5 *2 (-576))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1118)) (-4 *6 (-1118)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1118))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-384 *3)) - (-4 *3 (-1236))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1277 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1277 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1171 *3))))) + (-2 (|:| |contp| (-575)) + (|:| -3378 (-655 (-2 (|:| |irr| *3) (|:| -2856 (-575))))))) + (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) - (-5 *1 (-797 *5))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1130)) (-4 *3 (-1118)) (-5 *2 (-656 *1)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) - (-4 *3 (-1118)))) + (-12 (-4 *4 (-373)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) + (-5 *2 (-782)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5)))) + (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-782)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) - (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *3)) - (-5 *1 (-966 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) - (-15 -1608 (*7 $)))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1286 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) - (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-937)) (-4 *4 (-374)) (-5 *2 (-1286 *1)) - (-4 *1 (-339 *4)))) - ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1286 *1)) (-4 *1 (-339 *3)))) - ((*1 *2) - (-12 (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *1)) - (-4 *1 (-421 *3 *4)))) + (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) + (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-699 *4 *5 *6 *3)) + (-4 *3 (-698 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) - (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) - (-4 *6 (-13 (-421 *4 *5) (-1056 *4))))) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567)) + (-5 *2 (-782))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1194)) + (-4 *5 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-2 (|:| -1630 *3) (|:| |coeff| *3))) (-5 *1 (-568 *5 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *5)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1199)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-517)) (-5 *3 (-655 (-1199))) (-5 *1 (-1199))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-1252 (-575)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) + (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))) + ((*1 *2 *3) + (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-174)) + (-5 *1 (-699 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) - (-5 *2 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) - (-4 *6 (-421 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-429 *3)))) + (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1066)) (-4 *2 (-698 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1261 *4)) (-4 *5 (-383 *4)) + (-4 *6 (-383 *4))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-655 *3)) (-5 *5 (-936)) (-4 *3 (-1261 *4)) + (-4 *4 (-316)) (-5 *1 (-471 *4 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *3) + (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) + (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1286 (-1286 *4))) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-112)) - (-5 *1 (-270))))) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1240)) (-5 *1 (-149 *2 *4 *3)) - (-4 *3 (-1262 (-419 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) - ((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) - ((*1 *1 *1) (-4 *1 (-1078)))) + (-12 (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-655 (-1258 *5 *4))) + (-5 *1 (-1131 *4 *5)) (-5 *3 (-1258 *5 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-171 (-227)))) + (-5 *2 (-1052)) (-5 *1 (-765))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-177))) (-5 *1 (-1102))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1261 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-567))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1194)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-967 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-4 *1 (-29 *3)) (-4 *3 (-567)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-567))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-575)) (|has| *1 (-6 -4461)) (-4 *1 (-1273 *3)) + (-4 *3 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288))))) +(((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-833))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057))))) +(((*1 *1 *1) (-5 *1 (-873)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118)) - (-4 *6 (-1118)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236)) - (-4 *2 (-862)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4462)) - (-4 *1 (-384 *3)) (-4 *3 (-1236))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1277 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1277 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1118)) (-5 *2 (-656 *1)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) - (-4 *3 (-1118)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) - (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *3)) - (-5 *1 (-966 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) - (-15 -1608 (*7 $)))))))) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1235)) (-4 *2 (-1066)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873)))) + ((*1 *1 *1) (-5 *1 (-873))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-958 (-227))) (-5 *2 (-227)) (-5 *1 (-1231)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1066))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) + (-4 *6 (-804)) (-5 *2 (-655 *3)) (-5 *1 (-939 *4 *5 *6 *3)) + (-4 *3 (-964 *4 *6 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-540 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *6)) (-4 *5 (-1240)) (-4 *6 (-1262 *5)) - (-5 *2 (-2 (|:| -1359 (-783)) (|:| -1755 *3) (|:| |radicand| *6))) - (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1262 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067)) - (-5 *1 (-1179 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) - (-14 *4 (-1195)) (-14 *5 *3)))) -(((*1 *1 *1) (-4 *1 (-1078)))) + (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567)) + (-5 *2 (-1190 *3))))) +(((*1 *2) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-1287))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1118)) (-4 *4 (-1118)) - (-4 *6 (-1118)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841)) (-5 *3 (-1177))))) -(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-378 *3))))) + (-12 (-5 *4 (-575)) (-4 *5 (-359)) (-5 *2 (-429 (-1190 (-1190 *5)))) + (-5 *1 (-1233 *5)) (-5 *3 (-1190 (-1190 *5)))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-1117)))) + ((*1 *1 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1117))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1277 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1277 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-656 *1)) - (-4 *1 (-393 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-738)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-965 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-937)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-937)) - (-5 *1 (-540 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-414 *3)) (-4 *3 (-415)))) + ((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-414 *3)) (-4 *3 (-415)))) + ((*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415)))) + ((*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) + ((*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-1174 (-575)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1194)) + (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-418 (-575))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) - (-4 *3 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) - (-4 *6 (-13 (-27) (-1221) (-442 *5))) - (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *5 *6)))) + (-12 (-5 *4 (-303 *3)) (-5 *5 (-418 (-575))) + (-4 *3 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-324 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-575))) (-5 *4 (-303 *6)) + (-4 *6 (-13 (-27) (-1220) (-441 *5))) + (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *3)))) + (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) + (-4 *3 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576))) - (-4 *7 (-13 (-27) (-1221) (-442 *6))) - (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-575))) + (-4 *7 (-13 (-27) (-1220) (-441 *6))) + (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576))) - (-4 *3 (-13 (-27) (-1221) (-442 *7))) - (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) + (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-575))) + (-4 *3 (-13 (-27) (-1220) (-441 *7))) + (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) - (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576))) - (-4 *8 (-13 (-27) (-1221) (-442 *7))) - (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-418 (-575)))) (-5 *4 (-303 *8)) + (-5 *5 (-1252 (-418 (-575)))) (-5 *6 (-418 (-575))) + (-4 *8 (-13 (-27) (-1220) (-441 *7))) + (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576)))) - (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8))) - (-4 *8 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *8 *3)))) + (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-418 (-575)))) + (-5 *7 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *8))) + (-4 *8 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) + (-5 *1 (-470 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-4 *3 (-1067)) (-5 *1 (-607 *3)))) + (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3)))) + (-4 *3 (-1066)) (-5 *1 (-606 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-608 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-607 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-4 *3 (-1067)) (-4 *1 (-1246 *3)))) + (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3)))) + (-4 *3 (-1066)) (-4 *1 (-1245 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-783)) - (-5 *3 (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) - (-4 *4 (-1067)) (-4 *1 (-1267 *4)))) + (-12 (-5 *2 (-782)) + (-5 *3 (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| *4)))) + (-4 *4 (-1066)) (-4 *1 (-1266 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-4 *1 (-1277 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-4 *1 (-1276 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1175 (-2 (|:| |k| (-783)) (|:| |c| *3)))) - (-4 *3 (-1067)) (-4 *1 (-1277 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) + (-12 (-5 *2 (-1174 (-2 (|:| |k| (-782)) (|:| |c| *3)))) + (-4 *3 (-1066)) (-4 *1 (-1276 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1156)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-655 (-252 *4 *5))) (-5 *2 (-252 *4 *5)) + (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-642 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1066)) (-5 *1 (-723 *3 *4)) + (-4 *4 (-1261 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-429 *3)) (-4 *3 (-567))))) +(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-969))))) +(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-284 *4 *3)) + (-4 *3 (-13 (-441 *4) (-1019)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *2) + (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-428 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-269))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *1 *1) (-4 *1 (-1156)))) +(((*1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) + ((*1 *1 *2) (-12 (-5 *1 (-1252 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-38 (-418 (-575)))) + (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5)) + (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) + (-4 *6 (-804)) (-5 *2 (-112)) (-5 *1 (-939 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-13 (-316) (-148))) + (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-112)) + (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) - (-14 *4 *2)))) + (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1118)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) - (-4 *3 (-442 *4)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) - ((*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) - (-4 *3 (-809 *4)))) - ((*1 *2) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1009 *3 *4)) - (-4 *3 (-1010 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1014 *3 *4)) - (-4 *3 (-1015 *4)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1029 *3)) (-4 *3 (-1030)))) - ((*1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-783)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1077 *3)) (-4 *3 (-1078))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1118)) (-4 *5 (-1118)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-970))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1169))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) - (-4 *3 (-862)) (-5 *2 (-783))))) + (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2)) + (-4 *3 (-567))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *1 *1) (-4 *1 (-1156)))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067)) - (-5 *1 (-1179 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) - (-14 *4 (-1195)) (-14 *5 *3)))) -(((*1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236))))) -(((*1 *1 *2) - (-12 (-5 *2 (-701 *5)) (-4 *5 (-1067)) (-5 *1 (-1072 *3 *4 *5)) - (-14 *3 (-783)) (-14 *4 (-783))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1118)) (-4 *5 (-1118)) - (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1169))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-783))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) + (|partial| -12 (-5 *3 (-782)) (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1157 *3 *2)) (-4 *3 (-13 (-1117) (-34))) + (-4 *2 (-13 (-1117) (-34)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -1321 (-656 (-874))) (|:| -2158 (-656 (-874))) - (|:| |presup| (-656 (-874))) (|:| -4434 (-656 (-874))) - (|:| |args| (-656 (-874))))) - (-5 *1 (-1195))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1138)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) + (-2 (|:| -4242 (-655 (-873))) (|:| -3605 (-655 (-873))) + (|:| |presup| (-655 (-873))) (|:| -2750 (-655 (-873))) + (|:| |args| (-655 (-873))))) + (-5 *1 (-1194))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) - (-5 *1 (-269 *2)) (-4 *2 (-1236)))) + (|partial| -12 (-5 *3 (-655 (-269))) (-5 *4 (-1194)) + (-5 *1 (-268 *2)) (-4 *2 (-1235)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-52)) - (-5 *1 (-270))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1112 (-227))) - (-5 *2 (-1288)) (-5 *1 (-264))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067)) - (-5 *1 (-1179 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) - (-14 *4 (-1195)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1118)) - (-4 *3 (-1118))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-703 (-1153))) (-5 *1 (-1169))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) - (-4 *3 (-1067))))) + (|partial| -12 (-5 *3 (-655 (-269))) (-5 *4 (-1194)) (-5 *2 (-52)) + (-5 *1 (-269))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4462 "*"))) (-4 *5 (-383 *2)) (-4 *6 (-383 *2)) + (-4 *2 (-1066)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1261 *2)) + (-4 *4 (-698 *2 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-782)) (-4 *4 (-373)) (-4 *5 (-1261 *4)) (-5 *2 (-1290)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1261 (-418 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389)))) + ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1 *4 (-575))) (-4 *4 (-1066)) + (-5 *1 (-1178 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-447))))) (((*1 *2 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)) - (-4 *2 (-464)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1262 (-576))) (-5 *2 (-656 (-576))) - (-5 *1 (-498 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *3 (-464))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1067)) - (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) - ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1233 *3)) (-4 *3 (-1236)))) + (-12 (-5 *2 (-173)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1118 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-700 (-967 *4))) (-5 *1 (-1045 *4)) + (-4 *4 (-1066))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1066)) + (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) + (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) + ((*1 *1 *1) (-4 *1 (-556))) + ((*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-830 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) + ((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1232 *3)) (-4 *3 (-1235)))) ((*1 *2 *1) - (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1020)) - (-4 *2 (-1067))))) + (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1019)) + (-4 *2 (-1066))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-959 (-227))) (-5 *4 (-886)) (-5 *2 (-1291)) - (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1067)) (-4 *1 (-998 *3)))) + (-12 (-5 *3 (-958 (-227))) (-5 *4 (-885)) (-5 *2 (-1290)) + (-5 *1 (-479)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1066)) (-4 *1 (-997 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-959 *3)))) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-958 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-959 *3)) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) + (-12 (-5 *2 (-958 *3)) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) + (-12 (-5 *2 (-782)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) + (-12 (-5 *2 (-655 *3)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-959 *3)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) + (-12 (-5 *2 (-958 *3)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)) (-5 *3 (-227))))) + (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)) (-5 *3 (-227))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-112)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-112)) + (-5 *1 (-1224 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-575))) (-4 *3 (-1066)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-99 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) + (-4 *4 (-803)) (-4 *3 (-174))))) +(((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-763))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1174 *3))) (-5 *1 (-1174 *3)) (-4 *3 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-783)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1112 (-227))) - (-5 *5 (-112)) (-5 *2 (-1288)) (-5 *1 (-264))))) -(((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) + (|partial| -12 (-5 *2 (-655 (-1190 *5))) (-5 *3 (-1190 *5)) + (-4 *5 (-167 *4)) (-4 *4 (-556)) (-5 *1 (-150 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-655 *3)) (-4 *3 (-1261 *5)) + (-4 *5 (-1261 *4)) (-4 *4 (-359)) (-5 *1 (-368 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-655 (-1190 (-575)))) (-5 *3 (-1190 (-575))) + (-5 *1 (-583)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-655 (-1190 *1))) (-5 *3 (-1190 *1)) + (-4 *1 (-924))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-373) (-1220) (-1019)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) + (-5 *2 + (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) + (|:| |success| (-112)))) + (-5 *1 (-800)) (-5 *5 (-575))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) + (-5 *2 (-2 (|:| -1630 (-418 *6)) (|:| |coeff| (-418 *6)))) + (-5 *1 (-585 *5 *6)) (-5 *3 (-418 *6))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) + (-5 *2 (-1052)) (-5 *1 (-765))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-655 *3)) (-4 *3 (-1126 *5 *6 *7 *8)) + (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-602 *5 *6 *7 *8 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)) + (-4 *2 (-463)))) + ((*1 *1 *1) + (-12 (-4 *1 (-352 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-1261 *2)) + (-4 *4 (-1261 (-418 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-463)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *2 (-861)) (-4 *3 (-463)))) + ((*1 *1 *1) + (-12 (-4 *1 (-964 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-463)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-316)) (-4 *3 (-567)) (-5 *1 (-1181 *3 *2)) + (-4 *2 (-1261 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3) + (-12 (-4 *2 (-373)) (-4 *2 (-859)) (-5 *1 (-960 *2 *3)) + (-4 *3 (-1261 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-145))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1288))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) + (-5 *2 + (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) + (|:| |success| (-112)))) + (-5 *1 (-800)) (-5 *5 (-575))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1117)) (-4 *5 (-1117)) + (-5 *2 (-1 *5)) (-5 *1 (-694 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) + (-5 *1 (-178 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *4 (-655 (-1194))) + (-5 *2 (-700 (-325 (-227)))) (-5 *1 (-207)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1117)) (-4 *6 (-913 *5)) (-5 *2 (-700 *6)) + (-5 *1 (-703 *5 *6 *3 *4)) (-4 *3 (-383 *6)) + (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460))))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885))) + (-5 *4 (-655 (-936))) (-5 *5 (-655 (-269))) (-5 *1 (-479)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885))) + (-5 *4 (-655 (-936))) (-5 *1 (-479)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479)))) + ((*1 *1 *1) (-5 *1 (-479)))) (((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-655 (-173))))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) + (-5 *2 (-1052)) (-5 *1 (-765))))) +(((*1 *2 *1) + (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) + (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-438 *3 *2)) (-4 *3 (-13 (-174) (-38 (-418 (-575))))) + (-4 *2 (-13 (-861) (-21)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-283))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-993 *4 *5 *3 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) + (-4 *3 (-861)) (-4 *6 (-1082 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1118)) - (-5 *1 (-690 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1118)) (-5 *1 (-694 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *1 *1) (|partial| -4 *1 (-1170)))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2778 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) - (-5 *2 (-783)) (-5 *1 (-961 *5 *6)) (-4 *6 (-1262 *5))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1286 *5)) (-5 *3 (-783)) (-5 *4 (-1138)) (-4 *5 (-360)) - (-5 *1 (-540 *5))))) + (-12 (-5 *2 (-655 (-655 (-655 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-655 *5)) (-4 *5 (-861)) (-5 *1 (-1205 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-655 (-171 *4))) (-5 *1 (-156 *3 *4)) + (-4 *3 (-1261 (-171 (-575)))) (-4 *4 (-13 (-373) (-859))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-655 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-655 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-782)) (-5 *2 (-1 (-1174 (-967 *4)) (-1174 (-967 *4)))) + (-5 *1 (-1293 *4)) (-4 *4 (-373))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1220)))) + ((*1 *2 *1) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-1213))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-770))))) +(((*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-546 *2)) (-4 *2 (-1235)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-547))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-959 (-227)) (-227) (-227))) - (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) -(((*1 *2 *1) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1236)) (-5 *2 (-783))))) + (-12 (-5 *2 (-700 *7)) (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5)) + (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) + (-4 *6 (-804)) (-5 *1 (-939 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1117))))) +(((*1 *1 *2) + (-12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-13 (-373) (-148))) + (-5 *1 (-410 *3 *4))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3)) (-5 *6 (-1190 *3)) + (-4 *3 (-13 (-441 *7) (-27) (-1220))) + (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-571 *7 *3 *8)) (-4 *8 (-1117)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3)) + (-5 *6 (-418 (-1190 *3))) (-4 *3 (-13 (-441 *7) (-27) (-1220))) + (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-571 *7 *3 *8)) (-4 *8 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-608)) (-5 *1 (-289))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1235)) + (-4 *5 (-383 *4)) (-4 *2 (-383 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *6 *7 *2)) (-4 *6 (-1066)) + (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-782)) (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-556))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-929 *3)) (-4 *3 (-316))))) +(((*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-383 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1) + (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-687)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1036)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1083)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1113))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) + ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-112)) + (-5 *2 (-1052)) (-5 *1 (-756))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-772)))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-575))) (-5 *2 (-575)) (-5 *1 (-497 *4)) + (-4 *4 (-1261 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) + (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861))))) +(((*1 *2) + (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1117))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-567)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112)) + (-5 *1 (-856 *4 *5)) (-14 *4 (-782))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) + (-4 *5 (-1261 *4)) + (-5 *2 (-655 (-2 (|:| |deg| (-782)) (|:| -2571 *5)))) + (-5 *1 (-820 *4 *5 *3 *6)) (-4 *3 (-667 *5)) + (-4 *6 (-667 (-418 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-109)))) ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1118)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) - (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1118))))) + (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1117)))) + ((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-449 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-494)))) + ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-980)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1092 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1132)))) + ((*1 *1 *1) (-5 *1 (-1194)))) (((*1 *2 *1) - (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1067))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2778 *3) (|:| |coef1| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) - (-5 *1 (-961 *4 *5)) (-4 *5 (-1262 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-224 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-261 *3)))) - ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-575)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575))))) (((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-575)))) ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1118))))) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1067))) (-5 *2 (-1177)) - (-5 *1 (-838 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1067))) - (-5 *2 (-1177)) (-5 *1 (-838 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1067))) - (-5 *2 (-1291)) (-5 *1 (-838 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-840) (-1067))) (-5 *2 (-1291)) (-5 *1 (-838 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1177)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1177)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1291)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1291))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2778 *3) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067))))) + (|partial| -12 (-5 *2 (-575)) (-5 *1 (-580 *3)) (-4 *3 (-1055 *2))))) (((*1 *2 *3) - (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-961 *2 *3)) - (-4 *3 (-1262 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4)) - (-5 *1 (-540 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1235))) (-5 *3 (-1235)) (-5 *1 (-693))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1045 *5 *6 *7 *3))) (-5 *1 (-1045 *5 *6 *7 *3)) - (-4 *3 (-1083 *5 *6 *7)))) + (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) + (-5 *2 (-429 *3)) (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-132)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-371 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1089 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1164 *5 *6 *7 *3))) (-5 *1 (-1164 *5 *6 *7 *3)) - (-4 *3 (-1083 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) - (-5 *2 - (-656 - (-2 (|:| |outval| *4) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 *4)))))) - (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-396 *3)) (-4 *3 (-1117)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-660 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117))))) (((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-961 *4 *3)) - (-4 *3 (-1262 *4))))) + (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) + (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1286 (-656 (-2 (|:| -4183 *4) (|:| -4318 (-1138)))))) - (-4 *4 (-360)) (-5 *2 (-1291)) (-5 *1 (-540 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) - (-5 *1 (-342)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1195)) (-5 *4 (-1110 (-968 (-576)))) (-5 *2 (-340)) - (-5 *1 (-342)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1067)) - (-4 *3 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-688)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1037)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1084)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1114))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) - (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-961 *4 *3)) - (-4 *3 (-1262 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576))))) -(((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1067)) - (-4 *3 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) - ((*1 *2 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1118)))) - ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))) - ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-450 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) - ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1118)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-981)))) - ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1093 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1133)))) - ((*1 *1 *1) (-5 *1 (-1195)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *8 (-1083 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-656 *8)) - (|:| |towers| (-656 (-1045 *5 *6 *7 *8))))) - (-5 *1 (-1045 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *8 (-1083 *5 *6 *7)) + (-12 (-5 *2 - (-2 (|:| |val| (-656 *8)) - (|:| |towers| (-656 (-1164 *5 *6 *7 *8))))) - (-5 *1 (-1164 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-174)) (-4 *2 (-1262 *4)) (-5 *1 (-179 *4 *2 *3)) - (-4 *3 (-736 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-968 *5)))) (-5 *4 (-1195)) - (-5 *2 (-968 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-968 *4)))) (-5 *2 (-968 *4)) - (-5 *1 (-302 *4)) (-4 *4 (-464)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) - (-5 *2 (-968 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1195)) - (-5 *2 (-968 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) - (-4 *5 (-13 (-374) (-860))))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-968 (-419 (-576)))) - (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1195)) - (-5 *2 (-968 (-419 (-576)))) (-5 *1 (-791 *5)) - (-4 *5 (-13 (-374) (-860)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-968 *5)) (-4 *5 (-1067)) (-5 *2 (-253 *4 *5)) - (-5 *1 (-960 *4 *5)) (-14 *4 (-656 (-1195)))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1175 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) + (-655 + (-655 + (-3 (|:| -1777 (-1194)) + (|:| -2370 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575)))))))))) + (-5 *1 (-1198))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-112)) + (-5 *2 (-1052)) (-5 *1 (-764))))) +(((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-1182 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1287)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1287))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) + (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-656 *11)) - (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4271 *11)))))) - (-5 *6 (-783)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4271 *11)))) - (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1083 *7 *8 *9)) - (-4 *11 (-1089 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-862)) (-5 *1 (-1087 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-656 *11)) - (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4271 *11)))))) - (-5 *6 (-783)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4271 *11)))) - (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1083 *7 *8 *9)) - (-4 *11 (-1127 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-862)) (-5 *1 (-1163 *7 *8 *9 *10 *11))))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) - (-5 *2 (-968 *5)) (-5 *1 (-960 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) - (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) - (-4 *3 (-1262 *6)) (-4 *7 (-965 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244)))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-373)) (-5 *1 (-670 *4 *2)) + (-4 *2 (-667 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1165 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1236)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *6 *2 *7)) (-4 *6 (-1067)) - (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1195)) (-5 *1 (-687 *3)) (-4 *3 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1164 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-861)) (-4 *5 (-924)) (-4 *6 (-804)) + (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-429 (-1190 *8))) + (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-1190 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5))) + (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-625 (-904 (-575)))) + (-4 *5 (-898 (-575))) + (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-578 *5 *3)) (-4 *3 (-640)) + (-4 *3 (-13 (-27) (-1220) (-441 *5)))))) +(((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1310 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) + (-12 (-5 *3 (-1309 *4 *2)) (-4 *1 (-384 *4 *2)) (-4 *4 (-861)) (-4 *2 (-174)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067)))) + (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-831 *4)) (-4 *1 (-1303 *4 *2)) (-4 *4 (-862)) - (-4 *2 (-1067)))) + (-12 (-5 *3 (-830 *4)) (-4 *1 (-1302 *4 *2)) (-4 *4 (-861)) + (-4 *2 (-1066)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1067)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) - (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) - (-5 *2 - (-2 (|:| -2058 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -1502 (-419 *6)) - (|:| |special| (-419 *6)))) - (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-911 *3 *4)) - (-4 *3 (-1262 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -2419 *3) (|:| -2436 *3))) (-5 *1 (-911 *3 *5)) - (-4 *3 (-1262 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1163 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1262 *9)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-317)) - (-4 *10 (-965 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-656 (-1191 *10))) - (|:| |dterm| - (-656 (-656 (-2 (|:| -2746 (-783)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) - (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1191 *10)) (-5 *4 (-656 *6)) - (-5 *5 (-656 *10))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-247)))) + (-12 (-4 *2 (-1066)) (-5 *1 (-1308 *2 *3)) (-4 *3 (-857))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-52)) (-5 *1 (-904 *4)) + (-4 *4 (-1117))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-556))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-246)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-656 (-1177))) (-5 *3 (-576)) (-5 *4 (-1177)) - (-5 *1 (-247)))) - ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) + (-12 (-5 *2 (-655 (-1176))) (-5 *3 (-575)) (-5 *4 (-1176)) + (-5 *1 (-246)))) + ((*1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) ((*1 *2 *1) - (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067))))) -(((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) - (-5 *2 (-968 *5)) (-5 *1 (-960 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558)))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3)) - (-4 *3 (-1236))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1236)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *6 *7 *2)) (-4 *6 (-1067)) - (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1286 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-837))))) + (-12 (-4 *1 (-1263 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066))))) +(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-700 *1)) (-5 *4 (-1285 *1)) (-4 *1 (-650 *5)) + (-4 *5 (-1066)) + (-5 *2 (-2 (|:| -2412 (-700 *5)) (|:| |vec| (-1285 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-700 *1)) (-4 *1 (-650 *4)) (-4 *4 (-1066)) + (-5 *2 (-700 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-650 *4)) (-4 *4 (-1066)) + (-5 *2 (-700 *4))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)) + (-4 *2 (-1117))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-936)) (-4 *3 (-373)) + (-14 *4 (-1010 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) + ((*1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) + ((*1 *1 *1) (|partial| -4 *1 (-733))) + ((*1 *1 *1) (|partial| -4 *1 (-737))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-13 (-859) (-373))) + (-4 *2 (-1261 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-1149 *4 *2)) + (-4 *2 (-13 (-615 (-575) *4) (-10 -7 (-6 -4460) (-6 -4461)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-861)) (-4 *3 (-1235)) (-5 *1 (-1149 *3 *2)) + (-4 *2 (-13 (-615 (-575) *3) (-10 -7 (-6 -4460) (-6 -4461))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) + (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) + (-5 *2 + (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) + (|:| |success| (-112)))) + (-5 *1 (-800)) (-5 *5 (-575))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-105))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-891 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) + (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) + (-5 *1 (-265 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 *5)) (-5 *4 (-1110 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-891 *5)) (-5 *4 (-1109 (-389))) + (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) + (-5 *1 (-265 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) - (-5 *2 (-1151 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1118))))) + (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) + (-5 *2 (-1150 (-227))) (-5 *1 (-265 *3)) + (-4 *3 (-13 (-625 (-547)) (-1117))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1118))))) + (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *3)) + (-4 *3 (-13 (-625 (-547)) (-1117))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-894 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) + (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) + (-5 *1 (-265 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 *5)) (-5 *4 (-1110 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) - (-5 *1 (-266 *5))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-862)) (-4 *3 (-1083 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1087 *7 *8 *9 *3 *4)) (-4 *4 (-1089 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1083 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) + (-12 (-5 *3 (-894 *5)) (-5 *4 (-1109 (-389))) + (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) + (-5 *1 (-265 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 *10)) + (-5 *1 (-635 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1088 *5 *6 *7 *8)) + (-4 *10 (-1126 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-862)) (-4 *3 (-1083 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1163 *7 *8 *9 *3 *4)) (-4 *4 (-1127 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1083 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1163 *6 *7 *8 *3 *4)) (-4 *4 (-1127 *6 *7 *8 *3)))) + (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) + (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6))) + (-5 *1 (-639 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) + (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) + (-14 *6 (-655 (-1194))) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5)) - (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) - (-14 *7 (-937))))) + (-655 (-1163 *5 (-542 (-875 *6)) (-875 *6) (-791 *5 (-875 *6))))) + (-5 *1 (-639 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) + (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6))) + (-5 *1 (-1063 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 *1)) + (-4 *1 (-1088 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) + (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) + (-4 *1 (-1228 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-517)) (-5 *2 (-702 (-785))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1176)) (-5 *2 (-785)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1121)) (-5 *1 (-980))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) (((*1 *2 *3) - (-12 (-5 *3 (-968 *5)) (-4 *5 (-1067)) (-5 *2 (-493 *4 *5)) - (-5 *1 (-960 *4 *5)) (-14 *4 (-656 (-1195)))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1241)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-112)) (-5 *1 (-309))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-103 *3)) (-4 *3 (-1117))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-655 (-575))) (-5 *3 (-700 (-575))) (-5 *1 (-1127))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) - (-14 *6 *4))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1117)) (-5 *2 (-655 *1)) + (-4 *1 (-441 *3)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-1272 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) - (-14 *6 *4)))) -(((*1 *2 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1010 *4)) (-4 *2 (-699 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) - (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)) (-4 *2 (-317)))) - ((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *4 (-1067)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-317))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1195))) (-5 *1 (-837))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1195)) - (-5 *2 - (-2 (|:| |zeros| (-1175 (-227))) (|:| |ones| (-1175 (-227))) - (|:| |singularities| (-1175 (-227))))) - (-5 *1 (-105))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1083 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1083 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1163 *6 *7 *8 *3 *4)) (-4 *4 (-1127 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *4)))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) - (-5 *2 (-253 *4 *5)) (-5 *1 (-960 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) + (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) + (-4 *3 (-1117)))) ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783)))))) + (|partial| -12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) + (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *3)) + (-5 *1 (-965 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-373) + (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) + (-15 -1608 (*7 $)))))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-766))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1271 *4 *5 *6)) - (|:| |%expon| (-329 *4 *5 *6)) - (|:| |%expTerms| - (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) - (|:| |%type| (-1177)))) - (-5 *1 (-1272 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) - (-14 *5 (-1195)) (-14 *6 *4)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) +(((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) (((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1083 *6 *7 *8)) + (-12 (-4 *1 (-811)) + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-1052))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) + (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *2) + (-12 (-4 *3 (-625 (-904 *3))) (-4 *3 (-898 *3)) (-4 *3 (-463)) + (-5 *1 (-1226 *3 *2)) (-4 *2 (-625 (-904 *3))) (-4 *2 (-898 *3)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174))))) +(((*1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316))))) +(((*1 *2 *3) (-12 (-5 *3 (-967 (-227))) (-5 *2 (-227)) (-5 *1 (-314))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-768))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-861)) (-5 *3 (-655 *6)) (-5 *5 (-655 *3)) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) + (-2 (|:| |f1| *3) (|:| |f2| (-655 *5)) (|:| |f3| *5) + (|:| |f4| (-655 *5)))) + (-5 *1 (-1205 *6)) (-5 *4 (-655 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-873))))) +(((*1 *1 *1) + (-12 (-4 *2 (-316)) (-4 *3 (-1009 *2)) (-4 *4 (-1261 *3)) + (-5 *1 (-424 *2 *3 *4 *5)) (-4 *5 (-13 (-420 *3 *4) (-1055 *3)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) + (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) + (-4 *3 (-1117))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-325 *3)) (-4 *3 (-567)) (-4 *3 (-1117))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) + (-4 *5 (-1261 *4)) (-5 *2 (-655 (-2 (|:| -1751 *5) (|:| -2676 *5)))) + (-5 *1 (-818 *4 *5 *3 *6)) (-4 *3 (-667 *5)) + (-4 *6 (-667 (-418 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) + (-4 *4 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -1751 *4) (|:| -2676 *4)))) + (-5 *1 (-818 *5 *4 *3 *6)) (-4 *3 (-667 *4)) + (-4 *6 (-667 (-418 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) + (-4 *5 (-1261 *4)) (-5 *2 (-655 (-2 (|:| -1751 *5) (|:| -2676 *5)))) + (-5 *1 (-818 *4 *5 *6 *3)) (-4 *6 (-667 *5)) + (-4 *3 (-667 (-418 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) + (-4 *4 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -1751 *4) (|:| -2676 *4)))) + (-5 *1 (-818 *5 *4 *6 *3)) (-4 *6 (-667 *4)) + (-4 *3 (-667 (-418 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))))) + (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *5)) + (-4 *5 (-1261 (-418 *4)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-1239)) + (-4 *6 (-1261 (-418 *5))) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))))) - (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1177)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *4 (-1083 *6 *7 *8)) (-5 *2 (-1291)) - (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1089 *6 *7 *8 *4))))) + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-352 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-960 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242)))))) + (-12 (-14 *4 (-655 (-1194))) (-4 *5 (-463)) + (-5 *2 + (-2 (|:| |glbase| (-655 (-252 *4 *5))) (|:| |glval| (-655 (-575))))) + (-5 *1 (-642 *4 *5)) (-5 *3 (-655 (-252 *4 *5)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-782)) + (-4 *3 (-13 (-316) (-10 -8 (-15 -2330 ((-429 $) $))))) + (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4))))) +(((*1 *2) + (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) + (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) + (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) + (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) + (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-1117)) + (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) + (-4 *5 (-1261 *4)) + (-5 *2 (-2 (|:| -1630 (-418 *5)) (|:| |coeff| (-418 *5)))) + (-5 *1 (-579 *4 *5)) (-5 *3 (-418 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-655 *5) *6)) + (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) + (-5 *2 (-655 (-2 (|:| |poly| *6) (|:| -2571 *3)))) + (-5 *1 (-820 *5 *6 *3 *7)) (-4 *3 (-667 *6)) + (-4 *7 (-667 (-418 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-655 *5) *6)) + (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) + (-4 *6 (-1261 *5)) + (-5 *2 (-655 (-2 (|:| |poly| *6) (|:| -2571 (-665 *6 (-418 *6)))))) + (-5 *1 (-823 *5 *6)) (-5 *3 (-665 *6 (-418 *6)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-901 *5 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) + (-4 *3 (-167 *6)) (-4 (-967 *6) (-898 *5)) + (-4 *6 (-13 (-898 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-901 *4 *1)) (-5 *3 (-904 *4)) (-4 *1 (-898 *4)) + (-4 *4 (-1117)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-901 *5 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) + (-4 *6 (-13 (-1117) (-1055 *3))) (-4 *3 (-898 *5)) + (-5 *1 (-946 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117)) + (-4 *3 (-13 (-441 *6) (-625 *4) (-898 *5) (-1055 (-623 $)))) + (-5 *4 (-904 *5)) (-4 *6 (-13 (-567) (-898 *5))) + (-5 *1 (-947 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-901 (-575) *3)) (-5 *4 (-904 (-575))) (-4 *3 (-556)) + (-5 *1 (-948 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-901 *5 *6)) (-5 *3 (-623 *6)) (-4 *5 (-1117)) + (-4 *6 (-13 (-1117) (-1055 (-623 $)) (-625 *4) (-898 *5))) + (-5 *4 (-904 *5)) (-5 *1 (-949 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-897 *5 *6 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) + (-4 *6 (-898 *5)) (-4 *3 (-677 *6)) (-5 *1 (-950 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-901 *6 *3) *8 (-904 *6) (-901 *6 *3))) + (-4 *8 (-861)) (-5 *2 (-901 *6 *3)) (-5 *4 (-904 *6)) + (-4 *6 (-1117)) (-4 *3 (-13 (-964 *9 *7 *8) (-625 *4))) + (-4 *7 (-804)) (-4 *9 (-13 (-1066) (-898 *6))) + (-5 *1 (-951 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117)) + (-4 *3 (-13 (-964 *8 *6 *7) (-625 *4))) (-5 *4 (-904 *5)) + (-4 *7 (-898 *5)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *8 (-13 (-1066) (-898 *5))) (-5 *1 (-951 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117)) (-4 *3 (-1009 *6)) + (-4 *6 (-13 (-567) (-898 *5) (-625 *4))) (-5 *4 (-904 *5)) + (-5 *1 (-954 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-901 *5 (-1194))) (-5 *3 (-1194)) (-5 *4 (-904 *5)) + (-4 *5 (-1117)) (-5 *1 (-955 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-655 (-904 *7))) (-5 *5 (-1 *9 (-655 *9))) + (-5 *6 (-1 (-901 *7 *9) *9 (-904 *7) (-901 *7 *9))) (-4 *7 (-1117)) + (-4 *9 (-13 (-1066) (-625 (-904 *7)) (-1055 *8))) + (-5 *2 (-901 *7 *9)) (-5 *3 (-655 *9)) (-4 *8 (-1066)) + (-5 *1 (-956 *7 *8 *9))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-782)) (-5 *1 (-228)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-171 (-227))) (-5 *3 (-782)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1156)))) +(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4462)) (-4 *4 (-374)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4462)) (-4 *4 (-568)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-4 *7 (-1010 *4)) (-4 *8 (-384 *7)) - (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) - (-4 *10 (-699 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-656 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1285 (-782))) (-5 *1 (-686 *3)) (-4 *3 (-1117))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1163 *5 *6 *7 *8 *9))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) - ((*1 *1 *1) (-5 *1 (-390))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1067)) (-4 *3 (-862)) - (-4 *4 (-275 *3)) (-4 *5 (-805))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-1299 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1259 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1195)) - (-4 *5 (-374)) (-5 *1 (-939 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1191 *5)) - (-5 *1 (-939 *4 *5)) (-14 *4 (-1195)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) - (-5 *2 (-419 (-968 *6))) (-5 *1 (-1068 *5 *6)) (-14 *5 (-1195))))) -(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) + (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-1190 *4)) + (-5 *1 (-539 *4))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1287)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1286)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262)))) + (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1287)) (-5 *1 (-262)))) + (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1286)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) + (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1288)) (-5 *1 (-262)))) + (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1287)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1288)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1287)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1288)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1287)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1288)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1287)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) + (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) + (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) - (-5 *2 (-1288)) (-5 *1 (-262)))) + (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) + (-5 *2 (-1287)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-1195)) (-5 *5 (-656 (-270))) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1056 (-576)))) - (-5 *2 (-1287)) (-5 *1 (-263 *6 *7)))) + (-12 (-5 *3 (-303 *7)) (-5 *4 (-1194)) (-5 *5 (-655 (-269))) + (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-861) (-1055 (-575)))) + (-5 *2 (-1286)) (-5 *1 (-262 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) + (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1286)) + (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1287)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1118))))) + (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1286)) (-5 *1 (-265 *3)) + (-4 *3 (-13 (-625 (-547)) (-1117))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1287)) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-889 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) + (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1286)) + (-5 *1 (-265 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 *5)) (-5 *4 (-1110 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1287)) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-889 *5)) (-5 *4 (-1109 (-389))) + (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1286)) + (-5 *1 (-265 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-891 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) + (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) + (-5 *1 (-265 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 *5)) (-5 *4 (-1110 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-891 *5)) (-5 *4 (-1109 (-389))) + (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) + (-5 *1 (-265 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) + (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) + (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1118))))) + (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1287)) (-5 *1 (-265 *3)) + (-4 *3 (-13 (-625 (-547)) (-1117))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-894 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) + (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) + (-5 *1 (-265 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 *5)) (-5 *4 (-1110 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-894 *5)) (-5 *4 (-1109 (-389))) + (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) + (-5 *1 (-265 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287)) (-5 *1 (-267)))) + (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1286)) (-5 *1 (-266)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1287)) - (-5 *1 (-267)))) + (-12 (-5 *3 (-655 (-227))) (-5 *4 (-655 (-269))) (-5 *2 (-1286)) + (-5 *1 (-266)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *2 (-1287)) (-5 *1 (-267)))) + (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *2 (-1286)) (-5 *1 (-266)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *4 (-656 (-270))) - (-5 *2 (-1287)) (-5 *1 (-267)))) + (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *4 (-655 (-269))) + (-5 *2 (-1286)) (-5 *1 (-266)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267)))) + (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1287)) (-5 *1 (-266)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) - (-5 *1 (-267))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) - (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1163 *5 *6 *7 *8 *9))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *2 (-1083 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) - (-4 *3 (-1089 *4 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-537))))) + (-12 (-5 *3 (-655 (-227))) (-5 *4 (-655 (-269))) (-5 *2 (-1287)) + (-5 *1 (-266))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) + (-5 *3 (-655 (-575)))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) + (-5 *2 (-1052)) (-5 *1 (-768))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-655 *3)) (|:| |image| (-655 *3)))) + (-5 *1 (-920 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3)) + (-4 *3 (-13 (-441 *6) (-27) (-1220))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-577 *6 *3 *7)) (-4 *7 (-1117))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1118)) - (-4 *5 (-1236)) (-5 *1 (-903 *4 *5)))) + (-12 (-5 *2 (-904 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1117)) + (-4 *5 (-1235)) (-5 *1 (-902 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-905 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1118)) - (-4 *5 (-1236)) (-5 *1 (-903 *4 *5)))) + (-12 (-5 *2 (-904 *4)) (-5 *3 (-655 (-1 (-112) *5))) (-4 *4 (-1117)) + (-4 *5 (-1235)) (-5 *1 (-902 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-905 *5)) (-5 *3 (-656 (-1195))) - (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1118)) (-4 *6 (-1236)) - (-5 *1 (-903 *5 *6)))) + (-12 (-5 *2 (-904 *5)) (-5 *3 (-655 (-1194))) + (-5 *4 (-1 (-112) (-655 *6))) (-4 *5 (-1117)) (-4 *6 (-1235)) + (-5 *1 (-902 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1236)) (-4 *4 (-1118)) - (-5 *1 (-953 *4 *2 *5)) (-4 *2 (-442 *4)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1235)) (-4 *4 (-1117)) + (-5 *1 (-952 *4 *2 *5)) (-4 *2 (-441 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1236)) (-4 *4 (-1118)) - (-5 *1 (-953 *4 *2 *5)) (-4 *2 (-442 *4)))) + (-12 (-5 *3 (-655 (-1 (-112) *5))) (-4 *5 (-1235)) (-4 *4 (-1117)) + (-5 *1 (-952 *4 *2 *5)) (-4 *2 (-441 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1195)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1236)) - (-5 *2 (-326 (-576))) (-5 *1 (-954 *5)))) + (-12 (-5 *3 (-1194)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1235)) + (-5 *2 (-325 (-575))) (-5 *1 (-953 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1195)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1236)) - (-5 *2 (-326 (-576))) (-5 *1 (-954 *5)))) + (-12 (-5 *3 (-1194)) (-5 *4 (-655 (-1 (-112) *5))) (-4 *5 (-1235)) + (-5 *2 (-325 (-575))) (-5 *1 (-953 *5)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1 (-112) (-656 *6))) - (-4 *6 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-4 *4 (-1118)) - (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-1094 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-1299 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1118)))) - ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1118))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1065))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-1 (-112) (-655 *6))) + (-4 *6 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))) (-4 *4 (-1117)) + (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) + (-5 *1 (-1093 *4 *5 *6))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-655 + (-2 + (|:| -4169 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -3179 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1174 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3437 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-570)))) + ((*1 *2 *1) + (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235)) + (-5 *2 (-655 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-1174 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-325 (-227))) (-5 *4 (-655 (-1194))) + (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *4 (-655 (-1194))) + (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) + (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-994 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-194)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-309)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-314))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-936)) (-5 *1 (-710)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-700 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-373)) (-5 *1 (-995 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1176)) (-5 *1 (-797))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) + (-12 (-5 *2 (-171 (-389))) (-5 *1 (-796 *3)) (-4 *3 (-625 (-389))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-937)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) - (-4 *3 (-626 (-390))))) + (-12 (-5 *4 (-936)) (-5 *2 (-171 (-389))) (-5 *1 (-796 *3)) + (-4 *3 (-625 (-389))))) ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-625 (-389))) + (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-937)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-936)) (-4 *5 (-174)) + (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-968 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-967 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-625 (-389))) + (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-968 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-5 *3 (-967 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-174)) + (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 (-389))) + (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) + (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 (-389))) + (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) + (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-968 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-418 (-967 (-171 *4)))) (-4 *4 (-567)) + (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 (-171 *5)))) (-5 *4 (-937)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-5 *3 (-418 (-967 (-171 *5)))) (-5 *4 (-936)) (-4 *5 (-567)) + (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) + (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) + (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-325 (-171 *4))) (-4 *4 (-567)) (-4 *4 (-861)) + (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5))))) -(((*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1195))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1162)))) + (-12 (-5 *3 (-325 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-567)) + (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) + (-5 *1 (-796 *5))))) +(((*1 *1 *2) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1235)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1194))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-112)) (-5 *5 (-700 (-227))) + (-5 *2 (-1052)) (-5 *1 (-766))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-782)) (-4 *5 (-359)) (-4 *6 (-1261 *5)) + (-5 *2 + (-655 + (-2 (|:| -1624 (-700 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-700 *6))))) + (-5 *1 (-509 *5 *6 *7)) + (-5 *3 + (-2 (|:| -1624 (-700 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-700 *6)))) + (-4 *7 (-1261 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-655 (-782))) (-5 *3 (-112)) (-5 *1 (-1182 *4 *5)) + (-14 *4 (-936)) (-4 *5 (-1066))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389)))) + ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389))))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) + ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) + ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942))))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-623 *4)) (-5 *6 (-1194)) + (-4 *4 (-13 (-441 *7) (-27) (-1220))) + (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) + (-5 *1 (-577 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117))))) +(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 *1)) (-4 *1 (-311)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-115)) (-5 *3 (-655 *5)) (-5 *4 (-782)) (-4 *5 (-1117)) + (-5 *1 (-623 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-227)) (-5 *5 (-575)) (-5 *2 (-1230 *3)) + (-5 *1 (-801 *3)) (-4 *3 (-991)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-112)) + (-5 *1 (-1230 *2)) (-4 *2 (-991))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-503)) (-5 *4 (-970)) (-5 *2 (-703 (-545))) - (-5 *1 (-545)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-970)) (-4 *3 (-1118)) (-5 *2 (-703 *1)) - (-4 *1 (-779 *3))))) + (-12 (-5 *4 (-655 *5)) (-4 *5 (-1261 *3)) (-4 *3 (-316)) + (-5 *2 (-112)) (-5 *1 (-466 *3 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-576)) (-5 *1 (-958))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536))))) -(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) + (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) + (-4 *4 (-359))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-1299 *4 *5 *6 *7))) - (-5 *1 (-1299 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568)) - (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-656 (-1299 *6 *7 *8 *9))) - (-5 *1 (-1299 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065))))) -(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1118)) - (-5 *1 (-624 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576))))) + (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-428 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1117)) (-5 *1 (-979 *3 *2)) (-4 *3 (-1117))))) (((*1 *2 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-878 *4 *5 *6 *7)) - (-4 *4 (-1067)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 *3)) - (-14 *7 *3))) + (-12 (-5 *2 (-429 (-1190 *1))) (-5 *1 (-325 *4)) (-5 *3 (-1190 *1)) + (-4 *4 (-463)) (-4 *4 (-567)) (-4 *4 (-1117)))) ((*1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1067)) (-4 *5 (-862)) (-4 *6 (-805)) - (-14 *8 (-656 *5)) (-5 *2 (-1291)) - (-5 *1 (-1298 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-965 *4 *6 *5)) - (-14 *9 (-656 *3)) (-14 *10 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-783))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1177)) (|:| -1778 (-1177)))) - (-5 *1 (-834))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1))))) (((*1 *2 *3) - (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 (-656 *4)))) - (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 *4)))))) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-567))))) (((*1 *2 *3) - (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174)))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) + (-5 *2 (-389)) (-5 *1 (-275)))) ((*1 *2 *3) - (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-1094 *3 *4 *5))) (-4 *3 (-1118)) - (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) - (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) - (-5 *1 (-1095 *3 *4 *5))))) + (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *2 (-389)) (-5 *1 (-314))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220)))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-783)) - (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) - (-5 *1 (-252 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1296))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065)) - (-5 *3 (-576))))) -(((*1 *2 *3) - (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-112)) - (-5 *1 (-684 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-834))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1052)) (-5 *3 (-1194)) (-5 *1 (-194))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 (-1093 *3 *4 *5))) (-4 *3 (-1117)) + (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) + (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))) + (-5 *1 (-1094 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) + (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *3 (-1082 *4 *5 *6)) + (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *1)))) + (-4 *1 (-1088 *4 *5 *6 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-4 *4 (-1117)) + (-5 *1 (-584 *4 *2)) (-4 *2 (-441 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-782)) (|:| -1699 *4))) (-5 *5 (-782)) + (-4 *4 (-964 *6 *7 *8)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-460 *6 *7 *8 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-655 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-316)) + (-5 *2 (-782)) (-5 *1 (-466 *5 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1117)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-396 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1207 (-656 *4))) (-4 *4 (-862)) - (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529))))) -(((*1 *1 *1) (-5 *1 (-874))) + (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4)) + (-4 *4 (-38 (-418 (-575)))) (-4 *4 (-1066))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-463)) (-4 *4 (-567)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3168 *4))) + (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-782) *2)) (-5 *4 (-782)) (-4 *2 (-1117)) + (-5 *1 (-689 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-782) *3)) (-4 *3 (-1117)) (-5 *1 (-693 *3))))) +(((*1 *1 *1) (-5 *1 (-873))) ((*1 *2 *1) - (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1176)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1195))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1296))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1122)) (-5 *3 (-786)) (-5 *1 (-52))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1120 *4)) (-4 *4 (-1118)) (-5 *2 (-1 *4)) - (-5 *1 (-1035 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1112 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1065))))) -(((*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3))))) + (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))) + ((*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1194))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1117))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1121)) (-5 *3 (-785)) (-5 *1 (-52))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *2) (-12 (-5 *2 (-655 (-325 (-227)))) (-5 *1 (-275))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1118)) - (-5 *1 (-585 *3 *4)))) + (-12 (-5 *2 (-655 (-623 *4))) (-4 *4 (-441 *3)) (-4 *3 (-1117)) + (-5 *1 (-584 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834))))) + (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) - (-5 *1 (-1206 *4)) (-4 *4 (-862))))) -(((*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1118))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-337 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-528 *3 *4)) - (-14 *4 (-576))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236))))) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4)))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-373)) (-5 *2 (-655 (-1174 *4))) (-5 *1 (-294 *4 *5)) + (-5 *3 (-1174 *4)) (-4 *5 (-1276 *4))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) - (-4 *4 (-1262 *3)) - (-5 *2 - (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1262 *3)) - (-5 *2 - (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) - (-5 *2 - (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-1003 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) - (-5 *2 - (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-1295 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1286 *4))) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-656 (-1286 *3)))))) -(((*1 *1 *2) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1118)))) + (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1))))) +(((*1 *2) (-12 (-5 *2 (-844 (-575))) (-5 *1 (-545)))) + ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1117))))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *1) (-5 *1 (-479)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-993 *4 *5 *6 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) + (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-427 *3 *2)) (-4 *3 (-428 *2)))) + ((*1 *2) (-12 (-4 *1 (-428 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-1222 *3)))) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-1221 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-1222 *2))) (-5 *1 (-1222 *2)) (-4 *2 (-1118))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) - (-4 *4 (-862)) (-5 *1 (-1206 *4))))) + (-12 (-5 *3 (-655 (-1221 *2))) (-5 *1 (-1221 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568)))) + (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2)) + (-4 *3 (-567)))) ((*1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) - (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) - ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1221)))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) - (-14 *4 (-576))))) + (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) + (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) + ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-4 *1 (-1220)))) +(((*1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-373))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-120 *2)) (-4 *2 (-1235))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) - (-4 *4 (-1118)))) + (-12 (-5 *2 (-1194)) (-5 *3 (-655 *1)) (-4 *1 (-441 *4)) + (-4 *4 (-1117)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))) ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-247)))) + (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-655 (-1194))) (-4 *2 (-174)) + (-4 *3 (-243 (-2871 *4) (-782))) + (-14 *6 + (-1 (-112) (-2 (|:| -4317 *5) (|:| -2398 *3)) + (-2 (|:| -4317 *5) (|:| -2398 *3)))) + (-5 *1 (-472 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) + (-4 *7 (-964 *2 *3 (-875 *4)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1117)) (-5 *1 (-979 *2 *3)) (-4 *3 (-1117))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1285 *4)) (-4 *4 (-428 *3)) (-4 *3 (-316)) + (-4 *3 (-567)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-576)) (-5 *1 (-247))))) -(((*1 *2) - (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) - (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)))) + (-12 (-5 *3 (-936)) (-4 *4 (-373)) (-5 *2 (-1285 *1)) + (-4 *1 (-338 *4)))) + ((*1 *2) (-12 (-4 *3 (-373)) (-5 *2 (-1285 *1)) (-4 *1 (-338 *3)))) ((*1 *2) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -3986 ((-430 $) $))))) - (-4 *4 (-1262 *3)) - (-5 *2 - (-2 (|:| -1898 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1262 (-576))) - (-5 *2 - (-2 (|:| -1898 (-701 (-576))) (|:| |basisDen| (-576)) - (|:| |basisInv| (-701 (-576))))) - (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) - ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) - (-5 *2 - (-2 (|:| -1898 (-701 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-701 *4)))) - (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) - (-5 *2 - (-2 (|:| -1898 (-701 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-701 *4)))) - (-5 *1 (-1295 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1102 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1102 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-965 *7 *5 *6)) - (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-317))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834))))) -(((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1191 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-862)) - (-5 *1 (-1206 *4))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-905 *6))) - (-5 *5 (-1 (-902 *6 *8) *8 (-905 *6) (-902 *6 *8))) (-4 *6 (-1118)) - (-4 *8 (-13 (-1067) (-626 (-905 *6)) (-1056 *7))) - (-5 *2 (-902 *6 *8)) (-4 *7 (-1067)) (-5 *1 (-957 *6 *7 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 *2)))) + (-12 (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-1285 *1)) + (-4 *1 (-420 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) + (-5 *2 (-1285 *6)) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *6 (-13 (-420 *4 *5) (-1055 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) + (-5 *2 (-1285 *6)) (-5 *1 (-425 *3 *4 *5 *6 *7)) + (-4 *6 (-420 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1285 *1)) (-4 *1 (-428 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1285 (-1285 *4))) (-5 *1 (-539 *4)) + (-4 *4 (-359))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-655 (-655 *4)))) (-5 *2 (-655 (-655 *4))) + (-5 *1 (-1205 *4)) (-4 *4 (-861))))) (((*1 *2 *2) - (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3)))) + (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) + (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-635 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *2 (-1126 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1168))))) +(((*1 *1 *1 *1) (-4 *1 (-556)))) +(((*1 *2 *2) + (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1230 *6)) - (-5 *2 (-1 (-1175 *4) (-1175 *4))) (-5 *1 (-1294 *6)) - (-5 *5 (-1175 *4))))) + (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1286)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1286)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1287)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1287))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1118)) - (-4 *6 (-1236)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6)))) + (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *6)) (-4 *5 (-1117)) + (-4 *6 (-1235)) (-5 *2 (-1 *6 *5)) (-5 *1 (-652 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1118)) - (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) + (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-4 *5 (-1117)) + (-4 *2 (-1235)) (-5 *1 (-652 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1118)) - (-4 *5 (-1236)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) + (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 *5)) (-4 *6 (-1117)) + (-4 *5 (-1235)) (-5 *2 (-1 *5 *6)) (-5 *1 (-652 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1118)) - (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) + (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-4 *5 (-1117)) + (-4 *2 (-1235)) (-5 *1 (-652 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) - (-4 *5 (-1118)) (-4 *6 (-1236)) (-5 *1 (-653 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-655 *5)) (-5 *4 (-655 *6)) + (-4 *5 (-1117)) (-4 *6 (-1235)) (-5 *1 (-652 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1118)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-145)) (-5 *2 (-783))))) -(((*1 *1) (-5 *1 (-1100)))) + (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1117)) (-4 *2 (-1235)) (-5 *1 (-652 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-145)) (-5 *2 (-782))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1285 (-1194))) (-5 *3 (-1285 (-464 *4 *5 *6 *7))) + (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-936)) + (-14 *6 (-655 (-1194))) (-14 *7 (-1285 (-700 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-464 *4 *5 *6 *7))) + (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-936)) + (-14 *6 (-655 *2)) (-14 *7 (-1285 (-700 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1285 (-464 *3 *4 *5 *6))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) + (-14 *6 (-1285 (-700 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1285 (-1194))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) + (-14 *6 (-1285 (-700 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1194)) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-936)) (-14 *5 (-655 *2)) (-14 *6 (-1285 (-700 *3))))) + ((*1 *1) + (-12 (-5 *1 (-464 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-936)) + (-14 *4 (-655 (-1194))) (-14 *5 (-1285 (-700 *2)))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-575)) (-5 *5 (-112)) (-5 *6 (-700 (-227))) + (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-764))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-936)) + (-5 *2 (-1285 (-655 (-2 (|:| -4182 *4) (|:| -4317 (-1137)))))) + (-5 *1 (-356 *4)) (-4 *4 (-359))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) - (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-965 *8 *6 *7)) (-4 *6 (-805)) - (-5 *2 - (-2 (|:| |upol| (-1191 *8)) (|:| |Lval| (-656 *8)) - (|:| |Lfact| - (-656 (-2 (|:| -2354 (-1191 *8)) (|:| -1359 (-576))))) - (|:| |ctpol| *8))) - (-5 *1 (-754 *6 *7 *8 *9))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-247))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1191 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-656 *5)) (-4 *5 (-862)) (-5 *1 (-1206 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *4 (-1194)) + (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-309))))) +(((*1 *1 *1) + (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1066)) (-4 *3 (-861)) + (-4 *4 (-274 *3)) (-4 *5 (-804))))) +(((*1 *2) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3)) (-4 *2 (-317)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1056 *3))))) + (-12 (-4 *3 (-1009 *2)) (-4 *4 (-1261 *3)) (-4 *2 (-316)) + (-5 *1 (-424 *2 *3 *4 *5)) (-4 *5 (-13 (-420 *3 *4) (-1055 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1118)) (-5 *2 (-1143 *3 (-624 *1))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507)))) + (-12 (-4 *3 (-567)) (-4 *3 (-1117)) (-5 *2 (-1142 *3 (-623 *1))) + (-4 *1 (-441 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506)))) ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) - (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-737) *4)) + (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) - (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568))))) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-737) *4)) + (-5 *1 (-673 *3 *4 *2)) (-4 *3 (-728 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567))))) +(((*1 *2 *3) + (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) + (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3475 (-656 (-227))))) - (-5 *2 (-656 (-1195))) (-5 *1 (-276)))) + (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3474 (-655 (-227))))) + (-5 *2 (-655 (-1194))) (-5 *1 (-275)))) ((*1 *2 *3) - (-12 (-5 *3 (-1191 *7)) (-4 *7 (-965 *6 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1067)) (-5 *2 (-656 *5)) - (-5 *1 (-331 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1190 *7)) (-4 *7 (-964 *6 *4 *5)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1066)) (-5 *2 (-655 *5)) + (-5 *1 (-330 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-399)))) + (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-349 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-398)))) ((*1 *2 *1) - (-12 (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-5 *2 (-656 (-1195))))) + (-12 (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-5 *2 (-655 (-1194))))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) + (-12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-656 *5)))) + (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-655 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) - (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *5)) - (-5 *1 (-966 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) + (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *5)) + (-5 *1 (-965 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-374) - (-10 -8 (-15 -2884 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) + (-13 (-373) + (-10 -8 (-15 -2883 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-804)) - (-4 *5 (-862)) (-5 *2 (-656 *5)))) + (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-803)) + (-4 *5 (-861)) (-5 *2 (-655 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5)))) + (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1195))) - (-5 *1 (-1061 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) - (-4 *3 (-167 *6)) (-4 (-968 *6) (-899 *5)) - (-4 *6 (-13 (-899 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-899 *4)) - (-4 *4 (-1118)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) - (-4 *6 (-13 (-1118) (-1056 *3))) (-4 *3 (-899 *5)) - (-5 *1 (-947 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118)) - (-4 *3 (-13 (-442 *6) (-626 *4) (-899 *5) (-1056 (-624 $)))) - (-5 *4 (-905 *5)) (-4 *6 (-13 (-568) (-899 *5))) - (-5 *1 (-948 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 (-576) *3)) (-5 *4 (-905 (-576))) (-4 *3 (-557)) - (-5 *1 (-949 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1118)) - (-4 *6 (-13 (-1118) (-1056 (-624 $)) (-626 *4) (-899 *5))) - (-5 *4 (-905 *5)) (-5 *1 (-950 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) - (-4 *6 (-899 *5)) (-4 *3 (-678 *6)) (-5 *1 (-951 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-905 *6) (-902 *6 *3))) - (-4 *8 (-862)) (-5 *2 (-902 *6 *3)) (-5 *4 (-905 *6)) - (-4 *6 (-1118)) (-4 *3 (-13 (-965 *9 *7 *8) (-626 *4))) - (-4 *7 (-805)) (-4 *9 (-13 (-1067) (-899 *6))) - (-5 *1 (-952 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118)) - (-4 *3 (-13 (-965 *8 *6 *7) (-626 *4))) (-5 *4 (-905 *5)) - (-4 *7 (-899 *5)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *8 (-13 (-1067) (-899 *5))) (-5 *1 (-952 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118)) (-4 *3 (-1010 *6)) - (-4 *6 (-13 (-568) (-899 *5) (-626 *4))) (-5 *4 (-905 *5)) - (-5 *1 (-955 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 (-1195))) (-5 *3 (-1195)) (-5 *4 (-905 *5)) - (-4 *5 (-1118)) (-5 *1 (-956 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-656 (-905 *7))) (-5 *5 (-1 *9 (-656 *9))) - (-5 *6 (-1 (-902 *7 *9) *9 (-905 *7) (-902 *7 *9))) (-4 *7 (-1118)) - (-4 *9 (-13 (-1067) (-626 (-905 *7)) (-1056 *8))) - (-5 *2 (-902 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1067)) - (-5 *1 (-957 *7 *8 *9))))) + (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-5 *2 (-655 (-1194))) + (-5 *1 (-1060 *4))))) +(((*1 *1 *1) (-4 *1 (-1161)))) +(((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1178 *4)) (-4 *4 (-1066)) + (-5 *3 (-575))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 *4)) (-5 *1 (-1159 *3 *4)) - (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) - (-14 *4 (-576))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-656 (-1230 *5))) - (-5 *1 (-1294 *5)) (-5 *4 (-1230 *5))))) -(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-247))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-656 *3)) - (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1127 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -2087 (-1191 *5)) (|:| -3629 (-656 (-968 *5)))))) - (-5 *1 (-1096 *5 *6)) (-5 *3 (-656 (-968 *5))) - (-14 *6 (-656 (-1195))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -2087 (-1191 *4)) (|:| -3629 (-656 (-968 *4)))))) - (-5 *1 (-1096 *4 *5)) (-5 *3 (-656 (-968 *4))) - (-14 *5 (-656 (-1195))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -2087 (-1191 *5)) (|:| -3629 (-656 (-968 *5)))))) - (-5 *1 (-1096 *5 *6)) (-5 *3 (-656 (-968 *5))) - (-14 *6 (-656 (-1195)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) - (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-965 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-656 (-2 (|:| -2354 (-1191 *9)) (|:| -1359 (-576))))))) - (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9))))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-656 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) - (-5 *1 (-1206 *6)) (-5 *5 (-656 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-655 *4)) (-5 *1 (-1158 *3 *4)) + (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34)))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-655 *11)) (-5 *5 (-655 (-1190 *9))) + (-5 *6 (-655 *9)) (-5 *7 (-655 *12)) (-5 *8 (-655 (-782))) + (-4 *11 (-861)) (-4 *9 (-316)) (-4 *12 (-964 *9 *10 *11)) + (-4 *10 (-804)) (-5 *2 (-655 (-1190 *12))) + (-5 *1 (-718 *10 *11 *9 *12)) (-5 *3 (-1190 *12))))) +(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-389)) (-5 *1 (-1057))))) +(((*1 *2) + (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-428 *3))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-967 (-575))) (-5 *3 (-1194)) + (-5 *4 (-1111 (-418 (-575)))) (-5 *1 (-30))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-986 *4 *3)) + (-4 *3 (-1261 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) - (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) - (-4 *6 (-13 (-421 *4 *5) (-1056 *4))))) + (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) + (-5 *2 (-1285 *6)) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *6 (-13 (-420 *4 *5) (-1055 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-4 *3 (-1118)) (-5 *2 (-1143 *3 (-624 *1))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507)))) + (-12 (-4 *3 (-1066)) (-4 *3 (-1117)) (-5 *2 (-1142 *3 (-623 *1))) + (-4 *1 (-441 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506)))) ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-738) *3)))) + (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-632 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-737) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-738) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568))))) + (-12 (-4 *3 (-174)) (-4 *2 (-728 *3)) (-5 *1 (-673 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-737) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-517)) (-5 *2 (-655 (-980))) (-5 *1 (-300))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-782)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-782)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1287))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-304 (-968 (-576)))) - (-5 *2 - (-2 (|:| |varOrder| (-656 (-1195))) - (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) - (|:| |hom| (-656 (-1286 (-783)))))) - (-5 *1 (-242))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1195)) (-5 *2 (-1 (-1191 (-968 *4)) (-968 *4))) - (-5 *1 (-1294 *4)) (-4 *4 (-374))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1228 *4 *5 *3 *6)) (-4 *4 (-567)) (-4 *5 (-804)) + (-4 *3 (-861)) (-4 *6 (-1082 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) - (-5 *2 (-656 (-1195))) (-5 *1 (-1094 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-317)) - (-4 *9 (-965 *8 *6 *7)) - (-5 *2 (-2 (|:| -1808 (-1191 *9)) (|:| |polval| (-1191 *8)))) - (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9)) (-5 *4 (-1191 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) - (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) - (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1195)) - (-4 *5 (-13 (-568) (-1056 (-576)) (-148))) - (-5 *2 - (-2 (|:| -3849 (-419 (-968 *5))) (|:| |coeff| (-419 (-968 *5))))) - (-5 *1 (-582 *5)) (-5 *3 (-419 (-968 *5)))))) + (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-782)) (-5 *1 (-598 *2)) (-4 *2 (-556)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -1548 *3) (|:| -2398 (-782)))) (-5 *1 (-598 *3)) + (-4 *3 (-556))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-655 *7)) (-5 *3 (-112)) (-4 *7 (-1082 *4 *5 *6)) + (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) + (-5 *1 (-994 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-373))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064))))) +(((*1 *1) (-5 *1 (-1080)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-463) (-148))) (-5 *2 (-429 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1261 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-655 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-13 (-463) (-148))) + (-5 *2 (-429 *3)) (-5 *1 (-100 *5 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-1175 (-1175 (-968 *5)))) - (-5 *1 (-1294 *5)) (-5 *4 (-1175 (-968 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-241 *3)))) - ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1118))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-965 *6 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3))))) + (-12 (-5 *1 (-690 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1176)) (-5 *4 (-171 (-227))) (-5 *5 (-575)) + (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-336 *3)) (-4 *3 (-1235)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235)) + (-14 *4 (-575))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) + (-5 *2 (-655 (-655 (-655 (-958 *3)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *1 *2) - (-12 (-4 *3 (-1067)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1177)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1118)) - (-4 *4 (-1118))))) -(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205))))) + (-12 (-4 *3 (-1066)) (-5 *1 (-838 *2 *3)) (-4 *2 (-719 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) + (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-389)) (-5 *1 (-207))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-995 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 (-419 (-968 *6)))) - (-5 *3 (-419 (-968 *6))) - (-4 *6 (-13 (-568) (-1056 (-576)) (-148))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-582 *6))))) + (-12 (-5 *2 (-782)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-174)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1066))))) +(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1194))))) +(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) + (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) + (-4 *3 (-1117))))) +(((*1 *2) + (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1117))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-782)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) + (-4 *4 (-1066)) (-4 *4 (-174)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)) + (-4 *3 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1175 (-968 *4)) (-1175 (-968 *4)))) - (-5 *1 (-1294 *4)) (-4 *4 (-374))))) -(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))) + (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1178 *4)) (-4 *4 (-1066)) + (-5 *3 (-575))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1235)) + (-4 *5 (-383 *4)) (-4 *2 (-383 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *6 *2 *7)) (-4 *6 (-1066)) + (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-690 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-623 *3)) (-5 *5 (-1190 *3)) + (-4 *3 (-13 (-441 *6) (-27) (-1220))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 (-597 *3)) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-623 *3)) (-5 *5 (-418 (-1190 *3))) + (-4 *3 (-13 (-441 *6) (-27) (-1220))) + (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 (-597 *3)) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1174 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1066)) + (-5 *3 (-418 (-575))) (-5 *1 (-1178 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -2354 (-1191 *6)) (|:| -1359 (-576))))) - (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) - (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1236)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-59 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) -(((*1 *1 *1) (-4 *1 (-175))) - ((*1 *1 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))) + (-12 (-5 *3 (-418 (-575))) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-567)) (-4 *8 (-964 *7 *5 *6)) + (-5 *2 (-2 (|:| -2398 (-782)) (|:| -1754 *9) (|:| |radicand| *9))) + (-5 *1 (-968 *5 *6 *7 *8 *9)) (-5 *4 (-782)) + (-4 *9 + (-13 (-373) + (-10 -8 (-15 -2883 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $)))))))) (((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) -(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1205))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) - (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) - (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-419 (-968 *4))) (-5 *3 (-1195)) - (-4 *4 (-13 (-568) (-1056 (-576)) (-148))) (-5 *1 (-582 *4))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1175 (-968 *4)) (-1175 (-968 *4)))) - (-5 *1 (-1294 *4)) (-4 *4 (-374))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1236)) - (-4 *3 (-384 *4)) (-4 *5 (-384 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *4)))) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-965 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) ((*1 *1) (-4 *1 (-557))) - ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118))))) -(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205))))) + (|partial| -12 (-4 *4 (-13 (-567) (-148))) + (-5 *2 (-2 (|:| -2418 *3) (|:| -2435 *3))) (-5 *1 (-1255 *4 *3)) + (-4 *3 (-1261 *4))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1117) (-34))) + (-5 *2 (-112)) (-5 *1 (-1157 *4 *5)) (-4 *4 (-13 (-1117) (-34)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) - (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1221) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)) (-148))) - (-5 *2 (-598 (-419 (-968 *5)))) (-5 *1 (-582 *5)) - (-5 *3 (-419 (-968 *5)))))) + (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *3)) + (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) + (-5 *1 (-178 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))) -(((*1 *2) - (-12 (-14 *4 (-783)) (-4 *5 (-1236)) (-5 *2 (-135)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1067)) (-5 *2 (-937)))) - ((*1 *2) (-12 (-4 *1 (-1293 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-751 *3))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-937)) (-4 *1 (-416)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *2 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118))))) -(((*1 *1 *1) (-4 *1 (-881 *2)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) - (-5 *2 - (-2 (|:| -2237 (-783)) (|:| |curves| (-783)) - (|:| |polygons| (-783)) (|:| |constructs| (-783))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) - (-4 *5 (-568)) (-5 *2 (-656 (-656 (-968 *5)))) (-5 *1 (-1204 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6))))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1156)))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1056 *2))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *3 (-655 (-936))) (-5 *2 (-655 (-700 (-575)))) + (-5 *1 (-1127))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) + (-4 *3 (-1082 *5 *6 *7)) + (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) + (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) ((*1 *1) (-4 *1 (-556))) + ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-340))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1289))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-749 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1118)))) - ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1118))))) -(((*1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1191 (-576))) (-5 *3 (-576)) (-4 *1 (-881 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) + (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) + (|:| |success| (-112)))) + (-5 *1 (-800)) (-5 *5 (-575))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-968 (-576))))) - (-5 *2 (-656 (-656 (-304 (-968 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) + (-12 (-5 *3 (-655 (-418 (-967 (-575))))) + (-5 *2 (-655 (-655 (-303 (-967 *4))))) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-859) (-373))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-968 (-576)))))) - (-5 *2 (-656 (-656 (-304 (-968 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) + (-12 (-5 *3 (-655 (-303 (-418 (-967 (-575)))))) + (-5 *2 (-655 (-655 (-303 (-967 *4))))) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-859) (-373))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-968 (-576)))) (-5 *2 (-656 (-304 (-968 *4)))) - (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) + (-12 (-5 *3 (-418 (-967 (-575)))) (-5 *2 (-655 (-303 (-967 *4)))) + (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-968 (-576))))) - (-5 *2 (-656 (-304 (-968 *4)))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) + (-12 (-5 *3 (-303 (-418 (-967 (-575))))) + (-5 *2 (-655 (-303 (-967 *4)))) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-859) (-373))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1195)) - (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1221) (-975))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1898 (-656 *4)))) - (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4)))) + (|partial| -12 (-5 *5 (-1194)) + (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-4 *4 (-13 (-29 *6) (-1220) (-974))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -1624 (-655 *4)))) + (-5 *1 (-663 *6 *4 *3)) (-4 *3 (-667 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1221) (-975))) - (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) + (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 *2)) + (-4 *2 (-13 (-29 *6) (-1220) (-974))) + (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *1 (-663 *6 *2 *3)) (-4 *3 (-667 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) + (-12 (-5 *3 (-700 *5)) (-4 *5 (-373)) (-5 *2 - (-2 (|:| |particular| (-3 (-1286 *5) "failed")) - (|:| -1898 (-656 (-1286 *5))))) - (-5 *1 (-679 *5)) (-5 *4 (-1286 *5)))) + (-2 (|:| |particular| (-3 (-1285 *5) "failed")) + (|:| -1624 (-655 (-1285 *5))))) + (-5 *1 (-678 *5)) (-5 *4 (-1285 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) + (-12 (-5 *3 (-655 (-655 *5))) (-4 *5 (-373)) (-5 *2 - (-2 (|:| |particular| (-3 (-1286 *5) "failed")) - (|:| -1898 (-656 (-1286 *5))))) - (-5 *1 (-679 *5)) (-5 *4 (-1286 *5)))) + (-2 (|:| |particular| (-3 (-1285 *5) "failed")) + (|:| -1624 (-655 (-1285 *5))))) + (-5 *1 (-678 *5)) (-5 *4 (-1285 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) + (-12 (-5 *3 (-700 *5)) (-4 *5 (-373)) (-5 *2 - (-656 - (-2 (|:| |particular| (-3 (-1286 *5) "failed")) - (|:| -1898 (-656 (-1286 *5)))))) - (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5))))) + (-655 + (-2 (|:| |particular| (-3 (-1285 *5) "failed")) + (|:| -1624 (-655 (-1285 *5)))))) + (-5 *1 (-678 *5)) (-5 *4 (-655 (-1285 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) + (-12 (-5 *3 (-655 (-655 *5))) (-4 *5 (-373)) (-5 *2 - (-656 - (-2 (|:| |particular| (-3 (-1286 *5) "failed")) - (|:| -1898 (-656 (-1286 *5)))))) - (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5))))) + (-655 + (-2 (|:| |particular| (-3 (-1285 *5) "failed")) + (|:| -1624 (-655 (-1285 *5)))))) + (-5 *1 (-678 *5)) (-5 *4 (-655 (-1285 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) + (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) + (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1624 (-655 *4)))) + (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) - (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4462)))) + (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) + (-4 *7 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 - (-656 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1898 (-656 *7))))) - (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) - (-4 *3 (-699 *5 *6 *7)))) + (-655 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1624 (-655 *7))))) + (-5 *1 (-679 *5 *6 *7 *3)) (-5 *4 (-655 *7)) + (-4 *3 (-698 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-782 *5)))) + (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194))) (-4 *5 (-567)) + (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-781 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-782 *4)))) + (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-567)) + (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-781 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1221) (-975))))) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *1 (-783 *5 *2)) (-4 *2 (-13 (-29 *5) (-1220) (-974))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1195)) - (-4 *7 (-13 (-29 *6) (-1221) (-975))) - (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) + (|partial| -12 (-5 *3 (-700 *7)) (-5 *5 (-1194)) + (-4 *7 (-13 (-29 *6) (-1220) (-974))) + (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 - (-2 (|:| |particular| (-1286 *7)) (|:| -1898 (-656 (-1286 *7))))) - (-5 *1 (-814 *6 *7)) (-5 *4 (-1286 *7)))) + (-2 (|:| |particular| (-1285 *7)) (|:| -1624 (-655 (-1285 *7))))) + (-5 *1 (-813 *6 *7)) (-5 *4 (-1285 *7)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1195)) - (-4 *6 (-13 (-29 *5) (-1221) (-975))) - (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-1286 *6))) (-5 *1 (-814 *5 *6)))) + (|partial| -12 (-5 *3 (-700 *6)) (-5 *4 (-1194)) + (-4 *6 (-13 (-29 *5) (-1220) (-974))) + (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *2 (-655 (-1285 *6))) (-5 *1 (-813 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) - (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975))) - (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) + (|partial| -12 (-5 *3 (-655 (-303 *7))) (-5 *4 (-655 (-115))) + (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974))) + (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 - (-2 (|:| |particular| (-1286 *7)) (|:| -1898 (-656 (-1286 *7))))) - (-5 *1 (-814 *6 *7)))) + (-2 (|:| |particular| (-1285 *7)) (|:| -1624 (-655 (-1285 *7))))) + (-5 *1 (-813 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) - (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975))) - (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) + (|partial| -12 (-5 *3 (-655 *7)) (-5 *4 (-655 (-115))) + (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974))) + (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 - (-2 (|:| |particular| (-1286 *7)) (|:| -1898 (-656 (-1286 *7))))) - (-5 *1 (-814 *6 *7)))) + (-2 (|:| |particular| (-1285 *7)) (|:| -1624 (-655 (-1285 *7))))) + (-5 *1 (-813 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1195)) - (-4 *7 (-13 (-29 *6) (-1221) (-975))) - (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) + (-12 (-5 *3 (-303 *7)) (-5 *4 (-115)) (-5 *5 (-1194)) + (-4 *7 (-13 (-29 *6) (-1220) (-974))) + (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -1898 (-656 *7))) *7 "failed")) - (-5 *1 (-814 *6 *7)))) + (-3 (-2 (|:| |particular| *7) (|:| -1624 (-655 *7))) *7 "failed")) + (-5 *1 (-813 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1195)) - (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) + (-12 (-5 *4 (-115)) (-5 *5 (-1194)) + (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -1898 (-656 *3))) *3 "failed")) - (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1221) (-975))))) + (-3 (-2 (|:| |particular| *3) (|:| -1624 (-655 *3))) *3 "failed")) + (-5 *1 (-813 *6 *3)) (-4 *3 (-13 (-29 *6) (-1220) (-974))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1221) (-975))) (-5 *1 (-814 *6 *2)) - (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))))) + (|partial| -12 (-5 *3 (-303 *2)) (-5 *4 (-115)) (-5 *5 (-655 *2)) + (-4 *2 (-13 (-29 *6) (-1220) (-974))) (-5 *1 (-813 *6 *2)) + (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1221) (-975))) - (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-814 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1053)) (-5 *1 (-817)))) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-303 *2)) (-5 *5 (-655 *2)) + (-4 *2 (-13 (-29 *6) (-1220) (-974))) + (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *1 (-813 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1052)) (-5 *1 (-816)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-820)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-817)))) + (-12 (-5 *3 (-819)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-816)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1053)) (-5 *1 (-817)))) + (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4)) + (-5 *2 (-1052)) (-5 *1 (-816)))) ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1053)) (-5 *1 (-817)))) + (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4)) + (-5 *2 (-1052)) (-5 *1 (-816)))) ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817)))) + (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389))) + (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816)))) ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1053)) (-5 *1 (-817)))) + (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4)) + (-5 *2 (-1052)) (-5 *1 (-816)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817)))) + (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389))) + (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817)))) + (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389))) + (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 - (-3 (-2 (|:| |particular| *6) (|:| -1898 (-656 *6))) "failed") + (-3 (-2 (|:| |particular| *6) (|:| -1624 (-655 *6))) "failed") *7 *6)) - (-4 *6 (-374)) (-4 *7 (-668 *6)) - (-5 *2 (-2 (|:| |particular| (-1286 *6)) (|:| -1898 (-701 *6)))) - (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1053)) (-5 *1 (-912)))) + (-4 *6 (-373)) (-4 *7 (-667 *6)) + (-5 *2 (-2 (|:| |particular| (-1285 *6)) (|:| -1624 (-700 *6)))) + (-5 *1 (-824 *6 *7)) (-5 *3 (-700 *6)) (-5 *4 (-1285 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1052)) (-5 *1 (-911)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-913)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-912)))) + (-12 (-5 *3 (-912)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-911)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177)) - (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) - (-5 *2 (-1053)) (-5 *1 (-912)))) + (-12 (-5 *4 (-782)) (-5 *6 (-655 (-655 (-325 *3)))) (-5 *7 (-1176)) + (-5 *8 (-227)) (-5 *5 (-655 (-325 (-389)))) (-5 *3 (-389)) + (-5 *2 (-1052)) (-5 *1 (-911)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177)) - (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1053)) - (-5 *1 (-912)))) + (-12 (-5 *4 (-782)) (-5 *6 (-655 (-655 (-325 *3)))) (-5 *7 (-1176)) + (-5 *5 (-655 (-325 (-389)))) (-5 *3 (-389)) (-5 *2 (-1052)) + (-5 *1 (-911)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *2 (-656 (-390))) - (-5 *1 (-1041)) (-5 *4 (-390)))) + (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *2 (-655 (-389))) + (-5 *1 (-1040)) (-5 *4 (-389)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-968 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1041)) - (-5 *4 (-390)))) + (-12 (-5 *3 (-967 (-575))) (-5 *2 (-655 (-389))) (-5 *1 (-1040)) + (-5 *4 (-389)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) + (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4)) - (-5 *3 (-326 *4)))) + (-12 (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1148 *4)) + (-5 *3 (-325 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4)) - (-5 *3 (-304 (-326 *4))))) + (-12 (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1148 *4)) + (-5 *3 (-303 (-325 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1149 *5)) - (-5 *3 (-304 (-326 *5))))) + (-12 (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1148 *5)) + (-5 *3 (-303 (-325 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1149 *5)) - (-5 *3 (-326 *5)))) + (-12 (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1148 *5)) + (-5 *3 (-325 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1195))) - (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1149 *5)) - (-5 *3 (-656 (-304 (-326 *5)))))) + (-12 (-5 *4 (-655 (-1194))) + (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) + (-5 *2 (-655 (-655 (-303 (-325 *5))))) (-5 *1 (-1148 *5)) + (-5 *3 (-655 (-303 (-325 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) - (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) - (-5 *1 (-1204 *5)))) + (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) + (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) + (-5 *1 (-1203 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1195))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-1204 *5)) - (-5 *3 (-656 (-304 (-419 (-968 *5))))))) + (-12 (-5 *4 (-655 (-1194))) (-4 *5 (-567)) + (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-1203 *5)) + (-5 *3 (-655 (-303 (-418 (-967 *5))))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-419 (-968 *4)))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-1204 *4)))) + (-12 (-5 *3 (-655 (-418 (-967 *4)))) (-4 *4 (-567)) + (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-1203 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) - (-5 *1 (-1204 *4)) (-5 *3 (-656 (-304 (-419 (-968 *4))))))) + (-12 (-4 *4 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) + (-5 *1 (-1203 *4)) (-5 *3 (-655 (-303 (-418 (-967 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) (-4 *5 (-568)) - (-5 *2 (-656 (-304 (-419 (-968 *5))))) (-5 *1 (-1204 *5)) - (-5 *3 (-419 (-968 *5))))) + (-12 (-5 *4 (-1194)) (-4 *5 (-567)) + (-5 *2 (-655 (-303 (-418 (-967 *5))))) (-5 *1 (-1203 *5)) + (-5 *3 (-418 (-967 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) (-4 *5 (-568)) - (-5 *2 (-656 (-304 (-419 (-968 *5))))) (-5 *1 (-1204 *5)) - (-5 *3 (-304 (-419 (-968 *5)))))) + (-12 (-5 *4 (-1194)) (-4 *5 (-567)) + (-5 *2 (-655 (-303 (-418 (-967 *5))))) (-5 *1 (-1203 *5)) + (-5 *3 (-303 (-418 (-967 *5)))))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *4))))) - (-5 *1 (-1204 *4)) (-5 *3 (-419 (-968 *4))))) + (-12 (-4 *4 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *4))))) + (-5 *1 (-1203 *4)) (-5 *3 (-418 (-967 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *4))))) - (-5 *1 (-1204 *4)) (-5 *3 (-304 (-419 (-968 *4))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) - (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-580 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1020))))) + (-12 (-4 *4 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *4))))) + (-5 *1 (-1203 *4)) (-5 *3 (-303 (-418 (-967 *4))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194))))) +(((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1180 *3)))) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1083 *6 *7 *8)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *4)))) - (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4271 *9)))) - (-5 *5 (-112)) (-4 *8 (-1083 *6 *7 *4)) (-4 *9 (-1089 *6 *7 *4 *8)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) - (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4271 *9)))) - (-5 *1 (-1090 *6 *7 *4 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) - (-5 *2 (-783)))) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1261 *4)) (-4 *4 (-1239)) + (-4 *1 (-352 *4 *3 *5)) (-4 *5 (-1261 (-418 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) - (-5 *2 (-783)))) + (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) + (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-733)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-737)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *1 *1) (-4 *1 (-567)))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-936)) (-4 *1 (-415)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-575)) (-4 *1 (-415)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) - (-4 *4 (-738))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) - (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5))) - (-5 *1 (-880 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5))) - (-5 *1 (-880 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200)))) + (-12 (-4 *1 (-1120 *3 *4 *5 *2 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) + (-5 *4 (-325 (-171 (-389)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) + (-5 *4 (-325 (-389))) (-5 *1 (-339)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) + (-5 *4 (-325 (-575))) (-5 *1 (-339)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1200))) (-5 *1 (-1200))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-315)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1053))) (-5 *2 (-1053)) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *1) (-5 *1 (-1081))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1172 *4)) - (-4 *4 (-1236)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-994 *4 *5 *3 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) - (-4 *3 (-862)) (-4 *6 (-1083 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) - (-4 *5 (-1262 *4)) - (-5 *2 (-2 (|:| -3849 (-419 *5)) (|:| |coeff| (-419 *5)))) - (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340))))) -(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) - ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1083 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4271 *4)))) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-568)) (-4 *2 (-965 *3 *5 *4)) - (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-968 *6))) (-4 *5 (-805)) - (-4 *4 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)))))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) - (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5))))) + (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-171 (-389))))) + (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-389)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-575)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-171 (-389))))) + (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-389)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-575)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-171 (-389)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-389))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-575))) (-5 *1 (-339)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) + (-5 *4 (-325 (-705))) (-5 *1 (-339)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) + (-5 *4 (-325 (-710))) (-5 *1 (-339)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) + (-5 *4 (-325 (-712))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-705)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-710)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-712)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-705)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-710)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-712)))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-705))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-710))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-712))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-705))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-710))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-712))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-705))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-710))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-712))) (-5 *1 (-339)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1176)) (-5 *1 (-339)))) + ((*1 *1 *1 *1) (-5 *1 (-873)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) + (-5 *2 + (-2 (|:| -3793 (-782)) (|:| |curves| (-782)) + (|:| |polygons| (-782)) (|:| |constructs| (-782))))))) (((*1 *2) - (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *2 (-1291)) - (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-1149 *4 *2)) + (-4 *2 (-13 (-615 (-575) *4) (-10 -7 (-6 -4460) (-6 -4461)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-861)) (-4 *3 (-1235)) (-5 *1 (-1149 *3 *2)) + (-4 *2 (-13 (-615 (-575) *3) (-10 -7 (-6 -4460) (-6 -4461))))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-567)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) + (-4 *4 (-861)) (-4 *2 (-567))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-339))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) + (-14 *4 *2)))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) - (-4 *3 (-13 (-374) (-148) (-1056 (-576)))) (-5 *1 (-580 *3 *4))))) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *1 *1) (-4 *1 (-504))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) +(((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-135))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) + (-4 *3 (-13 (-27) (-1220) (-441 *6) (-10 -8 (-15 -2883 ($ *7))))) + (-4 *7 (-859)) + (-4 *8 + (-13 (-1263 *3 *7) (-373) (-1220) + (-10 -8 (-15 -2389 ($ $)) (-15 -4413 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176)))))) + (-5 *1 (-433 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1176)) (-4 *9 (-1000 *8)) + (-14 *10 (-1194))))) +(((*1 *2 *1) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235))))) +(((*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-498))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) + (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) + (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) + ((*1 *1 *1) (-4 *1 (-504))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1179 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) + (-5 *1 (-1180 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1190 *7)) (-4 *7 (-964 *6 *4 *5)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1066)) (-5 *2 (-1190 *6)) + (-5 *1 (-330 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192))))) +(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-359))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-924))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-143 *2 *4 *3)) + (-4 *3 (-383 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-514 *2 *4 *5 *3)) + (-4 *5 (-383 *2)) (-4 *3 (-383 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-700 *4)) (-4 *4 (-1009 *2)) (-4 *2 (-567)) + (-5 *1 (-704 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-1254 *2 *4 *3)) + (-4 *3 (-1261 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1052)) (-5 *1 (-314)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-1052))) (-5 *2 (-1052)) (-5 *1 (-314)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1 *1) (-5 *1 (-1080))) + ((*1 *2 *3) + (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1171 *4)) + (-4 *4 (-1235)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390))))) -(((*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) - ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711)))) - ((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) - ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289))))) + (-12 (-4 *4 (-1066)) (-4 *2 (-698 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1261 *4)) (-4 *5 (-383 *4)) + (-4 *6 (-383 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-107 *3))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-373) (-859))) + (-5 *2 (-655 (-2 (|:| -3378 (-655 *3)) (|:| -3084 *5)))) + (-5 *1 (-183 *5 *3)) (-4 *3 (-1261 (-171 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-373) (-859))) + (-5 *2 (-655 (-2 (|:| -3378 (-655 *3)) (|:| -3084 *4)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) + (-5 *2 + (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) + (|:| |success| (-112)))) + (-5 *1 (-800)) (-5 *5 (-575))))) (((*1 *2 *1) - (-12 (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1191 (-968 *6))) (-4 *6 (-568)) - (-4 *2 (-965 (-419 (-968 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) - (-4 *5 (-805)) - (-4 *4 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $)))))))) + (-12 (-5 *2 (-418 (-575))) (-5 *1 (-328 *3 *4 *5)) (-4 *3 (-373)) + (-14 *4 (-1194)) (-14 *5 *3)))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-1206 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-224 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-260 *3)))) + ((*1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) + (-5 *2 (-655 (-655 (-958 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-655 (-655 (-958 *4)))) (-5 *3 (-112)) (-4 *4 (-1066)) + (-4 *1 (-1151 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-655 (-655 (-958 *3)))) (-4 *3 (-1066)) + (-4 *1 (-1151 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-655 (-655 (-655 *4)))) (-5 *3 (-112)) + (-4 *1 (-1151 *4)) (-4 *4 (-1066)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-655 (-655 (-958 *4)))) (-5 *3 (-112)) + (-4 *1 (-1151 *4)) (-4 *4 (-1066)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-655 (-655 (-655 *5)))) (-5 *3 (-655 (-173))) + (-5 *4 (-173)) (-4 *1 (-1151 *5)) (-4 *5 (-1066)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-655 (-655 (-958 *5)))) (-5 *3 (-655 (-173))) + (-5 *4 (-173)) (-4 *1 (-1151 *5)) (-4 *5 (-1066))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1118)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-877))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) - (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-1191 (-419 (-576)))) - (-5 *1 (-445 *5 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) + (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) + (-4 *5 (-383 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1177) (-1200))) - (-5 *1 (-1200))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2))))) + (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1190 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389))))) +(((*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415)))) + ((*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) + ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710)))) + ((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-129))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576)))) - (-4 *5 (-899 (-576))) - (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1221) (-442 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1195)) (-5 *4 (-855 *2)) (-4 *2 (-1157)) - (-4 *2 (-13 (-27) (-1221) (-442 *5))) - (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) - (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) - (-5 *1 (-579 *5 *2))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *3 (-655 (-269))) (-5 *4 (-1194)) (-5 *2 (-112)) + (-5 *1 (-269))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-373)) + (-5 *2 (-655 (-2 (|:| C (-700 *5)) (|:| |g| (-1285 *5))))) + (-5 *1 (-995 *5)) (-5 *3 (-700 *5)) (-5 *4 (-1285 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-655 (-655 (-782)))) (-5 *1 (-919 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057))))) +(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1191 *2)) (-4 *2 (-965 (-419 (-968 *6)) *5 *4)) - (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) - (-4 *4 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))) - (-4 *6 (-568))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-874))))) + (-12 (-4 *2 (-1261 *4)) (-5 *1 (-818 *4 *2 *3 *5)) + (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2)) + (-4 *5 (-667 (-418 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1261 *4)) (-5 *1 (-818 *4 *2 *5 *3)) + (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-667 *2)) + (-4 *3 (-667 (-418 *2)))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1 *1) (-5 *1 (-873))) + ((*1 *1 *1) (-5 *1 (-873)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-655 *1)) (|has| *1 (-6 -4461)) (-4 *1 (-1027 *3)) + (-4 *3 (-1235))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-373)) (-5 *1 (-670 *4 *2)) + (-4 *2 (-667 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-540)))) + ((*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-540))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) + (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3))))) (((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937)))) - ((*1 *1 *1 *1) (-5 *1 (-1241))) ((*1 *1 *1 *1) (-5 *1 (-1242))) - ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2))))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936)))) + ((*1 *1 *1 *1) (-5 *1 (-1240))) ((*1 *1 *1 *1) (-5 *1 (-1241))) + ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243)))) +(((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-782))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576)))) - (-4 *5 (-899 (-576))) - (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1175 *4))) (-5 *1 (-295 *4 *5)) - (-5 *3 (-1175 *4)) (-4 *5 (-1277 *4))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *5 (-13 (-862) (-10 -8 (-15 -2616 ((-1195) $))))) (-4 *6 (-568)) - (-5 *2 (-2 (|:| -2158 (-968 *6)) (|:| -4193 (-968 *6)))) - (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-965 (-419 (-968 *6)) *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1236)))) + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *3) + (-12 (-5 *3 (-325 (-227))) (-5 *2 (-325 (-389))) (-5 *1 (-314))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 (-904 *6))) + (-5 *5 (-1 (-901 *6 *8) *8 (-904 *6) (-901 *6 *8))) (-4 *6 (-1117)) + (-4 *8 (-13 (-1066) (-625 (-904 *6)) (-1055 *7))) + (-5 *2 (-901 *6 *8)) (-4 *7 (-1066)) (-5 *1 (-956 *6 *7 *8))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 (-515 *3 *4 *5 *6))) (-4 *3 (-373)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) + (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7)) + (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *7 (-1082 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) + (-4 *1 (-1088 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) + (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) + (-4 *1 (-1088 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-700 (-575))) + (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-768))))) +(((*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1176)) (-5 *1 (-314))))) +(((*1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1218))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-373)) (-4 *3 (-1066)) + (-5 *1 (-1178 *3))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-770))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-311)) (-4 *2 (-1235)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312))))) -(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-145)))) - ((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1291))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200))))) -(((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) - (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| -1846 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) - (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-750))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1289))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-251 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *2 (-655 (-623 *1))) (-5 *3 (-655 *1)) (-4 *1 (-311)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-303 *1))) (-4 *1 (-311)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-303 *1)) (-4 *1 (-311))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) + (-4 *3 (-377 *4)))) + ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-145)))) + ((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-145))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1118 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1143 *4 *3 *5))) (-4 *4 (-38 (-418 (-575)))) + (-4 *4 (-1066)) (-4 *3 (-861)) (-5 *1 (-1143 *4 *3 *5)) + (-4 *5 (-964 *4 (-542 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1229 *4))) (-5 *3 (-1194)) (-5 *1 (-1229 *4)) + (-4 *4 (-38 (-418 (-575)))) (-4 *4 (-1066))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1262 *5)) - (-5 *1 (-739 *5 *2)) (-4 *5 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-862) (-21)))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301))) - ((*1 *1) (-5 *1 (-874))) - ((*1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) - (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1103))) - ((*1 *1) - (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) - (-4 *3 (-13 (-1118) (-34))))) - ((*1 *1) (-5 *1 (-1198))) ((*1 *1) (-5 *1 (-1199)))) -(((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) + (-12 (-4 *5 (-1117)) (-4 *3 (-913 *5)) (-5 *2 (-1285 *3)) + (-5 *1 (-703 *5 *3 *6 *4)) (-4 *6 (-383 *3)) + (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066))))) +(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-749))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1117))))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) + ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) + ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-981 *3)) (-4 *3 (-1117)) (-5 *1 (-982 *3))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1194)) (-5 *1 (-686 *3)) (-4 *3 (-1117))))) +(((*1 *1 *2) + (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) + (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-782)) (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) + (-4 *2 (-1261 *3))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) + (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *1) (-5 *1 (-608)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-556)))) +(((*1 *2) + (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) + (-5 *2 (-782)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) (-5 *2 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-782))))) +(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-429 *3)) (-4 *3 (-567)))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 (-2 (|:| -2353 *4) (|:| -2645 (-575))))) + (-4 *4 (-1261 (-575))) (-5 *2 (-782)) (-5 *1 (-453 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1083))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1195)) - (-4 *4 (-13 (-442 *7) (-27) (-1221))) - (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1898 (-656 *4)))) - (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118))))) + (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) + (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) + (-5 *1 (-799)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) + (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) + (-5 *1 (-799))))) +(((*1 *1 *1) + (-12 (-4 *2 (-359)) (-4 *2 (-1066)) (-5 *1 (-723 *2 *3)) + (-4 *3 (-1261 *2))))) +(((*1 *1) (-5 *1 (-131)))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3))))) -(((*1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1289)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1289))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1084))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) - (-4 *1 (-1089 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -1502 (-430 *3)) (|:| |special| (-430 *3)))) - (-5 *1 (-739 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) + (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) + (-4 *4 (-1066))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-937)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) + (-12 (-5 *2 (-936)) (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)))) + ((*1 *2 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-373)))) ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) + (-12 (-4 *1 (-380 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-937)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) + (-12 (-5 *2 (-1285 *4)) (-5 *3 (-936)) (-4 *4 (-359)) + (-5 *1 (-539 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (-4 *2 (-1067))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-862) (-21)))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-449)) (-5 *1 (-1199))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) - (-4 *2 (-13 (-442 *5) (-27) (-1221))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1118))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-241 *3)) - (-4 *3 (-1118)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236))))) -(((*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289))))) -(((*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) + (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (-4 *2 (-1066))))) +(((*1 *1) (-5 *1 (-300)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-981 *2)) (-4 *2 (-1117))))) +(((*1 *2 *1) + (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) + (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-597 *3)) (-5 *1 (-437 *5 *3)) + (-4 *3 (-13 (-1220) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)) (-148))) + (-5 *2 (-597 (-418 (-967 *5)))) (-5 *1 (-581 *5)) + (-5 *3 (-418 (-967 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) + (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-861)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-876 *3)) (-14 *3 (-656 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1007)))) + (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-875 *3)) (-14 *3 (-655 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1006)))) ((*1 *2 *1) - (-12 (-4 *4 (-1236)) (-5 *2 (-1195)) (-5 *1 (-1075 *3 *4)) - (-4 *3 (-1111 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1110 *3)) (-4 *3 (-1236)))) + (-12 (-4 *4 (-1235)) (-5 *2 (-1194)) (-5 *1 (-1074 *3 *4)) + (-4 *3 (-1110 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1109 *3)) (-4 *3 (-1235)))) ((*1 *2 *1) - (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) - (-5 *2 (-1195)))) - ((*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1083 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4271 *1)))) - (-4 *1 (-1089 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) - (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1221) (-29 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1221))) - (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1118))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290))))) -(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) - ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1089 *4 *5 *6 *3))))) + (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) + (-5 *2 (-1194)))) + ((*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1281 *3)) (-14 *3 *2)))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) + (-5 *6 (-227)) (-5 *2 (-1052)) (-5 *1 (-763))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1117))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1286 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1262 *5)) - (-5 *2 (-701 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))) -(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1118)) (-5 *2 (-783))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-446)) - (-5 *2 - (-656 - (-3 (|:| -1778 (-1195)) - (|:| -3638 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576))))))))) - (-5 *1 (-1199))))) + (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3)) + (-5 *1 (-753 *5 *4 *6 *3)) (-4 *3 (-964 *6 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) + (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-624 *3)) - (-4 *3 (-13 (-442 *5) (-27) (-1221))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -3849 *3) (|:| |coeff| *3))) - (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) - (-4 *1 (-1089 *4 *5 *6 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-379))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1291)) (-5 *1 (-875))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1221))) - (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1067)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1083 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4271 *1)))) - (-4 *1 (-1089 *4 *5 *6 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1118))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-782)) (-4 *4 (-316)) (-4 *6 (-1261 *4)) + (-5 *2 (-1285 (-655 *6))) (-5 *1 (-466 *4 *6)) (-5 *5 (-655 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1174 *2)) (-4 *2 (-316)) (-5 *1 (-176 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-463)) (-4 *4 (-567)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3168 *4))) (-5 *1 (-986 *4 *3)) + (-4 *3 (-1261 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227))) + (-5 *1 (-708)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-227))) + (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-708)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-1 (-958 (-227)) (-227) (-227))) + (-5 *4 (-1111 (-227))) (-5 *5 (-655 (-269))) (-5 *1 (-708))))) +(((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-556)))) + ((*1 *1 *1) (-4 *1 (-1077)))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942))))) +(((*1 *2 *2) + (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1019)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1206 (-655 *4))) (-4 *4 (-861)) + (-5 *2 (-655 (-655 *4))) (-5 *1 (-1205 *4))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-564))))) +(((*1 *1) + (-12 (-4 *1 (-415)) (-3215 (|has| *1 (-6 -4451))) + (-3215 (|has| *1 (-6 -4443))))) + ((*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-861)))) + ((*1 *1) (-4 *1 (-855))) ((*1 *1 *1 *1) (-4 *1 (-861))) + ((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-418 (-1190 (-325 *3)))) (-4 *3 (-567)) + (-5 *1 (-1147 *3))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-834)) (-5 *1 (-833))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *1) (-5 *1 (-1286)))) (((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-656 - (-3 (|:| -1778 (-1195)) - (|:| -3638 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576)))))))))) - (-5 *1 (-1199))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) + (-12 (-4 *3 (-1066)) (-5 *2 (-655 *1)) (-4 *1 (-1151 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) - (-4 *7 (-1262 (-419 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -3837 *3))) - (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7)))) + (-12 (-5 *3 (-1190 *5)) (-4 *5 (-463)) (-5 *2 (-655 *6)) + (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |answer| (-419 *6)) (|:| -3837 (-419 *6)) - (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) - (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1122)) (-5 *1 (-289))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))) + (-12 (-5 *3 (-967 *5)) (-4 *5 (-463)) (-5 *2 (-655 *6)) + (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1121 *3 *4 *5 *6 *2)) (-4 *3 (-1118)) (-4 *4 (-1118)) - (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1083 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1089 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1089 *4 *5 *6 *3))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-734)))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1221) (-442 *3))) - (-14 *4 (-1195)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-4 *2 (-13 (-27) (-1221) (-442 *3) (-10 -8 (-15 -2884 ($ *4))))) - (-4 *4 (-860)) - (-4 *5 - (-13 (-1264 *2 *4) (-374) (-1221) - (-10 -8 (-15 -2390 ($ $)) (-15 -1956 ($ $))))) - (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1001 *5)) - (-14 *7 (-1195))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1199))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-655 (-782))) (-5 *1 (-986 *4 *3)) + (-4 *3 (-1261 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-655 (-52))) (-5 *2 (-1290)) (-5 *1 (-874))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) + (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) + (-5 *2 (-1052)) (-5 *1 (-767))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) + (|:| -3437 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -1576 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(((*1 *2) (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1288)))) + ((*1 *2 *2) (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1288))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) + (-4 *5 (-861)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1262 *4)) (-5 *2 (-112))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-734)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -2884 ($ *7))))) - (-4 *7 (-860)) - (-4 *8 - (-13 (-1264 *3 *7) (-374) (-1221) - (-10 -8 (-15 -2390 ($ $)) (-15 -1956 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1001 *8)) - (-14 *10 (-1195))))) -(((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) - ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1199))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-451)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1133)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1200))) (-5 *3 (-1200)) (-5 *1 (-1136))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))) -(((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1262 *4)) (-5 *2 (-112))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -2884 ($ *7))))) - (-4 *7 (-860)) - (-4 *8 - (-13 (-1264 *3 *7) (-374) (-1221) - (-10 -8 (-15 -2390 ($ $)) (-15 -1956 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1001 *8)) - (-14 *10 (-1195))))) -(((*1 *1) (-5 *1 (-1198)))) -(((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))) -(((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1262 *4)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) + (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) + (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1194)) (-4 *4 (-463)) (-4 *4 (-1117)) + (-5 *1 (-584 *4 *2)) (-4 *2 (-293)) (-4 *2 (-441 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-782)) + (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-873))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-1082 *4 *5 *6)) (-4 *4 (-567)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) - (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) - (-14 *6 (-1195)) (-14 *7 *3)))) + (-12 (-5 *3 (-171 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) + (-5 *1 (-769))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-536)))) + ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1168))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-763))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-694 *4 *3)) (-4 *4 (-1117)) + (-4 *3 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-782)) (-5 *4 (-575)) (-5 *1 (-456 *2)) (-4 *2 (-1066))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) + (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-1298 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) + (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1298 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *4 (-1118)) (-5 *2 (-902 *3 *5)) (-5 *1 (-898 *3 *4 *5)) - (-4 *3 (-1118)) (-4 *5 (-678 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) - ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198))))) -(((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-656 (-656 (-959 (-227))))))) - ((*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-656 (-656 (-959 (-227)))))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-419 (-576))) - (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))) + (-12 (-4 *1 (-1120 *3 *4 *5 *6 *2)) (-4 *3 (-1117)) (-4 *4 (-1117)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-621 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117))))) +(((*1 *2 *1) + (-12 (-5 *2 (-873)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 (-782)) + (-14 *4 (-782)) (-4 *5 (-174))))) +(((*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1239)) (-5 *1 (-149 *2 *4 *3)) + (-4 *3 (-1261 (-418 *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941))))) +(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941))))) (((*1 *2 *2) - (-12 (-4 *3 (-1056 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-442 *3)))) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-316)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-458 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) + (-4 *4 (-316)) (-4 *5 (-804)) (-4 *6 (-861)) + (-5 *1 (-458 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) + (-4 *4 (-316)) (-4 *5 (-804)) (-4 *6 (-861)) + (-5 *1 (-458 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-303 *6)) (-5 *4 (-115)) (-4 *6 (-441 *5)) + (-4 *5 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-303 *7)) (-5 *4 (-115)) (-5 *5 (-655 *7)) + (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-655 (-303 *7))) (-5 *4 (-655 (-115))) (-5 *5 (-303 *7)) + (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-655 (-303 *8))) (-5 *4 (-655 (-115))) (-5 *5 (-303 *8)) + (-5 *6 (-655 *8)) (-4 *8 (-441 *7)) + (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) + (-5 *1 (-326 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-655 *7)) (-5 *4 (-655 (-115))) (-5 *5 (-303 *7)) + (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 (-115))) (-5 *6 (-655 (-303 *8))) + (-4 *8 (-441 *7)) (-5 *5 (-303 *8)) + (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) + (-5 *1 (-326 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-303 *5)) (-5 *4 (-115)) (-4 *5 (-441 *6)) + (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-4 *3 (-441 *6)) + (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-4 *3 (-441 *6)) + (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-5 *6 (-655 *3)) + (-4 *3 (-441 *7)) (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) + (-5 *1 (-326 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-567))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1191 *4)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1067)) (-4 *1 (-312)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3)))) - ((*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-13 (-860) (-374))) - (-4 *2 (-1262 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1271 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1195)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1118)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-862)) - (-14 *4 - (-1 (-112) (-2 (|:| -4318 *3) (|:| -1359 *2)) - (-2 (|:| -4318 *3) (|:| -1359 *2))))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1118)) - (-5 *2 (-2 (|:| -1755 (-576)) (|:| |var| (-624 *1)))) - (-4 *1 (-442 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) - ((*1 *2 *1) - (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-804)) - (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))) - (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))) + (-12 (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)) + (-5 *1 (-419 *3 *4 *5)) (-4 *3 (-420 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) + (-5 *2 (-700 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-968 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) - ((*1 *2 *3) - (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) - ((*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-1030)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) + (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) + (-4 *6 (-804)) (-5 *2 (-418 (-967 *4))) (-5 *1 (-939 *4 *5 *6 *3)) + (-4 *3 (-964 *4 *6 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1191 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) + (-12 (-5 *3 (-700 *7)) (-4 *7 (-964 *4 *6 *5)) + (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) + (-4 *6 (-804)) (-5 *2 (-700 (-418 (-967 *4)))) + (-5 *1 (-939 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1191 *1)) (-4 *1 (-1030)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-656 *1)) - (-4 *1 (-1086 *4 *3))))) + (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5)) + (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) + (-4 *6 (-804)) (-5 *2 (-655 (-418 (-967 *4)))) + (-5 *1 (-939 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-567)) (-5 *2 (-1285 (-700 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-700 *4)) (-4 *5 (-667 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-1067)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3))))) -(((*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *3) - (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) - ((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))) - ((*1 *1 *1) (-4 *1 (-881 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-804)) - (-4 *4 (-862))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1195)) - (-4 *2 (-13 (-27) (-1221) (-442 *5))) - (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-286 *5 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-968 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1191 *2)) (-5 *4 (-1195)) (-4 *2 (-442 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) + (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-373)) (-4 *1 (-338 *3)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-4 *1 (-1030)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-5 *4 (-874)) - (-4 *1 (-1030)))) + (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1261 *4)) (-4 *4 (-1239)) + (-4 *1 (-352 *4 *3 *5)) (-4 *5 (-1261 (-418 *3))))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-937)) (-4 *4 (-13 (-860) (-374))) - (-4 *1 (-1086 *4 *2)) (-4 *2 (-1262 *4))))) + (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1285 *1)) (-4 *4 (-174)) + (-4 *1 (-377 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1285 *1)) (-4 *4 (-174)) + (-4 *1 (-380 *4 *5)) (-4 *5 (-1261 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-420 *3 *4)) + (-4 *4 (-1261 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-428 *3))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) + (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3029)))) (-5 *3 (-227)) + (-5 *2 (-1052)) (-5 *1 (-759))))) (((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1262 *3))))) + (-12 (-5 *2 (-655 (-2 (|:| |k| (-1194)) (|:| |c| (-1307 *3))))) + (-5 *1 (-1307 *3)) (-4 *3 (-1066)))) + ((*1 *2 *1) + (-12 (-5 *2 (-655 (-2 (|:| |k| *3) (|:| |c| (-1309 *3 *4))))) + (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) - (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) - (-5 *4 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) - (-5 *4 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-576)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) - (-5 *4 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) - (-5 *4 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) - (-5 *4 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-706)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-711)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-713)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-340)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174)) - (-4 *1 (-378 *4)))) + (-12 + (-5 *3 + (-655 + (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 *2)) + (|:| |logand| (-1190 *2))))) + (-5 *4 (-655 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-373)) (-5 *1 (-597 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-450)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-849)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1132)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174)) - (-4 *1 (-381 *4 *5)) (-4 *5 (-1262 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) - (-4 *4 (-1262 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))) -(((*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198))))) -(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-989))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) + (-12 (-5 *2 (-655 (-1199))) (-5 *3 (-1199)) (-5 *1 (-1135))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -1624 (-655 *1)))) + (-4 *1 (-377 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-464 *3 *4 *5 *6)) + (|:| -1624 (-655 (-464 *3 *4 *5 *6))))) + (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) + (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) + (-5 *2 (-1052)) (-5 *1 (-758))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1310))))) +(((*1 *2 *3) + (-12 (-5 *2 (-623 *4)) (-5 *1 (-622 *3 *4)) (-4 *3 (-1117)) + (-4 *4 (-1117))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) + (-4 *3 (-13 (-1117) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-942)) + (-5 *2 + (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) + (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-942)) (-5 *4 (-418 (-575))) + (-5 *2 + (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) + (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) + (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) + (-5 *1 (-154)) (-5 *3 (-655 (-958 (-227)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) + (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) + (-5 *1 (-154)) (-5 *3 (-655 (-655 (-958 (-227))))))) + ((*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) + (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-13 (-441 *3) (-1220)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *2 (-112)) (-5 *1 (-275))))) +(((*1 *2 *1) + (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) + (-4 *5 (-1261 (-418 *4))) + (-5 *2 (-2 (|:| |num| (-1285 *4)) (|:| |den| *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1190 *7)) + (-4 *5 (-1066)) (-4 *7 (-1066)) (-4 *2 (-1261 *5)) + (-5 *1 (-512 *5 *2 *6 *7)) (-4 *6 (-1261 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-836))))) +(((*1 *2 *1) + (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220))))) +(((*1 *2 *1) + (-12 (-5 *2 (-655 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-597 *3)) (-4 *3 (-373))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1117)) (-5 *2 (-901 *3 *5)) (-5 *1 (-897 *3 *4 *5)) + (-4 *3 (-1117)) (-4 *5 (-677 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-550 *4 *2 *5 *6)) + (-4 *4 (-316)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-782)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))) +(((*1 *2) + (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-428 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-336 *3)) (-4 *3 (-1235)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-575)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235)) (-14 *4 *2)))) +(((*1 *1) (-4 *1 (-359))) + ((*1 *2 *3) + (-12 (-5 *3 (-655 *5)) (-4 *5 (-441 *4)) (-4 *4 (-13 (-567) (-148))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-655 (-1190 *5))) + (|:| |prim| (-1190 *5)))) + (-5 *1 (-443 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-567) (-148))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1190 *3)) + (|:| |pol2| (-1190 *3)) (|:| |prim| (-1190 *3)))) + (-5 *1 (-443 *4 *3)) (-4 *3 (-27)) (-4 *3 (-441 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-967 *5)) (-5 *4 (-1194)) (-4 *5 (-13 (-373) (-148))) + (-5 *2 + (-2 (|:| |coef1| (-575)) (|:| |coef2| (-575)) + (|:| |prim| (-1190 *5)))) + (-5 *1 (-975 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194))) + (-4 *5 (-13 (-373) (-148))) + (-5 *2 + (-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 *5))) + (|:| |prim| (-1190 *5)))) + (-5 *1 (-975 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194))) (-5 *5 (-1194)) + (-4 *6 (-13 (-373) (-148))) + (-5 *2 + (-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 *6))) + (|:| |prim| (-1190 *6)))) + (-5 *1 (-975 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) + (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) + (-5 *2 + (-2 (|:| -4182 *4) (|:| -3084 *4) (|:| |totalpts| (-575)) + (|:| |success| (-112)))) + (-5 *1 (-800)) (-5 *5 (-575))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-463)) + (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1261 *6)) + (-4 *6 (-13 (-27) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)))) + (-4 *8 (-1261 (-418 *7))) (-5 *2 (-597 *3)) + (-5 *1 (-563 *5 *6 *7 *8 *3)) (-4 *3 (-352 *6 *7 *8))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-655 (-418 *6))) (-5 *3 (-418 *6)) + (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-579 *5 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-655 (-575))) + (|:| |cols| (-655 (-575))))) + (-5 *4 (-700 *12)) (-5 *5 (-655 (-418 (-967 *9)))) + (-5 *6 (-655 (-655 *12))) (-5 *7 (-782)) (-5 *8 (-575)) + (-4 *9 (-13 (-316) (-148))) (-4 *12 (-964 *9 *11 *10)) + (-4 *10 (-13 (-861) (-625 (-1194)))) (-4 *11 (-804)) + (-5 *2 + (-2 (|:| |eqzro| (-655 *12)) (|:| |neqzro| (-655 *12)) + (|:| |wcond| (-655 (-967 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1285 (-418 (-967 *9)))) + (|:| -1624 (-655 (-1285 (-418 (-967 *9))))))))) + (-5 *1 (-939 *9 *10 *11 *12))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-655 (-1190 *7))) (-5 *3 (-1190 *7)) + (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-924)) (-4 *5 (-804)) + (-4 *6 (-861)) (-5 *1 (-921 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1195)) - (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))))) -(((*1 *1) (-5 *1 (-1288)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1042 *3)) - (-4 *3 (-13 (-860) (-374) (-1040))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) - (-4 *3 (-1262 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-13 (-860) (-374))) - (-4 *3 (-1262 *2))))) + (|partial| -12 (-5 *2 (-655 (-1190 *5))) (-5 *3 (-1190 *5)) + (-4 *5 (-1261 *4)) (-4 *4 (-924)) (-5 *1 (-922 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) + (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-994 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-556)))) (((*1 *1 *2) - (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1067)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1262 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) + (-12 + (-5 *2 + (-655 + (-2 + (|:| -4169 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1285 (-325 (-227)))) + (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) + (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -3179 + (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) + (|:| |expense| (-389)) (|:| |accuracy| (-389)) + (|:| |intermediateResults| (-389))))))) + (-5 *1 (-814))))) +(((*1 *2 *1) (-12 (-5 *2 (-655 (-109))) (-5 *1 (-177))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) + (-4 *6 (-804)) (-4 *7 (-964 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-655 *7)) (|:| |n0| (-655 *7)))) + (-5 *1 (-939 *4 *5 *6 *7)) (-5 *3 (-655 *7))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-373)) (-4 *3 (-1066)) + (-5 *2 (-2 (|:| -2829 *1) (|:| -1635 *1))) (-4 *1 (-863 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-373)) (-4 *5 (-1066)) + (-5 *2 (-2 (|:| -2829 *3) (|:| -1635 *3))) (-5 *1 (-864 *5 *3)) + (-4 *3 (-863 *5))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-655 *6) "failed") (-575) *6 *6)) (-4 *6 (-373)) + (-4 *7 (-1261 *6)) + (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6))) + (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1194)) + (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-655 (-623 *3))) + (|:| |vals| (-655 *3)))) + (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) + (-5 *1 (-515 *4 *5 *6 *2)) (-4 *2 (-964 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) + (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3))))) +(((*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-112)) (-5 *5 (-700 (-171 (-227)))) + (-5 *2 (-1052)) (-5 *1 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-575))) (-5 *2 (-112)) (-5 *1 (-457)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) + (-252 *4 (-418 (-575))))) + (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112)) + (-5 *1 (-516 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-976 *3)) (-4 *3 (-556)))) + ((*1 *2 *1) (-12 (-4 *1 (-1239)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-570)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-695 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-325 (-389))) (-5 *1 (-314))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269))))) +(((*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1197))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-1116 *3)))) - ((*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118))))) -(((*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1198)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291)) - (-5 *1 (-1198)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291)) - (-5 *1 (-1198))))) + (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-1115 *3)))) + ((*1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1175 (-989))) (-5 *1 (-989))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) + (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-373) (-1220) (-1019)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) + (-5 *1 (-767))))) +(((*1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1194)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-655 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-655 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1630 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1220) (-27) (-441 *8))) + (-4 *8 (-13 (-463) (-148) (-1055 *3) (-650 *3))) (-5 *3 (-575)) + (-5 *2 (-655 *4)) (-5 *1 (-1031 *8 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1195)) - (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) - (|:| |vals| (-656 *3)))) - (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1288)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-1177)) (-5 *1 (-1288)))) - ((*1 *1 *1) (-5 *1 (-1288)))) -(((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *5 (-1083 *3 *4 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) - (-4 *2 (-862))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1067)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1262 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) -((-1320 . 732712) (-1321 . 732678) (-1322 . 732576) (-1323 . 732355) - (-1324 . 732157) (-1325 . 731905) (-1326 . 731853) (-1327 . 731776) - (-1328 . 731496) (-1329 . 731301) (-1330 . 731172) (-1331 . 731138) - (-1332 . 731036) (-1333 . 730729) (-1334 . 730700) (-1335 . 730408) - (-1336 . 730356) (-1337 . 730244) (-1338 . 730193) (-1339 . 729596) - (-1340 . 726815) (-1341 . 726713) (-1342 . 725976) (-1343 . 725875) - (-1344 . 725667) (-1345 . 725593) (-1346 . 725275) (-1347 . 725224) - (-1348 . 725146) (-1349 . 725112) (-1350 . 725032) (-1351 . 724443) - (-1352 . 724342) (-1353 . 724182) (-1354 . 724127) (-1355 . 723946) - (-1356 . 723876) (-1357 . 723728) (-1358 . 723694) (-1359 . 723226) - (-1360 . 722742) (-1361 . 722641) (-1362 . 722477) (-1363 . 722425) - (-1364 . 722281) (-1365 . 722162) (-1366 . 722040) (-1367 . 721721) - (-1368 . 721687) (-1369 . 721027) (-1370 . 720779) (-1371 . 720678) - (-1372 . 720626) (-1373 . 720574) (-1374 . 720416) (-1375 . 720387) - (-1376 . 719904) (-1377 . 719870) (-1378 . 719806) (-1379 . 719558) - (-1380 . 719457) (-1381 . 719395) (-1382 . 719108) (-1383 . 719056) - (-1384 . 718892) (-1385 . 718770) (-1386 . 718287) (-1387 . 718190) - (-1388 . 718069) (-1389 . 717582) (-1390 . 717481) (-1391 . 717340) - (-1392 . 717288) (-1393 . 717218) (-1394 . 717054) (-1395 . 717000) - (-1396 . 716492) (-1397 . 716402) (-1398 . 716311) (-1399 . 716190) - (-1400 . 715567) (-1401 . 715429) (-1402 . 715328) (-1403 . 715277) - (-1404 . 715214) (-1405 . 714763) (-1406 . 714555) (-1407 . 714378) - (-1408 . 714310) (-1409 . 714219) (-1410 . 714111) (-1411 . 713658) - (-1412 . 713557) (-1413 . 713505) (-1414 . 713298) (-1415 . 713109) - (-1416 . 713048) (-1417 . 712974) (-1418 . 712903) (-1419 . 712848) - (-1420 . 712740) (-1421 . 712580) (-1422 . 712479) (-1423 . 712427) - (-1424 . 712162) (-1425 . 712004) (-1426 . 711823) (-1427 . 711752) - (-1428 . 711659) (-1429 . 711607) (-1430 . 711448) (-1431 . 711299) - (-1432 . 711198) (-1433 . 711108) (-1434 . 710742) (-1435 . 710581) - (-1436 . 710520) (-1437 . 710341) (-1438 . 710289) (-1439 . 710002) - (-1440 . 709673) (-1441 . 709154) (-1442 . 709039) (-1443 . 708848) - (-1444 . 708578) (-1445 . 708417) (-1446 . 708345) (-1447 . 708226) - (-1448 . 707800) (-1449 . 707748) (-1450 . 707580) (-1451 . 707419) - (-1452 . 707300) (-1453 . 707185) (-1454 . 707112) (-1455 . 706956) - (-1456 . 706646) (-1457 . 706488) (-1458 . 706111) (-1459 . 706067) - (-1460 . 705948) (-1461 . 705896) (-1462 . 705774) (-1463 . 705631) - (-1464 . 705558) (-1465 . 705507) (-1466 . 705442) (-1467 . 705360) - (-1468 . 705291) (-1469 . 705084) (-1470 . 704944) (-1471 . 704891) - (-1472 . 704820) (-1473 . 704717) (-1474 . 704438) (-1475 . 704389) - (-1476 . 704311) (-1477 . 704258) (-1478 . 704019) (-1479 . 703876) - (-1480 . 703759) (-1481 . 703629) (-1482 . 703318) (-1483 . 703190) - (-1484 . 703062) (-1485 . 702840) (-1486 . 702762) (-1487 . 702693) - (-1488 . 702489) (-1489 . 702346) (-1490 . 702288) (-1491 . 702260) - (-1492 . 701674) (-1493 . 701546) (-1494 . 701393) (-1495 . 701115) - (-1496 . 700885) (-1497 . 700674) (-1498 . 700393) (-1499 . 700292) - (-1500 . 700264) (-1501 . 700046) (-1502 . 699968) (-1503 . 699827) - (-1504 . 699699) (-1505 . 699646) (-1506 . 699531) (-1507 . 699372) - (-1508 . 699179) (-1509 . 698954) (-1510 . 698853) (-1511 . 698740) - (-1512 . 698525) (-1513 . 698382) (-1514 . 697752) (-1515 . 697609) - (-1516 . 697557) (-1517 . 697021) (-1518 . 696742) (-1519 . 696212) - (-1520 . 696111) (-1521 . 695996) (-1522 . 695432) (-1523 . 695123) - (-1524 . 694980) (-1525 . 685530) (-1526 . 685478) (-1527 . 685335) - (-1528 . 685156) (-1529 . 684938) (-1530 . 684822) (-1531 . 684753) - (-1532 . 684189) (-1533 . 683674) (-1534 . 683588) (-1535 . 683446) - (-1536 . 683295) (-1537 . 683243) (-1538 . 683068) (-1539 . 683034) - (-1540 . 682772) (-1541 . 682694) (-1542 . 682476) (-1543 . 681741) - (-1544 . 681672) (-1545 . 681109) (-1546 . 680765) (-1547 . 680620) - (-1548 . 680569) (-1549 . 680323) (-1550 . 680182) (-1551 . 679788) - (-1552 . 679665) (-1553 . 679540) (-1554 . 679471) (-1555 . 678908) - (-1556 . 678763) (-1557 . 678010) (-1558 . 677915) (-1559 . 677865) - (-1560 . 677763) (-1561 . 677657) (-1562 . 677604) (-1563 . 677460) - (-1564 . 677395) (-1565 . 677192) (-1566 . 677012) (-1567 . 676946) - (-1568 . 676821) (-1569 . 676741) (-1570 . 676178) (-1571 . 675852) - (-1572 . 675689) (-1573 . 675566) (-1574 . 675515) (-1575 . 675416) - (-1576 . 675363) (-1577 . 675284) (-1578 . 675211) (-1579 . 675067) - (-1580 . 674852) (-1581 . 674727) (-1582 . 674587) (-1583 . 674507) - (-1584 . 673944) (-1585 . 673704) (-1586 . 673516) (-1587 . 673465) - (-1588 . 673386) (-1589 . 673333) (-1590 . 673083) (-1591 . 672889) - (-1592 . 672771) (-1593 . 672554) (-1594 . 671991) (-1595 . 671287) - (-1596 . 671089) (-1597 . 671010) (-1598 . 670957) (-1599 . 670908) - (-1600 . 670590) (-1601 . 669726) (-1602 . 669676) (-1603 . 669551) - (-1604 . 669387) (-1605 . 669264) (-1606 . 667036) (-1607 . 665740) - (-1608 . 665059) (-1609 . 664916) (-1610 . 664822) (-1611 . 664769) - (-1612 . 664699) (-1613 . 664628) (-1614 . 664262) (-1615 . 664233) - (-1616 . 663360) (-1617 . 663202) (-1618 . 662962) (-1619 . 662808) - (-1620 . 662645) (-1621 . 662381) (-1622 . 662267) (-1623 . 662173) - (-1624 . 662121) (-1625 . 661959) (-1626 . 661790) (-1627 . 660791) - (-1628 . 660648) (-1629 . 660232) (-1630 . 660068) (-1631 . 659912) - (-1632 . 659659) (-1633 . 659538) (-1634 . 659320) (-1635 . 659120) - (-1636 . 659068) (-1637 . 658188) (-1638 . 658105) (-1639 . 657935) - (-1640 . 657787) (-1641 . 657680) (-1642 . 657562) (-1643 . 657404) - (-1644 . 657351) (-1645 . 656989) (-1646 . 656916) (-1647 . 656662) - (-1648 . 656592) (-1649 . 656538) (-1650 . 656455) (-1651 . 656185) - (-1652 . 656132) (-1653 . 655984) (-1654 . 655872) (-1655 . 655714) - (-1656 . 655661) (-1657 . 655568) (-1658 . 655263) (-1659 . 655209) - (-1660 . 655063) (-1661 . 654857) (-1662 . 654804) (-1663 . 654581) - (-1664 . 654463) (-1665 . 654305) (-1666 . 654211) (-1667 . 654140) - (-1668 . 654055) (-1669 . 653675) (-1670 . 653616) (-1671 . 653487) - (-1672 . 653353) (-1673 . 653044) (-1674 . 652988) (-1675 . 652830) - (-1676 . 652777) (-1677 . 652721) (-1678 . 652636) (-1679 . 652219) - (-1680 . 652160) (-1681 . 652100) (-1682 . 652023) (-1683 . 651831) - (-1684 . 651745) (-1685 . 651630) (-1686 . 649498) (-1687 . 649340) - (-1688 . 649312) (-1689 . 649256) (-1690 . 649194) (-1691 . 649078) - (-1692 . 648702) (-1693 . 648650) (-1694 . 647498) (-1695 . 647445) - (-1696 . 647368) (-1697 . 647207) (-1698 . 646783) (-1699 . 642720) - (-1700 . 642562) (-1701 . 642534) (-1702 . 642478) (-1703 . 642088) - (-1704 . 641712) (-1705 . 641657) (-1706 . 641539) (-1707 . 641469) - (-1708 . 641332) (-1709 . 640799) (-1710 . 640375) (-1711 . 640308) - (-1712 . 640280) (-1713 . 640209) (-1714 . 639321) (-1715 . 639188) - (-1716 . 639128) (-1717 . 638998) (-1718 . 638799) (-1719 . 638239) - (-1720 . 638187) (-1721 . 638029) (-1722 . 638001) (-1723 . 637930) - (-1724 . 637348) (-1725 . 636885) (-1726 . 636604) (-1727 . 636545) - (-1728 . 636415) (-1729 . 636197) (-1730 . 635079) (-1731 . 634902) - (-1732 . 634744) (-1733 . 634664) (-1734 . 634593) (-1735 . 633774) - (-1736 . 633347) (-1737 . 633211) (-1738 . 633151) (-1739 . 633024) - (-1740 . 632859) (-1741 . 631129) (-1742 . 628784) (-1743 . 628727) - (-1744 . 628569) (-1745 . 628509) (-1746 . 628428) (-1747 . 628176) - (-1748 . 628074) (-1749 . 628018) (-1750 . 627959) (-1751 . 627832) - (-1752 . 627501) (-1753 . 627092) (-1754 . 625515) (-1755 . 625157) - (-1756 . 624999) (-1757 . 624947) (-1758 . 624867) (-1759 . 624615) - (-1760 . 624538) (-1761 . 624454) (-1762 . 624398) (-1763 . 624338) - (-1764 . 624168) (-1765 . 624041) (-1766 . 623239) (-1767 . 623205) - (-1768 . 623047) (-1769 . 622995) (-1770 . 622910) (-1771 . 622664) - (-1772 . 622502) (-1773 . 622443) (-1774 . 622384) (-1775 . 622257) - (-1776 . 621172) (-1777 . 620662) (-1778 . 620016) (-1779 . 619858) - (-1780 . 619806) (-1781 . 619714) (-1782 . 619468) (-1783 . 619384) - (-1784 . 619325) (-1785 . 619266) (-1786 . 619163) (-1787 . 619040) - (-1788 . 618632) (-1789 . 618040) (-1790 . 617882) (-1791 . 617830) - (-1792 . 617526) (-1793 . 617280) (-1794 . 617199) (-1795 . 617143) - (-1796 . 617091) (-1797 . 616949) (-1798 . 616849) (-1799 . 616632) - (-1800 . 615972) (-1801 . 615814) (-1802 . 615694) (-1803 . 615642) - (-1804 . 615561) (-1805 . 615315) (-1806 . 614954) (-1807 . 614898) - (-1808 . 614800) (-1809 . 614703) (-1810 . 614572) (-1811 . 614500) - (-1812 . 614426) (-1813 . 613650) (-1814 . 613578) (-1815 . 613331) - (-1816 . 613274) (-1817 . 613077) (-1818 . 612983) (-1819 . 612853) - (-1820 . 612722) (-1821 . 612650) (-1822 . 612576) (-1823 . 612497) - (-1824 . 612292) (-1825 . 612045) (-1826 . 611973) (-1827 . 611846) - (-1828 . 611730) (-1829 . 611579) (-1830 . 611417) (-1831 . 611375) - (-1832 . 611320) (-1833 . 611254) (-1834 . 611064) (-1835 . 610817) - (-1836 . 610760) (-1837 . 610614) (-1838 . 610517) (-1839 . 609879) - (-1840 . 609203) (-1841 . 608821) (-1842 . 608717) (-1843 . 608656) - (-1844 . 608601) (-1845 . 608534) (-1846 . 608435) (-1847 . 608188) - (-1848 . 607970) (-1849 . 607842) (-1850 . 607619) (-1851 . 607518) - (-1852 . 607251) (-1853 . 607008) (-1854 . 606949) (-1855 . 606895) - (-1856 . 606840) (-1857 . 606722) (-1858 . 606655) (-1859 . 606537) - (-1860 . 606362) (-1861 . 606144) (-1862 . 606092) (-1863 . 605995) - (-1864 . 605532) (-1865 . 605473) (-1866 . 605370) (-1867 . 605317) - (-1868 . 605262) (-1869 . 605205) (-1870 . 605084) (-1871 . 604218) - (-1872 . 604045) (-1873 . 603993) (-1874 . 601152) (-1875 . 601008) - (-1876 . 600692) (-1877 . 600586) (-1878 . 600140) (-1879 . 600069) - (-1880 . 599991) (-1881 . 599848) (-1882 . 599816) (-1883 . 599598) - (-1884 . 599387) (-1885 . 599335) (-1886 . 599064) (-1887 . 598456) - (-1888 . 598350) (-1889 . 597904) (-1890 . 597831) (-1891 . 597623) - (-1892 . 597555) (-1893 . 597412) (-1894 . 597061) (-1895 . 596888) - (-1896 . 596773) (-1897 . 596675) (-1898 . 595807) (-1899 . 595197) - (-1900 . 594357) (-1901 . 593911) (-1902 . 593807) (-1903 . 593736) - (-1904 . 593596) (-1905 . 593368) (-1906 . 593195) (-1907 . 592962) - (-1908 . 592823) (-1909 . 592664) (-1910 . 591586) (-1911 . 589730) - (-1912 . 589205) (-1913 . 589014) (-1914 . 588943) (-1915 . 588803) - (-1916 . 588702) (-1917 . 588529) (-1918 . 588368) (-1919 . 588269) - (-1920 . 588058) (-1921 . 587780) (-1922 . 587405) (-1923 . 586819) - (-1924 . 586751) (-1925 . 586661) (-1926 . 586565) (-1927 . 586499) - (-1928 . 586356) (-1929 . 586255) (-1930 . 586082) (-1931 . 585927) - (-1932 . 585827) (-1933 . 585725) (-1934 . 585669) (-1935 . 585353) - (-1936 . 585285) (-1937 . 585192) (-1938 . 585055) (-1939 . 584968) - (-1940 . 584841) (-1941 . 583055) (-1942 . 582783) (-1943 . 582385) - (-1944 . 582283) (-1945 . 582231) (-1946 . 581893) (-1947 . 581825) - (-1948 . 581742) (-1949 . 581714) (-1950 . 581323) (-1951 . 581186) - (-1952 . 581114) (-1953 . 580984) (-1954 . 580870) (-1955 . 580818) - (-1956 . 573875) (-1957 . 572959) (-1958 . 572856) (-1959 . 572525) - (-1960 . 572457) (-1961 . 572294) (-1962 . 571681) (-1963 . 571544) - (-1964 . 571356) (-1965 . 571232) (-1966 . 570162) (-1967 . 570110) - (-1968 . 569860) (-1969 . 569781) (-1970 . 569696) (-1971 . 569598) - (-1972 . 569263) (-1973 . 568936) (-1974 . 568868) (-1975 . 568754) - (-1976 . 568327) (-1977 . 568259) (-1978 . 568087) (-1979 . 567963) - (-1980 . 567867) (-1981 . 567810) (-1982 . 567730) (-1983 . 567599) - (-1984 . 567453) (-1985 . 563790) (-1986 . 563660) (-1987 . 563580) - (-1988 . 563503) (-1989 . 563387) (-1990 . 563205) (-1991 . 563099) - (-1992 . 562994) (-1993 . 562483) (-1994 . 562354) (-1995 . 562205) - (-1996 . 561931) (-1997 . 561423) (-1998 . 561016) (-1999 . 559799) - (-2000 . 559683) (-2001 . 559540) (-2002 . 558945) (-2003 . 558343) - (-2004 . 558315) (-2005 . 558209) (-2006 . 558122) (-2007 . 557969) - (-2008 . 557940) (-2009 . 557861) (-2010 . 557571) (-2011 . 557324) - (-2012 . 557267) (-2013 . 556119) (-2014 . 555757) (-2015 . 555657) - (-2016 . 555541) (-2017 . 555375) (-2018 . 555272) (-2019 . 555243) - (-2020 . 555076) (-2021 . 554997) (-2022 . 554944) (-2023 . 554891) - (-2024 . 554836) (-2025 . 554651) (-2026 . 554551) (-2027 . 554498) - (-2028 . 553914) (-2029 . 553761) (-2030 . 553704) (-2031 . 553537) - (-2032 . 553106) (-2033 . 552999) (-2034 . 552870) (-2035 . 552817) - (-2036 . 552762) (-2037 . 552219) (-2038 . 552138) (-2039 . 552053) - (-2040 . 551983) (-2041 . 551827) (-2042 . 551745) (-2043 . 551646) - (-2044 . 551539) (-2045 . 551410) (-2046 . 551291) (-2047 . 551213) - (-2048 . 551034) (-2049 . 550956) (-2050 . 550882) (-2051 . 550566) - (-2052 . 550489) (-2053 . 550333) (-2054 . 550261) (-2055 . 550143) - (-2056 . 549975) (-2057 . 549883) (-2058 . 549827) (-2059 . 549750) - (-2060 . 549528) (-2061 . 549421) (-2062 . 549369) (-2063 . 549314) - (-2064 . 548944) (-2065 . 548797) (-2066 . 548720) (-2067 . 548596) - (-2068 . 548467) (-2069 . 548172) (-2070 . 547950) (-2071 . 543950) - (-2072 . 543873) (-2073 . 543816) (-2074 . 543654) (-2075 . 543002) - (-2076 . 542824) (-2077 . 542661) (-2078 . 542584) (-2079 . 542438) - (-2080 . 541815) (-2081 . 541686) (-2082 . 541492) (-2083 . 541412) - (-2084 . 541190) (-2085 . 541082) (-2086 . 541026) (-2087 . 540711) - (-2088 . 540639) (-2089 . 540560) (-2090 . 540528) (-2091 . 540357) - (-2092 . 539919) (-2093 . 539731) (-2094 . 539502) (-2095 . 539283) - (-2096 . 539147) (-2097 . 538860) (-2098 . 538720) (-2099 . 538638) - (-2100 . 538606) (-2101 . 538479) (-2102 . 538113) (-2103 . 537968) - (-2104 . 537909) (-2105 . 537690) (-2106 . 537554) (-2107 . 537435) - (-2108 . 537245) (-2109 . 537086) (-2110 . 537054) (-2111 . 536909) - (-2112 . 536802) (-2113 . 536657) (-2114 . 536598) (-2115 . 536379) - (-2116 . 536256) (-2117 . 536134) (-2118 . 536018) (-2119 . 535936) - (-2120 . 535904) (-2121 . 535751) (-2122 . 535532) (-2123 . 535242) - (-2124 . 535139) (-2125 . 534920) (-2126 . 534821) (-2127 . 534762) - (-2128 . 534646) (-2129 . 534564) (-2130 . 534532) (-2131 . 534369) - (-2132 . 534300) (-2133 . 533839) (-2134 . 533683) (-2135 . 533580) - (-2136 . 533361) (-2137 . 533212) (-2138 . 533153) (-2139 . 533037) - (-2140 . 532955) (-2141 . 532923) (-2142 . 532829) (-2143 . 532770) - (-2144 . 532736) (-2145 . 532633) (-2146 . 532414) (-2147 . 532315) - (-2148 . 532197) (-2149 . 532145) (-2150 . 531992) (-2151 . 531886) - (-2152 . 531854) (-2153 . 531658) (-2154 . 531606) (-2155 . 531523) - (-2156 . 531486) (-2157 . 531383) (-2158 . 531282) (-2159 . 531127) - (-2160 . 531047) (-2161 . 530995) (-2162 . 530851) (-2163 . 530789) - (-2164 . 530757) (-2165 . 530441) (-2166 . 530404) (-2167 . 530321) - (-2168 . 530266) (-2169 . 530111) (-2170 . 530053) (-2171 . 530001) - (-2172 . 529927) (-2173 . 529752) (-2174 . 529723) (-2175 . 529671) - (-2176 . 528490) (-2177 . 528285) (-2178 . 528248) (-2179 . 528174) - (-2180 . 528119) (-2181 . 528015) (-2182 . 527962) (-2183 . 527876) - (-2184 . 527723) (-2185 . 527610) (-2186 . 527558) (-2187 . 527191) - (-2188 . 527078) (-2189 . 527041) (-2190 . 526823) (-2191 . 526768) - (-2192 . 526173) (-2193 . 526060) (-2194 . 525986) (-2195 . 525833) - (-2196 . 525720) (-2197 . 525440) (-2198 . 525338) (-2199 . 525304) - (-2200 . 525230) (-2201 . 525175) (-2202 . 525069) (-2203 . 524895) - (-2204 . 524782) (-2205 . 524503) (-2206 . 524346) (-2207 . 524244) - (-2208 . 524210) (-2209 . 524176) (-2210 . 524021) (-2211 . 523943) - (-2212 . 523759) (-2213 . 523356) (-2214 . 523164) (-2215 . 523051) - (-2216 . 522958) (-2217 . 522863) (-2218 . 522808) (-2219 . 522774) - (-2220 . 522481) (-2221 . 522385) (-2222 . 522251) (-2223 . 521363) - (-2224 . 521064) (-2225 . 520942) (-2226 . 520849) (-2227 . 520752) - (-2228 . 520617) (-2229 . 520441) (-2230 . 520223) (-2231 . 519971) - (-2232 . 519875) (-2233 . 519709) (-2234 . 519367) (-2235 . 519172) - (-2236 . 519035) (-2237 . 518942) (-2238 . 518860) (-2239 . 518810) - (-2240 . 518782) (-2241 . 518616) (-2242 . 518520) (-2243 . 518354) - (-2244 . 518185) (-2245 . 518070) (-2246 . 518036) (-2247 . 517902) - (-2248 . 517831) (-2249 . 517757) (-2250 . 517654) (-2251 . 517103) - (-2252 . 517047) (-2253 . 516997) (-2254 . 516898) (-2255 . 516764) - (-2256 . 516535) (-2257 . 516409) (-2258 . 516275) (-2259 . 516183) - (-2260 . 515914) (-2261 . 515855) (-2262 . 515775) (-2263 . 515620) - (-2264 . 515074) (-2265 . 514968) (-2266 . 514834) (-2267 . 514580) - (-2268 . 514501) (-2269 . 514201) (-2270 . 514039) (-2271 . 513920) - (-2272 . 513593) (-2273 . 513482) (-2274 . 513003) (-2275 . 512879) - (-2276 . 512745) (-2277 . 512392) (-2278 . 512032) (-2279 . 511948) - (-2280 . 511653) (-2281 . 511542) (-2282 . 511377) (-2283 . 511253) - (-2284 . 511119) (-2285 . 510091) (-2286 . 509911) (-2287 . 509848) - (-2288 . 509690) (-2289 . 509606) (-2290 . 509533) (-2291 . 509465) - (-2292 . 509396) (-2293 . 509212) (-2294 . 508845) (-2295 . 508714) - (-2296 . 508396) (-2297 . 507554) (-2298 . 507352) (-2299 . 507179) - (-2300 . 506668) (-2301 . 506558) (-2302 . 506474) (-2303 . 506089) - (-2304 . 505979) (-2305 . 505686) (-2306 . 505563) (-2307 . 505432) - (-2308 . 505220) (-2309 . 501611) (-2310 . 500841) (-2311 . 500579) - (-2312 . 500064) (-2313 . 500035) (-2314 . 499984) (-2315 . 499900) - (-2316 . 499872) (-2317 . 499769) (-2318 . 499638) (-2319 . 499064) - (-2320 . 498806) (-2321 . 498531) (-2322 . 498464) (-2323 . 498380) - (-2324 . 498181) (-2325 . 498110) (-2326 . 493950) (-2327 . 493677) - (-2328 . 493381) (-2329 . 492998) (-2330 . 492181) (-2331 . 491662) - (-2332 . 491530) (-2333 . 491339) (-2334 . 491262) (-2335 . 491165) - (-2336 . 490985) (-2337 . 490537) (-2338 . 490390) (-2339 . 490129) - (-2340 . 490002) (-2341 . 488224) (-2342 . 488052) (-2343 . 487708) - (-2344 . 487636) (-2345 . 487566) (-2346 . 487316) (-2347 . 486889) - (-2348 . 486686) (-2349 . 486605) (-2350 . 486477) (-2351 . 486005) - (-2352 . 485782) (-2353 . 485469) (-2354 . 479955) (-2355 . 479885) - (-2356 . 479830) (-2357 . 479210) (-2358 . 479106) (-2359 . 479018) - (-2360 . 478766) (-2361 . 478162) (-2362 . 477320) (-2363 . 477141) - (-2364 . 477025) (-2365 . 476931) (-2366 . 476853) (-2367 . 476246) - (-2368 . 476092) (-2369 . 475991) (-2370 . 475867) (-2371 . 475617) - (-2372 . 475485) (-2373 . 475353) (-2374 . 475092) (-2375 . 474995) - (-2376 . 474621) (-2377 . 474509) (-2378 . 474432) (-2379 . 474214) - (-2380 . 474094) (-2381 . 473996) (-2382 . 473744) (-2383 . 473607) - (-2384 . 473475) (-2385 . 473334) (-2386 . 473265) (-2387 . 473181) - (-2388 . 473102) (-2389 . 472924) (-2390 . 470663) (-2391 . 470534) - (-2392 . 470462) (-2393 . 470338) (-2394 . 470123) (-2395 . 469991) - (-2396 . 469835) (-2397 . 469633) (-2398 . 469460) (-2399 . 469376) - (-2400 . 469303) (-2401 . 469039) (-2402 . 468941) (-2403 . 468134) - (-2404 . 467882) (-2405 . 467829) (-2406 . 467622) (-2407 . 467442) - (-2408 . 467280) (-2409 . 467097) (-2410 . 466606) (-2411 . 466523) - (-2412 . 466109) (-2413 . 466021) (-2414 . 465949) (-2415 . 465825) - (-2416 . 464889) (-2417 . 464691) (-2418 . 464638) (-2419 . 464300) - (** . 461305) (-2421 . 459675) (-2422 . 458243) (-2423 . 458084) - (-2424 . 458032) (-2425 . 458001) (-2426 . 457428) (-2427 . 457345) - (-2428 . 457051) (-2429 . 456963) (-2430 . 456627) (-2431 . 456454) - (-2432 . 456402) (-2433 . 456117) (-2434 . 455974) (-2435 . 455922) - (-2436 . 455584) (-2437 . 454725) (-2438 . 454584) (-2439 . 454474) - (-2440 . 454264) (-2441 . 454181) (-2442 . 453733) (-2443 . 453645) - (-2444 . 453573) (-2445 . 453300) (-2446 . 453248) (-2447 . 452927) - (-2448 . 452781) (-2449 . 448238) (-2450 . 448187) (-2451 . 448135) - (-2452 . 448058) (-2453 . 447957) (-2454 . 447779) (-2455 . 447691) - (-2456 . 447355) (-2457 . 447082) (-2458 . 446967) (-2459 . 446808) - (-2460 . 446716) (-2461 . 446483) (-2462 . 446192) (-2463 . 445803) - (-2464 . 445534) (-2465 . 445475) (-2466 . 445082) (-2467 . 444994) - (-2468 . 444922) (-2469 . 444624) (-2470 . 444553) (-2471 . 444208) - (-2472 . 444148) (-2473 . 443614) (-2474 . 443221) (-2475 . 442979) - (-2476 . 442855) (-2477 . 442462) (-2478 . 442368) (-2479 . 441915) - (-2480 . 441813) (-2481 . 441653) (-2482 . 441576) (-2483 . 440822) - (-2484 . 440748) (-2485 . 440691) (-2486 . 440265) (-2487 . 440024) - (-2488 . 439582) (-2489 . 439309) (-2490 . 439193) (-2491 . 438983) - (-2492 . 438859) (-2493 . 438674) (-2494 . 438586) (-2495 . 438514) - (-2496 . 438369) (-2497 . 437985) (-2498 . 437846) (-2499 . 437775) - (-2500 . 437713) (-2501 . 437656) (-2502 . 437559) (-2503 . 437427) - (-2504 . 437374) (-2505 . 436973) (-2506 . 436766) (-2507 . 436678) - (-2508 . 436573) (-2509 . 436432) (-2510 . 436379) (-2511 . 436240) - (-2512 . 436027) (-2513 . 435912) (-2514 . 435316) (-2515 . 435233) - (-2516 . 435178) (-2517 . 434954) (-2518 . 434866) (-2519 . 434789) - (-2520 . 434737) (-2521 . 434580) (-2522 . 434509) (-2523 . 434173) - (-2524 . 434044) (-2525 . 433901) (-2526 . 433820) (-2527 . 433704) - (-2528 . 433551) (-2529 . 433216) (-2530 . 432910) (-2531 . 432822) - (-2532 . 432745) (-2533 . 432683) (-2534 . 432631) (-2535 . 432465) - (-2536 . 432412) (-2537 . 432327) (-2538 . 432219) (-2539 . 431421) - (-2540 . 431062) (-2541 . 430733) (-2542 . 430534) (-2543 . 430446) - (-2544 . 430374) (-2545 . 430283) (-2546 . 430102) (-2547 . 430049) - (-2548 . 429553) (-2549 . 429432) (-2550 . 429053) (-2551 . 414821) - (-2552 . 414529) (-2553 . 414341) (-2554 . 414253) (-2555 . 413619) - (-2556 . 413276) (-2557 . 413061) (-2558 . 412999) (-2559 . 411818) - (-2560 . 411790) (-2561 . 411738) (-2562 . 411685) (-2563 . 410387) - (-2564 . 410320) (-2565 . 410248) (-2566 . 409956) (-2567 . 409765) - (-2568 . 409677) (-2569 . 409520) (-2570 . 409388) (-2571 . 409296) - (-2572 . 409086) (-2573 . 407919) (-2574 . 407849) (-2575 . 407765) - (-2576 . 407712) (-2577 . 407592) (-2578 . 407463) (-2579 . 407389) - (-2580 . 407336) (-2581 . 406839) (-2582 . 406547) (-2583 . 406380) - (-2584 . 405989) (-2585 . 405901) (-2586 . 405756) (-2587 . 405655) - (-2588 . 405558) (-2589 . 404879) (-2590 . 404826) (-2591 . 404680) - (-2592 . 404565) (-2593 . 404491) (-2594 . 404065) (-2595 . 403773) - (-2596 . 403432) (-2597 . 403383) (-2598 . 403295) (-2599 . 403150) - (-2600 . 402671) (-2601 . 402618) (-2602 . 402265) (-2603 . 402008) - (-2604 . 401564) (-2605 . 401505) (-2606 . 401335) (-2607 . 401283) - (-2608 . 401034) (-2609 . 400946) (-2610 . 400460) (-2611 . 400101) - (-2612 . 400048) (-2613 . 399695) (-2614 . 399593) (-2615 . 398719) - (-2616 . 395052) (-2617 . 394945) (-2618 . 394699) (-2619 . 394650) - (-2620 . 394512) (-2621 . 394177) (-2622 . 393737) (-2623 . 392441) - (-2624 . 392388) (-2625 . 392311) (-2626 . 392110) (-2627 . 391983) - (-2628 . 391837) (-2629 . 391409) (-2630 . 391075) (-2631 . 390937) - (-2632 . 390885) (-2633 . 390670) (-2634 . 390149) (-2635 . 390005) - (-2636 . 389952) (-2637 . 389875) (-2638 . 389553) (-2639 . 389423) - (-2640 . 389260) (-2641 . 389062) (-2642 . 388916) (-2643 . 388796) - (-2644 . 388537) (-2645 . 388467) (-2646 . 388414) (-2647 . 388337) - (-2648 . 387863) (-2649 . 387751) (-2650 . 387552) (-2651 . 387323) - (-2652 . 387271) (-2653 . 387151) (-2654 . 386796) (-2655 . 386726) - (-2656 . 386673) (-2657 . 386611) (-2658 . 386504) (-2659 . 386346) - (-2660 . 386207) (-2661 . 386127) (-2662 . 385951) (-2663 . 385805) - (-2664 . 385664) (-2665 . 385437) (-2666 . 384236) (-2667 . 384166) - (-2668 . 384113) (-2669 . 384042) (-2670 . 383934) (-2671 . 383820) - (-2672 . 383717) (-2673 . 383295) (-2674 . 383243) (-2675 . 383155) - (-2676 . 382928) (-2677 . 382599) (-2678 . 382505) (-2679 . 382135) - (-2680 . 382082) (-2681 . 381161) (-2682 . 381010) (-2683 . 380862) - (-2684 . 380759) (-2685 . 380532) (-2686 . 380386) (-2687 . 380298) - (-2688 . 380071) (-2689 . 379977) (-2690 . 379797) (-2691 . 379744) - (-2692 . 379457) (-2693 . 379315) (-2694 . 379231) (-2695 . 379134) - (-2696 . 378863) (-2697 . 378811) (-2698 . 378723) (-2699 . 378496) - (-2700 . 378402) (-2701 . 378331) (-2702 . 378220) (-2703 . 377801) - (-2704 . 377717) (-2705 . 377658) (-2706 . 377520) (-2707 . 377139) - (-2708 . 377051) (-2709 . 376836) (-2710 . 376742) (-2711 . 376671) - (-2712 . 376393) (-2713 . 376297) (-2714 . 376047) (-2715 . 375939) - (-2716 . 375604) (-2717 . 375463) (-2718 . 375411) (-2719 . 375273) - (-2720 . 375058) (-2721 . 374964) (-2722 . 374460) (-2723 . 374388) - (-2724 . 374292) (-2725 . 373615) (-2726 . 373192) (-2727 . 373091) - (-2728 . 372612) (-2729 . 372563) (-2730 . 372425) (-2731 . 372273) - (-2732 . 372187) (-2733 . 372115) (-2734 . 372025) (-2735 . 371870) - (-2736 . 371443) (-2737 . 371324) (-2738 . 371201) (-2739 . 371149) - (-2740 . 371061) (-2741 . 370877) (-2742 . 370791) (-2743 . 370714) - (-2744 . 370653) (-2745 . 370428) (-2746 . 370317) (-2747 . 370240) - (-2748 . 370024) (-2749 . 369788) (-2750 . 369739) (-2751 . 369651) - (-2752 . 369546) (-2753 . 369487) (-2754 . 369401) (-2755 . 369348) - (-2756 . 368927) (-2757 . 368874) (-2758 . 368603) (-2759 . 368420) - (-2760 . 368166) (-2761 . 368114) (-2762 . 368026) (-2763 . 367903) - (-2764 . 367817) (-2765 . 367764) (-2766 . 367492) (-2767 . 367439) - (-2768 . 367168) (-2769 . 367005) (-2770 . 366755) (-2771 . 366706) - (-2772 . 366618) (-2773 . 366510) (-2774 . 366424) (-2775 . 366371) - (-2776 . 366228) (-2777 . 366032) (-2778 . 365645) (-2779 . 365428) - (-2780 . 365133) (-2781 . 365081) (-2782 . 364993) (-2783 . 364885) - (-2784 . 364557) (-2785 . 364483) (-2786 . 364387) (-2787 . 364334) - (-2788 . 363856) (-2789 . 363424) (-2790 . 362721) (-2791 . 362275) - (-2792 . 362134) (-2793 . 362085) (-2794 . 361997) (-2795 . 361721) - (-2796 . 361650) (-2797 . 361597) (-2798 . 361496) (-2799 . 361391) - (-2800 . 361248) (-2801 . 361195) (-2802 . 361145) (-2803 . 361048) - (-2804 . 360988) (-2805 . 360879) (-2806 . 360535) (-2807 . 360483) - (-2808 . 360392) (-2809 . 360086) (-2810 . 359860) (-2811 . 359789) - (-2812 . 359739) (-2813 . 359686) (-2814 . 359589) (-2815 . 359471) - (-2816 . 359394) (-2817 . 359276) (-2818 . 359135) (-2819 . 359041) - (-2820 . 358992) (-2821 . 358682) (-2822 . 358565) (-2823 . 358485) - (-2824 . 358276) (-2825 . 358223) (-2826 . 358173) (-2827 . 358055) - (-2828 . 357978) (-2829 . 357760) (-2830 . 357562) (-2831 . 357468) - (-2832 . 357402) (-2833 . 356659) (-2834 . 356607) (-2835 . 356530) - (-2836 . 356352) (-2837 . 356284) (-2838 . 356231) (-2839 . 356068) - (-2840 . 356008) (-2841 . 355885) (-2842 . 355836) (-2843 . 355638) - (-2844 . 355520) (-2845 . 355423) (-2846 . 355246) (-2847 . 355150) - (-2848 . 354923) (-2849 . 354713) (-2850 . 354660) (-2851 . 354469) - (-2852 . 353608) (-2853 . 353356) (-2854 . 353328) (-2855 . 353043) - (-2856 . 351863) (-2857 . 351813) (-2858 . 351668) (-2859 . 351436) - (-2860 . 351258) (-2861 . 351185) (-2862 . 351098) (-2863 . 351011) - (-2864 . 350933) (-2865 . 350493) (-2866 . 350076) (-2867 . 350026) - (-2868 . 349921) (-2869 . 349817) (-2870 . 349696) (-2871 . 349578) - (-2872 . 349161) (-2873 . 349083) (-2874 . 348984) (-2875 . 348956) - (-2876 . 348848) (-2877 . 348795) (-2878 . 348677) (-2879 . 348604) - (-2880 . 348573) (-2881 . 348366) (-2882 . 348051) (-2883 . 347999) - (-2884 . 329424) (-2885 . 329346) (-2886 . 329247) (-2887 . 329173) - (-2888 . 328913) (-2889 . 328746) (-2890 . 328647) (-2891 . 328528) - (-2892 . 328460) (-2893 . 328182) (-2894 . 328101) (-2895 . 325280) - (-2896 . 325181) (-2897 . 325082) (-2898 . 325032) (-2899 . 324543) - (-2900 . 324330) (-2901 . 324238) (-2902 . 324117) (-2903 . 324036) - (-2904 . 322838) (-2905 . 322739) (-2906 . 322595) (-2907 . 322512) - (-2908 . 322478) (-2909 . 322368) (-2910 . 322316) (-2911 . 322282) - (-2912 . 322155) (-2913 . 322063) (-2914 . 321982) (-2915 . 321419) - (-2916 . 321228) (-2917 . 321129) (-2918 . 320964) (-2919 . 320881) - (-2920 . 320816) (-2921 . 319724) (-2922 . 319669) (-2923 . 319635) - (-2924 . 319549) (-2925 . 319464) (-2926 . 319412) (-2927 . 317156) - (-2928 . 317057) (-2929 . 316819) (-2930 . 316694) (-2931 . 316657) - (-2932 . 316590) (-2933 . 316499) (-2934 . 316118) (-2935 . 315958) - (-2936 . 315817) (-2937 . 315680) (-2938 . 315543) (-2939 . 315511) - (-2940 . 315252) (-2941 . 315164) (-2942 . 315078) (-2943 . 315011) - (-2944 . 314564) (-2945 . 314486) (-2946 . 314339) (-2947 . 314256) - (-2948 . 314018) (-2949 . 313932) (-2950 . 312151) (-2951 . 312065) - (-2952 . 311998) (-2953 . 311763) (-2954 . 311594) (-2955 . 311355) - (-2956 . 311281) (-2957 . 311210) (-2958 . 311178) (-2959 . 311097) - (-2960 . 311011) (-2961 . 310944) (-2962 . 310689) (-2963 . 310631) - (-2964 . 310395) (-2965 . 310227) (-2966 . 310057) (-2967 . 309303) - (-2968 . 309217) (-2969 . 309150) (-2970 . 309081) (-2971 . 308984) - (-2972 . 308926) (-2973 . 308687) (-2974 . 308535) (-2975 . 308401) - (-2976 . 308183) (-2977 . 308059) (-2978 . 307927) (-2979 . 307810) - (-2980 . 307636) (-2981 . 307550) (-2982 . 307483) (-2983 . 307429) - (-2984 . 307348) (-2985 . 307036) (-2986 . 306841) (-2987 . 306737) - (-2988 . 306600) (-2989 . 306381) (-2990 . 306324) (-2991 . 306117) - (-2992 . 306031) (-2993 . 305964) (-2994 . 305886) (-2995 . 305780) - (-2996 . 305521) (-2997 . 305398) (-2998 . 305294) (-2999 . 305163) - (-3000 . 304983) (-3001 . 304818) (-3002 . 304732) (-3003 . 304665) - (-3004 . 304509) (-3005 . 304425) (-3006 . 304221) (-3007 . 304136) - (-3008 . 304023) (-3009 . 303804) (-3010 . 303639) (-3011 . 303553) - (-3012 . 303486) (-3013 . 303258) (-3014 . 303162) (-3015 . 303029) - (-3016 . 302806) (-3017 . 302434) (-3018 . 302328) (-3019 . 302206) - (-3020 . 302026) (-3021 . 301998) (-3022 . 301812) (-3023 . 301753) - (-3024 . 301589) (-3025 . 301503) (-3026 . 301436) (-3027 . 300472) - (-3028 . 300376) (-3029 . 300324) (-3030 . 300246) (-3031 . 300007) - (-3032 . 299924) (-3033 . 299799) (-3034 . 299405) (-3035 . 299353) - (-3036 . 299214) (-3037 . 299128) (-3038 . 298469) (-3039 . 298222) - (-3040 . 298126) (-3041 . 298042) (-3042 . 297901) (-3043 . 297814) - (-3044 . 297420) (-3045 . 297316) (-3046 . 297136) (-3047 . 296970) - (-3048 . 296939) (-3049 . 292989) (-3050 . 292892) (-3051 . 292806) - (-3052 . 292147) (-3053 . 291862) (-3054 . 291766) (-3055 . 290462) - (-3056 . 290385) (-3057 . 290357) (-3058 . 290219) (-3059 . 290136) - (-3060 . 289952) (-3061 . 289737) (-3062 . 289547) (-3063 . 289446) - (-3064 . 289360) (-3065 . 289231) (-3066 . 288946) (-3067 . 288850) - (-3068 . 288795) (-3069 . 288656) (-3070 . 288434) (-3071 . 288260) - (-3072 . 288170) (-3073 . 288088) (-3074 . 287991) (-3075 . 287905) - (-3076 . 287781) (-3077 . 287496) (-3078 . 287400) (-3079 . 287073) - (-3080 . 287021) (-3081 . 286768) (-3082 . 286575) (-3083 . 286376) - (-3084 . 286286) (-3085 . 285977) (-3086 . 285862) (-3087 . 285776) - (-3088 . 285652) (-3089 . 285328) (-3090 . 285232) (-3091 . 285158) - (-3092 . 284902) (-3093 . 284571) (-3094 . 284399) (-3095 . 284225) - (-3096 . 284131) (-3097 . 284036) (-3098 . 283951) (-3099 . 283865) - (-3100 . 283723) (-3101 . 283671) (-3102 . 283575) (-3103 . 283501) - (-3104 . 283341) (-3105 . 283045) (-3106 . 282926) (-3107 . 282814) - (-3108 . 282719) (-3109 . 282618) (-3110 . 282532) (-3111 . 282376) - (-3112 . 282327) (-3113 . 282231) (-3114 . 282148) (-3115 . 281994) - (-3116 . 281698) (-3117 . 281570) (-3118 . 281480) (-3119 . 281278) - (-3120 . 281192) (-3121 . 281047) (-3122 . 280952) (-3123 . 280856) - (-3124 . 280773) (-3125 . 280532) (-3126 . 280222) (-3127 . 280094) - (-3128 . 279986) (-3129 . 279912) (-3130 . 279818) (-3131 . 279715) - (-3132 . 279533) (-3133 . 279438) (-3134 . 279342) (-3135 . 277281) - (-3136 . 277226) (-3137 . 276936) (-3138 . 276619) (-3139 . 276497) - (-3140 . 276306) (-3141 . 276209) (-3142 . 276120) (-3143 . 275995) - (-3144 . 275900) (-3145 . 275804) (-3146 . 275730) (-3147 . 275592) - (-3148 . 275463) (-3149 . 275238) (-3150 . 275182) (-3151 . 275113) - (-3152 . 275046) (-3153 . 274836) (-3154 . 274710) (-3155 . 274615) - (-3156 . 274519) (-3157 . 274445) (-3158 . 273777) (-3159 . 273586) - (-3160 . 273415) (-3161 . 273332) (-3162 . 273279) (-3163 . 273220) - (-3164 . 273118) (-3165 . 273020) (-3166 . 272924) (-3167 . 272850) - (-3168 . 272674) (-3169 . 272186) (-3170 . 272015) (-3171 . 271932) - (-3172 . 271787) (-3173 . 271734) (-3174 . 271678) (-3175 . 271621) - (-3176 . 271523) (-3177 . 271427) (-3178 . 271348) (-3179 . 271166) - (-3180 . 269964) (-3181 . 269880) (-3182 . 269703) (-3183 . 269620) - (-3184 . 269511) (-3185 . 269458) (-3186 . 269369) (-3187 . 269312) - (-3188 . 269217) (-3189 . 269121) (-3190 . 269066) (-3191 . 268890) - (-3192 . 268672) (-3193 . 268520) (-3194 . 268385) (-3195 . 268326) - (-3196 . 268214) (-3197 . 268157) (-3198 . 268062) (-3199 . 267966) - (-3200 . 267907) (-3201 . 267725) (-3202 . 267654) (-3203 . 267436) - (-3204 . 267156) (-3205 . 267021) (-3206 . 266962) (-3207 . 266874) - (-3208 . 266817) (-3209 . 266722) (-3210 . 266626) (-3211 . 266526) - (-3212 . 266347) (-3213 . 265943) (-3214 . 265684) (-3215 . 265560) - (-3216 . 265501) (-3217 . 265124) (-3218 . 264976) (-3219 . 264916) - (-3220 . 264821) (-3221 . 264636) (-3222 . 264536) (-3223 . 264357) - (-3224 . 264226) (-3225 . 263799) (-3226 . 263678) (-3227 . 263613) - (-3228 . 263560) (-3229 . 263498) (-3230 . 263433) (-3231 . 263338) - (-3232 . 263023) (-3233 . 262899) (-3234 . 262799) (-3235 . 262612) - (-3236 . 262407) (-3237 . 261866) (-3238 . 261748) (-3239 . 261683) - (-3240 . 261527) (-3241 . 261474) (-3242 . 261446) (-3243 . 261337) - (-3244 . 261235) (-3245 . 259646) (-3246 . 259546) (-3247 . 259164) - (-3248 . 259034) (-3249 . 258851) (-3250 . 258715) (-3251 . 258659) - (-3252 . 258631) (-3253 . 258522) (-3254 . 258420) (-3255 . 258262) - (-3256 . 258162) (-3257 . 257983) (-3258 . 257709) (-3259 . 257522) - (-3260 . 257389) (-3261 . 257150) (-3262 . 257094) (-3263 . 257066) - (-3264 . 256957) (-3265 . 256855) (-3266 . 256714) (-3267 . 256686) - (-3268 . 256586) (-3269 . 256407) (-3270 . 256228) (-3271 . 256099) - (-3272 . 256027) (-3273 . 255954) (-3274 . 255786) (-3275 . 255758) - (-3276 . 255478) (-3277 . 255383) (-3278 . 255240) (-3279 . 255212) - (-3280 . 255146) (-3281 . 255046) (-3282 . 254859) (-3283 . 254744) - (-3284 . 254637) (-3285 . 254580) (-3286 . 254510) (-3287 . 254336) - (-3288 . 254259) (-3289 . 254053) (-3290 . 253938) (-3291 . 253556) - (-3292 . 253415) (-3293 . 253311) (-3294 . 253107) (-3295 . 253047) - (-3296 . 252949) (-3297 . 252793) (-3298 . 252562) (-3299 . 250594) - (-3300 . 250479) (-3301 . 249483) (-3302 . 249428) (-3303 . 249296) - (-3304 . 248899) (-3305 . 248801) (-3306 . 248648) (-3307 . 248564) - (-3308 . 248436) (-3309 . 248377) (-3310 . 248262) (-3311 . 247854) - (-3312 . 247775) (-3313 . 247661) (-3314 . 247137) (-3315 . 247039) - (-3316 . 246865) (-3317 . 246784) (-3318 . 246659) (-3319 . 246544) - (-3320 . 246136) (-3321 . 246066) (-3322 . 245918) (-3323 . 245640) - (-3324 . 245499) (-3325 . 245447) (-3326 . 245237) (-3327 . 245156) - (-3328 . 245028) (-3329 . 244913) (-3330 . 244795) (-3331 . 244722) - (-3332 . 244583) (-3333 . 244470) (-3334 . 244388) (-3335 . 244329) - (-3336 . 244205) (-3337 . 244124) (-3338 . 243897) (-3339 . 243782) - (-3340 . 243622) (-3341 . 243518) (-3342 . 243463) (-3343 . 243035) - (-3344 . 242591) (-3345 . 242517) (-3346 . 242309) (-3347 . 242227) - (-3348 . 242000) (-3349 . 241882) (-3350 . 241737) (-3351 . 241664) - (-3352 . 241557) (-3353 . 241325) (-3354 . 241273) (-3355 . 241242) - (-3356 . 241147) (-3357 . 241066) (-3358 . 240938) (-3359 . 240860) - (-3360 . 240742) (-3361 . 240687) (-3362 . 240577) (-3363 . 240372) - (-3364 . 240212) (-3365 . 240117) (-3366 . 240020) (-3367 . 239817) - (-3368 . 239739) (-3369 . 239557) (-3370 . 239200) (-3371 . 239087) - (-3372 . 238905) (-3373 . 238708) (-3374 . 238548) (-3375 . 238412) - (-3376 . 238311) (-3377 . 238132) (-3378 . 237745) (-3379 . 237621) - (-3380 . 237210) (-3381 . 237106) (-3382 . 236976) (-3383 . 236754) - (-3384 . 236601) (-3385 . 236503) (-3386 . 236434) (-3387 . 235907) - (-3388 . 235561) (-3389 . 235268) (-3390 . 235113) (-3391 . 235003) - (-3392 . 234793) (-3393 . 234035) (-3394 . 233937) (-3395 . 233887) - (-3396 . 233360) (-3397 . 233258) (-3398 . 232965) (-3399 . 232810) - (-3400 . 232700) (-3401 . 232489) (-3402 . 232236) (-3403 . 230694) - (-3404 . 229980) (-3405 . 229699) (-3406 . 229437) (-3407 . 229150) - (-3408 . 229067) (-3409 . 228951) (-3410 . 228760) (-3411 . 228449) - (-3412 . 228351) (-3413 . 227700) (-3414 . 227279) (-3415 . 227177) - (-3416 . 226893) (-3417 . 226738) (-3418 . 226628) (-3419 . 226045) - (-3420 . 225993) (-3421 . 225641) (-3422 . 225473) (-3423 . 225389) - (-3424 . 224571) (-3425 . 224044) (-3426 . 223738) (-3427 . 223622) - (-3428 . 223467) (-3429 . 223211) (-3430 . 223137) (-3431 . 222082) - (-3432 . 221856) (-3433 . 221660) (-3434 . 221576) (-3435 . 221391) - (-3436 . 221303) (-3437 . 221166) (-3438 . 221035) (-3439 . 220741) - (-3440 . 220466) (-3441 . 220368) (-3442 . 220263) (-3443 . 220120) - (-3444 . 220035) (-3445 . 219886) (-3446 . 219749) (-3447 . 219452) - (-3448 . 219396) (-3449 . 219340) (-3450 . 218952) (-3451 . 218841) - (-3452 . 218745) (-3453 . 218227) (-3454 . 218128) (-3455 . 217991) - (-3456 . 217453) (-3457 . 217153) (-3458 . 217097) (-3459 . 216664) - (-3460 . 216611) (-3461 . 215968) (-3462 . 215872) (-3463 . 215665) - (-3464 . 214438) (-3465 . 214339) (-3466 . 214196) (-3467 . 212794) - (-3468 . 212657) (-3469 . 212601) (-3470 . 212471) (-3471 . 212389) - (-3472 . 212221) (-3473 . 212144) (-3474 . 212088) (-3475 . 211963) - (-3476 . 211737) (-3477 . 211600) (-3478 . 211450) (-3479 . 211317) - (-3480 . 211182) (-3481 . 211103) (-3482 . 211032) (-3483 . 210953) - (-3484 . 210876) (-3485 . 210779) (-3486 . 210679) (-3487 . 210556) - (-3488 . 210419) (-3489 . 209603) (-3490 . 209467) (-3491 . 209332) - (-3492 . 209305) (-3493 . 209226) (-3494 . 209037) (-3495 . 208361) - (-3496 . 208305) (-3497 . 208253) (-3498 . 208132) (-3499 . 208025) - (-3500 . 207886) (-3501 . 207763) (-3502 . 207680) (-3503 . 207622) - (-3504 . 207442) (-3505 . 207386) (-3506 . 207334) (-3507 . 207263) - (-3508 . 207211) (-3509 . 207156) (-3510 . 207049) (-3511 . 205826) - (-3512 . 205766) (-3513 . 205315) (-3514 . 205248) (-3515 . 205174) - (-3516 . 205122) (-3517 . 204409) (-3518 . 204299) (-3519 . 203988) - (-3520 . 203830) (-3521 . 203711) (-3522 . 203559) (-3523 . 203492) - (-3524 . 203261) (-3525 . 203138) (-3526 . 202996) (-3527 . 202681) - (-3528 . 202543) (-3529 . 202491) (-3530 . 202124) (-3531 . 201931) - (-3532 . 201857) (-3533 . 201419) (-3534 . 201174) (-3535 . 200994) - (-3536 . 200485) (-3537 . 200454) (-3538 . 200344) (-3539 . 200244) - (-3540 . 200167) (-3541 . 200093) (-3542 . 199608) (-3543 . 199482) - (-3544 . 199322) (-3545 . 199238) (-3546 . 199005) (-3547 . 198953) - (-3548 . 198822) (-3549 . 198581) (-3550 . 198502) (-3551 . 198260) - (-3552 . 198135) (-3553 . 197895) (-3554 . 197753) (-3555 . 197553) - (-3556 . 197501) (-3557 . 197345) (-3558 . 197049) (-3559 . 196781) - (-3560 . 196634) (-3561 . 196387) (-3562 . 196265) (-3563 . 196237) - (-3564 . 196185) (-3565 . 196084) (-3566 . 195940) (-3567 . 195693) - (-3568 . 195571) (-3569 . 195543) (-3570 . 195465) (-3571 . 195293) - (-3572 . 195087) (-3573 . 195058) (-3574 . 194975) (-3575 . 194892) - (-3576 . 194776) (-3577 . 194562) (-3578 . 194422) (-3579 . 194394) - (-3580 . 194332) (-3581 . 194160) (-3582 . 194000) (-3583 . 193971) - (-3584 . 193850) (-3585 . 193767) (-3586 . 193636) (-3587 . 193497) - (-3588 . 193304) (-3589 . 193159) (-3590 . 193131) (-3591 . 192913) - (-3592 . 192741) (-3593 . 192668) (-3594 . 192612) (-3595 . 192503) - (-3596 . 192433) (-3597 . 192055) (-3598 . 191841) (-3599 . 191813) - (-3600 . 191746) (-3601 . 191574) (-3602 . 191455) (-3603 . 191298) - (-3604 . 191228) (-3605 . 190968) (-3606 . 190676) (-3607 . 190571) - (-3608 . 190543) (-3609 . 190446) (-3610 . 190327) (-3611 . 190267) - (-3612 . 189999) (-3613 . 189840) (-3614 . 189560) (-3615 . 189346) - (-3616 . 189263) (-3617 . 189235) (-3618 . 189138) (-3619 . 188978) - (-3620 . 188277) (-3621 . 188044) (-3622 . 187801) (-3623 . 187662) - (-3624 . 187558) (-3625 . 187506) (-3626 . 187257) (-3627 . 187068) - (-3628 . 186888) (-3629 . 185696) (-3630 . 185572) (-3631 . 185242) - (-3632 . 185028) (-3633 . 184061) (-3634 . 183462) (-3635 . 183369) - (-3636 . 183285) (-3637 . 183102) (-3638 . 183041) (-3639 . 182888) - (-3640 . 182829) (-3641 . 182479) (-3642 . 182170) (-3643 . 181945) - (-3644 . 181895) (-3645 . 181749) (-3646 . 181648) (-3647 . 181591) - (-3648 . 181464) (-3649 . 181162) (-3650 . 181097) (-3651 . 180630) - (-3652 . 180485) (-3653 . 180401) (-3654 . 180027) (-3655 . 179999) - (-3656 . 179930) (-3657 . 179267) (-3658 . 179166) (-3659 . 179109) - (-3660 . 178498) (-3661 . 178339) (-3662 . 178256) (-3663 . 178194) - (-3664 . 177708) (-3665 . 177606) (-3666 . 177464) (-3667 . 177115) - (-3668 . 176977) (-3669 . 176908) (-3670 . 176198) (-3671 . 176094) - (-3672 . 176017) (-3673 . 175686) (-3674 . 175603) (-3675 . 175393) - (-3676 . 175190) (-3677 . 174957) (-3678 . 174883) (-3679 . 174778) - (-3680 . 174671) (-3681 . 174564) (-3682 . 174504) (-3683 . 174433) - (-3684 . 174159) (-3685 . 174082) (-3686 . 173779) (-3687 . 173637) - (-3688 . 173539) (-3689 . 173168) (-3690 . 172960) (-3691 . 172856) - (-3692 . 172730) (-3693 . 172612) (-3694 . 172336) (-3695 . 172265) - (-3696 . 171719) (-3697 . 171538) (-3698 . 171310) (-3699 . 171236) - (-3700 . 171081) (-3701 . 170977) (-3702 . 170851) (-3703 . 169891) - (-3704 . 169679) (-3705 . 169165) (-3706 . 168947) (-3707 . 168748) - (-3708 . 168654) (-3709 . 168499) (-3710 . 168385) (-3711 . 168256) - (-3712 . 168179) (-3713 . 167970) (-3714 . 167825) (-3715 . 167603) - (-3716 . 167443) (-3717 . 167327) (-3718 . 167195) (-3719 . 166990) - (-3720 . 166858) (-3721 . 166649) (-3722 . 166593) (-3723 . 166235) - (-3724 . 166154) (-3725 . 165778) (-3726 . 165711) (-3727 . 165553) - (-3728 . 165217) (-3729 . 165104) (-3730 . 164982) (-3731 . 164883) - (-3732 . 164782) (-3733 . 164728) (-3734 . 164193) (-3735 . 164110) - (-3736 . 163912) (-3737 . 163749) (-3738 . 163655) (-3739 . 163238) - (-3740 . 163161) (-3741 . 163082) (-3742 . 162981) (-3743 . 162665) - (-3744 . 162510) (-3745 . 162019) (-3746 . 161936) (-3747 . 161833) - (-3748 . 161670) (-3749 . 161576) (-3750 . 161444) (-3751 . 161364) - (-3752 . 161308) (-3753 . 161109) (-3754 . 161005) (-3755 . 160897) - (-3756 . 160825) (-3757 . 160334) (-3758 . 160232) (-3759 . 160204) - (-3760 . 160041) (-3761 . 159948) (-3762 . 159218) (-3763 . 159141) - (-3764 . 158695) (-3765 . 158624) (-3766 . 158452) (-3767 . 158348) - (-3768 . 158245) (-3769 . 158188) (-3770 . 158062) (-3771 . 157988) - (-3772 . 157960) (-3773 . 157785) (-3774 . 157692) (-3775 . 156962) - (-3776 . 156882) (-3777 . 156716) (-3778 . 156596) (-12 . 156424) - (-3780 . 156263) (-3781 . 156153) (-3782 . 155569) (-3783 . 155486) - (-3784 . 155425) (-3785 . 155250) (-3786 . 155157) (-3787 . 154480) - (-3788 . 154400) (-3789 . 154234) (-3790 . 154130) (-3791 . 154023) - (-3792 . 153913) (-3793 . 153689) (-3794 . 153615) (-3795 . 153562) - (-3796 . 153384) (-3797 . 153296) (-3798 . 152731) (-3799 . 152654) - (-3800 . 152553) (-3801 . 152359) (-3802 . 152255) (-3803 . 152063) - (-3804 . 151845) (-3805 . 151776) (-3806 . 151417) (-3807 . 149002) - (-3808 . 148437) (-3809 . 148357) (-3810 . 148275) (-3811 . 148109) - (-3812 . 147971) (-3813 . 145857) (-3814 . 145644) (-3815 . 145574) - (-3816 . 145380) (-3817 . 145312) (-3818 . 144747) (-3819 . 144609) - (-3820 . 144375) (-3821 . 144293) (-3822 . 144125) (-3823 . 143987) - (-3824 . 143835) (-3825 . 143742) (-3826 . 143623) (-3827 . 143461) - (-3828 . 143407) (-3829 . 142732) (-3830 . 142421) (-3831 . 142263) - (-3832 . 142184) (-3833 . 142013) (-3834 . 141860) (-3835 . 141672) - (-3836 . 141605) (-3837 . 141427) (-3838 . 141350) (-3839 . 141225) - (-3840 . 140550) (-3841 . 140248) (-3842 . 140038) (-3843 . 139967) - (-3844 . 139678) (-3845 . 139513) (-3846 . 139232) (-3847 . 138925) - (-3848 . 138782) (-3849 . 138727) (-3850 . 138650) (-3851 . 138418) - (-3852 . 138354) (-3853 . 137616) (-3854 . 137458) (-3855 . 137387) - (-3856 . 137222) (-3857 . 137000) (-3858 . 136827) (-3859 . 136760) - (-3860 . 136514) (-3861 . 136437) (-3862 . 136189) (-3863 . 136064) - (-3864 . 135501) (-3865 . 135169) (-3866 . 135098) (-3867 . 134998) - (-3868 . 134845) (-3869 . 134672) (-3870 . 134588) (-3871 . 134515) - (-3872 . 134438) (-3873 . 134319) (-3874 . 133756) (-3875 . 133613) - (-3876 . 133542) (* . 129429) (-3878 . 129237) (-3879 . 129084) - (-3880 . 128525) (-3881 . 128269) (-3882 . 128186) (-3883 . 128116) - (-3884 . 128039) (-3885 . 127920) (-3886 . 127357) (-3887 . 127214) - (-3888 . 127127) (-3889 . 127056) (-3890 . 126952) (-3891 . 126799) - (-3892 . 126240) (-3893 . 126054) (-3894 . 125952) (-3895 . 125882) - (-3896 . 125805) (-3897 . 125752) (-3898 . 125076) (-3899 . 124993) - (-3900 . 124922) (-3901 . 124727) (-3902 . 124574) (-3903 . 124259) - (-3904 . 124206) (-3905 . 124006) (-3906 . 123916) (-3907 . 123789) - (-3908 . 123661) (-3909 . 123578) (-3910 . 122902) (-3911 . 122843) - (-3912 . 122593) (-3913 . 122494) (-3914 . 122440) (-3915 . 122168) - (-3916 . 122015) (-3917 . 121987) (-3918 . 121927) (-3919 . 121859) - (-3920 . 121669) (-3921 . 121492) (-3922 . 121317) (-3923 . 121253) - (-3924 . 120577) (-3925 . 120312) (-3926 . 120073) (-3927 . 119817) - (-3928 . 118715) (-3929 . 118470) (-3930 . 118078) (-3931 . 117990) - (-3932 . 117346) (-3933 . 117098) (-3934 . 117025) (-3935 . 116898) - (-3936 . 116844) (-3937 . 116093) (-3938 . 115529) (-3939 . 115207) - (-3940 . 114832) (-3941 . 114804) (-3942 . 114720) (-3943 . 114489) - (-3944 . 114147) (-3945 . 113180) (-3946 . 111878) (-9 . 111850) - (-3948 . 111599) (-3949 . 111529) (-3950 . 111442) (-3951 . 111329) - (-3952 . 111220) (-3953 . 111083) (-3954 . 111052) (-3955 . 110664) - (-3956 . 110492) (-3957 . 110405) (-3958 . 110053) (-3959 . 109886) - (-3960 . 108624) (-8 . 108596) (-3962 . 108348) (-3963 . 108283) - (-3964 . 108216) (-3965 . 108146) (-3966 . 106803) (-3967 . 106712) - (-3968 . 106511) (-3969 . 106395) (-3970 . 106236) (-3971 . 105884) - (-3972 . 105717) (-3973 . 104834) (-7 . 104806) (-3975 . 104558) - (-3976 . 104503) (-3977 . 104436) (-3978 . 104383) (-3979 . 104299) - (-3980 . 104162) (-3981 . 103898) (-3982 . 103394) (-3983 . 103307) - (-3984 . 102955) (-3985 . 102468) (-3986 . 101195) (-3987 . 101127) - (-3988 . 101033) (-3989 . 100966) (-3990 . 100873) (-3991 . 100845) - (-3992 . 100777) (-3993 . 100393) (-3994 . 99850) (-3995 . 99498) - (-3996 . 99382) (-3997 . 99267) (-3998 . 98931) (-3999 . 98635) - (-4000 . 98568) (-4001 . 98292) (-4002 . 98234) (-4003 . 98206) - (-4004 . 98137) (-4005 . 97708) (-4006 . 97414) (-4007 . 97026) - (-4008 . 96889) (-4009 . 95824) (-4010 . 95493) (-4011 . 95426) - (-4012 . 95341) (-4013 . 95253) (-4014 . 95116) (-4015 . 95018) - (-4016 . 94630) (-4017 . 93444) (-4018 . 93297) (-4019 . 93077) - (-4020 . 93003) (-4021 . 92936) (-4022 . 92859) (-4023 . 92557) - (-4024 . 92491) (-4025 . 92403) (-4026 . 92157) (-4027 . 92057) - (-4028 . 91669) (-4029 . 90487) (-4030 . 90404) (-4031 . 90079) - (-4032 . 90012) (-4033 . 89927) (-4034 . 89525) (-4035 . 89354) - (-4036 . 89147) (-4037 . 85848) (-4038 . 85464) (-4039 . 83256) - (-4040 . 83182) (-4041 . 82972) (-4042 . 82905) (-4043 . 82530) - (-4044 . 82473) (-4045 . 82399) (-4046 . 82325) (-4047 . 82215) - (-4048 . 81477) (-4049 . 81347) (-4050 . 81273) (-4051 . 81187) - (-4052 . 81120) (-4053 . 80978) (-4054 . 80834) (-4055 . 80730) - (-4056 . 80635) (-4057 . 80536) (-4058 . 80184) (-4059 . 80110) - (-4060 . 80024) (-4061 . 79957) (-4062 . 79390) (-4063 . 78924) - (-4064 . 78728) (-4065 . 78615) (-4066 . 78157) (-4067 . 77671) - (-4068 . 77585) (-4069 . 77518) (-4070 . 76951) (-4071 . 76571) - (-4072 . 76375) (-4073 . 76262) (-4074 . 75832) (-4075 . 75721) - (-4076 . 75635) (-4077 . 75568) (-4078 . 75489) (-4079 . 75225) - (-4080 . 74461) (-4081 . 74390) (-4082 . 74262) (-4083 . 73628) - (-4084 . 73562) (-4085 . 73476) (-4086 . 73409) (-4087 . 73335) - (-4088 . 72991) (-4089 . 72847) (-4090 . 72776) (-4091 . 72666) - (-4092 . 72026) (-4093 . 71823) (-4094 . 71757) (-4095 . 71671) - (-4096 . 71604) (-4097 . 71294) (-4098 . 71187) (-4099 . 70795) - (-4100 . 70721) (-4101 . 70635) (-4102 . 70568) (-4103 . 70435) - (-4104 . 70322) (-4105 . 70248) (-4106 . 70127) (-4107 . 69971) - (-4108 . 69917) (-4109 . 69575) (-4110 . 69503) (-4111 . 69417) - (-4112 . 69350) (-4113 . 69217) (-4114 . 69159) (-4115 . 69085) - (-4116 . 68983) (-4117 . 68849) (-4118 . 68457) (-4119 . 68058) - (-4120 . 67972) (-4121 . 67905) (-4122 . 67513) (-4123 . 67455) - (-4124 . 67311) (-4125 . 67177) (-4126 . 66835) (-4127 . 66783) - (-4128 . 66513) (-4129 . 66355) (-4130 . 66259) (-4131 . 66209) - (-4132 . 66056) (-4133 . 65943) (-4134 . 65718) (-4135 . 65659) - (-4136 . 65421) (-4137 . 65143) (-4138 . 64985) (-4139 . 64889) - (-4140 . 64826) (-4141 . 64651) (-4142 . 64532) (-4143 . 64002) - (-4144 . 63910) (-4145 . 63672) (-4146 . 63522) (-4147 . 63426) - (-4148 . 62823) (-4149 . 62670) (-4150 . 62493) (-4151 . 62275) - (-4152 . 62183) (-4153 . 61944) (-4154 . 61814) (-4155 . 61718) - (-4156 . 61658) (-4157 . 61505) (-4158 . 61410) (-4159 . 61358) - (-4160 . 61228) (-4161 . 61132) (-4162 . 60965) (-4163 . 60679) - (-4164 . 60547) (-4165 . 60247) (-4166 . 60152) (-4167 . 60097) - (-4168 . 59994) (-4169 . 59840) (-4170 . 59744) (-4171 . 59649) - (-4172 . 59363) (-4173 . 59051) (-4174 . 58698) (-4175 . 58603) - (-4176 . 58533) (-4177 . 58352) (-4178 . 58256) (-4179 . 58143) - (-4180 . 57957) (-4181 . 57546) (-4182 . 57316) (-4183 . 57003) - (-4184 . 56908) (-4185 . 56819) (-4186 . 56659) (-4187 . 56600) - (-4188 . 56516) (-4189 . 56230) (-4190 . 55685) (-4191 . 55455) - (-4192 . 55360) (-4193 . 55291) (-4194 . 55188) (-4195 . 55034) - (-4196 . 54932) (-4197 . 54817) (-4198 . 54744) (-4199 . 54524) - (-4200 . 54411) (-4201 . 54316) (-4202 . 54244) (-4203 . 54063) - (-4204 . 53699) (-4205 . 53639) (-4206 . 53560) (-4207 . 53466) - (-4208 . 53317) (-4209 . 53140) (-4210 . 53027) (-4211 . 52932) - (-4212 . 52699) (-4213 . 52539) (-4214 . 52001) (-4215 . 51973) - (-4216 . 51879) (-4217 . 51773) (-4218 . 51603) (-4219 . 51287) - (-4220 . 51192) (-4221 . 51140) (-4222 . 50977) (-4223 . 50740) - (-4224 . 50660) (-4225 . 50582) (-4226 . 50393) (-4227 . 50323) - (-4228 . 50224) (-4229 . 50066) (-4230 . 49986) (-4231 . 49891) - (-4232 . 49836) (-4233 . 49694) (-4234 . 49616) (-4235 . 49561) - (-4236 . 49480) (-4237 . 49381) (-4238 . 48835) (-4239 . 48762) - (-4240 . 48667) (-4241 . 48636) (-4242 . 48486) (-4243 . 48390) - (-4244 . 48144) (-4245 . 47986) (-4246 . 47797) (-4247 . 47718) - (-4248 . 47645) (-4249 . 47312) (-4250 . 47239) (-4251 . 46809) - (-4252 . 46714) (-4253 . 46608) (-4254 . 46478) (-4255 . 46293) - (-4256 . 46047) (-4257 . 45924) (-4258 . 45845) (-4259 . 45767) - (-4260 . 45564) (-4261 . 45491) (-4262 . 45293) (-4263 . 45198) - (-4264 . 44963) (-4265 . 44833) (-4266 . 44734) (-4267 . 44661) - (-4268 . 44509) (-4269 . 44428) (-4270 . 44225) (-4271 . 44163) - (-4272 . 44091) (-4273 . 43996) (-4274 . 43654) (-4275 . 43507) - (-4276 . 43429) (-4277 . 43356) (-4278 . 43253) (-4279 . 42956) - (-4280 . 42753) (-4281 . 42681) (-4282 . 42586) (-4283 . 42405) - (-4284 . 42278) (-4285 . 42182) (-4286 . 42062) (-4287 . 42003) - (-4288 . 41904) (-4289 . 41701) (-4290 . 39935) (-4291 . 39862) - (-4292 . 39767) (-4293 . 39656) (-4294 . 39470) (-4295 . 39367) - (-4296 . 39271) (-4297 . 39198) (-4298 . 39139) (-4299 . 38974) - (-4300 . 38858) (-4301 . 37403) (-4302 . 37061) (-4303 . 36966) - (-4304 . 36679) (-4305 . 36572) (-4306 . 36406) (-4307 . 36333) - (-4308 . 36198) (-4309 . 35964) (-4310 . 35835) (-4311 . 34345) - (-4312 . 34193) (-4313 . 34098) (-4314 . 34025) (-4315 . 33925) - (-4316 . 33361) (-4317 . 32927) (-4318 . 32600) (-4319 . 32260) - (-4320 . 32201) (-4321 . 32061) (-4322 . 31945) (-4323 . 31872) - (-4324 . 31777) (-4325 . 31712) (-4326 . 31547) (-4327 . 31484) - (-4328 . 31298) (-4329 . 31225) (-4330 . 31055) (-4331 . 30743) - (-4332 . 30627) (-4333 . 29891) (-4334 . 29818) (-4335 . 29755) - (-4336 . 29660) (-4337 . 29632) (-4338 . 29484) (-4339 . 29421) - (-4340 . 29238) (-4341 . 29210) (-4342 . 28990) (-4343 . 28902) - (-4344 . 28557) (-4345 . 28459) (-4346 . 28296) (-4347 . 28223) - (-4348 . 28128) (-4349 . 28078) (-4350 . 27657) (-4351 . 27594) - (-4352 . 27514) (-4353 . 27401) (-4354 . 27373) (-4355 . 27040) - (-4356 . 26943) (-4357 . 26612) (-4358 . 26514) (-4359 . 26386) - (-4360 . 26132) (-4361 . 26037) (-4362 . 24591) (-4363 . 24488) - (-4364 . 24435) (-4365 . 24382) (-4366 . 24265) (-4367 . 24080) - (-4368 . 24046) (-4369 . 23625) (-4370 . 23512) (-4371 . 22868) - (-4372 . 22724) (-4373 . 22629) (-4374 . 22151) (-4375 . 22045) - (-4376 . 21994) (-4377 . 20566) (-4378 . 20421) (-4379 . 20196) - (-4380 . 20165) (-4381 . 20097) (-4382 . 19888) (-4383 . 18716) - (-4384 . 17376) (-4385 . 17281) (-4386 . 16693) (-4387 . 16605) - (-4388 . 16409) (-4389 . 16299) (-4390 . 15936) (-4391 . 15852) - (-4392 . 15784) (-4393 . 15686) (-4394 . 15571) (-4395 . 15377) - (-4396 . 15282) (-4397 . 14492) (-4398 . 14410) (-4399 . 14337) - (-4400 . 14285) (-4401 . 8946) (-4402 . 8775) (-4403 . 8719) - (-4404 . 8651) (-4405 . 8535) (-4406 . 8383) (-4407 . 7246) - (-4408 . 7151) (-4409 . 6559) (-4410 . 6409) (-4411 . 6293) - (-4412 . 6211) (-4413 . 6040) (-4414 . 5978) (-4415 . 5880) - (-4416 . 5782) (-4417 . 5630) (-4418 . 5535) (-4419 . 4895) - (-4420 . 4765) (-4421 . 4670) (-4422 . 4557) (-4423 . 3307) - (-4424 . 3048) (-4425 . 3014) (-4426 . 2906) (-4427 . 2654) - (-4428 . 2453) (-4429 . 2274) (-4430 . 1688) (-4431 . 1636) - (-4432 . 1446) (-4433 . 1187) (-4434 . 1153) (-4435 . 1045) - (-4436 . 932) (-4437 . 660) (-4438 . 550) (-4439 . 476) (-4440 . 403) - (-4441 . 30))
\ No newline at end of file + (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769))))) +(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-623 *3)) + (-4 *3 (-13 (-441 *5) (-27) (-1220))) + (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) + (-5 *2 (-2 (|:| -1630 *3) (|:| |coeff| *3))) + (-5 *1 (-577 *5 *3 *6)) (-4 *6 (-1117))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1194)) (-5 *6 (-655 (-623 *3))) + (-5 *5 (-623 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *7))) + (-4 *7 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) + (-5 *2 (-2 (|:| -1630 *3) (|:| |coeff| *3))) + (-5 *1 (-568 *7 *3))))) +((-1319 . 732239) (-1320 . 731974) (-1321 . 731900) (-1322 . 731812) + (-1323 . 731297) (-1324 . 731211) (-1325 . 731101) (-1326 . 731049) + (-1327 . 730997) (-1328 . 730882) (-1329 . 730753) (-1330 . 730702) + (-1331 . 730573) (-1332 . 730500) (-1333 . 730426) (-1334 . 730283) + (-1335 . 730255) (-1336 . 729866) (-1337 . 729716) (-1338 . 729568) + (-1339 . 729510) (-1340 . 729437) (-1341 . 729166) (-1342 . 728914) + (-1343 . 728671) (-1344 . 728602) (-1345 . 728316) (-1346 . 728052) + (-1347 . 727993) (-1348 . 727447) (-1349 . 727413) (-1350 . 727250) + (-1351 . 726919) (-1352 . 726285) (-1353 . 726229) (-1354 . 725920) + (-1355 . 725682) (-1356 . 725538) (-1357 . 725319) (-1358 . 725257) + (-1359 . 725114) (-1360 . 723966) (-1361 . 723803) (-1362 . 723708) + (-1363 . 723634) (-1364 . 723489) (-1365 . 723367) (-1366 . 723248) + (-1367 . 723181) (-1368 . 723104) (-1369 . 723052) (-1370 . 722854) + (-1371 . 722688) (-1372 . 722605) (-1373 . 722552) (-1374 . 722456) + (-1375 . 721540) (-1376 . 721435) (-1377 . 721337) (-1378 . 721277) + (-1379 . 721151) (-1380 . 720743) (-1381 . 720456) (-1382 . 720210) + (-1383 . 719954) (-1384 . 719760) (-1385 . 719163) (-1386 . 719022) + (-1387 . 718898) (-1388 . 718291) (-1389 . 717958) (-1390 . 717859) + (-1391 . 716078) (-1392 . 715612) (-1393 . 715560) (-1394 . 715511) + (-1395 . 715437) (-1396 . 715322) (-1397 . 715265) (-1398 . 715152) + (-1399 . 715062) (-1400 . 714924) (-1401 . 714548) (-1402 . 714457) + (-1403 . 714358) (-1404 . 714239) (-1405 . 714136) (-1406 . 714038) + (-1407 . 713893) (-1408 . 713837) (-1409 . 713699) (-1410 . 713568) + (-1411 . 713041) (-1412 . 712926) (-1413 . 712657) (-1414 . 712501) + (-1415 . 712368) (-1416 . 712294) (-1417 . 712187) (-1418 . 711851) + (-1419 . 711556) (-1420 . 711479) (-1421 . 711450) (-1422 . 711383) + (-1423 . 711309) (-1424 . 711209) (-1425 . 710931) (-1426 . 710879) + (-1427 . 710786) (-1428 . 710674) (-1429 . 710579) (-1430 . 710527) + (-1431 . 710441) (-1432 . 710340) (-1433 . 709795) (-1434 . 709647) + (-1435 . 709568) (-1436 . 709408) (-1437 . 709250) (-1438 . 709106) + (-1439 . 709013) (-1440 . 708839) (-1441 . 708320) (-1442 . 708181) + (-1443 . 707837) (-1444 . 707694) (-1445 . 707635) (-1446 . 707607) + (-1447 . 707181) (-1448 . 707075) (-1449 . 707047) (-1450 . 706949) + (-1451 . 706587) (-1452 . 706468) (-1453 . 706263) (-1454 . 705920) + (-1455 . 705883) (-1456 . 705855) (-1457 . 705717) (-1458 . 705611) + (-1459 . 705429) (-1460 . 705346) (-1461 . 705266) (-1462 . 705192) + (-1463 . 705119) (-1464 . 704973) (-1465 . 704911) (-1466 . 704842) + (-1467 . 704764) (-1468 . 704589) (-1469 . 704274) (-1470 . 704170) + (-1471 . 704067) (-1472 . 703909) (-1473 . 703630) (-1474 . 703581) + (-1475 . 703482) (-1476 . 703424) (-1477 . 703356) (-1478 . 703202) + (-1479 . 702242) (-1480 . 701978) (-1481 . 701895) (-1482 . 701807) + (-1483 . 701736) (-1484 . 701514) (-1485 . 701428) (-1486 . 701325) + (-1487 . 701147) (-1488 . 701042) (-1489 . 700945) (-1490 . 700603) + (-1491 . 700529) (-1492 . 700479) (-1493 . 700344) (-1494 . 700257) + (-1495 . 700095) (-1496 . 699997) (-1497 . 699923) (-1498 . 699868) + (-1499 . 699650) (-1500 . 699572) (-1501 . 699493) (-1502 . 699438) + (-1503 . 699191) (-1504 . 698384) (-1505 . 698187) (-1506 . 698103) + (-1507 . 697986) (-1508 . 697764) (-1509 . 697418) (-1510 . 697305) + (-1511 . 697231) (-1512 . 697145) (-1513 . 696987) (-1514 . 696357) + (-1515 . 696184) (-1516 . 695758) (-1517 . 695706) (-1518 . 695577) + (-1519 . 695493) (-1520 . 695328) (-1521 . 694764) (-1522 . 694705) + (-1523 . 694648) (-1524 . 694165) (-1525 . 694113) (-1526 . 693947) + (-1527 . 693870) (-1528 . 693731) (-1529 . 693664) (-1530 . 693100) + (-1531 . 692927) (-1532 . 692412) (-1533 . 692182) (-1534 . 691886) + (-1535 . 691704) (-1536 . 691546) (-1537 . 691371) (-1538 . 688590) + (-1539 . 688328) (-1540 . 688297) (-1541 . 688209) (-1542 . 687922) + (-1543 . 687788) (-1544 . 687225) (-1545 . 687162) (-1546 . 677712) + (-1547 . 677493) (-1548 . 677247) (-1549 . 677149) (-1550 . 676934) + (-1551 . 676882) (-1552 . 676788) (-1553 . 676561) (-1554 . 675998) + (-1555 . 675898) (-1556 . 675753) (-1557 . 675601) (-1558 . 675443) + (-1559 . 675341) (-1560 . 675003) (-1561 . 674880) (-1562 . 674814) + (-1563 . 674336) (-1564 . 674256) (-1565 . 674004) (-1566 . 673904) + (-1567 . 673695) (-1568 . 673132) (-1569 . 673038) (-1570 . 672935) + (-1571 . 672826) (-1572 . 672775) (-1573 . 672583) (-1574 . 672291) + (-1575 . 672205) (-1576 . 672126) (-1577 . 672074) (-1578 . 672019) + (-1579 . 671918) (-1580 . 671754) (-1581 . 671634) (-1582 . 671554) + (-1583 . 670991) (-1584 . 670743) (-1585 . 670714) (-1586 . 670629) + (-1587 . 670559) (-1588 . 670250) (-1589 . 670060) (-1590 . 669917) + (-1591 . 669705) (-1592 . 669142) (-1593 . 668948) (-1594 . 668869) + (-1595 . 668165) (-1596 . 668109) (-1597 . 668006) (-1598 . 667885) + (-1599 . 667790) (-1600 . 667722) (-1601 . 667391) (-1602 . 667268) + (-1603 . 667168) (-1604 . 667134) (-1605 . 667102) (-1606 . 665806) + (-1607 . 665554) (-1608 . 664873) (-1609 . 664845) (-1610 . 664721) + (-1611 . 664603) (-1612 . 664458) (-1613 . 664301) (-1614 . 664076) + (-1615 . 663080) (-1616 . 662207) (-1617 . 661967) (-1618 . 661813) + (-1619 . 661779) (-1620 . 661725) (-1621 . 661691) (-1622 . 661502) + (-1623 . 661384) (-1624 . 660516) (-1625 . 660439) (-1626 . 660146) + (-1627 . 659730) (-1628 . 659663) (-1629 . 659580) (-1630 . 659525) + (-1631 . 659272) (-1632 . 659176) (-1633 . 658958) (-1634 . 658763) + (-1635 . 658555) (-1636 . 658527) (-1637 . 658366) (-1638 . 658313) + (-1639 . 658264) (-1640 . 658157) (-1641 . 658073) (-1642 . 657943) + (-1643 . 657809) (-1644 . 657447) (-1645 . 657381) (-1646 . 657295) + (-1647 . 657225) (-1648 . 657083) (-1649 . 656997) (-1650 . 656727) + (-1651 . 656537) (-1652 . 656372) (-1653 . 656236) (-1654 . 656114) + (-1655 . 655996) (-1656 . 655706) (-1657 . 655590) (-1658 . 655261) + (-1659 . 655166) (-1660 . 654960) (-1661 . 654883) (-1662 . 654814) + (-1663 . 654596) (-1664 . 654497) (-1665 . 654279) (-1666 . 654184) + (-1667 . 654107) (-1668 . 654012) (-1669 . 653918) (-1670 . 653800) + (-1671 . 653569) (-1672 . 653260) (-1673 . 653194) (-1674 . 652884) + (-1675 . 652807) (-1676 . 652751) (-1677 . 652605) (-1678 . 652489) + (-1679 . 652412) (-1680 . 652288) (-1681 . 652192) (-1682 . 651863) + (-1683 . 651720) (-1684 . 651605) (-1685 . 649473) (-1686 . 649405) + (-1687 . 649211) (-1688 . 649011) (-1689 . 648848) (-1690 . 648334) + (-1691 . 646792) (-1692 . 646132) (-1693 . 644980) (-1694 . 644614) + (-1695 . 644489) (-1696 . 644360) (-1697 . 644263) (-1698 . 640200) + (-1699 . 640102) (-1700 . 639708) (-1701 . 639627) (-1702 . 639572) + (-1703 . 639313) (-1704 . 637085) (-1705 . 636566) (-1706 . 636351) + (-1707 . 636284) (-1708 . 636086) (-1709 . 635744) (-1710 . 635577) + (-1711 . 635379) (-1712 . 635153) (-1713 . 634974) (-1714 . 634086) + (-1715 . 633998) (-1716 . 633895) (-1717 . 633719) (-1718 . 633576) + (-1719 . 633431) (-1720 . 633375) (-1721 . 633150) (-1722 . 633046) + (-1723 . 632993) (-1724 . 632919) (-1725 . 632864) (-1726 . 632809) + (-1727 . 632624) (-1728 . 632486) (-1729 . 632193) (-1730 . 632107) + (-1731 . 632073) (-1732 . 631977) (-1733 . 631867) (-1734 . 631259) + (-1735 . 631169) (-1736 . 631095) (-1737 . 630885) (-1738 . 630797) + (-1739 . 630568) (-1740 . 628600) (-1741 . 626255) (-1742 . 626097) + (-1743 . 625875) (-1744 . 625657) (-1745 . 625590) (-1746 . 625294) + (-1747 . 624077) (-1748 . 623978) (-1749 . 623625) (-1750 . 623551) + (-1751 . 623220) (-1752 . 623150) (-1753 . 623046) (-1754 . 622688) + (-1755 . 622620) (-1756 . 622309) (-1757 . 622256) (-1758 . 621939) + (-1759 . 621887) (-1760 . 621810) (-1761 . 621632) (-1762 . 621565) + (-1763 . 621318) (-1764 . 621255) (-1765 . 620983) (-1766 . 620949) + (-1767 . 620797) (-1768 . 620620) (-1769 . 620532) (-1770 . 620318) + (-1771 . 620200) (-1772 . 619830) (-1773 . 619688) (-1774 . 619602) + (-1775 . 619356) (-1776 . 619110) (-1777 . 618464) (-1778 . 618235) + (-1779 . 618119) (-1780 . 618064) (-1781 . 617970) (-1782 . 617872) + (-1783 . 617793) (-1784 . 617692) (-1785 . 617655) (-1786 . 617536) + (-1787 . 617399) (-1788 . 616807) (-1789 . 616582) (-1790 . 616509) + (-1791 . 616419) (-1792 . 616167) (-1793 . 616114) (-1794 . 616062) + (-1795 . 615272) (-1796 . 615159) (-1797 . 615082) (-1798 . 614883) + (-1799 . 614811) (-1800 . 614691) (-1801 . 614641) (-1802 . 614573) + (-1803 . 614377) (-1804 . 614252) (-1805 . 613865) (-1806 . 613722) + (-1807 . 613636) (-1808 . 613493) (-1809 . 613441) (-1810 . 613346) + (-1811 . 613227) (-1812 . 613069) (-1813 . 612940) (-1814 . 612852) + (-1815 . 612467) (-1816 . 612168) (-1817 . 612068) (-1818 . 611950) + (-1819 . 611731) (-1820 . 611680) (-1821 . 611628) (-1822 . 611531) + (-1823 . 611464) (-1824 . 610869) (-1825 . 610659) (-1826 . 610527) + (-1827 . 610324) (-1828 . 610105) (-1829 . 609990) (-1830 . 609502) + (-1831 . 609450) (-1832 . 609367) (-1833 . 609245) (-1834 . 609195) + (-1835 . 609080) (-1836 . 608848) (-1837 . 608504) (-1838 . 607866) + (-1839 . 607190) (-1840 . 607088) (-1841 . 606981) (-1842 . 606885) + (-1843 . 606835) (-1844 . 606782) (-1845 . 606713) (-1846 . 606606) + (-1847 . 606490) (-1848 . 606334) (-1849 . 606148) (-1850 . 605925) + (-1851 . 605658) (-1852 . 605550) (-1853 . 605463) (-1854 . 605248) + (-1855 . 605156) (-1856 . 605076) (-1857 . 604685) (-1858 . 604579) + (-1859 . 604404) (-1860 . 604189) (-1861 . 603978) (-1862 . 603876) + (-1863 . 603819) (-1864 . 603709) (-1865 . 603636) (-1866 . 603583) + (-1867 . 603510) (-1868 . 603408) (-1869 . 603269) (-1870 . 603042) + (-1871 . 602971) (-1872 . 602889) (-1873 . 600048) (-1874 . 599733) + (-1875 . 599591) (-1876 . 599507) (-1877 . 599426) (-1878 . 599300) + (-1879 . 599172) (-1880 . 599032) (-1881 . 598880) (-1882 . 598807) + (-1883 . 598683) (-1884 . 598589) (-1885 . 598411) (-1886 . 598095) + (-1887 . 598007) (-1888 . 597976) (-1889 . 597903) (-1890 . 597821) + (-1891 . 597768) (-1892 . 597716) (-1893 . 597614) (-1894 . 597537) + (-1895 . 597235) (-1896 . 597113) (-1897 . 596927) (-1898 . 596819) + (-1899 . 596759) (-1900 . 596629) (-1901 . 596490) (-1902 . 596355) + (-1903 . 596103) (-1904 . 595961) (-1905 . 595837) (-1906 . 595679) + (-1907 . 595282) (-1908 . 595215) (-1909 . 595072) (-1910 . 594837) + (-1911 . 594255) (-1912 . 594021) (-1913 . 593637) (-1914 . 593311) + (-1915 . 593227) (-1916 . 593117) (-1917 . 593052) (-1918 . 592908) + (-1919 . 592091) (-1920 . 591813) (-1921 . 591634) (-1922 . 591567) + (-1923 . 591388) (-1924 . 591101) (-1925 . 590990) (-1926 . 590501) + (-1927 . 590388) (-1928 . 590078) (-1929 . 590011) (-1930 . 589927) + (-1931 . 589747) (-1932 . 589661) (-1933 . 589594) (-1934 . 589495) + (-1935 . 589324) (-1936 . 589215) (-1937 . 589163) (-1938 . 588786) + (-1939 . 588734) (-1940 . 588662) (-1941 . 588576) (-1942 . 588490) + (-1943 . 588115) (-1944 . 588002) (-1945 . 587769) (-1946 . 587633) + (-1947 . 587546) (-1948 . 587518) (-1949 . 587127) (-1950 . 586988) + (-1951 . 586857) (-1952 . 586733) (-1953 . 586542) (-1954 . 586471) + (-1955 . 585869) (-1956 . 585373) (-1957 . 585309) (-1958 . 584435) + (-1959 . 584379) (-1960 . 584285) (-1961 . 583672) (-1962 . 583535) + (-1963 . 582103) (-1964 . 582009) (-1965 . 581932) (-1966 . 581670) + (-1967 . 581124) (-1968 . 580978) (-1969 . 580905) (-1970 . 580822) + (-1971 . 580724) (-1972 . 580389) (-1973 . 580230) (-1974 . 580006) + (-1975 . 579579) (-1976 . 579491) (-1977 . 579370) (-1978 . 579314) + (-1979 . 578868) (-1980 . 578724) (-1981 . 578644) (-1982 . 578506) + (-1983 . 578433) (-1984 . 574770) (-1985 . 574619) (-1986 . 574545) + (-1987 . 574473) (-1988 . 574234) (-1989 . 574088) (-1990 . 573993) + (-1991 . 573896) (-1992 . 573801) (-1993 . 573764) (-1994 . 573711) + (-1995 . 573623) (-1996 . 573349) (-1997 . 573290) (-1998 . 573160) + (-1999 . 572969) (-2000 . 572826) (-2001 . 572231) (-2002 . 572203) + (-2003 . 571896) (-2004 . 571840) (-2005 . 571812) (-2006 . 571651) + (-2007 . 571622) (-2008 . 571524) (-2009 . 571277) (-2010 . 571220) + (-2011 . 570809) (-2012 . 569220) (-2013 . 569138) (-2014 . 569056) + (-2015 . 568997) (-2016 . 568938) (-2017 . 568334) (-2018 . 568121) + (-2019 . 567828) (-2020 . 567737) (-2021 . 567644) (-2022 . 567591) + (-2023 . 567539) (-2024 . 567420) (-2025 . 567205) (-2026 . 567132) + (-2027 . 567004) (-2028 . 566934) (-2029 . 566749) (-2030 . 566338) + (-2031 . 565907) (-2032 . 565800) (-2033 . 565729) (-2034 . 565677) + (-2035 . 565589) (-2036 . 565412) (-2037 . 565316) (-2038 . 565284) + (-2039 . 565150) (-2040 . 565043) (-2041 . 564965) (-2042 . 564908) + (-2043 . 564801) (-2044 . 564597) (-2045 . 564439) (-2046 . 564321) + (-2047 . 564243) (-2048 . 563956) (-2049 . 563874) (-2050 . 563761) + (-2051 . 563550) (-2052 . 563387) (-2053 . 563227) (-2054 . 563121) + (-2055 . 562984) (-2056 . 562398) (-2057 . 562267) (-2058 . 561820) + (-2059 . 561764) (-2060 . 561712) (-2061 . 561499) (-2062 . 561422) + (-2063 . 560964) (-2064 . 560891) (-2065 . 560794) (-2066 . 560670) + (-2067 . 560563) (-2068 . 560472) (-2069 . 560444) (-2070 . 556444) + (-2071 . 556391) (-2072 . 556334) (-2073 . 556251) (-2074 . 556083) + (-2075 . 555540) (-2076 . 555485) (-2077 . 555411) (-2078 . 555230) + (-2079 . 554607) (-2080 . 554486) (-2081 . 554389) (-2082 . 554315) + (-2083 . 554241) (-2084 . 554099) (-2085 . 554043) (-2086 . 553957) + (-2087 . 553885) (-2088 . 553667) (-2089 . 553563) (-2090 . 553510) + (-2091 . 553458) (-2092 . 553288) (-2093 . 552921) (-2094 . 552641) + (-2095 . 552569) (-2096 . 552462) (-2097 . 552390) (-2098 . 552337) + (-2099 . 552209) (-2100 . 552159) (-2101 . 552089) (-2102 . 552037) + (-2103 . 551701) (-2104 . 551628) (-2105 . 551529) (-2106 . 551428) + (-2107 . 551269) (-2108 . 551211) (-2109 . 550619) (-2110 . 550195) + (-2111 . 550098) (-2112 . 549998) (-2113 . 549768) (-2114 . 549709) + (-2115 . 549502) (-2116 . 549357) (-2117 . 549328) (-2118 . 549265) + (-2119 . 549057) (-2120 . 548953) (-2121 . 548800) (-2122 . 548264) + (-2123 . 548181) (-2124 . 548013) (-2125 . 547823) (-2126 . 547553) + (-2127 . 547423) (-2128 . 547335) (-2129 . 547273) (-2130 . 547150) + (-2131 . 547018) (-2132 . 546908) (-2133 . 546662) (-2134 . 546509) + (-2135 . 546353) (-2136 . 546270) (-2137 . 546192) (-2138 . 546027) + (-2139 . 545968) (-2140 . 545372) (-2141 . 545298) (-2142 . 545230) + (-2143 . 544803) (-2144 . 544422) (-2145 . 544372) (-2146 . 543932) + (-2147 . 543814) (-2148 . 543755) (-2149 . 543643) (-2150 . 543588) + (-2151 . 542746) (-2152 . 542422) (-2153 . 542355) (-2154 . 542270) + (-2155 . 542192) (-2156 . 542049) (-2157 . 541904) (-2158 . 541516) + (-2159 . 541430) (-2160 . 541176) (-2161 . 541023) (-2162 . 540900) + (-2163 . 540508) (-2164 . 540421) (-2165 . 540350) (-2166 . 540132) + (-2167 . 540079) (-2168 . 539979) (-2169 . 539922) (-2170 . 539706) + (-2171 . 539614) (-2172 . 539446) (-2173 . 539357) (-2174 . 539260) + (-2175 . 539183) (-2176 . 539038) (-2177 . 538726) (-2178 . 538344) + (-2179 . 538291) (-2180 . 538151) (-2181 . 538030) (-2182 . 537862) + (-2183 . 537709) (-2184 . 537339) (-2185 . 537143) (-2186 . 536915) + (-2187 . 536816) (-2188 . 536623) (-2189 . 536589) (-2190 . 536493) + (-2191 . 536279) (-2192 . 536118) (-2193 . 535766) (-2194 . 535683) + (-2195 . 535396) (-2196 . 534975) (-2197 . 534874) (-2198 . 534601) + (-2199 . 534219) (-2200 . 534146) (-2201 . 533773) (-2202 . 533575) + (-2203 . 533467) (-2204 . 533309) (-2205 . 533201) (-2206 . 533099) + (-2207 . 533004) (-2208 . 532949) (-2209 . 532846) (-2210 . 532706) + (-2211 . 532656) (-2212 . 532489) (-2213 . 532250) (-2214 . 532100) + (-2215 . 531969) (-2216 . 531773) (-2217 . 531613) (-2218 . 531334) + (-2219 . 531225) (-2220 . 531148) (-2221 . 530796) (-2222 . 530444) + (-2223 . 529993) (-2224 . 529925) (-2225 . 529795) (-2226 . 529742) + (-2227 . 529607) (-2228 . 529501) (-2229 . 529401) (-2230 . 529242) + (-2231 . 529086) (-2232 . 528122) (-2233 . 527462) (-2234 . 527379) + (-2235 . 527252) (-2236 . 527178) (-2237 . 526834) (-2238 . 526784) + (-2239 . 526631) (-2240 . 526465) (-2241 . 526293) (-2242 . 526110) + (-2243 . 526026) (-2244 . 525866) (-2245 . 525832) (-2246 . 525695) + (-2247 . 525594) (-2248 . 525043) (-2249 . 524622) (-2250 . 524563) + (-2251 . 523974) (-2252 . 523921) (-2253 . 523504) (-2254 . 523381) + (-2255 . 521595) (-2256 . 521514) (-2257 . 521335) (-2258 . 521239) + (-2259 . 520970) (-2260 . 520206) (-2261 . 519853) (-2262 . 519567) + (-2263 . 519372) (-2264 . 519155) (-2265 . 519074) (-2266 . 518891) + (-2267 . 518817) (-2268 . 518766) (-2269 . 518613) (-2270 . 518518) + (-2271 . 518286) (-2272 . 518233) (-2273 . 518151) (-2274 . 517999) + (-2275 . 517928) (-2276 . 517829) (-2277 . 517507) (-2278 . 517378) + (-2279 . 517323) (-2280 . 517207) (-2281 . 517029) (-2282 . 516976) + (-2283 . 516887) (-2284 . 516835) (-2285 . 516694) (-2286 . 516613) + (-2287 . 516539) (-2288 . 516485) (-2289 . 516348) (-2290 . 516089) + (-2291 . 516020) (-2292 . 515967) (-2293 . 515290) (-2294 . 515216) + (-2295 . 514374) (-2296 . 514229) (-2297 . 514027) (-2298 . 513878) + (-2299 . 513825) (-2300 . 513762) (-2301 . 513648) (-2302 . 513376) + (-2303 . 513285) (-2304 . 513162) (-2305 . 513130) (-2306 . 513078) + (-2307 . 512973) (-2308 . 509364) (-2309 . 508594) (-2310 . 508536) + (-2311 . 508220) (-2312 . 508192) (-2313 . 508141) (-2314 . 508031) + (-2315 . 507847) (-2316 . 507776) (-2317 . 507677) (-2318 . 506415) + (-2319 . 506283) (-2320 . 506175) (-2321 . 506022) (-2322 . 505973) + (-2323 . 505902) (-2324 . 505751) (-2325 . 505424) (-2326 . 504838) + (-2327 . 504771) (-2328 . 504613) (-2329 . 504481) (-2330 . 503208) + (-2331 . 503065) (-2332 . 502922) (-2333 . 502710) (-2334 . 502608) + (-2335 . 502539) (-2336 . 502429) (-2337 . 502370) (-2338 . 502213) + (-2339 . 501722) (-2340 . 501626) (-2341 . 501548) (-2342 . 501395) + (-2343 . 501285) (-2344 . 501213) (-2345 . 501043) (-2346 . 500991) + (-2347 . 500859) (-2348 . 500674) (-2349 . 500537) (-2350 . 500265) + (-2351 . 500076) (-2352 . 500016) (-2353 . 494502) (-2354 . 494431) + (-2355 . 494119) (-2356 . 493979) (-2357 . 493679) (-2358 . 493481) + (-2359 . 493428) (-2360 . 493225) (-2361 . 493123) (-2362 . 492995) + (-2363 . 492628) (-2364 . 492525) (-2365 . 492364) (-2366 . 492263) + (-2367 . 492177) (-2368 . 491985) (-2369 . 491907) (-2370 . 491846) + (-2371 . 491762) (-2372 . 491709) (-2373 . 491624) (-2374 . 491509) + (-2375 . 491457) (-2376 . 490922) (-2377 . 490810) (-2378 . 490733) + (-2379 . 490680) (-2380 . 490539) (-2381 . 490432) (-2382 . 490229) + (-2383 . 490177) (-2384 . 490000) (-2385 . 489715) (-2386 . 489663) + (-2387 . 489300) (-2388 . 489218) (-2389 . 487134) (-2390 . 486383) + (-2391 . 486311) (-2392 . 486254) (-2393 . 485374) (-2394 . 485280) + (-2395 . 485197) (-2396 . 485092) (-2397 . 484919) (-2398 . 484451) + (-2399 . 484327) (-2400 . 483967) (-2401 . 483884) (-2402 . 483632) + (-2403 . 483384) (-2404 . 483281) (-2405 . 483187) (-2406 . 483110) + (-2407 . 482807) (-2408 . 482729) (-2409 . 482411) (-2410 . 482326) + (-2411 . 482161) (-2412 . 482057) (-2413 . 481961) (-2414 . 481725) + (-2415 . 480789) (-2416 . 480579) (-2417 . 478949) (-2418 . 478611) + (** . 475616) (-2420 . 475461) (-2421 . 475334) (-2422 . 475257) + (-2423 . 475205) (-2424 . 475174) (-2425 . 475104) (-2426 . 475006) + (-2427 . 474953) (-2428 . 474883) (-2429 . 474831) (-2430 . 474779) + (-2431 . 474711) (-2432 . 474658) (-2433 . 473799) (-2434 . 473747) + (-2435 . 473409) (-2436 . 472937) (-2437 . 472741) (-2438 . 472610) + (-2439 . 472326) (-2440 . 472274) (-2441 . 472206) (-2442 . 472153) + (-2443 . 472026) (-2444 . 471958) (-2445 . 471875) (-2446 . 471057) + (-2447 . 471025) (-2448 . 470997) (-2449 . 466454) (-2450 . 466298) + (-2451 . 466170) (-2452 . 466008) (-2453 . 465793) (-2454 . 465737) + (-2455 . 464659) (-2456 . 464261) (-2457 . 464055) (-2458 . 463896) + (-2459 . 463760) (-2460 . 463647) (-2461 . 463356) (-2462 . 463243) + (-2463 . 463094) (-2464 . 462773) (-2465 . 462063) (-2466 . 461940) + (-2467 . 461799) (-2468 . 461747) (-2469 . 461675) (-2470 . 461572) + (-2471 . 461502) (-2472 . 461100) (-2473 . 460707) (-2474 . 460636) + (-2475 . 460584) (-2476 . 460273) (-2477 . 460245) (-2478 . 460178) + (-2479 . 460034) (-2480 . 459905) (-2481 . 459749) (-2482 . 459672) + (-2483 . 459619) (-2484 . 458865) (-2485 . 458439) (-2486 . 458343) + (-2487 . 457901) (-2488 . 457628) (-2489 . 457512) (-2490 . 457408) + (-2491 . 457248) (-2492 . 457132) (-2493 . 457073) (-2494 . 456969) + (-2495 . 456874) (-2496 . 456490) (-2497 . 456389) (-2498 . 456236) + (-2499 . 456174) (-2500 . 456033) (-2501 . 455522) (-2502 . 455439) + (-2503 . 455360) (-2504 . 455007) (-2505 . 454935) (-2506 . 454534) + (-2507 . 454421) (-2508 . 454276) (-2509 . 454203) (-2510 . 454150) + (-2511 . 453783) (-2512 . 453668) (-2513 . 453526) (-2514 . 453104) + (-2515 . 453049) (-2516 . 452906) (-2517 . 452845) (-2518 . 452523) + (-2519 . 452440) (-2520 . 452339) (-2521 . 452003) (-2522 . 451902) + (-2523 . 451679) (-2524 . 451608) (-2525 . 451407) (-2526 . 451291) + (-2527 . 451190) (-2528 . 451106) (-2529 . 450947) (-2530 . 450687) + (-2531 . 450437) (-2532 . 450375) (-2533 . 450281) (-2534 . 450200) + (-2535 . 450047) (-2536 . 449882) (-2537 . 449833) (-2538 . 449650) + (-2539 . 449566) (-2540 . 449189) (-2541 . 449094) (-2542 . 447238) + (-2543 . 447048) (-2544 . 446913) (-2545 . 446732) (-2546 . 446676) + (-2547 . 446508) (-2548 . 445981) (-2549 . 445925) (-2550 . 431693) + (-2551 . 430608) (-2552 . 430124) (-2553 . 430072) (-2554 . 430040) + (-2555 . 429934) (-2556 . 429719) (-2557 . 429657) (-2558 . 428476) + (-2559 . 428424) (-2560 . 428010) (-2561 . 427929) (-2562 . 427711) + (-2563 . 427610) (-2564 . 427292) (-2565 . 426859) (-2566 . 425995) + (-2567 . 425714) (-2568 . 425326) (-2569 . 425241) (-2570 . 425149) + (-2571 . 424939) (-2572 . 423772) (-2573 . 423719) (-2574 . 423667) + (-2575 . 423389) (-2576 . 423269) (-2577 . 423174) (-2578 . 422967) + (-2579 . 422768) (-2580 . 422586) (-2581 . 422336) (-2582 . 422146) + (-2583 . 421875) (-2584 . 421796) (-2585 . 421727) (-2586 . 421626) + (-2587 . 421531) (-2588 . 420852) (-2589 . 420737) (-2590 . 420555) + (-2591 . 420526) (-2592 . 420355) (-2593 . 420236) (-2594 . 420081) + (-2595 . 419937) (-2596 . 419823) (-2597 . 419779) (-2598 . 419387) + (-2599 . 419285) (-2600 . 419046) (-2601 . 418947) (-2602 . 418875) + (-2603 . 418823) (-2604 . 418719) (-2605 . 418085) (-2606 . 417836) + (-2607 . 417794) (-2608 . 417509) (-2609 . 417407) (-2610 . 417168) + (-2611 . 417109) (-2612 . 417044) (-2613 . 416893) (-2614 . 416764) + (-2615 . 413097) (-2616 . 412996) (-2617 . 412838) (-2618 . 412750) + (-2619 . 412718) (-2620 . 412658) (-2621 . 412630) (-2622 . 412571) + (-2623 . 412475) (-2624 . 411179) (-2625 . 410863) (-2626 . 410765) + (-2627 . 410619) (-2628 . 410479) (-2629 . 410333) (-2630 . 410260) + (-2631 . 410085) (-2632 . 409564) (-2633 . 409471) (-2634 . 409383) + (-2635 . 409309) (-2636 . 409258) (-2637 . 409145) (-2638 . 409018) + (-2639 . 408887) (-2640 . 408792) (-2641 . 408613) (-2642 . 408238) + (-2643 . 408130) (-2644 . 408035) (-2645 . 405921) (-2646 . 405726) + (-2647 . 403996) (-2648 . 403968) (-2649 . 403918) (-2650 . 403623) + (-2651 . 403568) (-2652 . 403309) (-2653 . 403050) (-2654 . 402977) + (-2655 . 402813) (-2656 . 402507) (-2657 . 402197) (-2658 . 402135) + (-2659 . 402055) (-2660 . 401857) (-2661 . 401749) (-2662 . 401668) + (-2663 . 401584) (-2664 . 401292) (-2665 . 400091) (-2666 . 399921) + (-2667 . 399675) (-2668 . 399505) (-2669 . 399192) (-2670 . 399032) + (-2671 . 398980) (-2672 . 398890) (-2673 . 396634) (-2674 . 396526) + (-2675 . 396016) (-2676 . 395687) (-2677 . 395660) (-2678 . 395577) + (-2679 . 395527) (-2680 . 395294) (-2681 . 394373) (-2682 . 394200) + (-2683 . 394148) (-2684 . 393955) (-2685 . 393808) (-2686 . 393283) + (-2687 . 392640) (-2688 . 392545) (-2689 . 392457) (-2690 . 392329) + (-2691 . 392118) (-2692 . 391938) (-2693 . 391731) (-2694 . 391663) + (-2695 . 391515) (-2696 . 391438) (-2697 . 391380) (-2698 . 391302) + (-2699 . 391225) (-2700 . 391158) (-2701 . 390650) (-2702 . 390532) + (-2703 . 390279) (-2704 . 390169) (-2705 . 389683) (-2706 . 389589) + (-2707 . 389491) (-2708 . 389372) (-2709 . 389030) (-2710 . 388949) + (-2711 . 388671) (-2712 . 388583) (-2713 . 388435) (-2714 . 388286) + (-2715 . 387859) (-2716 . 387696) (-2717 . 387601) (-2718 . 387506) + (-2719 . 387171) (-2720 . 387119) (-2721 . 386615) (-2722 . 386472) + (-2723 . 386314) (-2724 . 385823) (-2725 . 385395) (-2726 . 385329) + (-2727 . 385111) (-2728 . 384804) (-2729 . 384706) (-2730 . 384535) + (-2731 . 384480) (-2732 . 384397) (-2733 . 384340) (-2734 . 384137) + (-2735 . 383766) (-2736 . 383665) (-2737 . 383610) (-2738 . 383499) + (-2739 . 382319) (-2740 . 382226) (-2741 . 381876) (-2742 . 381657) + (-2743 . 381596) (-2744 . 381496) (-2745 . 381426) (-2746 . 381206) + (-2747 . 381026) (-2748 . 380874) (-2749 . 380746) (-2750 . 380712) + (-2751 . 380370) (-2752 . 380311) (-2753 . 380098) (-2754 . 379601) + (-2755 . 379564) (-2756 . 379448) (-2757 . 379332) (-2758 . 379244) + (-2759 . 379145) (-2760 . 379094) (-2761 . 378936) (-2762 . 378745) + (-2763 . 378559) (-2764 . 378375) (-2765 . 378207) (-2766 . 378127) + (-2767 . 377991) (-2768 . 377828) (-2769 . 377608) (-2770 . 377538) + (-2771 . 377415) (-2772 . 377336) (-2773 . 377221) (-2774 . 376860) + (-2775 . 376707) (-2776 . 376611) (-2777 . 376100) (-2778 . 376002) + (-2779 . 375943) (-2780 . 375806) (-2781 . 375710) (-2782 . 375605) + (-2783 . 375502) (-2784 . 375423) (-2785 . 375370) (-2786 . 375222) + (-2787 . 375170) (-2788 . 374738) (-2789 . 374557) (-2790 . 374432) + (-2791 . 374373) (-2792 . 374148) (-2793 . 374004) (-2794 . 373206) + (-2795 . 373105) (-2796 . 373052) (-2797 . 372896) (-2798 . 372813) + (-2799 . 372697) (-2800 . 372625) (-2801 . 372542) (-2802 . 372445) + (-2803 . 369146) (-2804 . 369060) (-2805 . 368917) (-2806 . 368558) + (-2807 . 368120) (-2808 . 367917) (-2809 . 367163) (-2810 . 367005) + (-2811 . 366906) (-2812 . 366626) (-2813 . 366529) (-2814 . 366411) + (-2815 . 366218) (-2816 . 366100) (-2817 . 366020) (-2818 . 365960) + (-2819 . 365629) (-2820 . 365577) (-2821 . 365460) (-2822 . 365405) + (-2823 . 365258) (-2824 . 365165) (-2825 . 365074) (-2826 . 364956) + (-2827 . 364448) (-2828 . 364347) (-2829 . 364097) (-2830 . 364042) + (-2831 . 363977) (-2832 . 363881) (-2833 . 363829) (-2834 . 363674) + (-2835 . 363569) (-2836 . 363470) (-2837 . 363353) (-2838 . 363190) + (-2839 . 363130) (-2840 . 362796) (-2841 . 362642) (-2842 . 362576) + (-2843 . 362460) (-2844 . 362319) (-2845 . 362163) (-2846 . 361987) + (-2847 . 361760) (-2848 . 361635) (-2849 . 360995) (-2850 . 360915) + (-2851 . 360054) (-2852 . 359950) (-2853 . 359407) (-2854 . 359355) + (-2855 . 359277) (-2856 . 359169) (-2857 . 359119) (-2858 . 359064) + (-2859 . 358832) (-2860 . 358652) (-2861 . 358565) (-2862 . 358477) + (-2863 . 358410) (-2864 . 358245) (-2865 . 358178) (-2866 . 358079) + (-2867 . 356777) (-2868 . 356485) (-2869 . 356306) (-2870 . 356214) + (-2871 . 355797) (-2872 . 355696) (-2873 . 355550) (-2874 . 355312) + (-2875 . 355131) (-2876 . 354772) (-2877 . 354720) (-2878 . 354596) + (-2879 . 354369) (-2880 . 354162) (-2881 . 354131) (-2882 . 353913) + (-2883 . 335338) (-2884 . 334962) (-2885 . 334894) (-2886 . 334866) + (-2887 . 334792) (-2888 . 334691) (-2889 . 334513) (-2890 . 334394) + (-2891 . 334299) (-2892 . 334196) (-2893 . 333987) (-2894 . 331166) + (-2895 . 331056) (-2896 . 330603) (-2897 . 330469) (-2898 . 330396) + (-2899 . 329397) (-2900 . 329305) (-2901 . 329245) (-2902 . 329192) + (-2903 . 329122) (-2904 . 328659) (-2905 . 328535) (-2906 . 328478) + (-2907 . 328404) (-2908 . 328282) (-2909 . 328141) (-2910 . 328045) + (-2911 . 328011) (-2912 . 327919) (-2913 . 327299) (-2914 . 326736) + (-2915 . 326352) (-2916 . 326269) (-2917 . 325610) (-2918 . 325422) + (-2919 . 325234) (-2920 . 325200) (-2921 . 325075) (-2922 . 324804) + (-2923 . 324718) (-2924 . 324684) (-2925 . 324428) (-2926 . 324229) + (-2927 . 323781) (-2928 . 323640) (-2929 . 323161) (-2930 . 322995) + (-2931 . 322764) (-2932 . 322697) (-2933 . 322290) (-2934 . 321860) + (-2935 . 321781) (-2936 . 321622) (-2937 . 321371) (-2938 . 321319) + (-2939 . 321060) (-2940 . 321008) (-2941 . 320939) (-2942 . 320830) + (-2943 . 320704) (-2944 . 320652) (-2945 . 320442) (-2946 . 320347) + (-2947 . 320234) (-2948 . 320089) (-2949 . 319898) (-2950 . 319797) + (-2951 . 319765) (-2952 . 319627) (-2953 . 319331) (-2954 . 319271) + (-2955 . 319218) (-2956 . 319126) (-2957 . 318822) (-2958 . 318754) + (-2959 . 318670) (-2960 . 318483) (-2961 . 318138) (-2962 . 318057) + (-2963 . 317962) (-2964 . 317635) (-2965 . 317601) (-2966 . 317421) + (-2967 . 317366) (-2968 . 317265) (-2969 . 317167) (-2970 . 317115) + (-2971 . 316957) (-2972 . 316639) (-2973 . 316412) (-2974 . 316153) + (-2975 . 316056) (-2976 . 315923) (-2977 . 315791) (-2978 . 315617) + (-2979 . 315287) (-2980 . 315110) (-2981 . 314884) (-2982 . 314609) + (-2983 . 314525) (-2984 . 314384) (-2985 . 314285) (-2986 . 314004) + (-2987 . 313846) (-2988 . 313454) (-2989 . 313397) (-2990 . 313216) + (-2991 . 313068) (-2992 . 312915) (-2993 . 312841) (-2994 . 312662) + (-2995 . 312453) (-2996 . 312358) (-2997 . 311293) (-2998 . 310919) + (-2999 . 310779) (-3000 . 310636) (-3001 . 310491) (-3002 . 310250) + (-3003 . 310171) (-3004 . 309890) (-3005 . 309605) (-3006 . 309144) + (-3007 . 309033) (-3008 . 308929) (-3009 . 308814) (-3010 . 308498) + (-3011 . 307964) (-3012 . 307868) (-3013 . 307730) (-3014 . 307663) + (-3015 . 307547) (-3016 . 306477) (-3017 . 306371) (-3018 . 306313) + (-3019 . 305978) (-3020 . 305895) (-3021 . 305709) (-3022 . 305650) + (-3023 . 305484) (-3024 . 305371) (-3025 . 305339) (-3026 . 305225) + (-3027 . 305140) (-3028 . 304993) (-3029 . 304915) (-3030 . 304832) + (-3031 . 304780) (-3032 . 304651) (-3033 . 304273) (-3034 . 304218) + (-3035 . 304134) (-3036 . 303976) (-3037 . 303795) (-3038 . 303615) + (-3039 . 303503) (-3040 . 303392) (-3041 . 303187) (-3042 . 303134) + (-3043 . 302740) (-3044 . 302644) (-3045 . 302571) (-3046 . 302395) + (-3047 . 302364) (-3048 . 298414) (-3049 . 298336) (-3050 . 298195) + (-3051 . 297879) (-3052 . 297826) (-3053 . 297621) (-3054 . 296317) + (-3055 . 296289) (-3056 . 296204) (-3057 . 296121) (-3058 . 296048) + (-3059 . 295910) (-3060 . 295857) (-3061 . 295481) (-3062 . 295453) + (-3063 . 295308) (-3064 . 295235) (-3065 . 295207) (-3066 . 295111) + (-3067 . 294983) (-3068 . 294532) (-3069 . 294309) (-3070 . 294135) + (-3071 . 294042) (-3072 . 293960) (-3073 . 293867) (-3074 . 293709) + (-3075 . 293576) (-3076 . 293437) (-3077 . 293387) (-3078 . 293060) + (-3079 . 292724) (-3080 . 292606) (-3081 . 292551) (-3082 . 292517) + (-3083 . 292483) (-3084 . 292174) (-3085 . 292086) (-3086 . 292052) + (-3087 . 291948) (-3088 . 291802) (-3089 . 291735) (-3090 . 291624) + (-3091 . 291397) (-3092 . 291225) (-3093 . 291174) (-3094 . 291122) + (-3095 . 290945) (-3096 . 290866) (-3097 . 290652) (-3098 . 290566) + (-3099 . 290495) (-3100 . 289781) (-3101 . 289364) (-3102 . 288024) + (-3103 . 287859) (-3104 . 287681) (-3105 . 287463) (-3106 . 286819) + (-3107 . 286745) (-3108 . 286618) (-3109 . 286376) (-3110 . 286190) + (-3111 . 286030) (-3112 . 285839) (-3113 . 285780) (-3114 . 285449) + (-3115 . 285348) (-3116 . 285211) (-3117 . 285115) (-3118 . 284951) + (-3119 . 284856) (-3120 . 284775) (-3121 . 284722) (-3122 . 284659) + (-3123 . 284468) (-3124 . 284416) (-3125 . 284313) (-3126 . 284239) + (-3127 . 284011) (-3128 . 283937) (-3129 . 283529) (-3130 . 283458) + (-3131 . 283314) (-3132 . 283115) (-3133 . 282512) (-3134 . 280451) + (-3135 . 280190) (-3136 . 280094) (-3137 . 279998) (-3138 . 279924) + (-3139 . 279618) (-3140 . 279449) (-3141 . 279330) (-3142 . 279191) + (-3143 . 279062) (-3144 . 278840) (-3145 . 278754) (-3146 . 278692) + (-3147 . 278604) (-3148 . 278410) (-3149 . 278196) (-3150 . 278097) + (-3151 . 277991) (-3152 . 277831) (-3153 . 277735) (-3154 . 277618) + (-3155 . 277488) (-3156 . 277418) (-3157 . 277065) (-3158 . 276818) + (-3159 . 276388) (-3160 . 276308) (-3161 . 276171) (-3162 . 276122) + (-3163 . 276093) (-3164 . 275988) (-3165 . 275917) (-3166 . 275827) + (-3167 . 275379) (-3168 . 275279) (-3169 . 275029) (-3170 . 274648) + (-3171 . 274553) (-3172 . 274389) (-3173 . 274315) (-3174 . 274171) + (-3175 . 274087) (-3176 . 273841) (-3177 . 273771) (-3178 . 273626) + (-3179 . 272424) (-3180 . 272357) (-3181 . 272249) (-3182 . 272094) + (-3183 . 271711) (-3184 . 271574) (-3185 . 271494) (-3186 . 270741) + (-3187 . 270682) (-3188 . 270155) (-3189 . 270042) (-3190 . 269964) + (-3191 . 269846) (-3192 . 269761) (-3193 . 269684) (-3194 . 269527) + (-3195 . 269288) (-3196 . 269046) (-3197 . 268951) (-3198 . 268884) + (-3199 . 268789) (-3200 . 268541) (-3201 . 268062) (-3202 . 267959) + (-3203 . 267888) (-3204 . 267768) (-3205 . 266801) (-3206 . 266748) + (-3207 . 266624) (-3208 . 266464) (-3209 . 266306) (-3210 . 266206) + (-3211 . 266076) (-3212 . 265980) (-3213 . 265897) (-3214 . 265379) + (-3215 . 265320) (-3216 . 265224) (-3217 . 265122) (-3218 . 265050) + (-3219 . 264995) (-3220 . 264842) (-3221 . 264740) (-3222 . 264429) + (-3223 . 264401) (-3224 . 264334) (-3225 . 264115) (-3226 . 264050) + (-3227 . 263894) (-3228 . 263811) (-3229 . 263761) (-3230 . 263532) + (-3231 . 263358) (-3232 . 263234) (-3233 . 263157) (-3234 . 263030) + (-3235 . 262362) (-3236 . 262288) (-3237 . 262115) (-3238 . 262050) + (-3239 . 261894) (-3240 . 261779) (-3241 . 261693) (-3242 . 261615) + (-3243 . 261535) (-3244 . 261458) (-3245 . 261391) (-3246 . 261172) + (-3247 . 260922) (-3248 . 260894) (-3249 . 260814) (-3250 . 260744) + (-3251 . 260656) (-3252 . 260210) (-3253 . 260025) (-3254 . 259918) + (-3255 . 259716) (-3256 . 259230) (-3257 . 259107) (-3258 . 258941) + (-3259 . 258853) (-3260 . 258560) (-3261 . 258486) (-3262 . 258415) + (-3263 . 258296) (-3264 . 257408) (-3265 . 257359) (-3266 . 257192) + (-3267 . 257036) (-3268 . 256779) (-3269 . 256707) (-3270 . 256612) + (-3271 . 256524) (-3272 . 252364) (-3273 . 252100) (-3274 . 252029) + (-3275 . 251782) (-3276 . 251680) (-3277 . 251620) (-3278 . 251488) + (-3279 . 251366) (-3280 . 251338) (-3281 . 251250) (-3282 . 250686) + (-3283 . 250434) (-3284 . 250240) (-3285 . 250154) (-3286 . 250102) + (-3287 . 249977) (-3288 . 249893) (-3289 . 249735) (-3290 . 249682) + (-3291 . 249478) (-3292 . 249404) (-3293 . 249158) (-3294 . 249080) + (-3295 . 248993) (-3296 . 248922) (-3297 . 248529) (-3298 . 248432) + (-3299 . 247844) (-3300 . 247810) (-3301 . 247737) (-3302 . 247638) + (-3303 . 247432) (-3304 . 247339) (-3305 . 247244) (-3306 . 247063) + (-3307 . 246886) (-3308 . 246788) (-3309 . 246507) (-3310 . 246383) + (-3311 . 246287) (-3312 . 246214) (-3313 . 246116) (-3314 . 245984) + (-3315 . 245928) (-3316 . 245687) (-3317 . 245580) (-3318 . 243802) + (-3319 . 243716) (-3320 . 243651) (-3321 . 243599) (-3322 . 243389) + (-3323 . 243248) (-3324 . 243128) (-3325 . 242949) (-3326 . 242863) + (-3327 . 242773) (-3328 . 242694) (-3329 . 242553) (-3330 . 242468) + (-3331 . 242235) (-3332 . 242101) (-3333 . 242019) (-3334 . 241871) + (-3335 . 241728) (-3336 . 241658) (-3337 . 241581) (-3338 . 241502) + (-3339 . 241416) (-3340 . 241209) (-3341 . 241030) (-3342 . 240808) + (-3343 . 240380) (-3344 . 240259) (-3345 . 240206) (-3346 . 239930) + (-3347 . 239792) (-3348 . 239710) (-3349 . 239572) (-3350 . 239423) + (-3351 . 239356) (-3352 . 239165) (-3353 . 239134) (-3354 . 239000) + (-3355 . 238929) (-3356 . 238110) (-3357 . 238033) (-3358 . 237962) + (-3359 . 237820) (-3360 . 237695) (-3361 . 237575) (-3362 . 237498) + (-3363 . 237238) (-3364 . 237171) (-3365 . 236807) (-3366 . 236734) + (-3367 . 236635) (-3368 . 236508) (-3369 . 236064) (-3370 . 235958) + (-3371 . 235743) (-3372 . 235546) (-3373 . 235042) (-3374 . 234732) + (-3375 . 234675) (-3376 . 234472) (-3377 . 234384) (-3378 . 234044) + (-3379 . 233992) (-3380 . 233791) (-3381 . 233673) (-3382 . 233451) + (-3383 . 233324) (-3384 . 233246) (-3385 . 233124) (-3386 . 233027) + (-3387 . 232948) (-3388 . 232876) (-3389 . 232815) (-3390 . 232700) + (-3391 . 232538) (-3392 . 232471) (-3393 . 232400) (-3394 . 232237) + (-3395 . 232121) (-3396 . 231949) (-3397 . 231854) (-3398 . 231760) + (-3399 . 231576) (-3400 . 231324) (-3401 . 231254) (-3402 . 231183) + (-3403 . 231133) (-3404 . 231073) (-3405 . 230422) (-3406 . 230288) + (-3407 . 230208) (-3408 . 230155) (-3409 . 230018) (-3410 . 229934) + (-3411 . 229906) (-3412 . 229479) (-3413 . 229144) (-3414 . 228880) + (-3415 . 228821) (-3416 . 228714) (-3417 . 228662) (-3418 . 228538) + (-3419 . 228486) (-3420 . 228318) (-3421 . 228259) (-3422 . 228106) + (-3423 . 228009) (-3424 . 227817) (-3425 . 227765) (-3426 . 227677) + (-3427 . 227549) (-3428 . 227157) (-3429 . 227083) (-3430 . 226205) + (-3431 . 226005) (-3432 . 225802) (-3433 . 225728) (-3434 . 225650) + (-3435 . 225348) (-3436 . 224256) (-3437 . 224117) (-3438 . 223946) + (-3439 . 223668) (-3440 . 223085) (-3441 . 223008) (-3442 . 222940) + (-3443 . 222872) (-3444 . 222786) (-3445 . 222382) (-3446 . 222274) + (-3447 . 222218) (-3448 . 222105) (-3449 . 222034) (-3450 . 221940) + (-3451 . 221862) (-3452 . 221537) (-3453 . 221452) (-3454 . 221399) + (-3455 . 221305) (-3456 . 221184) (-3457 . 221089) (-3458 . 221015) + (-3459 . 220929) (-3460 . 220876) (-3461 . 220621) (-3462 . 220414) + (-3463 . 219187) (-3464 . 219071) (-3465 . 218952) (-3466 . 217550) + (-3467 . 217467) (-3468 . 217411) (-3469 . 217250) (-3470 . 217222) + (-3471 . 217194) (-3472 . 217066) (-3473 . 216884) (-3474 . 216759) + (-3475 . 216700) (-3476 . 216427) (-3477 . 216248) (-3478 . 216118) + (-3479 . 215998) (-3480 . 215797) (-3481 . 215726) (-3482 . 215621) + (-3483 . 215524) (-3484 . 215084) (-3485 . 214867) (-3486 . 214154) + (-3487 . 213805) (-3488 . 213746) (-3489 . 212930) (-3490 . 212509) + (-3491 . 212281) (-3492 . 212096) (-3493 . 211904) (-3494 . 211228) + (-3495 . 211150) (-3496 . 210583) (-3497 . 210512) (-3498 . 210130) + (-3499 . 209592) (-3500 . 209564) (-3501 . 209268) (-3502 . 209210) + (-3503 . 209074) (-3504 . 208968) (-3505 . 208919) (-3506 . 208833) + (-3507 . 208699) (-3508 . 208569) (-3509 . 208166) (-3510 . 208029) + (-3511 . 207856) (-3512 . 207735) (-3513 . 207626) (-3514 . 207444) + (-3515 . 206858) (-3516 . 206754) (-3517 . 206355) (-3518 . 206164) + (-3519 . 206112) (-3520 . 205993) (-3521 . 205641) (-3522 . 205528) + (-3523 . 205344) (-3524 . 205221) (-3525 . 205193) (-3526 . 205134) + (-3527 . 204819) (-3528 . 204767) (-3529 . 204713) (-3530 . 204639) + (-3531 . 204535) (-3532 . 204468) (-3533 . 204223) (-3534 . 204189) + (-3535 . 203971) (-3536 . 203805) (-3537 . 203774) (-3538 . 203691) + (-3539 . 203614) (-3540 . 203541) (-3541 . 202957) (-3542 . 202887) + (-3543 . 202779) (-3544 . 202673) (-3545 . 202569) (-3546 . 202516) + (-3547 . 202357) (-3548 . 202286) (-3549 . 202216) (-3550 . 202102) + (-3551 . 202042) (-3552 . 201824) (-3553 . 201700) (-3554 . 201369) + (-3555 . 201315) (-3556 . 200692) (-3557 . 200108) (-3558 . 199913) + (-3559 . 199428) (-3560 . 199371) (-3561 . 199097) (-3562 . 199003) + (-3563 . 198839) (-3564 . 198725) (-3565 . 198332) (-3566 . 198265) + (-3567 . 198212) (-3568 . 198184) (-3569 . 197899) (-3570 . 197727) + (-3571 . 197641) (-3572 . 197570) (-3573 . 197475) (-3574 . 197359) + (-3575 . 197264) (-3576 . 196996) (-3577 . 196838) (-3578 . 196546) + (-3579 . 196374) (-3580 . 196303) (-3581 . 196076) (-3582 . 195883) + (-3583 . 195555) (-3584 . 195447) (-3585 . 195194) (-3586 . 194953) + (-3587 . 194596) (-3588 . 194451) (-3589 . 194378) (-3590 . 194276) + (-3591 . 194104) (-3592 . 193954) (-3593 . 193802) (-3594 . 193693) + (-3595 . 193538) (-3596 . 193351) (-3597 . 193300) (-3598 . 193231) + (-3599 . 193059) (-3600 . 192963) (-3601 . 192838) (-3602 . 192754) + (-3603 . 192702) (-3604 . 192600) (-3605 . 192499) (-3606 . 192413) + (-3607 . 192360) (-3608 . 192232) (-3609 . 192132) (-3610 . 192008) + (-3611 . 191740) (-3612 . 191644) (-3613 . 191592) (-3614 . 191467) + (-3615 . 191087) (-3616 . 190807) (-3617 . 190553) (-3618 . 190468) + (-3619 . 190362) (-3620 . 190309) (-3621 . 190200) (-3622 . 190072) + (-3623 . 189993) (-3624 . 189744) (-3625 . 189628) (-3626 . 189573) + (-3627 . 189417) (-3628 . 189364) (-3629 . 189200) (-3630 . 189074) + (-3631 . 189000) (-3632 . 188947) (-3633 . 188348) (-3634 . 188190) + (-3635 . 188080) (-3636 . 187906) (-3637 . 187850) (-3638 . 187752) + (-3639 . 187649) (-3640 . 187528) (-3641 . 187440) (-3642 . 187377) + (-3643 . 186956) (-3644 . 186888) (-3645 . 186860) (-3646 . 186698) + (-3647 . 186628) (-3648 . 186501) (-3649 . 186407) (-3650 . 186338) + (-3651 . 186103) (-3652 . 186034) (-3653 . 185660) (-3654 . 185553) + (-3655 . 185423) (-3656 . 185243) (-3657 . 185149) (-3658 . 184539) + (-3659 . 183928) (-3660 . 183773) (-3661 . 183563) (-3662 . 183461) + (-3663 . 183324) (-3664 . 183119) (-3665 . 182559) (-3666 . 182487) + (-3667 . 182349) (-3668 . 182297) (-3669 . 182243) (-3670 . 182139) + (-3671 . 182072) (-3672 . 181969) (-3673 . 181650) (-3674 . 181126) + (-3675 . 180979) (-3676 . 180824) (-3677 . 180765) (-3678 . 180696) + (-3679 . 180553) (-3680 . 180458) (-3681 . 180387) (-3682 . 180243) + (-3683 . 180190) (-3684 . 180113) (-3685 . 180039) (-3686 . 179879) + (-3687 . 179672) (-3688 . 179505) (-3689 . 179164) (-3690 . 178956) + (-3691 . 178900) (-3692 . 178804) (-3693 . 178528) (-3694 . 178476) + (-3695 . 178124) (-3696 . 177792) (-3697 . 177651) (-3698 . 177574) + (-3699 . 177439) (-3700 . 176702) (-3701 . 176553) (-3702 . 176413) + (-3703 . 176328) (-3704 . 176228) (-3705 . 176127) (-3706 . 175969) + (-3707 . 175794) (-3708 . 175742) (-3709 . 175589) (-3710 . 175402) + (-3711 . 175152) (-3712 . 174986) (-3713 . 174853) (-3714 . 174693) + (-3715 . 173512) (-3716 . 173411) (-3717 . 173279) (-3718 . 173186) + (-3719 . 173104) (-3720 . 172930) (-3721 . 172588) (-3722 . 172230) + (-3723 . 172149) (-3724 . 172079) (-3725 . 170781) (-3726 . 170437) + (-3727 . 170365) (-3728 . 170297) (-3729 . 170218) (-3730 . 170083) + (-3731 . 170014) (-3732 . 169950) (-3733 . 169732) (-3734 . 169543) + (-3735 . 169440) (-3736 . 169321) (-3737 . 169231) (-3738 . 168814) + (-3739 . 168735) (-3740 . 168291) (-3741 . 167639) (-3742 . 167516) + (-3743 . 167361) (-3744 . 167107) (-3745 . 166810) (-3746 . 166730) + (-3747 . 166561) (-3748 . 166459) (-3749 . 166327) (-3750 . 165898) + (-3751 . 165845) (-3752 . 165646) (-3753 . 165592) (-3754 . 165521) + (-3755 . 165384) (-3756 . 165312) (-3757 . 165214) (-3758 . 165118) + (-3759 . 164252) (-3760 . 163893) (-3761 . 163163) (-3762 . 162997) + (-3763 . 162551) (-3764 . 162420) (-3765 . 162248) (-3766 . 161408) + (-3767 . 161305) (-3768 . 161174) (-3769 . 161117) (-3770 . 161065) + (-3771 . 160941) (-3772 . 160400) (-3773 . 160271) (-3774 . 159541) + (-3775 . 158901) (-3776 . 158849) (-3777 . 158686) (-12 . 158514) + (-3779 . 158385) (-3780 . 158275) (-3781 . 158165) (-3782 . 158047) + (-3783 . 157976) (-3784 . 157729) (-3785 . 157549) (-3786 . 156872) + (-3787 . 156812) (-3788 . 156757) (-3789 . 156094) (-3790 . 155876) + (-3791 . 155766) (-3792 . 155607) (-3793 . 155514) (-3794 . 154976) + (-3795 . 154854) (-3796 . 154757) (-3797 . 154192) (-3798 . 154143) + (-3799 . 153656) (-3800 . 153467) (-3801 . 153335) (-3802 . 153231) + (-3803 . 152348) (-3804 . 152248) (-3805 . 152005) (-3806 . 151886) + (-3807 . 151321) (-3808 . 151087) (-3809 . 150986) (-3810 . 150746) + (-3811 . 150609) (-3812 . 150523) (-3813 . 150421) (-3814 . 150216) + (-3815 . 149918) (-3816 . 149832) (-3817 . 149267) (-3818 . 149129) + (-3819 . 148843) (-3820 . 148538) (-3821 . 148466) (-3822 . 148351) + (-3823 . 148248) (-3824 . 148025) (-3825 . 147631) (-3826 . 147547) + (-3827 . 147375) (-3828 . 146700) (-3829 . 146389) (-3830 . 146315) + (-3831 . 146037) (-3832 . 145970) (-3833 . 145857) (-3834 . 145804) + (-3835 . 145624) (-3836 . 145481) (-3837 . 145379) (-3838 . 145158) + (-3839 . 144483) (-3840 . 144424) (-3841 . 144214) (-3842 . 143914) + (-3843 . 143625) (-3844 . 143576) (-3845 . 143465) (-3846 . 143266) + (-3847 . 143199) (-3848 . 143147) (-3849 . 143095) (-3850 . 143035) + (-3851 . 142880) (-3852 . 142142) (-3853 . 142015) (-3854 . 141983) + (-3855 . 141718) (-3856 . 141540) (-3857 . 141445) (-3858 . 141242) + (-3859 . 141003) (-3860 . 140885) (-3861 . 140612) (-3862 . 138197) + (-3863 . 137634) (-3864 . 137463) (-3865 . 137169) (-3866 . 136723) + (-3867 . 136597) (-3868 . 136064) (-3869 . 135902) (-3870 . 135802) + (-3871 . 135629) (-3872 . 135495) (-3873 . 134932) (-3874 . 134835) + (-3875 . 134564) (* . 130451) (-3877 . 130321) (-3878 . 130240) + (-3879 . 129666) (-3880 . 129107) (-3881 . 129025) (-3882 . 128972) + (-3883 . 128787) (-3884 . 128687) (-3885 . 128124) (-3886 . 127987) + (-3887 . 127900) (-3888 . 127828) (-3889 . 127755) (-3890 . 127585) + (-3891 . 127375) (-3892 . 126816) (-3893 . 126642) (-3894 . 126159) + (-3895 . 126037) (-3896 . 125875) (-3897 . 125199) (-3898 . 125098) + (-3899 . 124991) (-3900 . 124859) (-3901 . 124716) (-3902 . 124621) + (-3903 . 124306) (-3904 . 124233) (-3905 . 124118) (-3906 . 124024) + (-3907 . 123494) (-3908 . 123435) (-3909 . 122759) (-3910 . 122671) + (-3911 . 122530) (-3912 . 122476) (-3913 . 122397) (-3914 . 122125) + (-3915 . 121828) (-3916 . 121800) (-3917 . 121658) (-3918 . 121535) + (-3919 . 121287) (-3920 . 121054) (-3921 . 120879) (-3922 . 120755) + (-3923 . 120079) (-3924 . 119871) (-3925 . 119632) (-3926 . 118530) + (-3927 . 118401) (-3928 . 118315) (-3929 . 118127) (-3930 . 118039) + (-3931 . 118010) (-3932 . 117954) (-3933 . 117775) (-3934 . 117704) + (-3935 . 117575) (-3936 . 117501) (-3937 . 116937) (-3938 . 116805) + (-3939 . 116777) (-3940 . 116693) (-3941 . 116639) (-3942 . 116532) + (-3943 . 116301) (-3944 . 116224) (-3945 . 115257) (-9 . 115229) + (-3947 . 115176) (-3948 . 114804) (-3949 . 114767) (-3950 . 114654) + (-3951 . 114574) (-3952 . 114543) (-3953 . 114333) (-3954 . 114125) + (-3955 . 113895) (-3956 . 113808) (-3957 . 113529) (-3958 . 113362) + (-3959 . 113268) (-8 . 113240) (-3961 . 113149) (-3962 . 111957) + (-3963 . 111813) (-3964 . 111743) (-3965 . 111316) (-3966 . 111118) + (-3967 . 111030) (-3968 . 110868) (-3969 . 110705) (-3970 . 110546) + (-3971 . 109100) (-3972 . 108933) (-7 . 108905) (-3974 . 108833) + (-3975 . 108762) (-3976 . 108284) (-3977 . 108231) (-3978 . 108073) + (-3979 . 107992) (-3980 . 107829) (-3981 . 107742) (-3982 . 107486) + (-3983 . 107067) (-3984 . 106643) (-3985 . 106156) (-3986 . 106084) + (-3987 . 106032) (-3988 . 105879) (-3989 . 105787) (-3990 . 105604) + (-3991 . 105551) (-3992 . 105163) (-3993 . 105068) (-3994 . 104756) + (-3995 . 103998) (-3996 . 103883) (-3997 . 103714) (-3998 . 103496) + (-3999 . 103422) (-4000 . 103358) (-4001 . 103082) (-4002 . 102996) + (-4003 . 102843) (-4004 . 102747) (-4005 . 102643) (-4006 . 102516) + (-4007 . 102258) (-4008 . 102230) (-4009 . 102202) (-4010 . 101857) + (-4011 . 101572) (-4012 . 101516) (-4013 . 101442) (-4014 . 101254) + (-4015 . 101198) (-4016 . 100012) (-4017 . 99660) (-4018 . 99579) + (-4019 . 99491) (-4020 . 99439) (-4021 . 99343) (-4022 . 99291) + (-4023 . 99225) (-4024 . 99168) (-4025 . 97945) (-4026 . 97684) + (-4027 . 97603) (-4028 . 96421) (-4029 . 96366) (-4030 . 96293) + (-4031 . 96187) (-4032 . 96068) (-4033 . 95995) (-4034 . 95850) + (-4035 . 95740) (-4036 . 95573) (-4037 . 95506) (-4038 . 93298) + (-4039 . 93270) (-4040 . 92955) (-4041 . 92830) (-4042 . 92455) + (-4043 . 92373) (-4044 . 92221) (-4045 . 92120) (-4046 . 91994) + (-4047 . 91943) (-4048 . 91813) (-4049 . 91691) (-4050 . 91629) + (-4051 . 91355) (-4052 . 91302) (-4053 . 91145) (-4054 . 90999) + (-4055 . 90925) (-4056 . 90826) (-4057 . 90749) (-4058 . 90433) + (-4059 . 90359) (-4060 . 89656) (-4061 . 89522) (-4062 . 89403) + (-4063 . 89103) (-4064 . 89075) (-4065 . 89018) (-4066 . 88532) + (-4067 . 88428) (-4068 . 88255) (-4069 . 88200) (-4070 . 88131) + (-4071 . 88049) (-4072 . 87804) (-4073 . 87720) (-4074 . 87623) + (-4075 . 87375) (-4076 . 87069) (-4077 . 87016) (-4078 . 86778) + (-4079 . 86567) (-4080 . 86376) (-4081 . 86258) (-4082 . 86145) + (-4083 . 85766) (-4084 . 85622) (-4085 . 84504) (-4086 . 84392) + (-4087 . 84144) (-4088 . 83890) (-4089 . 83753) (-4090 . 83558) + (-4091 . 82756) (-4092 . 82553) (-4093 . 82382) (-4094 . 82251) + (-4095 . 82180) (-4096 . 82084) (-4097 . 81987) (-4098 . 81916) + (-4099 . 81845) (-4100 . 81793) (-4101 . 81733) (-4102 . 81676) + (-4103 . 81602) (-4104 . 81472) (-4105 . 81319) (-4106 . 80931) + (-4107 . 80776) (-4108 . 80722) (-4109 . 80546) (-4110 . 80326) + (-4111 . 80254) (-4112 . 80131) (-4113 . 79558) (-4114 . 78899) + (-4115 . 78829) (-4116 . 78355) (-4117 . 78222) (-4118 . 78138) + (-4119 . 77692) (-4120 . 77522) (-4121 . 77356) (-4122 . 77259) + (-4123 . 77120) (-4124 . 77025) (-4125 . 76692) (-4126 . 76400) + (-4127 . 76130) (-4128 . 75908) (-4129 . 75852) (-4130 . 75560) + (-4131 . 75503) (-4132 . 75424) (-4133 . 75278) (-4134 . 75165) + (-4135 . 75113) (-4136 . 74992) (-4137 . 74882) (-4138 . 74527) + (-4139 . 74411) (-4140 . 74315) (-4141 . 74256) (-4142 . 74186) + (-4143 . 74096) (-4144 . 73949) (-4145 . 73784) (-4146 . 72756) + (-4147 . 72697) (-4148 . 72628) (-4149 . 72594) (-4150 . 72419) + (-4151 . 72259) (-4152 . 72165) (-4153 . 71969) (-4154 . 71819) + (-4155 . 71600) (-4156 . 71546) (-4157 . 71490) (-4158 . 71386) + (-4159 . 71146) (-4160 . 71091) (-4161 . 70967) (-4162 . 70910) + (-4163 . 70882) (-4164 . 70735) (-4165 . 70369) (-4166 . 70254) + (-4167 . 70138) (-4168 . 70007) (-4169 . 69853) (-4170 . 69617) + (-4171 . 69536) (-4172 . 69411) (-4173 . 69298) (-4174 . 69080) + (-4175 . 69002) (-4176 . 68564) (-4177 . 68512) (-4178 . 68262) + (-4179 . 68124) (-4180 . 68008) (-4181 . 67866) (-4182 . 67553) + (-4183 . 67425) (-4184 . 67336) (-4185 . 67206) (-4186 . 67147) + (-4187 . 66900) (-4188 . 66777) (-4189 . 66683) (-4190 . 66192) + (-4191 . 66127) (-4192 . 65597) (-4193 . 65442) (-4194 . 65288) + (-4195 . 65232) (-4196 . 64456) (-4197 . 64342) (-4198 . 64226) + (-4199 . 64171) (-4200 . 64050) (-4201 . 63997) (-4202 . 63856) + (-4203 . 63654) (-4204 . 63594) (-4205 . 63515) (-4206 . 63432) + (-4207 . 63379) (-4208 . 63236) (-4209 . 62827) (-4210 . 62731) + (-4211 . 62699) (-4212 . 62311) (-4213 . 62198) (-4214 . 62170) + (-4215 . 62110) (-4216 . 61808) (-4217 . 61677) (-4218 . 61525) + (-4219 . 61428) (-4220 . 61209) (-4221 . 60987) (-4222 . 60750) + (-4223 . 60670) (-4224 . 60614) (-4225 . 60562) (-4226 . 60220) + (-4227 . 60191) (-4228 . 60075) (-4229 . 60013) (-4230 . 59825) + (-4231 . 59742) (-4232 . 59355) (-4233 . 59323) (-4234 . 59240) + (-4235 . 59036) (-4236 . 58950) (-4237 . 58851) (-4238 . 58738) + (-4239 . 58037) (-4240 . 57584) (-4241 . 57523) (-4242 . 57489) + (-4243 . 57243) (-4244 . 57085) (-4245 . 56990) (-4246 . 56910) + (-4247 . 56815) (-4248 . 56716) (-4249 . 56642) (-4250 . 56462) + (-4251 . 56255) (-4252 . 56056) (-4253 . 55914) (-4254 . 55826) + (-4255 . 55580) (-4256 . 55290) (-4257 . 55209) (-4258 . 54929) + (-4259 . 54852) (-4260 . 54773) (-4261 . 54705) (-4262 . 54613) + (-4263 . 54540) (-4264 . 53973) (-4265 . 53550) (-4266 . 53214) + (-4267 . 53165) (-4268 . 53063) (-4269 . 52783) (-4270 . 52721) + (-4271 . 52566) (-4272 . 52537) (-4273 . 52377) (-4274 . 52159) + (-4275 . 52075) (-4276 . 50877) (-4277 . 50725) (-4278 . 50626) + (-4279 . 50542) (-4280 . 50412) (-4281 . 50353) (-4282 . 50295) + (-4283 . 50194) (-4284 . 49786) (-4285 . 49734) (-4286 . 49662) + (-4287 . 49596) (-4288 . 49514) (-4289 . 49353) (-4290 . 47587) + (-4291 . 47476) (-4292 . 47224) (-4293 . 47162) (-4294 . 46979) + (-4295 . 46753) (-4296 . 46670) (-4297 . 46574) (-4298 . 46440) + (-4299 . 44863) (-4300 . 44807) (-4301 . 43352) (-4302 . 43285) + (-4303 . 43202) (-4304 . 43006) (-4305 . 42781) (-4306 . 42716) + (-4307 . 42422) (-4308 . 42328) (-4309 . 41977) (-4310 . 41879) + (-4311 . 40389) (-4312 . 40271) (-4313 . 40054) (-4314 . 39917) + (-4315 . 39860) (-4316 . 39426) (-4317 . 39099) (-4318 . 38953) + (-4319 . 38841) (-4320 . 38720) (-4321 . 38426) (-4322 . 38164) + (-4323 . 37999) (-4324 . 37761) (-4325 . 37588) (-4326 . 37461) + (-4327 . 37348) (-4328 . 37253) (-4329 . 37100) (-4330 . 36876) + (-4331 . 36809) (-4332 . 36073) (-4333 . 35335) (-4334 . 35272) + (-4335 . 35206) (-4336 . 35151) (-4337 . 34688) (-4338 . 34587) + (-4339 . 34457) (-4340 . 34429) (-4341 . 34376) (-4342 . 34273) + (-4343 . 33727) (-4344 . 33631) (-4345 . 33468) (-4346 . 33391) + (-4347 . 33158) (-4348 . 33056) (-4349 . 32547) (-4350 . 32470) + (-4351 . 32390) (-4352 . 32227) (-4353 . 32099) (-4354 . 31944) + (-4355 . 31801) (-4356 . 31748) (-4357 . 31624) (-4358 . 31244) + (-4359 . 31141) (-4360 . 31053) (-4361 . 30853) (-4362 . 30620) + (-4363 . 30462) (-4364 . 30409) (-4365 . 30314) (-4366 . 30218) + (-4367 . 29991) (-4368 . 29894) (-4369 . 29827) (-4370 . 29571) + (-4371 . 28927) (-4372 . 28811) (-4373 . 28716) (-4374 . 28632) + (-4375 . 28559) (-4376 . 27131) (-4377 . 27032) (-4378 . 26930) + (-4379 . 26837) (-4380 . 26809) (-4381 . 26584) (-4382 . 26294) + (-4383 . 25122) (-4384 . 24964) (-4385 . 24849) (-4386 . 24114) + (-4387 . 23977) (-4388 . 23838) (-4389 . 23542) (-4390 . 23454) + (-4391 . 23283) (-4392 . 23130) (-4393 . 23026) (-4394 . 22911) + (-4395 . 22722) (-4396 . 22670) (-4397 . 22618) (-4398 . 22559) + (-4399 . 17220) (-4400 . 17164) (-4401 . 17080) (-4402 . 16985) + (-4403 . 16827) (-4404 . 16084) (-4405 . 16023) (-4406 . 14886) + (-4407 . 14771) (-4408 . 14706) (-4409 . 14570) (-4410 . 14472) + (-4411 . 14343) (-4412 . 14096) (-4413 . 7153) (-4414 . 6878) + (-4415 . 6660) (-4416 . 6462) (-4417 . 6366) (-4418 . 6299) + (-4419 . 6240) (-4420 . 5874) (-4421 . 5665) (-4422 . 4415) + (-4423 . 3948) (-4424 . 3768) (-4425 . 3690) (-4426 . 3517) + (-4427 . 3127) (-4428 . 1784) (-4429 . 1489) (-4430 . 1403) + (-4431 . 924) (-4432 . 836) (-4433 . 721) (-4434 . 638) (-4435 . 505) + (-4436 . 436) (-4437 . 358) (-4438 . 198) (-4439 . 131) (-4440 . 30))
\ No newline at end of file |